WO2009101880A1 - 光学フィルム積層体の製造方法 - Google Patents

光学フィルム積層体の製造方法 Download PDF

Info

Publication number
WO2009101880A1
WO2009101880A1 PCT/JP2009/051835 JP2009051835W WO2009101880A1 WO 2009101880 A1 WO2009101880 A1 WO 2009101880A1 JP 2009051835 W JP2009051835 W JP 2009051835W WO 2009101880 A1 WO2009101880 A1 WO 2009101880A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
optical film
optical
layer
film layer
Prior art date
Application number
PCT/JP2009/051835
Other languages
English (en)
French (fr)
Inventor
Daisuke Kumagai
Toshirou Nishikubo
Original Assignee
Nitto Denko Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corporation filed Critical Nitto Denko Corporation
Priority to CN200980000566.1A priority Critical patent/CN101743493B/zh
Priority to US12/867,704 priority patent/US8480832B2/en
Publication of WO2009101880A1 publication Critical patent/WO2009101880A1/ja
Priority to US13/617,761 priority patent/US8734607B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/18Handling of layers or the laminate
    • B32B38/1808Handling of layers or the laminate characterised by the laying up of the layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/42Polarizing, birefringent, filtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/06Angles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/202LCD, i.e. liquid crystal displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/02Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by a sequence of laminating steps, e.g. by adding new layers at consecutive laminating stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0004Cutting, tearing or severing, e.g. bursting; Cutter details
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/28Adhesive materials or arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1052Methods of surface bonding and/or assembly therefor with cutting, punching, tearing or severing

