WO2009104585A1 - 成形型の再生方法 - Google Patents
成形型の再生方法 Download PDFInfo
- Publication number
- WO2009104585A1 WO2009104585A1 PCT/JP2009/052660 JP2009052660W WO2009104585A1 WO 2009104585 A1 WO2009104585 A1 WO 2009104585A1 JP 2009052660 W JP2009052660 W JP 2009052660W WO 2009104585 A1 WO2009104585 A1 WO 2009104585A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- coating layer
- mold
- regenerating
- oxide layer
- layer
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B11/00—Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
- C03B11/06—Construction of plunger or mould
- C03B11/08—Construction of plunger or mould for making solid articles, e.g. lenses
- C03B11/084—Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor
- C03B11/086—Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor of coated dies
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2215/00—Press-moulding glass
- C03B2215/02—Press-mould materials
- C03B2215/03—Press-mould materials defined by material properties or parameters, e.g. relative CTE of mould parts
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2215/00—Press-moulding glass
- C03B2215/02—Press-mould materials
- C03B2215/08—Coated press-mould dies
- C03B2215/10—Die base materials
- C03B2215/12—Ceramics or cermets, e.g. cemented WC, Al2O3 or TiC
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2215/00—Press-moulding glass
- C03B2215/02—Press-mould materials
- C03B2215/08—Coated press-mould dies
- C03B2215/14—Die top coat materials, e.g. materials for the glass-contacting layers
- C03B2215/16—Metals or alloys, e.g. Ni-P, Ni-B, amorphous metals
Definitions
- the present invention relates to a method for regenerating a mold for producing a glass molded body to be used for an optical element or the like by pressure-molding a glass material.
- the reheat press method is a method in which a glass preform having a predetermined mass and shape prepared in advance is heated together with a mold and pressure-molded, and is widely implemented because it does not require equipment such as a glass melting furnace. ing.
- the droplet molding method is a method in which molten glass droplets are dropped onto a molding die (lower mold) heated to a predetermined temperature, and the molten glass droplets dropped are pressure-molded with a molding die to obtain a glass molded body.
- a molding die lower mold
- the molten glass droplets dropped are pressure-molded with a molding die to obtain a glass molded body.
- Such a mold generally requires a great amount of time and labor for processing, and the material itself is very expensive, so that high durability is required.
- the coating layer is easily damaged by repeated pressure molding and defects such as partial peeling are likely to occur, a mold having sufficient durability has not yet been obtained.
- Patent Document 1 describes a method in which an intermediate layer mainly composed of chromium is provided between a mold substrate and a surface layer, and the intermediate layer is removed using a chromium-soluble treatment liquid.
- Patent Document 2 discloses a method in which an intermediate layer is provided between a mold base and a surface layer, the uppermost portion of the surface layer and the intermediate layer is removed by ion beam irradiation, and then the intermediate layer is dissolved and removed. Is described.
- the present invention has been made in view of the technical problems as described above, and an object of the present invention is to provide a method for regenerating a mold that can prevent a decrease in the adhesion of the coating layer due to regeneration and can be repeatedly regenerated. Is to provide.
- the present invention has the following features.
- the glass material is a dropped molten glass droplet
- the surface of the reformed coating layer has an arithmetic average roughness (Ra) of 0.01 ⁇ m to 0.2 ⁇ m and an average length (RSm) of roughness curve elements.
- the adhesiveness of the coating layer to be reformed is improved.
- the decrease can be prevented, and the mold can be regenerated repeatedly.
- FIG. 1 is a flowchart showing a mold regeneration method according to the first embodiment of the present invention.
- FIG. 2 is a schematic view (cross-sectional view) showing the state of the mold in each step.
- (Molding mold) Fig.2 (a) has shown the shaping
- the mold 10 includes a mold base 11 and at least one coating layer 12 provided on the mold base 11.
- the coating layer 12 has defects (not shown) such as partial peeling and cracks due to damage caused by repeated pressure molding.
- the mold base 11 is provided with a molding surface 15 having a predetermined shape by a known precision processing method.
- a molding surface 15 having a predetermined shape by a known precision processing method.
- a convex surface may be sufficient and a concave surface may be sufficient.
- the material of the mold base 11 can be appropriately selected from known materials used in a mold for pressure-molding a glass material according to conditions.
