WO2009104251A1 - フィルタ、分波器、通信モジュール、および通信装置 - Google Patents

フィルタ、分波器、通信モジュール、および通信装置 Download PDF

Info

Publication number
WO2009104251A1
WO2009104251A1 PCT/JP2008/052827 JP2008052827W WO2009104251A1 WO 2009104251 A1 WO2009104251 A1 WO 2009104251A1 JP 2008052827 W JP2008052827 W JP 2008052827W WO 2009104251 A1 WO2009104251 A1 WO 2009104251A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
wiring
wiring layer
layer
insulating layer
Prior art date
Application number
PCT/JP2008/052827
Other languages
English (en)
French (fr)
Inventor
堤潤
松本一宏
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to JP2009554157A priority Critical patent/JP5583977B2/ja
Priority to US12/918,781 priority patent/US8367941B2/en
Priority to CN200880127007.2A priority patent/CN101953070B/zh
Priority to EP08711633.1A priority patent/EP2249478B1/en
Priority to PCT/JP2008/052827 priority patent/WO2009104251A1/ja
Publication of WO2009104251A1 publication Critical patent/WO2009104251A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/0538Constructional combinations of supports or holders with electromechanical or other electronic elements
    • H03H9/0566Constructional combinations of supports or holders with electromechanical or other electronic elements for duplexers
    • H03H9/0571Constructional combinations of supports or holders with electromechanical or other electronic elements for duplexers including bulk acoustic wave [BAW] devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/0538Constructional combinations of supports or holders with electromechanical or other electronic elements
    • H03H9/0566Constructional combinations of supports or holders with electromechanical or other electronic elements for duplexers
    • H03H9/0576Constructional combinations of supports or holders with electromechanical or other electronic elements for duplexers including surface acoustic wave [SAW] devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/703Networks using bulk acoustic wave devices
    • H03H9/706Duplexers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/72Networks using surface acoustic waves
    • H03H9/725Duplexers