Definitions

  • the present invention relates mainly to a method of producing an optical film laminate, and more particularly to a method of producing an optical film laminate in which three or more optical films such as a polarizing film and an optical compensation film are laminated.
  • an optical film laminate in which a compensation film is laminated constitutes a part of the liquid crystal display device.
  • each optical film individually has a predetermined optical directional axis (for example, an absorption axis in the case of a polarizing film, and a slow axis in the case of a retardation film)
  • a predetermined optical directional axis for example, an absorption axis in the case of a polarizing film, and a slow axis in the case of a retardation film
  • the optical film laminate is cut into a size and a shape according to the size and the shape of the liquid crystal display device.
  • the shape of the film laminate it is necessary to adjust so that the optical directional axis of each optical film points in a predetermined direction.
  • the absorption axis of the polarizing film and the position of the two sheets are used.
  • the three optical directional axes in total with the two slow axes of the retardation film must be configured to form predetermined angles with one side of the optical film laminate forming the rectangular outline.
  • Patent Document 1 As a manufacturing method of this kind of optical film layered product, a method like following patent documents 1 is known, for example.
  • one optical film 101 for example, a retardation film
  • a film 102 for example, a polarizing film
  • chips 104 of a predetermined shape (for example, a minute rectangular shape).
  • the one optical film 101 and the other optical film 102 when laminating the one optical film 101 and the other optical film 102, the one optical film 101 and the other optical film 102 have a predetermined angle, that is, the slow axis of the retardation film 101.
  • the one optical film 101 is cut into a parallelogram-shaped cut piece 101a so that the ends of the two overlapped films coincide. It is cut off.
  • the method will be referred to as the conventional type A system for convenience.
  • Such a conventional type A manufacturing method is based on the previous conventional method, that is, a chip-like or a chip-like or similar number of chips including a predetermined number of chips separately from one optical film and another optical film.
  • the work efficiency can be improved as compared with a method in which chip-shaped films are pasted to each other after being cut into a shape, or they are then pasted into chips.
  • one optical film 201 for example, retardation film
  • another optical film 202 for example, a polarizing film formed in a long shape
  • the laminated intermediate 203 is formed by cutting the laminated intermediate 203 into chips 204 having a predetermined shape (for example, a minute rectangular shape), and the one optical film 201 and the other optical
  • the one optical film 201 is previously cut into a substantially rectangular cut piece 201a of a predetermined length, and the cut piece 201a is placed on the other optical film 202 at a predetermined angle, that is, , Laminating so that the slow axis X of the retardation film 201 and the absorption axis Y of the polarizing film form a predetermined angle, and cutting a part of one optical film that has been protruded from
  • Such a conventional type B method has an extremely long parallelogram in the conventional type A method when the lamination angle between the longitudinal direction of one optical film and the longitudinal direction of the other optical film is shallow. It is made in view of the fact that the optical film has to be cut, and the cutting operation and the handling of the film after the cutting become difficult. That is, in the conventional type B method, one optical film is cut into a substantially rectangular shape without considering the lamination angle with another optical film, so that after the cutting operation and cutting of one optical film The film cutting pieces are easily handled and at the same time the yield of the film is improved by effectively utilizing the portion which is exfoliated by lamination.
  • the conventional type A method and the conventional type B method as described above are said to have a low production efficiency and a tendency to lower the yield. There's a problem.
  • an optical film laminate when forming an optical film laminate by laminating three layers of optical films by a conventional method, first, the first optical film is cut, and the cut pieces are bonded to the second optical film to form two layers. A laminated intermediate made of an optical film is formed, and the laminated intermediate of the two layers is further cut from the second optical film to form a cut piece, and the cut piece is bonded to a third optical film to form a three-layered optical film It is necessary to cut out the final chip from the three-layered laminated intermediate.
  • the present invention has been made in view of the problems of the prior art as described above, and it is an optical film laminate in which optical films of three or more layers are laminated such that the optical directional axis forms a predetermined angle.
  • it is an object to improve the area yield of the optical film to be used and to improve the workability.
  • the present invention is a method of manufacturing an optical film laminate in which three or more optical films having an optical directional axis are laminated, and the first optical film formed in a long shape intersects the longitudinal direction thereof
  • the first optical film pieces are arranged adjacent to each other in a substantially strip shape to form a first film layer in which the optical directional axis intersects with the longitudinal direction;
  • a step of forming a film layer, and a second optical film formed in a long shape is cut along a cutting line intersecting with the longitudinal direction thereof to form a second optical film piece, while the second optical film pieces are adjacent to each other
  • Said second fill To provide a manufacturing method of an optical film laminate characterized by comprising a cutting step of cutting a plurality of optical film laminate while laminating layers.
  • the optical film pieces formed by cutting the optical film are arranged in a substantially strip shape while being adjacent to each other, and the optical directional axis intersects the longitudinal direction Since a film layer is formed and cut into a plurality of optical film laminates (that is, products) in a state where such film layers are laminated, even when laminating a plurality of film layers, optical There is an effect that the unlaminated portion of the film piece is hard to occur and the area yield is improved.
  • the optical film pieces constituting one film layer it is not necessary to bond the optical film pieces constituting one film layer as a laminate with the optical film pieces constituting the other film layer, and furthermore, with the optical film pieces constituting the other film layer It can arrange without considering the relative positional relationship of. Moreover, the obtained laminated body becomes strip
  • At least one of the first film layer forming step and the second film layer forming step is formed by laminating an adhesive material layer on a release material layer. It is a process carried out by placing the first optical film piece or the second optical film piece on the pressure-sensitive adhesive film through the pressure-sensitive adhesive layer, using a long pressure-sensitive adhesive film.
  • the first film layer forming step or The second film layer forming step is extremely simplified.
  • the first film layer and the second film layer obtained by this are formed in a long shape and provided with the release material layer and the adhesive material layer, the release material layer is peeled off to form the adhesive material layer. By exposing the film, it becomes possible to easily bond with other film layers in the laminating process.
  • this invention is a manufacturing method of the said optical film laminated body,
  • the 1st film layer formed in elongate shape by mounting the said 1st optical film piece on the said adhesive film is together with the said adhesive film.
  • a first film layer winding step of winding in a roll shape, and a second film layer formed in a long shape by placing the second optical film piece on the adhesive film is rolled together with the adhesive film.
  • the first film layer is fed by feeding the third optical film in the longitudinal direction from the roll material, and placing the first optical film piece on the fed third optical film.
  • the forming step is performed, and the second film layer forming step is performed by placing the second optical film piece on the delivered third optical film or the formed first film layer.
  • the present invention provides a method of producing an optical film laminate.
  • the film layers of three layers are formed simultaneously with the formation of the first film layer and the second film layer. Can be transferred to the next cutting step without laminating the film layers again.
  • an optical film laminate in which three or more optical films having an optical directional axis are laminated with their directional axes oriented in a predetermined direction.
  • the area yield of the optical film to be used can be improved, and the workability can be improved.
  • the flowchart which showed the manufacturing method of the optical film laminated body which concerns on 1st embodiment The figure which showed the process of forming a 1st film layer using a 1st optical film in the manufacturing method of the optical film laminated body which concerns on 1st embodiment.
  • or 3rd film layer in the manufacturing method of the optical film laminated body which concerns on 1st embodiment The top view which showed the laminated body obtained by the lamination process in the manufacturing method of the optical film laminated body which concerns on 1st embodiment.
  • FIG. 8 is a conceptual view showing a step of cutting one optical film 101 and a step of laminating the cut pieces 101 a on another optical film 102 to form a laminated intermediate 103 in the manufacturing method of the conventional type A system.
  • the conceptual diagram which showed the process of cutting the lamination
  • FIG. 8 is a conceptual view showing a step of cutting one optical film 201 and a step of laminating the cut pieces 201 a on another optical film 202 to form a laminated intermediate 203 in the manufacturing method of the conventional type B system.
  • FIG. 1 is a flow chart showing a first embodiment of the method for producing an optical film laminate according to the present invention.
  • the first embodiment is a method of manufacturing an optical film laminate chip 70 in which three or more layers of optical films having an optical directional axis are laminated, and the first optical film 10 formed in a long shape is used.
  • a third film layer comprising a third optical film 30, the first film layer 12, and a film layer laminating step 5 of laminating the second film layer 22, and the first to third film layers are laminated
  • a cutting step 6 for cutting the laminate into a plurality of optical film laminate chips 70.
  • the first to third optical films for example, known retardation films having an optical directional axis, a brightness enhancement film, a polarizing film and the like are used, and in the present embodiment, the first and second optical films are used.
  • the optical film a retardation film having a slow axis parallel to the long side of the film (indicated by “X” and “Y” in the figure) as an optical directional axis, and the long side of the film as the third optical film.
  • the retardation film is a film capable of causing a difference in the phase of transmitted light when transmitting light. Specifically, it is a film in which the refractive index is different in the film plane, and the phase of transmitted light is advanced in the direction in which the refractive index is minimum, and the phase of transmitted light is delayed in the direction in which the refractive index is maximum. That is, the slow axis of the retardation film is the direction in which the phase of light passing through the film is delayed, in other words, the direction in which the refractive index is maximum in the film plane.
  • the retardation film can be specifically obtained by stretching a polymer film, and for example, tension is applied to the unstretched film at an appropriate temperature to enhance molecular orientation along the tension direction. A film is mentioned.
  • polymer film for example, acetate resin, polyester resin, polyether sulfone resin, polysulfone resin, polycarbonate resin, polycarbonate resin, polyamide resin, polyimide resin, polyolefin resin, acrylic resin, polynorbornene resin, cellulose resin, polyarylate resin, polystyrene resin , Polyvinyl alcohol resin, polyvinyl chloride resin, polyvinylidene chloride resin, polyacrylic resin, thermoplastic resin having a substituted imide group or non-substituted imide group in a side chain and a substituted phenyl group or non-substituted phenyl group and a nitrile group in a side chain
  • the molding method include casting from solution and melt extrusion.
  • the polarizing film is a film in which transmitted light is linearly polarized light when natural light is transmitted. Specifically, only one of the orthogonal polarization components of incident light is allowed to pass, and the other is absorbed (or reflected or scattered) and blocked. That is, the absorption axis of the polarizing film is the direction in which the polarization component is absorbed.
  • the polarizing film for example, one obtained by dyeing and adsorbing a dichroic material such as iodine or an organic dye on a base film such as polyvinyl alcohol and then stretching the film is adopted. Can. Usually, the direction in which the film is stretched is the absorption axis.
  • the elongated first optical film is cut along a cutting line intersecting the longitudinal direction thereof to form a first optical film piece, and the first optical film piece is cut.
  • the first film layers are arranged in a substantially strip shape while being adjacent to each other to form an optical directional axis intersecting the longitudinal direction.
