WO2009110436A1 - 窒化物半導体結晶とその製造方法 - Google Patents

窒化物半導体結晶とその製造方法 Download PDF

Info

Publication number
WO2009110436A1
WO2009110436A1 PCT/JP2009/053893 JP2009053893W WO2009110436A1 WO 2009110436 A1 WO2009110436 A1 WO 2009110436A1 JP 2009053893 W JP2009053893 W JP 2009053893W WO 2009110436 A1 WO2009110436 A1 WO 2009110436A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal
nitride semiconductor
plane
growth
crystal growth
Prior art date
Application number
PCT/JP2009/053893
Other languages
English (en)
French (fr)
Inventor
健史 藤戸
久保 秀一
洋子 眞重
Original Assignee
三菱化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱化学株式会社 filed Critical 三菱化学株式会社
Priority to US12/920,976 priority Critical patent/US8545626B2/en
Priority to EP09717726A priority patent/EP2261401A4/en
Publication of WO2009110436A1 publication Critical patent/WO2009110436A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/301AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C23C16/303Nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/16Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/14Feed and outlet means for the gases; Modifying the flow of the reactive gases
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/38Nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02378Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/024Group 12/16 materials
    • H01L21/02403Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mechanical Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

 所望の主面を有する板状の窒化物半導体結晶を簡便な方法で効率よく製造する方法を提供する。種結晶上の結晶成長面を成長方向に投影した投影面の長手方向の長さLと最大幅Wの比(L/W)が2~400であって、前記最大幅Wが5mm以下である種結晶に対して、原料ガスを供給することによって前記種結晶上に板状の窒化物半導体結晶を成長させる。

