WO2011027808A1 - 標的遺伝子由来配列を含む連結dna断片の特異的作製方法 - Google Patents

標的遺伝子由来配列を含む連結dna断片の特異的作製方法 Download PDF

Info

Publication number
WO2011027808A1
WO2011027808A1 PCT/JP2010/064994 JP2010064994W WO2011027808A1 WO 2011027808 A1 WO2011027808 A1 WO 2011027808A1 JP 2010064994 W JP2010064994 W JP 2010064994W WO 2011027808 A1 WO2011027808 A1 WO 2011027808A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
double
region
stranded
fragment
Prior art date
Application number
PCT/JP2010/064994
Other languages
English (en)
French (fr)
Inventor
信幸 黒澤
正治 磯部
Original Assignee
国立大学法人富山大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人富山大学 filed Critical 国立大学法人富山大学
Priority to KR1020127008688A priority Critical patent/KR20130029460A/ko
Priority to AU2010290426A priority patent/AU2010290426B2/en
Priority to CA2773061A priority patent/CA2773061A1/en
Priority to JP2011529928A priority patent/JP5779502B2/ja
Priority to CN201080039384.8A priority patent/CN102597257B/zh
Priority to EP10813756.3A priority patent/EP2474619B1/en
Priority to US13/394,153 priority patent/US8999673B2/en
Publication of WO2011027808A1 publication Critical patent/WO2011027808A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/102Mutagenizing nucleic acids
    • C12N15/1027Mutagenizing nucleic acids by DNA shuffling, e.g. RSR, STEP, RPR
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/66General methods for inserting a gene into a vector to form a recombinant vector using cleavage and ligation; Use of non-functional linkers or adaptors, e.g. linkers containing the sequence for a restriction endonuclease
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6806Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay

Definitions

  • the present invention relates to a method for specifically producing a ligated DNA fragment containing a target gene-derived sequence. More specifically, the present invention specifically relates to a target gene fragment in the presence of a non-specific amplification-generated DNA fragment and other target DNA. The present invention relates to a production method for specifically ligating with a fragment. Specifically, the present invention includes (1) a 3 ′ overhanging double-stranded gene fragment containing a target gene sequence, and a linking double strand containing a base sequence unique to each end of the target gene on both ends.
  • DNA cloning is a technology that creates the same gene population by binding target gene fragments to vectors with self-replicating ability such as plasmids, phages, cosmids, etc., and introducing them into hosts such as E. coli.
  • vectors with self-replicating ability such as plasmids, phages, cosmids, etc.
  • a target gene fragment amplified by the polymerase chain reaction (PCR) method or the like is ligated to a vector having a replication origin and an antibiotic selection marker using DNA ligase. After introduction into E. coli cells, the cloned cells are selected by examining antibiotic resistance.
  • PCR polymerase chain reaction
  • the target gene fragment is linked to one or more DNA fragments having a specific function other than the target gene in a state in which the function can be expressed.
  • a method for producing a gene population having the same base sequence a ligated PCR method is known (see Patent Document 1 and Non-Patent Documents 1 and 2).
  • the “DNA fragment having a specific function other than the target gene” is a promoter sequence and a poly A addition sequence.
  • Non-Patent Documents 1 and 2 using a primer added with a sequence homologous to the terminal region of the partner DNA fragment linked to the 5 ′ end of the primer used for gene amplification, a promoter sequence, target gene sequence, and poly A additional sequences are amplified independently.
  • a method of producing a linked DNA fragment in which a promoter sequence, a target gene sequence, and a poly A addition sequence are functionally linked by performing linked PCR using these three types of DNA fragments is described (Non-patent document). (See Figure 1 of Reference 1 and Fig. 1 of Non-Patent Document 2.)
  • Patent Document 1 The entire description of Patent Document 1 and Non-Patent Documents 1 and 2 is specifically incorporated herein by reference.
  • the target gene fragment is generally prepared as a PCR product, but nonspecific amplification is used when the specificity of primer binding to the template during PCR is low or when there are multiple sequences similar to the primer sequence in the template. As a result of the reaction, a non-specific amplification product DNA fragment in which the region between the primer sequences at both ends is not the target gene to be cloned can be generated.
  • a sequence for use in ligation is added to primers used for amplifying each DNA fragment.
  • a sequence for hybridizing with a different DNA fragment is introduced into the end of the DNA fragment in each DNA fragment amplified using this primer.
  • the amplified DNA fragments are mixed and ligated PCR is performed to form a “ligated DNA fragment” in which two or more types of DNA fragments are bound.
  • a “linked DNA fragment” is also formed in the same manner as the target gene fragment, even for a fragment whose region between the primer sequences of the PCR product obtained by the gene amplification reaction is not a sequence derived from the target gene. .
  • the primer used for gene amplification remains in the reaction solution, and the ligated PCR reaction is carried out without removing this. Since the amplification of each DNA fragment that is a constituent element of the “linked DNA fragment” occurs in preference to the amplification of the “linked DNA fragment”, the formation of the “linked DNA fragment” containing the sequence derived from the target gene of interest is Have difficulty.
  • the PCR amplification product after PCR amplification of the target gene fragment, the PCR amplification product must be purified to such an extent that the influence of contamination of the DNA fragment containing the primer and the non-target gene sequence can be ignored. Don't be.
  • the target gene sequence contained in the PCR amplification product is determined to such an extent that the influence of the mixture of the DNA fragment containing the non-target gene sequence and the primer used for target gene amplification on the ligation reaction can be ignored. It is required to purify the contained DNA fragment.
  • the length of the target gene fragment is similar to the length of the non-target gene fragment, it is difficult to separate the target gene fragment. Therefore, in such a case, it is impossible to obtain only a “linked DNA fragment” containing a sequence derived from the target gene of interest.
  • an object of the present invention is to produce a “linked DNA fragment” containing a sequence derived from the target gene of interest by binding one or more double-stranded DNA fragments to a PCR amplification product containing the target gene sequence.
  • An object of the present invention is to provide a method capable of specifically producing the “ligated DNA fragment” without purifying the PCR amplification product.
  • the double-stranded gene fragment includes a target gene in the center, has a region that can associate with both ends, each of the two regions that can associate has a base sequence that does not associate with each other, and One or both regions are unique sequences in which at least a part of the base sequence is contained in the target gene, and a 3′-end overhanging duplex having a protruding end of 1 nucleotide or more at the 3 ′ end of both associable regions Prepare gene fragments, (2) As the double-stranded DNA fragment, preparing a double-stranded DNA fragment for ligation comprising at least one ligation DNA region in the central part and having regions that can associate with both ends, (3-1) One associable region of the 3′-end pro
  • the sequence on the terminal side to which the 3 ′ protruding end is added is the side that binds to the DNA region for ligation in one of the regions that can associate with the double-stranded DNA fragment for ligation, (3-2)
  • the protruding end from the one associable region of the 3′-end protruding double-stranded gene fragment does not have a chain extension function in the DNA synthesis reaction, (3-3)
  • the other associateable region of the 3′-end protruding double-stranded gene fragment is composed of a base sequence homologous to the associateable region at the other end of the linking double-stranded DNA fragment.
  • the sequence on the terminal side to which the 3 ′ protruding end is added is the side that binds to the DNA region for ligation in the other associateable region of the ligation double-stranded DNA fragment, (3-4)
  • the protruding end from the other associateable region of the 3′-end protruding double-stranded gene fragment does not have a chain extension function in the DNA synthesis reaction, (4)
  • By performing the heat denaturation, reassociation and DNA synthesis reaction at least twice using the 3′-end protruding double-stranded gene fragment and the ligating double-stranded DNA fragment Even if the double-stranded gene fragment is coexisting with a gene fragment containing a non-target gene or a primer used for PCR amplification of the double-stranded gene fragment, Non-specific generation of a ligated DNA fragment in which the ligation DNA region is linked to both sides of the non-target gene, and the target ligated DNA fragment in which the ligation DNA region is linked to
  • region 1 target gene—region 2
  • region 2-ligation DNA region-region 1 target gene-region 2
  • the ligation DNA region has two sequences of ligation DNA regions 1 and 2 and has a sequence schematically represented by region 2-ligation DNA region 2-ligation DNA region 1-region 1, In particular, it has at least one sequence represented by region 2-ligation DNA region 2-ligation DNA region 1-region 1-target gene-region 2-ligation DNA region 2-ligation DNA region 1-region 1 It becomes.
  • the inventors have schematically represented the double-stranded DNA fragments for ligation according to the first aspect of the present invention, each of which is schematically represented by region 1-ligation DNA region 1 and ligation DNA region 2-region 2, respectively.
  • Succeeded in obtaining specifically the desired ligated DNA fragment by ligating the ligation DNA region 1 on one side of the target gene and the ligation DNA region 2 on the other side while suppressing specific production
  • the second aspect of the present invention (the invention according to claim 9) was completed.
  • the ligated DNA fragment obtained here has a sequence schematically represented by ligation DNA region 1-region 1-target gene-region 2-ligation DNA region 2.
  • the inventors of the present invention described above in the second aspect of the present invention divided into two ligation double-stranded DNA fragments, schematically region 1-ligation DNA region 1 or ligation DNA
  • region 1-ligation DNA region 1 or ligation DNA By using the sequence represented by region 2 to region 2, non-specific generation of a ligated DNA fragment in which the ligation DNA region 1 or 2 is linked to one side of the non-target gene is suppressed, and the target gene Succeeding in specifically obtaining the target one-side ligated DNA fragment in which the ligation DNA region 1 or 2 is linked to one side, the third aspect of the present invention (the invention according to claim 16) completed.
  • the present invention relates to a 3 ′ overhanging double-stranded gene fragment, a linking double-stranded DNA fragment and a combination thereof used in the first to third aspects of the present invention, and a kit containing them. Is included.
  • the present invention is as follows. [1] A method for producing a linked DNA fragment in which a ligation DNA region is linked to both sides of a target gene, (1) From a double-stranded gene fragment containing a target gene sequence, a base sequence containing the target gene sequence in the center, having regions that can associate with both ends, and the two regions capable of associating do not associate with each other And one or both regions have a unique base sequence in which at least a part of the base sequence is included in the target gene sequence, and has a protruding end of 1 nucleotide or more at the 3 ′ end of both associable regions Preparing a 3 ′ overhanging double stranded gene fragment, (2) preparing a ligation double-stranded DNA fragment containing a ligation DNA region in the center and having regions that can associate with both ends, (3-1) One associable region of the 3′-end protruding double-stranded gene fragment has a base sequence homologous to the associable region at one end
  • the sequence on the terminal side to which the 3 ′ protruding end is added is the side that binds to the DNA region for ligation in one of the regions that can associate with the double-stranded DNA fragment for ligation, (3-2)
  • the protruding end from one of the regions capable of associating in the 3′-end protruding double-stranded gene fragment does not have a chain extension function in the DNA synthesis reaction, (3-3)
  • the other associateable region of the 3′-end protruding double-stranded gene fragment is composed of a base sequence homologous to the associateable region at the other end of the linking double-stranded DNA fragment.
  • the sequence on the terminal side to which the 3 ′ protruding end is added is the side that binds to the DNA region for ligation in the other associateable region of the ligation double-stranded DNA fragment, (3-4)
  • the protruding end from the other associateable region of the 3′-end protruding double-stranded gene fragment does not have a chain extension function in the DNA synthesis reaction, (4)
  • the ligated DNA fragment is obtained by performing heat denaturation, reassociation and DNA synthesis reaction at least twice. Including, A method for producing a ligated DNA fragment.
  • region 2 ligation DNA region—region 1—target gene.
  • the ligation DNA region comprises sequence A and sequence B as two ligation DNA regions;
  • One of the regions capable of associating the 3′-end protruding double-stranded gene fragment has sequences P1 and T1 from the end side, and the other has sequences P2 and T2 from the end side, and at least of sequences T1 and T2
  • One of the regions capable of associating the double-stranded DNA fragment for ligation has the sequences VP1 and VT1 from the terminal side, and the other has the sequences VP2 and VT2 from the terminal side.
  • sequences VP1 and VT1 The production method according to [1], wherein each of the nucleotide sequences has a homologous base sequence with T1, and sequences VP2 and VT2 have a homologous base sequence with each of sequences P2 and T2.
  • the 3 ′ overhanging double-stranded gene fragment is represented by P1-T1-target gene-T2-P2,
  • the ligated double-stranded DNA fragment is represented by VT2-VP2-sequence B-sequence A-VP1-VT1,
  • the ligated DNA fragment consists of VT2-VP2 (T2-P2) -sequence B-sequence A-VP1-VT1 (P1-T1) -target gene-VT2-VP2 (T2-P2) -sequence B-sequence A-VP1-
  • the sequence that does not have a chain extension function is a sequence that is not homologous to the sequence adjacent to the VP2 of the sequence B, and is at the 3 ′ end of the sequence P1.
  • [7] Using the ligated DNA fragment produced by the method according to any one of [1] to [6] as a template, So as to amplify at least one of the ligation DNA regions contained in the ligated DNA fragment and all the sequences of the target gene, Perform PCR using forward and reverse primers that function in different ligation DNA regions contained in the ligation DNA fragment, A method for producing a DNA fragment comprising at least one ligation DNA region and all of a target gene sequence.
  • [8] Using the ligated DNA fragment produced by the method according to [3] as a template, PCR using a forward primer containing a part of the base sequence of sequence A at the 3 ′ end so as to face the target gene and a reverse primer containing a part of the base sequence of sequence B at the 3 ′ end so as to go to the target gene And producing a DNA fragment comprising obtaining a DNA fragment in which the sequence A, the sequence of the target gene and the sequence B are linked.
  • a method for producing a linked DNA fragment in which a ligation DNA region 1 is linked to one side of a target gene and a ligation DNA region 2 is linked to the other side (1) From a double-stranded gene fragment containing a target gene sequence, a base sequence containing the target gene sequence in the center, having regions that can associate with both ends, and the two regions capable of associating do not associate with each other And one or both regions have a unique base sequence in which at least a part of the base sequence is included in the target gene sequence, and has a protruding end of 1 nucleotide or more at the 3 ′ end of both associable regions Preparing a 3 ′ overhanging double stranded gene fragment, (2) Two ligation DNA fragments comprising a ligation double-stranded DNA fragment 1 having a region capable of associating on the terminal side and a ligation DNA region 2 having a region capable of associating on the terminal side.
  • One associable region of the 3 ′ overhanging double-stranded gene fragment is composed of a base sequence homologous to the associable region of the linking double-stranded DNA fragment 1;
  • the sequence on the terminal side to which the protruding end is added is the side where the double-stranded DNA fragment for linking 1 can associate with the linking DNA region,
  • the protruding end from one of the regions capable of associating in the 3′-end protruding double-stranded gene fragment does not have a chain extension function in the DNA synthesis reaction
  • the other associable region of the 3′-end protruding double-stranded gene fragment consists of a base sequence that is homologous to the associable region at the end of the linking double-stranded DNA fragment 2,
  • the sequence on the terminal side to which the 3 ′ protruding end is added is the side that can bind to the DNA region for ligation in the region where the double-stranded DNA
  • Ligation DNA region 1 contains sequence A
  • Ligation DNA region 2 contains sequence B
  • One of the regions capable of associating the 3′-end protruding double-stranded gene fragment has sequences P1 and T1 from the end side, and the other has sequences P2 and T2 from the end side, and at least of sequences T1 and T2 One has a unique base sequence contained in the target gene sequence
  • the associable region of the linking double-stranded DNA fragment 1 has the sequences VT1 and VP1 from the terminal side
  • the associable region of the linking double-stranded DNA fragment 2 has the sequences VT2 and VP2 from the terminal side.
  • the sequences VP1 and VT1 have base sequences homologous to the sequences P1 and T1, respectively, and the sequences VP2 and VT2 have base sequences homologous to the sequences P2 and T2, respectively.
  • Production method. [11] The 3 ′ overhanging double-stranded gene fragment is represented by P1-T1-target gene-T2-P2, The ligation double-stranded DNA fragment 1 is represented by the sequence A-VP1-VT1, and the ligation double-stranded DNA fragment 2 is represented by the VT2-VP2-sequence B.
  • the ligated DNA fragment is a DNA fragment having at least one of the sequence A-VP1-VT1 (P1-T1) -target gene-VT2-VP2 (T2-P2) -sequence B, provided that VT2-VP2 (T2- P2) means VT2-VP2 homologous to T2-P2, and VP1-VT1 (P1-T1) means VT1-VP1 homologous to T1-P1, [10 ] The manufacturing method of description.
  • the sequence that does not have a chain extension function is a sequence that is not homologous to the sequence adjacent to the VP2 of the sequence B, and is at the 3 ′ end of the sequence P1.
  • [14] Using the ligated DNA fragment produced by the method according to any one of [9] to [13] as a template, So as to amplify at least one of the ligation DNA regions contained in the ligated DNA fragment and all the sequences of the target gene, Perform PCR using forward and reverse primers that function in different ligation DNA regions contained in the ligation DNA fragment, A method for producing a DNA fragment comprising at least one ligation DNA region and all of a target gene sequence.
  • [15] Using the ligated DNA fragment produced by the method according to [10] as a template, PCR using a forward primer containing a part of the base sequence of sequence A at the 3 ′ end so as to go to the target gene and a reverse primer containing a part of the base sequence of sequence B at the 3 ′ end so as to go to the target gene And producing a DNA fragment comprising obtaining a DNA fragment in which the sequence A, the sequence of the target gene and the sequence B are linked.
  • a method for producing a one-side linked DNA fragment in which a ligation DNA region is linked to one side of a target gene (1) From a double-stranded gene fragment containing a target gene sequence, the target gene sequence has a region capable of associating on one terminal side, and at least a part of the base sequence is included in the target gene sequence Preparing a 3′-end protruding double-stranded gene fragment having a unique base sequence and having a protruding end of 1 nucleotide or more at the 3 ′ end of the associable region; (2) preparing a ligation double-stranded DNA fragment comprising a ligation DNA region and having a region capable of associating on the terminal side; (3-1) One associable region of the 3′-end protruding double-stranded gene fragment is composed of a base sequence that is homologous to the associable region of the linking double-stranded DNA fragment.
  • the ligation DNA region comprises sequence A;
  • the associable region of the 3′-end protruding double-stranded gene fragment has sequences P1 and T1 from the terminal side, and at least one of the sequences T1 and T2 has a unique base sequence included in the target gene sequence.
  • the associable region of the ligation double-stranded DNA fragment has sequences VT1 and VP1 from the terminal side, and sequences VP1 and VT1 have base sequences homologous to sequences P1 and T1, respectively.
  • the polymerase chain reaction using the heteroduplex DNA product as a template comprises a primer containing a part of the target gene of the heteroduplex DNA product at the 3 ′ end so as to be directed to the protruding end of the target gene and the heteroduplex.
  • a primer including a part of the sequence A of the double-stranded DNA product at the 3 ′ end is directed toward the target gene.
  • the 3 ′ overhanging double-stranded gene fragment is represented by a P1-T1-target gene
  • the ligation double-stranded DNA fragment is represented by the sequence A-VP1-VT1
  • the one-side ligated DNA fragment is a DNA fragment having at least one sequence A-VP1-VT1 (P1-T1) -target gene, provided that VP1-VT1 (P1-T1) is homologous to T1-P1
  • the production method according to [17] which means VT1-VP1.
  • the method further comprises reacting the double-stranded DNA fragment containing the target gene sequence and the polydeoxynucleotide with deoxynucleotide terminal transferase to obtain a 3 ′ overhanging double-stranded gene fragment containing the target gene sequence (provided that The double-stranded DNA fragment containing the sequence of the target gene has a sequence P1 and a sequence P2 at each end, has a sequence T1 inside a part of the sequence P1, and a part inside the sequence P2.
  • the method further comprises reacting the double-stranded DNA fragment containing the target gene sequence and the polydeoxynucleotide with deoxynucleotide terminal transferase to obtain a 3 ′ overhanging double-stranded gene fragment containing the target gene sequence (provided that The double-stranded DNA fragment containing the sequence of the target gene has the sequence P1 at one end, the sequence T1 at a part inside the sequence P1, and the sequence T1 is unique to the target gene. And a production method according to [17] or [18]. [23] The production method according to [3], [4], [10], or [11], wherein one or both of the sequence T1 and the sequence T2 have a base sequence unique to a target gene.
  • the target gene is an antibody gene or a T cell receptor gene
  • the 3 ′ overhanging double-stranded gene fragment comprises a sequence derived from the antibody gene or the T cell receptor gene
  • the region VP1 and the region VT1 in the linking double-stranded DNA fragment or the linking double-stranded DNA fragment having the sequence A have a sequence derived from or not derived from an antibody gene or a T cell receptor gene, [1 ] To [25].
  • the target gene is an antibody gene or a T cell receptor gene
  • the 3 ′ overhanging double-stranded gene fragment comprises a sequence derived from the antibody gene or the T cell receptor gene
  • the region VP2 and the region VT2 in the linking double-stranded DNA fragment or the linking double-stranded DNA fragment having the sequence B are sequences derived from or not derived from an antibody gene or a T cell receptor gene, [26 ] The manufacturing method of description.
  • [26] A method for producing an antibody or a T cell receptor using the ligated DNA fragment produced by the method according to [27].
  • the double-stranded gene fragment containing the target gene sequence contains the target gene sequence in the center, has regions that can associate with both ends, and the two regions that can associate have base sequences that do not associate with each other And one or both regions are unique base sequences in which at least a part of the base sequence is included in the target gene sequence, and a 3 ′ end having a protruding end of 1 nucleotide or more at the 3 ′ end of both regions capable of associating Overhanging double-stranded gene fragment.
  • a double-stranded DNA fragment for ligation comprising a ligation DNA region in the center and having regions capable of associating on both ends.
  • One associable region of the 3′-end protruding double-stranded gene fragment has a base sequence homologous to the associable region at one end of the linking double-stranded DNA fragment.
  • the sequence on the terminal side to which the 3 ′ protruding end is added is the side that binds to the DNA region for ligation in one of the regions that can associate with the double-stranded DNA fragment for ligation,
  • the protruding end from one of the regions capable of associating in the 3′-end protruding double-stranded gene fragment does not have a chain extension function in the DNA synthesis reaction
  • the other associateable region of the 3′-end protruding double-stranded gene fragment is composed of a base sequence homologous to the associateable region at the other end of the linking double-stranded DNA fragment.
  • the sequence on the terminal side to which the 3 ′ protruding end is added is the side that binds to the DNA region for ligation in the other associateable region of the ligation double-stranded DNA fragment, (3-4)
  • the protruding end from the other associateable region of the 3′-end protruding double-stranded gene fragment does not have a chain extension function in the DNA synthesis reaction.
  • a linking double-stranded DNA fragment 1 comprising a ligating DNA region 1 and having a region capable of associating on the terminal side or a linking DNA region 2 having a region capable of associating on the terminal side 2.
  • One associable region of the 3 ′ overhanging double-stranded gene fragment is composed of a base sequence homologous to the associable region of the linking double-stranded DNA fragment 1;
  • the sequence on the terminal side to which the protruding end is added is the side where the double-stranded DNA fragment for linking 1 can associate with the linking DNA region,
  • the protruding end from one of the regions capable of associating with the 3′-end protruding double-stranded gene fragment does not have a chain extension function in the DNA synthesis reaction,
  • the other associable region of the 3′-end protruding double-stranded gene fragment consists of a base sequence that is homologous to the associable region at the end of the linking double-stranded DNA fragment 2,
  • the sequence on the terminal side to which the 3 ′ protruding end is added is the side that can bind to the DNA region for ligation in the region where the double-stranded DNA fragment for ligation 2 can associate
  • a unique base having a region capable of associating on one end side of the target gene sequence from a double-stranded gene fragment containing the target gene sequence, and the region includes at least a part of the base sequence in the target gene sequence
  • a 3′-end protruding double-stranded gene fragment which is a sequence and has a protruding end of 1 nucleotide or more at the 3 ′ end of the associable region.
  • a double-stranded DNA fragment for ligation comprising a ligation DNA region and having a region capable of associating on the terminal side.
  • a double-stranded gene fragment containing a target gene sequence has a region capable of associating on one end side of the target gene sequence, and at least a part of the base sequence is included in the target gene sequence
  • a 3′-end protruding double-stranded gene fragment having a unique base sequence and having a protruding end of 1 nucleotide or more at the 3 ′ end of the associable region
  • a combination of a ligation double-stranded DNA fragment comprising a ligation DNA region and having a region capable of associating on the terminal side, wherein the ligation DNA region is linked to one side of the target gene
  • a combination used in a method for producing a ligated DNA fragment is used in a method for producing a ligated DNA fragment.
  • One associable region of the 3′-end protruding double-stranded gene fragment is composed of a base sequence that is homologous to the associable region of the linking double-stranded DNA fragment. In the region where the end-side sequence to which the end is added can associate with the ligating double-stranded DNA fragment, it is the side that binds to the ligating DNA region; (3-2) The protruding end from one of the 3′-end protruding double-stranded gene fragments that can be associated does not have a chain extension function in the DNA synthesis reaction, [38] The union described in [38].
  • the ligation DNA region includes various tag sequences such as introns, exons, fluorescent protein genes, His tags, promoters, enhancer sequences, and poly A addition sequences that can control the expression of various genes in fungi and animal cells.
  • the ligation double-stranded DNA fragment or combination according to any one of [30] to [35] and [37] to [39], which is at least one sequence selected from the group consisting of, and the like.
  • Both sides of the target gene comprising the 3 ′ overhanging double-stranded gene fragment according to [29], the linking double-stranded DNA fragment according to [30], or the combination according to [31] or 32
  • One of the target genes comprising the 3 ′ overhanging double-stranded gene fragment according to [29], the linking double-stranded DNA fragment according to [33], or the combination according to [34] or [35]
  • One of the target genes comprising the 3 ′ overhanging double-stranded gene fragment according to [36], the linking double-stranded DNA fragment according to [37], or the combination according to [38] or [39]
  • the ligation DNA region includes various tag sequences such as introns, exons, fluorescent protein genes, His tags, promoters, enhancer sequences, and poly A addition sequences that can control the expression of various genes in fungi and animal cells.
  • the kit according to any one of [41] to [43], which is at least one sequence selected from the group consisting of, and the like.
  • a target gene amplification product can be specifically ligated to a ligation DNA fragment in the presence of a gene amplification product obtained by nonspecific amplification.
  • the sequence A and the sequence B contained in the DNA fragment for ligation are converted into the sequence A ⁇ regardless of whether or not the DNA fragment containing the target gene sequence is purified.
  • a ligated DNA fragment in which the target gene sequence-sequence B is functionally linked in this order can be specifically produced.
  • the sequence A is a promoter sequence
  • the sequence B is a poly A addition sequence, so that a ligated DNA fragment in which sequence A-target gene sequence-sequence B is functionally linked in this order is introduced into the host cell.
  • the target gene sequence can be expressed.
  • a unit of double-stranded DNA having a sequence in which the above sequences are functionally linked in this order is like a sequence in which a promoter sequence and a poly A addition sequence are functionally linked as described above.
  • it when it is composed of a double-stranded DNA fragment having a minimum configuration necessary for the expression of the target gene sequence, it may be called an expression unit.
  • the above expression unit is a linear double-stranded DNA fragment synthesized in a test tube, so there is no contamination of harmful substances derived from bacterial cells such as endotoxin. .
  • the protein encoded by the target gene can be produced specifically and in large quantities using host cells in a state where there is no influence of harmful substances.
  • FIG. 1 is a reaction scheme for explaining the first embodiment of the present invention.
  • FIG. 2 is a reaction scheme for explaining one embodiment of the first aspect of the present invention.
  • FIG. 3 is a reaction scheme for explaining a case in which, in one embodiment of the first aspect of the present invention, a nucleic acid extension product is not generated in a heat denaturation, reassociation and DNA synthesis reaction, and a ligated DNA fragment cannot be obtained. It is.
  • FIG. 4 is a reaction scheme for explaining a method for obtaining a desired double-stranded DNA fragment from a ligated DNA fragment obtained by one embodiment of the first aspect of the present invention.
  • FIG. 1 is a reaction scheme for explaining the first embodiment of the present invention.
  • FIG. 2 is a reaction scheme for explaining one embodiment of the first aspect of the present invention.
  • FIG. 3 is a reaction scheme for explaining a case in which, in one embodiment of the first aspect of the present invention, a nucleic acid extension product is not generated in a heat denaturation
  • FIG. 5 shows that in a method for obtaining a desired double-stranded DNA fragment from a ligated DNA fragment obtained by one embodiment of the first aspect of the present invention, a desired double-stranded DNA fragment cannot be obtained. It is a reaction scheme for explaining the case.
  • FIG. 6 is a reaction scheme for explaining one embodiment of the second aspect of the present invention.
  • FIG. 7 is a reaction scheme for explaining one embodiment of the third aspect of the present invention.
  • FIG. 8 is a diagram in which amplification products obtained by subjecting a mixture of a double-stranded DNA fragment for linking human ⁇ -chain genes and target and non-target gene fragments to the selective ligation method were confirmed by agarose gel electrophoresis.
  • Lane 1 A ligation unit comprising a promoter-human ⁇ chain gene-poly A additional sequence obtained by linking 3′-end polynucleotide-added target gene fragment 1 to a double-stranded DNA fragment for linking human ⁇ chain genes ( Human ⁇ -chain gene expression unit), lane 2: ligation unit obtained by linking 3′-end polynucleotide-added non-target gene fragment 2 to a human ⁇ -chain gene linking double-stranded DNA fragment: lane 3: target gene Human ⁇ -chain gene expression unit obtained by linking fragment 1 to a double-stranded DNA fragment for linking human ⁇ -chain genes, Lane 4: Non-target gene fragment 2 to a double-stranded DNA fragment for linking human ⁇ -chain genes Consolidation units obtained by concatenation FIG.
  • FIG. 9 shows a polymer of a human ⁇ chain gene expression unit generated by binding of a 3′-end polynucleotide-added target gene fragment 1 and a double stranded DNA fragment for linking human ⁇ chain genes, using a mismatch primer or a normal primer. It is the figure which used for PCR and confirmed the amplified DNA by agarose gel electrophoresis. Lanes 1 and 2: amplification of human ⁇ chain gene expression unit using primers E and F, lanes 3 and 4: amplification of human ⁇ chain gene expression unit using primers G and H
  • FIG. 10 is an explanatory diagram of the base sequence of the target gene fragment 1.
  • FIG. 11 is an explanatory diagram of the base sequence of the non-target gene fragment 2.
  • FIG. 10 is an explanatory diagram of the base sequence of the target gene fragment 1.
  • FIG. 11 is an explanatory diagram of the base sequence of the non-target gene fragment 2.
  • FIG. 12 is an explanatory diagram of the base sequence of a double-stranded DNA fragment for linking human ⁇ -chain genes.
  • FIG. 13 is an explanatory diagram of a cDNA synthesis method (immunoglobulin variable region amplification method) using magnetic beads.
  • FIG. 14 is a schematic diagram of a method for producing a double-stranded DNA fragment for linking human ⁇ -chain genes.
  • FIG. 15 is a diagram showing the results of amplification of ⁇ chain and ⁇ chain variable regions from human plasma cells 1 and 2 in Example 3.
  • FIG. 16 is an explanatory diagram of the base sequence of a double-stranded DNA fragment for linking human ⁇ chain genes.
  • FIG. 17 is a diagram showing the result of converting amplified ⁇ chain and ⁇ chain variable regions into expression units in Example 3.
  • FIG. 18 is a diagram showing the results of measurement of recombinant human immunoglobulin secreted into the cell culture medium using the ELISA method in Example 3.
  • target gene sequence is a sequence of a gene for which a linked DNA fragment obtained by linking linked double-stranded DNA fragments is specifically obtained in the method of the present invention. Examples of target gene sequences will be described later.
  • a “double-stranded gene fragment” is a double-stranded gene fragment containing a target gene sequence.
  • the “3 ′ end protruding double-stranded gene fragment” is a gene fragment having a protruding end at both 3 ′ ends of the double-stranded gene fragment.
  • a “double-stranded DNA fragment for ligation” is a DNA fragment that is ligated to a target gene sequence in order to obtain a ligated DNA fragment in the method of the present invention.
  • the “associable region” refers to one of two “associable regions” of the double-stranded DNA fragment for ligation in reassociation (annealing) in “thermal denaturation, reassociation and DNA synthesis reaction” described later. This is an area where we can meet.
  • the “unique base sequence included in the target gene sequence” is a base sequence inherent in the target gene, which is included in the target gene sequence.
  • a “ligated DNA fragment” is a double-stranded ligated DNA fragment in which a ligation DNA region is ligated to both sides of a target gene.
  • the “one-side ligated DNA fragment” is a double-stranded ligated DNA fragment in which a ligation DNA region is linked to one side of a target gene.
  • “Linking unit” means sequence A—target gene—sequence B.
  • the “linking unit polymer” means a DNA fragment in which a plurality of linking units are linked.
  • Sense strand means any one single-stranded DNA strand of double-stranded DNA
  • antisense strand means that any one single-stranded DNA strand is a “sense strand” Of the other double-stranded DNA.
  • Regular means a portion consisting of the sequence of the sense strand and the sequence of the antisense strand at the relevant site.
  • the first aspect of the present invention is a “linked DNA” in which a linking DNA region is linked to both sides of a target gene from a “3′-end protruding double-stranded gene fragment” and a “ligating double-stranded DNA fragment”. It is a method for producing “fragments”. (refer graph1)
  • a “3 ′ overhanging double-stranded gene fragment” is prepared from a double-stranded gene fragment containing a target gene sequence. As shown in the uppermost part of FIG. 1, the “3′-end overhanging double-stranded gene fragment” contains the target gene sequence in the center and is capable of associating with both ends (associable region 1 and associable region) Each of the two regions 2).
  • the “target gene sequence” in the present invention is not particularly limited.
  • the “target gene sequence” can be, for example, the sequence of an antibody gene, and the sequence located at one end of the sequence of the antibody gene can be a sequence derived from the constant region of the antibody gene.
  • the “target gene sequence” is a DNA sequence having a constant region in the primer region, such as a T cell receptor gene, a splicing variant, and the like, but a variable region inside, in addition to the antibody gene sequence. You can also
  • the “associable region” refers to one of the two “associable regions” of the double-stranded DNA fragment for ligation in reassociation (annealing) in “thermal denaturation, reassociation and DNA synthesis reaction” described later. This is an area where we can meet.
  • the association relationship between the “associable region” of the 3′-end protruding double-stranded gene fragment and the “associable region” of the linking double-stranded DNA fragment will be described later.
  • the two regions that can associate at both ends of the “3′-end protruding double-stranded gene fragment” have base sequences that do not associate with each other.
  • “Base sequences that do not associate with each other” means that both the sense strand and the antisense strand of one “associable region” associate with the sense strand and the antisense strand of the other “associable region”. This means a base sequence that does not.
  • one or both of the “associable regions” of the 3′-end protruding double-stranded gene fragment is a unique base sequence in which at least a part of the base sequence is included in the target gene sequence.
  • the “unique base sequence contained in the target gene sequence” is a base sequence inherent in the target gene contained in the target gene sequence.
  • the unique base sequence included in the target gene sequence included in the “associable region” is obtained when the “3′-end protruding double-stranded gene fragment” is prepared from the double-stranded gene fragment containing the target gene sequence.
  • the base sequence contained in the double-stranded gene fragment containing the gene sequence is stored and left as it is.
  • the target gene sequence is also preserved and remains in the “3′-end protruding double-stranded gene fragment” in addition to the base sequence of the “associable region”.
  • the base sequence of the “associable region” is a part of the target gene sequence.
  • the 3 'overhanging double-stranded gene fragment has a protruding end of 1 nucleotide or more at the 3' end of both regions capable of associating.
  • This overhanging end consists of a single strand of nucleotides, each end bound to the 3 ′ end of the “associable region” and the other end, ie the 3 ′ end, in an unbound open state. is there.
  • the protruding end has the following relationships (3-2) and (3-4) with the associationable region of the linking double-stranded DNA fragment.
  • (3-2) The protruding end from one associable region of the 3′-end protruding double-stranded gene fragment does not have a chain extension function in the DNA synthesis reaction.
  • (3-4) The protruding end from the other associable region of the 3′-end protruding double-stranded gene fragment does not have a chain extension function in the DNA synthesis reaction.
  • the sequence “having no chain extension function in the DNA synthesis reaction” means that the sequence does not hybridize with the single strand of the partner, and as a result, the strand in the DNA synthesis reaction using the single strand of the partner as a template. It means that no elongation occurs.
  • a sequence in which the partner single strand and at least one nucleotide are not complementary is a sequence that does not have a chain extension function in a DNA synthesis reaction.
  • the hybridization conditions are those for heat denaturation, reassociation and reassociation in the DNA synthesis reaction in the first cycle. The conditions for reassociation in the first cycle will be described later.
  • a sequence having a structure in which the 3 'end cannot add the next nucleotide in the DNA synthesis reaction is a sequence that does not have a chain extension function in the DNA synthesis reaction.
  • the 3′-end overhanging double strand prepared by PCR has the relationship of (3-2) and (3-4) above with the overhanging end and the associationable region possessed by the double-stranded DNA fragment for ligation.
  • PCR with a non-target 3 ′ overhanging double-stranded gene fragment containing a non-target gene in the region corresponding to the target gene or a double-stranded gene fragment that is the origin of the 3′-end protruding double-stranded gene fragment In the heat denaturation, reassociation, and DNA synthesis reactions that are performed in two cycles even when the primers used for amplification in the coexistence, a non-target 3 ′ protruding double-stranded gene fragment was used as a template.
  • a double-stranded DNA fragment for ligation is prepared which comprises a ligation DNA region at the center and has regions that can be associated at both ends. As shown in the second from the top in FIG. 1, the double-stranded DNA fragment for ligation has regions (associable region 1 and associable region 2) that can associate on both ends of the ligating DNA region, respectively. Have.
  • the DNA region for ligation is not particularly limited as long as it is a DNA region that can be ligated to both sides of the target gene and add an additional function to the ligated DNA fragment.
  • the ligation DNA region includes, for example, various tag sequences such as introns, exons, fluorescent protein genes, His tags, promoters that can control the expression of various genes in fungi and animal cells, enhancer sequences, and poly A additions. Examples include sequences.
  • region 1 when one region that can be associated is “region 1” and the other region that can be associated is “region 2”, the 3′-end protruding double-stranded gene fragment is schematically represented as region 1-target gene.
  • region 2 and the double-stranded DNA fragment for ligation typically has the sequence shown in region 2-DNA region for ligation-region 1, and the ligated DNA fragment is typically a region It has at least one sequence represented by 2-ligation DNA region-region 1-target gene-region 2-ligation DNA region-region 1. Therefore, for example, when the DNA region for ligation is a fluorescent protein gene, the ligated DNA fragment has a sequence represented by region 2-fluorescent protein gene-region 1-target gene-region 2-fluorescent protein gene-region 1. Have at least one.
  • ligation double-stranded DNA fragment has a sequence schematically represented by region 2-polyA addition sequence-promoter-region 1.
  • the ligated DNA fragment is schematically represented by region 2-poly A addition sequence-promoter-region 1-target gene-region 2-poly A addition sequence-promoter-region 1. Having at least one sequence.
  • the “associable region” in the double-stranded gene fragment and the linking double-stranded DNA fragment refers to reassociation in reassociation in “thermal denaturation, reassociation and DNA synthesis reaction” described later.
  • whether or not association depends on the length and base sequence of two single-stranded DNA (gene) fragments having complementary base sequences to each other. It means that association is possible when the length of the associated region is 11 nucleotides or more and the annealing temperature during reassociation is 0 ° C. to 20 ° C. lower than the calculated Tm value. .
  • the region capable of associating the 3 ′ overhanging double-stranded gene fragment and the region capable of associating the linking double-stranded DNA fragment are the following (3-1) and (3 -3).
  • (3-1) One associable region of the 3′-end protruding double-stranded gene fragment (associable region 1 in FIG. 1) is an associable region at one end of the ligating double-stranded DNA fragment ( It consists of a base sequence that is homologous to the associable region 1v) in FIG. is there.
  • one of the 3 ′ protruding overhanging double-stranded gene fragments capable of associating (associable region 1) and the associable region of one end of the linking double-stranded DNA fragment (associating region 1v) are: It consists of a homologous base sequence. However, in the region where one end of the 3 ′ overhanging double-stranded gene fragment can associate and the region where one end of the linking double-stranded DNA fragment can associate, the side that binds to the linking DNA region (inside ).
  • the other associateable region (associable region 2 in FIG. 1) of the 3′-end protruding double-stranded gene fragment is capable of associating with the other end of the linking double-stranded DNA fragment. It consists of a base sequence that is homologous to the region (associable region 2v in FIG. 1), but the sequence on the terminal side with a 3 ′ overhang is added in one of the regions capable of association in the double-stranded DNA fragment for ligation. It is the side that binds to the DNA region for use.
  • the other associateable region (associable region 2) of the 3′-end protruding double-stranded gene fragment and the associateable region of the other end of the linking double-stranded DNA fragment ( The associable region 2v) consists of a homologous base sequence.
  • the other side of the 3 ′ overhanging double-stranded gene fragment that can associate with the other end of the linking double-stranded DNA fragment is the side that can associate with the linking DNA region (inside ).
  • the region capable of associating a 3′-end protruding double-stranded gene fragment and the region capable of associating a linking double-stranded DNA fragment are the above (3-1) and (3- 3)
  • the target gene is sandwiched between region 2-DNA region for ligation-region 1 on both sides by heat denaturation, reassociation and DNA synthesis reaction performed in 2 cycles.
  • a ligated DNA fragment having at least one sequence represented by 2-ligation DNA region-region 1-target gene-region 2-ligation DNA region-region 1 is obtained. More specific description will be given in the specific examples described later.
  • Thermal denaturation, reassociation and DNA synthesis reaction In the first aspect of the present invention, (4) heat denaturation, reassociation and DNA synthesis reaction are performed at least twice using the 3′-end overhanging double-stranded gene fragment and the linking double-stranded DNA fragment. And obtaining the ligated DNA fragment.
  • FIG. 1 shows an example in which heat denaturation, reassociation and DNA synthesis reaction are performed twice. Detailed conditions for heat denaturation, reassociation and DNA synthesis reaction will be described later.
  • region 2 region 2
  • region 2 a DNA fragment having at least one sequence represented by region 2—ligation DNA region—region 1—target gene—region 2—ligation DNA region—region 1 is schematically represented. Become.
  • One associable region 1 of the 3′-end protruding double-stranded gene fragment has sequences P1 and T1 from the terminal side, and the other associable region 2 has sequences P2 and T2 from the terminal side.
  • At least one of the sequence T1 and the sequence T2 has a unique base sequence included in the target gene sequence, and preferably both the sequence T1 and the sequence T2 have a unique base sequence included in the target gene sequence.
  • the 3′-end protruding double-stranded gene fragment has a sequence NNNNNN of 1 nucleotide or more as a protruding end at the 3 ′ end of the sequence P2 of one strand, and the 3 ′ end of the sequence P1 of the other strand Has a sequence NNNNN of 1 nucleotide or more as a protruding end.
  • NNNNN means a sequence of 1 nucleotide or more, and does not mean that the nucleotide is 5.
  • the ligation DNA region of the ligation double-stranded DNA fragment comprises sequence A and sequence B as the ligation DNA region;
  • One associable region 1v of the ligation double-stranded DNA fragment has sequences VT1 and VP1 from the terminal side, and the other associable region 2v has sequences VT2 and VP2 from the terminal side,
  • the sequences VP1 and VT1 have base sequences homologous to the sequences P1 and T1, respectively.
  • the sequences VP2 and VT2 have base sequences homologous to the sequences P2 and T2, respectively.
  • the 3′-end protruding double-stranded gene fragment is represented by P1-T1-target gene-T2-P2 (however, the 3′-end protruding end is not indicated here.
  • the 3′-end protruding end is designated as NNNNN. This can be expressed as NNNNNN-P1-T1-target gene-T2-P2-NNNNNN).
  • the double-stranded DNA fragment for ligation is represented by VT2-VP2-sequence B-sequence A-VP1-VT1.
  • the ligated DNA fragment is a DNA fragment having at least one sequence represented by VT2-VP2-sequence B-sequence A-VP1-VT1-target gene-VT2-VP2-sequence B-sequence A-VP1-VT1. is there.
  • VT2-VP2 and T2-P2 are homologous sequences
  • VP1-VT1 and P1-T1 are homologous sequences
  • the ligated DNA fragment is a T2-P2-sequence B-sequence. It can also be said that it is a DNA fragment having at least one sequence represented by A-P1-T1-target gene-T2-P2-sequence B-sequence A-P1-T1.
  • the sequences P1 and P2 are not particularly limited as long as they are sequences and lengths that specifically hybridize to the primer to be primed.
  • the length is, for example, 10 bases or more, preferably 10 to 100 bases More preferably, it is 15-50 bases, still more preferably 15-30 bases.
  • One or both of the regions P1 and P2 may have a base sequence unique to the target gene. Further, all the sequences of one or both of the regions P1 and P2 may be a partial sequence of the sequence of the target gene.
  • regions P1 and P2 are each composed of a base sequence that is homologous to regions VP1 and VP2 of the double-stranded DNA fragment for ligation.
  • the 3 ′ end protruding double-stranded gene fragment has the sequence T1 inside the sequence P1 and the sequence T2 inside the sequence P2.
  • One or both of these sequences T1 and T2 have a base sequence unique to the target gene.