  • the adhesive when arranging the first optical film pieces adjacent to each other in a substantially strip shape, using the elongated first adhesive film formed by laminating the adhesive material layer on the release material layer, the adhesive It carries out by mounting the said 1st optical film piece on this adhesive film through a material layer.
  • FIG. 2 it is a cutting line that forms a predetermined angle ⁇ 1 with the longitudinal direction of the first optical film 10, and the distance between the cutting line and the width d of the first adhesive film 51 is
  • the first optical film 10 is sequentially cut along the corresponding cutting line 111, and the obtained first optical film pieces 11 are made to be adjacent to each other to form a strip, and the optical directional axis X is the same. It arranges on the 1st adhesive film 51 so that the longitudinal direction of a belt may be crossed.
  • the first adhesive film 51 is provided with a release material layer and an adhesive material layer, and the first optical film piece 11 can be attached by the adhesive force of the adhesive material layer.
  • the first adhesive film 51 may further include another release material layer before use, and the adhesive material layer 511 may be used in a state in which the front and back sides are covered with the release material layer.
  • the first adhesive film 51 in which both the front and back sides of the adhesive material layer 511 are covered with the release material layer 512 and the release material layer 513 and wound in a roll shape is used.
  • the adhesive material layer 511 is exposed by peeling off one of the release material layers 513 at a stage prior to the step of attaching the first optical film piece 11, and the adhesive material layer 511 is exposed as described above.
  • a first film layer 12 is formed by sequentially attaching one optical film piece 11, and a surface protection film 41 provided with an adhesive material layer 411 and a surface protection layer 412 is further formed on the upper surface of the first film layer 12. A method of bonding can be adopted.
  • the angle ⁇ 1 of the cutting line 111 with respect to the longitudinal direction of the first optical film 10 is the angle of the optical directional axis X of the first film layer 12 formed on the first adhesive film 51, and thus the optical film lamination. Since the angle of the optical directional axis X in the body chip 70 is determined, the optical film laminate chip 70 is prepared in consideration of the relative relationship with the directional axes of the optical films constituting the other film layers. It adjusts suitably according to the use etc.
  • the second film layer forming step 2 can be performed by the same procedure as the first film layer forming step 1, and as shown in FIG. 4, the second optical film piece 21 is formed on the second adhesive film 52. A second film layer 22 arranged in a band is formed.
  • the angle ⁇ 2 of the cutting line with respect to the longitudinal direction of the second optical film 20 is different from the angle ⁇ 1 of the cutting line with respect to the longitudinal direction of the first optical film 10.
  • a portion (indicated by a broken line in FIG. 4) that protrudes beyond the second adhesive film 52 is generated. In this case, this portion may be cut and attached to the unlaminated portion of the second optical film piece 21.
  • the first film layer 12 formed on the first adhesive film 51 can be obtained by the first film layer forming step 1, and the second film layer forming step 2 is formed on the second adhesive film 52.
  • Two film layers 22 can be obtained.
  • the surface protection films 41 and 42 are respectively laminated on the upper surface, and are wound in a roll shape. It is also possible to temporarily store it in a rotated state.
  • the film layer laminating step 5 is a step of laminating the first film layer 12 and the second film layer 22 obtained as described above with the third film layer formed of the third optical film 30.
  • the third optical film 30 to be the third film layer the third optical film 30 having an optical directional axis is formed in a long shape and wound in a roll shape. The case where the film layer laminating step 5 is carried out by laminating the first and second film layers by roll-to-roll while feeding out the third optical film 30 will be described.
  • the third surface protection film 43 provided with the surface protection layer 432 and the adhesive layer 431 is laminated on the upper surface, and provided with the release material layer 532 and the adhesive layer 531.
  • the third film layer 32 having the third adhesive film 53 laminated on the lower surface is fed from the raw fabric roll in the film longitudinal direction, and the third surface protective film 43 is exposed so that the upper surface of the third film layer 32 is exposed. Peel off.
  • the first surface protection film 41 provided with the surface protection layer 412 and the adhesive material layer 411 is laminated on the upper surface, and the first adhesive film 51 provided with the release material layer 512 and the adhesive material layer 511 is laminated on the lower surface.
  • the first film layer 12 is fed from the raw fabric roll in the film longitudinal direction, and only the release material layer 512 is peeled off with the adhesive material layer 511 remaining on the first film layer 12. Then, the third film layer 32 and the first film layer 12 are bonded to each other through the adhesive material layer 511 exposed to the surface, and the first surface laminated on the upper surface of the first film layer 12 The protective film 41 is peeled off to expose the upper surface of the first film layer 12.
  • the second surface protection film 42 provided with the surface protection layer 422 and the adhesive material layer 421 is laminated on the upper surface, and the release material layer 522 and the adhesive material layer 521
  • the second film layer 22 in which the second adhesive film 52 provided on the lower surface is laminated on the lower surface is fed from the raw fabric roll in the film longitudinal direction, and the adhesive material layer 521 is left on the second film layer 22 Strip 522 only. Then, the second film layer 22 and the first film layer 12 are pasted together via the adhesive material layer 521 exposed to the surface.
  • the third release material layer 532, the adhesive material layer 531, the third film layer 32, the adhesive material layer 511, the first film layer 12, the adhesive material layer 521, the second film layer 22, the adhesive material layer 421 And a surface protection layer 422 are formed. Since each of the first to third film layers used in the laminating step is elongated, the laminate 60 formed by the film layer laminating step 5 is also obtained as an elongated shape. Also, it can be stored in a state of being wound in a roll shape as needed.
  • the cutting step 6 is a step of cutting the laminated body 60 formed by laminating the first to third film layers into an optical film laminated chip 70 of a desired shape and size as shown in FIG. .
  • the shape and dimensions of the optical film laminate chip 70 produced by cutting are not particularly limited, and can be appropriately set according to the application.
  • the first film layer 12 and the second film layer 22 constituting the laminate 60 are both third Since the film layer 13 is formed in the same strip shape, in the cutting step 6, the entire area of the laminate 60 is used without waste for the production of the optical film laminate chip 70. That is, in the conventional method for manufacturing a laminate chip, when three or more optical films are laminated, a region where no optical film is present is generated in the peripheral portion of the laminate, so that region However, according to the method of the present embodiment, the entire area of the laminate 60 is used to form an optical film according to the method of the present embodiment. Since the body chip 70 can be produced, the yield of the optical film can be greatly improved.
  • a bonded portion of the first optical film piece 11 to the obtained optical film laminate chip 70 that is, a portion to be a joint (indicated by a broken line in FIG. 6) or the second optical film piece 21.
  • the chip 70 can be removed by any removing means.
  • the cutting process 6 may be performed only on the area where no bonding portion (joint) of such an optical film piece is present, and only the optical film laminate chip 70 having no bonding portion may be formed.
  • the specific cutting method in the cutting step 6 is not particularly limited, and, for example, a method of punching out the laminated body 60 using a Thomson blade or the like, the laminated body 60 using a cutter, laser light, water pressure or the like A conventionally known appropriate method such as a cutting method can be adopted.
  • the optical film laminate chip 70 obtained by the film layer laminating step has a first film layer 12 in which the first optical film pieces 11 are arranged in a predetermined direction, and a second optical film.
  • a second film layer 22 in which pieces are arranged in a predetermined direction and a third film layer 32 formed of a third optical film are laminated, and the optical directional axes X, Y, and Z of each film layer are They are oriented at a predetermined angle to each other.
  • an optical film laminate According to the method of manufacturing an optical film laminate according to the present embodiment, a plurality of types of first film layers and second film layers in which the optical directional axis is oriented at a predetermined angle are formed, and these are wound into a roll. It is possible to rotate and keep it. Therefore, when manufacturing an optical film laminate, an optical film is selected by appropriately selecting a film layer from a plurality of roll raw fabrics prepared in advance according to the required product specification, and performing only the laminating process and the cutting process. It becomes possible to manufacture a laminated body promptly. Moreover, since each film layer can be handled as a roll material roll, workability
  • the laminated body 60 in which the first to third film layers are laminated in the film layer laminating step is also formed in a band shape, it is wound and stored in a roll shape. It is possible to improve the workability in handling.
  • the present invention is limited thereto It is not something to be done. That is, like the first and second film layers, the third optical film 30 may be cut in a predetermined direction and then arranged in a band shape so as to be adjacent to each other as the third film layer, or the first and second films In addition to the layer, another optical film may be cut in a predetermined direction in the same manner as the first film layer and the like and then arranged in a band shape to be provided as a new film layer. Moreover, it becomes possible to change suitably also about the lamination order of a film layer.
  • the third optical film 30 comprises the third optical film 30.
  • the second film layer 22 is formed by using the first film layer forming step 1 ′ for forming the first film layer 12 on the three film layers 32 and the second optical film 20 formed in a long shape.
  • the method of manufacturing an optical film laminate according to the second embodiment does not form a film layer on an adhesive film as in the first embodiment, but a third optical film.
  • the first optical film piece 11 By placing the first optical film piece 11 directly on the third film layer 32 made of the film 30, the first optical film pieces 11 are arranged in a substantially strip shape while being adjacent to each other, and the optical directional axis X is placed. Form the first film layer 12 intersecting the longitudinal direction. Further, the same applies to the second film layer 22.
  • the second film layer 22 is formed on the first film layer 12 instead of forming the film layer on the adhesive film.
  • bonding of optical films is performed via an adhesive material layer (not shown).
  • the laminate 60 obtained through the first film layer forming step 1 ′ and the second film layer forming step 2 ′ has the same configuration as that of the first embodiment, and accordingly, the cutting step 6 is also performed as described above. It can carry out like 1st embodiment. That is, the first film layer 12 and the second film layer 22 constituting the laminate 60 are both formed in the same band as the third film layer 13, and in the cutting step 6, the laminate The entire area of 60 will be used to make the optical film laminate chip 70 without waste. Therefore, according to the method of the present embodiment, since the optical film laminate chip 70 can be formed using the entire region of the laminate 60, the yield of the optical film can be significantly improved.
  • an optical film laminate is formed by the method of manufacturing an optical film laminate according to the present invention (Example) or when an optical film laminate is formed by adopting both the conventional type A method and the conventional type B method (comparison Example 1) and an optical film to be used for a method (comparative example 2) of cutting an optical film into similar shapes of chips each including a predetermined number of chips, bonding them together and then cutting into chips The yield of was calculated by simulation.
  • a retardation film with a width of 820 mm, a retardation film with a width of 1090 mm, and a retardation film with a width of 1250 mm are used as the first to third optical films, and a polarizing film with a width of 1185 mm is used as the fourth optical film.
  • a stack chip four-layer product having a length of 30 mm and a width of 40 mm.
  • the slow axis of the first optical film retardation film, the slow axis of the second optical film retardation film, the slow axis of the third optical film retardation film, and the fourth optical film polarizing film was set to 45 °, 105 °, 120 ° and 30 ° with respect to the long side of the laminate chip, respectively.
  • the area yield (%) of the first to fourth optical films used was determined, and the average value thereof was determined to obtain the yield according to each method. The results are shown in Table 2.

Landscapes

  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

 光学的な指向軸が所定角度を成すようにして3層以上の光学フィルムが積層されてなる光学フィルム積層体を製造する場合において、使用する光学フィルムの面積歩留を向上させ、また、作業性を向上させることを一の目的とする。本発明は、光学的な指向軸を有する光学フィルムが3層以上積層されてなる光学フィルム積層体の製造方法であって、長尺状に形成された第一の光学フィルムをその長手方向と交差する切断線で切断して第一光学フィルム片とし、該第一光学フィルム片を互いに隣接させつつ略帯状に配置して光学的な指向軸が長手方向と交差する第一フィルム層を形成する第一フィルム層形成工程と、長尺状に形成された第二の光学フィルムをその長手方向と交差する切断線で切断して第二光学フィルム片とし、該第二光学フィルム片を互いに隣接させつつ略帯状に配置して光学的な指向軸が長手方向と交差する第二フィルム層を形成する第二フィルム層形成工程と、第三の光学フィルムからなる第三フィルム層、前記第一フィルム層及び前記第二フィルム層を積層した状態で複数の光学フィルム積層体に切断する切断工程とを備えたことを特徴とする光学フィルム積層体の製造方法を提供する。

Description

光学フィルム積層体の製造方法
 本発明は、主に、光学フィルム積層体の製造方法に関し、より詳しくは、偏光フィルムや光学補償フィルム等の光学フィルムが3層以上積層されてなる光学フィルム積層体の製造方法に関する。
 近年、液晶表示装置においては、偏光フィルムのみならず、使用される液晶セルの複屈折性に起因した視認性の欠点を改善するべく、各種光学補償フィルムが用いられており、これら偏光フィルムや光学補償フィルムが積層されてなる光学フィルム積層体が、前記液晶表示装置の一部を構成している場合が多い。
 ところで、上記光学フィルム積層体は、偏光フィルムや光学補償フィルムといった個々の光学フィルムがそれぞれ別々に作成された後、これを貼り合わせ、所定寸法及び所定形状に切断されて製造されるものであるところ、該光学フィルム積層体における特有の問題点として、各光学フィルムは個々に所定の光学的な指向軸(例えば、偏光フィルムであれば吸収軸、位相差フィルムであれば遅相軸)を有しており、前記光学フィルム積層体を作成する際には、このような各光学フィルムの光学的な指向軸を所定の角度を成すようにして積層しなければならない点が挙げられる。
 そして、このような光学フィルム積層体が液晶表示装置の一部材として使用される際には、該光学フィルム積層体を液晶表示装置の寸法及び形状に応じた寸法と形状に切断されるため、光学フィルム積層体の形状に対して、前記各光学フィルムの光学的指向軸が所定方向を向くように調整する必要がある。
 例えば、偏光フィルムと2枚の位相差フィルムが積層され、矩形状に形成された液晶表示装置用の光学フィルム積層体を製造する場合には、前記偏光フィルムの吸収軸と、前記2枚の位相差フィルムの遅相軸2本との合計3本の光学的指向軸が、該光学フィルム積層体の矩形状の輪郭を成す一辺に対してそれぞれ所定の角度を成すように構成されなければならない。
 従来、この種の光学フィルム積層体の製造方法としては、例えば、下記特許文献1のような方法が知られている。該特許文献1記載の方法は、図9及び図10に示すように、長尺状に形成された一の光学フィルム101(例えば、位相差フィルム)と、長尺状に形成された他の光学フィルム102(例えば、偏光フィルム)とを積層して積層中間体103とし、その後、該積層中間体103を所定形状(例えば、微少な矩形状)のチップ104に切断する方法である。ここで、前記一の光学フィルム101と他の光学フィルム102とを積層する際には、前記一の光学フィルム101と他の光学フィルム102とが所定角度、即ち、位相差フィルム101の遅相軸Xと偏光フィルムの吸収軸Yとが所定角度を成すように積層することを考慮し、重なった両フィルムの端部が一致するように前記一の光学フィルム101を平行四辺形状の切断片101aに切断しておくものである。尚、本明細書において、該方法を便宜的に従来型A方式と称することとする。
日本国特開平11-231129号公報
 このような従来型A方式の製造方法は、それ以前の従来方法、即ち、一の光学フィルムと他の光学フィルムとを別々に、チップ状又は該チップが所定数含まれてなる該チップの相似形状に切断した後、チップ状のフィルム同士を貼り合わせ、又は貼り合わせた後に各チップに切断する方法と比べ、作業効率を改善しうるものである。
 また、従来型A方式を改良した光学フィルム積層体の製造方法として、以下のような方法も検討されている。つまり、図11及び図12に示すように、長尺状に形成された一の光学フィルム201(例えば、位相差フィルム)と、長尺状に形成された他の光学フィルム202(例えば、偏光フィルム)とを積層して積層中間体203とし、その後、該積層中間体203を所定形状(例えば、微少な矩形状)のチップ204に切断する方法であり、前記一の光学フィルム201と他の光学フィルム202とを積層する際に、前記一の光学フィルム201を予め所定長さの略矩形状切断片201aに切断しておき、該切断片201aを他の光学フィルム202上に所定角度で、即ち、位相差フィルム201の遅相軸Xと偏光フィルムの吸収軸Yとが所定角度を成すようにして積層し、他の光学フィルムからはみ出した一の光学フィルムの一部分を切断して未積層部分に移動させて積層することによって積層中間体203とし、さらに該積層中間体203を微少な矩形状のチップ204に切断するものである。尚、本明細書において、該方法を便宜的に従来型B方式と称することとする。
 斯かる従来型B方式は、一の光学フィルムの長手方向と他の光学フィルムの長手方向との積層角度が浅い場合に、前記従来型A方式においては極めて長い平行四辺形状となるように一の光学フィルムを切断しなければならず、そのような切断作業及び切断後のフィルムの取扱いが困難となることに鑑みてなされたものである。つまり、該従来型B方式では、一の光学フィルムを、他の光学フィルムとの積層角度を考慮することなく略矩形状に切断するようにしたことにより、一の光学フィルムの切断作業及び切断後のフィルム切断片の取扱いを容易にしつつ、積層によってはみ出した部分についても有効活用して歩留まりの改善を図るものである。
 しかしながら、光学フィルムを3層以上積層して光学フィルム積層体を作成する場合には、上述のような従来型A方法や従来型B方式では、生産効率が悪い上に、歩留まりも低下しやすいという問題がある。
 例えば、従来の方法によって光学フィルムを3層積層して光学フィルム積層体を作成する場合、先ず、第一の光学フィルムを切断し、その切断片を第二の光学フィルムに貼り合わせて2層の光学フィルムからなる積層中間体とし、さらに、この2層の積層中間体を第二の光学フィルムから切断して切断片とし、その切断片を第三の光学フィルムに貼り合わせ、3層の光学フィルムからなる積層中間体とした上で、該3層の積層中間体から最終的なチップを切り出す必要がある。
 つまり、3層の積層中間体を作成する際には、その前段において必ず2層の積層中間体を作成し且つそれを切断して切断片とする必要があるため、使用する光学フィルムの原反幅や該光学フィルムの積層角度等によって、切断片の形状や大きさがまちまちとなり、3層の積層中間体を作成した場合に3層のうち何れかの光学フィルムが積層されない部分が生じてしまい、面積歩留まりが悪化する場合がある。このような問題は、光学フィルムの積層枚数が増える程、より一層顕著となる。
 また、3層の積層中間体を作成する際に、2層の積層中間体の切断片を用いて貼り合わせを行わなければならず、貼り合わせ作業が困難且つ煩雑になるという問題があり、このような問題も、光学フィルムの積層枚数が増える程、より一層顕著となる。
 本発明は、このような従来技術の問題点に鑑みてなされたものであり、光学的な指向軸が所定角度を成すようにして3層以上の光学フィルムが積層されてなる光学フィルム積層体を製造する場合において、使用する光学フィルムの面積歩留を向上させ、また、作業性を向上させることを一の目的とする。
 本発明は、光学的な指向軸を有する光学フィルムが3層以上積層されてなる光学フィルム積層体の製造方法であって、長尺状に形成された第一の光学フィルムをその長手方向と交差する切断線で切断して第一光学フィルム片とし、該第一光学フィルム片を互いに隣接させつつ略帯状に配置して光学的な指向軸が長手方向と交差する第一フィルム層を形成する第一フィルム層形成工程と、長尺状に形成された第二の光学フィルムをその長手方向と交差する切断線で切断して第二光学フィルム片とし、該第二光学フィルム片を互いに隣接させつつ略帯状に配置して光学的な指向軸が長手方向と交差する第二フィルム層を形成する第二フィルム層形成工程と、第三の光学フィルムからなる第三フィルム層、前記第一フィルム層及び前記第二フィルム層を積層した状態で複数の光学フィルム積層体に切断する切断工程とを備えたことを特徴とする光学フィルム積層体の製造方法を提供する。
 斯かる構成による本発明の光学フィルム積層体の製造方法によれば、光学フィルムが切断されてなる光学フィルム片を互いに隣接させつつ略帯状に配置して光学的な指向軸が長手方向と交差するフィルム層を形成し、そのようなフィルム層が積層された状態で、複数の光学フィルム積層体(即ち、製品)に切断するようにしたので、複数のフィルム層を積層する際であっても光学フィルム片の未積層部分が生じにくく、面積歩留まりが向上するという効果がある。
 また、一のフィルム層を構成する光学フィルム片は、他のフィルム層を構成する光学フィルム片との積層体として貼り合わせを行う必要がなく、しかも、他のフィルム層を構成する光学フィルム片との相互の位置関係を考慮することなく配置することができる。また、得られた積層体は帯状となる。従って、光学フィルム積層体を製造する際の作業性が大幅に向上するという効果がある。
 また、本発明は、前記光学フィルム積層体の製造方法において、前記第一フィルム層形成工程又は前記第二フィルム層形成工程の少なくとも何れか一方が、剥離材層に粘着材層が積層されてなる長尺状の粘着フィルムを用い、該粘着材層を介して粘着フィルム上に前記第一光学フィルム片又は前記第二光学フィルム片をそれぞれ載置することにより実施する工程であることを特徴とする光学フィルム積層体の製造方法を提供する。
 剥離材層に粘着材層が積層されてなる長尺状の粘着フィルム上に、前記第一光学フィルム片又は前記第二光学フィルム片をそれぞれ載置することにより、前記第一フィルム層形成工程又は前記第二フィルム層形成工程が極めて簡略なものとなる。また、これによって得られた第一フィルム層や第二フィルム層は、長尺状に形成され且つ剥離材層及び粘着材層を備えたものとなるため、剥離材層を剥離させて粘着材層を露出させることにより、積層工程において他のフィルム層と容易に貼り合わせることが可能となる。
 また、本発明は、前記光学フィルム積層体の製造方法において、前記粘着フィルム上に前記第一光学フィルム片を載置することにより長尺状に形成された第一フィルム層を、前記粘着フィルムとともにロール状に巻き取る第一フィルム層巻取り工程と、前記粘着フィルム上に前記第二光学フィルム片を載置することにより長尺状に形成された第二フィルム層を、前記粘着フィルムとともにロール状に巻き取る第二フィルム層巻取り工程と、ロール状に巻き取られた第一フィルム層及び第二フィルム層と、ロール状に巻き取られた前記第三フィルム層とをロールトゥーロールにより貼り合わせることで、前記第一乃至第三フィルム層を積層した状態とする連続貼合せ工程とを備えることを特徴とする光学フィルム積層体の製造方法を提供する。
 このような第一フィルム層巻取り工程、及び第二フィルム層巻取り工程を実施することにより、第一フィルム層及び第二フィルム層をロール状態にして取り扱うことが可能となるため、作成したフィルム層の保管や取扱いがより一層簡便となる。
 さらに、本発明は、前記第三の光学フィルムをロール原反より長手方向に送り出し、送り出された第三の光学フィルム上に前記第一光学フィルム片を載置することにより、前記第一フィルム層形成工程を実施し、送り出された第三の光学フィルム上、又は形成された前記第一フィルム層上に、前記第二光学フィルム片を載置することにより、前記第二フィルム層形成工程を実施することを特徴とする光学フィルム積層体の製造方法を提供する。
 斯かる製造方法によれば、第三の光学フィルムをベースとして第一フィルム層、及び第二フィルム層を形成できるため、これら第一フィルム層及び第二フィルム層の形成と同時に3層のフィルム層が積層された状態となり、改めてフィルム層同士を貼り合わせることなく、次段の切断工程へと移行することができる。
 以上のように、本発明に係る光学フィルム積層体の製造方法によれば、光学的な指向軸を有する3層以上の光学フィルムが、その指向軸を所定方向に配向しつつ積層されてなる光学フィルム積層体を製造する場合において、使用する光学フィルムの面積歩留を向上させ、また、作業性を向上させることが可能となる。
第一実施形態に係る光学フィルム積層体の製造方法を示したフロー図。 第一実施形態に係る光学フィルム積層体の製造方法において、第一の光学フィルムを用いて第一フィルム層を形成する工程を示した図。 第一実施形態に係る光学フィルム積層体の製造方法において、粘着材層が剥離材層によって表裏両面を覆われてなる粘着フィルムを用いて第一フィルム層を形成する工程を示した図。 第一実施形態に係る光学フィルム積層体の製造方法において、第二フィルム層を形成する工程を示した図。 第一実施形態に係る光学フィルム積層体の製造方法において、第一乃至第三フィルム層を積層する積層工程を示した図。 第一実施形態に係る光学フィルム積層体の製造方法において、積層工程により得られた積層体を示した平面図。 第二実施形態に係る光学フィルム積層体の製造方法を示したフロー図。 第二実施形態に係る光学フィルム積層体の製造方法において、第一フィルム層を形成する工程、及び第二フィルム層を形成する工程を示した図。 従来型A方式の製造方法において、一の光学フィルム101を切断する工程、及び切断された切断片101aを他の光学フィルム102に積層し、積層中間体103とする工程を示した概念図。 従来型A方式の製造方法において、積層中間体103を切断して、所定形状の光学フィルム積層体104とする工程を示した概念図。 従来型B方式の製造方法において、一の光学フィルム201を切断する工程、及び切断された切断片201aを他の光学フィルム202に積層し、積層中間体203とする工程を示した概念図。 従来型B方式の製造方法において、積層中間体203を切断して、所定形状の光学フィルム積層体204とする工程を示した概念図。
符号の説明
1、1’  第一フィルム層形成工程
2、2’  第二フィルム層形成工程
5     フィルム層積層工程
6     切断工程
10    第一の光学フィルム
11    第一光学フィルム片
12    第一フィルム層
20    第二の光学フィルム
21    第二光学フィルム片
22    第二フィルム層
30    第三の光学フィルム
32    第三フィルム層
41    第一表面保護フィルム
42    第二表面保護フィルム
43    第三表面保護フィルム
51    第一粘着フィルム
52    第二粘着フィルム
53    第三粘着フィルム
60    積層体
70    光学フィルム積層体チップ
411、421、431   粘着材層
412、422、432   表面保護層
511、521、531   粘着材層
512、522、532   剥離材層
X   第一の光学フィルム(位相差フィルム)における光学的指向軸(遅相軸)
Y   第二の光学フィルム(位相差フィルム)における光学的指向軸(遅相軸)
Z   第三の光学フィルム(偏光フィルム)における光学的指向軸(吸収軸)
 図1は、本発明に係る光学フィルム積層体の製造方法に関し、その第一実施形態を示したフロー図である。第一実施形態は、光学的な指向軸を有する光学フィルムが3層以上積層されてなる光学フィルム積層体チップ70を製造する方法であり、長尺状に形成された第一の光学フィルム10を用いて第一フィルム層を形成する第一フィルム層形成工程1と、長尺状に形成された第二の光学フィルム20を用いて第二フィルム層を形成する第二フィルム層形成工程2と、第三の光学フィルム30からなる第三フィルム層、前記第一フィルム層12、及び前記第二フィルム層22を積層するフィルム層積層工程5と、これら第一乃至第三のフィルム層が積層された積層体を複数の光学フィルム積層体チップ70に切断する切断工程6とを備えたものである。
 第一乃至第三の光学フィルムとしては、例えば、光学的な指向軸を有する公知の位相差フィルムや輝度向上フィルム、偏光フィルム等が用いられるが、本実施形態においては、第一及び第二の光学フィルムとして光学的な指向軸としてフィルムの長辺と平行な遅相軸(図中「X」および「Y」で示す)を有する位相差フィルムを用い、第三の光学フィルムとしてフィルムの長辺と平行な吸収軸(図中「Z」で示す)が形成されてなる偏光フィルムを用いた場合について説明する。
 ここで、位相差フィルムとは、光を透過させた際に、透過光の位相に差を生じさせ得るフィルムである。具体的には、フィルム面内において屈折率が異なり、該屈折率が最小である方向に透過光の位相を進ませ、該屈折率が最大である方向に透過光の位相を遅らせるフィルムである。即ち、位相差フィルムの遅相軸とは、該フィルムを透過する光の位相が遅れる方向であり、換言すると、フィルム面内において屈折率が最大となる方向である。
 該位相差フィルムは、具体的には、高分子フィルムを延伸することによって得ることができ、例えば、適切な温度で未延伸のフィルムに張力を加え、引張方向に沿って分子の配向を高めたフィルムが挙げられる。高分子フィルムとしては、例えば、アセテート樹脂、ポリエステル樹脂、ポリエーテルスルホン樹脂、ポリスルホン樹脂、ポリカーボネート樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリオレフィン樹脂、アクリル樹脂、ポリノルボルネン樹脂、セルロース樹脂、ポリアリレート樹脂、ポリスチレン樹脂、ポリビニルアルコール樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリアクリル樹脂、側鎖に置換イミド基または非置換イミド基を有する熱可塑性樹脂と側鎖に置換フェニル基または非置換フェニル基とニトリル基を有する熱可塑性樹脂との混合物、および液晶ポリマーからなる群から選択される少なくとも1種類のポリマー材料を、フィルム状に成形したものを採用することができる。成形方法の具体例としては、溶液からのキャスティング法、溶融押出法が挙げられる。
 また、偏光フィルムとは、自然光を透過させた際に、透過光が直線偏光となるフィルムである。具体的には、入射する光の直交する偏光成分の一方のみを通過させ、他方を吸収(或いは反射、散乱)して遮蔽するものである。即ち、該偏光フィルムの吸収軸とは、偏光成分が吸収される方向である。
 該偏光フィルムとしては、例えば、ポリビニルアルコール等の基材フィルムにヨウ素や有機染料等の二色性の材料を染色、吸着させた後、該フィルムを延伸することによって得られたものを採用することができる。通常、該フィルムを延伸した方向が吸収軸となる。
 前記第一フィルム層形成工程1は、長尺状に形成された第一の光学フィルムを、その長手方向と交差する切断線で切断して第一光学フィルム片とし、該第一光学フィルム片を互いに隣接させつつ略帯状に配置して光学的な指向軸が長手方向と交差する第一フィルム層を形成するものである。第一実施形態においては、該第一光学フィルム片を互いに隣接させつつ略帯状に配置する際、剥離材層に粘着材層が積層されてなる長尺状の第一粘着フィルムを用い、該粘着材層を介して該粘着フィルム上に前記第一光学フィルム片を載置することにより行う。
 具体的には、図2に示すように、第一の光学フィルム10の長手方向に対して所定の角度θ1を成す切断線であって、且つ、その間隔が第一粘着フィルム51の幅dと一致するような切断線111により、第一光学フィルム10を順次切断し、得られた第一光学フィルム片11を、互いに隣接させて帯状となるように、且つ、光学的な指向軸Xが該帯の長手方向と交差するように、第一粘着フィルム51上に配置する。
 ここで、前記第一粘着フィルム51は、剥離材層と粘着材層とを備えたものであり、該粘着材層の粘着力によって前記第一光学フィルム片11を貼り付けうる構成となっている。該第一粘着フィルム51としては、使用前において、他の剥離材層を更に備えており、粘着材層511が剥離材層によって表裏両面を覆われた状態のものを使用することができる。
 具体的には、図3に示したように、粘着材層511の表裏両面が剥離材層512及び剥離材層513により覆われ、且つロール状に巻回されてなる第一粘着フィルム51を用い、一方の剥離材層513を前記第一光学フィルム片11の貼り付け工程の前段で剥離させることによって粘着材層511を露出させ、露出させた粘着材層511上に、上述のようにして第一光学フィルム片11を順次貼り付けることによって第一フィルム層12を形成し、さらに、該第一フィルム層12の上面に、粘着材層411と表面保護層412とを備えた表面保護フィルム41を張り合わせる方法を採用することができる。
 前記第一光学フィルム10の長手方向に対する切断線111の角度θ1は、前記第一粘着フィルム51上に形成される第一フィルム層12の光学的な指向軸Xの角度、延いては光学フィルム積層体チップ70における光学的な指向軸Xの角度を決定するものであるため、他のフィルム層を構成する光学フィルムの指向軸との相対的な関係を考慮し、作成する光学フィルム積層体チップ70の用途等に応じて適宜調整される。
 前記第二フィルム層形成工程2は、前記第一フィルム層形成工程1と同様の手順によって行うことができ、図4に示したように、第二粘着フィルム52上に第二光学フィルム片21が帯状に配列されてなる第二フィルム層22を作成する。
 但し、図4に示したように、第二の光学フィルム20の長手方向に対する切断線の角度θ2は、前記第一の光学フィルム10の長手方向に対する切断線の角度θ1とは異なる角度とすることができ、これにより、光学的な指向軸がフィルム層毎に所望の角度を成すように構成された光学フィルム積層体チップ70を得ることが可能となる。
 また、図4に示したように、第二粘着フィルム52上に第二光学フィルム片21を貼り付けた際に、第二粘着フィルム52よりもはみ出す部分(図4中、破線で示す)が生じた場合、この部分を切断して第二光学フィルム片21の未積層部分へと貼り付けるようにしてもよい。
 こうして、第一フィルム層形成工程1によって第一粘着フィルム51上に形成された第一フィルム層12を得ることができ、第二フィルム層形成工程2によって第二粘着フィルム52上に形成された第二フィルム層22を得ることができる。また、図2乃至図4に示したように、得られた第一フィルム層12及び第二フィルム層22は、それぞれ、表面保護フィルム41、42がその上面に積層されており、ロール状に巻回した状態で一時的に保管することも可能となる。
 フィルム層積層工程5は、上述のようにして得られた第一フィルム層12、及び第二フィルム層22を、第三の光学フィルム30からなる第三フィルム層と積層する工程である。本実施形態では、第三フィルム層となる第三の光学フィルム30として、光学的な指向軸を有する第三の光学フィルム30が長尺状に形成され且つロール状に巻回されたものを用い、斯かる第三の光学フィルム30を送り出しながら、上記第一及び第二のフィルム層と、ロールトゥーロールで貼り合わせることにより、該フィルム層積層工程5を実施する場合について説明する。
 具体的には、図5に示したように、表面保護層432と粘着材層431とを備えた第三表面保護フィルム43が上面に積層され、剥離材層532と粘着材層531とを備えた第三粘着フィルム53が下面に積層された第三フィルム層32を、原反ロールからフィルム長手方向に送り出し、該第三フィルム層32の上面が露出するように、前記第三表面保護フィルム43を剥離する。
 一方、表面保護層412と粘着材層411とを備えた第一表面保護フィルム41が上面に積層され、剥離材層512と粘着材層511とを備えた第一粘着フィルム51が下面に積層された第一フィルム層12を、同様にして原反ロールからフィルム長手方向に送り出し、該第一フィルム層12に粘着材層511を残した状態で剥離材層512のみを剥離する。
 そして、表面に露出した前記粘着材層511を介し、前記第三フィルム層32と、前記第一フィルム層12とを貼り合わせ、さらに、第一フィルム層12の上面に積層された前記第一表面保護フィルム41を剥離し、該第一フィルム層12の上面を露出させる。
 次に、前記第一フィルム層12の場合と同様に、表面保護層422と粘着材層421とを備えた第二表面保護フィルム42が上面に積層され、剥離材層522と粘着材層521とを備えた第二粘着フィルム52が下面に積層された第二フィルム層22を、原反ロールからフィルム長手方向に送り出し、該第二フィルム層22に粘着材層521を残した状態で剥離材層522のみを剥離する。
 そして、表面に露出した前記粘着材層521を介し、前記第二フィルム層22と、前記第一フィルム層12とを貼り合わせる。
 こうして、下から順に、第三剥離材層532、粘着材層531、第三フィルム層32、粘着材層511、第一フィルム層12、粘着材層521、第二フィルム層22、粘着材層421、及び表面保護層422が積層されてなる積層体60が作成される。
 該積層工程に用いられる第一乃至第三の各フィルム層は長尺状であるため、該フィルム層積層工程5により作成された積層体60も長尺状として得られることから、該積層体60も、必要に応じて適宜ロール状に巻回した状態で保管することが可能となる。
 切断工程6は、図6に示したように、これら第一乃至第三のフィルム層が積層されてなる積層体60を、所望の形状および寸法の光学フィルム積層体チップ70に切断する工程である。切断によって作成される光学フィルム積層体チップ70の形状および寸法は特に限定されるものではなく、用途に応じて適宜設定することができる。
 ここで、本実施形態において切断対象となる積層体60に着目すると、図6に示したように、該積層体60を構成する第一フィルム層12及び第二フィルム層22は、何れも第三フィルム層13と同じく帯状に形成されたものであるため、該切断工程6に於いては、積層体60の全領域が無駄なく光学フィルム積層体チップ70の作成に使用されることとなる。
 つまり、従来の積層体チップの製造方法においては、3層以上の光学フィルムを積層した際に、その積層体の周辺部分には、何れかの光学フィルムが存在しない領域が生じていたため、その領域は積層体チップの作成には使用できず、使用する光学フィルムの歩留まり低下を招く要因となっていたところ、本実施形態の方法によれば、積層体60の全領域を使用して光学フィルム積層体チップ70を作成できることとなるため、光学フィルムの歩留まりを大幅に向上させることが可能となる。
 但し、本実施形態において、得られた光学フィルム積層体チップ70に第一光学フィルム片11の接合部分、即ち、繋ぎ目となる部分(図6中、破線で示す)又は第二光学フィルム片21の接合部分、即ち、繋ぎ目となる部分(図6中、一点鎖線で示す)が存在する場合、該チップ70は任意の除去手段により除去することができる。また、そのような光学フィルム片の接合部分(繋ぎ目)が存在しない領域のみを対象として切断工程6を実施し、接合部分のない光学フィルム積層体チップ70のみを作成するようにしてもよい。
 前記切断工程6における具体的な切断方法は特に限定されるものではなく、例えば、トムソン刃等を用いて積層体60を打ち抜く方法や、カッター、レーザー光、水圧等を利用して積層体60を切断する方法など、従来公知の適宜な方法を採用することができる。
 前記フィルム層積層工程によって得られた光学フィルム積層体チップ70は、図6に示したように、第一光学フィルム片11が所定方向に配列されてなる第一フィルム層12と、第二光学フィルム片が所定方向に配列されてなる第二フィルム層22と、第三光学フィルムからなる第三フィルム層32とが積層され、且つ、各フィルム層の光学的な指向軸X、Y、及びZが互いに所定の角度を成して配向したものとなる。
 本実施形態に係る光学フィルム積層体の製造方法によれば、光学的な指向軸が所定角度に配向されてなる第一フィルム層及び第二フィルム層を複数種類作成し、これらをロール状に巻回して保管しておくことが可能となる。従って、光学フィルム積層体の製造に際しては、必要な製品仕様に応じて予め作成しておいた複数のロール原反から適宜フィルム層を選択し、積層工程と切断工程のみを実施することによって光学フィルム積層体を速やかに製造することが可能となる。
 また、各フィルム層をロール原反として取り扱えるため、枚様体として保管等する場合と比較して作業性が向上することとなる。
 また、本実施形態によれば、フィルム層積層工程によって第一乃至第三のフィルム層が積層されてなる積層体60も帯状に形成されたものとなるため、ロール状に巻回して保管しておくことが可能となり、その取り扱いにおける作業性も向上することとなる。
 尚、本実施形態に於いては、第一及び第二フィルム層のみを所定方向に切断した後、これを帯状に配置して第一及び第二フィルム層としたが、本発明はこれに限定されるものではない。
 即ち、第三光学フィルム30を、第一及び第二フィルム層と同様に、所定方向に切断した後これを帯状に隣接配置して第三フィルム層としてもよく、或いは、第一及び第二フィルム層に加えて他の光学フィルムを用い、第一フィルム層等と同様に所定方向に切断した後これを帯状に配置して、新たなフィルム層として設けてもよい。
 また、フィルム層の積層順序についても、適宜変更することが可能となる。
 次に、本発明に係る光学フィルム積層体の製造方法に関し、その第二実施形態を説明する。尚、前記第一実施形態と同じ構成については、その符号を援用するとともに説明を省略し、第一実施形態と異なる点のみを説明する。
 該第二実施形態の光学フィルム積層体の製造方法は、長尺状に形成された第一の光学フィルム10を用いて第一フィルム層12を形成する際、第三の光学フィルム30からなる第三フィルム層32上に該第一フィルム層12を形成するようにした第一フィルム層形成工程1’と、長尺状に形成された第二の光学フィルム20を用いて第二フィルム層22を形成する際、前記第一フィルム層形成工程1により形成された第一フィルム層12上に該第二フィルム層22を形成するようにした第二フィルム層形成工程2’と、これら第一乃至第三のフィルム層が積層された積層体60を複数の光学フィルム積層体チップ70に切断する切断工程6とを備えたものである。
 つまり、本第二実施形態に係る光学フィルム積層体の製造方法は、図8に示したように、第一実施形態のように粘着フィルム上でフィルム層を形成するのではなく、第三の光学フィルム30からなる第三フィルム層32上に、直接第一光学フィルム片11を載置することにより、該第一光学フィルム片11を互いに隣接させつつ略帯状に配置して光学的な指向軸Xが長手方向と交差する第一フィルム層12を形成するものである。
 また、第二フィルム層22についても同様であり、粘着フィルム上でフィルム層を形成するのではなく、第一フィルム層12上で第二フィルム層22を形成するものである。
 尚、光学フィルム同士の貼り合わせは、粘着材層(図示せず)を介して行われる。
 第一フィルム層形成工程1’及び第二フィルム層形成工程2’を経て得られた積層体60は、前記第一実施形態と同様の構成を備えたものとなり、従って、切断工程6も、前記第一実施形態と同様にして行うことができる。
 つまり、該積層体60を構成する第一フィルム層12及び第二フィルム層22は、何れも第三フィルム層13と同じく帯状に形成されたものとなり、該切断工程6に於いては、積層体60の全領域が無駄なく光学フィルム積層体チップ70の作成に使用されることとなる。よって、本実施形態の方法によれば、積層体60の全領域を使用して光学フィルム積層体チップ70を作成できることとなるため、光学フィルムの歩留まりを大幅に向上させうることとなる。
 本発明に係る光学フィルム積層体の製造方法によって光学フィルム積層体を作成した場合(実施例)と、従来型A方式と従来型B方式を両方採用して光学フィルム積層体を作成した場合(比較例1)と、光学フィルムを、それぞれチップが所定数含まれてなるチップの相似形状に切断し、これらを貼り合わせた後、チップに切断する方法(比較例2)とについて、使用する光学フィルムの歩留まりをシミュレーションによって計算した。
(計算例1)
 第一光学フィルム及び第二光学フィルムとして幅1150mmの位相差フィルム、第三光学フィルムとして幅1180mmの偏光フィルムを用い、これらを積層して長さ30mm、幅40mmの積層体チップ(3層品)を作成する場合について計算した。
 尚、第一光学フィルムたる位相差フィルムの遅相軸、第二光学フィルムたる位相差フィルムの遅相軸、及び第三光学フィルムたる偏光フィルムの吸収軸は、積層体チップの長辺に対し、それぞれ45°、105°及び120°となるように設定した。
 使用した第一乃至第三光学フィルムの面積歩留まり(%)を求めるとともに、それらの平均値を求め、各方法による歩留まりとした。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
(計算例2)
 第一光学フィルム乃至第三光学フィルムとして、それぞれ幅820mmの位相差フィルム、幅1090mmの位相差フィルム、及び幅1250mmの位相差フィルムを用い、第四光学フィルムとして幅1185mmの偏光フィルムを用い、これらを積層して長さ30mm、幅40mmの積層体チップ(4層品)を作成する場合について計算した。
 尚、第一光学フィルムたる位相差フィルムの遅相軸、第二光学フィルムたる位相差フィルムの遅相軸、第三光学フィルムたる位相差フィルムの遅相軸、及び第四光学フィルムたる偏光フィルムの吸収軸は、積層体チップの長辺に対し、それぞれ45°、105°、120°及び30°となるように設定した。
 使用した第一乃至第四光学フィルムの面積歩留まり(%)を求めるとともに、それらの平均値を求め、各方法による歩留まりとした。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表1及び表2に示したように、本発明の実施例では、従来の方法と比べて使用する光学フィルムの面積歩留まりが改善されていることが認められる。

Claims (7)

  1.  光学的な指向軸を有する光学フィルムが3層以上積層されてなる光学フィルム積層体の製造方法であって、
    長尺状に形成された第一の光学フィルムをその長手方向と交差する切断線で切断して第一光学フィルム片とし、該第一光学フィルム片を互いに隣接させつつ略帯状に配置して光学的な指向軸が長手方向と交差する第一フィルム層を形成する第一フィルム層形成工程と、
    長尺状に形成された第二の光学フィルムをその長手方向と交差する切断線で切断して第二光学フィルム片とし、該第二光学フィルム片を互いに隣接させつつ略帯状に配置して光学的な指向軸が長手方向と交差する第二フィルム層を形成する第二フィルム層形成工程と、
    第三の光学フィルムからなる第三フィルム層、前記第一フィルム層及び前記第二フィルム層を積層した状態で複数の光学フィルム積層体に切断する切断工程とを備えたことを特徴とする光学フィルム積層体の製造方法。
  2.  前記第一フィルム層形成工程又は前記第二フィルム層形成工程の少なくとも何れか一方が、剥離材層に粘着材層が積層されてなる長尺状の粘着フィルムを用い、該粘着材層を介して粘着フィルム上に前記第一光学フィルム片又は前記第二光学フィルム片をそれぞれ載置することにより実施する工程であることを特徴とする請求項1記載の光学フィルム積層体の製造方法。
  3.  前記粘着フィルム上に前記第一光学フィルム片を載置することにより長尺状に形成された第一フィルム層を、前記粘着フィルムとともにロール状に巻き取る第一フィルム層巻取り工程と、
    前記粘着フィルム上に前記第二光学フィルム片を載置することにより長尺状に形成された第二フィルム層を、前記粘着フィルムとともにロール状に巻き取る第二フィルム層巻取り工程と、
    ロール状に巻き取られた第一フィルム層及び第二フィルム層と、ロール状に巻き取られた前記第三フィルム層とをロールトゥーロールにより貼り合わせることで、前記第一乃至第三フィルム層を積層した状態とする連続貼合せ工程とを備えることを特徴とする請求項2記載の光学フィルム積層体の製造方法。
  4.  前記第三の光学フィルムをロール原反から長手方向に送り出し、送り出された第三の光学フィルム上に前記第一光学フィルム片を載置することにより、前記第一フィルム層形成工程を実施し、
     送り出された第三の光学フィルム上、又は形成された前記第一フィルム層上に、前記第二光学フィルム片を載置することにより、前記第二フィルム層形成工程を実施することを特徴とする請求項1記載の光学フィルム積層体の製造方法。
  5.  前記第一の光学フィルムの長手方向と第一の光学フィルムの切断線との成す角度θ及び前記第二の光学フィルムの長手方向と第二の光学フィルムの切断線との成す角度θの少なくとも何れか一方が、0°を超え35°以下であることを特徴とする請求項1~4の何れかに記載の光学フィルム積層体の製造方法。
  6.  前記第一、第二及び第三の光学フィルムが、位相差フィルム、輝度向上フィルム又は偏光フィルムのうち何れかであることを特徴とする請求項1~5の何れかに記載の光学フィルム積層体の製造方法。
  7.  前記第一及び第二の光学フィルムのうち、何れか一方が位相差フィルムであり、他方が輝度向上フィルムであり、前記第三の光学フィルムが偏光フィルムであることを特徴とする請求項6記載の光学フィルム積層体の製造方法。
PCT/JP2009/051835 2008-02-15 2009-02-04 光学フィルム積層体の製造方法 WO2009101880A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN200980000566.1A CN101743493B (zh) 2008-02-15 2009-02-04 光学薄膜层叠体的制造方法
US12/867,704 US8480832B2 (en) 2008-02-15 2009-02-04 Method of producing optical film laminate
US13/617,761 US8734607B2 (en) 2008-02-15 2012-09-14 Method of producing optical film laminate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008034408A JP5221164B2 (ja) 2008-02-15 2008-02-15 光学フィルム積層体の製造方法
JP2008-034408 2008-02-15

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/867,704 A-371-Of-International US8480832B2 (en) 2008-02-15 2009-02-04 Method of producing optical film laminate
US13/617,761 Division US8734607B2 (en) 2008-02-15 2012-09-14 Method of producing optical film laminate

Publications (1)

Publication Number Publication Date
WO2009101880A1 true WO2009101880A1 (ja) 2009-08-20

Family

ID=40956910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/051835 WO2009101880A1 (ja) 2008-02-15 2009-02-04 光学フィルム積層体の製造方法

Country Status (4)

Country Link
US (2) US8480832B2 (ja)
JP (1) JP5221164B2 (ja)
CN (1) CN101743493B (ja)
WO (1) WO2009101880A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4918530B2 (ja) * 2008-07-30 2012-04-18 日東電工株式会社 光学フィルム積層体の製造方法
CN102156318B (zh) * 2011-03-25 2013-03-13 明基材料有限公司 提升偏光板的吸收轴精度的制造方法及偏光板
US10213999B1 (en) * 2013-05-13 2019-02-26 Rockwell Collins, Inc. Systems and methods for roll to roll laminations
CN105247395B (zh) 2014-03-26 2018-09-14 Lg化学株式会社 制造含有局部漂白区域的偏光元件的方法、制造偏光元件辊的方法以及制造单片式偏光元件的方法
JP6146921B2 (ja) * 2014-12-02 2017-06-14 日東電工株式会社 光学フィルムの製造方法および製造装置
EP3076283B1 (en) * 2015-03-31 2019-08-14 Advanced Digital Broadcast S.A. System and method for managing content deletion
KR101759558B1 (ko) * 2015-10-30 2017-07-19 엘지디스플레이 주식회사 편광판 및 그 제조방법
JP6704825B2 (ja) * 2016-09-27 2020-06-03 ホシデン株式会社 タッチ入力装置の製造方法及びタッチ入力装置
CN113454500A (zh) * 2019-02-08 2021-09-28 日东电工株式会社 光学薄膜的制造方法
CN113150702B (zh) * 2021-04-29 2022-10-18 业成科技(成都)有限公司 光学膜组件及其加工方法、电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11231129A (ja) * 1997-11-17 1999-08-27 Sumitomo Chem Co Ltd 光学フィルム積層中間体およびその製造方法ならびに光学フィルム積層チップの製造方法
JP2004199045A (ja) * 2002-12-04 2004-07-15 Sharp Corp 光学フィルム及びそれを用いた液晶表示装置
JP2005326831A (ja) * 2004-04-13 2005-11-24 Nitto Denko Corp 光学部材、その製造方法、およびそれを用いた画像表示装置
JP2007219022A (ja) * 2006-02-14 2007-08-30 Toagosei Co Ltd ロール状位相差フィルムならびに楕円偏光板及びそれらの製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW520452B (en) * 1997-11-17 2003-02-11 Sumitomo Chemical Co Manufacturing method for stacked optical film and intermediate body of stacked optical film thereof
TWI221538B (en) * 1998-10-12 2004-10-01 Sumitomo Chemical Co Optical film laminated body
CN1947041A (zh) * 2004-04-13 2007-04-11 日东电工株式会社 光学构件及其制造方法、以及使用该光学构件的图像显示装置
CN100454053C (zh) * 2004-04-19 2009-01-21 柯尼卡美能达精密光学株式会社 卷筒状相位差膜的制造方法、相位差膜、偏振片及显示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11231129A (ja) * 1997-11-17 1999-08-27 Sumitomo Chem Co Ltd 光学フィルム積層中間体およびその製造方法ならびに光学フィルム積層チップの製造方法
JP2004199045A (ja) * 2002-12-04 2004-07-15 Sharp Corp 光学フィルム及びそれを用いた液晶表示装置
JP2005326831A (ja) * 2004-04-13 2005-11-24 Nitto Denko Corp 光学部材、その製造方法、およびそれを用いた画像表示装置
JP2007219022A (ja) * 2006-02-14 2007-08-30 Toagosei Co Ltd ロール状位相差フィルムならびに楕円偏光板及びそれらの製造方法

Also Published As

Publication number Publication date
CN101743493A (zh) 2010-06-16
US8480832B2 (en) 2013-07-09
JP2009192902A (ja) 2009-08-27
US20130008590A1 (en) 2013-01-10
US8734607B2 (en) 2014-05-27
JP5221164B2 (ja) 2013-06-26
CN101743493B (zh) 2012-07-04
US20100314032A1 (en) 2010-12-16

Similar Documents

Publication Publication Date Title
WO2009101880A1 (ja) 光学フィルム積層体の製造方法
CN105093573B (zh) 光学显示面板的制造方法及光学显示面板的制造系统
KR101552410B1 (ko) 광학 필름 롤 세트 및 광학 필름 롤 세트의 제조 방법
JP6245817B2 (ja) 光学フィルムロール
CN104737065B (zh) 光学显示面板的连续制造方法及光学显示面板的连续制造系统
JPH11231129A (ja) 光学フィルム積層中間体およびその製造方法ならびに光学フィルム積層チップの製造方法
JP2005037417A (ja) 偏光板貼合方法及び装置
KR20130114740A (ko) 광학 표시 패널의 연속 제조 방법 및 광학 표시 패널의 연속 제조 시스템
JP5616494B1 (ja) 積層体基板の形成方法および装置
WO2006103715A1 (ja) 偏光板の製造方法及び偏光板の製造装置
JP2004262071A (ja) シート貼合せ方法
JP4918530B2 (ja) 光学フィルム積層体の製造方法
JP5014361B2 (ja) 偏光板貼合方法及び装置
JP4518916B2 (ja) 積層体の製造方法
KR102391882B1 (ko) 박리 방법
CN101685175A (zh) 光学薄膜卷筒及其制造方法
TW550420B (en) Manufacture of three-layer laminated body of optical film
JP2006334965A (ja) 積層体の製造方法
JP6845033B2 (ja) 表示パネルの製造方法
JP3956615B2 (ja) 光学フィルム積層チップの製造方法
KR101225459B1 (ko) 광학 필름 적층 칩의 제조 방법
JP2018132599A (ja) 表示パネルの製造方法
JP2007249218A (ja) 光学フィルム積層体および光学フィルム積層チップの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980000566.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09711409

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12867704

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09711409

Country of ref document: EP

Kind code of ref document: A1