Definitions

  • the present invention relates to a filter such as a high-frequency filter used in mobile communication devices typified by mobile phones and wireless devices.
  • the present invention also relates to a duplexer using such a filter.
  • the present invention also relates to a communication module and a communication device in which these filters and duplexers are incorporated.
  • FIG. 12 shows a configuration of a high frequency block in a conventional mobile phone terminal.
  • a reception interstage filter 104 is connected to the reception path
  • a transmission interstage filter 114 is connected to the transmission path.
  • the high frequency block shown in FIG. 13 has a configuration in which the transmission interstage filter and the reception interstage filter are omitted in order to simplify the communication apparatus.
  • the transmission side includes an antenna 101, a duplexer 102, a low noise amplifier (LNA) 103, a reception interstage filter 104, an LNA 105, mixers 106 and 109, low pass filters (LPF) 107 and 110, and a variable gain amplifier. (VGA) 108 and 111, phase control circuit 112, transmission circuit 113, transmission interstage filter 114, and power amplifier (PA) 115.
  • the reception side eliminates the reception interstage filter 104 shown in FIG. 12 and includes an LNA 202 instead of the LNAs 103 and 105. Further, the transmission side filter 114 is eliminated on the transmission side.
  • the remaining filter elements are equivalent to two conventional filter elements (reception interstage filter). 104 and the transmission interstage filter 114) are required. Specifically, a significant improvement in out-of-band suppression of filter characteristics is required. In addition, the duplexer 201 is required to greatly improve isolation between transmission and reception.
  • An object of the present invention is to suppress unnecessary electromagnetic coupling in a substrate on which a filter element is mounted while realizing a reduction in size and thickness, and a filter, duplexer, and communication having high suppression and high isolation characteristics
  • a module and a communication device are provided.
  • the first filter of the present invention is a filter comprising a base material and a filter element mounted on the base material, wherein the base material is a filter in which wiring is formed and to which the filter element is connected.
  • a plurality of wiring layers including a wiring layer; an insulating layer formed at a position sandwiched between the plurality of wiring layers; and a ground pattern formed on at least a part of the wiring layer below the filter wiring layer.
  • the thickness dimension of the insulating layer formed at a position sandwiched between the filter wiring layer and the other wiring layer is smaller than the width dimension of the wiring formed in the filter wiring layer, and the other It is larger than the thickness dimension of the wiring layer.
  • the second filter of the present invention is a filter comprising a base material and a filter element mounted on the base material, wherein the base material is a filter in which wiring is formed and the filter element is connected to the filter.
  • a plurality of wiring layers including a wiring layer; an insulating layer formed at a position sandwiched between the plurality of wiring layers; and a ground portion formed on at least a part of another wiring layer below the filter wiring layer;
  • the thickness dimension of the insulating layer formed at a position sandwiched between the filter wiring layer and the other wiring layer is smaller than the distance between the closest wirings in the filter wiring layer, and It is larger than the thickness dimension of other wiring layers.
  • the present invention it is possible to provide a filter and a duplexer having high suppression and high isolation.
  • the outermost insulating layer of the base material is thinned, there is an effect that the manufactured filter and duplexer can be miniaturized and thinned.
  • the communication module and the communication device can be reduced in size and thickness.
  • FIG. 1A is a plan view of a filter in the embodiment.
  • FIG. 1B is a cross-sectional view taken along the line ZZ in FIG. 1A.
  • FIG. 2A is a plan view showing the configuration of the first wiring layer in the base material on which the filter element is mounted.
  • FIG. 2B is a plan view showing a configuration of a second wiring layer in the base material on which the filter element is mounted.
  • FIG. 2C is a plan view showing a configuration of a third wiring layer in the base material on which the filter element is mounted.
  • FIG. 2D is a plan view showing a configuration of a fourth wiring layer in the base material on which the filter element is mounted.
  • FIG. 3 is a cross-sectional view of a substrate on which the filter element is mounted.
  • FIG. 4 is a schematic diagram showing a state in which the filter element and the base material layers are superposed.
  • FIG. 5 is a circuit diagram of the duplexer.
  • FIG. 6 is a circuit diagram of a communication module using the duplexer according to the embodiment.
  • FIG. 7 is a plan view showing the configuration of the duplexer.
  • FIG. 8 is a characteristic diagram showing frequency characteristics of the filter according to the embodiment and the conventional filter.
  • FIG. 9 is a characteristic diagram showing frequency characteristics of the filter in the embodiment and the conventional filter.
  • FIG. 10 is a characteristic diagram showing a comparison of isolation according to the arrangement configuration of the ground pattern.
  • FIG. 11 is a block diagram illustrating a configuration of a communication device according to the embodiment.
  • FIG. 12 is a block diagram showing a configuration of a conventional high frequency block.
  • FIG. 13 is a block diagram showing a configuration of a future high-frequency block.
  • the first filter of the present invention is a filter comprising a base material and a filter element mounted on the base material, wherein the base material is a filter in which wiring is formed and to which the filter element is connected.
  • a plurality of wiring layers including a wiring layer; an insulating layer formed at a position sandwiched between the plurality of wiring layers; and a ground portion formed on at least a part of another wiring layer below the filter wiring layer;
  • the thickness dimension of the insulating layer formed at the position sandwiched between the filter wiring layer and the other wiring layer is smaller than the width dimension of the wiring formed in the filter wiring layer, and It is larger than the thickness dimension of other wiring layers.
  • the thickness dimension of the insulating layer formed at a position sandwiched between the filter wiring layer and the other wiring layer is 75% or less of the width dimension of the wiring formed in the filter wiring layer.
  • the thickness may be larger than the thickness dimension of the other wiring layer.
  • the second filter of the present invention is a filter comprising a base material and a filter element mounted on the base material, wherein the base material is a filter in which wiring is formed and the filter element is connected to the filter.
  • a plurality of wiring layers including a wiring layer; an insulating layer formed at a position sandwiched between the plurality of wiring layers; and a ground portion formed on at least a part of another wiring layer below the filter wiring layer;
  • the thickness dimension of the insulating layer formed at a position sandwiched between the filter wiring layer and the other wiring layer is smaller than the distance between the closest wirings in the filter wiring layer, and It is larger than the thickness dimension of other wiring layers.
  • the thickness of the outermost insulating layer is made thinner than the distance between the wires, and the ground patterns of the other wiring layers are changed. By arranging them close to each other, unnecessary electromagnetic coupling between the wirings can be suppressed by directing the electromagnetic field radiation from each wiring to the ground pattern.
  • the outermost insulating layer is an insulating layer on which a filter is mounted.
  • the ground portion may be arranged in at least a part of a region immediately below the two wires including the closest portion of the wires formed in the filter wiring layer.
  • the ground portion may be arranged in at least a part of a region immediately below the filter element in the other wiring layer.
  • the ground portion may be formed in at least a part of a region directly below the wiring connected to the ground terminal of the filter element among the wirings formed in the filter wiring layer in the other wiring layer. It can be set as the structure arrange
  • the base material may be formed of a ceramic material. With such a configuration, it becomes easy to hermetically seal the filter element 5. Furthermore, generally, the ceramic material has a small dielectric loss tangent, and the loss of the high frequency filter and the duplexer can be kept small. Therefore, a high-frequency filter and duplexer with low loss and high suppression can be realized.
  • the base material can be made of a resin material.
  • At least the outermost layer insulating layer in the base material may be formed of a resin material, and at least another part of the insulating layer in the base material may be formed of a ceramic material.
  • a resin material that is generally easier to make thinner than ceramics
  • a thin outermost layer insulating layer can be easily produced.
  • an insulating layer having a small dielectric loss tangent can be produced by producing an insulating layer other than the outermost insulating layer with ceramics characterized in that the dielectric loss tangent is smaller than that of resin. Therefore, the advantages of both materials can be effectively utilized.
  • the filter element can be constituted by an elastic wave filter. With such a configuration, a low-loss and small high-frequency filter and duplexer can be realized.
  • the filter element may be mounted on the base material by face-down bonding.
  • the ground portion may be connected to the grounding foot pattern of the base material by a plurality of interlayer wirings.
  • FIG. 1A is a plan view showing a configuration of a filter in the embodiment.
  • FIG. 1B is a cross-sectional view taken along the line ZZ in FIG. 1A.
  • the filter according to the present embodiment includes a substrate 1, a wiring 2, a ground pattern 3, a bonding pad portion 4, and a filter element 5.
  • the ground pattern 3 is an example of the ground portion of the present invention.
  • the substrate 1 includes a first insulating layer 11, a second insulating layer 12, and a third insulating layer 13.
  • a first wiring layer 14 is formed on the filter mounting surface of the first insulating layer 11.
  • the 1st wiring layer 14 in this Embodiment is an example of the filter wiring layer of this invention.
  • a second wiring layer 15 is formed on the surface of the second insulating layer 12 on the first insulating layer 11 side.
  • the ground pattern 3 is disposed on at least a part of the second wiring layer 15.
  • a third wiring layer 16 is formed on the surface of the third insulating layer 13 on the second insulating layer 12 side.
  • a fourth wiring layer 17 is formed on the back surface of the third insulating layer 13 on which the third wiring layer 16 is formed.
  • the wiring 2 is arranged in a through hole formed so as to penetrate from the first wiring layer 14 to the fourth wiring layer 17 of the base 1, and electrically connects the front and back of the base 1.
  • a bonding pad portion 4 is electrically connected to one end portion (end portion on the first wiring layer 14 side) of the wiring 2.
  • a filter element 5 is electrically connected to the bonding pad portion 4.
  • the ground pattern 3 is provided immediately below the wiring of the first wiring layer 14.
  • the thickness D2 of the first insulating layer 11 (outermost layer insulating layer) that is disposed and sandwiched between the first wiring layer 14 and the second wiring layer 15 immediately below the first wiring layer 14 is greater than the wiring width D1 of the wiring 2
  • the structure is also thin.
  • the distance between the wiring in the first wiring layer 14 and the ground pattern 3 can be shortened compared to the configuration in which the partition ground pattern is arranged in the same wiring layer as in the conventional configuration. .
  • the ground pattern cannot be brought close to the wiring width or less. That is, in the present embodiment, the wiring and the ground pattern are not arranged in the same plane as in the prior art, but the ground pattern 3 is arranged below the first wiring layer 14 (that is, the wiring and the wiring). The ground pattern is arranged in a different plane), and the distance between the wiring of the first wiring layer 14 and the ground pattern 3 can be reduced.
  • the lower limit of the thickness D2 of the first insulating layer 11 needs to be larger than the thickness of the second wiring layer 15 in order to maintain electrical insulation between the first wiring layer 14 and the second wiring layer 15. There is.
  • the outermost insulating layer (first insulating layer 11) is thinned, the high frequency filter and the duplexer manufactured using such a substrate 1 can be made thinner than before. There is.
  • This demultiplexer is a demultiplexer for Band 1 (transmission band: 1920 to 1980 MHz, reception band: 2110 to 2170 MHz) of the third generation mobile phone W-CDMA system.
  • FIG. 2A to 2D show the configuration of each layer of the base material of the manufactured duplexer.
  • FIG. 3 shows a cross-sectional view of the base material of the duplexer.
  • a wiring pattern 14a is formed on the first wiring layer 14 on which the filter element 5 is mounted.
  • the wiring pattern 14a includes an antenna terminal 14b, a reception terminal 14c, a reception filter ground terminal 14d, a transmission terminal 14e, and a transmission filter ground terminal 14f.
  • the second wiring layer 15 is provided with a ground pattern 15a for suppressing unnecessary electromagnetic coupling.