  • the sequence T1 is specific to the target gene.
  • each strand of the 3′-end protruding double-stranded gene fragment and the VT2-VP2-sequence B-sequence It may have a sequence such as a spacer sequence as long as it does not interfere with the formation of a duplex with each chain of A-VP1-VT1. Details of the arrays T1 and T2 will be described later.
  • the 3 ′ protruding end of the 3 ′ protruding double stranded gene fragment is, for example, at least one or more different from the sequence of the linking double stranded DNA fragment provided at the 3 ′ end of each of the sequences P1 and P2.
  • a sequence consisting of nucleotides As described above, the 3 ′ overhanging end of each strand of the 3 ′ end overhanging double-stranded gene fragment in the heat denaturation / reassociation / DNA synthesis reaction with VT2-VP2-sequence B-sequence A-VP1-VT1 It is provided to prevent nucleic acid extension from both 3 ′ ends.
  • the nucleotide or nucleotide chain NNNNN provided at the 3 ′ end of the 3′-end protruding double-stranded gene fragment and the labeled antisense strand is the linking double-stranded DNA fragment VT2-VP2-sequence B-sequence A -VP1-VT1 sense strand and labeled strand sequence VP1 5 'side (sequence A side) and non-complementary nucleotides or at least partly non-complementary nucleotide sequence
  • the length is, for example, 1 base or more, preferably 2 to 100 bases, more preferably 5 to 50 bases.
  • the nucleotide or nucleotide chain NNNNN provided at the 3 ′ end of the sense strand of the 3′-end protruding double-stranded gene fragment is the double-stranded DNA fragment VT2-VP2-sequence B-sequence A for ligation.
  • it is a non-complementary nucleotide or at least a part of a non-complementary nucleotide chain and the sequence linked to the 5 'side (sequence B side) of the region VP2 of the antisense strand of VP1-VT1
  • the length is, for example, 1 base or more, preferably 2 to 100 bases, more preferably 5 to 50 bases.
  • nucleotide provided at the 3 ′ protruding end of the sequence P1 (P2) or the nucleotide at the 3 ′ end of the nucleotide chain prevents the DNA elongation reaction from the 3 ′ end of the sequence P1 (P2), like dideoxynucleotide. It can also be a compound.
  • the nucleotide or nucleotide chain NNNNN provided at the 3 ′ end of the sequence P1 is the sequence VP1 of the chain indicated as the sense strand of the ligation double-stranded DNA fragment VT2-VP2-sequence B-sequence A-VP1-VT1.
  • nucleotide or nucleotide chain NNNNN provided at the 3 ′ end of the sequence P2 is the sequence of the strand indicated as the antisense strand of the ligation double-stranded DNA fragment VT2-VP2-sequence B-sequence A-VP1-VT1. It can also be a nucleotide complementary to the sequence on the 5 ′ side (sequence A side) of VP2.
  • the method for producing the 3′-end protruding double-stranded gene fragment is not particularly limited, and for example, it can be produced by PCR using the target gene as a template.
  • a double-stranded DNA fragment having a variable region and a part of a constant region of an immunoglobulin gene is used as a target gene fragment.
  • the sequence of (part of) the primer 2 shown in FIG. 13 corresponds to the sequence T1 of the target double-stranded DNA fragment having a 3 ′ protruding end
  • primers 4 and 3 are double-stranded DNA fragments having a 3 ′ protruding end.
  • the sequence derived from the constant region linked to the upstream side of the primer 3 corresponds to the sequence T2 of the 3′-end protruding double-stranded gene fragment.
  • mRNA encoding a target gene is collected using magnetic beads, and then cDNA is synthesized by a reverse transcription reaction using reverse transcriptase.
  • poly dG is added to the 3 'end of the synthesized cDNA using terminal deoxynucleotidyl transferase.
  • primers 1 (immunoglobulin gene constant region) and 2 (polydG are associated with DNA) to synthesize DNA using immunoglobulin cDNA (synthesized on magnetic beads) added with poly dG at the 3 ′ end as a template.
  • Primer 4 is designed so that the sequence on the 3 'end side overlaps with the 5' end side of primer 2 used in the first PCR, and primer 4 is bound to this region.
  • Primer 3 is a primer designed to be located in the constant region and inside primer 1 used in the first PCR. However, the primer 3 may have a sequence that partially overlaps with the primer 1, but may also have a sequence that does not overlap with the primer 1.
  • primers 3 and 4 will further target a DNA fragment containing an immunoglobulin constant region, that is, an immunoglobulin constant region.
  • a double-stranded DNA fragment contained as a gene sequence can be amplified. This is one of PCR methods called RACE (RAPID AMPLIFICATION OF cDNA END) method.
  • the primer 4 + 2 sequence is an artificial sequence synthesized by primers 2 and 4 in two rounds of PCR, and has no unique (unique) sequence to the template sequence.
  • primer 4 specifically binds to the 3 ′ end region of the DNA fragment amplified in the first PCR (because it has the sequence of primer 2), and primer 3 is located further inside primer 1. Binds to the immunoglobulin constant region. As a result, specific amplification is performed. In this case, a 4 + 2 sequence always exists on one side of the PCR product.
  • a non-specific PCR product may be synthesized as a result of binding of a used primer to a non-target gene having a similar base sequence. For example, when primer 4 binds non-specifically to another DNA fragment, the sequence of primer 4 is present at the end of the synthesized DNA fragment, but the sequence of primer 2, i.e., The sequence T1 does not exist.
  • the primer 3 binds to a non-target gene having a similar base sequence and DNA amplification is performed, the DNA fragment does not have a constant region sequence, ie, the sequence T2.
  • the sequence formed by the primer 3 is a sequence unique to the template sequence.
  • the method of providing at least one nucleotide at the 3 ′ protruding end of the PCR product obtained by the second PCR, that is, the double-stranded DNA fragment containing the sequence of the target gene (antibody gene) is not particularly limited. And a method comprising: reacting a double-stranded DNA fragment containing the sequence of the target gene and a polydeoxynucleotide with deoxynucleotide terminal transferase to obtain a double-stranded DNA fragment having a 3 ′ protruding end. .
  • a method comprising: reacting a double-stranded DNA fragment containing the sequence of the target gene and a polydeoxynucleotide with deoxynucleotide terminal transferase to obtain a double-stranded DNA fragment having a 3 ′ protruding end.
  • at least one nucleotide can be provided at both 3 'ends to obtain a 3' overhanging double-stranded gene fragment.
  • the “double-stranded DNA fragment for ligation” (VT2-VP2-sequence B-sequence A-VP1-VT1) has an arbitrary sequence A and sequence B, and is homologous to the sequence P1 on the terminal side of the sequence A
  • a region VP1 consisting of a simple base sequence
  • a region VP2 consisting of a base sequence homologous to the sequence P2 on the terminal side of the sequence B
  • a region VT1 consisting of a base sequence homologous to a part of the sequence T1 of the region VP1 on the terminal side of the region VP1, and a part of the sequence T2 inside the sequence P2 in the 3′-end protruding double-stranded gene fragment Is a double-stranded DNA fragment for ligation having a region VT2 consisting of a base sequence homolog
  • At least one of the sequence T1 and the sequence T2 in the 3′-end protruding double-stranded gene fragment has a base sequence unique to the target gene, and the 3 ′ end of the sequence P2 in the 3′-end protruding double-stranded gene fragment
  • the sequence of the protruding end in the sequence containing dideoxynucleotides or the sequence non-homologous to the sequence B of one strand of the ligation double-stranded DNA fragment, and the 3′-end protruding double-stranded gene fragment The sequence at the protruding end at the 3 ′ end of the sequence P1 in FIG.
  • the “region” in the present specification is composed of a sense strand sequence and an antisense strand sequence at a corresponding position.
  • the sequences T1 and T2 of the 3 ′ overhanging double-stranded gene fragment are VT2-VP2-sequence B-sequence A-VP1- VT1 serves as an internal sequence for VT1 and VT2 and selectively regenerates the 3 ′ overhanging double-stranded gene fragment containing the target gene sequence and the VT2-VP2-sequence B-sequence A-VP1-VT1.
  • VT2-VP2-sequence B-sequence A-VP1-VT1 serves as an internal sequence for VT1 and VT2 and selectively regenerates the 3 ′ overhanging double-stranded gene fragment containing the target gene sequence and the VT2-VP2-sequence B-sequence A-VP1-VT1.
  • the “internal sequence” is a sequence peculiar to the target gene sequence and is a sequence (T1 and T2) inside P1 and P2 having a sequence homologous to the primer sequence for amplification located at the end of the target gene sequence. And has a sequence homologous to VT1 and VT2 of the double-stranded DNA fragment for ligation. Therefore, the non-target gene fragment is schematically represented by P1-non-target gene fragment-P2 or P1-T1-non-target gene fragment-P2 or P1-non-target gene fragment-T2-P2.
  • the role of the internal sequence means that the specific reassociation between the ligating double-stranded DNA fragment and the target double-stranded gene fragment and the subsequent DNA synthesis reaction progress, and the non-target double-stranded gene fragment It is a sequence having a role of inhibiting the reassociation with and the progress of the subsequent DNA synthesis reaction.
  • the region VT2 of the B-sequence A-VP1-VT1 is not particularly limited as long as each region has a homologous base sequence.
  • the length of each of VT1 and VT2 is, for example, 1 base or more, preferably 2 to 100 bases, more preferably 5 to 50 bases.
  • the array P1 + T1, the array P2 + T2, the region VP1 + VT1, and the region VP2 + VT2 preferably have a Tm value of 60 ° C. or higher, more preferably about 68 ° C. to 70 ° C.
  • VT2-VP2-sequence B-sequence A-VP1-VT1 sequence A is not particularly limited.
  • upstream sequences of target gene fragments, various tag sequences such as introns, exons, fluorescent protein genes, His tags, fungi and animals Examples thereof include promoters and enhancer sequences that can control the expression of various genes in cells.
  • VT2-VP2-sequence B-sequence A-VP1-VT1 sequence B is not particularly limited.
  • downstream sequences of target gene fragments, various tag sequences such as introns, exons, fluorescent protein genes, His tags, and poly A addition Examples include sequences.
  • sequence A and sequence B are sequences that are located at each sequence, upstream of sequence A, downstream of sequence B, as long as they do not interfere with the expression of the target gene in the host cell.
  • a sequence such as a spacer sequence.
  • the length between sequence A and sequence B in the double-stranded DNA fragment for gene ligation is not particularly limited. Further, the lengths between the array A and the region VP1 and between the array B and the region VP2 are not particularly limited. Between the regions VP1 and VT1 and between the regions VP2 and VT2, there is a sequence such as a spacer sequence having an appropriate length within a range that does not hinder annealing with a double-stranded DNA fragment having a 3 ′ protruding end. Also good.
  • VT2-VP2-sequence B-sequence A-VP1-VT1 which is a “double-stranded DNA fragment for ligation”
  • the production method of VT2-VP2-sequence B-sequence A-VP1-VT1 is not particularly limited, and can be produced by combining known methods.
  • an example of a method for producing VT2-VP2-sequence B-sequence A-VP1-VT1 will be specifically described with reference to FIG.
  • a vector having a site recognized by restriction enzyme 1 (BamHI) and restriction enzyme 2 (NotI) (pCMV-EGFP) is treated with restriction enzyme 1, and a known sequence (poly dG / dC) is recognized at the restriction enzyme 1 recognition site. And a linker (poly dG / dC-EcoRV linker) containing the sites recognized by restriction enzyme 3 (EcoRV) in this order. Subsequently, the obtained linker insertion vector is treated with restriction enzymes 2 and 3, the sequence from the restriction enzyme 3 recognition site to the restriction enzyme 2 recognition site, the restriction enzyme 3 cleavage surface upstream, and the restriction enzyme downstream.
  • VT2-VP2-sequence B-sequence A-VP1-VT1 is obtained.
  • poly dG / dC corresponds to the region VT1
  • a part of the human immunoglobulin constant region corresponds to the region VT2
  • the sequence A corresponds to the CMV promoter
  • the sequence B corresponds to the remaining part of the immunoglobulin constant region.
  • the poly A addition sequence at least part of the sequence between the multicloning site (MCS) and poly dG / dC corresponds to the region VP1
  • at least part of the sequence of the human immunoglobulin constant region corresponds to the region VP2.
  • nucleic acid elongation reaction the nucleic acid is elongated from the sense strand region VT1 of VT2-VP2-sequence B-sequence A-VP1-VT1 to synthesize nucleic acid extension product (2).
  • Nucleic acid is elongated from the region VT2 of the antisense strand of VT2-VP2-sequence B-sequence A-VP1-VT1 to synthesize nucleic acid extension (1).
  • VT2-VP2-sequence B-sequence A-VP1-VT1 is a region VT1 and / or consisting of a base sequence homologous to internal sequence T1 and / or T2, which is a sequence unique to the 3 ′ overhanging double-stranded gene fragment
  • VT2 selective reassociation with a DNA fragment having a 3 ′ protruding end and subsequent DNA synthesis reaction can proceed.
  • the sequence T1 is located inside the sequence P1.
  • a non-existing double-stranded DNA fragment is generated, and as a result of binding of primer 3 to a non-target gene having a similar base sequence, a double-stranded DNA fragment having no sequence T2 inside the sequence P2 is generated.
  • VT2-VP2-sequence B-sequence A-VP1-VT1 After heat denaturation-reassociation between VT2-VP2-sequence B-sequence A-VP1-VT1 and a double-stranded DNA fragment without sequence T1 inside sequence P1 and without sequence T2 inside sequence P2
  • the reaction does not proceed as shown in FIG. 3, and a ligation product cannot be obtained.
  • the “3′-end protruding double-stranded gene fragment” has a 3′-end protruding end represented by NNNNNN at both 3 ′ ends of regions P1 and P2, and this protruding end (single-stranded nucleotide) is It does not have a chain extension function in the DNA synthesis reaction. That is, in the scheme that gives the nucleic acid extension (1) on the left side of FIG. 2, the NNNNN following the T2-P2 of the sense strand of the 3′-end protruding double-stranded gene fragment is the associated partner strand (the linking two strands).
  • NNNNN following T1-P1 of the antisense strand of the 3′-end protruding double-stranded gene fragment is the sense of the double-stranded DNA fragment for ligation. Since it does not hybridize to the sequence adjacent to VP1 of sequence A following VT1-VP1 of the chain or to the sequence adjacent to VP1 between VP1 and sequence A, no nucleic acid extension is observed starting from regions P1 and P2.
  • the conditions for heat denaturation in the first cycle may be the same as those employed in normal PCR, for example, heat denaturation can be performed at 90 to 98 ° C. for 20 to 60 seconds.
  • the conditions for reassociation in the first cycle may be the same as those employed in normal PCR, and may be, for example, 60 to 72 ° C. for 30 seconds to 6 minutes.
  • the DNA synthesis reaction in the first cycle may be the same as that employed in normal PCR, and may be, for example, 68 to 72 ° C. for 30 seconds to 6 minutes.
  • annealing and nucleic acid elongation may be performed at the same temperature and performed as one step.
  • a reaction product containing the nucleic acid extension products (1) and (2) is obtained by heat denaturation, reassociation, and DNA synthesis reaction in the first cycle.
  • this reaction product may contain a fragment containing a non-target gene shown in FIG.
  • one strand of the nucleic acid extension products (1) and (2) is converted into a “3 ′ overhanging double-stranded gene fragment”.
  • the 3 ′ end overhanging sequence NNNNNN is not present, and the sequence other than NNNNNN of the “3 ′ end overhanging double-stranded gene fragment” is homologous, and thus a double strand is formed at this portion.
  • a nucleic acid extends from the 3 ′ end of both strands, and a ligated DNA in which a double stranded DNA fragment for ligation is linked to both ends of the target gene.
  • a fragment (VT2-VP2-sequence B-sequence A-target gene-sequence B-sequence AV + P1-VT1) is obtained.
  • the single-stranded DNA fragments from the nucleic acid extensions (1) and (2) having the 3 ′ end overhanging sequence NNNNNN are double-stranded in reassociation (annealing) because they have NNNNNN at the 3 ′ end. As a result, a nucleic acid extension using the single-stranded DNA fragment as a template does not occur.
  • the ligated DNA fragment (VT2-VP2-sequence B-sequence A-target gene-sequence B-sequence AV + P1-VT1) is obtained by heat denaturation, reassociation, and DNA synthesis reaction in the second cycle.
  • this reaction product although not shown, in addition to non-specific DNA fragments generated by the thermal denaturation, reassociation, and DNA synthesis reaction in the first cycle, nucleic acid extensions (1) and (2) A single-stranded DNA fragment having NNNN, which is a 3′-end overhanging sequence that was not used as a template, is included (residual).
  • sequence A-target gene-sequence B is a linking unit. is there.
  • the nucleic acid synthesis product VT2-VP2-sequence B-sequence A-target gene-sequence B-sequence A-VP1-VT1 which is the second cycle nucleic acid synthesis product If any two of the resulting single strands hybridize in a homologous region, and nucleic acid elongation occurs due to a DNA synthesis reaction using the hybridized double strand as a template, the nucleic acid synthesis product in the second cycle A double-stranded DNA fragment containing two linking units consisting of “sequence A—target gene—sequence B” is obtained.
  • this operation is repeated to obtain a polymer of linked units containing 3 or more of the linked units (hereinafter sometimes referred to as linked unit polymer). Therefore, even if the double-stranded DNA fragment for ligation and / or the target gene fragment or both are depleted in the ligation reaction after the third cycle, the substrate for DNA synthesis is present in the reaction solution and the activity of the DNA polymerase is maintained. As long as it is done, the linking units are amplified. That is, after the third cycle, when the target gene and the DNA fragment for ligation remain, reactions corresponding to the first cycle and the second cycle occur, and the polymerization reaction also proceeds simultaneously.
  • the ligation unit is amplified by reassociating while the repeating units of the polymerization products are displaced.
  • it is more efficient than the method for producing a linking unit in which sequence A-target gene-sequence B is bound in this order using target gene fragment, sequence A-VP1-VT1 and VT2-VP2-sequence B, which will be described later. It is possible to manufacture a good connecting unit.
  • a mismatch primer for specifically amplifying a linking unit from a linking unit polymer as described later may be included.
  • re-association (annealing) is carried out under high temperature (for example, 65%) so that these mismatched primers do not prime each single strand of the ligated double-stranded DNA fragment that has become single-stranded by heat denaturation. To 72 ° C.).
  • the reaction system can include a mismatch primer, and annealing and nucleic acid extension can be carried out at the same temperature.
  • heat denaturation / reassociation / DNA synthesis reaction can be performed at 90 to 98 ° C. for 20 to 20 ° C.
  • the reassociation and DNA synthesis reaction can be performed at 65-72 ° C. for 30 seconds-6 minutes, and this cycle can be 2-10 cycles.
  • heat denaturation can be carried out at 93 to 95 ° C. for 30 to 50 seconds
  • reassociation and DNA synthesis reaction can be carried out at 68 to 70 ° C. for 1 to 5 minutes, and this cycle is 4 to 8 cycles.
  • the cycle here means the number of cycles of heat denaturation, reassociation, and DNA synthesis reaction in the first cycle.
  • the ligation unit consisting of sequence A-target gene-sequence B contains a plurality of ligation units according to the number of cycles of heat denaturation / reassociation / DNA synthesis reaction. It is a polymer that is linked in a straight chain. In addition to the above linking units, the polymer contains the sequence A-VP1-VT1 and the VT2-VP2-sequence B at the end.
  • the ligated DNA fragment obtained as the nucleic acid synthesis product in the first aspect of the present invention contains one ligation unit according to the number of cycles of heat denaturation, reassociation, and DNA synthesis reaction.
  • the number of cycles of heat denaturation / reassociation / DNA synthesis reaction is 3 or more, a linked unit polymer in which a plurality of linked units are linked can be obtained.
  • the final object of the present invention is to obtain a linking unit represented by the sequence A-target gene-sequence B. Therefore, the first aspect of the present invention preferably further comprises a step of preparing a linking unit comprising sequence A-target gene-sequence B from the linking unit polymer.
  • the step of preparing the linking unit is not particularly limited.
  • a method using a restriction enzyme that specifically cleaves the upstream and downstream of the linking unit, or the linking unit polymer as a template for example, a method of selectively amplifying a linking unit can be used.
  • the method using a restriction enzyme can be carried out by introducing restriction enzyme cleavage sequences into the sequence A-target gene-sequence B outside the sequence A and outside the sequence B in the linking unit polymer.
  • a method for selectively amplifying a linking unit using a linking unit polymer as a template is, for example, the sequence A of the sense strand of a ligation double-stranded DNA fragment (VT2-VP2-sequence B-sequence A-VP1-VT1) or its It can be carried out by PCR using a mismatch forward primer containing the same sequence as the upstream sequence on the 3 ′ side and a mismatch reverse primer containing the sequence B or a sequence complementary to the downstream sequence on the 3 ′ side.
  • FIG. 4 shows a PCR scheme for selectively amplifying a linking unit using this mismatch primer. As shown in FIG.
  • a linking unit separated from a linking unit polymer can be selectively and efficiently amplified.
  • a linking unit synthesized by a PCR reaction of at least 2 cycles using a mismatched forward primer and a mismatched reverse primer using a linking unit polymer as a template is non-homologous to the linking double-stranded DNA fragment that is the template at both ends. A typical sequence is added.
  • Conditions for PCR using mismatch primers are not particularly limited, and commonly known PCR conditions can be applied. For example, 90 to 98 ° C. for 20 to 60 seconds, 55 to 65 ° C. for 20 to 60 seconds, 70 to 74 ° C. Can be carried out in about 25 to 50 cycles.
  • FIG. 5 shows a PCR scheme using a primer that does not have a mismatch region on the 5 ′ side.
  • the linking unit polymer is amplified together with the linking unit, and it is difficult to selectively amplify only the linking unit. That is, a linking unit synthesized by a PCR reaction of at least two cycles using a linking unit polymer as a template and a forward primer and a reverse primer is homologous to the linking unit polymer as a template.
  • two modes of reaction proceed in parallel. One is a reaction in which a forward primer and a reverse primer are annealed to a synthesized linking unit and the linking unit is amplified.
  • the other is a reaction in which heteroduplex DNA is formed as a result of annealing of the linking unit to the linking unit polymer, and the linking unit polymer is amplified.
  • the latter reaction proceeds more preferentially than the former reaction, it is difficult to efficiently amplify the linking unit.
  • the linking unit synthesized from the linking unit polymer using the mismatch primer shown in FIG. 4 has a non-homologous sequence with the template at both ends thereof, it is annealed to the linking unit polymer. Even if the hetero double-stranded DNA is formed, the DNA elongation reaction does not occur, and as a result, the linking unit polymer is not amplified.
  • the double-stranded DNA fragment for ligation in the first aspect of the present invention is schematically represented by -ligation DNA region 1-region 1 and region 2-ligation DNA region 2, respectively.
  • This method is used by dividing it into two ligating double-stranded DNA fragments 1 and 2 having the sequence shown. According to this method, nonspecific generation of a ligated DNA fragment in which a ligation DNA region 1 is linked to one side of a non-target gene and a ligation DNA region 2 is linked to the other side is suppressed, and one of the target genes is suppressed.
  • the target ligated DNA fragment can be specifically obtained by ligating the ligation DNA region 1 on the other side and the ligation DNA region 2 on the other side.
  • the ligated DNA fragment obtained here has a sequence schematically represented by ligation DNA region 1-region 1-target gene-region 2-ligation DNA region 2.
  • the “3 ′ overhanging double-stranded gene fragment” used in the second aspect of the present invention is the same as that in the first aspect of the present invention.
  • the ligation double-stranded DNA fragment used in the second aspect of the present invention is a ligation double-stranded DNA fragment 1 schematically represented by ligation DNA region 1-region 1 and region 2-ligation as described above.
  • Two ligation double-stranded DNA fragments 2 having the sequence shown in DNA region 2.
  • the sequence schematically represented by the linking DNA region 1-region 1 is the sequence A-VP1-VT1
  • the sequence represented by the region 2-ligation DNA region 2 is VT2-VP2-sequence B. Will be described.
  • the 3 ′ overhanging double-stranded gene fragment, sequence A-VP1-VT1 (double-stranded DNA fragment 1 for ligation), and VT2-VP2-sequence B (double-stranded DNA fragment 2 for linking) is subjected to at least two cycles of heat denaturation, reassociation, and DNA synthesis reaction to obtain a ligated DNA fragment having one ligation unit consisting of sequence A-target gene-sequence B as a nucleic acid synthesis product.
  • the sequence A-VP1-VT1 has an arbitrary sequence A, a region VP1 and a region VT1 in this order, the region VT1 is at one end, and the region VP1 and the region VT1 are 3′-end protruding double-stranded genes, respectively. It consists of a base sequence homologous to the sequence P1 of the fragment and a base sequence homologous to the sequence T1.
  • VT2-VP2-sequence B has region VT2, region VP2 and arbitrary sequence B in this order, region VT2 is at one end, and region VP2 and region VT2 are 3 ′ overhanging double-stranded genes, respectively. It consists of a base sequence homologous to the sequence P2 of the fragment and a base sequence homologous to the sequence T2.
  • sequence A-VP1-VT1 has an arbitrary sequence A, a region VP1, and a region VT1 in this order. However, the region VT1 is arranged at one end of the double-stranded DNA fragment for ligation. Regarding the sequence A, the regions VP1 and VT1 in the sequence A-VP1-VT1, the description of the embodiment of the first aspect can be referred to. Sequence A-VP1-VT1 contains a 3 ′ overhang when upstream of sequence A, between sequence A and region VP1, between region VP1 and VT1, when subjected to heat denaturation, reassociation, or DNA synthesis reaction.
  • sequence A-VP1-VT1 is not particularly limited.
  • the sequence A-VP1-VT1 can be obtained by separating the sequence A-VP1-VT1 from a plasmid containing the sequence A-VP1-VT1 as an insert by restriction enzyme treatment.
  • the sequence A-VP1-VT1 comprises a plasmid containing a double-stranded DNA fragment A for gene ligation as an insert as a template, and a forward primer containing a part of the same sequence as the sequence upstream of the sequence A and the region VT1. It can also be obtained by subjecting it to PCR using a reverse primer containing a part of the sequence complementary to the sequence on one terminal side.
  • VT2-VP2-sequence B> VT2-VP2-B has array B, region VP2, and region VT2 in this order. However, region VT2 is located at one end of VT2-VP2-sequence B. Regarding the sequence B, the regions VP2 and VT2 in the VT2-VP2-sequence B, the description of the embodiment of the first aspect can be referred to.
  • VT2-VP2-sequence B contains a 3 ′ overhang when upstream of sequence B, between sequence B and region VP2, between region VP2 and VT2, when subjected to heat denaturation, reassociation, or DNA synthesis reaction.
  • the VT2-VP2-sequence B is not particularly limited, and can be obtained, for example, by separating VT2-VP2-sequence B from a plasmid containing VT2-VP2-sequence B as an insert by restriction enzyme treatment.
  • the VT2-VP2-sequence B includes a forward primer containing a part of the same sequence as the upstream sequence of the sequence A and one end of the region VT2, using a plasmid containing the VT2-VP2-sequence B as an insert as a template. It can also be obtained by subjecting it to PCR using a reverse primer containing a part of the sequence complementary to the side sequence.
  • thermal denaturation, reassociation, DNA synthesis reaction (1) In the first cycle heat denaturation / reassociation / DNA synthesis reaction, heat denaturation / reassociation / DNA synthesis using the 3 ′ overhanging double-stranded gene fragment, sequences A-VP1-VT1 and VT2-VP2-sequence B Perform the reaction. Stable duplex between the antisense strand sequence P1 + T1 of the 3 ′ overhanging double-stranded gene fragment and the region VP1 + VT1 of one strand (sense strand) of the sequence A-VP1-VT1 by annealing after heat denaturation Formation occurs.
  • nucleic acid extension product (4) in which the nucleic acid is extended from the region VT1 of the sequence A-VP1-VT1 is synthesized.
  • nucleic acid extension product (3) in which the nucleic acid is extended from the region VT2 of VT2-VP2-sequence B is synthesized.
  • the nucleic acid does not extend from the sequences P1 and P2 as described above. It is.
  • thermal denaturation / reassociation / DNA synthesis reaction (from the third cycle)
  • thermal denaturation / reassociation / DNA synthesis reaction can be carried out after the third cycle, and thermal denaturation / reassociation / DNA synthesis reaction after the third cycle is carried out.
  • a ligated DNA fragment containing one ligation unit in which sequence A-target gene-sequence B is linked in this order is obtained as a nucleic acid synthesis product.
  • a sequence B such as VT2-VP2-sequence B-sequence A-VP1-VT1 and a sequence A Therefore, a linked unit polymer containing a plurality of linked units in which sequence A-target gene-sequence B are linked in this order is not synthesized.
  • a step of preparing a linking unit consisting of sequence A-target gene-sequence B from a ligated DNA fragment obtained as a nucleic acid synthesis product is provided. It is preferable.
  • the step of preparing such a linking unit is not particularly limited.
  • the method uses a restriction enzyme that specifically recognizes upstream and downstream of sequences A and B, or a method of selectively amplifying the linking unit. Can be implemented.
  • the promoter sequence is sequence A and the polymorphism is sequence B.
  • a additional sequences can be used.
  • a sequence such as a spacer sequence may be present between sequences, upstream of sequence A, and downstream of sequence B, as long as expression of the target gene in the host cell is not hindered.
  • the third aspect of the present invention is the above-mentioned second aspect of the present invention, wherein either one of the two double-stranded DNA fragments for ligation, schematically region 1-ligation DNA region 1 or ligation
  • This is a method using the sequence represented by DNA region 2-region 2.
  • non-specific generation of a one-side ligated DNA fragment in which the ligation DNA region 1 or 2 is ligated to one side of the non-target gene is suppressed, and the ligation DNA region 1 is located on one side of the target gene.
  • the target one-side ligated DNA fragment obtained by linking 2 can be obtained specifically.
  • the “3 ′ overhanging double-stranded gene fragment” used in the third aspect of the present invention is a region capable of associating with both terminal sides of the target gene sequence similar to that in the first aspect of the present invention and a protruding terminal. However, it has a region capable of associating only on one end side of the target gene sequence, and the region is a unique base sequence in which at least a part of the base sequence is included in the target gene sequence. It can also be a 3′-end protruding double-stranded gene fragment having a protruding end of 1 nucleotide or more at the 3 ′ end of the region capable of associating.
  • the ligation double-stranded DNA fragment used in the third aspect of the present invention is typically a sequence represented by region 1-ligation DNA region 1 or a sequence represented by ligation DNA region 2-region 2 as described above. Are two fragments.
  • region 1-ligation DNA region 1 is the sequence A-VP1-VT1
  • VT2-VP2-sequence B is an embodiment wherein the sequence represented by region 1 -ligation DNA region 1 is typically sequence A-VP1-VT1. As with the embodiment, it can be implemented.
  • a method for selectively ligating a ligation double-stranded DNA fragment having the sequence A (sequence A-VP1-VT1) to one terminal side of the target gene fragment. Is done.
  • the 3′-end protruding double-stranded gene fragment (however, the 3 ′ protruding end only needs to be on the 3′-end side of the sequence P1 of one strand) and the DNA fragment having the sequence A
  • the mixture of the 3′-end protruding double-stranded gene fragment and the linking double-stranded DNA fragment having the sequence A is used for nucleic acid synthesis reaction after heat denaturation and reassociation.
  • a single-stranded DNA having a sequence of 1 nucleotide or more as a protruding end at the 3 ′ end of the sequence P1 of one strand and a sequence derived from the sequence P2 at the 5 ′ end of the strand (two Single-stranded DNA having a sequence derived from the sequence A on the 5 ′ end side of the other strand and a sequence derived from the sequence VT1 on the 3 ′ end thereof (double strand for ligation)
  • a hetero double-stranded DNA product associated with the sense strand of the DNA is obtained.
  • a reverse primer having a sequence on the 5 ′ end side of the antisense strand of the double-stranded gene fragment and a 5 ′ end side of the sense strand of the double-stranded DNA fragment for ligation A polymerase chain reaction is performed using a forward primer having a sequence.
  • a double-stranded DNA fragment (one-side ligated DNA fragment) in which the sequence A and the sequence of the target gene are linked is obtained (see the scheme in FIG. 7).
  • the heat denaturation / reassociation / DNA synthesis reaction is the same as described in the embodiment of the first aspect of the present invention.
  • the sequence A-VP1-VT1 is the same as that described in the embodiment of the second aspect of the present invention.
  • VT2-VP2-sequence B is an embodiment wherein the sequence represented by region 1 -ligation DNA region 1 is typically sequence A-VP1-VT1. As with the embodiment, it can be implemented.
  • the VT2-VP2-sequence B is the same as that described in the embodiment of the second aspect of the present invention.
  • the target gene is an antibody gene or a T cell receptor gene
  • the 3′-protruding double-stranded gene fragment is the antibody gene or T cell receptor.
  • the region VP1 and the region VT1 in the linking double-stranded DNA fragment or the linking double-stranded DNA fragment having the sequence A are included in the antibody gene or the T cell receptor gene. It can have a sequence derived or not derived.
  • the target gene is an antibody gene or a T cell receptor gene
  • the 3 ′ overhanging double-stranded gene fragment contains a sequence derived from the antibody gene or the T cell receptor gene
  • the linking two genes The region VP2 and the region VT2 in the double-stranded DNA fragment for ligation having the single-stranded DNA fragment or the sequence B can be sequences derived from or not derived from the antibody gene or the T cell receptor gene.
  • the present invention also encompasses a method for producing an antibody or T cell receptor using a ligated DNA fragment produced using such a target gene.
  • a method for producing an antibody or T cell receptor using a linked DNA fragment whose target gene is an antibody gene or a T cell receptor gene is a conventional method, for example, introducing a linked DNA fragment containing the target gene into a host cell, This can be carried out by culturing the host cell to produce an antibody or the like.
  • the present invention relates to a 3 ′ overhanging double-stranded gene fragment, a linking double-stranded DNA fragment and a combination thereof used in the first to third aspects of the present invention, as well as combinations thereof.
  • the 3'-end overhanging double-stranded gene fragment and the linking double-stranded DNA fragment used in the first to third aspects of the present invention are as described above.
  • the combination is a combination of a 3′-end overhanging double-stranded gene fragment and a linking double-stranded DNA fragment used in the first embodiment, and a 3′-end overhanging double-stranded gene used in the second embodiment.
  • It consists of a combination of a fragment and a double-stranded DNA fragment for ligation, and a combination of a 3′-end protruding double-stranded gene fragment and a double-stranded DNA fragment for ligation used in the third embodiment.
  • a ligated DNA fragment in which a ligating DNA region is linked to both sides of the target gene is linked to both sides of the target gene.
  • 3-1 One associable region of the 3′-end protruding double-stranded gene fragment has a base sequence homologous to the associable region at one end of the linking double-stranded DNA fragment.
  • the sequence on the terminal side to which the 3 ′ protruding end is added is the side that binds to the DNA region for ligation in one of the regions that can associate with the double-stranded DNA fragment for ligation, (3-2)
  • the protruding end from one of the regions capable of associating with the 3′-end protruding double-stranded gene fragment does not have a chain extension function in the DNA synthesis reaction, (3-3)
  • the other associateable region of the 3′-end protruding double-stranded gene fragment is composed of a base sequence homologous to the associateable region at the other end of the linking double-stranded DNA fragment.
  • the sequence on the terminal side to which the 3 ′ protruding end is added is the side that binds to the DNA region for ligation in the other associateable region of the ligation double-stranded DNA fragment, (3-4) It is preferable that the protruding end from the other associateable region of the 3′-end protruding double-stranded gene fragment does not have a chain extension function in the DNA synthesis reaction.
  • the linking DNA region 1 is on one side of the target gene and the linking is on the other side.
  • the linking DNA region 2 is linked.
  • One associable region of the 3 ′ overhanging double-stranded gene fragment is composed of a base sequence homologous to the associable region of the linking double-stranded DNA fragment 1;
  • the sequence on the terminal side to which the protruding end is added is the side where the double-stranded DNA fragment for linking 1 can associate with the linking DNA region
  • the protruding end from one of the regions capable of associating with the 3′-end protruding double-stranded gene fragment does not have a chain extension function in the DNA synthesis reaction, (3-3)
  • the other associable region of the 3′-end protruding double-stranded gene fragment consists of a base sequence that is
  • a one-side ligated DNA fragment in which a linking DNA region is linked to one side of the target gene From the viewpoint of producing a good (3-1)
  • One associable region of the 3′-end protruding double-stranded gene fragment is composed of a base sequence that is homologous to the associable region of the linking double-stranded DNA fragment.
  • the kit of the present invention contains the 3′-overhanging double-stranded gene fragment, the linking double-stranded DNA fragment, or a combination thereof used in the first aspect of the present invention, or the second of the present invention.
  • 2 'overhanging double stranded gene fragment, ligation double stranded DNA fragment, or a combination thereof used in the embodiment of (2) or 3' end overhanging double strand used in the third aspect of the present invention It includes a strand gene fragment, a linking double-stranded DNA fragment, or a combination thereof.
  • a ligated DNA fragment by performing heat denaturation, reassociation and DNA synthesis reaction using the 3 ′ overhanging double stranded gene fragment and the ligating double stranded DNA fragment in addition to the above in the kit of the present invention.
  • Buffers to be used, enzymes for DNA synthesis such as DNA polymerase or enzyme-containing buffers, and instructions for using the kit can be included.
  • Target gene fragment 1 (see FIG. 10) is a 683 bp DNA fragment having a variable region of human immunoglobulin ⁇ chain and a part of constant region
  • the primer A has the sequence of 5'-CTTCGAATTCTGCAGTCGACGGGTACCGCGGGCCCCGGGA-3 'and the primer B: 5'-AGCCGGGAAGGTGTCACGCCGCTG-3' for PCR amplification.
  • the internal sequence has a poly dC sequence inside primer A and a sequence derived from an immunoglobulin ⁇ chain constant region inside primer B sequence.
  • the positions of the primers A and B used for amplification are indicated by arrows.
  • Non-target gene fragment 2 is a DNA fragment derived from the 628 bp GPF gene, and has a primer A sequence and a primer B sequence used for PCR amplification at both ends thereof. There is no internal sequence inside both primer sequences, and there is a sequence derived from the GFP gene.
  • PCR reaction was performed using primers A and B to amplify the target gene fragment 1 and the non-target gene fragment 2, respectively.
  • 2 ng of template plasmid DNA, 10 pmol of each primer, and 10 nmol of dNTP were added to a 50 ⁇ l reaction system, and the reaction at 94 ° C. for 30 seconds to 68 ° C. for 40 seconds was performed for 30 cycles using PrimeSTAR thermostable DNA polymerase. .
  • PCR product 3′-end polynucleotide addition reaction The reaction solution after PCR was dispensed into 1 ⁇ l tubes, and 10 units of terminal deoxynucleotidyltransferase was added thereto, followed by reaction at 37 ° C. for 30 minutes, and then at 94 ° C. The enzyme reaction was stopped by heating for 5 minutes. By this reaction, a polynucleotide was added to both 3 ′ ends of the DNA fragment. As a negative control, a reaction in which terminal deoxynucleotidyl transferase was not added was similarly performed for each of the target gene fragment 1 and the non-target gene fragment 2.
  • Preparation of double stranded DNA fragment for linking human ⁇ chain gene pMiniCMV-hIgG has CMV promoter, multiple cloning site, poly dC / dG sequence, pUC119 replication origin, ampicillin resistance gene, human immunoglobulin ⁇ chain constant region, SV40 poly This is a 3533 bp full-length plasmid having an A addition signal.
  • double-stranded DNA fragment for ligation of human ⁇ chain gene by PCR using primer C 5′-GGGGGGGGGGGGGGGATCCCGG-3 ′ and primer D 5′-CGTGGAACTCAGGGCGCCCCTGACCAG-3 ′ was prepared.
  • the PCR reaction was performed by using Takara Bio's prime star DNA polymerase and performing a cycle of 94 ° C. for 40 seconds, 60 ° C. for 40 seconds, and 72 ° C. for 5 minutes 30 times.
  • the amplified DNA fragment was purified by a spin column method and prepared at a concentration of 10 ng / ⁇ l.
  • the double-stranded DNA fragment for linking human ⁇ -chain genes has human immunoglobulin as a region that forms a specific complementary strand only with the human immunoglobulin ⁇ -chain amplified by the 5′-RACE PCR method at one end. It has an internal sequence derived from the ⁇ chain constant region and a sequence that forms a complementary strand downstream of the primer B sequence used for gene amplification (see FIG. 12).
  • a poly dC / dG sequence as a region that specifically forms a complementary strand only with a 5′-RACE amplification product derived from cDNA to which a poly dC sequence has been added by a terminal deoxynucleotidyltransferase reaction.
  • the target gene fragment 1 can form a complementary strand with the entire shaded portion in FIG. 12, while the non-target gene fragment 2 forms a primer B and a primer A complementary strand in the shaded portion in FIG. It is possible to form a complementary strand only with the sequence.
  • Primer E 5′-AGAGAGAGCTTAGTTTTATAATAGTAATCAATTTACGG-3 ′ has a mismatch sequence at its 5 ′ end and anneals in the vicinity of the upstream of the CMV promoter of the double-stranded DNA fragment for linking human ⁇ -chain genes.
  • Primer F 5′-AAGGAAGATCTGGGACAACCACAACTAGATCGCAGTG-3 ′ has a mismatch sequence at its 5 ′ end, and anneals near the downstream of the SV40 polyA addition sequence of the double-stranded DNA fragment for linking human ⁇ -chain genes.
  • the target gene fragment 1 and the non-target gene fragment 2 not added with the 3′-end polynucleotide prepared as a negative control were added with 10 ng of DNA fragment for ligation of human ⁇ chain gene, 10 pmol of primers E and F, and 10 nmol of dNTP.
  • 10 ng of DNA fragment for ligation of human ⁇ chain gene 10 pmol of primers E and F, and 10 nmol of dNTP.
  • Takara Bio's PrimeSTAR thermostable DNA polymerase in 25 ⁇ l reaction solution, 94 ° C. for 40 seconds and 70 ° C. for 4 minutes for 5 cycles, followed by 94 ° C. for 40 seconds, 60 ° C. for 40 seconds, 72 The reaction at 4 ° C. for 4 minutes was performed 30 cycles. 2 ⁇ l each was taken from the PCR reaction solution, and amplification of the expression unit was confirmed by agarose gel electrophoresis (see FIG. 1).
  • the 3′-end polynucleotide-added target gene fragment 1 was specifically converted into an expression unit, and amplification of a PCR product of about 2.5 kb was confirmed.
  • the 3'-end polynucleotide-added non-target gene fragment 2 was not converted into an expression unit.
  • the target gene fragment 1 that was not subjected to the 3'-end polynucleotide addition reaction was converted into an expression unit, but the non-target gene fragment 2 was also linked to the double-stranded DNA fragment for linking human ⁇ -chain genes.
  • the target human immunoglobulin variable region and the stationary region can be obtained by using a gene ligation double-stranded DNA fragment having an internal sequence with respect to the target gene fragment and a gene fragment subjected to 3'-end polynucleotide addition reaction. It was found that a DNA fragment having a part of the region can be converted into an expression unit without purification.
  • Example 2 Amplification of efficient ligation unit (expression unit) using 5'-end mismatch primer
  • [3] -end polynucleotide added target gene DNA fragment 1 prepared in 2 of [Example 1] 2 and human ⁇ -chain gene ligation prepared in 3
  • the DNA fragment for use was added, and the reaction was carried out for 5 cycles of 94 ° C for 40 seconds and 70 ° C for 4 minutes to synthesize a linked double-stranded DNA polymer.
  • Primers E and F, or G and H were added thereto, and the reaction of 94 ° C. for 40 seconds, 60 ° C. for 40 seconds and 72 ° C. for 4 minutes was repeated 30 cycles to try to amplify the expression unit.
  • Primer G 5′-TAGTTATTAATATAGTAATCAATTTACGG-3 ′ and primer H: 5′-TGGACAAACCACAACTAGATGGCAGTG-3 ′ have 100% homology to the double-stranded DNA fragment for ligation of human ⁇ -chain gene as a template.
  • Example 3 Using human ⁇ and ⁇ chain immunoglobulin gene fragments amplified from human peripheral blood plasma cells and DNA fragments for linking human ⁇ and ⁇ chain genes, a human immunoglobulin expression unit was prepared and used as a cultured cell. This was introduced to prepare a human antibody.
  • Plasma cells prepared from human peripheral blood were isolated one by one in two tubes, and oligo dT25 was bound to this.
  • oligo dT25 was bound to this.
  • cell lysate containing 3 ⁇ g of magnetic beads (Dynapies) (100 mM TrisHCl (pH 7.5), 500 mM LiCl, 1% dodecyl sulfate Li (LiDS), 5 mM dithiothreitol)
  • intracellular mRNA is bound to the magnetic beads. I let you.
  • mRNA washing solution A 10 mM TrisHCl (pH 7.5), 0.15 M LiCl, 0.1% LiDS
  • mRNA washing solution B 75 mM KCl, 3 mM MgCl2
  • Triton X 0.5 mM dNTP, 5 mM DTT, 2 unit RNase inhibitor
  • 3 ⁇ l of cDNA synthesis solution 50 mM Tris HCl (pH 8.3), 75 mM KCl, 3 mM MgCl2, 0.1% Triton X-100, 0.5 mM dNTP, 5 mM DTT, 2 unit RNase inhibitor, 10 unit SuperScriptll Reversesetripase (Invitrogen) was added and reacted for 1 hour at 50 ° C.
  • 3 ⁇ l of 3 ′ tailing washing solution 50 mM potassium phosphate (pH 7.0), 0.5 mM dGTP, 0.1% Triton X was added to the magnetic beads.
  • primer I is 5'-CGGTACCGCGGGGCCCGGGATCCCCCCCCCCCCDCN-3 'and anneals to poly G added to the 3' end of cDNA by TdT.
  • sequence of primer J is 5'-ACGCCTGCTGAGGGAGTAGAGTCTCGAG-3 'and is derived from the constant region of the human immunoglobulin gamma chain gene.
  • sequence of primer K is 5'-CTTTGGCCTCTCTGGGATAGAAAGTT-3 'and is derived from the constant region of the human immunoglobulin ⁇ chain gene.
  • amplification reaction of the variable region of the human immunoglobulin ⁇ chain gene was performed under the same conditions as in the first PCR using 1 ⁇ l of a solution obtained by adding 225 ⁇ l of water to the PCR solution and diluting 10 times as a template, using primer A: and primer B. went.
  • amplification reaction of the variable region of human immunoglobulin kappa chain gene was performed using primer A and primer L: 5'-ACAACAGAGGGCAGTTCCAGATTTCAACTGC-3 '.
  • PMiniCMV-hIgK is a 2976 bp full-length plasmid having a CMV promoter, multiple cloning site, poly dC / dG sequence, pUC119 replication origin, ampicillin resistance gene, human immunoglobulin ⁇ chain constant region, and SV40 polyA addition signal.
  • a DNA fragment for ligation of human kappa chain gene was prepared by PCR using primer C and primer M: 5′-CATCTTCCCGCCCCATTGATGAGCAG-3 ′ as a template. went.
  • the PCR reaction was performed by using Takara Bio's prime star DNA polymerase and performing a cycle of 94 ° C. for 40 seconds, 60 ° C. for 40 seconds, and 72 ° C. for 5 minutes 30 times.
  • the amplified DNA fragment was purified by a spin column method and prepared at a concentration of 10 ng / ⁇ l.
  • the amplified DNA fragment was purified by ethanol precipitation and dissolved in 25 ⁇ l of PBS. From this, 1 ⁇ l was taken, and the conversion of the kappa and ⁇ chain immunoglobulin gene fragments obtained from cells 1 and 2 into expression units was confirmed by agarose gel electrophoresis (see FIG. 17).
  • Sequence number 2 of a sequence table Primer A Sequence number 3 of a sequence table: Primer B Sequence number 4 of a sequence table: Non-target gene fragment 2 CTTCGAATTCTGCAGTCGACGGTACCGCGGGCCCGGGATCCACCGGTCGCCACCATGGTGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTGCCCATCCTGGTCGAGCTGGACGGCGACGTAAACGGCCACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGATGCCACCTACGGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCCGTGCCCTGGCCCACCCTCGTGACCACCCTGACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGAACCGCATCGAGCTGAAGGGCATCG
  • Sequence number 9 of a sequence table Primer E Sequence number 10 of a sequence table: Primer F Sequence number 11 of a sequence table: Primer G Sequence number 12 of a sequence table: Primer H Sequence number 13 of a sequence table: Primer I Sequence number 14 of a sequence table: Primer J Sequence number 15 of a sequence table: Primer K Sequence number 16 of a sequence table: Primer L Sequence number 17 of a sequence table: Primer M
  • SEQ ID NO: 19 Double-stranded DNA fragment for ligation of human ⁇ chain gene