- various heat-resistant alloys such as stainless steel
- super hard materials mainly composed of tungsten carbide various ceramics (such as silicon carbide and silicon nitride), composite materials containing carbon, and the like can be given.
- silicon carbide is a material that is particularly excellent in heat resistance and durability, but since the adhesiveness of the coating layer 12 after regeneration is remarkably reduced, a mold in which the mold base 11 is made of SiC is: Conventionally, it has been difficult to use repeatedly by reproduction. According to the method of the present invention, even when the mold base 11 is a mold made of SiC, it is possible to effectively prevent a decrease in the adhesion of the coating layer 12 after regeneration. Can be used repeatedly.
- a material in which a SiC layer is formed by a CVD method on a SiC sintered body has an advantage that the material cost can be kept low.
- the coating layer 12 is provided from the viewpoint of protecting the molding surface 15 of the mold base 11 and improving the releasability from glass, and is made of various materials such as metals, nitrides, and oxides. Can do. Among these, a material containing at least one element among chromium, aluminum, and titanium is particularly preferable. Films containing these elements not only have the advantage that they can be easily formed and can be easily removed by etching, but the surface is oxidized by heating in the atmosphere, forming a stable oxide layer. There is a feature that is. Chromium, aluminum, and titanium oxides all have low standard generation free energy (standard generation Gibbs energy) and are very stable, so they do not react easily even when they come into contact with hot molten glass droplets. Has great advantages.
- Examples of the material containing at least one element of chromium, aluminum, and titanium include metal chromium, metal aluminum, metal titanium, chromium nitride, aluminum nitride, titanium nitride, chromium oxide, aluminum oxide, and titanium oxide. .
- the coating layer 12 may be provided with at least one layer and may have a multilayer structure of two or more layers. Although there is no restriction
- the covering layer removing step S101 is a step of removing at least a part of the covering layer 12 from the damaged mold 10.
- FIG. 2B shows a state in which the coating layer 12 has been removed from the mold 10 by the coating layer removing step S101.
- the removal of the coating layer 12 can be performed by etching. Etching may be wet etching using an etchant or dry etching using plasma.
- Wet etching is a method in which a reactive etching solution is brought into contact with the coating layer 12 to dissolve and remove the coating layer 12, and does not require expensive equipment, and the coating layer 12 can be easily removed.
- the coating layer 12 may be immersed in the stored etching solution, or a predetermined amount of etching solution may be supplied onto the coating layer 12.
- the method of spraying etching liquid in the spray form may be used.
- the etching solution may be appropriately selected from known etching solutions according to the material of the coating layer 12.
- etching solutions that can be preferably used for aluminum such as various acidic solutions, are commercially available.
- an etching solution that can be preferably used for titanium is commercially available.
- an etching solution mainly containing a reducing acid such as hydrochloric acid or sulfuric acid can be used.
- an etching solution that can be preferably used for chromium is commercially available.
- an acidic solution containing ceric ammonium nitrate can be used.
- An alkaline solution containing potassium ferricyanide and potassium hydroxide can also be used.
- dry etching using plasma is a method in which an etching gas is introduced into a vacuum chamber to generate plasma by high frequency and the like, and the coating layer 12 is removed by ions or radicals generated by the plasma.
- plasma etching or reactive ion etching RIE
- the etching gas may be an inert gas such as Ar, or a highly reactive gas containing a halogen such as F, Cl, or Br.
- a gas containing a halogen such as F, Cl, Br (for example, CF 4 , SF 6 , CHF 3 , Cl 2 , BCl 3 , HBr, etc.) has a high reactivity with the coating layer 12, and can be used in a short time. Processing can be performed. Further, a mixed gas of these gases and O 2 , N 2 or the like may be used.
- the dry etching apparatus may be appropriately selected from known apparatuses such as a parallel plate type, a barrel (cylindrical) type, a magnetron type, and an ECR type, and is not particularly limited.
- the coating layer removing step S101 it is not necessary to remove the coating layer 12 over the entire surface of the molding surface 15, and the coating layer 12 in a partial region of the molding surface 15 (for example, a region that comes into contact with glass during glass molding). Remove it. Further, when the coating layer 12 has a multilayer structure, the entire coating layer 12 may be removed by etching, or some layers of the coating layer 12 on the side close to the mold substrate 11. Alternatively, only the surface layer may be removed.