  • the ground pattern 15a corresponds to the ground pattern 3 shown in FIGS. 1A and 1B.
  • the ground pattern 15a is electrically connected to the ground 17d of the foot pattern in the fourth wiring layer 17 shown in FIG. 2D with a plurality of interlayer vias via the second wiring layer 15 and the third wiring layer 16 shown in FIG. 2C. It is connected.
  • the outermost layer insulating layer (first insulating layer 11) was set to 25 ⁇ m.
  • a base material having an outermost insulating layer thickness of 100 ⁇ m was also produced.
  • the thicknesses of the second insulating layer 12, the third insulating layer 13, and the fourth insulating layer 14 were each 100 ⁇ m.
  • an insulating layer what is shown in (Table 1) can be used suitably.
  • FIG. 4 shows the positional relationship among the filter element 5, the wiring pattern 14 a of the first wiring layer 14, and the ground pattern 15 a of the second wiring layer 15. Moreover, FIG. 4 has shown the positional relationship of each layer when the base material 1 is seen in the normal line direction of the main plane.
  • a ground pattern 15 a is disposed on the second conductor layer 15 on almost the entire surface immediately below the reception filter 41.
  • the ground pattern 15a of the second conductor layer 15 is not disposed immediately below the signal line connected to the transmission terminal 14e, and other ground terminals (the ground terminal 14d of the reception filter 41) are not disposed.
  • a ground pattern 15a is arranged in a region including directly below the connected wiring.
  • FIG. 5 shows the circuit configuration of the duplexer.
  • the reception filter 41 and the transmission filter 42 are configured by ladder type filters in which FBAR filters are connected in a ladder shape.
  • FIG. 6 shows a configuration of a communication module including the duplexer according to the present embodiment.
  • the communication module includes a duplexer 51, a low noise amplifier (LNA) 52, and a power amplifier (PA) 53.
  • the duplexer 51 is configured by the duplexer of the present embodiment.
  • FIG. 7 shows the mounting configuration of the duplexer of the present embodiment.
  • the duplexer includes a phase matching circuit 62, a reception SAW filter 63, and a transmission SAW filter 64 on a base material 61.
  • the phase matching circuit 62 is connected to the antenna port 62a and connected to the reception SAW filter 63 and the transmission SAW filter 64 via the wiring 65 formed in the first wiring layer 14 (see FIG. 1B). Yes.
  • the reception SAW filter 63 is connected to the reception port 63 a via a wiring 65 formed in the first wiring layer 14.
  • the transmission SAW filter 64 is connected to the transmission port 64 a via a wiring 65 formed in the first wiring layer 14.
  • the 7 has three different impedances (the impedance of the antenna port 62a, the reception SAW filter 63, and the transmission SAW filter 64). In such a configuration, the ground corresponding to each impedance is provided. Need to be arranged.
  • the first ground pattern 66 is formed in the second wiring layer 15 (see FIG. 1B) and is connected to the transmission port 64a.
  • the second ground pattern 67 is formed on the third wiring layer 16 (see FIG. 1B) and is connected to the antenna port 62a.
  • the third ground pattern 68 is formed on the fourth wiring layer 17 (see FIG. 1B), and is connected to the reception port 63a.
  • FIG. 8 shows transmission / reception characteristics of the duplexer shown in FIG.
  • FIG. 9 shows isolation between the reception filter 41 and the transmission filter 42 in the duplexer shown in FIG.
  • the characteristics shown in FIGS. 8 and 9 are the results of measuring the electrical characteristics using the duplexer shown in FIG.
  • the duplexer used for the measurement was such that the thickness of the outermost insulating layer (first insulating layer 11) of the filter was 100 ⁇ m, which was equivalent to the width of the wiring pattern, and the outermost insulating layer (first insulating layer) of the filter. 11) having a thickness of 25 ⁇ m was prepared.
  • the degree of suppression can be improved over a wide frequency band when the thickness of the outermost insulating layer is 25 ⁇ m as shown by the solid line characteristics in FIG. Further, as shown by the solid line characteristics in FIG. 9, it was found that the isolation of the transmission band can be particularly reduced by 12 dB, and the isolation can be greatly improved.
  • the degree of suppression and isolation are limited to a distance of 100 ⁇ m between the wiring pattern and the ground pattern. 8 and the characteristic shown by the broken line in FIG. 9 (characteristic when the thickness of the insulating layer is 100 ⁇ m).
  • FIG. 10 shows a change in transmission band isolation with respect to the thickness of the outermost insulating layer.
  • FIG. 10 is a result of calculating the characteristics of the duplexer by electromagnetic field simulation when a partition ground pattern is arranged with a gap of 100 ⁇ m provided between the wiring patterns of the first wiring layer 14. The thickness of the outermost insulating layer (first insulating layer 11) was also changed.
  • the horizontal axis of FIG. 10 is the ratio of the thickness of the outermost insulating layer to the wiring pattern width. As shown in FIG. 10, by setting the ratio of the thickness of the outermost layer insulating layer to the wiring pattern width to be 0.75 or less, the effect of the partition ground pattern is eliminated, and the ground pattern 3 formed in the second wiring layer 15 is removed.
  • isolation was determined only by the effect of. That is, it has been found that if the ratio of the thickness of the outermost insulating layer to the wiring pattern width is 0.75 or less, the partition ground is not necessary, and the effect of increasing the degree of freedom in designing the wiring pattern is obtained.
  • FIG. 11 shows an RF block of a mobile phone terminal as an example of a communication apparatus provided with the filter or duplexer of this embodiment.
  • the configuration shown in FIG. 11 shows the configuration of a mobile phone terminal that supports the GSM (Global System for Mobile Communications) communication system and the W-CDMA (Wideband Code Division Multiple Access) communication system.
  • the GSM communication system in the present embodiment corresponds to the 850 MHz band, 950 MHz band, 1.8 GHz band, and 1.9 GHz band.
  • the mobile phone terminal includes a microphone, a speaker, a liquid crystal display, and the like.
  • the reception filters 73a, 77, 78, 79, and 80, and the transmission filter 73b include the filters in the present embodiment.
  • the duplexer 73 can be configured by the duplexer in the present embodiment.
  • the received signal input through the antenna 71 selects an LSI to be operated by the antenna switch circuit 72 depending on whether the communication method is W-CDMA or GSM.
  • the input received signal is compatible with the W-CDMA communication system, switching is performed so that the received signal is output to the duplexer 73.
  • the reception signal input to the duplexer 73 is limited to a predetermined frequency band by the reception filter 73 a, and a balanced reception signal is output to the LNA 74.
  • the LNA 74 amplifies the input received signal and outputs it to the LSI 76.
  • the LSI 76 performs demodulation processing on the audio signal based on the input received signal and controls the operation of each unit in the mobile phone terminal.
  • the LSI 76 when transmitting a signal, the LSI 76 generates a transmission signal.
  • the generated transmission signal is amplified by the power amplifier 75 and input to the transmission filter 73b.
  • the transmission filter 73b passes only a signal in a predetermined frequency band among input transmission signals.
  • the transmission signal output from the transmission filter 73 b is output from the antenna 71 to the outside via the antenna switch circuit 72.
  • the antenna switch circuit 72 selects any one of the reception filters 77 to 80 according to the frequency band and outputs the received signal. To do. A reception signal whose band is limited by any one of the reception filters 77 to 80 is input to the LSI 83.
  • the LSI 83 performs a demodulation process on the audio signal based on the input received signal, and controls the operation of each unit in the mobile phone terminal. On the other hand, when transmitting a signal, the LSI 83 generates a transmission signal.
  • the generated transmission signal is amplified by the power amplifier 81 or 82 and output from the antenna 71 to the outside via the antenna switch circuit 72.
  • the outermost insulating layer (first insulating layer 11) is thinned, which can contribute to the thinning of the communication device.
  • the thickness D2 of the outermost insulating layer (first insulating layer 11) is made thinner than the wiring pattern width D1, and the ground pattern 3 is arranged in the wiring layer immediately below it.
  • unnecessary electromagnetic coupling can be suppressed, and isolation between reception and transmission can be greatly improved.
  • the filter and the duplexer can be made smaller and thinner.
  • the communication module or communication device can be reduced in size and thickness.
  • the thickness D2 of the outermost layer insulating layer (first insulating layer 11) is 75% or less of the wiring width D1 of the wiring 2 as shown in FIG.
  • the effect can also be obtained by making the thickness D2 of the outermost insulating layer (first insulating layer 11) thinner than the distance between adjacently arranged wires. This is because when the partition ground pattern cannot be arranged between adjacent wires, the thickness D2 of the outermost layer insulating layer (first insulating layer 11) is made thinner than the distance between the wires, and the ground pattern of the second wiring layer 15 is set. This is because, by arranging 3 close to each other, unnecessary electromagnetic coupling between the wirings can be suppressed by directing the electromagnetic field radiation from each wiring to the ground pattern 3.
  • the ground pattern 3 disposed in the second wiring layer 15 is disposed immediately below the wiring of the first wiring layer 14. With such a configuration, the electromagnetic field radiated from the wiring of the first wiring layer 14 can be guided to the ground pattern 3 immediately below, and electromagnetic field radiation to the peripheral portion can be suppressed.
  • the ground pattern 3 disposed in the second wiring layer 15 is disposed immediately below the wiring having the closest portion in the first wiring layer 14.
  • the ground pattern 3 disposed in the second wiring layer 15 is desirably disposed immediately below the filter element 5. This is because, as shown in FIG. 1A, the first wiring layer 14 immediately below the filter element 5 has a plurality of pads 4 for bonding the filter element 5. This is because the bonding pads 4 are arranged close to each other, which causes unnecessary electromagnetic coupling. Therefore, by disposing the ground pattern 3 immediately below the filter element 5, unnecessary electromagnetic coupling can be suppressed.
  • the ground pattern 3 disposed in the second wiring layer 15 is disposed immediately below the wiring connected to the ground terminal of the filter element 5 in the first wiring layer 14. This is because if the ground pattern 3 is disposed in the vicinity of the wiring connected to the signal terminal of the filter element 5, the characteristic impedance of the wiring changes, and the filter passing characteristic is deteriorated. On the other hand, in the configuration in which the ground pattern 3 is arranged immediately below the wiring connected to the ground terminal, the filter characteristic deterioration due to the impedance change is negligibly small, and only the effect of suppressing unnecessary electromagnetic coupling can be obtained.
  • the ceramic material has a small dielectric loss tangent, and the loss of the high frequency filter and the duplexer can be kept small. Therefore, a high-frequency filter and duplexer with low loss and high suppression can be realized.
  • the material of the substrate 1 may be a resin.
  • the base material 1 on which the filter element 5 is mounted can be formed by forming the outermost insulating layer (first insulating layer 11) from a resin material and forming other insulating layers by ceramics.
  • the outermost layer insulating layer with a resin that is generally easier to make thinner than ceramics, a thin outermost layer insulating layer can be easily produced.
  • an insulating layer having a small dielectric loss tangent can be produced by producing an insulating layer other than the outermost insulating layer with ceramics characterized in that the dielectric loss tangent is smaller than that of the resin. Therefore, the advantages of both materials can be effectively utilized.
  • the filter element 5 can be constituted by a surface acoustic wave filter (Surface Acoustic Wave: SAW filter) or a piezoelectric thin film resonator filter (Film Bulk Bulk Acoustic Resonator: FBAR filter). With such a configuration, a low-loss and small high-frequency filter and duplexer can be realized.
  • SAW filter Surface Acoustic Wave
  • FBAR filter piezoelectric thin film resonator filter
  • the filter element 5 is preferably mounted on the substrate 1 by face-down bonding.
  • the ground pattern 3 arranged in the second wiring layer 15 is connected to the grounding foot pattern by a plurality of interlayer wirings. Because the potential of the ground pattern 3 arranged in the second wiring layer 15 approaches the true ground, the electromagnetic field radiated from the wiring of the first wiring layer 14 is further directed to the ground pattern 3 and unnecessary between the wirings. This is because electromagnetic coupling can be suppressed.
  • the filter, duplexer, communication module, and communication device of the present invention are useful for devices that can receive or transmit signals of a predetermined frequency.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Transceivers (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
  • Filters And Equalizers (AREA)