Abstract

本発明は、任意の標的遺伝子について、標的遺伝子配列を含むDNA断片の精製の有る無しに拘わらずに、標的遺伝子断片のみを目的とする他のDNA断片と結合させた「連結DNA断片」を選択的に得る方法を提供することを目的とする。本発明は、配列Aおよび配列B、あるいは配列Aまたは配列Bを含む連結用二本鎖DNA断片を、標的遺伝子断片の各末端側に選択的に連結させる方法に関する。所定の関係にある3'端突出二本鎖遺伝子断片と連結用二本鎖DNA断片とを用い、前記3'端突出二本鎖遺伝子断片および前記連結用二本鎖DNA断片の混合物を、少なくとも2サイクルの熱変性・再会合・DNA合成反応に供して、前記配列A、前記標的遺伝子の配列および前記配列Bが連結された一単位の配列を1個以上含む二本鎖DNA断片である「連結DNA断片」を得る。類似の方法で、「片側連結DNA断片」も得られる。

Description

標的遺伝子由来配列を含む連結DNA断片の特異的作製方法 関連出願の相互参照
 本出願は、2009年9月4日出願の日本特願2009-205308号の優先権を主張し、それらの全記載は、ここに特に開示として援用される。
 本発明は、標的遺伝子由来配列を含む連結DNA断片の特異的作製方法に関するものであり、より詳しくは、非特異的増幅生成DNA断片共存下において、標的遺伝子断片を特異的に、他の目的DNA断片と特異的に連結させるための製造方法に関する。詳しくは、本発明は、(1)標的遺伝子の配列を含む3’端突出二本鎖遺伝子断片と、標的遺伝子の各末端側に固有の塩基配列をその両末端側に含む連結用二本鎖DNA断片とから成る計2種類のDNA断片を用いて、標的遺伝子断片の各末端側に連結用二本鎖DNA断片を特異的に連結させて「連結DNA断片」を製造する方法;(2)標的遺伝子の配列を含む3’端突出二本鎖遺伝子断片と、標的遺伝子の各末端側に固有の塩基配列をそれぞれ一方の末端側に含む2種の二本鎖DNA断片とからなる計3種類のDNA断片を用いて、標的遺伝子断片の各末端側にそれぞれの連結用二本鎖DNA断片を特異的に連結させて「連結DNA断片」を製造する方法;ならびに、(3)標的遺伝子の配列を含む3’端突出二本鎖遺伝子断片と、標的遺伝子の一方の末端側に固有の塩基配列を一方の末端側に含む連結用二本鎖DNA断片とから成る計2種類のDNA断片を用いて、標的遺伝子断片の一方の末端側に連結用二本鎖DNA断片を特異的に連結させて「片側連結DNA断片」を製造する方法に関する。
 DNAクローニングとは、一般的に、標的遺伝子断片をプラスミド、ファージ、コスミドなどの自己複製能を持つベクターに結合し、大腸菌などの宿主に導入して増殖させることにより、同じ遺伝子集団を作り出す技術を言う。大腸菌におけるクローニング及びサブクローニングは、重合酵素(ポリメラーゼ)連鎖反応(PCR)の方法などにより増幅された標的遺伝子断片を、DNAリガーゼを用いて複製開始点と抗生剤の選択標識を持ったベクターに結合して大腸菌細胞の中に導入した後、抗生剤耐性を調べることでクローニングされた菌体を選り分ける方法で行われる。
 既存のDNAクローニング法においては、挿入DNAとベクターを同じ認識部位の制限酵素で切断することや、制限酵素を選択するときにも挿入DNAやベクターの内部を切断しないものを選択すること、などが求められるといった制限がある。
 近年、特定の塩基配列を認識してDNA断片間の組換えを促すという配列特異的な遺伝子組換え酵素を用いた部位特異的組換え技術や相同組換え技術が標的遺伝子断片のクローニングに利用され、制限酵素等の処理を行うことなく、大量の遺伝子の素早いクローニング及び蛋白質の発現のために汎用され始めている。
 しかし、相同組換え技術を用いた場合であっても、大腸菌などの微生物を用いたプラスミドの増幅及び精製工程は必要であり、作業は依然として煩雑であり、経済性も悪い。
 大腸菌などの微生物を用いたプラスミドの増幅及び精製工程を行うことなく、標的遺伝子断片を標的遺伝子以外の特定の機能を有する1つまたは複数のDNA断片と、前記機能が発現し得る状態で連結させ、同じ塩基配列を有する遺伝子集団を製造する方法として、連結PCR法が知られている(特許文献1、並びに非特許文献1及び2を参照)。ここでは、「標的遺伝子以外の特定の機能を有するDNA断片」とは、プロモーター配列及びポリA付加配列である。
 特許文献1に記載の方法では、プロモーター配列、標的遺伝子配列及びポリA付加配列を独立に含む3種のDNA断片をRNA-DNAキメラプライマーを用いてPCR増幅する。次いで増幅されたDNA断片をRNaseにより処理することでRNAプライマー部位を除去し、各DNA断片末端に生じた3’突出領域の互いの相補性を利用し、DNAリガーゼを用いて3種のDNA断片を結合させている。これを鋳型としたPCRを行うことで、プロモーター配列、標的遺伝子配列およびポリA付加配列をこの順に機能的に連結させた連結DNA断片を大量に製造できる(特許文献1の図1を参照)。
 非特許文献1及び2では、遺伝子増幅に用いるプライマーの5’端側に連結される相手方のDNA断片の末端領域と相同的な配列を付加したプライマーを用い、プロモーター配列、標的遺伝子配列、及びポリA付加配列をそれぞれ独立に増幅している。これら3種のDNA断片を用いて、連結PCRを行うことにより、プロモーター配列、標的遺伝子配列及びポリA付加配列が機能的に連結された連結DNA断片を製造する方法が記載されている(非特許文献1のFigure 2及び非特許文献2のFig.1を参照)。
国際公開WO 03/091440号公報
Nikolai A. Shevchuk et al., Nucleic Acids Research, 2004, Vol. 32, No. 2 e19 H.-X. Liao et al., Journal of Virological Methods, 158, (2009), pp.171-179
 特許文献1並びに非特許文献1~2の全記載は、ここに特に開示として援用される。
 標的遺伝子断片は一般にPCR産物として調製されるが、PCRの際のプライマーの鋳型への結合の特異性が低い場合や鋳型にプライマー配列と類似した配列が複数存在する場合などでは、非特異的増幅反応が生じる結果、両端のプライマー配列に挟まれた領域が、クローニングの対象である標的遺伝子でない非特異的増幅生成DNA断片が生じ得る。
 従来の連結PCR法では、各DNA断片を増幅するために使用されるプライマー中に、連結に利用するための配列が付加されている。本プライマーを用いて増幅された個々のDNA断片には、異なるDNA断片とハイブリダイズするための配列がDNA断片末端側に導入される。次に増幅されたDNA断片を混合して連結PCRを行うことで、2種類以上のDNA断片が結合した「連結DNA断片」が形成される。
 しかし上記の方法では、遺伝子増幅反応により得られたPCR産物のプライマー配列に挟まれた領域が標的遺伝子に由来する配列でない断片についても、標的遺伝子断片と同様に「連結DNA断片」が形成される。
 また仮に遺伝子増幅反応により標的遺伝子断片のみが増幅された場合であっても、反応液中には遺伝子増幅に用いられたプライマーが残存しており、これを除去することなく連結PCR反応を行うと、「連結DNA断片」の構成要素である各DNA断片の増幅が「連結DNA断片」の増幅に優先して生じるため、目的とする標的遺伝子に由来する配列を含む「連結DNA断片」の形成は困難である。
 従って上記特許文献及び非特許文献に記載の方法では、標的遺伝子断片のPCR増幅後、PCR増幅産物は、プライマー及び非標的遺伝子配列を含むDNA断片の混入の影響が無視できる程度に精製されなければならない。
 以上の通り、2本以上の二本鎖DNA断片を結合させた「連結DNA断片」を従前の方法で製造するには、標的遺伝子以外の特定の機能を有する1つまたは複数のDNA断片と連結する前の工程の一つとして、非標的遺伝子配列を含むDNA断片、及び標的遺伝子増幅に用いたプライマーの混在が連結反応に与える影響を無視できる程度に、PCR増幅産物に含まれる標的遺伝子配列を含むDNA断片を精製することが求められる。しかし、標的遺伝子断片の長さが非標的遺伝子断片の長さと類似している場合には標的遺伝子断片の分離が困難である。そのため、このような場合には、目的とする標的遺伝子に由来する配列を含む「連結DNA断片」のみを得ることが不可能となる。
 そこで、本発明の目的は、標的遺伝子配列を含むPCR増幅産物に一つ以上の二本鎖DNA断片を結合させて、目的とする標的遺伝子に由来する配列を含む「連結DNA断片」を作製する方法であって、前記PCR増幅産物を精製することなく、前記「連結DNA断片」を特異的に作製できる方法を提供することにある。
 本発明者らは、鋭意研究を積み重ねた結果、
標的遺伝子配列を含む二本鎖遺伝子断片と
この二本鎖遺伝子断片と連結するための連結用DNA領域を含む連結用二本鎖DNA断片とを連結するに当たり、
(1)前記二本鎖遺伝子断片として、中央部に標的遺伝子を含み、両末端側にそれぞれ会合可能な領域を有し、前記会合可能な2つの領域は互いに会合しない塩基配列を有し、かつ一方または両方の領域は少なくとも一部の塩基配列が標的遺伝子に含まれる固有の配列であり、両方の会合可能な領域の3’端に1ヌクレオチド以上の突出末端を有する3’端突出二本鎖遺伝子断片を準備し、
(2)前記二本鎖DNA断片として、中央部に連結用DNA領域を少なくとも1つ含み、両末端側にそれぞれ会合可能な領域を有する連結用二本鎖DNA断片を準備し、
(3-1)前記3’端突出二本鎖遺伝子断片の一方の会合可能な領域は、前記連結用二本鎖DNA断片の一方の末端の会合可能な領域と相同的な塩基配列からなるが、3’突出端が付加された末端側の配列が連結用二本鎖DNA断片の一方の会合可能な領域では連結用DNA領域と結合する側であり、
(3-2)前記3’端突出二本鎖遺伝子断片の前記一方の会合可能な領域からの突出末端は、DNA合成反応において鎖伸長機能を有さず、
(3-3)前記3’端突出二本鎖遺伝子断片の他方の会合可能な領域は、前記連結用二本鎖DNA断片の他方の末端の会合可能な領域と相同的な塩基配列からなるが、3’突出端が付加された末端側の配列が連結用二本鎖DNA断片の他方の会合可能な領域では連結用DNA領域と結合する側であり、
(3-4)前記3’端突出二本鎖遺伝子断片の前記他方の会合可能な領域からの突出末端は、DNA合成反応において鎖伸長機能を有さず、
(4)上記3’端突出二本鎖遺伝子断片及び連結用二本鎖DNA断片を用いて、熱変性、再会合及びDNA合成反応を少なくとも2回行うことで、
前記二本鎖遺伝子断片に、非標的遺伝子を含む遺伝子断片や、前記二本鎖遺伝子断片をPCRで増幅するために用いたプライマーが共存している場合であっても、
非標的遺伝子の両方の側に連結用DNA領域が連結した連結DNA断片の非特異的な生成は抑制し、標的遺伝子の両方の側に連結用DNA領域を連結させた、目的とする連結DNA断片を特異的に得ることに成功し、本発明の第1の態様(請求項1に記載の発明)を完成した。
 ここで一方の会合可能な領域を「領域1」、他方の会合可能な領域を「領域2」とすると、3’端突出二本鎖遺伝子断片は、模式的に領域1-標的遺伝子-領域2で示される配列を有し、連結用二本鎖DNA断片は、模式的に領域2-連結用DNA領域-領域1で示される配列を有し、連結DNA断片は、模式的に領域2-連結用DNA領域-領域1-標的遺伝子-領域2-連結用DNA領域-領域1で示される配列を少なくとも1つ有するものである。
 さらに、連結用DNA領域が2つの連結用DNA領域1及び2を含む、模式的に領域2-連結用DNA領域2-連結用DNA領域1-領域1で示される配列を有する場合には、模式的に領域2-連結用DNA領域2-連結用DNA領域1-領域1-標的遺伝子-領域2-連結用DNA領域2-連結用DNA領域1-領域1で示される配列を少なくとも1つ有するものとなる。
 さらに本発明者らは、上記本発明の第1の態様における連結用二本鎖DNA断片を、模式的に領域1-連結用DNA領域1及び連結用DNA領域2-領域2でそれぞれ示される配列を有する2つの連結用二本鎖DNA断片1および2に分けることでも、非標的遺伝子の一方の側に連結用DNA領域1、他方の側に連結用DNA領域2が連結した連結DNA断片の非特異的な生成を抑制して、標的遺伝子の一方の側に連結用DNA領域1、他方の側に連結用DNA領域2を連結させた、目的とする連結DNA断片を特異的に得ることに成功し、本発明の第2の態様(請求項9に記載の発明)を完成した。
 ここで得られる連結DNA断片は、模式的に連結用DNA領域1-領域1-標的遺伝子-領域2-連結用DNA領域2で示される配列を有するものである。
 加えて本発明者らは、上記本発明の第2の態様における、2つに分けたいずれか一方の連結用二本鎖DNA断片、模式的に領域1-連結用DNA領域1または連結用DNA領域2-領域2で示される配列を用いることで、非標的遺伝子の一方の側に連結用DNA領域1または2を連結させた連結DNA断片の非特異的な生成を抑制して、標的遺伝子の一方の側に連結用DNA領域1または2を連結させた、目的とする片側連結DNA断片を特異的に得ることに成功し、本発明の第3の態様(請求項16に記載の発明)を完成した。
 さらに本発明は、上記本発明の第1の態様~第3の態様で用いられる3’端突出二本鎖遺伝子断片、連結用二本鎖DNA断片及びこれらの組合体、さらにはこれらを含むキットを包含する。
 本発明は以下のとおりである。
[1]
標的遺伝子の両方の側に連結用DNA領域を連結させた連結DNA断片を製造する方法であって、
(1)標的遺伝子配列を含む二本鎖遺伝子断片から、中央部に標的遺伝子配列を含み、両末端側にそれぞれ会合可能な領域を有し、前記会合可能な2つの領域は互いに会合しない塩基配列を有し、かつ一方または両方の領域は少なくとも一部の塩基配列が標的遺伝子配列に含まれる固有の塩基配列であり、両方の会合可能な領域の3’端に1ヌクレオチド以上の突出末端を有する3’端突出二本鎖遺伝子断片を準備し、
(2)中央部に連結用DNA領域を含み、両末端側にそれぞれ会合可能な領域を有する連結用二本鎖DNA断片を準備し、
(3-1)前記3’端突出二本鎖遺伝子断片の一方の会合可能な領域は、前記連結用二本鎖DNA断片の一方の末端の会合可能な領域と相同的な塩基配列からなるが、3’突出端が付加された末端側の配列が連結用二本鎖DNA断片の一方の会合可能な領域では連結用DNA領域と結合する側であり、
(3-2)前記3’端突出二本鎖遺伝子断片の一方の会合可能な領域からの突出末端は、DNA合成反応において鎖伸長機能を有さず、
(3-3)前記3’端突出二本鎖遺伝子断片の他方の会合可能な領域は、前記連結用二本鎖DNA断片の他方の末端の会合可能な領域と相同的な塩基配列からなるが、3’突出端が付加された末端側の配列が連結用二本鎖DNA断片の他方の会合可能な領域では連結用DNA領域と結合する側であり、
(3-4)前記3’端突出二本鎖遺伝子断片の他方の会合可能な領域からの突出末端は、DNA合成反応において鎖伸長機能を有さず、
(4)上記3’端突出二本鎖遺伝子断片及び連結用二本鎖DNA断片を用いて、熱変性、再会合及びDNA合成反応を少なくとも2回行うことで、上記連結DNA断片を得ることを含む、
連結DNA断片の製造方法。
[2]
前記一方の会合可能な領域を「領域1」とし、他方の会合可能な領域を「領域2」とすると、前記連結DNA断片は、模式的に領域2-連結用DNA領域-領域1-標的遺伝子-領域2-連結用DNA領域-領域1で示される配列を少なくとも1つ有するDNA断片である、[1]に記載の製造方法。
[3]
連結用DNA領域が2つの連結用DNA領域として配列Aおよび配列Bを含み、
前記3’端突出二本鎖遺伝子断片の会合可能な領域は、一方が末端側から配列P1およびT1を有し、他方が末端側から配列P2およびT2を有し、配列T1および配列T2の少なくとも一方は標的遺伝子配列に含まれる固有の塩基配列を有し、
前記連結用二本鎖DNA断片の会合可能な領域は、一方が末端側から配列VP1およびVT1を有し、他方が末端側から配列VP2およびVT2を有し、配列VP1およびVT1は、配列P1およびT1とそれぞれ相同的な塩基配列を有し、配列VP2およびVT2は、配列P2およびT2とそれぞれ相同的な塩基配列を有する、[1]に記載の製造方法。
[4]
前記3’端突出二本鎖遺伝子断片は、P1-T1-標的遺伝子-T2-P2で表され、
前記連結用二本鎖DNA断片は、VT2-VP2-配列B-配列A-VP1-VT1で表され、
前記連結DNA断片は、VT2-VP2(T2-P2)-配列B-配列A-VP1-VT1(P1-T1)-標的遺伝子-VT2-VP2(T2-P2)-配列B-配列A-VP1-VT1(P1-T1)を少なくとも1つ有するDNA断片である、但し、VT2-VP2(T2-P2)は、T2-P2と相同的なVT2-VP2であることを意味し、VP1-VT1(P1-T1)は、T1-P1と相同的なVT1-VP1であることを意味する、[3]に記載の製造方法。
[5]
配列P2の3’端にある突出末端のDNA合成反応において鎖伸長機能を有さない配列は前記配列BのVP2と隣接する配列と非相同的な配列であり、配列P1の3’端にある突出末端のDNA合成反応において鎖伸長機能を有さない配列は前記配列AのVP1と隣接すると非相同的な配列である[3]または[4]に記載の製造方法。
[6]
前記突出末端は、3’端にダイデオキシヌクレオチドを含む配列である[1]~[4]のいずれかに記載の製造方法。
[7]
[1]~[6]のいずれかに記載の方法で製造した連結DNA断片を鋳型として、
連結DNA断片に含まれる少なくとも1つの少なくとも一部の連結用DNA領域と標的遺伝子の配列の全てを増幅するように、
連結DNA断片に含まれる異なる連結用DNA領域で機能するフォワードプライマーおよびリバースプライマーを用いてPCRを行い、
少なくとも1つの少なくとも一部の連結用DNA領域と標的遺伝子の配列の全てを含むDNA断片を製造する方法。
[8]
[3]に記載の方法で製造した連結DNA断片を鋳型として、
配列Aの塩基配列の一部を標的遺伝子に向かうように3’端に含むフォワードプライマー、および
配列Bの塩基配列の一部を標的遺伝子に向かうように3’端に含むリバースプライマーを用いてPCRを行い、配列A、標的遺伝子の配列および配列Bが連結されたDNA断片を得ることを含むDNA断片を製造する方法。
[9]
標的遺伝子の一方の側に連結用DNA領域1、他方の側に連結用DNA領域2を連結させた連結DNA断片を製造する方法であって、
(1)標的遺伝子配列を含む二本鎖遺伝子断片から、中央部に標的遺伝子配列を含み、両末端側にそれぞれ会合可能な領域を有し、前記会合可能な2つの領域は互いに会合しない塩基配列を有し、かつ一方または両方の領域は少なくとも一部の塩基配列が標的遺伝子配列に含まれる固有の塩基配列であり、両方の会合可能な領域の3’端に1ヌクレオチド以上の突出末端を有する3’端突出二本鎖遺伝子断片を準備し、
(2)連結用DNA領域1を含み、末端側に会合可能な領域を有する連結用二本鎖DNA断片1および連結用DNA領域2を含み、末端側に会合可能な領域を有する連結用二本鎖DNA断片2を準備し、
(3-1)前記3’端突出二本鎖遺伝子断片の一方の会合可能な領域は、前記連結用二本鎖DNA断片1の会合可能な領域と相同的な塩基配列からなるが、3’突出端が付加された末端側の配列が連結用二本鎖DNA断片1の会合可能な領域では連結用DNA領域と結合する側であり、
(3-2)前記3’端突出二本鎖遺伝子断片の一方の会合可能な領域からの突出末端は、DNA合成反応において鎖伸長機能を有さず、
(3-3)前記3’端突出二本鎖遺伝子断片の他方の会合可能な領域は、前記連結用二本鎖DNA断片2の末端の会合可能な領域と相同的な塩基配列からなるが、3’突出端が付加された末端側の配列が連結用二本鎖DNA断片2の会合可能な領域では連結用DNA領域と結合する側であり、
(3-4)前記3’端突出二本鎖遺伝子断片の他方の会合可能な領域からの突出末端は、DNA合成反応において鎖伸長機能を有さず、
(4)上記3’端突出二本鎖遺伝子断片並びに連結用二本鎖DNA断片1および2を用いて、熱変性、再会合及びDNA合成反応を少なくとも2回行うことで、上記連結DNA断片を得ることを含む、
連結DNA断片の製造方法。
[10]
連結用DNA領域1が配列Aを含み、連結用DNA領域2が配列Bを含み、
前記3’端突出二本鎖遺伝子断片の会合可能な領域は、一方が末端側から配列P1およびT1を有し、他方が末端側から配列P2およびT2を有し、配列T1および配列T2の少なくとも一方は標的遺伝子配列に含まれる固有の塩基配列を有し、
前記連結用二本鎖DNA断片1の会合可能な領域は、末端側から配列VT1およびVP1を有し、連結用二本鎖DNA断片2の会合可能な領域は、末端側から配列VT2およびVP2を有し、配列VP1およびVT1は、配列P1およびT1とそれぞれ相同的な塩基配列を有し、配列VP2およびVT2は、配列P2およびT2とそれぞれ相同的な塩基配列を有する、[9]に記載の製造方法。
[11]
前記3’端突出二本鎖遺伝子断片は、P1-T1-標的遺伝子-T2-P2で表され、
前記連結用二本鎖DNA断片1は、配列A-VP1-VT1で表され、前記連結用二本鎖DNA断片2は、VT2-VP2-配列Bで表され、
前記連結DNA断片は、配列A-VP1-VT1(P1-T1)-標的遺伝子-VT2-VP2(T2-P2)-配列Bを少なくとも1つ有するDNA断片である、但し、VT2-VP2(T2-P2)は、T2-P2と相同的なVT2-VP2であることを意味し、VP1-VT1(P1-T1)は、T1-P1と相同的なVT1-VP1であることを意味する、[10]に記載の製造方法。
[12]
配列P2の3’端にある突出末端のDNA合成反応において鎖伸長機能を有さない配列は前記配列BのVP2と隣接する配列と非相同的な配列であり、配列P1の3’端にある突出末端のDNA合成反応において鎖伸長機能を有さない配列は前記配列AのVP1と隣接する配列と非相同的な配列である[10]または[11]に記載の製造方法。
[13]
前記突出末端は、3’端にダイデオキシヌクレオチドを含む配列である[9]~[11]のいずれかに記載の製造方法。
[14]
[9]~[13]のいずれかに記載の方法で製造した連結DNA断片を鋳型として、
連結DNA断片に含まれる少なくとも1つの少なくとも一部の連結用DNA領域と標的遺伝子の配列の全てを増幅するように、
連結DNA断片に含まれる異なる連結用DNA領域で機能するフォワードプライマーおよびリバースプライマーを用いてPCRを行い、
少なくとも1つの少なくとも一部の連結用DNA領域と標的遺伝子の配列の全てを含むDNA断片を製造する方法。
[15]
[10]に記載の方法で製造した連結DNA断片を鋳型として、
配列Aの塩基配列の一部を標的遺伝子に向かうように3’端に含むフォワードプライマー、および
配列Bの塩基配列の一部を標的遺伝子に向かうように3’端に含むリバースプライマーを用いてPCRを行い、配列A、標的遺伝子の配列および配列Bが連結されたDNA断片を得ることを含むDNA断片を製造する方法。
[16]
標的遺伝子の一方の側に連結用DNA領域を連結させた片側連結DNA断片を製造する方法であって、
(1)標的遺伝子配列を含む二本鎖遺伝子断片から、前記標的遺伝子配列の一方の末端側に会合可能な領域を有し、かつ前記領域は少なくとも一部の塩基配列が標的遺伝子配列に含まれる固有の塩基配列であり、前記会合可能な領域の3’端に1ヌクレオチド以上の突出末端を有する3’端突出二本鎖遺伝子断片を準備し、
(2)連結用DNA領域を含み、末端側に会合可能な領域を有する連結用二本鎖DNA断片を準備し、
(3-1)前記3’端突出二本鎖遺伝子断片の一方の会合可能な領域は、前記連結用二本鎖DNA断片の会合可能な領域と相同的な塩基配列からなるが、3’突出端が付加された末端側の配列が連結用二本鎖DNA断片の会合可能な領域では連結用DNA領域と結合する側であり、
(3-2)前記3’端突出二本鎖遺伝子断片の一方の会合可能な領域からの突出末端は、DNA合成反応において鎖伸長機能を有さず、
(4)上記3’端突出二本鎖遺伝子断片並びに連結用二本鎖DNA断片を用いて、熱変性、再会合及びDNA合成反応を1回行ってヘテロ二本鎖DNA産物を得、次いで、
このヘテロ二本鎖DNA産物を鋳型としてポリメラーゼ連鎖反応を行うことで、上記片側連結DNA断片を得ることを含む、
片側連結DNA断片の製造方法。
[17]
連結用DNA領域が配列Aを含み、
前記3’端突出二本鎖遺伝子断片の会合可能な領域は、末端側から配列P1およびT1を有し、配列T1および配列T2の少なくとも一方は標的遺伝子配列に含まれる固有の塩基配列を有し、
前記連結用二本鎖DNA断片の会合可能な領域は、末端側から配列VT1およびVP1を有し、配列VP1およびVT1は、配列P1およびT1とそれぞれ相同的な塩基配列を有し、
前記ヘテロ二本鎖DNA産物を鋳型とするポリメラーゼ連鎖反応は、前記ヘテロ二本鎖DNA産物の標的遺伝子の一部を前記標的遺伝子の突出末端側に向かうよう3’端に含むプライマーおよび前記ヘテロ二本鎖DNA産物の配列Aの一部を前記標的遺伝子側に向かうよう3’端に含むプライマーを用いる、[16]に記載の製造方法。
[18]
前記3’端突出二本鎖遺伝子断片は、P1-T1-標的遺伝子で表され、
前記連結用二本鎖DNA断片は、配列A-VP1-VT1で表され、
前記片側連結DNA断片は、配列A-VP1-VT1(P1-T1)-標的遺伝子を少なくとも1つ有するDNA断片である、但し、VP1-VT1(P1-T1)は、T1-P1と相同的なVT1-VP1であることを意味する、[17]に記載の製造方法。
[19]
配列P1の3’端にある突出末端のDNA合成反応において鎖伸長機能を有さない配列は前記配列AのVP1と隣接すると非相同的な配列である[17]または[18]に記載の製造方法。
[20]
前記突出末端は、3’端にダイデオキシヌクレオチドを含む配列である[16]~[18]のいずれかに記載の製造方法。
[21]
標的遺伝子の配列を含む二本鎖DNA断片およびポリデオキシヌクレオチドに、デオキシヌクレオチドターミナルトランスフェラーゼを作用させて、標的遺伝子の配列を含む3’端突出二本鎖遺伝子断片を得ることをさらに含む
(但し、前記標的遺伝子の配列を含む二本鎖DNA断片は、配列P1および配列P2を各末端に有し、前記配列P1の内側の一部に配列T1を有し、前記配列P2の内側の一部に配列T2を有し、かつ前記配列T1およびT2の一方又は両方は、標的遺伝子に固有の塩基配列を有する)、[3]、[4]、[10]、または[11]に記載の製造方法。
[22]
標的遺伝子の配列を含む二本鎖DNA断片およびポリデオキシヌクレオチドに、デオキシヌクレオチドターミナルトランスフェラーゼを作用させて、標的遺伝子の配列を含む3’端突出二本鎖遺伝子断片を得ることをさらに含む
(但し、前記標的遺伝子の配列を含む二本鎖DNA断片は、配列P1を一方の末端に有し、前記配列P1の内側の一部に配列T1を有し、かつ前記配列T1は、標的遺伝子に固有の塩基配列を有する)、[17]または[18]に記載の製造方法。
[23]
前記配列T1および配列T2の一方または両方が、標的遺伝子に固有の塩基配列を有する、[3]、[4]、[10]、または[11]に記載の製造方法。
[24]
前記配列P1および配列P2の一方または両方が、標的遺伝子に固有の塩基配列を有する、[3]、[4]、[10]、または[11]に記載の製造方法。
[25]
前記配列P1およびP2は、独立に10塩基以上である、[3]、[4]、[10]、[11]、[17]または[18]に記載の製造方法。
[26]
前記標的遺伝子が抗体遺伝子またはT細胞受容体遺伝子であり、前記3’端突出二本鎖遺伝子断片が前記抗体遺伝子またはT細胞受容体遺伝子に由来する配列を含み、ならびに、
前記連結用二本鎖DNA断片または前記配列Aを有する連結用二本鎖DNA断片における前記領域VP1および領域VT1は、抗体遺伝子またはT細胞受容体遺伝子に由来するまたは由来しない配列を有する、[1]~[25]のいずれかに記載の製造方法。
[27]
前記標的遺伝子が抗体遺伝子またはT細胞受容体遺伝子であり、前記3’端突出二本鎖遺伝子断片が前記抗体遺伝子またはT細胞受容体遺伝子に由来する配列を含み、ならびに、
前記連結用二本鎖DNA断片または前記配列Bを有する連結用二本鎖DNA断片における前記領域VP2および領域VT2は、抗体遺伝子またはT細胞受容体遺伝子に由来するまたは由来しない配列である、[26]に記載の製造方法。
[28]
[26]または[27]に記載の方法で製造された連結DNA断片を用いて抗体またはT細胞受容体を製造する方法。
[29]
標的遺伝子配列を含む二本鎖遺伝子断片から、中央部に標的遺伝子配列を含み、両末端側にそれぞれ会合可能な領域を有し、前記会合可能な2つの領域は互いに会合しない塩基配列を有し、かつ一方または両方の領域は少なくとも一部の塩基配列が標的遺伝子配列に含まれる固有の塩基配列であり、両方の会合可能な領域の3’端に1ヌクレオチド以上の突出末端を有する3’端突出二本鎖遺伝子断片。
[30]
中央部に連結用DNA領域を含み、両末端側にそれぞれ会合可能な領域を有する連結用二本鎖DNA断片。
[31]
(1)標的遺伝子配列を含む二本鎖遺伝子断片から、中央部に標的遺伝子配列を含み、両末端側にそれぞれ会合可能な領域を有し、前記会合可能な2つの領域は互いに会合しない塩基配列を有し、かつ一方または両方の領域は少なくとも一部の塩基配列が標的遺伝子配列に含まれる固有の塩基配列であり、両方の会合可能な領域の3’端に1ヌクレオチド以上の突出末端を有する3’端突出二本鎖遺伝子断片と
(2) 中央部に連結用DNA領域を含み、両末端側にそれぞれ会合可能な領域を有する連結用二本鎖DNA断片
との組合体であって、標的遺伝子の両方の側に連結用DNA領域を連結させた連結DNA断片を製造する方法に用いられる組合体。
[32]
(3-1)前記3’端突出二本鎖遺伝子断片の一方の会合可能な領域は、前記連結用二本鎖DNA断片の一方の末端の会合可能な領域と相同的な塩基配列からなるが、3’突出端が付加された末端側の配列が連結用二本鎖DNA断片の一方の会合可能な領域では連結用DNA領域と結合する側であり、
(3-2)前記3’端突出二本鎖遺伝子断片の一方の会合可能な領域からの突出末端は、DNA合成反応において鎖伸長機能を有さず、
(3-3)前記3’端突出二本鎖遺伝子断片の他方の会合可能な領域は、前記連結用二本鎖DNA断片の他方の末端の会合可能な領域と相同的な塩基配列からなるが、3’突出端が付加された末端側の配列が連結用二本鎖DNA断片の他方の会合可能な領域では連結用DNA領域と結合する側であり、
(3-4)前記3’端突出二本鎖遺伝子断片の他方の会合可能な領域からの突出末端は、DNA合成反応において鎖伸長機能を有さない、
[31]に記載の組合体。
[33]
連結用DNA領域1を含み、末端側に会合可能な領域を有する連結用二本鎖DNA断片1または連結用DNA領域2を含み、末端側に会合可能な領域を有する連結用二本鎖DNA断片2。
[34]
(1)標的遺伝子配列を含む二本鎖遺伝子断片から、中央部に標的遺伝子配列を含み、両末端側にそれぞれ会合可能な領域を有し、前記会合可能な2つの領域は互いに会合しない塩基配列を有し、かつ一方または両方の領域は少なくとも一部の塩基配列が標的遺伝子配列に含まれる固有の塩基配列であり、両方の会合可能な領域の3’端に1ヌクレオチド以上の突出末端を有する3’端突出二本鎖遺伝子断片と
(2)連結用DNA領域1を含み、末端側に会合可能な領域を有する連結用二本鎖DNA断片1または連結用DNA領域2を含み、末端側に会合可能な領域を有する連結用二本鎖DNA断片2
との組合体であって、標的遺伝子の一方の側に連結用DNA領域1、他方の側に連結用DNA領域2を連結させた連結DNA断片を製造する方法に用いられる組合体。
[35]
(3-1)前記3’端突出二本鎖遺伝子断片の一方の会合可能な領域は、前記連結用二本鎖DNA断片1の会合可能な領域と相同的な塩基配列からなるが、3’突出端が付加された末端側の配列が連結用二本鎖DNA断片1の会合可能な領域では連結用DNA領域と結合する側であり、
(3-2)前記3’端突出二本鎖遺伝子断片の一方の会合可能な領域からの突出末端は、DNA合成反応において鎖伸長機能を有さず、
(3-3)前記3’端突出二本鎖遺伝子断片の他方の会合可能な領域は、前記連結用二本鎖DNA断片2の末端の会合可能な領域と相同的な塩基配列からなるが、3’突出端が付加された末端側の配列が連結用二本鎖DNA断片2の会合可能な領域では連結用DNA領域と結合する側であり、
(3-4)前記3’端突出二本鎖遺伝子断片の他方の会合可能な領域からの突出末端は、DNA合成反応において鎖伸長機能を有さない、
[34]に記載の組合体。
[36]
標的遺伝子配列を含む二本鎖遺伝子断片から、前記標的遺伝子配列の一方の末端側に会合可能な領域を有し、かつ前記領域は少なくとも一部の塩基配列が標的遺伝子配列に含まれる固有の塩基配列であり、前記会合可能な領域の3’端に1ヌクレオチド以上の突出末端を有する3’端突出二本鎖遺伝子断片。
[37]
連結用DNA領域を含み、末端側に会合可能な領域を有する連結用二本鎖DNA断片。
[38]
(1)標的遺伝子配列を含む二本鎖遺伝子断片から、前記標的遺伝子配列の一方の末端側に会合可能な領域を有し、かつ前記領域は少なくとも一部の塩基配列が標的遺伝子配列に含まれる固有の塩基配列であり、前記会合可能な領域の3’端に1ヌクレオチド以上の突出末端を有する3’端突出二本鎖遺伝子断片と
(2)連結用DNA領域を含み、末端側に会合可能な領域を有する連結用二本鎖DNA断片
との組合体であって、標的遺伝子の一方の側に連結用DNA領域を連結させた片側連結DNA断片を製造する方法に用いられる組合体。
[39]
(3-1)前記3’端突出二本鎖遺伝子断片の一方の会合可能な領域は、前記連結用二本鎖DNA断片の会合可能な領域と相同的な塩基配列からなるが、3’突出端が付加された末端側の配列が連結用二本鎖DNA断片の会合可能な領域では連結用DNA領域と結合する側であり、
(3-2)前記3’端突出二本鎖遺伝子断片の一方の会合可能な領域からの突出末端は、DNA合成反応において鎖伸長機能を有さない、
[38]に記載の組合体。
[40]
前記連結用DNA領域は、イントロン、エクソン、蛍光タンパク質遺伝子、Hisタグ等の各種タグ配列や、菌や動物細胞内で種々の遺伝子の発現を制御することができるプロモーター、エンハンサー配列、ポリA付加配列等から成る群から選ばれる少なくとも1種の配列である[30]~[35]、[37]~[39]のいずれかに記載の連結用二本鎖DNA断片または組合体。
[41]
[29]に記載の3’端突出二本鎖遺伝子断片、[30]に記載の連結用二本鎖DNA断片、または[31]若しくは32に記載の組合体を含む、標的遺伝子の両方の側に連結用DNA領域を連結させた連結DNA断片を製造する方法に用いられるキット。
[42]
[29]に記載の3’端突出二本鎖遺伝子断片、[33]に記載の連結用二本鎖DNA断片、または[34]若しくは[35]に記載の組合体を含む、標的遺伝子の一方の側に連結用DNA領域1、他方の側に連結用DNA領域2を連結させた連結DNA断片を製造する方法に用いられるキット。
[43]
[36]に記載の3’端突出二本鎖遺伝子断片、[37]に記載の連結用二本鎖DNA断片、または[38]若しくは[39]に記載の組合体を含む、標的遺伝子の一方の側に連結用DNA領域を連結させた片側連結DNA断片を製造する方法に用いられるキット。
[44]
前記連結用DNA領域は、イントロン、エクソン、蛍光タンパク質遺伝子、Hisタグ等の各種タグ配列や、菌や動物細胞内で種々の遺伝子の発現を制御することができるプロモーター、エンハンサー配列、ポリA付加配列等から成る群から選ばれる少なくとも1種の配列である[41]~[43]のいずれかに記載のキット。
 本発明の方法によれば、非特異的な増幅で得られた遺伝子増幅産物共存下において、標的遺伝子増幅産物を特異的に連結用DNA断片に連結させることができる。本発明の方法によれば、標的遺伝子について、標的遺伝子配列を含むDNA断片の精製の有る無しに係わらずに、例えば、連結用DNA断片に含まれていた配列A及び配列Bを、配列A-標的遺伝子配列-配列Bがこの順に機能的に連結した連結DNA断片を特異的に製造できる。
 さらに、本発明によれば、配列Aをプロモーター配列、配列BをポリA付加配列とすることで、配列A-標的遺伝子配列-配列Bがこの順に機能的に連結した連結DNA断片を宿主細胞に導入すれば、標的遺伝子配列を発現させることができる。後に詳述するが、上記配列をこの順に機能的に連結させた配列を有する二本鎖DNAの単位が、上記のようにプロモーター配列およびポリA付加配列を機能的に連結させた配列のように、この標的遺伝子配列の発現に必要な最小構成の二本鎖DNA断片からなる場合、これを本発明では発現ユニットと呼ぶことがある。
 上記発現ユニットは、大腸菌を用いて調製された環状型ベクターと異なり、試験管内で合成された線状二本鎖DNA断片であることから、エンドトキシン等の菌体に由来する有害物質の混入が無い。その結果、標的遺伝子がコードする蛋白質を有害物質の影響が無い状態で宿主細胞を用いて特異的かつ大量に生産させることが可能となる。
図1は、本発明の第1の態様を説明するための反応スキームである。 図2は、本発明の第1の態様の1つの実施態様を説明するための反応スキームである。 図3は、本発明の第1の態様の1つの実施態様において、熱変性、再会合及びDNA合成反応において核酸伸長産物が生じず、連結DNA断片が得られない場合を説明するための反応スキームである。 図4は、本発明の第1の態様の1つの実施態様によって得られた連結DNA断片から、所望の二本鎖DNA断片を得るための方法を説明するための反応スキームである。 図5は、本発明の第1の態様の1つの実施態様によって得られた連結DNA断片から、所望の二本鎖DNA断片を得るための方法において、所望の二本鎖DNA断片が得られない場合を説明するための反応スキームである。 図6は、本発明の第2の態様の1つの実施態様を説明するための反応スキームである。 図7は、本発明の第3の態様の1つの実施態様を説明するための反応スキームである。 図8は、ヒトγ鎖遺伝子連結用二本鎖DNA断片と、標的及び非標的遺伝子断片の混合物を該選択的連結方法に供して得た増幅産物をアガロースゲル電気泳動で確認した図である。レーン1:3’端ポリヌクレオチド付加標的遺伝子断片1をヒトγ鎖遺伝子連結用二本鎖DNA断片に連結させることで得られた、プロモーター-ヒトγ鎖遺伝子-ポリA付加配列から成る連結単位(ヒトγ鎖遺伝子発現ユニット)、レーン2:3’端ポリヌクレオチド付加非標的遺伝子断片2をヒトγ鎖遺伝子連結用二本鎖DNA断片に連結することで得られた連結単位:レーン3:標的遺伝子断片1をヒトγ鎖遺伝子連結用二本鎖DNA断片に連結することで得られたヒトγ鎖遺伝子発現ユニット、レーン4:非標的遺伝子断片2をヒトγ鎖遺伝子連結用二本鎖DNA断片に連結することで得られた連結単位 図9は、3’端ポリヌクレオチド付加標的遺伝子断片1とヒトγ鎖遺伝子連結用二本鎖DNA断片の結合により生じたヒトγ鎖遺伝子発現ユニットの重合体をミスマッチプライマーまたは通常のプライマーを用いてPCRに供し、増幅されたDNAをアガロースゲル電気泳動で確認した図である。レーン1及び2:プライマーE及びFを用いたヒトγ鎖遺伝子発現ユニットの増幅、レーン3及び4:プライマーG及びHを用いたヒトγ鎖遺伝子発現ユニットの増幅 図10は、標的遺伝子断片1の塩基配列の説明図である。 図11は、非標的遺伝子断片2の塩基配列の説明図である。 図12は、ヒトγ鎖遺伝子連結用二本鎖DNA断片の塩基配列の説明図である。 図13は、磁気ビーズを用いたcDNA合成法(免疫グロブリン可変領域増幅法)の説明図である。 図14は、ヒトγ鎖遺伝子連結用二本鎖DNA断片の製造方法の模式図である。 図15は、例3において、ヒトプラズマ細胞1及び2よりγ鎖及びκ鎖可変領域を増幅した結果を示した図である。 図16は、ヒトκ鎖遺伝子連結用二本鎖DNA断片の塩基配列の説明図である。 図17は、例3において、増幅されたγ鎖及びκ鎖可変領域を発現ユニットに変換した結果を示した図である。 図18は、例3において、ELAISA法を用いて細胞培養液中に分泌された組み換えヒト免疫グロブリンを測定した結果を示した図である。
[用語の定義]
 本明細書において、以下の用語は以下に示す意味を有するものとする。
「標的遺伝子配列」とは、本発明の方法において、連結用二本鎖DNA断片を連結させた連結DNA断片を特異的に得たい遺伝子の配列である。標的遺伝子配列の例は後述する。
「二本鎖遺伝子断片」とは、標的遺伝子配列を含む二本鎖の遺伝子断片である。
「3’端突出二本鎖遺伝子断片」とは、二本鎖遺伝子断片の両方の3’端に突出末端を有する遺伝子断片である。
「連結用二本鎖DNA断片」とは、本発明の方法において、連結DNA断片を得るために標的遺伝子配列に連結させるDNA断片である。
「会合可能な領域」とは、後述する「熱変性、再会合及びDNA合成反応」における再会合(アニーリング)において、連結用二本鎖DNA断片が有する2つの「会合可能な領域」の一方と会合し得る領域である。
「標的遺伝子配列に含まれる固有の塩基配列」とは、標的遺伝子配列に含まれる、標的遺伝子が本来有する塩基配列である。
「連結DNA断片」とは、標的遺伝子の両方の側に連結用DNA領域を連結させた二本鎖連結DNA断片である。
「片側連結DNA断片」とは、標的遺伝子の一方の側に連結用DNA領域を連結させた二本鎖連結DNA断片である。
「連結単位」とは、配列A-標的遺伝子-配列Bを意味する。
「連結単位重合体」とは、複数の連結単位が連なったDNA断片を意味する。
「センス鎖」とは、二本鎖DNAの任意の一方の一本鎖DNA鎖を意味し、「アンチセンス鎖」とは、任意の一方の一本鎖DNA鎖が「センス鎖」である場合の二本鎖DNAの他方の一本鎖DNA鎖を意味する。
「領域」は、該当する箇所のセンス鎖の配列とアンチセンス鎖の配列からなる部分を意味する。
 上記以外の用語についても、以下の明細書中で定義している用語は、その定義の意味で用いられる。
[本発明の第1の態様]
 本発明の第1の態様について、以下に詳細に説明する。
 本発明の第1の態様は、「3’端突出二本鎖遺伝子断片」及び「連結用二本鎖DNA断片」から、標的遺伝子の両方の側に連結用DNA領域を連結させた「連結DNA断片」を製造する方法である。(図1参照)
「3’端突出二本鎖遺伝子断片」
 本発明の第1の態様では、(1)標的遺伝子配列を含む二本鎖遺伝子断片から、「3’端突出二本鎖遺伝子断片」を準備する。「3’端突出二本鎖遺伝子断片」は、図1の最上段に示すように、中央部に標的遺伝子配列を含み、両方の末端側に会合可能な領域(会合可能な領域1および会合可能な領域2)をそれぞれ有する。
 本発明における「標的遺伝子配列」は、特に制限されない。「標的遺伝子配列」は、例えば、抗体遺伝子の配列であることができ、抗体遺伝子の配列の一方の末端に位置する配列は、抗体遺伝子の定常領域由来の配列であることができる。「標的遺伝子配列」は、抗体遺伝子の配列以外に、T細胞受容体遺伝子、スプライシングバリアント等の、プライマー領域及びそれに隣接する内側の配列が一定であるが、内部に可変部位を持つDNA配列であることもできる。
 「会合可能な領域」とは、後述する「熱変性、再会合及びDNA合成反応」における再会合(アニーリング)において、連結用二本鎖DNA断片が有する2つの「会合可能な領域」の一方と会合し得る領域である。3’端突出二本鎖遺伝子断片の「会合可能な領域」と連結用二本鎖DNA断片の「会合可能な領域」の会合関係は後述する。
 「3’端突出二本鎖遺伝子断片」の両末端の会合可能な2つの領域は、互いに会合しない塩基配列を有する。「互いに会合しない塩基配列」とは、一方の「会合可能な領域」のセンス鎖およびアンチセンス鎖のいずれもが、他方の「会合可能な領域」のセンス鎖およびアンチセンス鎖のいずれもと会合しない塩基配列を意味する。