Description

窒化物半導体結晶とその製造方法
 本発明は、窒化物半導体結晶とその製造方法に関する。本発明の製造方法によれば、板状の窒化物半導体結晶を簡便な操作で得ることができ、特に大面積の非極性面を主面とした窒化物半導体結晶を得ることができる。
 窒化ガリウム(GaN)に代表される窒化物半導体は、大きなバンドギャップを有し、またバンド間遷移が直接遷移型であることから、紫外、青色又は緑色等の発光ダイオード、半導体レーザー等の比較的短波長側の発光素子や、電子デバイス等の半導体デバイスの基板として有望な材料である。
 現在最も一般的な窒化物半導体基板はC面を主面とする基板である。しかしながら、C面を主面とするGaN基板を用いたInGaN系青色、緑色LEDやLDにおいては、その成長軸であるc軸方向にピエゾ電界が生じるという問題点があった。ピエゾ電界はInGaN層の結晶構造が歪んで圧電分極が生じるために発生し、この分極により発光層に注入される正孔と電子が離れ、発光に寄与する再結合確率が低下してしまう。このため内部量子効率が低くなり、発光デバイスの外部量子効率の低下につながる。前記ピエゾ電界の影響を弱めるためにGaN結晶のC面に垂直なA面、M面と呼ばれる非極性面を成長面としたInGaN系青色、緑色LEDやLD研究が盛んになりつつある(非特許文献1)。
 窒化物半導体は、高融点であり、しかも融点付近の窒素の解離圧が高いことから、融液からのバルク成長が困難である。一方、ハイドライド気相成長法(HVPE法)や有機金属化学気相堆積法(MOCVD法)等の気相成長法を用いることによって、窒化物半導体基板を製造できることが知られている。このとき、種結晶を支持体上に設置したうえで原料ガスを供給することにより、種結晶表面に窒化物半導体結晶を成長させることができる(例えば特許文献1参照)。種結晶上に成長させた窒化物半導体結晶は、種結晶とともに支持体から分離し、必要に応じて種結晶を研磨等の方法により除去することにより取り出すことができる。
特開2006-240988号公報 日経エレクトロニクス2006.8.14 P65-P70
 しかしながら、この方法によって希望どおりの主面を有する板状の窒化物半導体基板を製造しようとすると、非効率的な工程を経なければならないという問題に直面することがある。例えば、非極性面を主面とする比較的大きな板状の窒化物半導体基板を製造しようとすると、下地基板として比較的大きな非極性面を主面とする基板が存在しないため、R面サファイア基板やM面炭化ケイ素(SiC)基板等の異種下地基板上に、非極性面を成長面として成長させ、下地基板を分離し基板を得るか、または、いったん種結晶の極性面上にその極性面に垂直な方向に結晶を成長させた後に、スライスして所望の非極性面を切り出さなければならない。前者の場合、異種下地基板上の成長のため、結晶中に多くの積層欠陥が入ってしまい、高品質な結晶は得られない。後者の場合、積層欠陥のない高品質な結晶が得られるが、目的とする板状結晶よりもかなり大きな結晶を種結晶上に成長させることが必要とされ、しかもスライス工程が避けられない。また、そのような大きな結晶を成長させること自体が極めて困難な場合もあり、この方法により所望の窒化物半導体結晶を得るには限界があった。
 そこで本発明者らは、このような従来技術の課題を解決するために、板状の窒化物半導体結晶を効率よく提供することができるようにすることを本発明の目的として検討を進めた。特に、スライス工程を経ることなく、窒化物半導体基板を簡便な方法で製造することができるような板状の窒化物半導体結晶の製造方法を提供することを目的として検討を進めた。また、特に非極性面を主面とする大面積の窒化物半導体基板を簡便な方法で製造することができるような板状の窒化物半導体結晶の製造方法を提供することを目的として検討を進めた。
 本発明者らは鋭意検討を重ねた結果、種結晶の結晶成長面などを工夫することにより課題を解決しうることを見出した。すなわち、課題を解決する手段として、以下の本発明を提供するに至った。
[1] 種結晶に対して原料ガスを供給することによって前記種結晶上に窒化物半導体結晶を成長させる結晶成長工程を含む、窒化物半導体結晶の製造方法であって、
 前記種結晶上に成長させる窒化物半導体結晶が板状結晶であり、
 前記板状結晶を成長させる前記種結晶上の結晶成長面を成長方向に投影した投影面の長手方向の長さLと最大幅Wの比(L/W)が2~400であって、前記最大幅Wが5mm以下であることを特徴とする窒化物半導体結晶の製造方法。
[2] 前記種結晶の結晶成長面が、+C面、{10-1X}面および{11-2Y}面からなる群より選択される1以上の面であることを特徴とする[1]に記載の窒化物半導体結晶の製造方法(前記Xと前記Yは、各々独立に0以外の整数である)。
[3] 前記種結晶の結晶成長面が、+C面、{10-1X}面、またはその両方であって、前記種結晶の主面が略M面であることを特徴とする[2]に記載の窒化物半導体結晶の製造方法。
[4] 前記種結晶の結晶成長面が、+C面、{11-2Y}面、またはその両方であって、前記種結晶の主面が略A面であることを特徴とする[2]に記載の窒化物半導体結晶の製造方法。
[5] 前記種結晶が、{10-10}面、{11-2Z}面、{10-1S}面、または{11-20}面を有することを特徴とする[2]~[4]のいずれか一項に記載の窒化物半導体結晶の製造方法(前記Zと前記Sは、各々独立に0以外の整数である)。
[6] 互いに平行な第一辺と第二辺を有する結晶成長面と、前記結晶成長面と垂直な面であって前記結晶成長面の第一辺を一辺とする第一側面と、前記結晶成長面と垂直な面であって前記結晶成長面の第二辺を一辺とする第二側面とを少なくとも有していて、前記結晶成長面の第一辺と第二辺の距離が5mm以下であり、前記結晶成長面の第一辺と第二辺の平均長と第一辺と第二辺の距離の比(平均長/距離)が2~400である種結晶に対して、原料ガスを供給することによって、前記結晶成長面に対して垂直な方向へ板状結晶を成長させる結晶成長工程を含むことを特徴とする[1]に記載の窒化物半導体結晶の製造方法。
[7] 前記種結晶の第一側面が非極性面であることを特徴とする[6]に記載の窒化物半導体結晶の製造方法。
[8] 前記種結晶が、結晶成長面がC面であり、第一側面がM面である六方晶であることを特徴とする[6]に記載の窒化物半導体結晶の製造方法。
[9] 前記種結晶が、結晶成長面がC面であり、第一側面がA面である六方晶であることを特徴とする[6]に記載の窒化物半導体結晶の製造方法。
[10] 前記結晶成長工程によって、第一側面と平行な面が主面となるように窒化物半導体結晶を成長させることを特徴とする[6]~[9]のいずれか一項に記載の窒化物半導体結晶の製造方法。
[11] 前記結晶成長工程において、前記原料ガスの少なくとも一種類を常に前記板状結晶の結晶成長端に向けて供給するように制御することを特徴とする[1]~[10]のいずれか一項に記載の窒化物半導体結晶の製造方法。
[12] 前記原料ガスを供給する供給口と前記板状結晶の結晶成長端との距離を一定に保つように制御することを特徴とする[1]~[11]のいずれか一項に記載の窒化物半導体結晶の製造方法。
[13] 前記制御を、前記供給口と前記結晶成長端との距離を計測しながら行うことを特徴とする[12]に記載の窒化物半導体結晶の製造方法。
[14] 前記結晶成長工程において、前記板状結晶の成長に伴って前記原料ガスを供給する供給口の位置を移動させることを特徴とする[11]~[13]のいずれか一項に記載の窒化物半導体結晶の製造方法。
[15] 前記結晶成長工程において、前記板状結晶の成長に伴って前記原料ガスを供給する供給口の向きを変えることを特徴とする[11]~[14]のいずれか一項に記載の窒化物半導体結晶の製造方法。
[16] 前記結晶成長工程において、前記板状結晶の成長に伴って前記原料ガスの供給速度を変えることを特徴とする[11]~[15]のいずれか一項に記載の窒化物半導体結晶の製造方法。
[17] 前記結晶成長工程において、前記板状結晶の成長に伴って前記種結晶の位置を移動させることを特徴とする[11]~[16]のいずれか一項に記載の窒化物半導体結晶の製造方法。
[18] 前記結晶成長工程において、前記原料ガスを、前記種結晶の結晶成長面に垂直な方向から供給することを特徴とする[1]~[17]のいずれか一項に記載の窒化物半導体結晶の製造方法。
[19] 前記結晶成長工程において、前記原料ガスを、前記種結晶の主面を見込む空間と前記主面と対向する面を見込む空間からそれぞれ前記種結晶に向けて供給することを特徴とする[1]~[17]のいずれか一項に記載の窒化物半導体結晶の製造方法。
[20] 前記原料ガスを供給する供給口の形状が前記結晶成長端の形状と相似形であることを特徴とする[1]~[19]のいずれか一項に記載の窒化物半導体結晶の製造方法。
[21] 前記原料ガスを供給する供給口の形状がスリット状であり、該スリット状開口部の最大長が前記種結晶の投影面の長さL以上であることを特徴とする[1]~[20]のいずれか一項に記載の窒化物半導体結晶の製造方法。
[22] 前記種結晶を位置決めするための支持体に前記種結晶が設置されており、前記種結晶と前記支持体の接触面が、前記種結晶の結晶成長面から1mm以上離れていることを特徴とする[1]~[21]のいずれか一項に記載の窒化物半導体結晶の製造方法。
[23] 前記種結晶が、サファイア、SiC、ZnO、及びIII族窒化物半導体からなる群より選択されることを特徴とする[1]~[22]のいずれか一項に記載の窒化物半導体結晶の製造方法。
[24] 前記窒化物半導体がIII族窒化物半導体であることを特徴とする[1]~[23]のいずれか一項に記載の窒化物半導体結晶の製造方法。
[25] 前記窒化物半導体がGaN半導体であることを特徴とする[1]~[24]のいずれか一項に記載の窒化物半導体結晶の製造方法。
[26] 主面の面積が2500mm以上である板状結晶を成長することを特徴とする[1]~[25]のいずれか一項に記載の窒化物半導体結晶の製造方法。
[27] 前記主面が非極性面であることを特徴とする[26]に記載の窒化物半導体結晶の製造方法。
[28] [1]~[27]のいずれか一項に記載の結晶成長工程を実施することにより前記種結晶上に窒化物半導体結晶を成長させ、成長させた前記窒化物半導体結晶を前記種結晶から分離することを特徴とする、成長させた前記窒化物半導体結晶をスライスすることなく窒化物半導体結晶を製造する方法。
[29] [1]~[28]のいずれか一項に記載の製造方法により製造される窒化物半導体結晶。
[30] 面積が2500mm以上である非極性面を主面とし、厚みが1.5mm以下であることを特徴とする板状窒化物半導体結晶。