Abstract

 本発明のフィルタは、基材と、基材に搭載されているフィルタ素子とを備えたフィルタであって、基材は、配線が形成されフィルタ素子が接続されるフィルタ配線層を含む複数の配線層と、複数の配線層に挟まれた位置に形成された絶縁層と、フィルタ配線層の下方の配線層の少なくとも一部に形成されたグランドパターンとを備え、フィルタ配線層と他の配線層とで挟まれた位置に形成された絶縁層の厚さ寸法は、フィルタ配線層に形成された配線の幅寸法よりも小さく、かつ、他の配線層の厚さ寸法よりも大きい。このような構成とすることで、薄型、高抑圧、高アイソレーションのフィルタを実現することができる。

Description

フィルタ、分波器、通信モジュール、および通信装置
 本発明は、携帯電話に代表される移動通信機器や無線機器に使用される高周波フィルタなどのフィルタに関する。また、そのようなフィルタを用いた分波器に関する。また、それらフィルタや分波器が組み込まれる通信モジュール、通信装置に関する。
 近年、携帯電話端末に代表される無線通信機器のマルチバンド/システム化が進み、1台の端末に複数の通信装置が搭載されるようになっている。しかしながら、携帯電話端末自体は小型化及び薄型化が継続して要求されており、その中に搭載される通信装置の小型化及び薄型化が強く要望されている状況である。このような背景の中、通信装置に使われる部品の小型化及び薄型化が必須となっており、主要部品である高周波フィルタや分波器の小型化及び薄型化が強く望まれている。
 通信装置を小型化する別の方法として、通信装置を簡素化し、その中で使用される部品数を減らす動きがある。例えば、図12は従来の携帯電話端末における高周波ブロックの構成を示す。図12に示す高周波ブロックは、受信経路には受信段間フィルタ104が接続され、送信経路には送信段間フィルタ114が接続されている。これに対し、図13に示す高周波ブロックは、通信装置の簡素化のために、送信段間フィルタおよび受信段間フィルタを省いた構成となっている。なお、図12に示す高周波ブロックは、アンテナ101、分波器102、ローノイズアンプ(LNA)103、受信段間フィルタ104、LNA105、ミキサー106及び109、ローパスフィルタ(LPF)107及び110、可変利得アンプ(VGA)108及び111、位相制御回路112、送信回路113、送信段間フィルタ114、パワーアンプ(PA)115を備えている。また、図13に示す高周波ブロックにおいて、受信側は、図12に示す受信段間フィルタ104を無くし、LNA103及び105に代えてLNA202を備えた。また、送信側は、送信段間フィルタ114を無くした。
 このように、図13に示す高周波ブロックにおいては、フィルタ素子の数を減らしているために、残されたフィルタ素子(分波器201)には従来のフィルタ素子の2個分(受信段間フィルタ104及び送信段間フィルタ114)の性能が要求されることになる。具体的には、フィルタ特性の通過帯域外抑圧の大幅な向上が要求されることになる。また、分波器201においては、加えて送信-受信間のアイソレーションの大幅な向上が要求されることになる。
 このように、携帯電話端末等に使用される高周波フィルタや分波器には、小型化及び薄型化を継続的に進めながら、かつ、通過帯域外抑圧度やアイソレーションを大幅に向上させなければならないという課題があった。
 フィルタおよび分波器の高抑圧化、高アイソレーション化を阻害するもの要因として、フィルタ素子を搭載する基材内で生じる不要な電磁結合が挙げられる。この課題に対して、例えば特許文献1に開示されている構成では、フィルタ素子を搭載するパッケージにおいて、1つの配線層内に存在する複数の配線を仕切るためのグランドパターン(仕切りグランドパターン)を配線間に配置し、これにより配線間の不要な電磁結合を抑制し、フィルタの抑圧度向上を図っていた。
 ここで、配線間の不要な電磁結合を抑制するために、それらの配線と同一の配線層にグランドパターンを配置する場合、そのグランドパターンは配線とできるだけ接近させるのがよい。なぜなら、各配線から放射される電磁界が確実に仕切りグランドパターンに誘導され、各配線間での電磁結合が少なくなるからである。
特開2006-180192号公報
 しかしながら、配線と仕切りグランドパターンとのギャップは、配線幅と同程度を確保しなければならず(ライン/スペース=1/1)、不要な電磁結合の抑制にも限界があり、フィルタの通過帯域外の信号を大きく抑圧することができず、また送信-受信間のアイソレーションも大きく向上させることができなかった。
 本発明の目的は、小型化及び薄型化を実現しながら、フィルタ素子を搭載する基材内での不要な電磁結合を抑制し、高抑圧、高アイソレーション特性を有するフィルタ、分波器、通信モジュール、および通信装置を提供することである。
 本発明の第1のフィルタは、基材と、前記基材に搭載されているフィルタ素子とを備えたフィルタであって、前記基材は、配線が形成され、前記フィルタ素子が接続されるフィルタ配線層を含む複数の配線層と、前記複数の配線層に挟まれた位置に形成された絶縁層と、前記フィルタ配線層の下方の配線層の少なくとも一部に形成されたグランドパターンとを備え、前記フィルタ配線層と前記他の配線層とで挟まれた位置に形成された絶縁層の厚さ寸法は、前記フィルタ配線層に形成された配線の幅寸法よりも小さく、かつ、前記他の配線層の厚さ寸法よりも大きいものである。
 本発明の第2のフィルタは、基材と、前記基材に搭載されているフィルタ素子とを備えたフィルタであって、前記基材は、配線が形成され、前記フィルタ素子が接続されるフィルタ配線層を含む複数の配線層と、前記複数の配線層に挟まれた位置に形成された絶縁層と、前記フィルタ配線層の下方の他の配線層の少なくとも一部に形成されたグランド部とを備え、前記フィルタ配線層と前記他の配線層とで挟まれた位置に形成された絶縁層の厚さ寸法は、前記フィルタ配線層における最近接した配線間の距離よりも小さく、かつ、前記他の配線層の厚さ寸法よりも大きいものである。
 本発明によれば、高抑圧および高アイソレーションを有するフィルタおよび分波器を提供できる。また、基材の最表層絶縁層を薄型化するため、作製されたフィルタおよび分波器を小型化及び薄型化できるという効果がある。また、このようなフィルタまたは分波器を搭載することで、通信モジュール、通信装置を小型化及び薄型化することができる。
図1Aは、実施の形態におけるフィルタの平面図である。 図1Bは、図1AにおけるZ-Z部の断面図である。 図2Aは、フィルタ素子を搭載する基材における第1配線層の構成を示す平面図である。 図2Bは、フィルタ素子を搭載する基材における第2配線層の構成を示す平面図である。 図2Cは、フィルタ素子を搭載する基材における第3配線層の構成を示す平面図である。 図2Dは、フィルタ素子を搭載する基材における第4配線層の構成を示す平面図である。 図3は、フィルタ素子を搭載する基材の断面図である。 図4は、フィルタ素子および基材の各層を重ね合わせた状態を示す模式図である。 図5は、分波器の回路図である。 図6は、実施の形態の分波器を用いた通信モジュールの回路図である。 図7は、分波器の構成を示す平面図である。 図8は、実施の形態におけるフィルタと従来のフィルタの周波数特性を示す特性図である。 図9は、実施の形態におけるフィルタと従来のフィルタの周波数特性を示す特性図である。 図10は、グランドパターンの配置構成によるアイソレーションの比較を示す特性図である。 図11は、実施の形態における通信装置の構成を示すブロック図である。 図12は、従来の高周波ブロックの構成を示すブロック図である。 図13は、将来の高周波ブロックの構成を示すブロック図である。
 本発明の第1のフィルタは、基材と、前記基材に搭載されているフィルタ素子とを備えたフィルタであって、前記基材は、配線が形成され、前記フィルタ素子が接続されるフィルタ配線層を含む複数の配線層と、前記複数の配線層に挟まれた位置に形成された絶縁層と、前記フィルタ配線層の下方の他の配線層の少なくとも一部に形成されたグランド部とを備え、前記フィルタ配線層と前記他の配線層とで挟まれた位置に形成された絶縁層の厚さ寸法は、前記フィルタ配線層に形成された配線の幅寸法よりも小さく、かつ、前記他の配線層の厚さ寸法よりも大きいものである。このような構成とすることで、不要な電磁結合を抑圧することができるとともに、受信-送信間のアイソレーションを大幅に改善することができる。
 本発明のフィルタにおいて、前記フィルタ配線層と前記他の配線層とで挟まれた位置に形成された絶縁層の厚さ寸法は、前記フィルタ配線層に形成された配線の幅寸法の75%以下であり、かつ、前記他の配線層の厚さ寸法よりも大きい構成とすることができる。このような構成とすることで、従来技術のような仕切りグランドは必要なく、配線パターンの設計自由度が増すという効果があり、より望ましい。
 本発明の第2のフィルタは、基材と、前記基材に搭載されているフィルタ素子とを備えたフィルタであって、前記基材は、配線が形成され、前記フィルタ素子が接続されるフィルタ配線層を含む複数の配線層と、前記複数の配線層に挟まれた位置に形成された絶縁層と、前記フィルタ配線層の下方の他の配線層の少なくとも一部に形成されたグランド部とを備え、前記フィルタ配線層と前記他の配線層とで挟まれた位置に形成された絶縁層の厚さ寸法は、前記フィルタ配線層における最近接した配線間の距離よりも小さく、かつ、前記他の配線層の厚さ寸法よりも大きいものである。このような構成とすることで、近接した配線間に仕切りグランドパターンを配置できない場合には、最表層絶縁層の厚さをその配線間距離よりも薄くし、前記他の配線層のグランドパターンを近接配置させることで、それぞれの配線からの電磁界放射をグランドパターンに向けることで、配線間の不要な電磁結合を抑制することができる。なお、最表層絶縁層とは、フィルタを搭載する絶縁層である。
 本発明のフィルタにおいて、前記グランド部は、前記フィルタ配線層に形成された配線のうち、最近接部を含む2つの配線の直下の領域の少なくとも一部に配置されている構成とすることができる。このような構成とすることで、フィルタ配線層の配線から放射された電磁界を直下のグランドパターンに誘導することができ、周辺部への電磁界放射を抑制することができる。