 さらに、3’端突出二本鎖遺伝子断片の「会合可能な領域」の一方または両方は、少なくとも一部の塩基配列が標的遺伝子配列に含まれる固有の塩基配列である。「標的遺伝子配列に含まれる固有の塩基配列」とは、標的遺伝子配列に含まれる、標的遺伝子が本来有する塩基配列である。「会合可能な領域」が含む標的遺伝子配列に含まれる固有の塩基配列は、標的遺伝子配列を含む二本鎖遺伝子断片から「3’端突出二本鎖遺伝子断片」が準備される際に、標的遺伝子配列を含む二本鎖遺伝子断片に含まれていた塩基配列をそのまま保存して残された配列である。「3’端突出二本鎖遺伝子断片」には、「会合可能な領域」の上記塩基配列以外に、標的遺伝子配列も保存されて残っていることは言うまでもない。換言すると、「会合可能な領域」の上記塩基配列は、標的遺伝子配列の一部であるとも言える。本発明の第1の態様の方法で製造した「連結DNA断片」から、さらなる追加の工程(さらなる追加の工程については後述する)を経て、最終的に目的とする標的遺伝子配列からこの標的遺伝子配列がコードするタンパク質を発現させる場合、上記「会合可能な領域」に含まれる「標的遺伝子配列に含まれる固有の塩基配列」がコードする部分も、発現するタンパク質の一部となる場合がある。
 3’端突出二本鎖遺伝子断片は、両方の会合可能な領域の3’端に1ヌクレオチド以上の突出末端を有する。この突出末端は、ヌクレオチドの一本鎖からなり、それぞれ、一方の末端は、「会合可能な領域」の3’端に結合し、他方の末端、即ち、3’端は未結合の開放状態である。
 上記突出末端は、連結用二本鎖DNA断片が有する会合可能な領域との間で、以下の(3-2)および(3-4)の関係を有する。
(3-2)3’端突出二本鎖遺伝子断片の一方の会合可能な領域からの突出末端は、DNA合成反応において鎖伸長機能を有さない。
(3-4)3’端突出二本鎖遺伝子断片の他方の会合可能な領域からの突出末端は、DNA合成反応において鎖伸長機能を有さない。
 本発明において、「DNA合成反応において鎖伸長機能を有さない」配列とは、相手側の一本鎖とハイブリダイズせず、その結果、相手側の一本鎖を鋳型としてDNA合成反応において鎖伸長が生じないことを意味する。例えば、互いにDNA同士である場合に、相手側の一本鎖と少なくとも一つのヌクレオチドが相補的でない配列は、「DNA合成反応において鎖伸長機能を有さない」配列である。但し、ハイブリダイズの条件は、1サイクル目の熱変性、再会合及びDNA合成反応における再会合の条件である。1サイクル目の再会合の条件は、後述する。あるいは、3’端がDNA合成反応において次のヌクレオチドを付加できない構造を有するヌクレオチド、例えば、ダイデオキシヌクレオチドである配列は、「DNA合成反応において鎖伸長機能を有さない」配列である。
 突出末端と連結用二本鎖DNA断片が有する会合可能な領域とが、上記(3-2)および(3-4)の関係を有することで、PCRで調製された3’端突出二本鎖遺伝子断片に、標的遺伝子に相当する領域に非標的遺伝子を含む非標的3’端突出二本鎖遺伝子断片や、前記3’端突出二本鎖遺伝子断片の元となる二本鎖遺伝子断片をPCRで増幅するために用いたプライマーが共存している場合であっても、2サイクル行われる、熱変性、再会合及びDNA合成反応において、非標的3’端突出二本鎖遺伝子断片を鋳型とした、非標的遺伝子の両方の側に連結用DNA領域が連結した非標的連結DNA断片の生成を抑制できる。その結果、非標的遺伝子の両方の側に連結用DNA領域が連結した非標的連結DNA断片の非特異的な生成を抑制できる。より具体的な説明は後述する。
「連結用二本鎖DNA断片」
 (2)本発明では、中央部に連結用DNA領域を含み、両末端側にそれぞれ会合可能な領域を有する連結用二本鎖DNA断片を準備する。連結用二本鎖DNA断片は、図1の上から2番目に示すように、連結用DNA領域の両方の末端側に会合可能な領域(会合可能な領域1および会合可能な領域2)をそれぞれ有する。
 連結用DNA領域は、標的遺伝子の両方の側に連結して、連結DNA断片に追加の機能を付与できるDNA領域であれば特に制限はない。連結用DNA領域は、例えば、イントロン、エクソン、蛍光タンパク質遺伝子、Hisタグ等の各種タグ配列や、菌や動物細胞内で種々の遺伝子の発現を制御することができるプロモーター、エンハンサー配列、ポリA付加配列等を挙げることができる。
 前述のように、一方の会合可能な領域を「領域1」、他方の会合可能な領域を「領域2」とすると、3’端突出二本鎖遺伝子断片は、模式的に領域1-標的遺伝子-領域2で示される配列を有し、連結用二本鎖DNA断片は、模式的に領域2-連結用DNA領域-領域1で示される配列を有し、連結DNA断片は、模式的に領域2-連結用DNA領域-領域1-標的遺伝子-領域2-連結用DNA領域-領域1で示される配列を少なくとも1つ有するものである。したがって、例えば、連結用DNA領域が蛍光タンパク質遺伝子である場合には、連結DNA断片は、領域2-蛍光タンパク質遺伝子-領域1-標的遺伝子-領域2-蛍光タンパク質遺伝子-領域1で示される配列を少なくとも1つ有するものになる。
 また、標的遺伝子を宿主細胞で発現させ、標的遺伝子がコードするタンパク質を調製したい場合には、連結用DNA領域としてポリA付加配列とプロモーターの2つの連結用DNA領域1及び2を含む連結用二本鎖DNA断片を用いる。この場合、連結用二本鎖DNA断片は模式的に領域2-ポリA付加配列-プロモーター-領域1で示される配列を有する。この連結用二本鎖DNA断片を用いると、連結DNA断片は、模式的に領域2-ポリA付加配列-プロモーター-領域1-標的遺伝子-領域2-ポリA付加配列-プロモーター-領域1で示される配列を少なくとも1つ有するものとなる。
 次に、3’端突出二本鎖遺伝子断片の会合可能な領域と、連結用二本鎖DNA断片の会合可能な領域との関係について説明する。
 まず、本明細書において、二本鎖遺伝子断片および連結用二本鎖DNA断片における「会合可能な領域」とは、後述する「熱変性、再会合及びDNA合成反応」における再会合において、再会合に先立つ熱変性において、一本鎖に解離させたDNA(遺伝子)断片が、相補的な塩基配列を有する一本鎖の遺伝子(DNA)断片と、ハイブリダイズして二本鎖を形成できる領域を意味する。但し、会合可能であるか否かは、互いに相補的な塩基配列を有する二本の一本鎖DNA(遺伝子)断片の長さや塩基配列にもよるが、再会合の条件は、一本鎖となった会合可能な領域の長さが11ヌクレオチド以上で、再会合時のアニーリング温度が計算されたTm値より0℃から20℃低い温度である場合に、会合し得ることを意味するものとする。
 本発明の第1態様においては、3’端突出二本鎖遺伝子断片の会合可能な領域と、連結用二本鎖DNA断片の会合可能な領域とは、以下の(3-1)および(3-3)の関係を有する。
 (3-1)3’端突出二本鎖遺伝子断片の一方の会合可能な領域(図1中の会合可能領域1)は、連結用二本鎖DNA断片の一方の末端の会合可能な領域(図1中の会合可能領域1v)と相同的な塩基配列からなるが、3’突出末端と結合する末端側が連結用二本鎖DNA断片の会合可能な領域では連結用DNA領域と結合する側である。即ち、3’端突出二本鎖遺伝子断片の一方の会合可能な領域(会合可能領域1)と連結用二本鎖DNA断片の一方の末端の会合可能な領域(会合可能領域1v)とは、相同的な塩基配列からなる。しかし、3’端突出二本鎖遺伝子断片の一方の会合可能な領域の末端側が、連結用二本鎖DNA断片の一方の末端の会合可能な領域では、連結用DNA領域と結合する側(内側)に位置する。
 (3-3)前記3’端突出二本鎖遺伝子断片の他方の会合可能な領域(図1中の会合可能領域2)は、前記連結用二本鎖DNA断片の他方の末端の会合可能な領域(図1中の会合可能領域2v)と相同的な塩基配列からなるが、3’突出端が付加された末端側の配列が連結用二本鎖DNA断片の一方の会合可能な領域では連結用DNA領域と結合する側である。上記(3-1)と同様に、3’端突出二本鎖遺伝子断片の他方の会合可能な領域(会合可能領域2)と連結用二本鎖DNA断片の他方の末端の会合可能な領域(会合可能領域2v)とは、相同的な塩基配列からなる。しかし、3’端突出二本鎖遺伝子断片の他方の会合可能な領域の末端側が、連結用二本鎖DNA断片の他方の末端の会合可能な領域では、連結用DNA領域と結合する側(内側)に位置する。
 本発明の第1態様においては、3’端突出二本鎖遺伝子断片の会合可能な領域と、連結用二本鎖DNA断片の会合可能な領域とが、上記(3-1)および(3-3)の関係を有することで、2サイクル行われる、熱変性、再会合及びDNA合成反応によって、標的遺伝子が、両側を領域2-連結用DNA領域-領域1で挟まれた、模式的に領域2-連結用DNA領域-領域1-標的遺伝子-領域2-連結用DNA領域-領域1で示される配列を少なくとも1つ有する連結DNA断片が得られる。より具体的な説明は後述の具体例において行う。
「熱変性、再会合及びDNA合成反応」
 本発明の第1の態様においては、(4)上記3’端突出二本鎖遺伝子断片及び連結用二本鎖DNA断片を用いて、熱変性、再会合及びDNA合成反応を少なくとも2回行うことで、上記連結DNA断片を得ることを含む。図1には、熱変性、再会合及びDNA合成反応を2回行う例を示す。熱変性、再会合及びDNA合成反応の詳細な条件については、後述する。この方法で製造される連結DNA断片は、図1の最下段に示すように、前記一方の会合可能な領域(会合可能領域1)を「領域1」とし、他方の会合可能な領域(会合可能領域2)を「領域2」とすると、模式的に領域2-連結用DNA領域-領域1-標的遺伝子-領域2-連結用DNA領域-領域1で示される配列を少なくとも1つ有するDNA断片になる。
「第1の態様の実施態様」
 本発明の第1の態様の1つの実施態様を、図2を参照して、さらに詳細に説明する。
図2に示す実施態様では、
(i)前記3’端突出二本鎖遺伝子断片の一方の会合可能領域1は、末端側から配列P1およびT1を有し、他方の会合可能領域2が末端側から配列P2およびT2を有する。そして、配列T1および配列T2の少なくとも一方は標的遺伝子配列に含まれる固有の塩基配列を有し、好ましくは配列T1および配列T2の両方ともが標的遺伝子配列に含まれる固有の塩基配列を有する。さらに、3’端突出二本鎖遺伝子断片は、一方の鎖の配列P2の3’端に突出末端として1ヌクレオチド以上の配列NNNNNを有し、かつ、他方の鎖の前記配列P1の3’端に突出末端として1ヌクレオチド以上の配列NNNNNを有する。尚、NNNNNは、1ヌクレオチド以上の配列を意味するものであり、ヌクレオチドが5であることを意味するものではない。
(ii)前記連結用二本鎖DNA断片の連結用DNA領域が連結用DNA領域として配列Aおよび配列Bを含み、
(iii)前記連結用二本鎖DNA断片の一方の会合可能領域1vは、末端側から配列VT1およびVP1を有し、他方の会合可能領域2vは末端側から配列VT2およびVP2をを有し、配列VP1およびVT1は、配列P1およびT1とそれぞれ相同的な塩基配列を有し、配列VP2およびVT2は、配列P2およびT2とそれぞれ相同的な塩基配列を有する。
 さらに、上記具体的態様では、
3’端突出二本鎖遺伝子断片は、P1-T1-標的遺伝子-T2-P2で表される(但し、ここでは、3’端突出末端は表示されていない。3’端突出末端をNNNNNと表記すると、NNNNN-P1-T1-標的遺伝子-T2-P2-NNNNNと示すことができる)。また、連結用二本鎖DNA断片は、VT2-VP2-配列B-配列A-VP1-VT1で表される。そして、連結DNA断片は、VT2-VP2-配列B-配列A-VP1-VT1-標的遺伝子-VT2-VP2-配列B-配列A-VP1-VT1で表される配列を少なくとも1つ有するDNA断片である。但し、VT2-VP2とT2-P2とは、相同的な配列であり、VP1-VT1とP1-T1は、相同的な配列であることから、連結DNA断片は、T2-P2-配列B-配列A-P1-T1-標的遺伝子-T2-P2-配列B-配列A-P1-T1で表される配列を少なくとも1つ有するDNA断片である、とも言える。
<実施態様における3’端突出二本鎖遺伝子断片>
 3’端突出二本鎖遺伝子断片についてさらに詳細に説明する。
 配列P1およびP2は、プライミングされるべきプライマーに特異的にハイブリダイズされる配列および長さであれば特に制限はなく、長さについては、たとえば、10塩基以上であり、好ましくは10~100塩基であり、より好ましくは15~50塩基であり、さらに好ましくは15~30塩基である。領域P1およびP2の一方または両方は、標的遺伝子に固有の塩基配列を有してもよい。また、領域P1およびP2の一方または両方のすべての配列が、標的遺伝子の配列の一部の配列であってもよい。なお、後述するように、領域P1およびP2は、それぞれ、連結用二本鎖DNA断片の領域VP1およびVP2と相同的な塩基配列からなる。
 3’端突出二本鎖遺伝子断片は、配列P1の内側に配列T1を有し、配列P2の内側に配列T2を有する。これら配列T1およびT2の一方又は両方は、標的遺伝子に固有の塩基配列を有する。配列P1と配列T1との間、配列P2と配列T2との間、配列T2が標的遺伝子に固有の配列を有する場合における配列T1と標的遺伝子の配列との間、配列T1が標的遺伝子に固有の配列を有する場合における配列T2と標的遺伝子の配列との間には、熱変性・再会合・DNA合成反応において、3’端突出二本鎖遺伝子断片の各鎖とVT2-VP2-配列B-配列A-VP1-VT1の各鎖との二本鎖形成を妨げない範囲において、スペーサー配列などの配列を有してもよい。配列T1およびT2の詳細は、後述する。
 3’端突出二本鎖遺伝子断片の3’突出末端は、例えば、配列P1及び配列P2のそれぞれの3’末端に設けられた連結用二本鎖DNA断片の配列とは異なる少なくとも1個以上のヌクレオチドからなる配列である。この3’突出末端は、上述した通り、VT2-VP2-配列B-配列A-VP1-VT1との熱変性・再会合・DNA合成反応において、3’端突出二本鎖遺伝子断片の各鎖の両3’末端を基点とした核酸伸長を防止するために設けられている。
 したがって、3’端突出二本鎖遺伝子断片のアンチセンス鎖と表示した鎖の3’末端に設けられたヌクレオチドまたはヌクレオチド鎖NNNNNは、連結用二本鎖DNA断片VT2-VP2-配列B-配列A-VP1-VT1のセンス鎖と表示した鎖の配列VP1の5’側(配列A側)の配列と、非相補的なヌクレオチドまたは少なくとも1部が非相補的な配列のヌクレオチド鎖であれば特に制限はなく、長さについては、たとえば、1塩基以上であり、好ましくは2~100塩基であり、より好ましくは5~50塩基である。
 同様に、3’端突出二本鎖遺伝子断片のセンス鎖と表示した鎖の3’末端に設けられたヌクレオチドまたはヌクレオチド鎖NNNNNは、連結用二本鎖DNA断片VT2-VP2-配列B-配列A-VP1-VT1のアンチセンス鎖の領域VP2の5’側(配列B側)に連結された配列と、非相補的なヌクレオチドまたは少なくとも1部が非相補的な配列のヌクレオチド鎖であれば特に制限はなく、長さについては、たとえば、1塩基以上であり、好ましくは2~100塩基であり、より好ましくは5~50塩基である。
 また配列P1(P2)の3’突出末端に設けられたヌクレオチドまたはヌクレオチド鎖の3’端のヌクレオチドが、ダイデオキシヌクレオチドのように、配列P1(P2)の3’端からのDNA伸長反応を阻止できる化合物であることもできる。この場合、配列P1の3’末端に設けられたヌクレオチドまたはヌクレオチド鎖NNNNNは、連結用二本鎖DNA断片VT2-VP2-配列B-配列A-VP1-VT1のセンス鎖と表示した鎖の配列VP1の5’側(配列A側)の配列と相補的なヌクレオチドであることもできる。同様に、配列P2の3’末端に設けられたヌクレオチドまたはヌクレオチド鎖NNNNNは、連結用二本鎖DNA断片VT2-VP2-配列B-配列A-VP1-VT1のアンチセンス鎖と表示した鎖の配列VP2の5’側(配列A側)の配列と相補的なヌクレオチドであることもできる。
 3’端突出二本鎖遺伝子断片の製造方法は特に制限されないが、例えば、標的遺伝子を鋳型として用いるPCRによって製造することができる。以下に、免疫グロブリン遺伝子の可変領域と定常領域の一部を有する二本鎖DNA断片を標的遺伝子断片とする場合を例に、図13に基づいて説明する。図13に示すプライマー2の配列(の一部)が、3’突出末端を有する標的二本鎖DNA断片の配列T1に相当し、プライマー4と3が3’突出末端を有する二本鎖DNA断片の配列P1とP2に相当する。また、プライマー3の上流側に連結する定常領域に由来する配列が、3’端突出二本鎖遺伝子断片の配列T2に相当する。
 まず、磁気ビーズを用いて標的遺伝子をコードするmRNAを回収し、次いでリバーストランスクリプターゼを用いた逆転写反応によりcDNAを合成する。次いで合成したcDNAの3’末端に、ターミナルデオキシヌクレオチジルトランスフェラーゼを用いてポリdGを付加させる。次いで3’末端にポリdGを付加させた免疫グロブリンcDNA(磁気ビーズ上に合成されたもの)を鋳型として、プライマー1(免疫グロブリン遺伝子定常領域)と2(ポリdGと会合してDNA合成を行うためのもの)を用いて、1回目のPCRを行う。
 1回目のPCR終了後、これを例えば、100倍程度に希釈したものを、2回目のPCRの鋳型として用いる。使用するプライマーは、4と3である。プライマー4は、3’末端側の配列が1回目のPCRで使用したプライマー2の5’末端側とオーバーラップするように設計してあり、この領域にプライマー4を結合させる。プライマー3は定常領域に位置し、1回目のPCRで使用したプライマー1の内側に位置するように設計したプライマーである。ただし、プライマー3は、プライマー1と一部がオーバーラップする配列を有していてもよいが、プライマー1とオーバーラップしない配列を有することもできる。1回目のPCRで免疫グロブリンの定常領域を含むDNA断片が増幅されていれば、プライマー3と4を用いることで、さらに免疫グロブリンの定常領域を含むDNA断片、すなわち、免疫グロブリンの定常領域を標的遺伝子配列として含む二本鎖DNA断片を増幅することができる。RACE(RAPID AMPLIFICATION OF cDNA END)法と呼ばれるPCR法の一つである。なお、プライマー4+2配列は、2回のPCRで、プライマー2と4により合成された人工的な配列であって、鋳型の配列に特有(固有)の配列は有さない。
 2回目のPCRでは、プライマー4が特異的に、1回目のPCRで増幅されたDNA断片の3'端領域に結合し(プライマー2の配列を有するため)、プライマー3がプライマー1のさらに内側の免疫グロブリン定常領域に結合する。その結果、特異的な増幅が行われる。この場合は必ず、PCR産物の片側には4+2の配列が存在することになる。しかし実際には、使用したプライマーがこれと類似した塩基配列を有する非標的遺伝子に結合した結果、非特異的なPCR産物が合成されてしまうこともある。例えば、プライマー4が非特異的に他のDNA断片に結合した場合には、合成されたDNA断片にはプライマー4の配列がその末端に存在するが、その内側にはプライマー2の配列、すなわち、配列T1は存在しない。
 また、もしプライマー3がこれと類似した塩基配列を有する非標的遺伝子に結合し、DNA増幅が行われた場合、このDNA断片には定常領域の配列、すなわち配列T2が存在しない。プライマー3によって形成される配列は、鋳型の配列に特有(固有)の配列である。
 上記2回目のPCRで得られたPCR産物、すなわち、標的遺伝子(抗体遺伝子)の配列を含む二本鎖DNA断片の3’突出末端に少なくとも1個のヌクレオチドを設ける方法は特に制限されないが、例えば、該標的遺伝子の配列を含む二本鎖DNA断片およびポリデオキシヌクレオチドに、デオキシヌクレオチドターミナルトランスフェラーゼを作用させて、3’突出末端を有する二本鎖DNA断片を得ることを含む方法を挙げることができる。この方法によって、両3’末端に少なくとも1個のヌクレオチドを設けて3’端突出二本鎖遺伝子断片を得ることができる。
<実施態様における連結用二本鎖DNA断片>
 「連結用二本鎖DNA断片」(VT2-VP2-配列B-配列A-VP1-VT1)は、任意の配列Aおよび配列Bを有し、前記配列Aの末端側に前記配列P1に相同的な塩基配列からなる領域VP1を有し、前記配列Bの末端側に前記配列P2に相同的な塩基配列からなる領域VP2を有し、前記3’端突出二本鎖遺伝子断片における配列P1の内側の一部の配列T1に相同的な塩基配列からなる領域VT1を前記領域VP1の末端側に有し、かつ、前記3’端突出二本鎖遺伝子断片における配列P2の内側の一部の配列T2に相同的な塩基配列からなる領域VT2を前記領域VP2の末端側に有する連結用二本鎖DNA断片である。但し、前記3’端突出二本鎖遺伝子断片における配列T1および配列T2の少なくとも一方は標的遺伝子に固有の塩基配列を有し、前記3’端突出二本鎖遺伝子断片における配列P2の3’端にある突出末端の配列がダイデオキシヌクレオチドを含む配列または前記連結用二本鎖DNA断片の一方の鎖の配列Bと非相同的な配列であり、かつ、前記3’端突出二本鎖遺伝子断片における配列P1の3’端にある突出末端の配列がダイデオキシヌクレオチドを含む配列または前記連結用二本鎖DNA断片の他方の鎖の配列Aと非相同的な配列である。なお、本明細書でいう「領域」は、該当する箇所のセンス鎖の配列とアンチセンス鎖の配列からなる。
 図2~3に示すスキームからわかるとおり、3’端突出二本鎖遺伝子断片の配列T1およびT2は、「連結用二本鎖DNA断片」であるVT2-VP2-配列B-配列A-VP1-VT1のVT1およびVT2に対して内部配列の役目を果たし、標的遺伝子の配列を含む3’端突出二本鎖遺伝子断片とVT2-VP2-配列B-配列A-VP1-VT1との選択的な再会合とそれに引き続くDNA合成反応の進行を促進する。ここで、「内部配列」とは、標的遺伝子配列に特有の配列であり、標的遺伝子配列の末端に位置する増幅用プライマー配列と相同的な配列を有するP1およびP2の内側の配列(T1およびT2)を指し、連結用二本鎖DNA断片のVT1およびVT2と相同的な配列を有する。よって非標的遺伝子断片は模式的に、P1-非標的遺伝子断片-P2またはP1-T1-非標的遺伝子断片-P2又はP1-非標的遺伝子断片-T2-P2で表される。「内部配列の役目」とは、連結用二本鎖DNA断片と標的二本鎖遺伝子断片との特異的な再会合とそれに引き続くDNA合成反応の進行を促進し、且つ非標的二本鎖遺伝子断片との再会合とそれに引き続くDNA合成反応の進行を阻害する役割を有する配列である。
 3’端突出二本鎖遺伝子断片の配列T1とVT2-VP2-配列B-配列A-VP1-VT1の領域VT1、ならびに、3’端突出二本鎖遺伝子断片の配列T2とVT2-VP2-配列B-配列A-VP1-VT1の領域VT2は、それぞれ、互いに相同的な塩基配列からなるものであれば特に制限はない。VT1およびVT2の長さは、それぞれ、例えば、1塩基以上であり、好ましくは2~100塩基であり、より好ましくは5~50塩基である。配列P1+T1、配列P2+T2、領域VP1+VT1および領域VP2+VT2は、Tm値が60℃以上であることが好ましく、約68℃から70℃であることがさらに好ましい。
 VT2-VP2-配列B-配列A-VP1-VT1の配列Aは特に制限されず、例えば標的遺伝子断片の上流配列や、イントロン、エクソン、蛍光タンパク質遺伝子、Hisタグ等の各種タグ配列や菌や動物細胞内で種々の遺伝子の発現を制御することができるプロモーター、エンハンサー配列等を挙げることができる。VT2-VP2-配列B-配列A-VP1-VT1の配列Bは特に制限されず、例えば標的遺伝子断片の下流配列や、イントロン、エクソン、蛍光タンパク質遺伝子、Hisタグ等の各種タグ配列やポリA付加配列等を挙げることができる。
 配列A及び配列Bにプロモーター配列、ポリA付加配列をそれぞれ用いる場合は、宿主細胞内での標的遺伝子の発現を妨げない範囲において、各配列の間、配列Aの上流、配列Bの下流に、スペーサー配列などの配列があってもよい。
 遺伝子連結用二本鎖DNA断片における配列Aと配列Bとの間の長さは特に制限されない。また、配列Aと領域VP1との間、配列Bと領域VP2との間の長さは特に制限されない。領域VP1とVT1との間、領域VP2とVT2との間には、3’突出末端を有する二本鎖DNA断片とのアニーリングを妨げない範囲において適当な長さのスペーサー配列などの配列があってもよい。
 「連結用二本鎖DNA断片」であるVT2-VP2-配列B-配列A-VP1-VT1の製造方法は、特に制限されず、公知の方法を組み合わせて製造することができる。以下に、VT2-VP2-配列B-配列A-VP1-VT1の製造方法の一例を、図14に基づいて具体的に説明する。
 制限酵素1(BamHI)および制限酵素2(NotI)によって認識される部位を有するベクター(pCMV-EGFP)を、制限酵素1で処理して、制限酵素1認識部位に既知配列(ポリdG/dC)および制限酵素3(EcoRV)によって認識される部位をこの順に含むリンカー(ポリdG/dC-EcoRVリンカー)を挿入する。次いで得られたリンカー挿入ベクターを、制限酵素2および3で処理し、制限酵素3認識部位から制限酵素2認識部位までの配列を、上流に制限酵素3切断面を有し、かつ下流に制限酵素2切断面を有する標的遺伝子の一部の配列(ヒト末梢血リンパ球cDNAからPCRにより得られたヒト免疫グロブリン定常領域)で置換する。得られたベクターの制限酵素3部位にアンピシリン耐性遺伝子並びに複製開始点を挿入する。次にカナマイシン耐性遺伝子-複製開始点を本ベクターから除くことによりヒト免疫グロブリン重鎖遺伝子連結用二本鎖DNA断片が挿入されたベクター(pMiniCMV-hIgG)が獲られる。本ベクターを鋳型として、ポリdG/dC領域並びに標的遺伝子の一部の配列(免疫グロブリン定常領域)を含むプライマーを用いるPCRを行うことにより、ヒト免疫グロブリン重鎖遺伝子連結用二本鎖DNA断片であるVT2-VP2-配列B-配列A-VP1-VT1が得られる。
 この場合、ポリdG/dCが領域VT1に相当し、かつヒト免疫グロブリン定常領域の一部が領域VT2に相当し、配列AがCMVプロモーターに相当し、配列Bが免疫グロブリン定常領域の残りの部分とポリA付加配列に相当する。また、マルチクローニングサイト(MCS)とポリdG/dCとの間の配列の少なくとも一部が領域VP1に相当し、かつヒト免疫グロブリン定常領域の少なくとも一部の配列が領域VP2に相当することになる。
(1)熱変性・再会合・DNA合成反応(1)
 1サイクル目の熱変性・再会合・DNA合成反応について説明する。図2では、熱変性・再会合・DNA合成(1)と表示する。
 P1-T1-標的遺伝子-T2-P2で示される「3’端突出二本鎖遺伝子断片」およびVT2-VP2-配列B-配列A-VP1-VT1で示される「連結用二本鎖DNA断片」を含む試料を、熱変性、再会合およびDNA合成反応に供すると、まず、熱変性後の再会合(アニーリング)により「3’端突出二本鎖遺伝子断片」の一方の鎖(アンチセンス鎖)の領域P1+T1と「連結用二本鎖DNA断片」の一方の鎖(センス鎖)の領域VP1+VT1との間で安定した二本鎖形成が起こる。同様に、「3’端突出二本鎖遺伝子断片」のセンス鎖の領域P2+T2と、「連結用二本鎖DNA断片」のアンチセンス鎖の領域VP2+VT2との間で安定した二本鎖形成が起こる。このようにして得られた2種類の二本鎖は、次いでDNAポリメラーゼによるDNA合成反応に供される。このDNA合成反応(核酸伸長反応)によって、VT2-VP2-配列B-配列A-VP1-VT1のセンス鎖の領域VT1を起点として核酸が伸長して核酸伸長物(2)が合成され、また、VT2-VP2-配列B-配列A-VP1-VT1のアンチセンス鎖の領域VT2を起点として核酸が伸長して核酸伸長物(1)が合成される。
 VT2-VP2-配列B-配列A-VP1-VT1は、3’端突出二本鎖遺伝子断片に固有の配列である内部配列T1及び/又はT2と相同的な塩基配列からなる領域VT1及び/又はVT2を有することにより、3’突出末端を有するDNA断片との選択的な再会合とそれに引き続くDNA合成反応を進行させることができる。但し、3’端突出二本鎖遺伝子断片を用意する場合に、図13に示すプライマー4が非特異的に非標的遺伝子の配列を含むDNA断片に結合した結果として配列P1の内側に配列T1が存在しない二本鎖DNA断片が生じ、また、プライマー3がこれと類似した塩基配列を有する非標的遺伝子に結合した結果として配列P2の内側に配列T2が存在しない二本鎖DNA断片が生じる。VT2-VP2-配列B-配列A-VP1-VT1と配列P1の内側に配列T1が存在せず配列P2の内側に配列T2が存在しない二本鎖DNA断片とを熱変性-再会合した後のDNA合成反応に供した場合、図3に示すとおりに反応が進行せず連結産物を得ることができない。
 さらに、「3’端突出二本鎖遺伝子断片」には領域P1およびP2の両3’端に、NNNNNで表記される3’端突出末端があり、かつこの突出末端(一本鎖ヌクレオチド)は、DNA合成反応において鎖伸長機能を有さない。即ち、図2の左側の核酸伸長物(1)を与えるスキームでは、3’端突出二本鎖遺伝子断片のセンス鎖のT2-P2に続くNNNNNは、会合した相手側の鎖(連結用二本鎖DNA断片のアンチセンス鎖)のVT2-VP2に続く配列BのVP2に隣接する配列またはVP2と配列Bの間のVP2に隣接する配列とは、ハイブリダイズしない。このように、T2-P2に続くNNNNNは、VT2-VP2に続く配列BのVP2に隣接する配列とハイブリダイズしないので、領域P1およびP2を起点とした核酸伸長はみられない。図2の右側の核酸伸長物(2)を与えるスキームにおいても同様に、3’端突出二本鎖遺伝子断片のアンチセンス鎖のT1-P1に続くNNNNNは、連結用二本鎖DNA断片のセンス鎖のVT1-VP1に続く配列AのVP1に隣接する配列またはVP1と配列Aの間のVP1に隣接する配列とハイブリダイズしないので、領域P1およびP2を起点とした核酸伸長はみられない。
 1サイクル目の熱変性の条件は、通常のPCRで採用されている条件と同一で良く、例えば、熱変性を90~98℃で20~60秒であることができる。1サイクル目の再会合の条件は、通常のPCRで採用されている条件と同一で良く、例えば、60~72℃で30秒~6分であることができる。1サイクル目のDNA合成反応は、通常のPCRで採用されている条件と同一で良く、例えば、68~72℃で30秒~6分であることができる。使用するDNAポリメラーゼの酵素活性の至適温度によっては、アニーリングと核酸伸長を同一温度で行い、一つの工程として実施してもよい。
 1サイクル目の熱変性・再会合・DNA合成反応によって、核酸伸長物(1)および(2)を含有する反応生成物が得られる。この反応生成物には、図2には示していないが、図3で示した、非標的遺伝子を含む断片が含まれる可能性がある。
(2)熱変性・再会合・DNA合成反応(2)
 2サイクル目の熱変性・再会合・DNA合成反応について説明する。図2では、熱変性・再会合・DNA合成(2)と表示する。
 1サイクル目の反応生成物を熱変性し、次いで再会合(アニーリング)することによって、上記核酸伸長物(1)および(2)の一方の鎖は、「3’端突出二本鎖遺伝子断片」の3’端突出配列であるNNNNNは有さず、かつ「3’端突出二本鎖遺伝子断片」のNNNNN以外の配列が相同的であることから、この部分で二本鎖が形成される。次いでこの二本鎖においてDNA合成反応によって、互いの鎖を鋳型にして、両鎖の3’末端から核酸が伸長し、標的遺伝子の両端のそれぞれに連結用二本鎖DNA断片が連結した連結DNA断片(VT2-VP2-配列B-配列A-標的遺伝子-配列B-配列A-V+P1-VT1)が得られる。一方、3’端突出配列であるNNNNNを有する核酸伸長物(1)および(2)からの一本鎖DNA断片は、3’端にNNNNNを有するために、再会合(アニーリング)において二本鎖を形成できず、結果として、この一本鎖DNA断片を鋳型とする核酸伸長物は、生じない。
 2サイクル目の熱変性・再会合・DNA合成反応によって、上記連結DNA断片(VT2-VP2-配列B-配列A-標的遺伝子-配列B-配列A-V+P1-VT1)が得られるが、この反応生成物には、図示していないが、1サイクル目の熱変性・再会合・DNA合成反応で生じた非特異的なDNA断片に加えて、核酸伸長物(1)および(2)の鋳型として使用されなかった3’端突出配列であるNNNNNを有する一本鎖DNA断片が含まれる(残存する)ことになる。
 尚、後述するが、上記連結DNA断片(VT2-VP2-配列B-配列A-標的遺伝子-配列B-配列A-V+P1-VT1)における、配列A-標的遺伝子-配列Bが連結単位である。
(3)熱変性・再会合・DNA合成反応(3)
 図2には示されていないが、本発明の第1の態様においては、2サイクル目の熱変性・再会合・DNA合成反応につづいて、3サイクル目以降の熱変性・再会合・DNA合成反応を実施することもできる。
 3サイクル目の熱変性・再会合・DNA合成反応では、2サイクル目の核酸合成産物であるVT2-VP2-配列B-配列A-標的遺伝子-配列B-配列A-VP1-VT1の熱変性により生じた一本鎖のいずれか2本が、相同的な領域でハイブリダイズし、このハイブリダイズした二本鎖を鋳型として、DNA合成反応による核酸伸長が生じれば、2サイクル目の核酸合成産物中の「配列A-標的遺伝子-配列B」からなる連結単位を二個含む二本鎖DNA断片が得られる。
 4サイクル目以降ではこの操作が繰り返されることにより、上記連結単位を3個以上含む連結単位の重合体(以下、連結単位重合体と呼ぶことがある)が得られる。従って3サイクル目以降の連結反応において連結用二本鎖DNA断片または標的遺伝子断片或いは両者が枯渇した場合であっても、DNA合成用の基質が反応液中に存在し、DNAポリメラーゼの活性が維持される限り、連結単位の増幅が行われる。即ち、3サイクル目以降では、標的遺伝子と連結用DNA断片が残存する場合には1サイクル目と2サイクル目に相当する反応が起こると共に、重合反応も同時に進行する。しかし標的遺伝子と連結用DNA断片が残存しない場合は、重合産物同士の繰り返しユニットがずれながら再会合することで連結単位の増幅が行われる。その結果、後述する、標的遺伝子断片、配列A-VP1-VT1ならびにVT2-VP2-配列Bを用いた、配列A-標的遺伝子-配列Bがこの順に結合した連結単位の製造方法に比べ、より効率よい連結単位の製造が可能となる。
 尚、熱変性・再会合・DNA合成反応の系に、「3’端突出二本鎖遺伝子断片」および連結用二本鎖DNA断片(VT2-VP2-配列B-配列A-VP1-VT1)の他に、後述するような連結単位重合体から連結単位を特異的に増幅するためのミスマッチプライマーを含めておくこともできる。その場合には、これらのミスマッチプライマーが、熱変性によって一本鎖になった連結用二本鎖DNA断片の各一本鎖にプライミングしないように、再会合(アニーリング)は高温下(例えば、65~72℃)で実施することが好ましい。さらに、反応系にミスマッチプライマーを含み、アニーリングと核酸伸長を同一温度で実施することもでき、その場合の熱変性・再会合・DNA合成反応は、例えば、熱変性を90~98℃で20~60秒、再会合およびDNA合成反応を65~72℃で30秒~6分で実施することができ、このサイクルを2~10サイクルとすることができる。好ましくは熱変性を93~95℃で30~50秒、再会合およびDNA合成反応を68~70℃で1~5分で実施することができ、このサイクルを4~8サイクルである。ここでのサイクルは、1サイクル目の熱変性・再会合・DNA合成反応のサイクル数を意味する。
 このような反応により得られた連結DNA断片は、配列A-標的遺伝子-配列Bから成る連結単位が、熱変性・再会合・DNA合成反応のサイクル数に応じて、該連結単位の複数個を直鎖状に連結して含む重合体である。該重合体は、上記連結単位の他に、配列A-VP1-VT1やVT2-VP2-配列Bを末端に含む。
「連結単位の調製工程」
 本発明の第1の態様において核酸合成産物として得られた連結DNA断片は、熱変性・再会合・DNA合成反応のサイクル数により、上記連結単位を1つ含むものである。熱変性・再会合・DNA合成反応のサイクル数が3回以上であれば、複数の連結単位が連なる連結単位重合体が得られる。本発明の最終的な目的は、配列A-標的遺伝子-配列Bで表される連結単位を得ることである。そこで、本発明の第1の態様は、連結単位重合体から、配列A-標的遺伝子-配列Bから成る連結単位を調製する工程をさらに有することが好ましい。
 連結単位を調製する工程には、特に制限はないが、たとえば、連結単位重合体に対して、連結単位の上流および下流を特異的に切断する制限酵素を使う方法や、連結単位重合体を鋳型として、連結単位を選択的に増幅する方法などを用いることができる。制限酵素を使う方法では、連結単位重合体中の配列A-標的遺伝子-配列Bの配列Aの外側と配列Bの外側の配列に制限酵素切断配列を導入することで実施できる。
 連結単位重合体を鋳型として連結単位を選択的に増幅する方法は、たとえば、連結用二本鎖DNA断片(VT2-VP2-配列B-配列A-VP1-VT1)のセンス鎖の配列A又はその上流の配列と同一の配列を3’側に含むミスマッチフォワードプライマーおよび配列B又はその下流の配列と相補的な配列を3’側に含むミスマッチリバースプライマーを用いたPCRにより実施できる。このミスマッチプライマーを用いて連結単位を選択的に増幅するためのPCRのスキームを図4に示す。図4に示すとおり、ミスマッチプライマーを用いれば、連結単位重合体から分離された連結単位を選択的に効率よく増幅することができる。連結単位重合体を鋳型としミスマッチフォワードプライマーおよびミスマッチリバースプライマーを用いた最低2サイクルのPCR反応により合成される連結単位には、その両末端側に鋳型である連結用二本鎖DNA断片と非相同的な配列が付加される。
 ミスマッチプライマーを用いたPCRの条件は特に制限されず、通常知られるPCR条件を適用できるが、たとえば、90~98℃を20~60秒、55~65℃を20~60秒、70~74℃を3~5分の反応を25~50サイクル程度で実施することができる。
 尚、ミスマッチ領域をその5’側に有さないプライマーを用いたPCRのスキームを図5に示す。図5に示すように、用いるプライマーがミスマッチプライマーではない場合、連結単位と共に連結単位重合体も増幅されることとなり、連結単位のみを選択的に増幅することが難しい。すなわち、連結単位重合体を鋳型としフォワードプライマーおよびリバースプライマーを用いた最低2サイクルのPCR反応により合成される連結単位は、鋳型である連結単位重合体と相同的である。3回目以降のPCRでは2つの様式の反応が並行して進む。一つは合成された連結単位にフォワードプライマーおよびリバースプライマーがアニーリングし、連結単位が増幅される反応である。他方は、連結単位が連結単位重合体にアニーリングした結果ヘテロ二本鎖DNAが形成され、連結単位重合体が増幅される反応である。後者の反応が前者の反応に比べ優位に進行した場合、連結単位を効率的に増幅することが困難となる。それに対して、図4に示した、ミスマッチプライマーを用いて連結単位重合体から合成された連結単位は、その両末端側に鋳型と非相同的配列を有するため、これが連結単位重合体にアニーリングしヘテロ二本鎖DNAが形成されてもDNA伸長反応が起こらず、その結果連結単位重合体が増幅されることはない。
[本発明の第2の態様]
 本発明の第2の態様は、上記本発明の第1の態様における連結用二本鎖DNA断片を、模式的に-連結用DNA領域1-領域1及び領域2-連結用DNA領域2でそれぞれ示される配列を有する2つの連結用二本鎖DNA断片1および2に分けて用いる方法である。この方法によれば、非標的遺伝子の一方の側に連結用DNA領域1、他方の側に連結用DNA領域2が連結した連結DNA断片の非特異的な生成を抑制して、標的遺伝子の一方の側に連結用DNA領域1、他方の側に連結用DNA領域2を連結させた、目的とする連結DNA断片を特異的に得ることができる。ここで得られる連結DNA断片は、模式的に連結用DNA領域1-領域1-標的遺伝子-領域2-連結用DNA領域2で示される配列を有するものである。本発明の第2の態様において用いる「3’端突出二本鎖遺伝子断片」は、本発明の第1の態様におけるものと同様である。
 本発明の第2の態様において用いる連結用二本鎖DNA断片は、上記のように模式的に連結用DNA領域1-領域1で示される連結用二本鎖DNA断片1と領域2-連結用DNA領域2で示される配列を有する2つの連結用二本鎖DNA断片2である。以下、模式的に連結用DNA領域1-領域1で示される配列が配列A-VP1-VT1であり、領域2-連結用DNA領域2で示される配列がVT2-VP2-配列Bである実施態様について、説明する。
 この実施態様では、3’端突出二本鎖遺伝子断片、配列A-VP1-VT1(連結用二本鎖DNA断片1)、及びVT2-VP2-配列B(連結用二本鎖DNA断片2)を、少なくとも2サイクルの熱変性・再会合・DNA合成反応に供し、核酸合成産物として、配列A-標的遺伝子-配列Bからなる連結単位を一つ有する連結DNA断片を得る。
 上記方法を図6のスキームにより説明する。なお、3’端突出二本鎖遺伝子断片および少なくとも2回の熱変性・再会合・DNA合成反応については、上記本発明の第1の態様の実施態様において説明したことと同様である。
 配列A-VP1-VT1は、任意の配列A、領域VP1および領域VT1をこの順に有し、領域VT1が一方の末端にあり、領域VP1及び領域VT1は、それぞれ、3’端突出二本鎖遺伝子断片の配列P1に相同的な塩基配列及び配列T1に相同的な塩基配列からなる。VT2-VP2-配列Bは、領域VT2、領域VP2および任意の配列Bをこの順に有し、領域VT2が一方の末端にあり、領域VP2及び領域VT2は、それぞれ、3’端突出二本鎖遺伝子断片の配列P2に相同的な塩基配列及び配列T2に相同的な塩基配列からなる。
<配列A-VP1-VT1>
 配列A-VP1-VT1は、任意の配列A、領域VP1および領域VT1をこの順に有する。ただし、領域VT1は連結用二本鎖DNA断片の一方の末端に配置されている。配列A-VP1-VT1における、配列A、領域VP1およびVT1については、上記第1の態様の実施態様の記載を参照できる。配列A-VP1-VT1には、配列Aの上流、配列Aと領域VP1との間、領域VP1とVT1との間に、熱変性・再会合・DNA合成反応に供した場合に3’突出末端を有する二本鎖DNA断片とのアニーリングを妨げない範囲においてスペーサー配列などの配列があってもよい。配列A-VP1-VT1は、特に制限されないが、たとえば、配列A-VP1-VT1をインサートとして含有するプラスミドから制限酵素処理により、配列A-VP1-VT1を分離することにより得られる。また、配列A-VP1-VT1は、遺伝子連結用二本鎖DNA断片Aをインサートとして含有するプラスミドを鋳型にして、配列Aの上流の配列と同じ配列の一部を含むフォワードプライマーと領域VT1の一方の末端側の配列と相補的な配列の一部を含むリバースプライマーを用いたPCRに供することにより得ることもできる。
<VT2-VP2-配列B>
 VT2-VP2-Bは、配列B、領域VP2および領域VT2をこの順に有する。ただし、領域VT2はVT2-VP2-配列Bの一方の末端に配置されている。VT2-VP2-配列Bにおける、配列B、領域VP2およびVT2については、上記第1の態様の実施態様の記載を参照できる。VT2-VP2-配列Bには、配列Bの上流、配列Bと領域VP2との間、領域VP2とVT2との間に、熱変性・再会合・DNA合成反応に供した場合に3’突出末端を有する二本鎖DNA断片とのアニーリングを妨げない範囲においてスペーサー配列などの配列があってもよい。VT2-VP2-配列Bは、特に制限されないが、たとえば、VT2-VP2-配列Bをインサートとして含有するプラスミドから制限酵素処理により、VT2-VP2-配列Bを分離することにより得られる。また、VT2-VP2-配列Bは、VT2-VP2-配列Bをインサートとして含有するプラスミドを鋳型にして、配列Aの上流の配列と同じ配列の一部を含むフォワードプライマーと領域VT2の一方の末端側の配列と相補的な配列の一部を含むリバースプライマーを用いたPCRに供することにより得ることもできる。