 本発明の窒化物半導体結晶の製造方法によれば、所望の主面を有する板状の窒化物半導体結晶を簡便な方法で効率よく製造することができる。特に、種結晶の結晶成長面の種類とサイズ、および結晶成長条件を組み合わせることにより、所望のサイズと主面を有する窒化物半導体結晶を容易に製造することができる。
本発明の結晶成長に好適に用いられるHVPE装置の概略断面図である。 本発明の結晶成長に好適に用いられる別のHVPE装置の概略断面図である。 本発明の結晶成長に好適に用いられるさらに別のHVPE装置の概略断面図である。 制御機構と出力機構の関係等を示す概略図である。 比較例2にて種結晶上に結晶成長させた状態を模式的に示す斜視図である。
符号の説明
 100,200,300 リアクター
 101,201, 導入管(スリット状ノズル上段)
 102,202, 導入管(スリット状ノズル中段)
 103,203, 導入管(スリット状ノズル下段)
 301, 302, 303  導入管(管状ノズル)
 104,204,304 導入管(キャリアガス用配管)
 105,205,305 基板ホルダー
 106,206,306 昇降機構
 107,207,307 ヒーター
 108,208,308 排気管
 109,209,309,501 種結晶
 401 制御機構
 402 結晶成長端の位置検出機構
 403 A/Dコンバーター
 404 CPU(中央処理装置)
 405 モータードライバー
 406 モーター
 407 出力機構
 408 ディスプレイ
 409 プリンター
 以下において、本発明の窒化物半導体結晶の製造方法について詳細に説明する。以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。また、以下の説明では、窒化物半導体結晶として窒化ガリウム結晶を例として説明することがあるが、本発明で採用することができる窒化物半導体結晶はこれに限定されるものではない。なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
(種結晶)
 本発明において用いる種結晶は、板状結晶を成長させる結晶成長面を成長方向に投影した投影面を想定したときに、その投影面の長手方向の長さLと最大幅Wの比(L/W)が2~400であって、最大幅Wが5mm以下であることを特徴とする。
 種結晶は、結晶成長面上に所望の窒化物半導体結晶を成長させることができるものであれば、その種類は問わない。例えば、サファイア、SiC、ZnO、III族窒化物半導体を挙げることができる。好ましくは、製造しようとしている窒化物半導体と同じかまたは異なる種類の窒化物半導体の種結晶を用いる場合であり、より好ましくは、製造しようとしている窒化物半導体を構成するIII族元素と同じ種類のIII族元素を少なくとも含む窒化物半導体の種結晶を用いる場合であり、さらに好ましくは、製造しようとしている窒化物半導体と同一種の窒化物半導体の種結晶を用いる場合である。別の観点から言うと、製造しようとしている窒化物半導体結晶と格子定数が近くて、熱膨張係数の差が小さい種結晶を選択することが好ましい。
 結晶成長面を成長方向に投影した投影面の最大幅Wは5mm以下であり、0.2mm~5mmが好ましく、0.3mm~3mmがより好ましく、0.5mm~2mmがさらに好ましい。投影面の幅は一定であってもよいし、一定でなくてもよい。好ましいのは、投影面の幅が一定であって、2つの向かい合う長辺が互いに平行である場合である。投影面の幅が一定である場合は、その幅が投影面の最大幅Wとなり、投影面の幅が一定でない場合は、もっとも大きな幅が最大幅Wとなる。投影面の幅が一定でない場合は、幅が長手方向に連続的に変化しているものであることが好ましく、幅が長手方向に連続的に一定の割合で変化しているものであることがより好ましい。
 投影面の長手方向の長さLと最大幅Wの比(L/W)は2~400であり、3~270が好ましく、5~160がより好ましい。投影面が長方形である場合、長手方向の長さLは長辺に等しい。投影面の最長辺とそれに向かい合う辺の長さが異なる場合は、それら2辺の長さの平均値をもって長手方向の長さLとする。
 種結晶の厚みは、通常は0.1mm~50mmの範囲内で選択することができ、0.5mm~20mmが好ましく、1mm~10mmがより好ましい。
 投影面の面方位は(0001)面、(000-1)面等の極性面、{1-100}面や{11-20}面等の非極性面、{1-102}面、{11-22}面等の半極性面を挙げることができる。本発明では、これらの面のうち投影面としては(0001)面と(000-1)面が好ましく、(0001)面が特に好ましい。
 本発明で用いる種結晶は、投影面と同じ面を結晶成長面として有していてもよいし、有していなくてもよい。例えば、投影面が(0001)面である場合、(0001)面を結晶成長面として有する種結晶を用いてもよいし、投影面が(0001)面となるような結晶成長面を有する種結晶を用いてもよい。投影面が(0001)面となるような結晶成長面としては、{10-1X}面や{11-2Y}面を挙げることができる。ここで、XとYは、各々独立に0以外の整数である。本発明で用いる種結晶は、+C面、{10-1X}面および{11-2Y}面からなる群より選択される2以上の結晶成長面を有するものであってもよい。2つ以上の結晶成長面を有する場合は、それらの結晶成長面は連続している必要があり、それらの連続している結晶成長面全体を結晶成長方向に投影した面を本発明でいう投影面とする。
 本発明で用いる種結晶の主面は、投影面と垂直な面であることが好ましい。そして、製造したい窒化物半導体結晶の主面を種結晶の主面とすることが好ましい。そうすることにより、種結晶の主面と同じ面方位を有する面が、得られる板状結晶の主面となる。
 本発明で特に好ましく用いられる種結晶は、結晶成長面が(0001)面、{10-1X}面、またはその両方であって、主面が略{1-100}面である結晶である。また、本発明で特に好ましく用いられる別の種結晶は、結晶成長面が、(0001)面、{11-2Y}面、またはその両方であって、主面が略{11-20}面である結晶である。ここで「略」とは、オフ角度が±20°以内である面を意味するものであり、好ましいオフ角度の範囲は±10°以内であり、より好ましいオフ角度の範囲は±5°以内である。
 これら2種類の特に好ましい種結晶における主面以外の側面としては、{10-10}面、{11-2Z}面、{10-1S}面、または{11-20}面を挙げることができる。ここでZとSは、各々独立に0以外の整数である。これらの中では、{10-10}面、{11-2Z}面、{10-1S}面が好ましく、{10-10}面がより好ましい。
 また、これら2種類の特に好ましい種結晶において、結晶成長面の対面の面方位は特に制限されない。この面は通常は結晶成長装置の基板ホルダーに接する面となって原料ガスに触れないため、いずれの面であっても構わない。例えば(000-1)面を挙げることができる。
 これら2種類の特に好ましい種結晶を用いれば、結晶成長面とそれに隣接する面との間に形成される角部を起点とする多結晶の成長を効果的に抑えることができる。このため、より均一で良質な板状結晶を効率よく成長させることができる。より均一で良質な板状結晶が得られることは、得られる結晶に異常成長部がないことや、結晶の着色がないことや、X線回折法による結晶性の分布がないことで容易に確認することができる。
 本発明では、上記の他にも種々の結晶面を有する種結晶を用いることができる。例えば、互いに平行な第一辺と第二辺を有する結晶成長面と、結晶成長面と垂直な面であって結晶成長面の第一辺を一辺とする第一側面と、結晶成長面と垂直な面であって前記結晶成長面の第二辺を一辺とする第二側面とを少なくとも有する種結晶も用いることができる。ここでは、第一辺と第二辺の平均長と第一辺と第二辺の距離の比(平均長/距離)が2~400であり、第一辺と第二辺の距離が5mm以下であることが必要とされる。
 この種の種結晶の側面の面方位は結晶成長面と垂直であれば特に制限されることはなく、(0001)面、(000-1)面等の極性面、{1-100}面や{11-20}面等の非極性面、{1-102}面、{11-22}面等の半極性面を挙げることができる。例えば結晶成長面が(0001)面もしくは(000-1)面の場合、側面の面方位は{1-100}面もしくは{11-20}面となる。結晶成長面が{1-100}面の場合、側面は(0001)面、(000-1)面もしくは{11-20}面となる。結晶成長面が{11-20}面の場合、側面は(0001)面、(000-1)面もしくは{1-100}面となる。側面のうち、種結晶の第一側面と第二側面になる面は、成長させる窒化物半導体結晶の主面となる面である。したがって、製造したい窒化物半導体結晶の主面と同じ面を第一側面または第二側面として有する種結晶を、本発明では選択して用いることが好ましい。
 結晶成長面が(0001)面もしくは(000-1)面で、側面の面方位が{1-100}面もしくは{11-20}面である場合が好ましく、結晶成長面が(0001)面で、側面の面方位が{1-100}面もしくは{11-20}面である場合がより好ましく、結晶成長面が(0001)面で、側面の面方位が{1-100}面であることがさらに好ましい。
 上記の面の表記において「略」が付けられていないものについても、それぞれオフ角度を有していてもよい。オフ角度は±10°以内であることが好ましく、±5°以内であることがより好ましい。
 この明細書において、「C面」とは、六方晶構造(ウルツ鋼型結晶構造)における{0001}面と等価な面である。III-V族化合物半導体結晶では、「C面」は、III 族面であり、窒化ガリウムでは、Ga面に相当する。 {0001}面と等価な面は、(0001)面、(000-1)面である。
 この明細書において、{10-10}面とは「M面」のことであり、六方晶構造(ウルツ鋼型結晶構造)における{1-100}面と等価な面であり、これは、非極性面であり、通常は劈開面である。{1-100}面と等価な面は、(1-100)面、(-1100)面、(01-10面)、(0-110)面、(10-10)面、(-1010)面である。 
 この明細書において、{11-20}面とは「A面」のことであり、六方晶構造(ウルツ鋼型結晶構造)における{11-20}面と等価な面であり、これは、非極性面である。{11-20}面と等価な面は、(11-20)面、(-1-120)面、(1-210)面、(-12-10)面、(-2110)面、(2-1-10)面がある。
 所望の面を有する種結晶は、必要に応じて結晶を切り出すことにより得ることができる。例えば、C面を有するIII族窒化物半導体基板を形成し、その後にM面又はA面が現れるように切り出すことによってM面又はA面を第一側面とする種結晶を得ることができる。切り出し方法としては、鑢、研削盤、内周刃スライサー、ワイヤーソー等で加工(研削、切断)する方法、研磨によって磨く方法、劈開によって分割する方法などがあるが、劈開によりM面又はA面を形成することが好ましい。劈開の方法については、ダイヤモンドスクライバーによって切り欠きを入れて割ってもよいし、レーザースクライバー装置を使用してもよい。そのまま手で割ってもよいし、他の土台に乗せてのブレーキング装置で行ってもよい。
(成長装置)
 本発明では、種結晶に対して、原料ガスを供給することによって、種結晶の投影面に対して垂直な方向へ板状結晶を成長させる。成長方法としては、MOCVD法やHVPE法等が挙げられるが、成長速度の速いHVPE法が好ましい。
 図1は、本発明に用いられる窒化物半導体結晶の製造装置の構成例を説明するための図であるが、構成の詳細に特別な制限はない。図1に図示したHVPE装置は、リアクター100内に、種結晶109を載置するための基板ホルダー105と、基板ホルダーを上下させることができる昇降機構106とを備えている。また、リアクター100内にガスを導入するための導入管101~104と、排気するための排気管108が設置されている。さらに、リアクター100を側面から加熱するためのヒーター107が設置されている。
 リアクター100の材質としては、石英、焼結体窒化ホウ素、ステンレス等が用いられる。好ましい材質は石英である。リアクター100内には、反応開始前にあらかじめ雰囲気ガスを充填しておく。雰囲気ガス(キャリアガス)としては、例えば水素、窒素、He、Ne、Arのような不活性ガス等を挙げることができる。これらのガスは混合して用いてもよい。
 基板ホルダー105の材質としてはカーボンが好ましく、SiCで表面をコーティングしているものがより好ましい。基板ホルダー105の形状は、本発明で用いる種結晶109を保持することができる形状であれば特に制限されないが、結晶成長する際に結晶成長面付近に構造物が存在しないものであることが好ましい。結晶成長面付近に成長する可能性のある構造物が存在すると、そこに多結晶体が付着し、その生成物としてHClガスが発生して結晶成長させようとしている結晶に悪影響が及んでしまう。種結晶109と基板ホルダー105の接触面は、種結晶の結晶成長面から1mm以上離れていることが好ましく、3mm以上離れていることがより好ましく、5mm以上離れていることがさらに好ましい。
 導入管101からは、例えばIII族窒化物半導体を成長させる場合、III族源となる原料ガスを供給する。このとき、ガリウム、アルミニウム、インジウムなどの塩化物ガス等を直接導入してもよいし、またリアクター内でガリウム、アルミニウム、インジウムなどの金属原料と塩酸ガス等を反応させた後、その反応ガスを導入してもよい。
 その際、原料ガスとともに、導入管104からキャリアガスを供給してもよい。キャリアガスとしては、例えば水素、窒素、He、Ne、Arのような不活性ガス等を挙げることができる。これらのガスは混合して用いてもよい。
 導入管103からは、窒素源となる原料ガスを供給する。通常はNHを供給する。また、導入管102からは、キャリアガスを供給する。キャリアガスとしては、導入管104から供給するキャリアガスと同じものを例示することができる。このキャリアガスは原料ガスノズルを分離し、ノズル先端にポリ結晶が付着することを防ぐ効果もある。また、導入管102からは、ドーパントガスを供給することもできる。例えば、SiHやSiHCl、HS等のn型のドーパントガスを供給することができる。
 導入管101~104から供給する上記ガスは、それぞれ互いに入れ替えて別の導入管から供給しても構わない。また、窒素源となる原料ガスとキャリアガスは、同じ導入管から混合して供給してもよい。さらに他の導入管からキャリアガスを混合してもよい。これらの供給態様は、リアクター100の大きさや形状、原料の反応性、目的とする結晶成長速度などに応じて、適宜決定することができる。
 導入管101~104の導入位置や導入方向は、特定のものに限定されるものではない。例えば横からの導入、また下からの導入、上からの導入、斜めからの導入が可能である。種結晶の主面(例えば種結晶の第一側面)を見込む空間と主面に対向する面(例えば種結晶の第二側面)を見込む空間からそれぞれ種結晶に向けて導入する態様、特に図1に示すように、種結晶の結晶成長面の右斜め上方と左斜め上方から結晶成長面を挟み込むように導入する態様を好ましい例として挙げることができる。図1では、導入管101~103が重ねて設置されているが、これらの導入管はそれぞれ離れて設置されていても構わない。もっとも導入管101~103を重ねて設置しておけば、キャリアガスで原料ガスを分離することができ、供給口付近の多結晶体発生を抑制することができるという利点がある。
 導入管先端の供給口形状は特に制限されるものではない。例えば、種結晶の結晶成長面と相似形にしたり、種結晶上に成長する結晶の結晶成長端と相似形にしたりすることができる。なかでも、供給口の形状がスリット状であり、該スリット状開口部の最大長が種結晶109の第一辺及び第二辺の長さ以上であることが好ましい。具体的には10mm以上であることが好ましく、30mm以上であることがより好ましく、50mm以上であることが更に好ましい。また供給口が平行に配置した複数のスリットからなってもよい。供給口の材質としては石英、熱分解窒化ホウ素(PBN)、熱分解グラファイト(PG)、SiC等が好ましく、石英、PBN、PGがより好ましい。
 ガス排気管108は、リアクター内壁の上面、底面、側面に設置することができる。ゴミ落ちの観点から結晶成長端よりも下部にあることが好ましく、図1のようにリアクター底面にガス排気管108が設置されていることがより好ましい。
 別の成長装置例として、図2に示す装置を挙げることもできる。ここでは、種結晶209を基板ホルダー205の上に設置することができるようになっており、昇降機構206で下向きに移動可能になっている点が図1の装置と異なっている。また、キャリアガス用配管204が種結晶209の直上に設置されている点も異なっている。
 さらに別の成長装置として、図3に示す装置を挙げることもできる。ここでも、種結晶309を基板ホルダー305の上に設置することができるようになっており、昇降機構306で下向きに移動可能になっている点が図1の装置と異なっている。また、導入管301~303が種結晶309の直上に設置されている点も異なっている。
 図1のような成長装置を用いれば気相中で発生するパーティクルの影響を低減でき、ピットのない良質な結晶が得られるという利点があり、図2や図3のような成長装置を用いれば昇降機構等の駆動部を装置下部に設置することができメンテナンスが容易になるという利点がある。
(結晶成長工程における制御)
 本発明の窒化物半導体結晶の製造方法では、少なくとも一種類の原料ガスを常に前記板状結晶の結晶成長端に向けて供給するように制御することが好ましい。ここで、結晶成長端に向けて供給するとは、結晶成長端の方向に向けて原料ガスを供給することを意味する。従来法にしたがって固定された基板ホルダー上に種結晶を設置し、その種結晶上に窒化物半導体結晶を成長させると、結晶成長に伴って結晶成長端は移動する。この移動分を考慮しつつ、常に結晶成長端の方向に向けて原料が供給されるようにすることが好ましい。
 ここで、結晶成長端に向けて供給する原料ガスは、結晶成長に用いる原料ガスのうちの少なくとも一種類であればよい。原料ガスのうちの一種類だけを選択して結晶成長端に向けて供給する場合は、拡散しにくい原料ガスを選択することが好ましい。例えば窒化物半導体結晶としてGaN結晶を成長させるときには、原料ガスとしてNHガスとGaClガスを採用することが多いが、このときに一方だけを選択して結晶成長端に向けて供給する場合は、GaClを選択することが好ましい。選択しなかった原料ガスは、例えばリアクター上部からキャリアガスと共に供給するなどして、結晶成長端に拡散供給されるようにしておく。
 本発明の窒化物半導体結晶の製造方法では、少なくとも一種類の原料ガスを供給する供給口と結晶成長端との距離を一定に保つように制御することが好ましい。原料ガスを供給する供給口と結晶成長端の距離は、近すぎると供給口に窒化物半導体の多結晶体が付着してしまい長時間成長させることができなくなってしまうし、逆に遠すぎると原料効率が下がり所望の結晶成長速度が得られなくなってしまう。このため、供給口と結晶成長端の距離は、一般的には1cm~15cmが好ましく、3cm~12cmがより好ましく、5cm~10cmがさらに好ましい。結晶成長工程中において、供給口と結晶成長端との距離は、常に成長開始時の距離の±15mm以内に制御することが好ましく、±10mm以内に制御することがより好ましく、±5mm以内に制御することがさらに好ましい。また、供給口からの原料ガスの供給速度は、通常0.01m/min~1m/minであり、0.05m/min~0.7m/minであることが好ましく、0.1m/min~0.4m/minであることがより好ましい。
 本発明の窒化物半導体結晶の製造方法において、少なくとも一種類の原料ガスを常に前記板状結晶の結晶成長端に向けて供給するように制御する方法は特に制限されない。例えば、結晶成長と共に、種基板を保持する基板ホルダーの位置や原料ガス供給口の位置を移動させたり、原料ガス供給口の吹出角度やガス供給速度を変えたりすることにより制御することができる。これらの制御方法は組み合わせて行ってもよい。これらの移動や変化は連続的に行ってもよいし、逐次で行ってもよいが、連続的に行うことが好ましい。
 具体的な制御方法としては、原料ガス供給口を固定しておいて、結晶成長と共に種基板を保持する基板ホルダーの位置を結晶成長方向と逆向きに移動させる方法や、基板ホルダーの位置を固定しておいて、結晶成長と共に原料ガス供給口の位置を結晶成長方向に移動させる方法を採用することができる。これらの方法を採用するときには、基板ホルダーや原料ガス供給口の移動速度を結晶成長速度と同程度にすることが好ましい。また他の制御方法として、基板ホルダーの位置を固定しておいて、結晶成長と共に原料ガス供給口の吹出角度または原料ガス供給口から供給されるガス供給速度の少なくとも一方を変える方法も挙げることができる。
 上記の位置制御や角度制御を適正に行うためには、結晶成長工程中の結晶成長端の位置を正確に把握することが必要である。このため、本発明で使用する結晶成長装置には結晶成長端の位置検出機構が備えられていることが好ましい。結晶成長端の位置検出機構は、結晶成長工程中における結晶成長端の位置を測定してその結果を制御のために利用できる機能を備えたものであれば、その種類は特に制限されない。例えば、CCD(電荷結合素子)などの画像観察装置を好ましく採用することができる。また、耐熱性のボアスコープなどを採用してもよい。
 結晶成長端の位置検出機構により得られた情報は、制御機構により処理することが好ましい。制御機構は、結晶成長端の位置に応じて結晶成長装置中の基板ホルダーや供給口の位置や供給口の吹出角度を制御する指示を出す機能を備えている。制御機構は、制御状況をモニターするための出力機構と組み合わされていてもよい。制御機構と出力機構の詳細について、図4に示す機構を例にとって説明する。図4の制御機構401は、A/Dコンバーター403、CPU(中央処理装置)404、モータードライバー405からなっており、出力機構407はディプレイ408、プリンター409からなっている。結晶成長端の位置検出機構402により検出された結晶成長端の位置データ(例えば座標)は、A/Dコンバーター403によりデジタルデータに変換し、CPU404へ導く。CPU404にて適切な補正等を行った後、出力機構407内の出力回路にしたがってデータを数値化ないしグラフ化してディスプレイ408に表示させ、プリンター409によりそれらを印刷する。また、CPU404では得られた位置情報に応じて最適な制御方向と制御量を算出し、モータードライバー405に指示を出し、基板ホルダーや原料ガス供給口の位置を移動させるモーター406を駆動させる。これらの一連の動作は予めコンピュータにプログラムとしておき、CPU404の指令によりモータードライバー405やA/Dコンバーター403を介して自動で実施させることが可能である。なお、結晶成長端の位置検出機構402が位置情報をデジタル信号として出力する場合は、A/Dコンバーター403を省略することができる。
 なお、経験則などにより把握した結晶成長速度等に基づき、結晶成長工程中における結晶成長端の位置をほぼ正確に予測することが可能であれば、結晶成長端の位置検出機構は省略することが可能である。また、結晶成長端の位置検出機構の代わりに、結晶成長装置内の温度や圧力を測定する機構を用いて、それらの測定結果に基づいて結晶成長端の位置を予測して制御してもよい。これらの改変は、当業者の知識の範囲内で適宜行うことが可能である。
 本発明の製造方法にしたがって、基板ホルダーや原料ガス供給口の位置を移動させる場合、その移動距離は製造しようとする結晶の大きさに応じて決めることができる。大型の結晶を得る場合は、10mm以上が好ましく、20mm以上がより好ましく、50mm以上がさらに好ましい。
(結晶成長条件)
 本発明における結晶成長は、通常は950℃~1120℃で行い、970℃~1100℃で行うことが好ましく、980℃~1090℃で行うことがより好ましく、990℃~1080℃で行うことがさらに好ましい。リアクター内の圧力は10kPa~200kPaであるのが好ましく、30kPa~150kPaであるのがより好ましく、50kPa~120kPaであるのがさらに好ましい。
 本発明における結晶成長の成長速度は、成長方法、成長温度、原料ガス供給量、結晶成長面方位等により異なるが、一般的には5μm/h~500μm/hの範囲であり、10μm/h~500μm/hが好ましく、50μm/h~400μm/hがより好ましく、100μm/h~300μm/hであることがさらに好ましい。成長速度は、上記の他キャリアガスの種類、流量、供給口-結晶成長端距離等を適宜設定することによって制御することができる。
(窒化物半導体結晶)
 本発明により得られる窒化物半導体結晶は、成長時の側面を主面とする板状の結晶である。この板状結晶の主面は、通常は種結晶の投影面に垂直な面である。種結晶の主面が投影面に垂直である場合は、得られる板状結晶の主面は種結晶の主面と平行になる。例えば、投影面が+C面で、主面がM面である種結晶を用いて本発明により得られる窒化物半導体結晶は、M面を主面とする板状結晶である。また、投影面が+C面で、主面がA面である種結晶を用いて本発明により得られる窒化物半導体結晶は、A面を主面とする板状結晶である。本発明の製造方法によれば、得られる板状結晶の主面を十分な大きさにすることができるため、スライス技術を使うことなく、研削、研磨のみで窒化物半導体基板として仕上げることができる。なお、本明細書において「主面」とは、結晶を構成する面のうち面積が最大である面を意味する。
 スライス技術を使うことなく、研削、研磨のみで窒化物半導体基板として仕上げることができるという利点は、特に非極性面を主面とする窒化物半導体基板を得る場合に効果的に活用することができる。例えば、M面を主面とする窒化物半導体基板を製造しようとする場合、従来法によれば種結晶のC面上にC面に垂直な方向に窒化物半導体結晶を成長させた後、得られた窒化物半導体結晶をC面に垂直な方向にスライスしてM面を出さなければならなかった。この方法では、工程数が多いうえに、かなり大きな窒化物半導体結晶を成長させなければならないという欠点がある。一方、本発明の製造方法によれば、スライスの必要がないため工程数を減らすことができ、しかも必要としている基板サイズよりもやや大きめの結晶を成長させれば足りる。したがって、本発明によれば効率よく目的とする窒化物半導体基板を得ることができる。例えば、非極性面を主面とし、厚みが1.5mm以下である板状窒化物半導体結晶を好ましく提供することができる。
 本発明によれば、主面の面積が大きな板状窒化物半導体結晶を容易に得ることができる。主面の面積は、種結晶の結晶成長面のサイズや結晶成長時間により適宜調整することが可能である。本発明によれば、例えば主面の面積を2500mm以上にすることができ、5700mm以上にすることが可能であり、さらには10000mm以上にすることが可能である。
 本発明により提供される窒化物半導体結晶の種類は特に制限されない。具体的には、III族窒化物半導体結晶を挙げることができ、より具体的には、窒化ガリウム、窒化アルミニウム、窒化インジウム、又はこれらの混晶を挙げることができる。
 本発明の製造方法により得られた窒化物半導体結晶は、さまざまな用途に用いることができる。特に、紫外、青色又は緑色等の発光ダイオード、半導体レーザー等の比較的短波長側の発光素子や、電子デバイス等の半導体デバイスの基板として有用である。また、本発明の製造方法により製造した窒化物半導体結晶を下地基板として用いて、さらに大きな窒化物半導体結晶を得ることも可能である。
 以下に実施例と比較例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
(実施例1)
 本実施例では、図2に示すHVPE装置を用いて窒化物半導体結晶の成長を行った。図2のHVPE装置には、スリット状のノズルが3段備え付けられており、この原料供給口の1段のサイズは、幅20mm、高さ2mmであり、PBN製である。
 M面を主面とするGaN種結晶209を用意した。この種結晶は、HVPE法でC面GaNテンプレート上に作製されたものをスライスして得られた結晶であり、a軸方向に約20.0mm、c軸方向に約8mm、m軸方向に約1mmの長さを有する直方体である。
 次いで、HVPE装置のリアクター200内の基板ホルダー205に、+C面が上向きで且つスリット吹出し口の長手方向と種結晶のa軸方向が平行になるように種結晶をセットした。反応室の温度を1040℃まで上げ、原料を+C面上に供給することにより、アンドープGaNを+C面上に成長させた。この成長工程においては成長圧力を1.01×10Paとし、スリット状のノズルの上段からのNHガスの分圧を7×10Pa、中段からNガスの分圧を3×10Pa、下段からGaClガスの分圧を3×10Paとし導入した。204からはキャリアガスとしてHガスを導入した。
 50時間成長した後、室温まで降温し、縦が約22.0mm、横が約22.0mmの正方形の側面(M面)を有し、m軸方向の厚さが約1mmのGaN単結晶を得た。主面(M面)の面積は484.0mm、成長面(+C面)の面積は22.0mmであった。
 このGaN単結晶を研磨、整形することにより、縦20.0mm、横20.0mm、厚さ350μmの正方形のM面を主面とする自立基板が得られた。
(比較例1)
 直径2インチ、厚さ430μmのサファイア基板を下地基板として用いて、その上にMOCVD法で2μmの(0001)面GaNを成長することにより、2インチGaNテンプレート基板を準備した。次いで、基板をHVPE装置のリアクター装置内に配置して、成長温度を1040℃に昇温した後、下地GaN層上に、実質的にHのみからなるキャリアガスと、GaとHClの反応生成物であるGaClガスと、NHガスとを供給しながら、GaN層を約40時間にわたって成長させた。この成長工程において、成長圧力を1.01×10Paとし、GaClガスの分圧を3.07×10Paとし、NHガスの分圧を1.27×10Paとした。成長終了後、室温まで降温し厚さが約5mmのGaN単結晶を得た。
 ワイヤーソータイプの装置を用いて、スライシングを行った。各ワイヤーの間隔は700μmで、スライシング速度は1mm/hである。ワイヤーの直径は0.1~0.2mmの範囲で適宜選択した。結晶のC面と垂直にM面と平行にスライシングすることにより、複数枚のM面GaN基板を得た。得られたGaN基板のサイズは短辺約5mm、長辺約10~30mmの長方形形状であった。
(実施例2)
 本実施例では、図3に示すHVPE装置を用いて窒化物半導体結晶の成長を行った。
 M面を主面とするGaN種結晶309を用意した。この種結晶は、HVPE法でC面GaNテンプレート上に作製されたものをスライスして得られた結晶であり、a軸方向に約20.0mm、c軸方向に約5.0mm、m軸方向に約0.3mmの長さを有する直方体である。
 HVPE装置のリアクター300内の基板ホルダー305に、+C面が上向きで種結晶をセットした。この時-C面は基板ホルダー305に接しており、直接原料ガスと触れることはない。反応室の温度を1040℃まで上げ、原料を+C面方向から供給することにより、アンドープGaNを成長させた。この成長工程においては成長圧力を1.01×10Paとし、NHガスの分圧を7.03×10Pa、Nガスの分圧を1.79×10Pa、GaClガスの分圧を7.37×10Pa、Hガスの分圧を7.53×10Paとし導入した。
 40時間成長した後、室温まで降温した。得られたGaN単結晶の形状は板状であり、a軸方向が約22.0mm、c軸方向が約12.5mm、m軸方向の厚さが約1.4mmであった。主面(M面)の面積は275.0mmであった。
 このGaN単結晶を研磨、整形することにより、a軸方向が20.0mm、c軸方向が11.0mm、厚さ330μmの長方形のM面を主面とする自立基板が得られた。
(実施例3)
 本実施例では、GaN種結晶としてa軸方向に約20.0mm、c軸方向に約4.2mm、m軸方向に約4.5mmの長さを有する直方体の結晶を用いた以外は、実施例2と全く同様に行った。
 40時間成長した後、室温まで降温した。得られたGaN単結晶は板状であり、a軸方向が約22.0mm、c軸方向が約11.0mm、m軸方向の厚さが約5.6mmであった。主面(M面)の面積は187.0mmであった。
 このGaN単結晶をスライス、研磨、整形することにより、a軸方向が20.0mm、c軸方向が10.0mm、厚さ330μmの長方形のM面を主面とする自立基板が5枚得られた。
(比較例2)
 本比較例では、GaN種結晶としてa軸方向に約20.0mm、c軸方向に約0.4mm、m軸方向に約7.0mmの長さを有する直方体の結晶を用いた以外は、実施例2と全く同様に行った。
 40時間成長した後、室温まで降温した。得られたGaN単結晶は板状では無く、図5に示すような、+c軸方向に成長した2つの壁が形成された形状となった。a軸方向が約20.0mm、c軸方向の最大長は約10.0mm、最小長は約5.2mmであり、c軸方向の長さは均一ではなく凸凹していた。また一つの壁のm軸方向の厚さは約0.8mmであった。
(実施例4)
 M面((10-10)面)を主面とし、側面が+C面、(-1-122)面、-C面、(11-22)面の4面からなるGaN種結晶を用意した。この種結晶は、c軸方向に約5mm、a軸方向に約15mm~18mm、m軸方向に約2mmの長さを有している。
 図3に示すHVPE装置のリアクター内の基板ホルダーに、+C面が上向きとなるように種結晶をセットした。この時-C面は基板ホルダーに接しており、直接原料ガスと触れることはない。反応室の温度を1040℃まで上げ、原料を+C面方向から供給することにより、アンドープGaNを成長させた。この成長工程においては、成長圧力を1.01×10Paとし、NHガスの分圧を7.03×10Pa、Nガスの分圧を1.79×10Pa、GaClガスの分圧を7.37×10Pa、Hガスの分圧を7.53×10Paとし導入した。
 40時間成長した後、室温まで降温した。得られたGaN単結晶は角部に異常成長はなく、均質な板状結晶が得られた。成長後のc軸方向の長さは約15mmであった。
 このGaN単結晶をスライス、研磨、整形することにより、15mm角で厚さ330μmのM面を主面とする均質な自立基板が複数枚得られた。
(実施例5)
 M面((10-10)面)を主面とし、側面が+C面、(1-100)面、-C面、(01-10)面の4面からなるGaN種結晶を用意した。この種結晶は、c軸方向に約5mm、a軸方向に約15mm~18mm、m軸方向に約2mmの長さを有している。
 実施例4と同様に40時間成長した後、室温まで降温した。得られたGaN単結晶は角部に異常成長はなく、均質な板状結晶が得られた。この点で実施例4と実施例5の板状結晶は、他の実施例の板状結晶よりもさらに優れていた。実施例5の成長後のc軸方向の長さは約15mmであった。
 このGaN単結晶を研磨、整形することにより、15mm角で厚さ330μmのM面を主面とする均質な自立基板が得られた。
(実施例6)
 M面を主面とし、側面が+C面、A面、-C面、A面の4面からなるGaN種結晶を用意した。この種結晶は、c軸方向に約5mm、a軸方向に約15mm、m軸方向に約2mmの長さを有する長方体である。
 実施例4と同様にして40時間成長した後、室温まで降温した。このGaN単結晶を研磨、整形することにより、M面を主面とする自立基板が得られた。
(実施例7)
 本実施例では、図2に示す装置に、さらにCCDと基板ホルダー昇降機構を設置したHVPE装置を用いてGaN結晶成長を行う。CCDは、結晶成長に伴って移動する結晶成長端の位置を正確に測定できるように設置されている。CCDにより測定された結晶成長端の位置情報は、図4の制御機構にしたがって処理され、結晶成長工程中に結晶成長端の位置が常に同じ位置にあるように基板ホルダー昇降機構を駆動させるようにあらかじめ設定されている。すなわち、結晶が成長し結晶成長端が図の上方に移動したことが検出されると、その移動分だけ基板ホルダーが図の下方に移動するように設定されている。このようなHVPE装置を用いた点を除いて、その他の条件は実施例1と同じにしてGaN結晶成長を行う。
 その結果、実施例1と同様のサイズを有するM面を主面とする自立基板が得られる。実施例1に比べて、成長速度が速く、結晶成長面の全体にわたってより均一に結晶成長が認められる。
(実施例8)
 本実施例では、図2に示す装置に、さらにCCDと基板ホルダー昇降機構を設置したHVPE装置を用いてGaN結晶成長を行う。CCDは、結晶成長に伴って移動する結晶成長端の位置を正確に測定できるように設置されている。CCDにより測定された結晶成長端の位置情報は、図4の制御機構にしたがって処理され、結晶成長工程中に結晶成長端とノズルの供給口の位置関係が常に同じになるようにノズル昇降機構を駆動させるようにあらかじめ設定されている。すなわち、結晶が成長し結晶成長端が図の上方に移動したことが検出されると、その移動分だけノズルの供給口も図の上方に移動するように設定されている。このようなHVPE装置を用いた点を除いて、その他の条件は実施例1と同じにしてGaN結晶成長を行う。
 その結果、実施例1と同様のサイズを有するM面を主面とする自立基板が得られる。実施例1に比べて、成長速度が速く、結晶成長面の全体にわたってより均一に結晶成長が認められる。
(実施例9)
 本実施例では、図2に示す装置に、さらにCCDと基板ホルダー昇降機構を設置したHVPE装置を用いてGaN結晶成長を行う。CCDは、結晶成長に伴って移動する結晶成長端の位置を正確に測定できるように設置されている。CCDにより測定された結晶成長端の位置情報は、図4の制御機構にしたがって処理され、結晶成長工程中にに結晶成長端に向けて原料ガスが供給されるようにノズル供給口の向き(角度)を制御するようにあらかじめ設定されている。すなわち、結晶が成長し結晶成長端が図の上方に移動したことが検出されると、ノズルの供給口の向きを上方に向くように設定されている。このようなHVPE装置を用いた点を除いて、その他の条件は実施例1と同じにしてGaN結晶成長を行う。
 その結果、実施例1と同様のサイズを有するM面を主面とする自立基板が得られる。実施例1に比べて、成長速度が速く、結晶成長面の全体にわたってより均一に結晶成長が認められる。
(実施例10)
 本実施例では、図1に示すHVPE装置を用いて窒化物半導体結晶の成長を行う。図1のHVPE装置には、スリット状のノズルが3段備え付けられており、この原料供給口の1段のサイズは、幅20mm、高さ2mmであり、PBN製である。
 実施例1と同じGaN種結晶109を用意して、HVPE装置のリアクター100内の基板ホルダー105に、+C面が下向きで且つスリット吹出し口の長手方向と種結晶のa軸方向が平行になるように種結晶をセットする。反応室の温度を1040℃まで上げ、原料を+C面の方向に供給することにより、アンドープGaNを+C面上に成長させる。この成長工程においては成長圧力を1.01×10Paとし、スリット状のノズルの上段からのNHガスの分圧を7×10Pa、中段からNガスの分圧を3×10Pa、下段からGaClガスの分圧を3×10Paとし導入した。104からはキャリアガスとしてHガスを導入する。
 50時間成長した後、室温まで降温することにより、実施例1と同様の結晶を得る。このGaN単結晶を研磨、整形することにより、正方形のM面を主面とする自立基板を得る。
(実施例11)
 本実施例では、図1に示す装置に、さらにCCDと基板ホルダー昇降機構を設置したHVPE装置を用いてGaN結晶成長を行う。CCDは、結晶成長に伴って移動する結晶成長端の位置を正確に測定できるように設置されている。CCDにより測定された結晶成長端の位置情報は、図4の制御機構にしたがって処理され、結晶成長工程中に結晶成長端の位置が常に同じ位置にあるように基板ホルダー昇降機構を駆動させるようにあらかじめ設定されている。すなわち、結晶が成長し結晶成長端が図の下方に移動したことが検出されると、その移動分だけ基板ホルダーが図の上方に移動するように設定されている。このようなHVPE装置を用いた点を除いて、その他の条件は実施例10と同じにしてGaN結晶成長を行う。
 その結果、実施例10と同様のサイズを有するM面を主面とする自立基板が得られる。実施例5に比べて、成長速度が速く、結晶成長面の全体にわたってより均一に結晶成長が認められる。
(実施例12)
 本実施例では、図1に示す装置に、さらにCCDと基板ホルダー昇降機構を設置したHVPE装置を用いてGaN結晶成長を行う。CCDは、結晶成長に伴って移動する結晶成長端の位置を正確に測定できるように設置されている。CCDにより測定された結晶成長端の位置情報は、図4の制御機構にしたがって処理され、結晶成長工程中に結晶成長端とノズルの供給口の位置関係が常に同じになるようにノズル昇降機構を駆動させるようにあらかじめ設定されている。すなわち、結晶が成長し結晶成長端が図の下方に移動したことが検出されると、その移動分だけノズルの供給口も図の下方に移動するように設定されている。このようなHVPE装置を用いた点を除いて、その他の条件は実施例10と同じにしてGaN結晶成長を行う。
 その結果、実施例10と同様のサイズを有するM面を主面とする自立基板が得られる。実施例10に比べて、成長速度が速く、結晶成長面の全体にわたってより均一に結晶成長が認められる。
(実施例13)
 本実施例では、図1に示す装置に、さらにCCDと基板ホルダー昇降機構を設置したHVPE装置を用いてGaN結晶成長を行う。CCDは、結晶成長に伴って移動する結晶成長端の位置を正確に測定できるように設置されている。CCDにより測定された結晶成長端の位置情報は、図4の制御機構にしたがって処理され、結晶成長工程中に常に結晶成長端に向けて原料ガスが供給されるようにノズル供給口の向き(角度)を制御するようにあらかじめ設定されている。すなわち、結晶が成長し結晶成長端が図の下方に移動したことが検出されると、ノズルの供給口の向きを下方に向くように設定されている。このようなHVPE装置を用いた点を除いて、その他の条件は実施例10と同じにしてGaN結晶成長を行う。
 その結果、実施例10と同様のサイズを有するM面を主面とする自立基板が得られる。実施例10に比べて、成長速度が速く、結晶成長面の全体にわたってより均一に結晶成長が認められる。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2008年3月3日出願の日本特許出願(特願2008-052587号)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明の窒化物半導体結晶の製造方法によれば、所望の板状の窒化物半導体結晶を簡便な方法で効率よく製造することができる。特に非極性面を主面とする大面積の窒化物半導体基板を簡便な方法で製造することができる。したがって、本発明によれば製造コストと労力を削減することが可能であるとともに、従来は製造することができなかった新しい窒化物半導体結晶を提供することもできる。したがって、本発明は産業上の利用可能性が高い。

Claims (30)

  1.  種結晶に対して原料ガスを供給することによって前記種結晶上に窒化物半導体結晶を成長させる結晶成長工程を含む、窒化物半導体結晶の製造方法であって、
     前記種結晶上に成長させる窒化物半導体結晶が板状結晶であり、
     前記板状結晶を成長させる前記種結晶上の結晶成長面を成長方向に投影した投影面の長手方向の長さLと最大幅Wの比(L/W)が2~400であって、前記最大幅Wが5mm以下であることを特徴とする窒化物半導体結晶の製造方法。
  2.  前記種結晶の結晶成長面が、+C面、{10-1X}面および{11-2Y}面からなる群より選択される1以上の面であることを特徴とする請求項1に記載の窒化物半導体結晶の製造方法(前記Xと前記Yは、各々独立に0以外の整数である)。
  3.  前記種結晶の結晶成長面が、+C面、{10-1X}面、またはその両方であって、前記種結晶の主面が略M面であることを特徴とする請求項2に記載の窒化物半導体結晶の製造方法。
  4.  前記種結晶の結晶成長面が、+C面、{11-2Y}面、またはその両方であって、前記種結晶の主面が略A面であることを特徴とする請求項2に記載の窒化物半導体結晶の製造方法。
  5.  前記種結晶が、{10-10}面、{11-2Z}面、{10-1S}面、または{11-20}面を有することを特徴とする請求項2~4のいずれか一項に記載の窒化物半導体結晶の製造方法(前記Zと前記Sは、各々独立に0以外の整数である)。
  6.  互いに平行な第一辺と第二辺を有する結晶成長面と、前記結晶成長面と垂直な面であって前記結晶成長面の第一辺を一辺とする第一側面と、前記結晶成長面と垂直な面であって前記結晶成長面の第二辺を一辺とする第二側面とを少なくとも有していて、前記結晶成長面の第一辺と第二辺の距離が5mm以下であり、前記結晶成長面の第一辺と第二辺の平均長と第一辺と第二辺の距離の比(平均長/距離)が2~400である種結晶に対して、原料ガスを供給することによって、前記結晶成長面に対して垂直な方向へ板状結晶を成長させる結晶成長工程を含むことを特徴とする請求項1に記載の窒化物半導体結晶の製造方法。
  7.  前記種結晶の第一側面が非極性面であることを特徴とする請求項6に記載の窒化物半導体結晶の製造方法。
  8.  前記種結晶が、結晶成長面がC面であり、第一側面がM面である六方晶であることを特徴とする請求項6に記載の窒化物半導体結晶の製造方法。
  9.  前記種結晶が、結晶成長面がC面であり、第一側面がA面である六方晶であることを特徴とする請求項6に記載の窒化物半導体結晶の製造方法。
  10.  前記結晶成長工程によって、第一側面と平行な面が主面となるように窒化物半導体結晶を成長させることを特徴とする請求項6~9のいずれか一項に記載の窒化物半導体結晶の製造方法。
  11.  前記結晶成長工程において、前記原料ガスの少なくとも一種類を常に前記板状結晶の結晶成長端に向けて供給するように制御することを特徴とする請求項1~10のいずれか一項に記載の窒化物半導体結晶の製造方法。
  12.  前記原料ガスを供給する供給口と前記板状結晶の結晶成長端との距離を一定に保つように制御することを特徴とする請求項1~11のいずれか一項に記載の窒化物半導体結晶の製造方法。
  13.  前記制御を、前記供給口と前記結晶成長端との距離を計測しながら行うことを特徴とする請求項12に記載の窒化物半導体結晶の製造方法。
  14.  前記結晶成長工程において、前記板状結晶の成長に伴って前記原料ガスを供給する供給口の位置を移動させることを特徴とする請求項11~13のいずれか一項に記載の窒化物半導体結晶の製造方法。
  15.  前記結晶成長工程において、前記板状結晶の成長に伴って前記原料ガスを供給する供給口の向きを変えることを特徴とする請求項11~14のいずれか一項に記載の窒化物半導体結晶の製造方法。
  16.  前記結晶成長工程において、前記板状結晶の成長に伴って前記原料ガスの供給速度を変えることを特徴とする請求項11~15のいずれか一項に記載の窒化物半導体結晶の製造方法。
  17.  前記結晶成長工程において、前記板状結晶の成長に伴って前記種結晶の位置を移動させることを特徴とする請求項11~16のいずれか一項に記載の窒化物半導体結晶の製造方法。
  18.  前記結晶成長工程において、前記原料ガスを、前記種結晶の結晶成長面に垂直な方向から供給することを特徴とする請求項1~17のいずれか一項に記載の窒化物半導体結晶の製造方法。
  19.  前記結晶成長工程において、前記原料ガスを、前記種結晶の主面を見込む空間と前記主面と対向する面を見込む空間からそれぞれ前記種結晶に向けて供給することを特徴とする請求項1~17のいずれか一項に記載の窒化物半導体結晶の製造方法。
  20.  前記原料ガスを供給する供給口の形状が前記結晶成長端の形状と相似形であることを特徴とする請求項1~19のいずれか一項に記載の窒化物半導体結晶の製造方法。
  21.  前記原料ガスを供給する供給口の形状がスリット状であり、該スリット状開口部の最大長が前記種結晶の投影面の長さL以上であることを特徴とする請求項1~20のいずれか一項に記載の窒化物半導体結晶の製造方法。
  22.  前記種結晶を位置決めするための支持体に前記種結晶が設置されており、前記種結晶と前記支持体の接触面が、前記種結晶の結晶成長面から1mm以上離れていることを特徴とする請求項1~21のいずれか一項に記載の窒化物半導体結晶の製造方法。
  23.  前記種結晶が、サファイア、SiC、ZnO、及びIII族窒化物半導体からなる群より選択されることを特徴とする請求項1~22のいずれか一項に記載の窒化物半導体結晶の製造方法。
  24.  前記窒化物半導体がIII族窒化物半導体であることを特徴とする請求項1~23のいずれか一項に記載の窒化物半導体結晶の製造方法。
  25.  前記窒化物半導体がGaN半導体であることを特徴とする請求項1~24のいずれか一項に記載の窒化物半導体結晶の製造方法。
  26.  主面の面積が2500mm以上である板状結晶を成長することを特徴とする請求項1~25のいずれか一項に記載の窒化物半導体結晶の製造方法。
  27.  前記主面が非極性面であることを特徴とする請求項26に記載の窒化物半導体結晶の製造方法。
  28.  請求項1~27のいずれか一項に記載の結晶成長工程を実施することにより前記種結晶上に窒化物半導体結晶を成長させ、成長させた前記窒化物半導体結晶を前記種結晶から分離することを特徴とする、成長させた前記窒化物半導体結晶をスライスすることなく窒化物半導体結晶を製造する方法。
  29.  請求項1~28のいずれか一項に記載の製造方法により製造される窒化物半導体結晶。
  30.  面積が2500mm以上である非極性面を主面とし、厚みが1.5mm以下であることを特徴とする板状窒化物半導体結晶。
PCT/JP2009/053893 2008-03-03 2009-03-02 窒化物半導体結晶とその製造方法 WO2009110436A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/920,976 US8545626B2 (en) 2008-03-03 2009-03-02 Nitride semiconductor crystal and its production method
EP09717726A EP2261401A4 (en) 2008-03-03 2009-03-02 NITRIDE-SEMICONDUCTOR CRYSTAL AND MANUFACTURING METHOD THEREFOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-052587 2008-03-03
JP2008052587 2008-03-03

Publications (1)

Publication Number Publication Date
WO2009110436A1 true WO2009110436A1 (ja) 2009-09-11

Family

ID=41055991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/053893 WO2009110436A1 (ja) 2008-03-03 2009-03-02 窒化物半導体結晶とその製造方法

Country Status (5)

Country Link
US (1) US8545626B2 (ja)
EP (1) EP2261401A4 (ja)
JP (1) JP2009234906A (ja)
KR (1) KR20100134577A (ja)
WO (1) WO2009110436A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130000552A1 (en) * 2011-06-28 2013-01-03 Nitride Solutions Inc. Device and method for producing bulk single crystals

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8269251B2 (en) 2007-05-17 2012-09-18 Mitsubishi Chemical Corporation Method for producing group III nitride semiconductor crystal, group III nitride semiconductor substrate, and semiconductor light-emitting device
US8847249B2 (en) 2008-06-16 2014-09-30 Soraa, Inc. Solid-state optical device having enhanced indium content in active regions
US8805134B1 (en) 2012-02-17 2014-08-12 Soraa Laser Diode, Inc. Methods and apparatus for photonic integration in non-polar and semi-polar oriented wave-guided optical devices
US8767787B1 (en) 2008-07-14 2014-07-01 Soraa Laser Diode, Inc. Integrated laser diodes with quality facets on GaN substrates
US8143148B1 (en) 2008-07-14 2012-03-27 Soraa, Inc. Self-aligned multi-dielectric-layer lift off process for laser diode stripes
US8284810B1 (en) 2008-08-04 2012-10-09 Soraa, Inc. Solid state laser device using a selected crystal orientation in non-polar or semi-polar GaN containing materials and methods
CN102144294A (zh) 2008-08-04 2011-08-03 Soraa有限公司 使用非极性或半极性的含镓材料和磷光体的白光器件
US8634442B1 (en) 2009-04-13 2014-01-21 Soraa Laser Diode, Inc. Optical device structure using GaN substrates for laser applications
US9531164B2 (en) * 2009-04-13 2016-12-27 Soraa Laser Diode, Inc. Optical device structure using GaN substrates for laser applications
US8837545B2 (en) 2009-04-13 2014-09-16 Soraa Laser Diode, Inc. Optical device structure using GaN substrates and growth structures for laser applications
US9829780B2 (en) * 2009-05-29 2017-11-28 Soraa Laser Diode, Inc. Laser light source for a vehicle
US10108079B2 (en) * 2009-05-29 2018-10-23 Soraa Laser Diode, Inc. Laser light source for a vehicle
US9800017B1 (en) 2009-05-29 2017-10-24 Soraa Laser Diode, Inc. Laser device and method for a vehicle
US8427590B2 (en) * 2009-05-29 2013-04-23 Soraa, Inc. Laser based display method and system
US9250044B1 (en) 2009-05-29 2016-02-02 Soraa Laser Diode, Inc. Gallium and nitrogen containing laser diode dazzling devices and methods of use
US8509275B1 (en) 2009-05-29 2013-08-13 Soraa, Inc. Gallium nitride based laser dazzling device and method
US8247887B1 (en) 2009-05-29 2012-08-21 Soraa, Inc. Method and surface morphology of non-polar gallium nitride containing substrates
US8750342B1 (en) 2011-09-09 2014-06-10 Soraa Laser Diode, Inc. Laser diodes with scribe structures
US8355418B2 (en) 2009-09-17 2013-01-15 Soraa, Inc. Growth structures and method for forming laser diodes on {20-21} or off cut gallium and nitrogen containing substrates
US10147850B1 (en) 2010-02-03 2018-12-04 Soraa, Inc. System and method for providing color light sources in proximity to predetermined wavelength conversion structures
US8905588B2 (en) 2010-02-03 2014-12-09 Sorra, Inc. System and method for providing color light sources in proximity to predetermined wavelength conversion structures
US8451876B1 (en) 2010-05-17 2013-05-28 Soraa, Inc. Method and system for providing bidirectional light sources with broad spectrum
US9487884B2 (en) 2010-05-31 2016-11-08 International Business Machines Corporation Producing a mono-crystalline sheet of semiconductor material
US8816319B1 (en) 2010-11-05 2014-08-26 Soraa Laser Diode, Inc. Method of strain engineering and related optical device using a gallium and nitrogen containing active region
US9048170B2 (en) 2010-11-09 2015-06-02 Soraa Laser Diode, Inc. Method of fabricating optical devices using laser treatment
US9025635B2 (en) 2011-01-24 2015-05-05 Soraa Laser Diode, Inc. Laser package having multiple emitters configured on a support member
US9595813B2 (en) 2011-01-24 2017-03-14 Soraa Laser Diode, Inc. Laser package having multiple emitters configured on a substrate member
US9093820B1 (en) 2011-01-25 2015-07-28 Soraa Laser Diode, Inc. Method and structure for laser devices using optical blocking regions
JP5632322B2 (ja) * 2011-03-31 2014-11-26 古河機械金属株式会社 窒化ガリウム系半導体の製造方法、及び、基板の製造方法
US9236530B2 (en) 2011-04-01 2016-01-12 Soraa, Inc. Miscut bulk substrates
US9287684B2 (en) 2011-04-04 2016-03-15 Soraa Laser Diode, Inc. Laser package having multiple emitters with color wheel
US9646827B1 (en) 2011-08-23 2017-05-09 Soraa, Inc. Method for smoothing surface of a substrate containing gallium and nitrogen
US8971370B1 (en) 2011-10-13 2015-03-03 Soraa Laser Diode, Inc. Laser devices using a semipolar plane
US9020003B1 (en) 2012-03-14 2015-04-28 Soraa Laser Diode, Inc. Group III-nitride laser diode grown on a semi-polar orientation of gallium and nitrogen containing substrates
US10559939B1 (en) 2012-04-05 2020-02-11 Soraa Laser Diode, Inc. Facet on a gallium and nitrogen containing laser diode
US9343871B1 (en) 2012-04-05 2016-05-17 Soraa Laser Diode, Inc. Facet on a gallium and nitrogen containing laser diode
US9800016B1 (en) 2012-04-05 2017-10-24 Soraa Laser Diode, Inc. Facet on a gallium and nitrogen containing laser diode
JP6115212B2 (ja) * 2013-03-14 2017-04-19 三菱化学株式会社 周期表第13族金属窒化物半導体結晶の製造方法、それに用いる製造装置
TWI684680B (zh) 2013-09-04 2020-02-11 奈瑞德解決方案公司 體擴散長晶法
JP2014237584A (ja) * 2014-07-14 2014-12-18 古河機械金属株式会社 種結晶、窒化ガリウム系半導体の製造方法、及び、基板の製造方法
US9787963B2 (en) 2015-10-08 2017-10-10 Soraa Laser Diode, Inc. Laser lighting having selective resolution
JP6222293B2 (ja) * 2016-06-14 2017-11-01 株式会社リコー 13族窒化物結晶
US10771155B2 (en) 2017-09-28 2020-09-08 Soraa Laser Diode, Inc. Intelligent visible light with a gallium and nitrogen containing laser source
US10222474B1 (en) 2017-12-13 2019-03-05 Soraa Laser Diode, Inc. Lidar systems including a gallium and nitrogen containing laser light source
US10551728B1 (en) 2018-04-10 2020-02-04 Soraa Laser Diode, Inc. Structured phosphors for dynamic lighting
US11239637B2 (en) 2018-12-21 2022-02-01 Kyocera Sld Laser, Inc. Fiber delivered laser induced white light system
US11421843B2 (en) 2018-12-21 2022-08-23 Kyocera Sld Laser, Inc. Fiber-delivered laser-induced dynamic light system
US11884202B2 (en) 2019-01-18 2024-01-30 Kyocera Sld Laser, Inc. Laser-based fiber-coupled white light system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002029897A (ja) * 2000-07-10 2002-01-29 Sumitomo Electric Ind Ltd 単結晶GaN基板の製造方法と単結晶GaN基板
JP2006240988A (ja) 2001-04-12 2006-09-14 Sumitomo Electric Ind Ltd 窒化ガリウム結晶への酸素ドーピング方法と酸素ドープされたn型窒化ガリウム単結晶基板
JP2006315947A (ja) * 2005-04-11 2006-11-24 Nichia Chem Ind Ltd 窒化物半導体ウエハ及びその製造方法
JP2007314357A (ja) * 2006-05-23 2007-12-06 Mitsubishi Chemicals Corp 窒化物半導体結晶とその製造方法
JP2008091837A (ja) * 2006-10-05 2008-04-17 Hitachi Cable Ltd Iii族窒化物半導体の製造装置及び製造方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3591348A (en) 1968-01-24 1971-07-06 Tyco Laboratories Inc Method of growing crystalline materials
JPS5488884A (en) 1977-12-26 1979-07-14 Nippon Telegr & Teleph Corp <Ntt> Plate crystal producing equipment
JPH10335750A (ja) 1997-06-03 1998-12-18 Sony Corp 半導体基板および半導体装置
JP4790914B2 (ja) 1999-05-13 2011-10-12 ヴィーコ・プロセス・イクウィップメント・インコーポレーテッド 基板上に材料をエピタキシャル成長させるための方法と装置
JP4094780B2 (ja) 1999-08-24 2008-06-04 株式会社リコー 結晶成長方法および結晶成長装置並びにiii族窒化物結晶の製造方法および結晶製造装置
JP4592198B2 (ja) 2001-03-01 2010-12-01 シャープ株式会社 Iii−v族化合物半導体製造装置及びiii−v族化合物半導体の製造方法
JP3761418B2 (ja) 2001-05-10 2006-03-29 Hoya株式会社 化合物結晶およびその製造法
SG125069A1 (en) * 2001-05-17 2006-09-29 Sumitomo Chemical Co Method and system for manufacturing III-V group compound semiconductor and III-V group compound semiconductor
US20070032046A1 (en) 2001-07-06 2007-02-08 Dmitriev Vladimir A Method for simultaneously producing multiple wafers during a single epitaxial growth run and semiconductor structure grown thereby
US20060011135A1 (en) 2001-07-06 2006-01-19 Dmitriev Vladimir A HVPE apparatus for simultaneously producing multiple wafers during a single epitaxial growth run
US7169227B2 (en) * 2001-08-01 2007-01-30 Crystal Photonics, Incorporated Method for making free-standing AIGaN wafer, wafer produced thereby, and associated methods and devices using the wafer
CN1316070C (zh) 2001-10-26 2007-05-16 波兰商艾蒙诺公司 取向生长用基底
KR100992960B1 (ko) * 2002-04-15 2010-11-09 더 리전츠 오브 더 유니버시티 오브 캘리포니아 유기금속 화학기상 증착법에 의해 성장된 무극성 α면질화갈륨 박막
US7208393B2 (en) * 2002-04-15 2007-04-24 The Regents Of The University Of California Growth of planar reduced dislocation density m-plane gallium nitride by hydride vapor phase epitaxy
JP4486506B2 (ja) 2002-12-16 2010-06-23 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア ハイドライド気相成長方法による転位密度の低い無極性窒化ガリウムの成長
JP4560310B2 (ja) 2004-03-03 2010-10-13 株式会社リコー Iii族窒化物の結晶の基板の製造方法
JP2006044982A (ja) * 2004-08-04 2006-02-16 Sumitomo Electric Ind Ltd 窒化物半導体単結晶基板とその合成方法
JP5276769B2 (ja) 2004-10-01 2013-08-28 東京電波株式会社 六方晶系ウルツ鉱型単結晶、その製造方法、および六方晶系ウルツ鉱型単結晶基板
JP4735949B2 (ja) 2005-04-08 2011-07-27 日立電線株式会社 Iii−v族窒化物半導体結晶の製造方法およびiii−v族窒化物半導体基板の製造方法
JP2006290677A (ja) 2005-04-11 2006-10-26 Hitachi Cable Ltd 窒化物系化合物半導体結晶の製造方法及び窒化物系化合物半導体基板の製造方法
WO2007143743A2 (en) 2006-06-09 2007-12-13 S.O.I.Tec Silicon On Insulator Technologies High volume delivery system for gallium trichloride
JP5040708B2 (ja) 2007-05-17 2012-10-03 三菱化学株式会社 窒化物半導体結晶の製造方法
US8269251B2 (en) * 2007-05-17 2012-09-18 Mitsubishi Chemical Corporation Method for producing group III nitride semiconductor crystal, group III nitride semiconductor substrate, and semiconductor light-emitting device
JP5493302B2 (ja) 2007-07-19 2014-05-14 三菱化学株式会社 Iii族窒化物半導体基板およびその洗浄方法
WO2009035648A1 (en) 2007-09-14 2009-03-19 Kyma Technologies, Inc. Non-polar and semi-polar gan substrates, devices, and methods for making them

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002029897A (ja) * 2000-07-10 2002-01-29 Sumitomo Electric Ind Ltd 単結晶GaN基板の製造方法と単結晶GaN基板
JP2006240988A (ja) 2001-04-12 2006-09-14 Sumitomo Electric Ind Ltd 窒化ガリウム結晶への酸素ドーピング方法と酸素ドープされたn型窒化ガリウム単結晶基板
JP2006315947A (ja) * 2005-04-11 2006-11-24 Nichia Chem Ind Ltd 窒化物半導体ウエハ及びその製造方法
JP2007314357A (ja) * 2006-05-23 2007-12-06 Mitsubishi Chemicals Corp 窒化物半導体結晶とその製造方法
JP2008091837A (ja) * 2006-10-05 2008-04-17 Hitachi Cable Ltd Iii族窒化物半導体の製造装置及び製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NIKKEI ELECTRONICS, 14 August 2006 (2006-08-14), pages 65,70
See also references of EP2261401A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130000552A1 (en) * 2011-06-28 2013-01-03 Nitride Solutions Inc. Device and method for producing bulk single crystals

Also Published As

Publication number Publication date
US8545626B2 (en) 2013-10-01
EP2261401A1 (en) 2010-12-15
KR20100134577A (ko) 2010-12-23
EP2261401A4 (en) 2012-11-28
US20110129669A1 (en) 2011-06-02
JP2009234906A (ja) 2009-10-15

Similar Documents

Publication Publication Date Title
WO2009110436A1 (ja) 窒化物半導体結晶とその製造方法
JP5725086B2 (ja) Iii族窒化物半導体結晶の製造方法、iii族窒化物半導体基板および半導体発光デバイス
JP5370613B2 (ja) 窒化物半導体結晶およびその製造方法
WO2010140564A1 (ja) 窒化物半導体結晶およびその製造方法
JP5472513B2 (ja) 単結晶基板、それを用いて得られるiii族窒化物結晶及びiii族窒化物結晶の製造方法
JP5509680B2 (ja) Iii族窒化物結晶及びその製造方法
JP4797793B2 (ja) 窒化物半導体結晶の製造方法
JP5830973B2 (ja) GaN自立基板および半導体発光デバイスの製造方法
JP5445105B2 (ja) Iii族窒化物結晶の製造方法及びiii族窒化物結晶
JP2014047097A (ja) 窒化物半導体結晶の製造方法
JP2013075791A (ja) Iii族窒化物半導体結晶の製造方法、iii族窒化物半導体基板およびiii族窒化物半導体結晶
JP5040708B2 (ja) 窒化物半導体結晶の製造方法
JP2014088272A (ja) 周期表第13族金属窒化物半導体結晶
JP4612403B2 (ja) Iii族窒化物半導体自立基板の製造方法
JP2011195388A (ja) Iii族窒化物半導体結晶とその製造方法、およびiii族窒化物半導体結晶の成長用下地基板
JP6115212B2 (ja) 周期表第13族金属窒化物半導体結晶の製造方法、それに用いる製造装置
JP2013170096A (ja) 第13族窒化物結晶の製造方法
JP2013199412A (ja) Iii族窒化物半導体結晶の製造方法
JP2018118873A (ja) 窒化物半導体基板の製造方法
JP2013116841A (ja) 周期表第13族金属窒化物半導体結晶の製造方法、周期表第13族金属窒化物半導体基板および周期表第13族金属窒化物半導体結晶

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09717726

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107019612

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009717726

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12920976

Country of ref document: US