 本発明のフィルタにおいて、前記グランド部は、前記他の配線層における、前記フィルタ素子の直下の領域の少なくとも一部に配置されている構成とすることができる。このような構成とすることで、不要な電磁結合を抑圧することができる。
 本発明のフィルタにおいて、前記グランド部は、前記他の配線層における、前記フィルタ配線層に形成された配線のうち、前記フィルタ素子のグランド端子に接続される配線の直下の領域の少なくとも一部に配置されている構成とすることができる。このような構成とすることで、不要な電磁結合を抑圧することができる。
 本発明のフィルタにおいて、前記基材は、セラミクス材料により形成されている構成とすることができる。このような構成とすることで、フィルタ素子5を気密封止することが容易になる。さらには、一般にはセラミクス材料は誘電正接が小さく、高周波フィルタおよび分波器の損失を小さく維持することができる。よって、低損失で高抑圧の高周波フィルタおよび分波器を実現することができる。
 本発明のフィルタにおいて、前記基材は、樹脂材料により形成されている構成とすることができる。このような構成とすることで、基材に複数のフィルタ素子を搭載する場合に、基材のサイズが大きくなったとしても、樹脂製のプリント基板を用いることでフィルタのコストを低減させることができる。
 本発明のフィルタにおいて、前記基材における少なくとも最表層絶縁層が、樹脂材料で形成され、前記基材における他の少なくとも一部の絶縁層が、セラミクス材料で形成されている構成とすることができる。このように、一般的にセラミクスよりも薄層化が容易な樹脂で最表層絶縁層を形成することで、薄い最表層絶縁層を容易に作製することができる。また、樹脂よりも誘電正接が小さいという特徴があるセラミクスで最表層絶縁層以外の絶縁層を作製することにより、誘電正接が小さい絶縁層を作製することができる。よって、両材料の長所を有効活用できる。
 本発明のフィルタにおいて、前記フィルタ素子は、弾性波フィルタで構成することができる。このような構成とすることで、低損失で小型の高周波フィルタおよび分波器を実現できる。
 本発明のフィルタにおいて、前記フィルタ素子は、前記基材にフェースダウンボンディングによって搭載されている構成とすることができる。
 本発明のフィルタにおいて、前記グランド部は、前記基材の接地用フットパターンと複数の層間配線で接続されている構成とすることができる。このような構成とすることにより、前記他の配線層に配置されたグランドパターンの電位が真のグランドに近づくため、フィルタ配線層の配線から放射される電磁界がよりグランドパターンに向かい、配線間の不要な電磁結合を抑制できる。
 (実施の形態)
  〔1.フィルタ及び分波器の構成〕
 本発明は、不要な電磁結合を発生させる配線パターンに、従来よりもグランドパターンを近づけて配置させたことを、主な構成上の特徴とする。
 図1Aは、実施の形態におけるフィルタの構成を示す平面図である。図1Bは、図1AにおけるZ-Z部の断面である。本実施の形態のフィルタは、基材1、配線2、グランドパターン3、ボンディングパッド部4、およびフィルタ素子5を備えている。なお、グランドパターン3は、本発明のグランド部の一例である。
 基材1は、第1絶縁層11、第2絶縁層12、第3絶縁層13を備えている。第1絶縁層11におけるフィルタ搭載面には、第1配線層14が形成されている。なお、本実施の形態における第1配線層14は、本発明のフィルタ配線層の一例である。第2絶縁層12における第1絶縁層11側の面には、第2配線層15が形成されている。また、第2配線層15の少なくとも一部には、グランドパターン3が配されている。第3絶縁層13における第2絶縁層12側の面には、第3配線層16が形成されている。また、第3絶縁層13における第3配線層16が形成された面の裏面には、第4配線層17が形成されている。
 配線2は、基材1の第1配線層14から第4配線層17に至るまで貫通形成されたスルーホールに配され、基材1の表裏を電気的に導通させている。配線2の一方の端部(第1配線層14側の端部)には、ボンディングパッド部4が電気的に接続して配されている。ボンディングパッド部4には、フィルタ素子5が電気的に接続して配されている。
 図1A及び図1Bに示すフィルタは、フィルタ搭載面に配置された第1配線層14における配線間の不要な電磁結合を抑制するため、その第1配線層14の配線の直下にグランドパターン3を配置し、かつ、第1配線層14とその1つ下の第2配線層15とで挟まれた第1絶縁層11(最表層絶縁層)の厚さD2を、配線2の配線幅D1よりも薄くした構成である。
 このような構成とすることで、従来構成のように同一配線層内に仕切りグランドパターンを配置する構成に比べて、第1配線層14における配線とグランドパターン3との距離を短くすることができる。なぜなら、同一配線層内では、配線幅と同等以下にはグランドパターンを近づけられないからである。すなわち、本実施の形態では、従来技術のように同一平面内に配線とグランドパターンとを配するのではなく、第1配線層14の下方にグランドパターン3を配することによって(つまり、配線とグランドパターンとを異なる平面内に配置する)、第1配線層14の配線とグランドパターン3との距離を近づけることができる構成である。
 なお、第1絶縁層11の厚さD2の下限については、第1配線層14と第2配線層15との間の電気的絶縁を保つため、第2配線層15の厚さよりも大きくする必要がある。
 また、本発明では最表層絶縁層(第1絶縁層11)を薄型化するため、このような基材1を用いて作製された高周波フィルタおよび分波器は、従来よりも薄型化できるという特徴がある。
  (実施例)
 本発明のフィルタの実施例について、2つのフィルタ素子を低温同時焼成セラミクス(Low Temperature Co-fired Ceramic:LTCC)基材に搭載して構成した分波器を用いて説明する。なお、この分波器は、第3世代携帯電話W-CDMA方式のBand1(送信帯域:1920~1980MHz、受信帯域:2110~2170MHz)用の分波器である。
 図2A~図2Dは、作製した分波器の基材の各層の構成を示す。図3は、分波器の基材の断面図を示す。図2Aに示すように、フィルタ素子5を搭載する第1配線層14には、配線パターン14aが形成されている。配線パターン14aは、アンテナ端子14b、受信端子14c、受信フィルタのグランド端子14d、送信端子14e、送信フィルタのグランド端子14fを備えている。図2Bに示すように、第2配線層15には、不要な電磁結合を抑制するためのグランドパターン15aが配置されている。このグランドパターン15aは、図1A及び図1Bに示すグランドパターン3に対応するものである。グランドパターン15aは、第2配線層15と図2Cに示す第3配線層16とを介して、複数の層間ビアで、図2Dに示す第4配線層17におけるフットパターンのグランド17dと電気的に接続されている。
 なお、絶縁層の厚さに関しては、最表層絶縁層(第1絶縁層11)を25μmとした。また、比較のために最表層絶縁層厚さを100μmとした基材も作製した。第2絶縁層12、第3絶縁層13、第4絶縁層14の厚さは、それぞれ100μmとした。また、絶縁層としては、(表1)に示すものを適宜用いることができる。
Figure JPOXMLDOC01-appb-T000001
 図4は、フィルタ素子5、第1配線層14の配線パターン14a、第2配線層15のグランドパターン15aの互いの位置関係を示す。また、図4は、基材1をその主平面の法線方向に見た時の各層の位置関係を示している。図4に示すように、受信フィルタ41は、その直下のほぼ全面の第2導体層15にグランドパターン15aが配置されている。送信フィルタ42は、送信端子14eに接続される信号線の直下には、第2導体層15のグランドパターン15aは配置されておらず、それ以外のグランド端子(受信フィルタ41のグランド端子14d)に接続される配線の直下を含む領域には、グランドパターン15aが配置されている。なお、配線パターンの線幅は100μmで形成してあり、設計ルールとしては、ライン/スペース=100/100μmである。
 図5は、分波器の回路構成を示す。受信フィルタ41及び送信フィルタ42は、FBARフィルタを梯子状に接続したラダー型フィルタで構成されている。
 図6は、本実施の形態の分波器を備えた通信モジュールの構成を示す。通信モジュールは、分波器51とローノイズアンプ(LNA)52とパワーアンプ(PA)53とを備えている。分波器51は、本実施の形態の分波器で構成されている。
 図7は、本実施の形態の分波器の実装構成を示す。図7に示すように分波器は、基材61上に位相整合回路62と受信用SAWフィルタ63と送信用SAWフィルタ64とを備えている。位相整合回路62は、アンテナポート62aに接続されているとともに、第1配線層14(図1B参照)に形成された配線65を介して受信用SAWフィルタ63及び送信用SAWフィルタ64に接続されている。受信用SAWフィルタ63は、第1配線層14に形成された配線65を介して受信ポート63aに接続されている。送信用SAWフィルタ64は、第1配線層14に形成された配線65を介して送信ポート64aに接続されている。図7に示す分波器は、3種類の異なるインピーダンス(アンテナポート62a、受信用SAWフィルタ63、送信用SAWフィルタ64のインピーダンス)を有し、このような構成の場合、各インピーダンスに対応したグランドを配する必要がある。第1のグランドパターン66は、第2配線層15(図1B参照)に形成され、送信ポート64aが接続されている。第2のグランドパターン67は、第3配線層16(図1B参照)に形成され、アンテナポート62aが接続されている。第3のグランドパターン68は、第4配線層17(図1B参照)に形成され、受信ポート63aが接続されている。