(1)熱変性・再会合・DNA合成反応(1)
 1サイクル目の熱変性・再会合・DNA合成反応では、3’端突出二本鎖遺伝子断片、配列A-VP1-VT1、及びVT2-VP2-配列Bを用いて熱変性・再会合・DNA合成反応を行う。熱変性後のアニーリングにより3’端突出二本鎖遺伝子断片のアンチセンス鎖の配列P1+T1と、配列A-VP1-VT1の一方の鎖(センス鎖)の領域VP1+VT1との間で安定した二本鎖形成が起こる。同様に、3’端突出二本鎖遺伝子断片のセンス鎖の配列P2+T2と、VT2-VP2-配列Bの一方の鎖(アンチセンス鎖)の領域VP2+VT2との間で安定した二本鎖形成が起こる。その後のDNAポリメラーゼによるDNA合成反応によって、配列A-VP1-VT1の領域VT1を起点として核酸が伸長した核酸伸長物(4)が合成される。また、VT2-VP2-配列Bの領域VT2を起点として核酸が伸長した核酸伸長物(3)が合成される。一方、3’端突出二本鎖遺伝子断片には配列P1およびP2の3’端に少なくとも1個のヌクレオチドが付加されているため、配列P1およびP2を起点として核酸は伸長しないのは上記した通りである。
(2)熱変性・再会合・DNA合成反応(2)
 2サイクル目の熱変性・再会合・DNA合成反応では、熱変性後のアニーリングによって、上記核酸伸長物(3)および(4)の間で二本鎖が形成されると、続くDNA合成反応によって、互いを鋳型にして、両方の3’末端から核酸が伸長し、配列A-標的遺伝子-配列Bがこの順に結合された連結単位を1個含む連結DNA断片が核酸合成産物として得られる。
(3)熱変性・再会合・DNA合成反応(3サイクル目以降)
 図6のスキームには示されていないが、熱変性・再会合・DNA合成反応を3サイクル目以降も実施することができ、3サイクル目以降の熱変性・再会合・DNA合成反応を実施することで、配列A-標的遺伝子-配列Bがこの順に結合された連結単位を1個含む連結DNA断片が核酸合成産物として得られる。本発明の第2の態様では、本発明の第1の態様におけるように、連結用二本鎖DNA断片として、VT2-VP2-配列B-配列A-VP1-VT1のような配列Bと配列Aが連結した配列の断片を用いないので、配列A-標的遺伝子-配列Bがこの順に結合された連結単位を複数含む連結単位重合体が合成されることはない。
<配列A-標的遺伝子-配列Bからなる連結単位>
 本発明の第2の態様においても、本発明の第1の態様と同様に、核酸合成産物として得た連結DNA断片から、配列A-標的遺伝子-配列Bから成る連結単位を調製する工程を設けることが好ましい。このような連結単位を調製する工程は、特に制限されないが、たとえば、配列A及びBの上流および下流を特異的に認識する制限酵素を使う方法や、連結単位を選択的に増幅する方法などにより実施できる。
 連結DNA断片から上記方法により分離された連結単位を、発現ユニットとして宿主細胞に導入し標的遺伝子がコードする蛋白質を宿主細胞内で選択的に発現させる場合、配列Aにプロモーター配列、配列BにポリA付加配列を用いることができる。発現ユニットを作成する場合は、宿主細胞内での標的遺伝子の発現を妨げない範囲において、各配列の間、配列Aの上流、配列Bの下流に、スペーサー配列などの配列があってもよい。
[本発明の第3の態様]
 本発明の第3の態様は、上記本発明の第2の態様における、2つに分けたいずれか一方の連結用二本鎖DNA断片、模式的に領域1-連結用DNA領域1または連結用DNA領域2-領域2で示される配列を用いる方法である。この方法では、非標的遺伝子の一方の側に連結用DNA領域1または2を連結させた片側連結DNA断片の非特異的な生成を抑制して、標的遺伝子の一方の側に連結用DNA領域1または2を連結させた、目的とする片側連結DNA断片を特異的に得ることができる。本発明の第3の態様において用いる「3’端突出二本鎖遺伝子断片」は、本発明の第1の態様におけるものと同様の標的遺伝子配列の両方の末端側に会合可能な領域と突出末端を有するものであることもできるが、標的遺伝子配列の一方の末端側のみに会合可能な領域を有し、かつ前記領域は少なくとも一部の塩基配列が標的遺伝子配列に含まれる固有の塩基配列であり、前記会合可能な領域の3’端に1ヌクレオチド以上の突出末端を有する3’端突出二本鎖遺伝子断片であることもできる。本発明の第3の態様では、3’端突出二本鎖遺伝子断片が有する一方の末端側の会合可能領域と突出末端とのみを利用するので,後者の3’端突出二本鎖遺伝子断片を用いる事か好ましい。
 本発明の第3の態様において用いる連結用二本鎖DNA断片は、上記のように模式的に領域1-連結用DNA領域1で示される配列または連結用DNA領域2-領域2で示される配列を有する2つの断片である。以下、模式的に領域1-連結用DNA領域1で示される配列が配列A-VP1-VT1である実施態様について説明する。連結用DNA領域2-領域2で示される配列がVT2-VP2-配列Bである実施態様は、模式的に領域1-連結用DNA領域1で示される配列が配列A-VP1-VT1である実施態様と同様に、実施できる。
 本発明の第3の態様の上記実施態様では、配列Aを有する連結用二本鎖DNA断片(配列A-VP1-VT1)を標的遺伝子断片の一方の末端側に選択的に連結させる方法が提供される。この方法は、前記3’端突出二本鎖遺伝子断片(ただし、3’突出末端は一方の鎖の前記配列P1の3’末端側にあればよい)と、前記配列Aを有するDNA断片とを用い、前記3’端突出二本鎖遺伝子断片および前記配列Aを有する連結用二本鎖DNA断片の混合物を、熱変性と再会合の後、核酸合成反応に供する。この操作により、一方の鎖の前記配列P1の3’端に突出末端として1ヌクレオチド以上の配列を有し、その鎖の5’端に配列P2に由来する配列を有する一本鎖DNAと(二本鎖DNA断片のアンチセンス鎖)、他方の鎖の5’端側に前記配列Aに由来する配列ならびにその3’端に配列VT1に由来する配列を有する一本鎖DNA(連結用二本鎖DNAのセンス鎖)とが会合したヘテロ二本鎖DNA産物を得る。次いで、このヘテロ二本鎖DNA産物を鋳型として、二本鎖遺伝子断片のアンチセンス鎖の5’末端側の配列を有するリバースプライマーと連結用二本鎖DNA断片のセンス鎖の5’末端側の配列を有するフォワードプライマーを用いたポリメラーゼ連鎖反応を行う。これにより、配列Aおよび標的遺伝子の配列が連結された二本鎖DNA断片(片側連結DNA断片)を得る(図7のスキームを参照)。
 熱変性・再会合・DNA合成反応については、上記本発明の第1の態様の実施態様において説明したことと同様である。配列A-VP1-VT1は、上記本発明の第2の態様の実施態様において説明したことと同様である。
 連結用DNA領域2-領域2で示される配列がVT2-VP2-配列Bである実施態様は、模式的に領域1-連結用DNA領域1で示される配列が配列A-VP1-VT1である実施態様と同様に、実施できる。また、VT2-VP2-配列Bは、上記本発明の第2の態様の実施態様において説明したことと同様である。
 本発明の連結DNA断片の製造方法においては、前述のように、前記標的遺伝子が抗体遺伝子またはT細胞受容体遺伝子であり、前記3’端突出二本鎖遺伝子断片が前記抗体遺伝子またはT細胞受容体遺伝子に由来する配列を含み、ならびに、前記連結用二本鎖DNA断片または前記配列Aを有する連結用二本鎖DNA断片における前記領域VP1および領域VT1は、抗体遺伝子またはT細胞受容体遺伝子に由来するまたは由来しない配列を有することかできる。さらに、記標的遺伝子が抗体遺伝子またはT細胞受容体遺伝子であり、前記3’端突出二本鎖遺伝子断片が前記抗体遺伝子またはT細胞受容体遺伝子に由来する配列を含み、ならびに、前記連結用二本鎖DNA断片または前記配列Bを有する連結用二本鎖DNA断片における前記領域VP2および領域VT2は、抗体遺伝子またはT細胞受容体遺伝子に由来するまたは由来しない配列であることができる。本発明では、このような標的遺伝子を用いて製造された連結DNA断片を用いて抗体またはT細胞受容体を製造する方法も包含する。
 標的遺伝子が抗体遺伝子またはT細胞受容体遺伝子である連結DNA断片を用いて抗体またはT細胞受容体を製造する方法は、常法、例えば、標的遺伝子を含む連結DNA断片を宿主細胞へ導入し、この宿主細胞を培養して抗体等を産生させることにより実施できる。
 前述のように本発明は、上記本発明の第1の態様~第3の態様で用いられる3’端突出二本鎖遺伝子断片、連結用二本鎖DNA断片及びこれらの組合体、さらにはこれらを含むキットを包含する。本発明の第1の態様~第3の態様で用いられる3’端突出二本鎖遺伝子断片及び連結用二本鎖DNA断片は前述の通りである。さらに、組合体は、第1の態様で用いられる3’端突出二本鎖遺伝子断片と連結用二本鎖DNA断片との組合体、第2の態様で用いられる3’端突出二本鎖遺伝子断片と連結用二本鎖DNA断片との組合体、及び第3の態様で用いられる3’端突出二本鎖遺伝子断片と連結用二本鎖DNA断片との組合体からなる。
 第1の態様で用いられる3’端突出二本鎖遺伝子断片と連結用二本鎖DNA断片との組合体においては、標的遺伝子の両方の側に連結用DNA領域を連結させた連結DNA断片を良好に製造するという観点からは、
(3-1)前記3’端突出二本鎖遺伝子断片の一方の会合可能な領域は、前記連結用二本鎖DNA断片の一方の末端の会合可能な領域と相同的な塩基配列からなるが、3’突出端が付加された末端側の配列が連結用二本鎖DNA断片の一方の会合可能な領域では連結用DNA領域と結合する側であり、
(3-2)前記3’端突出二本鎖遺伝子断片の一方の会合可能な領域からの突出末端は、DNA合成反応において鎖伸長機能を有さず、
(3-3)前記3’端突出二本鎖遺伝子断片の他方の会合可能な領域は、前記連結用二本鎖DNA断片の他方の末端の会合可能な領域と相同的な塩基配列からなるが、3’突出端が付加された末端側の配列が連結用二本鎖DNA断片の他方の会合可能な領域では連結用DNA領域と結合する側であり、
(3-4)前記3’端突出二本鎖遺伝子断片の他方の会合可能な領域からの突出末端は、DNA合成反応において鎖伸長機能を有さない、ことが好ましい。
 第2の態様で用いられる3’端突出二本鎖遺伝子断片と連結用二本鎖DNA断片との組合体においては、標的遺伝子の一方の側に連結用DNA領域1、他方の側に連結用DNA領域2を連結させた連結DNA断片を良好に製造するとの観点からは、
(3-1)前記3’端突出二本鎖遺伝子断片の一方の会合可能な領域は、前記連結用二本鎖DNA断片1の会合可能な領域と相同的な塩基配列からなるが、3’突出端が付加された末端側の配列が連結用二本鎖DNA断片1の会合可能な領域では連結用DNA領域と結合する側であり、
(3-2)前記3’端突出二本鎖遺伝子断片の一方の会合可能な領域からの突出末端は、DNA合成反応において鎖伸長機能を有さず、
(3-3)前記3’端突出二本鎖遺伝子断片の他方の会合可能な領域は、前記連結用二本鎖DNA断片2の末端の会合可能な領域と相同的な塩基配列からなるが、3’突出端が付加された末端側の配列が連結用二本鎖DNA断片2の会合可能な領域では連結用DNA領域と結合する側であり、
(3-4)前記3’端突出二本鎖遺伝子断片の他方の会合可能な領域からの突出末端は、DNA合成反応において鎖伸長機能を有さない、
ことが好ましい。
 第3の態様で用いられる3’端突出二本鎖遺伝子断片と連結用二本鎖DNA断片との組合体においては、標的遺伝子の一方の側に連結用DNA領域を連結させた片側連結DNA断片を良好に製造するという観点からは、
(3-1)前記3’端突出二本鎖遺伝子断片の一方の会合可能な領域は、前記連結用二本鎖DNA断片の会合可能な領域と相同的な塩基配列からなるが、3’突出端が付加された末端側の配列が連結用二本鎖DNA断片の会合可能な領域では連結用DNA領域と結合する側であり、
(3-2)前記3’端突出二本鎖遺伝子断片の一方の会合可能な領域からの突出末端は、DNA合成反応において鎖伸長機能を有さない、
ことが好ましい。
 本発明のキットは、上記本発明の第1の態様で用いられる3’端突出二本鎖遺伝子断片、連結用二本鎖DNA断片またはこれらの組合体を含むものであるか、上記本発明の第2の態様で用いられる3’端突出二本鎖遺伝子断片、連結用二本鎖DNA断片またはこれらの組合体を含むものであるか、または上記本発明の第3の態様で用いられる3’端突出二本鎖遺伝子断片、連結用二本鎖DNA断片またはこれらの組合体を含むものである。本発明のキットに上記以外に、3’端突出二本鎖遺伝子断片並びに連結用二本鎖DNA断片を用いて、熱変性、再会合及びDNA合成反応を行って、連結DNA断片を得るために用いる緩衝液、DNAポリメラーゼ等のDNA合成用酵素または酵素含有緩衝液、及びキットの使用説明書を含むことができる。
 以下、本発明を実施例によりさらに詳細に説明するが、本発明はこれら実施例に制限されるものではない。
[例1]
1.未精製標的遺伝子断片の発現ユニットへの特異的変換
 標的遺伝子断片1(図10を参照)は、ヒト免疫グロブリンγ鎖の可変領域と一部の定常領域を有する683bpのDNA断片であり、その両端にPCR増幅のためのプライマーA:5’-CTTCGAATTCTGCAGTCGACGGTACCGCGGGCCCGGGA-3’並びにプライマーB:5’-AGCCGGGAAGGTGTGCACGCCGCTG-3’の配列を有する。また内部配列として、プライマーAの内側にポリdC配列、プライマーB配列の内側に免疫グロブリンγ鎖定常領域由来配列をそれぞれ有する。図10において、増幅に用いたプライマーA、Bの位置を矢印で示した。
 非標的遺伝子断片2(図11を参照)は628bpのGPF遺伝子に由来するDNA断片で、その両端にPCR増幅のために用いるプライマーA配列とプライマーB配列を有する。両プライマー配列の内側には内部配列は存在せず、GFP遺伝子由来配列が存在する。
 標的遺伝子断片1および非標的遺伝子断片2のそれぞれが挿入されたプラスミドpUC119を鋳型とし、プライマーA及びBを用いてPCR反応を行い、標的遺伝子断片1および非標的遺伝子断片2をそれぞれ増幅した。PCR反応は、50μlの反応系に、鋳型プラスミドDNA 2ng、各プライマー10pmol、dNTP 10nmolを加え、タカラバイオのPrimeSTAR耐熱性DNAポリメラーゼを用い94℃30秒-68℃40秒の反応を30サイクル行った。
2.PCR産物の3’端ポリヌクレオチド付加反応
 PCR後の反応液をそれぞれ1μlチューブに分注し、これにターミナルデオキシヌクレオチジルトランスフェラーゼ(terminaldeoxynucleotidyltransferase)を10unit加え、37℃にて30分反応させ、その後94℃にて5分間加熱することで酵素反応を停止させた。この反応により、DNA断片の両3’端にポリヌクレオチドが付加された。陰性コントロールとして、ターミナルデオキシヌクレオチジルトランスフェラーゼを加えない反応を標的遺伝子断片1および非標的遺伝子断片2のそれぞれについて同様に実施した。
3.ヒトγ鎖遺伝子連結用二本鎖DNA断片の作成
 pMiniCMV-hIgGは、CMVプロモーター、マルチクローニングサイト、ポリdC/dG配列、pUC119複製開始点、アンピシリン耐性遺伝子、ヒト免疫グロブリンγ鎖定常領域、SV40ポリA付加シグナルを有する全長3533bpのプラスミドである。
pMiniCMV-hIgGをEcoRVで切断後、これを鋳型としてプライマーC 5’-GGGGGGGGGGGGGGGGGATCCCGG-3’及びプライマーD 5’-CGTGGAACTCAGGCGCCCTGACCAG-3’を用いたPCR法にてヒトγ鎖遺伝子連結用二本鎖DNA断片の調製を行った。PCR反応はタカラバイオのプライムスターDNAポリメラーゼを用い、94℃40秒、60℃40秒、72℃5分のサイクルを30回行うことで増幅反応を行った。増幅されたDNA断片はスピンカラム法により精製し、10ng/μlの濃度に調製した。ヒトγ鎖遺伝子連結用二本鎖DNA断片は、その一端に、5’-RACE PCR法により増幅されたヒト免疫グロブリンγ鎖とのみと、特異的な相補鎖を形成する領域として、ヒト免疫グロブリンγ鎖定常領域由来の内部配列、その下流に遺伝子増幅に用いられたプライマーB配列と相補鎖を形成する配列を有する(図12を参照)。
 もう一方端にはterminaldeoxynucleotidyltransferase反応によりポリdC配列が付加されたcDNAに由来する5’-RACE増幅産物とのみと、特異的に相補鎖を形成する領域として、ポリdC/dG配列、その上流には5’-RACE PCR法に用いられたプライマーA配列と相補鎖を形成する配列が存在する(図13を参照)。標的遺伝子断片1とは図12中の網掛け部全体と相補鎖を形成することが可能であるが、非標的遺伝子断片2は図12中の網掛け部のうちプライマーB並びにプライマーA相補鎖形成配列とのみ相補鎖を形成することが可能である。
4.ヒトγ鎖遺伝子発現ユニットの増幅
 上記で調製した3’端ポリヌクレオチド付加DNA断片1及び2に、ヒトγ鎖遺伝子連結用二本鎖DNA断片を10ng、プライマーを10pmol、dNTPを10nmol加え、タカラバイオのPrimeSTAR耐熱性DNAポリメラーゼを含む25μlの反応液にて、94℃を40秒、70℃を4分の反応を5サイクル、引き続き94℃を40秒、60℃を40秒、72℃を4分の反応を30サイクル行った。用いたプライマーのうち、プライマーE:5’-AGAGAAGATCTTAGTTATTAATAGTAATCAATTACGG-3’はその5’端にミスマッチ配列を有し、ヒトγ鎖遺伝子連結用二本鎖DNA断片のCMVプロモーター上流付近にアニーリングする。プライマーF:5’-AAGGAAGATCTGGACAAACCACAACTAGAATGCAGTG-3’はその5’端にミスマッチ配列を有し、ヒトγ鎖遺伝子連結用二本鎖DNA断片のSV40ポリA付加配列下流付近にアニーリングする。
 同様に陰性コントロールとして調製した3’端ポリヌクレオチド付加を行っていない標的遺伝子断片1及び非標的遺伝子断片2に、ヒトγ鎖遺伝子連結用DNA断片10ng、プライマーE及びFを10pmol、dNTPを10nmolを加え、タカラバイオのPrimeSTAR耐熱性DNAポリメラーゼを用い25μlの反応液にて、94℃を40秒、70℃を4分の反応を5サイクル、引き続き94℃を40秒、60℃を40秒、72℃を4分の反応を30サイクル行った。PCR反応液よりそれぞれ2μlをとり、アガロースゲル電気泳動法にて発現ユニットの増幅を確認した(図1を参照)。
 その結果、3’端ポリヌクレオチド付加標的遺伝子断片1は特異的に発現ユニットに変換され、約2.5kbのPCR産物の増幅が確認された。これに対し3’端ポリヌクレオチド付加非標的遺伝子断片2は発現ユニットに変換されなかった。また3’端ポリヌクレオチド付加反応を行わなかった標的遺伝子断片1は発現ユニットに変換されたが、非標的遺伝子断片2もヒトγ鎖遺伝子連結用二本鎖DNA断片に連結された。以上の結果より、標的遺伝子断片に対する内部配列を有する遺伝子連結用二本鎖DNA断片と、3’端ポリヌクレオチド付加反応を行った遺伝子断片を用いることで、標的とするヒト免疫グロブリン可変領域と定常領域の一部を有するDNA断片を精製することなく発現ユニットに変換することが可能であることが判明した。
[例2]
 5’端ミスマッチプライマーを用いた効率的な連結単位(発現ユニット)の増幅
[例1]の2で調製した3’端ポリヌクレオチド付加標的遺伝子DNA断片1に、3で調製したヒトγ鎖遺伝子連結用DNA断片を加え94℃を40秒、70℃を4分の反応を5サイクル行い、連結二本鎖DNA重合体を合成した。これにプライマーE及びF、又はG及びHを加え94℃を40秒、60℃を40秒、72℃を4分の反応を30サイクル行い発現ユニットの増幅を試みた。プライマーG:5’-TAGTTATTAATAGTAATCAATTACGG-3’及びプライマーH:5’-TGGACAAACCACAACTAGAATGCAGTG-3’は、鋳型であるヒトγ鎖遺伝子連結用二本鎖DNA断片に対し100%の相同性を有する。
 PCRの結果プライマーG及びHを用いた場合では、目的とする発現ユニットの増幅の他に連結単位重合体の増幅が認められた(図2を参照)。これに対し5’端にミスマッチ配列を有するプライマーE及びFを用いた場合では、効率的な発現ユニットの増幅が認められた。
[例3]
 ヒト末梢血プラズマ細胞から増幅された未精製のヒトγ、κ鎖免疫グロブリン遺伝子断片と、ヒトγ及びκ鎖遺伝子連結用DNA断片を用い、ヒト免疫グロブリン発現ユニットを作成し、これを培養細胞に導入してヒト抗体を作成した。
1.5’-RACE PCR法を用いたヒト免疫グロブリンγ及びκ鎖可変領域遺伝子断片の増幅
 ヒトの末梢血より調整したプラズマ細胞を1個ずつ2つのチューブに単離し、これにオリゴdT25が結合した磁気ビーズ(ダイナピーズ)3μgの入った細胞溶解液3μl(100mM TrisHCl(pH7.5),500mM LiCl,1%ドデシル硫酸 Li(LiDS),5mM dithiothreitol)に加え、細胞内のmRNAを磁気ビーズに結合させた。 次に磁気ビーズを、3μlのmRNA洗浄用溶A(10mM TrisHCl(pH7.5),0.15M LiCl,0.1% LiDS)、続いて3μlのmRNA洗浄用溶液B(75mM KCl,3mM MgCl2,0.1%TritonX,0.5mM dNTP,5mM DTT,2unit RNase inhibitor)にて1回洗浄した後、cDNA合成を行った。洗浄後の磁気ビーズに、cDNA合成用溶液3μl(50mM Tris HCl(pH8.3),75mM KCl,3mM MgCl2,0.1%TritonX-100,0.5mM dNTP,5mM DTT,2 unit RNase inhibitor,l0unit SuperScriptlll Reversetranscriptase(Invitrogen)を加え、50℃にて1時間反応させた。次に磁気ビーズを3’テーリング洗浄溶液3μl(50mMリン酸カリウム(pH7.0),0.5mM dGTP,0.1%TritonX-100,4mM塩化マグネシウム)にて洗浄し、新たに3’テーリング反応溶液3μl(50mMリン酸カリウム(pH7.0),0.5mM dGTP,0.1%TritonX-100, 4mM塩化マグネシウム,terminaldeoxynucleotidyltransferase 10U)を加え、37℃にて30分間反応を行った。
 磁気ビーズを3μlのTE溶液(10mM TrisHCl(pH7.5),1mM EDTA,0.1%TritonX-100)にて洗浄後、5’-RACE PCR法を用いてヒト免疫グロブリンγ鎖及びκ鎖遺伝子の増幅を行った。1回目のPCR反応は、磁気ビーズに25μlのPCR反応溶液(プライマーI,J及びKを各l0pmol、dNTP 10nmol、タカラバイオPrimeSTAR耐熱性DNAポリメラーゼ lU含有)を加え94℃30秒-68℃40秒の反応を35サイクル行った。プライマーIの配列は5’-CGGTACCGCGGGCCCGGGATCCCCCCCCCCCCCDN-3’であり、TdTによりcDNAの3’端に付加されたポリGにアニーリングする。プライマーJの配列は5’-ACGCTGCTGAGGGAGTAGAGTCCTGAG-3’であり、ヒト免疫グロブリンγ鎖遺伝子の定常領域に由来する。プライマーKの配列は5’-CTTTGGCCTCTCTGGGATAGAAGTT-3’であり、ヒト免疫グロブリンκ鎖遺伝子の定常領域に由来する。
 反応後PCR溶液に水225μlを加え10倍希釈した溶液1μlを鋳型とし、プライマーA:とプライマーBを用いて1回目のPCRと同様の条件でヒト免疫グロブリンγ鎖遺伝子の可変領域の増幅反応を行った。同様にプライマーAとプライマーL:5’-ACAACAGAGGCAGTTCCAGATTTCAACTGC-3’を用いヒト免疫グロブリンκ鎖遺伝子の可変領域の増幅反応を行った。
 その結果実験に用いた2個の形質細胞(細胞1及び細胞2)のそれぞれから約800bpのγ鎖の可変領域と一部の定常領域、並びに約600bpのκ鎖の可変領域と一部の定常領域の増幅が認められた(図15を参照)。
2.PCR産物の3’端ポリヌクレオチド付加反応
 1.で調製した各PCR産物1μlに、terminaldeoxynucleotidyltransferaseを10unit加え、37℃にて30分反応させ、その後94℃にて5分間加熱することで酵素反応を停止させた。
3.ヒトγ鎖遺伝子及びκ鎖遺伝子連結用二本鎖DNA断片の調製
 ヒトγ鎖遺伝子連結用二本鎖DNA断片は例1で調製したものを用いた。
 pMiniCMV-hIgKは、CMVプロモーター、マルチクローニングサイト、ポリdC/dG配列、pUC119複製開始点、アンピシリン耐性遺伝子、ヒト免疫グロブリンκ鎖定常領域、SV40ポリA付加シグナルを有する全長2976bpのプラスミドである。
 pMiniCMV-hIgKをEcoRVで切断後、これを鋳型としてプライマーC及びプライマーM:5’-CATCTTCCCGCCATCTGATGAGCAG-3’を用いたPCR法にてヒトκ鎖遺伝子連結用DNA断片(図16を参照)の調製を行った。PCR反応はタカラバイオのプライムスターDNAポリメラーゼを用い、94℃40秒、 60℃40秒、72℃5分のサイクルを30回行うことで増幅反応を行った。増幅されたDNA断片はスピンカラム法により精製し、10ng/μlの濃度に調製した。
4.ヒトγ及びκ鎖発現ユニットの増幅
 上記で調製した3’端ポリヌクレオチド付加ヒトγ鎖遺伝子溶液に、3.で調製したヒトγ鎖遺伝子連結用二本鎖DNA断片を10ng、プライマーを10pmol、dNTPを10nmolを加え、タカラバイオのPrimeSTAR耐熱性DNAポリメラーゼを用い25μlの反応液にて、94℃を40秒、70℃を4分の反応を5サイクル、引き続き94℃を40秒、60℃を40秒、72℃を4分の反応を30サイクル行った。用いたプライマーは、プライマーE及びプライマーFである。
 同様に上記で調製した3’端ポリヌクレオチド付加ヒトκ鎖遺伝子溶液に、3.で調製したヒトκ鎖遺伝子連結用二本鎖DNA断片を10ng、プライマーを10pmol、dNTPを10nmolを加え、タカラバイオのPrimeSTAR耐熱性DNAポリメラーゼを用い25μlの反応液にて、94℃を40秒、70℃を4分の反応を5サイクル、引き続き94℃を40秒、60℃を40秒、72℃を4分の反応を30サイクル行った。用いたプライマーは、プライマーE及びプライマーFである。
 増幅されたDNA断片をエタノール沈殿により精製し、25μlのPBSにて溶解した。これよりそれぞれ1μlをとりアガロースゲル電気泳動法にて、細胞1及び細胞2から得られたκ及びγ鎖免疫グロブリン遺伝子断片の発現ユニットへの変換を確認した(図17を参照)。
5.培養細胞へのヒト免疫グロブリン発現ユニットの導入による、抗GFP抗体の発現
 4.で調製したヒトκ及びγ鎖発現ユニット各5μl(約0.25μg)に、DMEM培地90μl並びにFuGENE HD トランスフェクション試薬2μlを加え20分室温にて放置後、24穴培養皿に培養された293FT細胞へ遺伝子導入を行った。3日間培養を行った後の培養上澄を回収し、ヒト抗体の産生をサンドイッチELISA法にて測定した(図18を参照)。ELISAはヒツジ抗ヒト抗体1μgを96穴プレート底面に固定化し、これに細胞上澄を100μl加え室温にて3時間抗原抗体反応を行った。プレートに結合した組換えヒト抗体を、西洋ワサビパーオキシダーゼが結合したヒツジ抗ヒト抗体を用いて検出を行った。その結果、細胞1由来のヒトγ及びヒトκ鎖遺伝子発現ユニット(カラム1)、ならびに細胞2由来のヒトγ及びヒトκ鎖遺伝子発現ユニット(カラム2)を導入した293FT細胞の培養上澄中に組み換えヒト抗体が検出された。一方、陰性コントロールである遺伝子導入をしていない細胞上澄中(カラム3)には組み換えヒト抗体が検出されなかった。
 実施例で用いた各DNA断片と配列表の配列番号1との関係は、以下の通りである。
配列表の配列番号1:標的遺伝子断片1
CTTCGAATTCTGCAGTCGACGGTACCGCGGGCCCGGGATCCCCCCCCCCCCGACATAACAACCAGAATCCTCCTCTAAAGAAGCACCTGGGAGCACAGCTCATCACCATGGACTGGACCTGGAGGTTCCTCTTTGTGGTGGCAGCAGCTACAGGTGTCCAGTCCCAGGTCCAGCTGGTGCAATCTGGGGCTGAGGTGAAGAAGCCTGGGTCCTCGGTGAAGATCTCCTGCAAGGCTTCTGGAGGCACCTTCAGCAGCTATACTTTCACCTGGGTGCGACAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAAGGATCATCCCCAATGTCGGTATAGCAAACTACGCACAGAAGTTCCAGGGCAGAGTCACGCTTATCGCGGACAAATTCACGAATTCAACGTACATGGAGCTGAGCAGCCTGAGATCTGATGACACGGCCGTTTATTTTTGTGCCGGAGACCCCTCGGGCCACTCACATGACTACTGGGGCCAAGGAACCCTGGTCACCGTCTCCTCAGCTTCCACCAAGGGCCCATCCGTCTTCCCCCTGGCGCCCTGCTCCAGGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCT
配列表の配列番号2:プライマーA
配列表の配列番号3:プライマーB
配列表の配列番号4:非標的遺伝子断片2
CTTCGAATTCTGCAGTCGACGGTACCGCGGGCCCGGGATCCACCGGTCGCCACCATGGTGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTGCCCATCCTGGTCGAGCTGGACGGCGACGTAAACGGCCACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGATGCCACCTACGGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCCGTGCCCTGGCCCACCCTCGTGACCACCCTGACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGAACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGCTGGAGTACAACTACAACAGCCACAACGTCTATATCATGGCCGACAAGCAGAAGAACGGCATCAAGGTGAACTTCAAGATCCGCCACAACATCGAGGACGGCAGCGTGCAGCTCGCCGACCACTACCAGCGGCGTGCACACCTTCCCGGCT
配列表の配列番号5:pMiniCMV-hIgG
TAGTTATTAATAGTAATCAATTACGGGGTCATTAGTTCATAGCCCATATATGGAGTTCCGCGTTACATAACTTACGGTAAATGGCCCGCCTGGCTGACCGCCCAACGACCCCCGCCCATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGACTTTCCATTGACGTCAATGGGTGGAGTATTTACGGTAAACTGCCCACTTGGCAGTACATCAAGTGTATCATATGCCAAGTACGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCTGGCATTATGCCCAGTACATGACCTTATGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCATCGCTATTACCATGGTGATGCGGTTTTGGCAGTACATCAATGGGCGTGGATAGCGGTTTGACTCACGGGGATTTCCAAGTCTCCACCCCATTGACGTCAATGGGAGTTTGTTTTGGCACCAAAATCAACGGGACTTTCCAAAATGTCGTAACAACTCCGCCCCATTGACGCAAATGGGCGGTAGGCGTGTACGGTGGGAGGTCTATATAAGCAGAGCTGGTTTAGTGAACCGTCAGATCCGCTAGCGCTACCGGACTCAGATCTCGAGCTCAAGCTTCGAATTCTGCAGTCGACGGTACCGCGGGCCCGGGATCCCCCCCCCCCCCGATATCTAAATACATTCAAATATGTATCCGCTCATGAGACAATAACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGTAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGTCAGACCAAGTTTACTCATATATACTTTAGATTGATTTAAAACTTCATTTTTAATTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTTCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCGATATCACGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACCCAGACCTACACCTGCAACGTGAATCACAAGCCCAGCAACACCAAGGTGGACAAGAGAGTTGAGCCCAAATCTTGTGACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGGTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAATGAGTGCGACGGCGGCCGCGACTCTAGATCATAATCAGCCATACCACATTTGTAGAGGTTTTACTTGCTTTAAAAAACCTCCCACACCTCCCCCTGAACCTGAAACATAAAATGAATGCAATTGTTGTTGTTAACTTGTTTATTGCAGCTTATAATGGTTACAAATAAAGCAATAGCATCACAAATTTCACAAATAAAGCATTTTTTTCACTGCATTCTAGTTGTGGTTTGTCCAAAC
配列表の配列番号6:プライマーC
配列表の配列番号7:プライマーD
配列表の配列番号8:ヒトγ鎖遺伝子連結用二本鎖DNA断片
CGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACCCAGACCTACACCTGCAACGTGAATCACAAGCCCAGCAACACCAAGGTGGACAAGAGAGTTGAGCCCAAATCTTGTGACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGGTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAATGAGTGCGACGGCGGCCAAGTCGACTTGGCCGACTCTAGATCATAATCAGCCATACCACATTTGTAGAGGTTTTACTTGCTTTAAAAAACCTCCCACACCTCCCCCTGAACCTGAAACATAAAATGAATGCAATTGTTGTTGTTAACTTGTTTATTGCAGCTTATAATGGTTACAAATAAAGCAATAGCATCACAAATTTCACAAATAAAGCATTTTTTTCACTGCATTCTAGTTGTGGTTTGTCCAAACTAGTTATTAATAGTAATCAATTACGGGGTCATTAGTTCATAGCCCATATATGGAGTTCCGCGTTACATAACTTACGGTAAATGGCCCGCCTGGCTGACCGCCCAACGACCCCCGCCCATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGACTTTCCATTGACGTCAATGGGTGGAGTATTTACGGTAAACTGCCCACTTGGCAGTACATCAAGTGTATCATATGCCAAGTACGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCTGGCATTATGCCCAGTACATGACCTTATGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCATCGCTATTACCATGGTGATGCGGTTTTGGCAGTACATCAATGGGCGTGGATAGCGGTTTGACTCACGGGGATTTCCAAGTCTCCACCCCATTGACGTCAATGGGAGTTTGTTTTGGCACCAAAATCAACGGGACTTTCCAAAATGTCGTAACAACTCCGCCCCATTGACGCAAATGGGCGGTAGGCGTGTACGGTGGGAGGTCTATATAAGCAGAGCTGGTTTAGTGAACCGTCAGATCCGCTAGCGCTACCGGACTCAGATCTCGAGCTCAAGCTTCGAATTCTGCAGTCGACGGTACCGCGGGCCCGGGATCCCCCCCCCCCC
配列表の配列番号9:プライマーE
配列表の配列番号10:プライマーF
配列表の配列番号11:プライマーG
配列表の配列番号12:プライマーH
配列表の配列番号13:プライマーI
配列表の配列番号14:プライマーJ
配列表の配列番号15:プライマーK
配列表の配列番号16:プライマーL
配列表の配列番号17:プライマーM
配列表の配列番号18:pMiniCMV-hIgK
TAGTTATTAATAGTAATCAATTACGGGGTCATTAGTTCATAGCCCATATATGGAGTTCCGCGTTACATAACTTACGGTAAATGGCCCGCCTGGCTGACCGCCCAACGACCCCCGCCCATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGACTTTCCATTGACGTCAATGGGTGGAGTATTTACGGTAAACTGCCCACTTGGCAGTACATCAAGTGTATCATATGCCAAGTACGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCTGGCATTATGCCCAGTACATGACCTTATGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCATCGCTATTACCATGGTGATGCGGTTTTGGCAGTACATCAATGGGCGTGGATAGCGGTTTGACTCACGGGGATTTCCAAGTCTCCACCCCATTGACGTCAATGGGAGTTTGTTTTGGCACCAAAATCAACGGGACTTTCCAAAATGTCGTAACAACTCCGCCCCATTGACGCAAATGGGCGGTAGGCGTGTACGGTGGGAGGTCTATATAAGCAGAGCTGGTTTAGTGAACCGTCAGATCCGCTAGCGCTACCGGACTCAGATCTCGAGCTCAAGCTTCGAATTCTGCAGTCGACGGTACCGCGGGCCCGGGATCCCCCCCCCCCCCGATATCTAAATACATTCAAATATGTATCCGCTCATGAGACAATAACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGTAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGTCAGACCAAGTTTACTCATATATACTTTAGATTGATTTAAAACTTCATTTTTAATTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTTCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCGATATCACGTGCGCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTACGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGTTAGAGGGAGAAGTGCGGCCAAGTCGACTTGGCCGACTCTAGATCATAATCAGCCATACCACATTTGTAGAGGTTTTACTTGCTTTAAAAAACCTCCCACACCTCCCCCTGAACCTGAAACATAAAATGAATGCAATTGTTGTTGTTAACTTGTTTATTGCAGCTTATAATGGTTACAAATAAAGCAATAGCATCACAAATTTCACAAATAAAGCATTTTTTTCACTGCATTCTAGTTGTGGTTTGTCCAAAC
配列表の配列番号19:ヒトκ鎖遺伝子連結用二本鎖DNA断片
CATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTACGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGTTAGAGGGAGAAGTGCGGCCAAGTCGACTTGGCCGACTCTAGATCATAATCAGCCATACCACATTTGTAGAGGTTTTACTTGCTTTAAAAAACCTCCCACACCTCCCCCTGAACCTGAAACATAAAATGAATGCAATTGTTGTTGTTAACTTGTTTATTGCAGCTTATAATGGTTACAAATAAAGCAATAGCATCACAAATTTCACAAATAAAGCATTTTTTTCACTGCATTCTAGTTGTGGTTTGTCCAAACTAGTTATTAATAGTAATCAATTACGGGGTCATTAGTTCATAGCCCATATATGGAGTTCCGCGTTACATAACTTACGGTAAATGGCCCGCCTGGCTGACCGCCCAACGACCCCCGCCCATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGACTTTCCATTGACGTCAATGGGTGGAGTATTTACGGTAAACTGCCCACTTGGCAGTACATCAAGTGTATCATATGCCAAGTACGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCTGGCATTATGCCCAGTACATGACCTTATGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCATCGCTATTACCATGGTGATGCGGTTTTGGCAGTACATCAATGGGCGTGGATAGCGGTTTGACTCACGGGGATTTCCAAGTCTCCACCCCATTGACGTCAATGGGAGTTTGTTTTGGCACCAAAATCAACGGGACTTTCCAAAATGTCGTAACAACTCCGCCCCATTGACGCAAATGGGCGGTAGGCGTGTACGGTGGGAGGTCTATATAAGCAGAGCTGGTTTAGTGAACCGTCAGATCCGCTAGCGCTACCGGACTCAGATCTCGAGCTCAAGCTTCGAATTCTGCAGTCGACGGTACCGCGGGCCCGGGATCCCCCCCCCCCC
 

Claims (44)

  1. 標的遺伝子の両方の側に連結用DNA領域を連結させた連結DNA断片を製造する方法であって、
    (1)標的遺伝子配列を含む二本鎖遺伝子断片から、中央部に標的遺伝子配列を含み、両末端側にそれぞれ会合可能な領域を有し、前記会合可能な2つの領域は互いに会合しない塩基配列を有し、かつ一方または両方の領域は少なくとも一部の塩基配列が標的遺伝子配列に含まれる固有の塩基配列であり、両方の会合可能な領域の3’端に1ヌクレオチド以上の突出末端を有する3’端突出二本鎖遺伝子断片を準備し、
    (2)中央部に連結用DNA領域を含み、両末端側にそれぞれ会合可能な領域を有する連結用二本鎖DNA断片を準備し、
    (3-1)前記3’端突出二本鎖遺伝子断片の一方の会合可能な領域は、前記連結用二本鎖DNA断片の一方の末端の会合可能な領域と相同的な塩基配列からなるが、3’突出端が付加された末端側の配列が連結用二本鎖DNA断片の一方の会合可能な領域では連結用DNA領域と結合する側であり、
    (3-2)前記3’端突出二本鎖遺伝子断片の一方の会合可能な領域からの突出末端は、DNA合成反応において鎖伸長機能を有さず、
    (3-3)前記3’端突出二本鎖遺伝子断片の他方の会合可能な領域は、前記連結用二本鎖DNA断片の他方の末端の会合可能な領域と相同的な塩基配列からなるが、3’突出端が付加された末端側の配列が連結用二本鎖DNA断片の他方の会合可能な領域では連結用DNA領域と結合する側であり、
    (3-4)前記3’端突出二本鎖遺伝子断片の他方の会合可能な領域からの突出末端は、DNA合成反応において鎖伸長機能を有さず、
    (4)上記3’端突出二本鎖遺伝子断片及び連結用二本鎖DNA断片を用いて、熱変性、再会合及びDNA合成反応を少なくとも2回行うことで、上記連結DNA断片を得ることを含む、
    連結DNA断片の製造方法。
  2. 前記一方の会合可能な領域を「領域1」とし、他方の会合可能な領域を「領域2」とすると、前記連結DNA断片は、模式的に領域2-連結用DNA領域-領域1-標的遺伝子-領域2-連結用DNA領域-領域1で示される配列を少なくとも1つ有するDNA断片である、請求項1に記載の製造方法。
  3. 連結用DNA領域が2つの連結用DNA領域として配列Aおよび配列Bを含み、
    前記3’端突出二本鎖遺伝子断片の会合可能な領域は、一方が末端側から配列P1およびT1を有し、他方が末端側から配列P2およびT2を有し、配列T1および配列T2の少なくとも一方は標的遺伝子配列に含まれる固有の塩基配列を有し、
    前記連結用二本鎖DNA断片の会合可能な領域は、一方が末端側から配列VP1およびVT1を有し、他方が末端側から配列VP2およびVT2を有し、配列VP1およびVT1は、配列P1およびT1とそれぞれ相同的な塩基配列を有し、配列VP2およびVT2は、配列P2およびT2とそれぞれ相同的な塩基配列を有する、請求項1に記載の製造方法。
  4. 前記3’端突出二本鎖遺伝子断片は、P1-T1-標的遺伝子-T2-P2で表され、
    前記連結用二本鎖DNA断片は、VT2-VP2-配列B-配列A-VP1-VT1で表され、
    前記連結DNA断片は、VT2-VP2(T2-P2)-配列B-配列A-VP1-VT1(P1-T1)-標的遺伝子-VT2-VP2(T2-P2)-配列B-配列A-VP1-VT1(P1-T1)を少なくとも1つ有するDNA断片である、但し、VT2-VP2(T2-P2)は、T2-P2と相同的なVT2-VP2であることを意味し、VP1-VT1(P1-T1)は、T1-P1と相同的なVT1-VP1であることを意味する、請求項3に記載の製造方法。
  5. 配列P2の3’端にある突出末端のDNA合成反応において鎖伸長機能を有さない配列は前記配列BのVP2と隣接する配列と非相同的な配列であり、配列P1の3’端にある突出末端のDNA合成反応において鎖伸長機能を有さない配列は前記配列AのVP1と隣接すると非相同的な配列である請求項3または4に記載の製造方法。
  6. 前記突出末端は、3’端にダイデオキシヌクレオチドを含む配列である請求項1~4のいずれかに記載の製造方法。
  7. 請求項1~6のいずれかに記載の方法で製造した連結DNA断片を鋳型として、
    連結DNA断片に含まれる少なくとも1つの少なくとも一部の連結用DNA領域と標的遺伝子の配列の全てを増幅するように、
    連結DNA断片に含まれる異なる連結用DNA領域で機能するフォワードプライマーおよびリバースプライマーを用いてPCRを行い、
    少なくとも1つの少なくとも一部の連結用DNA領域と標的遺伝子の配列の全てを含むDNA断片を製造する方法。
  8. 請求項3に記載の方法で製造した連結DNA断片を鋳型として、
    配列Aの塩基配列の一部を標的遺伝子に向かうように3’端に含むフォワードプライマー、および
    配列Bの塩基配列の一部を標的遺伝子に向かうように3’端に含むリバースプライマーを用いてPCRを行い、配列A、標的遺伝子の配列および配列Bが連結されたDNA断片を得ることを含むDNA断片を製造する方法。
  9. 標的遺伝子の一方の側に連結用DNA領域1、他方の側に連結用DNA領域2を連結させた連結DNA断片を製造する方法であって、
    (1)標的遺伝子配列を含む二本鎖遺伝子断片から、中央部に標的遺伝子配列を含み、両末端側にそれぞれ会合可能な領域を有し、前記会合可能な2つの領域は互いに会合しない塩基配列を有し、かつ一方または両方の領域は少なくとも一部の塩基配列が標的遺伝子配列に含まれる固有の塩基配列であり、両方の会合可能な領域の3’端に1ヌクレオチド以上の突出末端を有する3’端突出二本鎖遺伝子断片を準備し、
    (2)連結用DNA領域1を含み、末端側に会合可能な領域を有する連結用二本鎖DNA断片1および連結用DNA領域2を含み、末端側に会合可能な領域を有する連結用二本鎖DNA断片2を準備し、
    (3-1)前記3’端突出二本鎖遺伝子断片の一方の会合可能な領域は、前記連結用二本鎖DNA断片1の会合可能な領域と相同的な塩基配列からなるが、3’突出端が付加された末端側の配列が連結用二本鎖DNA断片1の会合可能な領域では連結用DNA領域と結合する側であり、
    (3-2)前記3’端突出二本鎖遺伝子断片の一方の会合可能な領域からの突出末端は、DNA合成反応において鎖伸長機能を有さず、
    (3-3)前記3’端突出二本鎖遺伝子断片の他方の会合可能な領域は、前記連結用二本鎖DNA断片2の末端の会合可能な領域と相同的な塩基配列からなるが、3’突出端が付加された末端側の配列が連結用二本鎖DNA断片2の会合可能な領域では連結用DNA領域と結合する側であり、
    (3-4)前記3’端突出二本鎖遺伝子断片の他方の会合可能な領域からの突出末端は、DNA合成反応において鎖伸長機能を有さず、
    (4)上記3’端突出二本鎖遺伝子断片並びに連結用二本鎖DNA断片1および2を用いて、熱変性、再会合及びDNA合成反応を少なくとも2回行うことで、上記連結DNA断片を得ることを含む、
    連結DNA断片の製造方法。
  10. 連結用DNA領域1が配列Aを含み、連結用DNA領域2が配列Bを含み、
    前記3’端突出二本鎖遺伝子断片の会合可能な領域は、一方が末端側から配列P1およびT1を有し、他方が末端側から配列P2およびT2を有し、配列T1および配列T2の少なくとも一方は標的遺伝子配列に含まれる固有の塩基配列を有し、
    前記連結用二本鎖DNA断片1の会合可能な領域は、末端側から配列VT1およびVP1を有し、連結用二本鎖DNA断片2の会合可能な領域は、末端側から配列VT2およびVP2を有し、配列VP1およびVT1は、配列P1およびT1とそれぞれ相同的な塩基配列を有し、配列VP2およびVT2は、配列P2およびT2とそれぞれ相同的な塩基配列を有する、請求項9に記載の製造方法。
  11. 前記3’端突出二本鎖遺伝子断片は、P1-T1-標的遺伝子-T2-P2で表され、
    前記連結用二本鎖DNA断片1は、配列A-VP1-VT1で表され、前記連結用二本鎖DNA断片2は、VT2-VP2-配列Bで表され、
    前記連結DNA断片は、配列A-VP1-VT1(P1-T1)-標的遺伝子-VT2-VP2(T2-P2)-配列Bを少なくとも1つ有するDNA断片である、但し、VT2-VP2(T2-P2)は、T2-P2と相同的なVT2-VP2であることを意味し、VP1-VT1(P1-T1)は、T1-P1と相同的なVT1-VP1であることを意味する、請求項10に記載の製造方法。
  12. 配列P2の3’端にある突出末端のDNA合成反応において鎖伸長機能を有さない配列は前記配列BのVP2と隣接する配列と非相同的な配列であり、配列P1の3’端にある突出末端のDNA合成反応において鎖伸長機能を有さない配列は前記配列AのVP1と隣接する配列と非相同的な配列である請求項10または11に記載の製造方法。
  13. 前記突出末端は、3’端にダイデオキシヌクレオチドを含む配列である請求項9~11のいずれかに記載の製造方法。
  14. 請求項9~13のいずれかに記載の方法で製造した連結DNA断片を鋳型として、
    連結DNA断片に含まれる少なくとも1つの少なくとも一部の連結用DNA領域と標的遺伝子の配列の全てを増幅するように、
    連結DNA断片に含まれる異なる連結用DNA領域で機能するフォワードプライマーおよびリバースプライマーを用いてPCRを行い、
    少なくとも1つの少なくとも一部の連結用DNA領域と標的遺伝子の配列の全てを含むDNA断片を製造する方法。
  15. 請求項10に記載の方法で製造した連結DNA断片を鋳型として、
    配列Aの塩基配列の一部を標的遺伝子に向かうように3’端に含むフォワードプライマー、および
    配列Bの塩基配列の一部を標的遺伝子に向かうように3’端に含むリバースプライマーを用いてPCRを行い、配列A、標的遺伝子の配列および配列Bが連結されたDNA断片を得ることを含むDNA断片を製造する方法。
  16. 標的遺伝子の一方の側に連結用DNA領域を連結させた片側連結DNA断片を製造する方法であって、
    (1)標的遺伝子配列を含む二本鎖遺伝子断片から、前記標的遺伝子配列の一方の末端側に会合可能な領域を有し、かつ前記領域は少なくとも一部の塩基配列が標的遺伝子配列に含まれる固有の塩基配列であり、前記会合可能な領域の3’端に1ヌクレオチド以上の突出末端を有する3’端突出二本鎖遺伝子断片を準備し、
    (2)連結用DNA領域を含み、末端側に会合可能な領域を有する連結用二本鎖DNA断片を準備し、
    (3-1)前記3’端突出二本鎖遺伝子断片の一方の会合可能な領域は、前記連結用二本鎖DNA断片の会合可能な領域と相同的な塩基配列からなるが、3’突出端が付加された末端側の配列が連結用二本鎖DNA断片の会合可能な領域では連結用DNA領域と結合する側であり、
    (3-2)前記3’端突出二本鎖遺伝子断片の一方の会合可能な領域からの突出末端は、DNA合成反応において鎖伸長機能を有さず、
    (4)上記3’端突出二本鎖遺伝子断片並びに連結用二本鎖DNA断片を用いて、熱変性、再会合及びDNA合成反応を1回行ってヘテロ二本鎖DNA産物を得、次いで、
    このヘテロ二本鎖DNA産物を鋳型としてポリメラーゼ連鎖反応を行うことで、上記片側連結DNA断片を得ることを含む、
    片側連結DNA断片の製造方法。
  17. 連結用DNA領域が配列Aを含み、
    前記3’端突出二本鎖遺伝子断片の会合可能な領域は、末端側から配列P1およびT1を有し、配列T1および配列T2の少なくとも一方は標的遺伝子配列に含まれる固有の塩基配列を有し、
    前記連結用二本鎖DNA断片の会合可能な領域は、末端側から配列VT1およびVP1を有し、配列VP1およびVT1は、配列P1およびT1とそれぞれ相同的な塩基配列を有し、
    前記ヘテロ二本鎖DNA産物を鋳型とするポリメラーゼ連鎖反応は、前記ヘテロ二本鎖DNA産物の標的遺伝子の一部を前記標的遺伝子の突出末端側に向かうよう3’端に含むプライマーおよび前記ヘテロ二本鎖DNA産物の配列Aの一部を前記標的遺伝子側に向かうよう3’端に含むプライマーを用いる、請求項16に記載の製造方法。
  18. 前記3’端突出二本鎖遺伝子断片は、P1-T1-標的遺伝子で表され、
    前記連結用二本鎖DNA断片は、配列A-VP1-VT1で表され、
    前記片側連結DNA断片は、配列A-VP1-VT1(P1-T1)-標的遺伝子を少なくとも1つ有するDNA断片である、但し、VP1-VT1(P1-T1)は、T1-P1と相同的なVT1-VP1であることを意味する、請求項17に記載の製造方法。
  19. 配列P1の3’端にある突出末端のDNA合成反応において鎖伸長機能を有さない配列は前記配列AのVP1と隣接すると非相同的な配列である請求項17または18に記載の製造方法。
  20. 前記突出末端は、3’端にダイデオキシヌクレオチドを含む配列である請求項16~18のいずれかに記載の製造方法。
  21. 標的遺伝子の配列を含む二本鎖DNA断片およびポリデオキシヌクレオチドに、デオキシヌクレオチドターミナルトランスフェラーゼを作用させて、標的遺伝子の配列を含む3’端突出二本鎖遺伝子断片を得ることをさらに含む
    (但し、前記標的遺伝子の配列を含む二本鎖DNA断片は、配列P1および配列P2を各末端に有し、前記配列P1の内側の一部に配列T1を有し、前記配列P2の内側の一部に配列T2を有し、かつ前記配列T1およびT2の一方又は両方は、標的遺伝子に固有の塩基配列を有する)、請求項3、4、10、または11に記載の製造方法。
  22. 標的遺伝子の配列を含む二本鎖DNA断片およびポリデオキシヌクレオチドに、デオキシヌクレオチドターミナルトランスフェラーゼを作用させて、標的遺伝子の配列を含む3’端突出二本鎖遺伝子断片を得ることをさらに含む
    (但し、前記標的遺伝子の配列を含む二本鎖DNA断片は、配列P1を一方の末端に有し、前記配列P1の内側の一部に配列T1を有し、かつ前記配列T1は、標的遺伝子に固有の塩基配列を有する)、請求項17または18に記載の製造方法。
  23. 前記配列T1および配列T2の一方または両方が、標的遺伝子に固有の塩基配列を有する、請求項3、4、10、または11に記載の製造方法。
  24. 前記配列P1および配列P2の一方または両方が、標的遺伝子に固有の塩基配列を有する、請求項3、4、10、または11に記載の製造方法。
  25. 前記配列P1およびP2は、独立に10塩基以上である、請求項3、4、10、11、17または18に記載の製造方法。
  26. 前記標的遺伝子が抗体遺伝子またはT細胞受容体遺伝子であり、前記3’端突出二本鎖遺伝子断片が前記抗体遺伝子またはT細胞受容体遺伝子に由来する配列を含み、ならびに、
    前記連結用二本鎖DNA断片または前記配列Aを有する連結用二本鎖DNA断片における前記領域VP1および領域VT1は、抗体遺伝子またはT細胞受容体遺伝子に由来するまたは由来しない配列を有する、請求項1~25のいずれかに記載の製造方法。
  27. 前記標的遺伝子が抗体遺伝子またはT細胞受容体遺伝子であり、前記3’端突出二本鎖遺伝子断片が前記抗体遺伝子またはT細胞受容体遺伝子に由来する配列を含み、ならびに、
    前記連結用二本鎖DNA断片または前記配列Bを有する連結用二本鎖DNA断片における前記領域VP2および領域VT2は、抗体遺伝子またはT細胞受容体遺伝子に由来するまたは由来しない配列である、請求項26に記載の製造方法。
  28. 請求項26または27に記載の方法で製造された連結DNA断片を用いて抗体またはT細胞受容体を製造する方法。
  29. 標的遺伝子配列を含む二本鎖遺伝子断片から、中央部に標的遺伝子配列を含み、両末端側にそれぞれ会合可能な領域を有し、前記会合可能な2つの領域は互いに会合しない塩基配列を有し、かつ一方または両方の領域は少なくとも一部の塩基配列が標的遺伝子配列に含まれる固有の塩基配列であり、両方の会合可能な領域の3’端に1ヌクレオチド以上の突出末端を有する3’端突出二本鎖遺伝子断片。
  30. 中央部に連結用DNA領域を含み、両末端側にそれぞれ会合可能な領域を有する連結用二本鎖DNA断片。
  31. (1)標的遺伝子配列を含む二本鎖遺伝子断片から、中央部に標的遺伝子配列を含み、両末端側にそれぞれ会合可能な領域を有し、前記会合可能な2つの領域は互いに会合しない塩基配列を有し、かつ一方または両方の領域は少なくとも一部の塩基配列が標的遺伝子配列に含まれる固有の塩基配列であり、両方の会合可能な領域の3’端に1ヌクレオチド以上の突出末端を有する3’端突出二本鎖遺伝子断片と
    (2)中央部に連結用DNA領域を含み、両末端側にそれぞれ会合可能な領域を有する連結用二本鎖DNA断片
    との組合体であって、標的遺伝子の両方の側に連結用DNA領域を連結させた連結DNA断片を製造する方法に用いられる組合体。
  32. (3-1)前記3’端突出二本鎖遺伝子断片の一方の会合可能な領域は、前記連結用二本鎖DNA断片の一方の末端の会合可能な領域と相同的な塩基配列からなるが、3’突出端が付加された末端側の配列が連結用二本鎖DNA断片の一方の会合可能な領域では連結用DNA領域と結合する側であり、
    (3-2)前記3’端突出二本鎖遺伝子断片の一方の会合可能な領域からの突出末端は、DNA合成反応において鎖伸長機能を有さず、
    (3-3)前記3’端突出二本鎖遺伝子断片の他方の会合可能な領域は、前記連結用二本鎖DNA断片の他方の末端の会合可能な領域と相同的な塩基配列からなるが、3’突出端が付加された末端側の配列が連結用二本鎖DNA断片の他方の会合可能な領域では連結用DNA領域と結合する側であり、
    (3-4)前記3’端突出二本鎖遺伝子断片の他方の会合可能な領域からの突出末端は、DNA合成反応において鎖伸長機能を有さない、
    請求項31に記載の組合体。
  33. 連結用DNA領域1を含み、末端側に会合可能な領域を有する連結用二本鎖DNA断片1または連結用DNA領域2を含み、末端側に会合可能な領域を有する連結用二本鎖DNA断片2。
  34. (1)標的遺伝子配列を含む二本鎖遺伝子断片から、中央部に標的遺伝子配列を含み、両末端側にそれぞれ会合可能な領域を有し、前記会合可能な2つの領域は互いに会合しない塩基配列を有し、かつ一方または両方の領域は少なくとも一部の塩基配列が標的遺伝子配列に含まれる固有の塩基配列であり、両方の会合可能な領域の3’端に1ヌクレオチド以上の突出末端を有する3’端突出二本鎖遺伝子断片と
    (2)連結用DNA領域1を含み、末端側に会合可能な領域を有する連結用二本鎖DNA断片1または連結用DNA領域2を含み、末端側に会合可能な領域を有する連結用二本鎖DNA断片2
    との組合体であって、標的遺伝子の一方の側に連結用DNA領域1、他方の側に連結用DNA領域2を連結させた連結DNA断片を製造する方法に用いられる組合体。
  35. (3-1)前記3’端突出二本鎖遺伝子断片の一方の会合可能な領域は、前記連結用二本鎖DNA断片1の会合可能な領域と相同的な塩基配列からなるが、3’突出端が付加された末端側の配列が連結用二本鎖DNA断片1の会合可能な領域では連結用DNA領域と結合する側であり、
    (3-2)前記3’端突出二本鎖遺伝子断片の一方の会合可能な領域からの突出末端は、DNA合成反応において鎖伸長機能を有さず、
    (3-3)前記3’端突出二本鎖遺伝子断片の他方の会合可能な領域は、前記連結用二本鎖DNA断片2の末端の会合可能な領域と相同的な塩基配列からなるが、3’突出端が付加された末端側の配列が連結用二本鎖DNA断片2の会合可能な領域では連結用DNA領域と結合する側であり、
    (3-4)前記3’端突出二本鎖遺伝子断片の他方の会合可能な領域からの突出末端は、DNA合成反応において鎖伸長機能を有さない、
    請求項34に記載の組合体。
  36. 標的遺伝子配列を含む二本鎖遺伝子断片から、前記標的遺伝子配列の一方の末端側に会合可能な領域を有し、かつ前記領域は少なくとも一部の塩基配列が標的遺伝子配列に含まれる固有の塩基配列であり、前記会合可能な領域の3’端に1ヌクレオチド以上の突出末端を有する3’端突出二本鎖遺伝子断片。
  37. 連結用DNA領域を含み、末端側に会合可能な領域を有する連結用二本鎖DNA断片。
  38. (1)標的遺伝子配列を含む二本鎖遺伝子断片から、前記標的遺伝子配列の一方の末端側に会合可能な領域を有し、かつ前記領域は少なくとも一部の塩基配列が標的遺伝子配列に含まれる固有の塩基配列であり、前記会合可能な領域の3’端に1ヌクレオチド以上の突出末端を有する3’端突出二本鎖遺伝子断片と
    (2)連結用DNA領域を含み、末端側に会合可能な領域を有する連結用二本鎖DNA断片
    との組合体であって、標的遺伝子の一方の側に連結用DNA領域を連結させた片側連結DNA断片を製造する方法に用いられる組合体。
  39. (3-1)前記3’端突出二本鎖遺伝子断片の一方の会合可能な領域は、前記連結用二本鎖DNA断片の会合可能な領域と相同的な塩基配列からなるが、3’突出端が付加された末端側の配列が連結用二本鎖DNA断片の会合可能な領域では連結用DNA領域と結合する側であり、
    (3-2)前記3’端突出二本鎖遺伝子断片の一方の会合可能な領域からの突出末端は、DNA合成反応において鎖伸長機能を有さない、
    請求項38に記載の組合体。
  40. 前記連結用DNA領域は、イントロン、エクソン、蛍光タンパク質遺伝子、Hisタグ等の各種タグ配列や、菌や動物細胞内で種々の遺伝子の発現を制御することができるプロモーター、エンハンサー配列、ポリA付加配列等から成る群から選ばれる少なくとも1種の配列である請求項30~35、37~39のいずれかに記載の連結用二本鎖DNA断片または組合体。
  41. 請求項29に記載の3’端突出二本鎖遺伝子断片、請求項30に記載の連結用二本鎖DNA断片、または請求項31若しくは32に記載の組合体を含む、標的遺伝子の両方の側に連結用DNA領域を連結させた連結DNA断片を製造する方法に用いられるキット。
  42. 請求項29に記載の3’端突出二本鎖遺伝子断片、請求項33に記載の連結用二本鎖DNA断片、または請求項34若しくは35に記載の組合体を含む、標的遺伝子の一方の側に連結用DNA領域1、他方の側に連結用DNA領域2を連結させた連結DNA断片を製造する方法に用いられるキット。
  43. 請求項36に記載の3’端突出二本鎖遺伝子断片、請求項37に記載の連結用二本鎖DNA断片、または請求項38若しくは39に記載の組合体を含む、標的遺伝子の一方の側に連結用DNA領域を連結させた片側連結DNA断片を製造する方法に用いられるキット。
  44. 前記連結用DNA領域は、イントロン、エクソン、蛍光タンパク質遺伝子、Hisタグ等の各種タグ配列や、菌や動物細胞内で種々の遺伝子の発現を制御することができるプロモーター、エンハンサー配列、ポリA付加配列等から成る群から選ばれる少なくとも1種の配列である請求項41~43のいずれかに記載のキット。
PCT/JP2010/064994 2009-09-04 2010-09-02 標的遺伝子由来配列を含む連結dna断片の特異的作製方法 WO2011027808A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020127008688A KR20130029460A (ko) 2009-09-04 2010-09-02 표적 유전자 유래 배열을 포함한 연결 dna 단편의 특이적 제작 방법
AU2010290426A AU2010290426B2 (en) 2009-09-04 2010-09-02 Method for specifically producing a joined DNA fragment comprising a sequence derived from a target gene
CA2773061A CA2773061A1 (en) 2009-09-04 2010-09-02 Method for specifically producing a joined dna fragment comprising a sequence derived from a target gene
JP2011529928A JP5779502B2 (ja) 2009-09-04 2010-09-02 標的遺伝子由来配列を含む連結dna断片の特異的作製方法
CN201080039384.8A CN102597257B (zh) 2009-09-04 2010-09-02 包含来自靶基因的序列的连接dna片段的特异性制作方法
EP10813756.3A EP2474619B1 (en) 2009-09-04 2010-09-02 Specific method for preparing joined dna fragments including sequences derived from target genes
US13/394,153 US8999673B2 (en) 2009-09-04 2010-09-02 Method for specifically producing a joined DNA fragment comprising a sequence derived from a target gene