- the inventor forms an oxide layer 13 on the surface after removing the coating layer 12 by etching for removing the coating layer 12, and the presence of this oxide layer 13 is the adhesion of the coating layer 12 after regeneration. I found out that it was the cause of lowering.
- the oxide layer 13 made of an oxide such as SiO 2 is formed on the surface of the mold base 11 by contacting with an etching solution or the like in the coating layer removing step S101. It is formed.
- the coating layer 12 formed on such an oxide layer 13 has low adhesion, and peeling or the like easily occurs during pressure molding.
- the coating layer 12 is a metal material, the adhesive compatibility with the oxide is poor, and the decrease in adhesion is remarkable.
- the thickness of the oxide layer 13 increases, and the adhesion of the coating layer 12 further decreases.
- the coating layer 12 was formed prior to the step of re-forming the coating layer 12 (coating layer forming step S 103).
- a step of removing the oxide layer 13 is performed.
- the oxide layer removing step S102 is a step of removing the oxide layer 13 formed on the surface after removing at least a part of the coating layer 12 prior to the coating layer forming step.
- FIG. 2C shows the state of the mold base 11 after the oxide layer 13 is removed by the oxide layer removal step S102.
- a physical method and a chemical method as a method for removing the oxide layer 13.
- a physical method there are methods such as ion bombardment and polishing in vacuum, and polishing is effective from the viewpoint that the oxide layer 13 can be easily and reliably removed.
- polishing is effective from the viewpoint that the oxide layer 13 can be easily and reliably removed.
- alumina rather than diamond as the abrasive.
- the mold base 11 is SiC
- the shape of the molding surface 15 is prevented from being deformed by polishing for several tens of seconds to several minutes using alumina whose particle size is about 1 ⁇ m as an abrasive.
- the oxide layer 13 can be reliably removed.
- Etching is effective as a chemical method. Etching has an advantage that the shape of the molding surface 15 is not easily broken.
- the oxide layer 13 can be reliably removed by performing etching for several minutes using diluted hydrofluoric acid.
- the etchant is not limited to diluted hydrofluoric acid, and any etchant that can remove the oxide layer 13 without damaging the mold substrate 11 can be preferably used.
- the oxide layer 13 here is a thin layer of about several tens of nanometers to one hundred nanometers, and the etching rate may be slow.
- the optical surface can be obtained even if the oxide layer 13 (SiO 2 film) having a uniform film thickness is removed. There is an advantage that the shape hardly changes.
- the coating layer forming step S103 is a step of regenerating the mold 10 by re-forming the coating layer 12 removed in the coating layer removing step S101.
- FIG. 2D shows a state in which the coating layer 12 is re-formed on the surface after the oxide layer 13 is removed. Since the oxide layer 13 has been removed in the above-described oxide layer removing step S102, the coating layer 12 can be formed without reducing the adhesion.
- the formation method of the coating layer 12 There is no restriction
- the coating layer 12 it is preferable to sufficiently remove the abrasive or the etching solution attached in the oxide layer removing step S102 before the coating layer 12 is formed.
- FIG. 3 is a flowchart showing a method for regenerating the mold in this embodiment.
- FIG. 4 is a schematic view (cross-sectional view) showing the state of the molding die in each step of the present embodiment.
- FIG. 4A shows the mold 20 before regeneration in the present embodiment.
- the mold 20 includes a mold base 11 and at least one coating layer 12 provided on the mold base 11.
- the surface 14 of the coating layer 12 has been roughened so as to have a predetermined surface roughness, but the roughness becomes dull due to repeated press molding, and the surface roughness is smaller than an appropriate range.
- defects such as partial peeling and cracks may exist.
- the material of the mold base 11 and the covering layer 12 is the same as that of the mold 10 described above.
- the droplet forming method it is possible to prevent air pools from remaining in the glass molded body by using the mold having a roughened surface as a lower mold for receiving molten glass droplets. .
- the molten glass and the mold come into contact with each other, so that the mold and the glass are likely to be fused.
- the covering layer removing step S101, the oxide layer removing step S102 and the covering layer forming step S103 shown in FIG. 3 are the same as those in the first embodiment shown in FIG.
- FIG. 4B shows a state in which the coating layer 12 has been removed from the mold 20 in the coating layer removal step S101
- FIG. 4C shows a mold base after the oxide layer 13 has been removed in the oxidation layer removal step S102.
- FIG. 4 (d) shows a state in which the coating layer 12 is re-formed on the surface after the oxide layer 13 is removed.
- the roughening step S104 is a step of roughening the surface 14 of the re-formed covering layer 12 by etching.
- FIG. 4E shows the mold 20 in a state where the surface 14 of the coating layer 12 is roughened and the regeneration is completed.
- the roughening is performed so that the arithmetic average roughness (Ra) of the surface 14 of the coating layer 12 is 0.01 ⁇ m to 0.2 ⁇ m, and the average length (RSm) of the roughness curve element is 0.5 ⁇ m or less. It is particularly preferred. By setting the arithmetic average roughness (Ra) and the average length (RSm) of the roughness curve elements within such ranges, it is possible to more effectively prevent the occurrence of air accumulation and fusion.
- the arithmetic average roughness (Ra) and the average length of the roughness curve element (RSm) are roughness parameters defined in JIS B 0601: 2001. These parameters are measured using a measuring machine having a spatial resolution of 0.1 ⁇ m or less, such as an AFM (Atomic Force Microscope).
- a general stylus type roughness measuring machine is not preferable because the radius of curvature of the stylus tip is as large as several ⁇ m or more.
- the coating layer 12 contains a chromium element
- the following method (1) or (2) does not require expensive and large-sized equipment, and can perform a process with excellent uniformity efficiently and at low cost. Particularly preferred.
- ceric ammonium nitrate Ce (NH 4 ) 2 (NO 3 ) 6
- fine irregularities are formed on the surface 14 of the coating layer 12 containing chromium element. It can be formed uniformly and in a short time.
- a solution containing a plurality of acids such as nitric acid and perchloric acid may be used.
- the concentration of ceric ammonium nitrate may be appropriately selected so as to obtain a desired treatment rate, and is usually preferably 5% by mass to 50% by mass.
- the coating layer 12 can be roughened when only a normal alkaline solution such as sodium hydroxide or potassium hydroxide is used as an etching solution.
- a normal alkaline solution such as sodium hydroxide or potassium hydroxide
- fine irregularities can be formed uniformly and in a short time on the surface 14 of the coating layer 12 containing chromium element.
- the alkaline solution containing potassium ferricyanide and potassium hydroxide for example, a mixed solution of potassium ferricyanide, potassium hydroxide, and pure water can be used.
- other components may be included as long as the effects of the present invention are not hindered.
- the ratio of potassium ferricyanide and potassium hydroxide is preferably 0.2 to 5 parts by mass of potassium hydroxide with respect to 1 part by mass of potassium ferricyanide.
- the amount of pure water to be mixed is not particularly limited, and may be adjusted as appropriate so as to obtain a desired processing speed.
- the conditions such as the atmospheric temperature and illuminance of the processing chamber, the temperature of the lower mold, the number of processing, the temperature, amount, and concentration of the etching solution constant. Conversely, by changing these conditions, the depth and period of the irregularities formed can be adjusted as appropriate.
- Example 1 While repeating the regeneration of the mold by the method of the present invention, a glass molded body was produced by the droplet molding method, and the durability of the mold (adhesion of the coating layer) was confirmed.
- the mold base 11 was SiC (a SiC layer formed by a CVD method on a SiC sintered body), and the coating layer 12 was a single layer of chromium (metal).
- the mold 10 (upper mold) was regenerated every 2000 shots according to the flowchart shown in FIG. Further, the mold 20 (lower mold) was regenerated every 1000 shots according to the flowchart shown in FIG.
- the coating layer removal step S101 removed the coating layer 12 by etching using a commercially available chromium etching solution containing ceric ammonium nitrate (ECR-2 manufactured by Nacalai Tesque, Inc.). Further, the removal of the oxide layer 13 in the oxide layer removing step S102 was performed using hydrofluoric acid. The reforming of the coating layer 12 in the coating layer forming step S103 was performed by a sputtering method.
- the surface 14 of the coating layer 12 was then roughened by wet etching.
- etching solution a mixed solution (alkaline solution) in which 100 g of potassium ferricyanide, 100 g of potassium hydroxide, and 1 L of pure water were mixed was used.
- the arithmetic average roughness (Ra) after roughening was 0.1 ⁇ m, and the average length (RSm) of the roughness curve elements was 0.25 ⁇ m.
- the arithmetic average roughness (Ra) and the average length of the roughness curve element (RSm) were measured by AFM (D3100 manufactured by Digital Instruments).
- the number of regenerations of the mold 10 (upper mold) was 3, and the number of regenerations of the mold 20 (lower mold) was 7.
- As the glass material phosphoric acid-based glass having a Tg of 480 ° C. was used.
- the mold was used by heating the lower mold to 500 ° C. and the upper mold to 450 ° C.
- the mass of the molten glass droplet was about 190 mg, and the load during pressurization was 1800 N.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
- Surface Treatment Of Glass (AREA)
Abstract
Description
前記被覆層の少なくとも一部を除去する被覆層除去工程と、
除去された前記被覆層を再形成する被覆層形成工程と、を有し、
前記被覆層の少なくとも一部を除去した後の表面に形成される酸化層を、前記被覆層形成工程に先立って除去する酸化層除去工程を有することを特徴とする成形型の再生方法。
前記被覆層形成工程の後に、エッチングによって前記被覆層の表面を粗面化する粗面化工程を有することを特徴とする(1)に記載の成形型の再生方法。
11 型基材
12 被覆層
13 酸化層
14 被覆層の表面
15 成形面
S101 被覆層除去工程
S102 酸化層除去工程
S103 被覆層形成工程
S104 粗面化工程
図1は、本発明の第1の実施形態による成形型の再生方法を示すフローチャートである。また、図2は、各工程における成形型の状態を示す模式図(断面図)である。
図2(a)は、再生前の成形型10を示している。成形型10は、型基材11と、型基材11の上に設けられた少なくとも1層の被覆層12を有している。被覆層12には、加圧成形の繰り返しによるダメージによって、部分的な剥離やクラック等の欠陥(図示せず)が存在している。
被覆層除去工程S101は、ダメージを受けた成形型10から、被覆層12の少なくとも一部を除去する工程である。図2(b)は、被覆層除去工程S101によって成形型10から被覆層12が除去された状態を示している。
酸化層除去工程S102は、被覆層12の少なくとも一部を除去した後の表面に形成される酸化層13を、被覆層形成工程に先立って除去する工程である。図2(c)は、酸化層除去工程S102によって酸化層13が除去された後の型基材11の状態を示している。
被覆層形成工程S103は、被覆層除去工程S101において除去された被覆層12を再形成して成形型10を再生する工程である。図2(d)は、酸化層13が除去された後の表面に被覆層12が再形成された状態を示している。上述の酸化層除去工程S102において酸化層13が除去されているため、密着性を低下させずに被覆層12を形成することができる。
次に、液滴成形法に用いる、表面を粗面化した成形型の再生方法について、図3、図4を用いて説明する。図3は、本実施形態における成形型の再生方法を示すフローチャートである。また、図4は、本実施形態の各工程における成形型の状態を示す模式図(断面図)である。
粗面化工程S104は、再形成した被覆層12の表面14を、エッチングによって粗面化する工程である。図4(e)は、被覆層12の表面14の粗面化を行い、再生が完了した状態の成形型20を示している。
(1)硝酸第二セリウムアンモニウムを含む酸性溶液を用いたウェットエッチング
(2)フェリシアン化カリウム及び水酸化カリウムを含むアルカリ性溶液を用いたウェットエッチング
エッチング液として、硫酸、硝酸、過塩素酸など通常の酸性溶液のみを用いた場合でも、被覆層12を粗面化することはできる。しかし、上記(1)の硝酸第二セリウムアンモニウム(Ce(NH4)2(NO3)6)を含む酸性溶液を用いることで、クロム元素を含む被覆層12の表面14に、微細な凹凸を均一に、かつ短時間で形成することができる。硝酸第二セリウムアンモニウムを含んでいれば、硝酸、過塩素酸など複数の酸を含んだ溶液であってもよい。硝酸第二セリウムアンモニウムの濃度は、所望の処理速度が得られるように適宜選択すればよく、通常は、5質量%~50質量%が好ましい。
本発明の方法によって成形型の再生を繰り返しながら、液滴成形法によってガラス成形体を製造し、成形型の耐久性(被覆層の密着性)の確認を行った。
実施例1、2と異なり、酸化層除去工程S102を行わずに成形型の再生を行い、合計8000ショットの成形を行った。それ以外の再生条件、成形条件は実施例1、2と同様である。
Claims (10)
- 型基材、及び、該型基材の上に設けられた少なくとも1層の被覆層を有し、ガラス素材を加圧成形するための成形型の再生方法において、
前記被覆層の少なくとも一部を除去する被覆層除去工程と、
除去された前記被覆層を再形成する被覆層形成工程と、を有し、
前記被覆層の少なくとも一部を除去した後の表面に形成される酸化層を、前記被覆層形成工程に先立って除去する酸化層除去工程を有することを特徴とする成形型の再生方法。 - 前記ガラス素材は、滴下された溶融ガラス滴であり、
前記被覆層形成工程の後に、エッチングによって前記被覆層の表面を粗面化する粗面化工程を有することを特徴とする請求の範囲第1項に記載の成形型の再生方法。 - 前記型基材は、炭化珪素からなることを特徴とする請求の範囲第1項又は第2項に記載の成形型の再生方法。
- 前記型基材は、炭化珪素の焼結体の上に、CVD法による炭化珪素層が形成されたものであることを特徴とする請求の範囲第3項に記載の成形型の再生方法。
- 前記酸化層除去工程は、物理的手法により前記酸化層を除去する工程であることを特徴とする請求の範囲第1項から第4項のいずれか1項に記載の成形型の再生方法。
- 前記酸化層除去工程は、化学的手法により前記酸化層を除去する工程であることを特徴とする請求の範囲第1項から第4項のいずれか1項に記載の成形型の再生方法。
- 前記酸化層除去工程は、フッ素系エッチング液により前記酸化層をエッチングする工程であることを特徴とする請求の範囲第6項に記載の成形型の再生方法。
- 前記被覆層は、クロム、アルミニウム、及びチタンのうち少なくとも1つの元素を含むことを特徴とする請求の範囲第1項から第7項のいずれか1項に記載の成形型の再生方法。
- 前記被覆層除去工程は、酸性溶液を用いたエッチング工程であることを特徴とする請求の範囲第1項から第8項のいずれか1項に記載の成形型の再生方法。
- 前記被覆層形成工程の後、再形成した前記被覆層の表面を、算術平均粗さ(Ra)が0.01μm~0.2μm、且つ、粗さ曲線要素の平均長(RSm)が0.5μm以下となるように粗面化する工程を有することを特徴とする請求の範囲第1項から第9項のいずれか1項に記載の成形型の再生方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009554317A JPWO2009104585A1 (ja) | 2008-02-21 | 2009-02-17 | 成形型の再生方法 |
CN2009801055742A CN101945828A (zh) | 2008-02-21 | 2009-02-17 | 成型模具再生方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-039812 | 2008-02-21 | ||
JP2008039812 | 2008-02-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009104585A1 true WO2009104585A1 (ja) | 2009-08-27 |
Family
ID=40985465
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/052660 WO2009104585A1 (ja) | 2008-02-21 | 2009-02-17 | 成形型の再生方法 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2009104585A1 (ja) |
CN (1) | CN101945828A (ja) |
WO (1) | WO2009104585A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014177965A1 (en) * | 2013-04-29 | 2014-11-06 | Construcciones Y Reparaciones Mecánicas Sivó, S. L. | Process for the recovery of moulds for the manufacturing of glass parts and containers |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0238330A (ja) * | 1988-07-29 | 1990-02-07 | Hoya Corp | ガラス成形型の再生方法 |
JPH06345447A (ja) * | 1993-06-03 | 1994-12-20 | Canon Inc | 光学素子成形用型の再生方法 |
JP2005272187A (ja) * | 2004-03-23 | 2005-10-06 | Konica Minolta Opto Inc | 光学素子用の成形型及びその再生方法 |
JP2006089327A (ja) * | 2004-09-24 | 2006-04-06 | Hoya Corp | 光学素子の製造方法及び光学素子成形用型 |
JP2006111504A (ja) * | 2004-10-18 | 2006-04-27 | Pentax Corp | 光学ガラス成形用金型の再生方法 |
-
2009
- 2009-02-17 WO PCT/JP2009/052660 patent/WO2009104585A1/ja active Application Filing
- 2009-02-17 CN CN2009801055742A patent/CN101945828A/zh active Pending
- 2009-02-17 JP JP2009554317A patent/JPWO2009104585A1/ja not_active Withdrawn
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0238330A (ja) * | 1988-07-29 | 1990-02-07 | Hoya Corp | ガラス成形型の再生方法 |
JPH06345447A (ja) * | 1993-06-03 | 1994-12-20 | Canon Inc | 光学素子成形用型の再生方法 |
JP2005272187A (ja) * | 2004-03-23 | 2005-10-06 | Konica Minolta Opto Inc | 光学素子用の成形型及びその再生方法 |
JP2006089327A (ja) * | 2004-09-24 | 2006-04-06 | Hoya Corp | 光学素子の製造方法及び光学素子成形用型 |
JP2006111504A (ja) * | 2004-10-18 | 2006-04-27 | Pentax Corp | 光学ガラス成形用金型の再生方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014177965A1 (en) * | 2013-04-29 | 2014-11-06 | Construcciones Y Reparaciones Mecánicas Sivó, S. L. | Process for the recovery of moulds for the manufacturing of glass parts and containers |
Also Published As
Publication number | Publication date |
---|---|
CN101945828A (zh) | 2011-01-12 |
JPWO2009104585A1 (ja) | 2011-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5347962B2 (ja) | 下型の製造方法、ガラスゴブの製造方法及びガラス成形体の製造方法 | |
TWI549917B (zh) | 玻璃成形模具的修復 | |
WO2009122948A1 (ja) | 下型、下型の製造方法、ガラスゴブの製造方法、及びガラス成形体の製造方法 | |
JP5440505B2 (ja) | 金型の製造方法、ガラスゴブの製造方法及びガラス成形体の製造方法 | |
JP3701106B2 (ja) | プレス成形用金型及び磁気ディスク用ガラス基板 | |
JP2010100487A (ja) | ガラス成形体の製造方法及び上型の製造方法 | |
WO2009104585A1 (ja) | 成形型の再生方法 | |
JP4230481B2 (ja) | 光学素子成形用型 | |
JP2005272187A (ja) | 光学素子用の成形型及びその再生方法 | |
JP2005213091A (ja) | ガラス光学素子の製造方法 | |
JP2005132679A (ja) | 無反射構造を有する光学素子の製造方法、及び当該方法により製造された無反射構造を有する光学素子 | |
JP3939308B2 (ja) | ガラス成形用金型 | |
JP5233433B2 (ja) | 成形型及びガラス成形体の製造方法 | |
JP2021135370A (ja) | マスクブランク、モールド用マスクブランクの製造方法、及びインプリントモールドの製造方法 | |
JP2009292707A (ja) | 光学素子成形用の金型の製造方法、光学素子成形用の金型および光学素子の製造方法 | |
JP2000319028A (ja) | ガラス光学素子プレス成形用型の再生方法 | |
JP5570047B2 (ja) | 光学ガラス素子成形用金型およびその製造方法 | |
JP5495518B2 (ja) | ガラス光学素子の製造方法 | |
JP2010215471A (ja) | 金型の製造方法、ガラスゴブの製造方法、及びガラス成形体の製造方法 | |
JP2004224657A (ja) | 成形型の表面処理方法及び成形型 | |
JP2004083380A (ja) | 光学素子成形用型の製造方法および光学素子成形用型とその再生方法 | |
JP2006151739A (ja) | 光学素子成型用型の再生方法 | |
JP4209875B2 (ja) | プレス成形用ガラスプリフォーム | |
JP2008040322A (ja) | 反射防止構造体の製造方法 | |
JP2010018453A (ja) | 光学素子成形用の金型、光学素子成形用の金型の再生方法および光学素子の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980105574.2 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09711746 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009554317 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09711746 Country of ref document: EP Kind code of ref document: A1 |