 図8は、図5に示す分波器における送受信特性を示す。図9は、図5に示す分波器における受信フィルタ41-送信フィルタ42間のアイソレーションを示す。図8及び図9に示す特性は、図5に示す分波器を用いて電気的特性を測定した結果である。測定に使用した分波器は、フィルタの最表層絶縁層(第1絶縁層11)の厚さを配線パターン幅と同等である100μmにしたものと、フィルタの最表層絶縁層(第1絶縁層11)の厚さを25μmにしたものとを作製した。それぞれの分波器について評価した結果、図8における実線特性に示すように最表層絶縁層の厚さを25μmにした方が、広い周波数帯域にわたって抑圧度を改善できることがわかった。また、図9における実線特性に示すように、特に送信帯域のアイソレーションを12dB低下させることができ、大幅にアイソレーションが改善できることがわかった。
 なお、従来技術のように、配線層と同一層内に仕切りグランドパターンを配置したフィルタの場合、その抑圧度およびアイソレーションは、配線パターンとグランドパターンの距離が100μmまでに限定されるため、図8及び図9における破線に示す特性と同等である(絶縁層の厚さを100μmにした時の特性)。
 図10は、最表層絶縁層の厚さに対する送信帯域アイソレーションの変化を示す。また、図10は、第1配線層14の配線パターン間に100μmのギャップを設けて仕切りグランドパターンを配置したときの分波器の特性を、電磁界シミュレーションにより計算した結果である。なお、最表層絶縁層(第1絶縁層11)の厚さも変化させた。図10の横軸は、配線パターン幅に対する最表層絶縁層の厚さの比である。図10に示すように、配線パターン幅に対する最表層絶縁層の厚さの比を0.75以下にすることで、仕切りグランドパターンの効果がなくなり、第2配線層15に形成されたグランドパターン3の効果だけでアイソレーションが決定されていることがわかった。つまり、配線パターン幅に対する最表層絶縁層の厚さの比が0.75以下であれば、仕切りグランドは必要なく、配線パターンの設計自由度が増すという効果が得られることがわかった。
  〔2.通信装置の構成〕
 図11は、本実施の形態のフィルタまたは分波器を備えた通信装置の一例として、携帯電話端末のRFブロックを示す。また、図11に示す構成は、GSM(Global System for Mobile Communications)通信方式及びW-CDMA(Wideband Code Divition Multiple Access)通信方式に対応した携帯電話端末の構成を示す。また、本実施の形態におけるGSM通信方式は、850MHz帯、950MHz帯、1.8GHz帯、1.9GHz帯に対応している。また、携帯電話端末は、図11に示す構成以外にマイクロホン、スピーカー、液晶ディスプレイなどを備えているが、本実施の形態における説明では不要であるため図示を省略した。ここで、受信フィルタ73a,77,78,79,80、および送信フィルタ73bには、本実施の形態におけるフィルタが含まれている。また、デュープレクサ73は、本実施の形態における分波器で構成することができる。
 まず、アンテナ71を介して入力される受信信号は、その通信方式がW-CDMAかGSMかによってアンテナスイッチ回路72で、動作の対象とするLSIを選択する。入力される受信信号がW-CDMA通信方式に対応している場合は、受信信号をデュープレクサ73に出力するように切り換える。デュープレクサ73に入力される受信信号は、受信フィルタ73aで所定の周波数帯域に制限されて、バランス型の受信信号がLNA74に出力される。LNA74は、入力される受信信号を増幅し、LSI76に出力する。LSI76では、入力される受信信号に基づいて音声信号への復調処理を行ったり、携帯電話端末内の各部を動作制御する。
 一方、信号を送信する場合は、LSI76は送信信号を生成する。生成された送信信号は、パワーアンプ75で増幅されて送信フィルタ73bに入力される。送信フィルタ73bは、入力される送信信号のうち所定の周波数帯域の信号のみを通過させる。送信フィルタ73bから出力される送信信号は、アンテナスイッチ回路72を介してアンテナ71から外部に出力される。
 また、入力される受信信号がGSM通信方式に対応した信号である場合は、アンテナスイッチ回路72は、周波数帯域に応じて受信フィルタ77~80のうちいずれか一つを選択し、受信信号を出力する。受信フィルタ77~80のうちいずれか一つで帯域制限された受信信号は、LSI83に入力される。LSI83は、入力される受信信号に基づいて音声信号への復調処理を行ったり、携帯電話端末内の各部を動作制御する。一方、信号を送信する場合は、LSI83は送信信号を生成する。生成された送信信号は、パワーアンプ81または82で増幅されて、アンテナスイッチ回路72を介してアンテナ71から外部に出力される。
 以上のように本実施の形態のフィルタまたは分波器を通信装置に備えることで、不要な電磁結合を抑圧することができるとともに、受信-送信間のアイソレーションを向上させることができる。したがって、通信品質を向上させることができる。また、本実施の形態では、最表層絶縁層(第1絶縁層11)を薄型化するため、通信装置の薄型化に貢献することができる。
  〔3.実施の形態の効果、他〕
 本実施の形態のように、最表層絶縁層(第1絶縁層11)の厚さD2を配線パターン幅D1よりも薄くし、かつ、その1つ下の配線層にグランドパターン3を配置することで、不要な電磁結合を抑圧することができるとともに、受信-送信間のアイソレーションを大幅に改善することができる。
 また、本実施の形態では、最表層絶縁層(第1絶縁層11)を薄型化するため、フィルタおよび分波器を小型化及び薄型化することができる。このようなフィルタまたは分波器を通信モジュールまたは通信装置に搭載することで、通信モジュールまたは通信装置を小型化及び薄型化することができる。
 また、本発明者らが行なった実験結果を基にすると、図10に示すように、最表層絶縁層(第1絶縁層11)の厚さD2を、配線2の配線幅D1の75%以下にすることにより、従来技術のような仕切りグランドパターンは必要なく、配線パターンの設計自由度が増すという効果があり、より望ましい。
 また、最表層絶縁層(第1絶縁層11)の厚みD2を、近接して配置された配線間の距離よりも薄くすることでも効果が得られる。なぜなら、近接した配線間に仕切りグランドパターンを配置できない場合には、最表層絶縁層(第1絶縁層11)の厚さD2をその配線間距離よりも薄くし、第2配線層15のグランドパターン3を近接配置させることで、それぞれの配線からの電磁界放射をグランドパターン3に向けることで配線間の不要な電磁結合を抑制できるからである。
 また、第2配線層15に配置したグランドパターン3は、第1配線層14の配線の直下に配置することが望ましい。このような構成とすることで、第1配線層14の配線から放射された電磁界を直下のグランドパターン3に誘導することができ、周辺部への電磁界放射を抑制することができる。
 また、第2配線層15に配置したグランドパターン3は、第1配線層14において最近接部を有する配線の直下に配置することが望ましい。このような構成とすることで、不要な電磁結合が最も顕著である最近接部において、それぞれの配線からの電磁界放射を直下のグランドパターン3に誘導することができ、配線間の電磁結合を抑制することができる。
 また、第2配線層15に配置したグランドパターン3は、フィルタ素子5の直下に配置することが望ましい。なぜなら、図1Aにも示したように、フィルタ素子5の直下の第1配線層14にはフィルタ素子5をボンディングするための複数のパッド4がある。このボンディングパッド4は、互いに近接配置されるために、不要な電磁結合の要因となるからである。よって、グランドパターン3をフィルタ素子5の直下に配置することで、不要な電磁結合を抑圧することができる。
 また、第2配線層15に配置したグランドパターン3は、第1配線層14でフィルタ素子5のグランド端子に接続される配線の直下に配置することも望ましい。なぜなら、フィルタ素子5の信号端子に接続される配線の直下に近接してグランドパターン3を配置すると、配線の特性インピーダンスが変化し、フィルタ通過特性を劣化させてしまう。これに対して、グランド端子に接続される配線の直下にグランドパターン3を配置する構成であれば、インピーダンス変化によるフィルタ特性劣化は無視できるほど小さく、不要な電磁結合抑圧の効果だけが得られる。
 また、フィルタを搭載する材料はセラミクスとすることが望ましい。このような構成とすることで、フィルタ素子5を気密封止することが容易になる。さらには、一般にはセラミクス材料は誘電正接が小さく、高周波フィルタおよび分波器の損失を小さく維持することができる。よって、低損失で高抑圧の高周波フィルタおよび分波器を実現することができる。
 また、複数のフィルタ素子5を基材1に搭載する場合は、基材1の材料を樹脂としてもよい。このような構成とすることで、基材1に複数のフィルタ素子5を搭載する場合に、基材1のサイズが大きくなったとしても、樹脂製のプリント基板を用いることでフィルタのコストを低減させることができる。
 また、フィルタ素子5を搭載する基材1は、最表層絶縁層(第1絶縁層11)を樹脂材料で形成し、その他の絶縁層はセラミクスで形成することもできる。このように、一般的にセラミクスよりも薄層化が容易な樹脂で最表層絶縁層を形成することで、薄い最表層絶縁層を容易に作製することができる。また、樹脂よりも誘電正接が小さいという特徴があるセラミクスで最表層絶縁層以外の絶縁層を作製することにより、誘電正接が小さい絶縁層を作製することができる。よって、両材料の長所を有効活用できる。
 また、フィルタ素子5は、弾性表面波フィルタ(Surface Acoustic Wave:SAWフィルタ)や、圧電薄膜共振器フィルタ(Film Bulk Acoustic Resonator:FBARフィルタ)で構成することができる。このような構成とすることで、低損失で小型の高周波フィルタおよび分波器を実現できる。
 また、フィルタ素子5は、フェースダウンボンディングによって基材1に搭載されていることが望ましい。
 また、第2配線層15に配置されたグランドパターン3は、接地用フットパターンと複数の層間配線で接続されていることが望ましい。なぜなら、第2配線層15に配置されたグランドパターン3の電位が真のグランドに近づくため、第1配線層14の配線から放射される電磁界がよりグランドパターン3に向かい、配線間の不要な電磁結合を抑制できるからである。
 本発明のフィルタ、分波器、通信モジュール、および通信装置は、所定周波数の信号を受信または送信することができる機器に有用である。