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-205308 2009-09-04
JP2009205308 2009-09-04

Publications (1)

Publication Number Publication Date
WO2011027808A1 true WO2011027808A1 (ja) 2011-03-10

Family

ID=43649342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/064994 WO2011027808A1 (ja) 2009-09-04 2010-09-02 標的遺伝子由来配列を含む連結dna断片の特異的作製方法

Country Status (8)

Country Link
US (1) US8999673B2 (ja)
EP (1) EP2474619B1 (ja)
JP (1) JP5779502B2 (ja)
KR (1) KR20130029460A (ja)
CN (1) CN102597257B (ja)
AU (1) AU2010290426B2 (ja)
CA (1) CA2773061A1 (ja)
WO (1) WO2011027808A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012133572A1 (ja) 2011-03-30 2012-10-04 国立大学法人富山大学 形質細胞または形質芽細胞の選択方法、目的抗原特異的な抗体の製造方法、新規モノクローナル抗体
WO2015046505A1 (ja) 2013-09-30 2015-04-02 第一三共株式会社 抗lps o11抗体
US10416165B2 (en) 2015-08-10 2019-09-17 National University Corporation University Of Toyama Method for producing antigen specific monoclonal antibody
WO2020171020A1 (ja) 2019-02-18 2020-08-27 株式会社エヌビィー健康研究所 細胞の選抜方法、核酸の製造方法、組換え細胞の製造方法、目的物質の製造方法、医薬組成物の製造方法、及び試薬
WO2021020282A1 (ja) 2019-07-26 2021-02-04 学校法人埼玉医科大学 Alk2/acvr1の細胞外領域を認識する抗体
EP4180455A1 (en) 2015-06-29 2023-05-17 Daiichi Sankyo Company, Limited Method for selectively manufacturing antibody-drug conjugate

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106599615B (zh) * 2016-11-30 2019-04-05 广东顺德中山大学卡内基梅隆大学国际联合研究院 一种预测miRNA靶基因的序列特征分析方法
KR200487796Y1 (ko) 2016-11-30 2018-11-06 삼성중공업 주식회사 다전극 잠호 용접용 플럭스 수합기
US20200392578A1 (en) * 2019-06-14 2020-12-17 The Regents Of The University Of California Methods of sequencing antibody chains from hybridomas and kits for practicing same
JPWO2022092181A1 (ja) 2020-10-30 2022-05-05
JP7209980B2 (ja) 2020-12-11 2023-01-23 東洋紡株式会社 Dnaポリメラーゼの5’→3’エキソヌクレアーゼ活性ドメインに特異的に結合する抗体

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003091440A1 (fr) * 2002-04-25 2003-11-06 Institute Of Zoology, Chinese Academy Of Sciences Methode de construction d'un vecteur d'expression lineaire sans clonage

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6495318B2 (en) * 1996-06-17 2002-12-17 Vectorobjects, Llc Method and kits for preparing multicomponent nucleic acid constructs
US7575860B2 (en) * 2000-03-07 2009-08-18 Evans David H DNA joining method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003091440A1 (fr) * 2002-04-25 2003-11-06 Institute Of Zoology, Chinese Academy Of Sciences Methode de construction d'un vecteur d'expression lineaire sans clonage

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NAGY, Z.B. ET AL.: "Assembling and cloning genes for fusion proteins using reverse transcription one-step overlap extension PCR method.", ANAL.BIOCHEM., vol. 351, no. 2, 2006, pages 311 - 3, XP024942415 *
SHEVCHUK, N.A. ET AL.: "Construction of long DNA molecules using long PCR-based fusion of several fragments simultaneously.", NUCLEIC ACIDS RES., vol. 32, no. 2, 2004, pages E19, XP008155512 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012133572A1 (ja) 2011-03-30 2012-10-04 国立大学法人富山大学 形質細胞または形質芽細胞の選択方法、目的抗原特異的な抗体の製造方法、新規モノクローナル抗体
US9487583B2 (en) 2011-03-30 2016-11-08 National University Corporation University Of Toyama Method for selecting plasma cells or plasmablasts, method for producing target antigen specific antibodies, and novel monoclonal antibodies
WO2015046505A1 (ja) 2013-09-30 2015-04-02 第一三共株式会社 抗lps o11抗体
EP3835422A1 (en) 2013-09-30 2021-06-16 Daiichi Sankyo Company, Limited Anti-lps o11 antibody
EP4180455A1 (en) 2015-06-29 2023-05-17 Daiichi Sankyo Company, Limited Method for selectively manufacturing antibody-drug conjugate
US10416165B2 (en) 2015-08-10 2019-09-17 National University Corporation University Of Toyama Method for producing antigen specific monoclonal antibody
WO2020171020A1 (ja) 2019-02-18 2020-08-27 株式会社エヌビィー健康研究所 細胞の選抜方法、核酸の製造方法、組換え細胞の製造方法、目的物質の製造方法、医薬組成物の製造方法、及び試薬
WO2021020282A1 (ja) 2019-07-26 2021-02-04 学校法人埼玉医科大学 Alk2/acvr1の細胞外領域を認識する抗体

Also Published As

Publication number Publication date
EP2474619A4 (en) 2013-04-17
AU2010290426B2 (en) 2014-12-11
JP5779502B2 (ja) 2015-09-16
EP2474619B1 (en) 2016-01-13
CN102597257A (zh) 2012-07-18
KR20130029460A (ko) 2013-03-22
CN102597257B (zh) 2015-09-09
AU2010290426A1 (en) 2012-04-05
US20130023009A1 (en) 2013-01-24
JPWO2011027808A1 (ja) 2013-02-04
EP2474619A1 (en) 2012-07-11
CA2773061A1 (en) 2011-03-10
US8999673B2 (en) 2015-04-07

Similar Documents

Publication Publication Date Title
JP5779502B2 (ja) 標的遺伝子由来配列を含む連結dna断片の特異的作製方法
EP3500682B1 (en) Closed linear dna production
KR101467969B1 (ko) 핵산분자의 제조방법
US7374913B2 (en) Method for synthesizing polynucleotides
CA2827948C (en) Use of template switching for dna synthesis
JP5628664B2 (ja) 相同組換え方法およびクローニング方法並びにキット
US5514568A (en) Enzymatic inverse polymerase chain reaction
CN109913519B (zh) Peg-介导的核酸分子的组装
KR20120097214A (ko) 핵산 증폭 과정에 있어서 단일 가닥 결합 단백질의 용도
AU2020209757B2 (en) A method for assembling circular and linear DNA molecules in an ordered manner
US20230257805A1 (en) Methods for ligation-coupled-pcr
WO2002090538A1 (fr) Procede de synthese d'acide nucleique
US9944966B2 (en) Method for production of single-stranded macronucleotides
US20030215924A1 (en) Ribocloning: recombinant DNA construction using primers with ribo bases
CN111621498A (zh) 一种单链结合蛋白的纯化方法及其在基因合成中的应用
JPWO2018147070A1 (ja) 所望の塩基配列を有するdna断片を製造する方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080039384.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10813756

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011529928

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2773061

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010290426

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2010813756

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127008688

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2010290426

Country of ref document: AU

Date of ref document: 20100902

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13394153

Country of ref document: US