Claims (15)

  1.  基材と、前記基材に搭載されているフィルタ素子とを備えたフィルタであって、
     前記基材は、
      配線が形成され、前記フィルタ素子が接続されるフィルタ配線層を含む複数の配線層と、
      前記複数の配線層に挟まれた位置に形成された絶縁層と、
      前記フィルタ配線層の下方の他の配線層の少なくとも一部に形成されたグランド部とを備え、
     前記フィルタ配線層と前記他の配線層とで挟まれた位置に形成された絶縁層の厚さ寸法は、前記フィルタ配線層に形成された配線の幅寸法よりも小さく、かつ、前記他の配線層の厚さ寸法よりも大きい、フィルタ。
  2.  前記フィルタ配線層と前記他の配線層とで挟まれた位置に形成された絶縁層の厚さ寸法は、前記フィルタ配線層に形成された配線の幅寸法の75%以下であり、かつ、前記他の配線層の厚さ寸法よりも大きい、請求項1記載のフィルタ。
  3.  基材と、前記基材に搭載されているフィルタ素子とを備えたフィルタであって、
     前記基材は、
      配線が形成され、前記フィルタ素子が接続されるフィルタ配線層を含む複数の配線層と、
      前記複数の配線層に挟まれた位置に形成された絶縁層と、
      前記フィルタ配線層の下方の他の配線層の少なくとも一部に形成されたグランド部とを備え、
     前記フィルタ配線層と前記他の配線層とで挟まれた位置に形成された絶縁層の厚さ寸法は、前記フィルタ配線層における最近接した配線間の距離よりも小さく、かつ、前記他の配線層の厚さ寸法よりも大きい、フィルタ。
  4.  前記グランド部は、
      前記フィルタ配線層に形成された配線のうち、最近接部を含む2つの配線の直下の領域の少なくとも一部に配置されている、請求項1~3に記載のフィルタ。
  5.  前記グランド部は、
      前記他の配線層における、前記フィルタ素子の直下の領域の少なくとも一部に配置されている、請求項1~3のいずれかに記載のフィルタ。
  6.  前記グランド部は、
      前記他の配線層における、前記フィルタ配線層に形成された配線のうち、前記フィルタ素子のグランド端子に接続される配線の直下の領域の少なくとも一部に配置されている、請求項1~3のいずれかに記載のフィルタ。
  7.  前記基材は、セラミクス材料により形成されている、請求項1~6のいずれかに記載のフィルタ。
  8.  前記基材は、樹脂材料により形成されている、請求項1~7のいずれかに記載のフィルタ。
  9.  前記基材における少なくとも最表層絶縁層が、樹脂材料で形成され、
     前記基材における他の少なくとも一部の絶縁層が、セラミクス材料で形成されている、請求項1~7のいずれかに記載のフィルタ。
  10.  前記フィルタ素子は、弾性波フィルタで構成されている、請求項1~9のいずれかに記載のフィルタ。
  11.  前記フィルタ素子は、
      前記基材にフェースダウンボンディングによって搭載されている、請求項10に記載のフィルタ。
  12.  前記グランド部は、
      前記基材の接地用フットパターンと複数の層間配線で接続されている、請求項1~11のいずれかに記載のフィルタ。
  13.  請求項1~12のうちいずれかに記載のフィルタを備えた、分波器。
  14.  請求項1~12のうちいずれかに記載のフィルタ、または請求項13に記載の分波器を備えた、通信モジュール。
  15.  請求項14に記載の通信モジュールを備えた、通信装置。
PCT/JP2008/052827 2008-02-20 2008-02-20 フィルタ、分波器、通信モジュール、および通信装置 WO2009104251A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2009554157A JP5583977B2 (ja) 2008-02-20 2008-02-20 フィルタ、分波器、通信モジュール、および通信装置
US12/918,781 US8367941B2 (en) 2008-02-20 2008-02-20 Filter, branching filter, communication module, and communication equipment
CN200880127007.2A CN101953070B (zh) 2008-02-20 2008-02-20 滤波器、分波器、通信模块以及通信装置
EP08711633.1A EP2249478B1 (en) 2008-02-20 2008-02-20 Filter, branching filter, communication module, and communication equipment
PCT/JP2008/052827 WO2009104251A1 (ja) 2008-02-20 2008-02-20 フィルタ、分波器、通信モジュール、および通信装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/052827 WO2009104251A1 (ja) 2008-02-20 2008-02-20 フィルタ、分波器、通信モジュール、および通信装置

Publications (1)

Publication Number Publication Date
WO2009104251A1 true WO2009104251A1 (ja) 2009-08-27

Family

ID=40985146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/052827 WO2009104251A1 (ja) 2008-02-20 2008-02-20 フィルタ、分波器、通信モジュール、および通信装置

Country Status (5)

Country Link
US (1) US8367941B2 (ja)
EP (1) EP2249478B1 (ja)
JP (1) JP5583977B2 (ja)
CN (1) CN101953070B (ja)
WO (1) WO2009104251A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009296508A (ja) * 2008-06-09 2009-12-17 Fujitsu Media Device Kk 分波器
WO2011136100A1 (ja) * 2010-04-30 2011-11-03 株式会社村田製作所 複合部品
WO2011136099A1 (ja) * 2010-04-28 2011-11-03 株式会社村田製作所 回路モジュール
JP2012105097A (ja) * 2010-11-10 2012-05-31 Taiyo Yuden Co Ltd 分波器及びこれを備えた電子装置
WO2012144228A1 (ja) * 2011-04-21 2012-10-26 株式会社村田製作所 回路モジュール
JP5618003B2 (ja) * 2011-06-21 2014-11-05 株式会社村田製作所 回路モジュール
WO2015104938A1 (ja) * 2014-01-07 2015-07-16 株式会社村田製作所 フィルタ装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4578575B2 (ja) * 2008-07-30 2010-11-10 京セラ株式会社 分波器、通信用モジュール部品、及び通信装置
JP6010292B2 (ja) * 2011-11-01 2016-10-19 太陽誘電株式会社 弾性波デバイス
CN104854792B (zh) * 2013-10-17 2018-11-06 株式会社村田制作所 高频电路
JP2021164141A (ja) 2020-04-03 2021-10-11 株式会社村田製作所 高周波モジュール及び通信装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004166258A (ja) * 2002-10-25 2004-06-10 Hitachi Metals Ltd 平衡−不平衡型マルチバンドフィルタモジュール
JP2005151287A (ja) * 2003-11-18 2005-06-09 Tdk Corp 電子部品
JP2005183949A (ja) * 2003-12-22 2005-07-07 Endicott Interconnect Technologies Inc 低クロストークノイズのプリント回路ボード、及びその製造方法
JP2005277522A (ja) * 2004-03-23 2005-10-06 Tdk Corp 電子部品
JP2008180192A (ja) 2007-01-26 2008-08-07 Nikki Co Ltd ベーパライザにおけるptcヒータの取付構造

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3222072B2 (ja) * 1996-10-15 2001-10-22 富士通株式会社 分波器パッケージ
US6483714B1 (en) * 1999-02-24 2002-11-19 Kyocera Corporation Multilayered wiring board
US6743975B2 (en) * 2001-03-19 2004-06-01 Hewlett-Packard Development Company, L.P. Low profile non-electrically-conductive component cover for encasing circuit board components to prevent direct contact of a conformal EMI shield
JP2002299917A (ja) * 2001-03-29 2002-10-11 Kyocera Corp 高周波伝送線路
JP3649183B2 (ja) * 2001-12-27 2005-05-18 ソニー株式会社 フィルタ回路装置及びその製造方法
CN100536328C (zh) * 2002-10-25 2009-09-02 日立金属株式会社 平衡-不平衡型多频带滤波模块
JP3778902B2 (ja) * 2003-04-28 2006-05-24 富士通メディアデバイス株式会社 分波器及び電子装置
DE602004015596D1 (de) * 2003-06-03 2008-09-18 Nxp Bv Tiefpassfilter und elektronisches bauelement
KR100633062B1 (ko) * 2004-10-07 2006-10-11 삼성전자주식회사 6층 인쇄회로기판
JP4091043B2 (ja) 2004-12-22 2008-05-28 富士通メディアデバイス株式会社 分波器
JP4713636B2 (ja) * 2006-03-08 2011-06-29 京セラ株式会社 分波器および通信装置
US7613009B2 (en) * 2006-03-15 2009-11-03 Tdk Corporation Electrical transition for an RF component
US8134084B2 (en) * 2006-06-30 2012-03-13 Shin-Etsu Polymer Co., Ltd. Noise-suppressing wiring-member and printed wiring board
JP4729464B2 (ja) * 2006-09-20 2011-07-20 ルネサスエレクトロニクス株式会社 方向性結合器および高周波回路モジュール

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004166258A (ja) * 2002-10-25 2004-06-10 Hitachi Metals Ltd 平衡−不平衡型マルチバンドフィルタモジュール
JP2005151287A (ja) * 2003-11-18 2005-06-09 Tdk Corp 電子部品
JP2005183949A (ja) * 2003-12-22 2005-07-07 Endicott Interconnect Technologies Inc 低クロストークノイズのプリント回路ボード、及びその製造方法
JP2005277522A (ja) * 2004-03-23 2005-10-06 Tdk Corp 電子部品
JP2008180192A (ja) 2007-01-26 2008-08-07 Nikki Co Ltd ベーパライザにおけるptcヒータの取付構造

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009296508A (ja) * 2008-06-09 2009-12-17 Fujitsu Media Device Kk 分波器
WO2011136099A1 (ja) * 2010-04-28 2011-11-03 株式会社村田製作所 回路モジュール
US8872601B2 (en) 2010-04-28 2014-10-28 Murata Manufacturing Co., Ltd. Circuit module including a duplexer mounted on a circuit substrate having a specified second ground path
JP5573947B2 (ja) * 2010-04-28 2014-08-20 株式会社村田製作所 回路モジュール
US8847699B2 (en) 2010-04-30 2014-09-30 Murata Manufacturing Co., Ltd. Composite component
WO2011136100A1 (ja) * 2010-04-30 2011-11-03 株式会社村田製作所 複合部品
JP5545363B2 (ja) * 2010-04-30 2014-07-09 株式会社村田製作所 複合部品
JP2012105097A (ja) * 2010-11-10 2012-05-31 Taiyo Yuden Co Ltd 分波器及びこれを備えた電子装置
US8766744B2 (en) 2010-11-10 2014-07-01 Taiyo Yuden Co., Ltd. Duplexer and electronic device having the same
WO2012144228A1 (ja) * 2011-04-21 2012-10-26 株式会社村田製作所 回路モジュール
CN103493371A (zh) * 2011-04-21 2014-01-01 株式会社村田制作所 电路模块
JP5807675B2 (ja) * 2011-04-21 2015-11-10 株式会社村田製作所 回路モジュール
US9252476B2 (en) 2011-04-21 2016-02-02 Murata Manufacturing Co., Ltd. Circuit module including a splitter and a mounting substrate
JP5618003B2 (ja) * 2011-06-21 2014-11-05 株式会社村田製作所 回路モジュール
WO2015104938A1 (ja) * 2014-01-07 2015-07-16 株式会社村田製作所 フィルタ装置
KR20160079930A (ko) * 2014-01-07 2016-07-06 가부시키가이샤 무라타 세이사쿠쇼 필터 장치
KR101672342B1 (ko) 2014-01-07 2016-11-03 가부시키가이샤 무라타 세이사쿠쇼 필터 장치
US9948278B2 (en) 2014-01-07 2018-04-17 Murata Manufacturing Co., Ltd. Filter device having a filter connection conductor line including parallel connected conductor lines

Also Published As

Publication number Publication date
CN101953070A (zh) 2011-01-19
US20100319975A1 (en) 2010-12-23
EP2249478B1 (en) 2015-01-07
JPWO2009104251A1 (ja) 2011-06-16
US8367941B2 (en) 2013-02-05
EP2249478A4 (en) 2011-03-23
JP5583977B2 (ja) 2014-09-03
EP2249478A1 (en) 2010-11-10
CN101953070B (zh) 2015-03-25

Similar Documents

Publication Publication Date Title
JP5583977B2 (ja) フィルタ、分波器、通信モジュール、および通信装置
JP5777694B2 (ja) 分波器、分波器モジュールおよび通信装置
WO2021006021A1 (ja) 高周波モジュール及び通信装置
JP2021061577A (ja) 高周波モジュールおよび通信装置
CN213213452U (zh) 高频模块和通信装置
CN213213455U (zh) 高频模块和通信装置
US11777534B2 (en) Radio frequency module and communication device
US11152961B2 (en) Radio frequency module and communication device
JP2021048566A (ja) 高周波モジュールおよび通信装置
WO2019049647A1 (ja) 高周波モジュール
CN213879810U (zh) 高频模块和通信装置
JP5344736B2 (ja) 基材、通信モジュール、および通信装置
CN213213454U (zh) 高频模块和通信装置
CN213879808U (zh) 高频模块和通信装置
US11303319B2 (en) Radio frequency module and communication device
US11418225B2 (en) Radio frequency module and communication device
WO2022123823A1 (ja) ハイブリッドフィルタ、マルチプレクサ、高周波モジュールおよび通信装置
JP2006333127A (ja) 高周波フィルタ部品、デュプレクサ、高周波モジュール及び無線通信機器
CN116547808A (zh) 高频模块以及通信装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880127007.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08711633

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2009554157

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2008711633

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12918781

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE