WO2009099251A1 - 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法 - Google Patents

加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法 Download PDF

Info

Publication number
WO2009099251A1
WO2009099251A1 PCT/JP2009/052353 JP2009052353W WO2009099251A1 WO 2009099251 A1 WO2009099251 A1 WO 2009099251A1 JP 2009052353 W JP2009052353 W JP 2009052353W WO 2009099251 A1 WO2009099251 A1 WO 2009099251A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
less
steel sheet
strength hot
hot
Prior art date
Application number
PCT/JP2009/052353
Other languages
English (en)
French (fr)
Inventor
Yoshiyasu Kawasaki
Tatsuya Nakagaito
Shinjiro Kaneko
Saiji Matsuoka
Original Assignee
Jfe Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfe Steel Corporation filed Critical Jfe Steel Corporation
Priority to CA2714117A priority Critical patent/CA2714117C/en
Priority to CN2009801043745A priority patent/CN101939457B/zh
Priority to US12/866,481 priority patent/US8657969B2/en
Priority to MX2010008558A priority patent/MX2010008558A/es
Priority to EP09708102.0A priority patent/EP2243852B1/en
Publication of WO2009099251A1 publication Critical patent/WO2009099251A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0405Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12785Group IIB metal-base component
    • Y10T428/12792Zn-base component
    • Y10T428/12799Next to Fe-base component [e.g., galvanized]

Definitions

  • the present invention relates to a high-strength hot-dip galvanized steel sheet excellent in workability suitable as a member used in industrial fields such as automobiles and electricity, and a method for producing the same.
  • Patent Documents 1 to 4 the chemical composition is defined, and the area ratio of bainite and martensite is defined in the three-phase structure of ferrite, bainite, and martensite, and the average diameter of martensite is defined. Therefore, a steel sheet with excellent stretch flangeability has been proposed.
  • Patent Documents 5 and 6 propose steel sheets having excellent ductility by defining chemical components and heat treatment conditions.
  • steel sheets may be sub-plated on the surface for the purpose of improving the fouling performance during actual use. In that case, in order to ensure pressability, spot weldability, and paint adhesion, alloyed hot dip zinc plating, in which Fe of the copper plate is diffused in the plating layer by heat treatment after plating, is often used.
  • Patent Document 7 has excellent formability and hole expansibility by specifying the chemical composition and the volume fraction of ferrite 'residual austenite and the adhesive layer. High strength hot-dip galvanized steel sheets, high-strength alloyed hot-dip galvanized steel sheets, and methods for producing the same have been proposed.
  • Patent Document 1 Japanese Patent Publication No. 4-24418 ''
  • Patent Document 2 Japanese Patent Publication No. 5-72460
  • Patent Document 3 Japanese Patent Publication No. 5-72461
  • Patent Document 4 Japanese Patent Publication No. 5-72462
  • Patent Document 5 Japanese Patent Publication No. 6-70246
  • Patent Document 6 Japanese Patent Publication No. 6-70247
  • Patent Document 7 Japanese Unexamined Patent Application Publication No. 2007-211280 Disclosure of Invention
  • Patent Documents 1 to 4 although the hole expandability is excellent, the ductility is not sufficient.
  • Patent Documents 5 and 6 although the ductility is excellent, the hole expandability is not considered.
  • Patent Document 7 although the ductility is excellent, the hole expandability is not sufficient.
  • an object of the present invention is to provide a method for producing a high-strength hot-dip galvanized steel sheet having a TS of 590 MPa or more and excellent workability.
  • the present inventors have intensively studied to obtain a high-strength hot-dip galvanized steel sheet having a TS of 590 MPa or more and excellent workability.
  • a high-strength composite steel sheet with excellent workability specifically ductility and hole expansibility, we conducted intensive research from the viewpoints of the mouth structure and chemical composition of the steel sheet.
  • the ductility is improved by the active addition of Si, and the steel sheet structure is a composite structure (including residual austenite) of the ferrite phase, the bainitic phase, and manotensite, and the area ratio of each phase is controlled.
  • Ingredient composition is: 3 ⁇ 4 in mass 3 ⁇ 4: 0.05% to 0.3%, Si: 0.7% to 2.7%, 2. ⁇ : 0.5% to 2.8%, ⁇ : 0.1% or less, S: 0.01% or less, A1: 0.1% or less, N: 0.008% or less, the balance consists of iron and inevitable impurities, It has a ferrite phase of 30% or more and 90% or less, a bainitic phase of 3% or more and 30% or less, and a martensite phase of 5% or more and 40% or less in area ratio.
  • a high-strength hot-dip galvanized copper sheet with excellent workability characterized by the presence of 30% or more of a martensite phase with a pekt ratio of 3 or more.
  • the residual austenite phase that is in contact with the benite phase in the residual austenite phase is 60% or more, and the aspect ratio is 3 or more.
  • the component composition is, in mass%, Cr: 0.05% to 1.2%, V: 0.005% to 1.0%, M o: A high-strength hot-dip galvanized steel sheet excellent in workability, characterized by containing at least one element selected from 0.005% or more and 0.5% or less.
  • a high-strength hot-dip galvanized copper sheet excellent in workability characterized in that the zinc plating is an alloyed zinc plating in any one of [1] to [6].
  • the percentages indicating the components of steel are all mass%.
  • the “high-strength hot-dip galvanized steel sheet” is a hot-dip galvanized copper sheet having a tensile strength TS of 590 MPa or more.
  • a steel sheet in which zinc is galvanized on a copper plate by a hot dip galvanizing method is generically called a galvanized steel sheet.
  • the hot dip galvanized steel sheet in the present invention is a non-alloyed steel sheet with molten dumbbell (abbreviated as GI steel sheet), an alloyed galvanized steel sheet with alloying treatment (abbreviated). (Referred to as GA copper plate).
  • the present inventor examined the relationship between the above-described tissue fraction and mechanical properties, and further, the ferrite phase, which is considered to be the most stable production without requiring special equipment.
  • a detailed study was conducted with a focus on the possibility of improving the properties of composite yarns and weaves (including residual austenite) composed of a vanite phase and a martensite phase.
  • the present invention provides a component yarn and S i: 0.
  • 7% or more and 2.7% or less are specified, and the organization has an area ratio of 30% or more and 90% or less of the ferrite phase and 3% or more and 30% or less of the ferrite phase and 5% or more and 40% or less of the area.
  • a martensite phase having an aspect ratio of 3 or more is present in 30% or more of the martensite phase.
  • C is an austenite-forming element and is a major element for improving the strength and ductility by compounding the structure.
  • C is set between 0.05% and 0.3%.
  • the preferred range is 0.05 to 0.25%.
  • Si is a ferrite phase forming element, and is also an element effective for solid solution strengthening. In order to improve the balance between strength and ductility and to secure the hardness of the ferrite phase, it is necessary to add 0.7% or more. However, excessive addition of Si causes the deterioration of surface properties and plating adhesion due to the occurrence of red scale. Therefore, Si is set to 0.7% or more and 2.7% or less. Preferably, it is 1.0% or more and 2.5% or less.
  • Mn is an element effective for strengthening copper. It is an element that stabilizes austenite and is necessary for adjusting the fraction of the second phase. For this purpose, Mn should be added in an amount of 0.5% or more. On the other hand, if it is added excessively exceeding 2.8%, the second phase fraction becomes excessive, and it becomes difficult to secure the ferrite phase fraction. Therefore, Mn is 0.5% or more and 2.8% or less. Preferably it is 1.6% or more and 2.4% or less.
  • P is an effective element for strengthening steel, but if it is added in excess of 0.1%, it causes embrittlement due to segregation at the grain boundaries and degrades the impact resistance. If it exceeds 0.1%, the alloying rate is greatly delayed. Therefore, P is 0.1% or less.
  • S is an inclusion such as Mn S, which causes deterioration in impact resistance and cracks along the metal flow of the weld, so it is better to be as low as possible, but S is 0 from the viewpoint of manufacturing cost. 01% or less.
  • a 1 should be 0.1% or less.
  • N is an element that causes the most deterioration in the aging resistance of steel, and the smaller the amount, the better. When it exceeds 8%, deterioration of aging resistance becomes remarkable. Therefore, N is set to 0.008% or less.
  • the balance is Fe and inevitable impurities.
  • the following alloy elements can be added as required.
  • C r 0.05% or more and 1.2% or less
  • V 0.005% or more and 1.0% or less
  • M o 0.0 05% or more and 0.5% or less
  • Cr, V, and Mo have the effect of suppressing the formation of pearlite during cooling from the annealing temperature, so they can be added as necessary.
  • the effect is obtained with Cr: 0.05% or more, V: 0.005% or more, and Mo: 0.005% or more.
  • Cr 0.05% or more
  • V 0.005% or more
  • Mo 0.005% or more.
  • Cr 1.2%
  • V 1.0%
  • Mo 0.5%
  • one or more elements can be contained from the following Ti, Nb, B, Ni, and Cu.
  • T i 0.01% to 0.1%
  • Nb 0.01% to 0.1%
  • Ti and Nb are effective for precipitation strengthening of steel, and the effects are obtained at 0.01% or more, respectively, and can be used for strengthening steel within the range specified in the present invention. However, if each exceeds 0.1%, the workability and the shape freezing property decrease. In addition, the cost increases. Therefore, when T i and Nb are added, the amount of addition of T i is 0.01% or more and 0.1% or less, and Nb is 0.01% or more and 0.1% or less.
  • B has the effect of suppressing the formation and growth of ferrite phase from the austenite grain boundary, so it can be added as necessary.
  • the effect is obtained at 0.0003% or more.
  • the content should be 0.0003% or more and 0.0050% or less.
  • N i 0.05% to 2.0%
  • Cu 0.05% to 2.0%
  • Ni and Cu are effective elements for strengthening steel. If they are within the range specified in the present invention, they are effective for strengthening steel. You can use it. It also promotes internal oxidation and improves plating adhesion. In order to obtain these effects, 0.05% or more is required for each. On the other hand, if both Ni and Cu are added in excess of 2.0%, the workability of the steel sheet is degraded. It also increases costs. Therefore, when Ni and Cu are added, the amount added should be 0.05% or more and 2.0% or less, respectively.
  • C a 0.001% or more and 0.005% or less
  • R EM 0.001% or more and 0.005% or less
  • C a and R EM are effective elements to spheroidize the shape of the sulfide and improve the adverse effect of the sulfide on stretch flangeability. In order to obtain this effect, 0.001% or more is required for each. However, excessive addition causes an increase in inclusions and causes surface and internal defects. Therefore, when Ca and REM are added, the addition amounts should be 0.001% or more and 0.005% or less, respectively.
  • Ferrite phase area ratio 30% or more and 90% or less
  • the ferrite phase In order to ensure good ductility, the ferrite phase should be 30% or more in area ratio. On the other hand, to ensure strength, the soft ferrite phase must be 90% or less.
  • Veneer phase area ratio 3% or more and 30% or less
  • the vane phase that buffers the hardness difference between the ferrite phase and the martensite phase must have an area ratio of 3% or more.
  • the bainitic phase is 30% or less.
  • Martensite phase area ratio 5% to 40%
  • the martensite phase In order to ensure strength and promote the processing effect of the ferrite phase, the martensite phase must have an area ratio of 5% or more. In order to ensure ductility and hole expandability, the martensite phase should be 40% or less.
  • the martensite phase 30% or more of the martensite phase has a aspect ratio of 3 or more.
  • the manotensite phase with a aspect ratio of 3 or more is 350 to 500. It is produced in the cooling process after holding for 30 to 300 s in the temperature range of C and applying melt dumbbelling.
  • This martensa When categorized by phase, it is classified into a massive martensite phase with an aspect ratio of less than 3 and acicular and plate-like martensite phases with an aspect ratio of 3 or more.
  • the area ratios of the ferrite phase, the bainite phase, and the martensite phase are the area ratio of each phase in the observation area. Then, the area ratio of each martensite phase and the aspect ratio of the martensite phase (long side / short side) and the martensite phase with the aspect ratio of 3 or more out of the above-mentioned martensite phases.
  • the rate is determined by polishing the thickness of the copper plate parallel to the rolling direction, corroding it with 3% nital, and observing 10 fields of view at 2000x magnification using SEM (Scanning Electron Microscope). Can be determined using Pro.
  • Residual austenite phase volume fraction 2% or more
  • the residual austenite phase is preferably at least 2% by volume.
  • Average grain size of residual austenite phase 2.0 ju m or less
  • the average grain size of the retained austenite phase exceeds 2.0 ⁇ , the grain interface area of the remaining austenite phase (amount of heterogeneous interface) increases, that is, the amount of interface with a large hardness difference increases, resulting in increased hole expansion. The elasticity is reduced. Therefore, in order to ensure better hole expansibility, the average crystal grain size of the residual austenite phase is preferably 2.0 ⁇ m or less.
  • the benite phase is softer than the hard retained austenite or martensite phase and harder than the soft fulite phase, it has the effect of an intermediate phase (buffer material), and the interphase (hard residual austenite phase or martensite phase).
  • the hardness difference between the site phase and the soft ferrite phase) is eased, and the hole expandability is improved.
  • the residual austenite phase existing adjacent to the vein phase is 60% or more of the residual austenite phase.
  • the residual austenite phase with an aspect ratio of 3 or more is 30% or more.
  • the residual austenite phase with an aspect ratio of 3 or more is 350 to 500 ° C.
  • the retained austenite phase with a large amount of dissolved carbon is highly stable, and the greater the proportion of this retained austenite phase, the better the ductility and deep drawability.
  • this residual austenite phase is classified by morphology, it is classified into massive residual austenite with an aspect ratio of less than 3 and acicular and plate-like residual austenite with an aspect ratio of 3 or more.
  • the needle-like and plate-like residual austenites with an aspect ratio of 3 or more have a greater number of nearby phases than the massive residual austenite with an aspect ratio of less than 3.
  • This vane phase serves as a cushioning material that reduces the difference in hardness between needle-like and plate-like residual austenite and ferrite, thus improving hole expandability. Therefore, in order to ensure good hole expansibility, it is preferable to set the remaining austenite phase with an aspect ratio of 3 or more to 30% or more of the remaining austenite phase.
  • the volume fraction of retained austenite phase can be obtained from the diffraction X-ray intensity of the 1/4 thickness of the steel plate after polishing the steel plate to 1/4 of the thickness direction.
  • the incident X-rays are M o ⁇ ⁇ -rays, and the remaining austenite phase ⁇ 111 ⁇ , ⁇ 200 ⁇ , ⁇ 220 ⁇ , ⁇ 311 ⁇ plane and ferrite phase ⁇ 110 ⁇ , ⁇ 200 ⁇ , ⁇ 211 ⁇ Find the intensity ratios for all combinations of the integrated intensities of the surface peaks, and take the average of these as the volume fraction of residual austenite.
  • the average grain size of the retained austenite phase can be obtained by observing 10 or more retained austenite phases using ⁇ (transmission electron microscope) and averaging the crystal grain sizes.
  • the ratio of the residual austenite phase adjacent to the bainite and the residual austenite phase with an aspect ratio of 3 or higher is corroded with 3% nital after polishing the plate thickness section parallel to the rolling direction of the steel plate. 10 fields of view can be observed at a magnification of 2000 using a SEM (scanning electron microscope), and the area ratio can be calculated using Image-Pro of Media Cybernetics. The area ratio was obtained by the above method, and this value was directly used as the volume ratio.
  • the residual austenite phase and martensite phase are both as white second phases when SEM observation is performed after etching with nital etchant. Since it was observed and indistinguishable, it was possible to distinguish between the two by tempering only the martensite by heat treatment of 2003 ⁇ 4 X 2h.
  • the area ratio of the pearlite phase is preferably 3% or less.
  • the high-strength hot-dip galvanized steel sheet of the present invention is a temperature range of 650 ° C or higher at an average heating rate of 8 / s or higher after hot rolling, pickling, and cold rolling a copper plate having the above component composition.
  • 700 to 940 ° C hold for 15 to 600 s, then cool to 350 to 500 at an average cooling rate of 10 to 200 TVs, and to 350 to 500 ° C For 30 to 300 s, and then by hot dip galvanizing. Details will be described below.
  • the copper having the above component composition is melted by a generally known process, then formed into a slab through a lump or continuous fabrication, and then into a hot coil through hot rolling.
  • hot rolling it is preferable to heat the slab to 1100 to 1300 ° C, perform hot rolling at a final finishing temperature of 850 ° C or higher, and wind it on a steel strip at 400 to 400 ° C.
  • the scraping temperature exceeds 7503 ⁇ 4
  • the carbides in the hot-rolled sheet become coarse, and such coarsened carbides do not melt during soaking during short-time annealing after cold rolling, so the necessary strength is obtained. There are cases where you can't.
  • cold rolling is performed.
  • the cold rolling reduction is low, the recrystallization of the ferrite phase is not promoted, and an unrecrystallized bright phase remains, which may reduce ductility and hole expansibility.
  • the heating temperature range is less than 650 ° C, a fine and uniformly dispersed austenite phase is not generated, and the area ratio of the martensite phase with a aspect ratio of 3 or more in the martensite phase of the final structure is It is not possible to obtain a structure with more than 30%, and the required hole expandability cannot be obtained.
  • the average heating rate is less than 8 ° C / s, a longer furnace than usual will be required, resulting in an increase in costs and a decrease in production efficiency due to the great energy consumption.
  • DFF Fired Furnace as a heating furnace
  • Is preferably used. This is because an internal oxide layer is formed by rapid heating with DFF to prevent concentration of oxides such as Si and Mn to the outermost surface layer of the steel sheet and to ensure good plating properties.
  • annealing is performed (maintained) for 15 to 600 s in a temperature range of 700 to 940 ° C., specifically, in an austenite single phase region or a two-phase region of an austenite phase and a ferrite phase. If the annealing temperature is less than 700 ° C, or if the holding (annealing) time is less than 15 s, the hard cementite in the steel sheet will not be sufficiently dissolved or the recrystallization of the ferrite phase will not be completed. The target organization may not be obtained and the strength may be insufficient.
  • the austenite grains grow remarkably and may cause a decrease in ferrite phase nucleation sites from the second phase caused by subsequent cooling.
  • the holding (annealing) time exceeds 600 s, the austenite becomes coarse, and the cost may increase due to the large energy consumption.
  • Rapid cooling to the bainitic phase generation temperature range of 350 to 500 ° C suppresses the generation of cementite and pearlite from the austenite during cooling, and the driving force for the bainitic transformation. Can be increased.
  • the average cooling rate is less than 10 ° C / s, pearlite, etc. precipitates and the ductility decreases.
  • the average cooling rate exceeds 200 ° C / s, the ferrite phase is not sufficiently precipitated, and a structure in which the second phase is uniformly and finely dispersed in the ferrite phase is not obtained, resulting in a decrease in hole expansibility. It also leads to deterioration of the steel plate shape.
  • Holding in this temperature range is one of the important requirements in the present invention. If the holding temperature is less than 3500 ° C or exceeds 500 ° C, and if the holding time is less than 30 s, the 'bainite transformation is not promoted, and the A structure having a martensite phase area ratio of 30% or more with a cut ratio of 3 or more cannot be obtained, and the required hole expandability cannot be obtained. In addition, since the two-phase yarn and weave of the ferrite phase and the martensite phase are formed, the difference in hardness between the two phases becomes large, and the required hole expandability cannot be obtained. Also, if the holding time exceeds 300 s, most of the second phase And the martensite phase area ratio is less than 5%, making it difficult to secure strength. Hot-dip zinc plating
  • the steel sheet surface is treated with hot dip galvanizing for the purpose of improving the fouling performance during actual use.
  • hot dip galvanizing treatment the steel sheet is infiltrated into a plating bath at a normal bath temperature, and the amount of adhesion is adjusted by gas wiping or the like.
  • the temperature of the plating bath is not particularly limited, but a temperature range of 450 to 500 ° C. is preferable.
  • the holding temperature does not have to be constant as long as it is within the above-mentioned temperature range, and also within the specified range even when the cooling rate changes during cooling. If there is, the gist of the present invention is not impaired.
  • the copper plate may be heat-treated in any equipment.
  • temper rolling of the steel sheet of the present invention for shape correction after heat treatment is also included in the scope of the present invention. In the present invention, it is assumed that the steel material is manufactured through normal steelmaking, forging, and hot rolling processes, but some or all of the hot rolling process is omitted, for example, by thin forging. It may be produced.
  • the obtained hot-rolled sheet was pickled and then cold-rolled to a sheet thickness of 1.2 mm.
  • a melt dumbbelling process was performed to obtain a GI steel sheet.
  • the alloyed hot dip galvanizing treatment with further heat treatment at 470 to 600 ° C was applied to obtain GA steel sheet.
  • the volume ratio of the retained austenite phase was determined by diffracting X-ray intensities on the 1/4 plane of the plate thickness after polishing the steel plate to 1/4 plane in the thickness direction. ⁇ ⁇ ⁇ ⁇ rays are used for incident X-rays, and the residual austenite phase
  • the average grain size of the residual austenite phase is determined by obtaining the area of residual austenite of a grain arbitrarily selected using a transmission electron microscope, and taking the length of one piece when converted to a square as the grain size of the grain. This was obtained for 10 grains, and the average value was taken as the average grain size of the residual austenite phase of the steel.
  • TS tensile strength
  • ⁇ 1 total elongation
  • the tensile test was performed according to JI S Z 2241 on the test piece processed into the J I S 5 test piece.
  • the tensile strength is 59 OMPa class, E 1 ⁇ 28 (%)
  • the tensile strength is 780 MPa class, E 1 ⁇ 21 (%)
  • the tensile strength is 98 OMPa class, E 1 ⁇ 15 (%). was judged as good.
  • Stretch flangeability was performed in accordance with Japan Iron and Steel Federation Standard JF ST 1001. After cutting each steel plate to 10 Omm x 10 Omm, punching out a hole with a diameter of 1 Omm with a clearance of 12%, and then using a 75 mm inner diameter die to suppress the wrinkle holding force to 9 ton, 60 °
  • the hole diameter at the crack initiation limit was measured by pushing a conical punch into the hole, and the limit hole expansion rate I (%) was obtained from the following formula, and the stretch flangeability was evaluated from the value of this limit hole expansion rate.
  • Limit hole expansion rate (%) ⁇ (D f -D 0 ) / D 0 ⁇ XI 00
  • D f is the hole diameter (mm) at the time of crack occurrence, D. Is the initial hole diameter (mm).
  • the tensile strength is 5 9 O MPa class ⁇ 70 (%), 7 8 O MPa class; 1 ⁇ 6 0 (%),
  • the deep drawing test was performed by a cylindrical drawing test, and the deep drawing property was evaluated by the limit drawing ratio (L D R). Cylindrical deep drawing test conditions were as follows: a cylindrical punch with a diameter of 33 ⁇ was used for the test, and a die with a die diameter of 36.6 mm was used. The test was performed with a wrinkle holding force of lton and a forming speed of 1 stroke / s. Since the sliding state of the surface changes depending on the plating state, etc., the test was conducted under a highly lubricated condition by placing a polyethylene sheet between the sample and the die so that the sliding state of the surface did not affect the test. The blank diameter was changed at lmm pitch, and the ratio (D / d) of the blank diameter D to the punch diameter d (D / d) without rupture was defined as LDR. Table 3 shows the results obtained as described above.
  • All of the high-strength hot-dip galvanized steel sheets according to the present invention have a TS of 590 MPa or more, and are excellent in elongation and stretch flangeability.
  • TS XEl ⁇ 16000 Pa '% the balance between strength and ductility is high, and it can be seen that this is a high-strength hot-dip galvanized copper plate with excellent workability.
  • the steel with the volume ratio of retained austenite phase, average grain size, etc. within the scope of the present invention also exhibits excellent deep drawability with an LDR of 2.09 or more.
  • any one or more of strength, elongation, and stretch flangeability is inferior.
  • a high-strength hot dip zinc alloy having a TS of 590 Pa or higher and excellent workability is obtained.
  • a steel plate is obtained.

Abstract

590MPa以上のTSを有し、かつ、加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法を提供する。成分組成は、質量%でC:0.05%以上0.3%以下、Si:0.7%以上2.7%以下、Mn:0.5%以上2.8%以下、P:0.1%以下、S:0.01%以下、Al:0.1%以下、N:0.008%以下を含有し、残部が鉄および不可避的不純物からなる。組織は、面積率で、30%以上90%以下のフェライト相と3%以上30%以下のベイナイト相と5%以上40%以下のマルテンサイト相を有し、かつ、前記マルテンサイト相の内、アスペクト比3以上のマルテンサイト相が30%以上存在する。好ましくは、体積率で、2%以上の残留オーステナイト相を有し、かつ、残留オーステナイトの平均結晶粒径が2.0μm以下である。

Description

明細書 加工性に優れた高強度溶融亜鉛めつき鋼板およびその製造方法 技術分野
本発明は、 自動車、 電気等の産業分野で使用される部材として好適な加工性に優れた高 強度溶融亜鉛めっき鋼板およびその製造方法に関する。 背景技術
近年、 地球環境保全の見地から、 自動車の燃費向上が重要な課題となっている。 これに 伴い、 車体材料の高強度化により薄肉化を図り、 車体そのものを軽量化しようとする動き が活発となってきている。 し力 しながら、 銅板の高強度化は延性の低下、 即ち成形加工性 の低下を招く。 このため、 高強度と高加工性を併せ持つ材料の開発が望まれているのが現 状である。
また、 高強度鋼板を自動車部品のような複雑な形状へ成形加工する際には、 張り出し部 位や伸びフランジ部位で割れやネッキングの発生が大きな問題となる。 そのため、 割れや ネッキングの発生の問題を克服できる高延性と高穴拡げ性を两立した高強度銅板も必要 とされている。
高強度鋼板の成形性向上に対しては、 これまでにフェライトーマルテンサイトニ相鋼 (Dual-Phase 銅) や残留オーステナイ トの変態誘起塑性 (Transformation Induced Plasticity) を利用した TRIP鋼など、 種々の複合組織型高強度溶融亜鉛めつき鋼板が開 発されてきた。
例えば、 特許文献 1〜4では、 化学成分を規定し、 フェライトとベイナイトとマ^^テン サイトの 3相組織において、 べィナイトとマルテンサイ卜の面積率、 また、 マルテンサイ トの平均直径を規定することにより、 伸びフランジ性に優れた鋼板が提案されている。 また、 特許文献 5、 6では、 化学成分と熱処理条件を規定することにより、 延性に優れ た鋼板が提案されている。 また、 鋼板には、 実使用時の防鲭能向上を目的として、 表面に亜 、めっきを施す場合が ある。 その場合、 プレス性、 スポット溶接性および塗料密着性を確保するために、 めっき 後に熱処理を施してめっき層中に銅板の Feを拡散させた、 合金化溶融亜鉛めつきが多く 使用される。 このような溶融亜鉛めつき鋼板に関する提案としては、 例えば、 特許文献 7 には、 化学成分とフェライト '残留オーステナイトの体積分率およびめつき層を規定する ことにより、成形性と穴拡げ性に優れた高強度溶融亜鉛めつき鋼板および高強度合金化溶 融亜鉛めつき鋼板とその製造方法が提案されている。
先行技術文献
特許文献 1 :特公平 4-24418号公報 '
特許文献 2 :特公平 5-72460号公報
特許文献 3 :特公平 5-72461号公報
特許文献 4 :特公平 5-72462号公報
特許文献 5 :特公平 6- 70246号公報
特許文献 6 :特公平 6-70247号公報
特許文献 7 :特開 2007-211280号公報 発明の開示 .
しかしながら、 特許文献 1 ~ 4では、 穴拡げ性は優れるものの延性が十分ではない。 特許文献 5、 6では、延性は優れるものの穴拡げ性が考慮されていない。特許文献 7では、 延性は優れるものの穴拡げ性は十分ではない。
本発明は、 かかる事情に鑑み、 590MPa以上の TSを有し、 かつ、 加工性に優れた高強度 溶融亜鉛めつき鋼板おょぴその製造方法を提供することを目的とする。
本発明者らは、 590MPa以上の TSを有し、 かつ、 加工性に優れた高強度溶融亜鉛めつき 鋼板を得るべく鋭意検討を重ねた。 加工性、 具体的には延性と穴拡げ性に優れた高強度複 合組織鋼板を得るために鋼板のミク口組織や化学成分の観点から鋭意研究を重ねた。 その 結果、 Siの積極添加による延性の向上と、鋼板組織をフェライト相とべイナィト相とマノレ テンサイトの複合組織 (残留オーステナイト等も含む) とし、 各相の面積率を制御するこ とによる穴拡げ性の向上により、 延性に優れるのみでなく、 十分な穴拡げ性を確保可能な 鋼板を発明するに至った。 そして、 従来、 困難であった延性と穴拡げ性の両立が可能とな つた。
さらに、 上記知見に加え、 残留オーステナイト相の量とその平均結晶粒径、 存在位置お よびァスぺクト比を規定することで、 延性、 穴拡げ性だけでなく深絞り性も向上すること を知見した。
本発明は、以上の知見に基づいてなされたものであり、その要旨は以下のとおりである。
[1] 成分組成は、 質量 ¾で〇: 0. 05%以上0. 3%以下、 S i : 0· 7%以上 2. 7%以下、 Μη : 0. 5%以上 2. 8 %以下、 Ρ: 0. 1 %以下、 S : 0. 01 %以下、 A 1 : 0. 1%以下、 N : 0. 008%以下を含有し、 残部が鉄および不可避的不純物か らなり、組織は、 面積率で、 30%以上 90%以下のフェライト相と 3%以上 30%以下のベイナ イト相と 5%以上 40%以下のマルテンサイト相を有し、 かつ、 前記マルテンサイト相の内、 ァスぺクト比 3以上のマルテンサイト相が 30%以上存在することを特徴とする加工性に 優れた高強度溶融亜鉛めつき銅板。
[2] 前記 [1] において、 さらに、 体積率で、 2%以上の残留オーステナイト相を有し、 かつ、該残留オーステナイト相の平均結晶粒径が 2.0/ m以下であることを特徴とする加工 性に優れた高強度溶融亜鉛めつき鋼板。
[3] 前記 [1] または [2] において、 さらに、 前記残留オーステナイト相の内、 べィ ナイト相に降接して存在する残留オーステナイト相が 60%以上であり、 ァスぺクト比 3 以上の残留オーステナイト相が 30%以上存在することを特徴とする加工性に優れた高 強度溶融亜鉛めつき鋼板。
[4] 前記 [1] 〜 [3] のいずれかにおいて、 さらに、 成分組成として、 質量%で、 C r : 0.05 %以上 1.2 %以下、 V: 0. 005 %以上 1. 0 %以下、 M o: 0. 005% 以上 0. 5%以下から選ばれる少なくとも 1種の元素を含有することを特徴とする加工性 に優れた高強度溶融亜鉛めつき鋼板。
[5] 前記 [1] 〜 [4] のいずれかにおいて、 さらに、 成分組成として、 質量%で、 T i : 0. 01%以上0. 1%以下、 Nb : 0. 01%以上0. 1%以下、 B : 0. 000 3 %以上 0. 0050 %以下、 N i : 0. 05 %以上 2.0 %以下、 C u : 0. 05 %以 上 2.0%以下から選ばれる少なくとも 1種の元素を含有することを特徴とする加工性に 優れた高強度溶融亜鉛めつき鋼板。
[6] 前記 [1] 〜 [5] のいずれかにおいて、 さらに、 成分組成として、 質量%で、 C a : 0. 00 1%以上0. 005%以下、 REM : 0. 001%以上0. 005 %以下か ら選ばれる少なくとも 1種の元素を含有することを特徴とする加工性に優れた高強度溶融 亜鉛めつき鋼板。
[7] 前記 [1] 〜. [6] のいずれかにおいて、 亜鉛めつきが合金化亜鉛めつきであるこ とを特徴とする加工性に優れた高強度溶融亜鉛めっき銅板。
[8] 前記 [1]、 [4]、 [5]、 [6] のいずれかに記載の成分組成を有する鋼スラブを、 熱間圧延、 酸洗、 冷間圧延した後、 8°C/s以上の平均加熱速度で 650°C以上の温度域まで 加熱し、 700〜940での温度域で 15〜600 s保持し、 次いで、 10〜200°C/sの平均冷却速度 で 350〜500°Cの温度域まで冷却し、該 350〜500°Cの温度域にて 30〜300 s保持し、次いで、 溶融亜鉛めつきを施すことを特徴とする加工性に優れた高強度溶融亜鉛めつき鋼板の製 造方法。
[9] 前記 [8] において、 溶融亜鉛めつきを施した後、 亜鉛めつきの合金化処理を施す ことを特徴とする加工性に優れた高強度溶融亜鉛めつき銅板の製造方法。
なお、 本明細書において、 鋼の成分を示す%は、 すべて質量%である。 また、 本発明にお いて、 「高強度溶融亜鉛めつき鋼板」 とは、 引張強度 TSが 590MPa以上である溶融亜鉛め つき銅板である。
また、 本発明においては、 合金化処理を施す、 施さないにかかわらず、 溶融亜鉛めつき方 法によって銅板上に亜鉛をめつきした鋼板を総称して溶融亜鉛めつき鋼板と呼称する。 す なわち、 本発明における溶融亜鉛めつき鋼板とは、 合金化処理を施していない溶融亜鈴め つき鋼板 (略して G I鋼板と称す)、 合金化処理を施す合金化溶融亜鉛めつき銅板 (略し て GA銅板と称す) いずれも含むものである。 発明を実施するための最良の形態
以下に、 本発明の詳細を説明する。
一般に、 フェライト相と硬質なマルテンサイ ト相との二相構造では、 延性の確保は可能な ものの、 フェライト相とマルテンサイ ト相の硬度差が大きいために、 十分な穴拡げ性が得 られないことが知られている。 そのため、 フェライ ト相を主相とし、 硬質第二相として炭 化物を含むべィナイト相ゃパーライ ト相とすることにより、 硬度差を抑制し伸びフランジ 性を確保することが図られてきた。 し力 し、 この場合は十分な延性が確保できないことが 問題であった。
そこで、 本発明者は、 上述したような組織の分率と機械的特性の関係について検討し、 さ らには、 特別な設備を必要とせずに最も安定した製造が可能と考えられるフェライ ト相と べィナイ ト相とマルテンサイト相からなる複合糸且織 (残留オーステナイ ト等も含む) での 特性向上の可能性に着目して詳細に研究を進めた。
その結果、 フェライ ト相の固溶強化とフェライ ト相の加工硬化の促進を目的に Si を積極 添加し、 フェライト相とベイナイ ト相とマルテンサイト相の複合組織を造り込み、 その複 合組織の面積分率を適正化することにより、 異相界面の硬度差を低減させ、 高延性と高穴 拡げ性の両立を可能とした。 また、 フェライ ト相粒界に存在する第二相は亀裂伝播を促進 してしまうため、 フェライ ト相粒内に存在するマルテンサイト相、 ペイナイ ト相、 残留ォ ーステナイ ト相の割合を制御することで、 さらなる穴拡げ性の向上を図った。 以上が本発 明を完成するに至った技術的特徴である。 そして、 本発明は、 成分糸且成として S i : 0 .
7 %以上 2 . 7 %以下を中心に規定し、 組織は、 面積率で、 30%以上 90%以下のフェライ ト相と 3%以上 30%以下のべィナイ ト相と 5%以上 40%以下のマルテンサイ ト相を有し、 か つ、 前記マルテンサイト相の内、 ァスぺク ト比 3以上のマルテンサイ ト相が 30%以上存在 することを特徴とする。
1)まず、 成分組成について説明する。
C : 0 . 0 5 %以上 0 . 3 %以下
Cはオーステナイト生成元素であり、 組織を複合化し強度と延性向上に主要な元素である。
C量が 0 . 0 5 %未満では、必要なべィナイ ト相およびマルテンサイ ト相の確保が難しレ、。 一方、 C量が 0. 3%を超えて過剰に添加すると、溶接部および熱影響部の硬化が著しく、 溶接部の機械的特性が劣化する。 よって、 Cは 0. 05%以上0. 3%以下とする。 好ま しくは 0. 05〜0. 25%である。
S i : 0.7%以上 2.7%以下
S iはフェライト相生成元素であり、 また、 固溶強化に有効な元素でもある。 そして、 強 度と延性のバランスの改善およびフェライト相の硬度確保のためには 0.7%以上の添加 が必要である。 し力 しながら、 S iの過剰な添加は、 赤スケール等の発生により表面性状 の劣化や、 めっき付着'密着性の劣化を引き起こす。 よって、 S iは 0. 7%以上 2.7% 以下とする。 好ましくは、 1. 0%以上 2. 5%以下である。
Mn: 0. 5%以上 2.8%以下
Mnは、銅の強化に有効な元素である。また、オーステナイ トを安定化させる元素であり、 第二相の分率調整に必要な元素である。 このためには、 Mnは 0. 5%以上の添加が必要 である。 一方、 2.8%を超えて過剰に添加すると、 第二相分率過大となりフェライト相 分率の確保が困難となる。 従って、 Mnは 0.5%以上 2.8%以下とする。好ましくは 1. 6%以上 2. 4%以下である。
P: 0. 1 %以下
Pは、 鋼の強化に有効な元素であるが、 0. 1%を超えて過剰に添加すると、 粒界偏析に より脆化を引き起こし、 耐衝撃性を劣化させる。 また 0. 1%を越えると合金化速度を大 幅に遅延させる。 従って、 Pは 0.1%以下とする。
S : 0. 01 %以下
Sは、 Mn Sなどの介在物となって、 耐衝撃性の劣化や溶接部のメタルフローに沿った割 れの原因となるので極力低い方がよいが、製造コストの面から Sは 0. 01%以下とする。
A 1 : 0.1 %以下
A 1の過剰な添加は製鋼時におけるスラブ品質を劣化させる。 従って、 A 1は 0.1%以 下とする。
N: 0. 008 %以下
Nは、 鋼の耐時効性を最も大きく劣化させる元素であり、 少ないほど好ましく、 0. 00 8%を超えると耐時効性の劣化が顕著となる。 従って、 Nは 0. 008%以下とする。 残部は Feおよび不可避的不純物である。 ただし、 これらの成分元素に加えて、 以下の合 金元素を必要に応じて添加することができる。
C r : 0.05 %以上 1.2 %以下、 V: 0. 005 %以上 1. 0 %以下、 M o : 0. 0 05%以上0. 5%以下
Cr、 V、 Moは焼鈍温度からの冷却時にパーライトの生成を抑制する作用を有するので 必要に応じて添加することができる。 その効果は、 Cr : 0.05%以上、 V: 0. 00 5%以上、 Mo : 0. 005%以上で得られる。 し力 しながら、 それぞれ Cr : 1.2%、 V: 1. 0%、 Mo : 0. 5%を超えて過剰に添加十ると、 第二相分率が過大となり著し い強度上昇などの懸念が生じる。 また、 コストアップの要因にもなる。 したがって、 これ らの元素を添加する場合には、 その量をそれぞれ Cr : 1.2%以下、 V: 1. 0%以下、 Mo : 0. 5%以下とする.
更に、 下記の T i、 Nb、 B、 N i、 C uのうちから 1種以上の元素を含有することが できる。
T i : 0. 01%以上0. 1%以下、 Nb : 0. 01%以上0. 1 %以下
T i、 Nbは鋼の析出強化に有効で、 その効果はそれぞれ 0.01%以上で得られ、 本発 明で規定した範囲内であれば鋼の強化に使用して差し支えない。 し力 し、 それぞれが 0. 1%を超えると加工性おょぴ形状凍結性が低下する。また、コストアップの要因にもなる。 従って、 T i、 Nbを添加する場合には, その添加量を T iは 0. 01%以上0. 1%以 下、 Nbは 0. 01%以上 0. 1%以下とする。
B: 0. 0003 %以上 0. 0050 %以下
Bはオーステナイト粒界からのフェライト相の生成 ·成長を抑制する作用を有するので必 要に応じて添加することができる。その効果は, 0. 0003%以上で得られる。 し力 し、 0. 0050%を超えると加工性が低下する。 また、 コ トアップの要因にもなる。 従つ て、 Bを添加する場合は 0. 0003%以上 0. 0050%以下とする。
N i : 0. 05%以上 2.0%以下、 Cu: 0. 05 %以上 2.0 %以下
N i、 Cuは鋼の強化に有効な元素であり、 本発明で規定した範囲内であれば鋼の強化に 使用して差し支えない。 また内部酸化を促進してめっき密着性を向上させる。 これらの効 果を得るためには, それぞれ 0. 05%以上必要である。 一方、 N i、 Cu ともに 2.0% を超えて添加すると、 鋼板の加工性を低下させる。 また、 コストアップの要因にもなる。 よって、 N i、 Cuを添加する場合に、 その添加量はそれぞれ 0. 05%以上 2.0%以 下とする。
C a : 0. 001 %以上 0. 005 %以下、 R EM: 0. 001 %以上 0. 005 %以 下
C aおよび R EMは、 硫化物の形状を球状化し伸びフランジ性への硫化物の悪影響を改善 するために有効な元素である。 この効果を得るためには、 それぞれ 0.001%以上必要 である。 しかしながら、 過剰な添加は, 介在物等の増加を引き起こし表面および内部欠陥 などを引き起こす。 したがって、 Ca、 REMを添加する場合は、 その添加量はそれぞれ 0. 001%以上0. 005%以下とする。
2)次にミクロ組織について説明する。
フェライ ト相面積率: 30%以上 90%以下
良好な延性を確保するためには、 フェライ ト相は面積率で 30%以上必要である。 一方、 強度確保のため、 軟質なフェライト相は 90%以下とする必要がある。
べィナイ ト相面積率: 3%以上 30%以下
良好な穴拡げ性を確保するために、 フェライ ト相とマルテンサイ ト相の硬度差を緩衝する べィナイ ト相は面積率で 3%以上必要である。 一方、 良好な延性を確保するため、 ベイナ ィ ト相は 30%以下とする。
マルテンサイ ト相面積率: 5%以上 40%以下
強度確保およびフェライト相の加工効果促進のために、 マルテンサイト相は面積率で 5% 以上必要である。 また、 延性と穴拡げ性を確保するため、 マルテンサイ ト相は 40%以下 とする。
マルテンサイト相の内, ァスぺク ト比 3以上のマルテンサイト相が 30%以上存在 ここでいぅァスぺクト比 3以上のマノレテンサイ ト相とは、 350〜500。Cの温度域で 30〜300 s保持し、 溶融亜鈴めつきを施した後の冷却過程で生成したものである。 このマルテンサ ィト相を形態で分類した場合、 ァスぺクト比 3未満の塊状マルテンサイト相とァスぺク ト 比 3以上の針状および板状マルテンサイト相に分類される。 ァスぺク ト比 3未満の塊状マ ルテンサイ ト相よりもァスぺクト比 3以上の針状および板状マルテンサイ ト相の近傍の 方が、 べィナイ ト相が多く存在し、 このべィナイト相が針状および板状マルテンサイ ト相 とフェライ ト相の硬度差を低減させる緩衝材となることにより、 穴拡げ性を向上させる。 なお、 本発明におけるフェライト相、 べィナイト相およびマルテンサイト相の面積率と は、 観察面積に占める各相の面積割合のことである。 そして、 上記各面積率およびマルテ ンサイ ト相のァスぺク ト比 (長辺/短辺) および前記マ^^テンサイト相の内、 ァスぺク ト 比 3以上のマルテンサイト相の面積率は、 銅板の圧延方向に平行な板厚断面を研磨後、 3% ナイタールで腐食し、 SEM (走査型電子顕微鏡)を用いて 2000倍の倍率で 10視野観察し、 Media Cybernetics社の Image- Proを用いて求めることができる。
残留オーステナイト相体積率: 2%以上
良好な延性、 深絞り性を確保するためには、 残留オーステナイ ト相は好ましくは体積率で 2 %以上である。
残留オーステナイト相の平均結晶粒径: 2. 0 ju m以下
残留オーステナイト相の平均結晶粒径が 2· 0 μ πιを超える場合、 残 ¾オーステナイト相の 粒界面積 (異相界面の量) が増大し、 つまり、 硬度差の大きい界面の量が増えるため穴拡 げ性が低下する。 よって、 より良好な穴拡げ性を確保するためには、 残留オーステナイ ト 相の平均結晶粒径は 2. 0 ζ m以下が好ましい。
残留オーステナイト相の内、 べィナイト相に隣接して存在する残留オーステナイト相が 6 0 %以上
べィナイト相は、 硬質な残留オーステナイト相またはマルテンサイ ト相より軟らかく、 軟 質なフユライ ト相より硬いため、 中間相 (緩衝材) の効果があり、 異相間 (硬質な残留ォ .ーステナイト相もしくはマルテンサイト相と軟質なフェライ ト相) の硬度差を緩和し、 穴 拡げ性を向上させる。 良好な穴拡げ性を確保するためには、 残留オーステナイ ト相の内、 べィナイ ト相に隣接して存在する残留オーステナイ ト相を 6 0 %以上とすることが好ま しい。 残留オーステナイト相の内、 ァスぺク ト比 3以上の残留オーステナイ ト相が 3 0 %以上 ここでいぅァスぺク ト比 3以上の残留オーステナイ ト相とは、 350〜500°Cの温度域で 30 〜300 s保持により、 べィナイ ト変態が促進して炭素が未変態オーステナイ ト側へ拡散す ることにより生成する固溶炭素量の多い残留オーステナイト相のことである。 固溶炭素量 の多い残留オーステナイト相は安定性が高く, この残留オーステナイ ト相の割合が多いほ ど、延性、深絞り性を向上させる。また、 この残留オーステナイト相を形態で分類すると、 ァスぺク ト比 3未満の塊状残留オーステナイ トとァスぺク ト比 3以上の針状および板状 残留オーステナイ 卜に分類される。 ァスぺクト比 3未満の塊状残留オーステナイ トよりも ァスぺク ト比 3以上の針状および板状残留オーステナイ トの方が近傍にべィナイ ト相が 多く存在する。 このべィナイ ト相は針状および板状残留オーステナイ トとフェライ トの硬 度差を低減させる緩衝材となるので、 穴拡げ性を向上させる。 よって、 良好な穴拡げ性を 確保するためには、 残留オーステナイ ト相の内、 ァスぺクト比 3以上の残留オーステナイ ト相を 3 0 %以上とすることが好ましい。
なお、残留オーステナイト相体積率は、鋼板を板厚方向の 1/4面まで研磨し、 この板厚 1/4 面の回折 X線強度により求めることができる。 入射 X線には M o Κ α線を使用し、 残留ォ ーステナイト相の { 111}、 {200}、 {220} , {311}面とフェライ ト相の { 110}、 {200}、 {211} 面のピークの積分強度の全ての組み合わせについて強度比を求め、 これらの平均値を残留 オーステナイ トの体積率とする。
残留オーステナイト相の平均結晶粒径は、 ΤΕΜ (透過型電子顕微鏡) を用いて、 10個以 上の残留オーステナイト相を観察し、 その結晶粒径を平均して求めることができる。 べィナイトに隣接して存在する残留オーステナイト相とァスぺク ト比 3以上の残留ォ ーステナイ ト相の割合は、 鋼板の圧延方向に平行な板厚断面を研磨後、 3%ナイタールで腐 食し、 SEM (走査型電子顕微鏡)を用いて 2000倍の倍率で 10視野観察し、 Media Cybernetics 社の Image-Proを用いて面積率として求めることができる。 上記方法により、 面積率を求 め、 この値をそのまま体積率とした。 その際、 残留オーステナイト相とマルテンサイト相 は、 ナイタール腐食液によるエッチング後 SEM観察した場合、 どちらも白い第 2相として 観察され区別ができないため、 200¾ X 2hの熱処理を施してマルテンサイトのみを焼戻す ことにより、 両者の区別を可能とした。
フェライ ト相とマルテンサイ ト相とペイナイ ト相および残留オーステナイ ト相以外に パーライト相、 セメンタイト等の炭化物を含むことができる。 この場合、 伸びフランジ性 の観点から、 パーライト相の面積率は 3%以下であることが望ましい。
3)次に製造条件について説明する。
本発明の高強度溶融亜鉛めつき鋼板は、 上記の成分組成を有する銅板を熱間圧延、 酸洗、 冷間圧延した後、 8で /s以上の平均加熱速度で 650°C以上の温度域まで加熱し、 700〜940°C の温度域で 15〜600 s保持し、 次いで、 10〜200TVsの平均冷却速度で 350〜500 の温度 域まで冷却し、 該 350〜500°Cの温度域にて 30〜300 s保持し、 次いで、 溶融亜鉛めつきを 施す方法によって製造できる。 以下、 詳細に説明する。
上記の成分組成を有する銅は、 通常公知の工程により、 溶製した後、 分塊または連続铸 造を経てスラブとし、 熱間圧延を経てホットコイルにする。 熱間圧延を行うに際しては、 スラブを 1100〜1300°Cに加熱し、 最終仕上げ温度を 850°C以上で熱間圧延を施し、 400〜 で鋼帯に巻き取ることが好ましい。 卷き取り温度が 750¾を超えた場合、熱延板中の 炭化物が粗大化し、 このような粗大化した炭化物は冷延後の短時間焼鈍時の均熱中に溶け きらないため、 必要強度を得ることができなレ、場合がある。
その後、 通常公知の方法で酸洗、 脱脂などの予備処理を行った後に冷間圧延を施す。 冷間 庄延を行うに際しては、 30%以上の冷間圧下率で冷間圧延を施すことが好ましい。 冷間圧 下率が低いと、 フェライト相の再結晶が促進されず、 未再結晶フ ライト相が残存し、 延 性と穴拡げ性が低下する場合がある。
8¾/s以上の平均加熱速度で 650"C以上の温度域まで加熱
加熱する温度域が 650°C未満の場合、 微細で均一に分散したオーステナイト相が生成され ず、 最終組織のマルテンサイ ト相の内、 ァスぺク ト比 3以上のマルテンサイト相の面積率 が 30%以上存在する組織を得られず、 必要な穴拡げ性を得られなくなる。 また、 平均加熱 速度が 8°C/s未満の場合、 通常よりも長い炉が必要となり、 多大なエネルギー消費にとも なうコスト増と生産効率の悪化を引き起こす。 加熱炉として DFF Fired Furnace) を用いることが好ましい。 これは、 DFFによる急速加熱により、 内部酸化層を形成させ、 S i、Mn等の酸化物の鋼板最表層への濃化を防ぎ、良好なめっき性を確保するためである。
700〜940¾の温度域で 15〜600 s保持
本発明では、 700〜940°Cの温度域にて、 具体的には、 オーステナイト単相域、 もしくはォ ーステナイト相とフェライト相の 2相域で、 15〜600s 間焼鈍 (保持) する。 焼鈍温度が 700°C未満の場合や、 保持 (焼鈍) 時間が 15 s未満の場合には、 鋼板中の硬質なセメンタ イ トが十分に溶解しない場合や、 フェライト相の再結晶が完了せず、 目標とする組織が得 られず、 強度不足になる場合がある。 一方、 焼鈍温度が 940°Cを超える場合には、 オース テナイ ト粒の成長が著しく、 後の冷却によって生じる第二相からのフェライ ト相の核生成 サイ トの減少を引き起こす場合がある。 また、保持(焼鈍) 時間が 600 sを超える場合は、 オーステナイ トが粗大化し、 また、 多大なエネルギー消費にともなうコスト増を引き起こ す場合がある。
10〜200¾ の平均冷却速度で 350〜500°Cの温度域まで冷却
この急冷は、 本発明において重要な要件の 1つである。 ベイナイ ト相生成温度域である、 350〜500°Cの温度域まで急冷することで、 冷却途中でのオーステナイ.トからのセメンタイ 卜、 パーライ トの生成を抑制し、 べィナイ ト変態の駆動力を高めることができる。 平均冷 却速度が 10°C/s未満の場合、 パーライト等が析出し、 延性が低下する。 平均冷却速度が 200°C/s を超える場合、 フェライト相の析出が十分でなく、 フェライト相地に第二相が均 一かつ微細に分散した組織が得られず、 穴拡げ性が低下する。 また鋼板形状の悪化にも繋 がる。
350〜500 の温度域にて 30〜300 s保持
この温度域での保持は、 本発明において重要な要件の 1つである。 保持温度が 3 5 0 °C未 満もしくは 500で超えの場合、 および保持時間が 30 s未満の場合は、'べィナイト変態が促 進せず、 最終組織のマルテンサイト相の内、 ァスぺク ト比 3以上のマルテンサイト相の面 積率が 30%以上存在する組織が得られず、 必要な穴拡げ性を得られなくなる。 また、 フエ ライ ト相とマルテンサイ ト相の二相糸且織になるため、 二相の硬度差が大きくなり、 必要な 穴拡げ性を得られなくなる。 また、 保持時間が 300 s超えの場合、 第二相の多くがベイナ イ ト化してしまい、 マルテンサイ ト相面積率が 5%未満となり、 強度確保が困難となる。 溶融亜鉛めつき処理
実使用時の防鲭能向上を目的として、 鋼板表面に溶融亜鉛めつき処理を施す。 溶融亜鉛め つき処理を施す場合には、 鋼板を通常の浴温のめっき浴中に浸入させて行い、 ガスワイピ ングなどで付着量を調整する。 めっき浴温に際しては、 特にその条件を限定する必要はな いが、 450~500°Cの範囲が好ましい。
プレス性、 スポット溶接性および塗料密着性を確保するため、 め όき後に熱処理を施し てめつき層中に鋼板の Feを拡散させた、 合金化溶融亜鉛めっきが多く使用される。
なお、 本発明の製造方法における一連の熱処理においては、 上述した温度範囲内であれ ば保持温度は一定である必要はなく、 また冷却速度が冷却中に変化した場合においても規 定した範囲内であれば本発明の趣旨を損なわない。 また、 熱履歴さえ満足されれば、 銅板 はいかなる設備で熱処理を施されてもかまわない。 加えて、 熱処理後に形状矯正のため本 発明の鋼板に調質圧延をすることも本発明の範囲に含まれる。 なお、 本発明では、 鋼素材 を通常の製鋼、 铸造、 熱延の各工程を経て製造する場合を想定しているが、 例えば薄手鋅 造などにより熱延工程の一部もしくは全部を省略して製造する場合でもよい。 実施例
表 1に示す成分組成からなる鋼を真空溶解炉で溶製し、板厚 35mmに ffiff延した後、 1100 ISOOt X Ih加熱保持し、 仕上圧延温度 850°C以上で板厚約 4. 0譲まで圧延し、 次いで、 400〜750°Cで lh保持した後、 炉冷した。
次いで、 得られた熱延板を酸洗した後、 板厚 1. 2匪まで冷間圧延を行った。
次いで、 表 2に示す製造条件で、 上記により得られた冷延鋼板を加熱、 保持、 冷却、 保持 した後、 溶融亜鈴めつき処理を施し、 GI鋼板を得た。 なお、 一部については、 溶融亜鉛め つき処理後、 さらに 470〜600°Cの熱処理を加えた合金化溶融亜鉛めつき処理を施し、 GA 鋼板を得た。
以上により得られた溶融亜鉛めつき鋼板 (GI鋼板、 GA鋼板) に対して、 断面ミクロ組 織、 引張特性、 伸びフランジ性および深絞り性を調査した。 <断面ミクロ糸!;熾 >
なお、鋼板の断面ミク口組織は 3¾ナイタール溶液(3%硝酸 +エタノール)で組織を現出し、 走查型電子顕微鏡で深さ方向板厚 1/4位置を、 糸!;織の細かさに応じて 1000〜3000倍の適 切な倍率で撮影し、 市販の画像解析ソフトである Media Cybernetics社の Image-Proを 用いてフェライト相、 べィナイト相、 マルテンサイト相の面積率を定量算出した。
残留オーステナイト相の体積率は、 鋼板を板厚方向の 1/4面まで研磨し、 この板厚 1/4面 の回折 X線強度により求めた。 入射 X線には ΜοΚα線を使用し、 残留オーステナイト相の
{111}、 {200} , {220}、 {311} 面とフェライ ト相の {110}、 {200}、 {211} 面のピークの 積分強度の全ての組み合わせについて強度比を求め、 これらの平均値を残留オーステナイ ト相の体積率とした。
残留オーステナイ ト相の平均結晶粒径は透過型電子顕微鏡を用いて任意に選んだ粒の残 留オーステナイトの面積を求め、 正方形換算したときの 1片の長さをその粒の結晶粒径と し、 それを 10個の粒について求め、 その平均値をその鋼の残留オーステナイ ト相の平均 結晶粒径とした。
<引張特性 >
引張試験を行い、 TS (引張強度)、 Ε 1 (全伸び) を測定した。
引張試験は、 J I S 5号試験片に加工した試験片に対して、 J I S Z 2241に準拠し て行った。 なお、 本発明では、 引張強度 59 OMPa級で E 1≥ 28 (%)、 引張強度 780 MPa級で E 1≥ 21 (%)、 引張強度 98 OMPa級で E 1≥ 1 5 (%) の場合を良好と判定 した。
<伸びフランジ性 >
伸びフランジ性は、 日本鉄鋼連盟規格 J F ST 1001に準拠して行った。 得られた各 鋼板を 10 OmmX 10 Ommに切断後、 クリアランス 12%で直径 1 Ommの穴を打ち 抜いた後、 内径 75 mmのダイスを用いてしわ押さえ力 9 t o nで抑えた状態で、 60° 円錐のポンチを穴に押し込んで亀裂発生限界における穴直径を測定し、 下記の式から、 限 界穴拡げ率 I (%) を求め、 この限界穴拡げ率の値から伸ぴフランジ性を評価した。 限界穴拡げ率え (%) = {(Df-D0) /D0} X I 00 ただし、 D fは亀裂発生時の穴径 (mm)、 D。は初期穴径 (mm) である。
なお、本発明では、引張強度 5 9 O MPa級で λ≥ 7 0 (%)、 7 8 O MPa級で; 1≥ 6 0 (%)、
9 8 O MPa級で λ≥ 5 0 (%) を良好と判定した。
< r値の説明 > '
r値は、 冷延焼鈍板から L方向 (圧延方向)、 D方向 (圧延方向と 45° をなす方向) お よび C方向 (圧延方向と 90° をなす方向) からそれぞれ JISZ2201の 5号試験片を切り出 し、 JISZ2254の規定に準拠してそれぞれの , rD, rcを求め、 下式 (1) により r値を算 出した。 r ^ + 2r + rc ( 1)
4
く深絞り性 >
深絞り成形試験は、 円筒絞り試験で行い、 限界絞り比 (L D R) により深絞り性を評価 した。 円筒深絞り試験条件は、 試験には直径 33ηπη φの円筒ポンチを用レ、、 ダイス径: 36. 6 mmの金型を用いた。 試験は、 しわ押さえ力: lton、 成形速度 1画/ sで行った。 めっき状 態などにより表面の摺動状態が変わるため、 表面の摺動状態が試験に影響しない様、 サン プルとダイスの間にポリエチレンシートを置いて高潤滑条件で試験を行った。 ブランク径 を lmmピッチで変化させ、 破断せず絞りぬけたブランク径 Dとボンチ径 dの比 (D/d) を LDRとした。 以上により得られた結果を表 3に示す。
本発明例の高強度溶融亜鉛めつき鋼板は、 いずれも TSが 590MPa以上であり、 伸びおよ び伸びフランジ性に優れる。また、 TS XEl≥16000 Pa ' %で強度と延性のバランスも高く、 加工性に優れた高強度溶融亜鉛めつき銅板であることがわかる。
さらに、 残留オーステナイト相の体積率、 平均結晶粒径等が本発明範囲内の鋼では LDRが 2. 09以上と優れた深絞り性も示している。 一方、 比較例では、 強度、 伸び、 伸びフランジ 性のいずれか一つ以上が劣っている。 産業上の利用可能性
本発明によれば、 590 Pa以上の TSを有し、 かつ、 加工性に優れた高強度溶融亜鉛め つき鋼板が得られる。 本発明による鋼板を自動車構造部材に適用すれば、 車体軽量化によ る燃費改善を図ることができる。 産業上の利用価値は非常に大きい。
Figure imgf000018_0001
下線部:本発明範囲外を示す
表 2
Figure imgf000019_0001
下線部:本発明範囲外を示す
表 2つづき
Figure imgf000020_0001
下線部:本発明範囲外を示す
表 3
Figure imgf000021_0001
下線部:本発明範囲外を示す
表 3 つっき
Figure imgf000022_0001
下線部:本発明範囲外を示す

Claims

請求の範囲
1. 成分組成は、 質量%でじ : 0. 05%以上0. 3%以下、 S i : 0. 7%以上2. 7%以下、 Mn : 0. 5%以上 2. 8 %以下、 P: 0. 1 %以下、 S : 0. 01 %以下、 A 1 : 0. 1%以下、 N : 0. 008%以下を含有し、 残部が鉄および不可避的不純物か らなり、
組織は、 面積率で、 30%以上 90%以下のフェライ ト相と 3%以上 30%以下のべィナイト相と 5%以上 40%以下のマルテンサイ ト相を有し、 かつ、 前記マルテンサイ ト相の内、 ァスぺク ト比 3以上のマルテンサイ ト相が 30%以上存在することを特徴とする加工性に優れた高 強度溶融亜鉛めつき銅板。
2. さらに、 体積率で、 2%以上の残留オーステナイ ト相を有し、 かつ、 該残留オーステ ゝ
ナイト相の平均結晶粒径が 2.0 m以下であることを特徴とする請求項 1に記載の加工性 に優れた高強度溶融亜鉛めつき銅板。
3. さらに、 前記残留オーステナイ ト相の内、 べィナイ ト相に隣接して存在する残留ォ ーステナイ ト相が 60%以上であり、 ァスぺクト比 3以上の残留オーステナイト相が 30% 以上存在することを特徴とする請求項 1または 2に記載の加工性に優れた高強度溶融亜 鉛めつき鋼板。
4. さらに、 成分組成として、 質量 ¾で、 Cr : 0.05%以上 1.2%以下、 V: 0. 0 05 %以上 1. 0 %以下、 M o : 0. 005 %以上 0. 5 %以下から選ばれる少なくとも 1種の元素を含有することを特徴とする請求項 1〜 3のいずれかに記載の加工性に優れた 高強度溶融亜鉛めつき鋼板。
5. さらに、 成分組成として、 質量 ¾で、 T i : 0. 01%以上0. 1%以下、 Nb : 0. 01 %以上 0. 1 %以下、 B : 0. 0003 %以上 0. 0050 %以下、 N i : 0. 05%以上 2.0%以下、 Cu : 0. 05%以上 2.0%以下から選ばれる少なくとも 1種 の元素を含有することを特徴とする請求項 1〜 4のいずれかに記載の加工性に優れた高 強度溶融亜鉛めつき鋼板。
6. さらに、 成分組成として、 質量%で、 C a : 0. 001%以上0. 005%以下、 REM: 0. 001%以上 0. 005%以下から選ばれる少なくとも 1種の元素を含有す ることを特徴とする請求項 1〜 5のいずれかに記載の加工性に優れた髙強度溶融亜鉛めつ き銅板。
7. 亜鉛めつきが合金化亜鉛めつきであることを特徴とする請求項 1〜 6のいずれかに 記載の加工性に優れた高強度溶融亜鉛めつき銅板。
8. 請求項 1、 4、 5、 6のいずれかに記載の成分組成を有する鋼スラブを、熱間圧延、 酸洗、 冷間圧延した後、 8°C/s以上の平均加熱速度で 650°C以上の温度域まで加熱し、 700 〜940°Cの温度域で 15〜600 s保持し、次いで、 10〜200°C/sの平均冷却速度で 350〜500°C の温度域まで冷却し、 該 350〜500°Cの温度域にて 30〜300 s保持し、 次いで、 溶融亜鈴め つきを施すことを特徴とする加工性に優れた高強度溶融亜鉛めつき鋼板の製造方法。
9. 溶融亜鉛めつきを施した後、 亜鉛めつきの合金化処理を施すことを特徴とする請求 項 8に記載の加工性に優れた高強度溶融亜鉛めつき鋼板の製造方法。
PCT/JP2009/052353 2008-02-08 2009-02-05 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法 WO2009099251A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA2714117A CA2714117C (en) 2008-02-08 2009-02-05 High strength galvanized steel sheet with excellent formability and method for manufacturing the same
CN2009801043745A CN101939457B (zh) 2008-02-08 2009-02-05 加工性优良的高强度热镀锌钢板及其制造方法
US12/866,481 US8657969B2 (en) 2008-02-08 2009-02-05 High-strength galvanized steel sheet with excellent formability and method for manufacturing the same
MX2010008558A MX2010008558A (es) 2008-02-08 2009-02-05 Lamina de acero recubierta con zinc por inmersion en caliente, de alta tenacidad, excelente en trabajabilidad y procedimiento para la produccion de la misma.
EP09708102.0A EP2243852B1 (en) 2008-02-08 2009-02-05 High-strength hot-dip zinc coated steel sheet excellent in workability and process for production thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008029087 2008-02-08
JP2008-029087 2008-02-08
JP2009012508A JP4894863B2 (ja) 2008-02-08 2009-01-23 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP2009-012508 2009-01-23

Publications (1)

Publication Number Publication Date
WO2009099251A1 true WO2009099251A1 (ja) 2009-08-13

Family

ID=40952311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/052353 WO2009099251A1 (ja) 2008-02-08 2009-02-05 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法

Country Status (9)

Country Link
US (1) US8657969B2 (ja)
EP (1) EP2243852B1 (ja)
JP (1) JP4894863B2 (ja)
KR (1) KR101218530B1 (ja)
CN (1) CN101939457B (ja)
CA (1) CA2714117C (ja)
MX (1) MX2010008558A (ja)
TW (1) TWI399442B (ja)
WO (1) WO2009099251A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2439291A1 (de) * 2010-10-05 2012-04-11 ThyssenKrupp Steel Europe AG Mehrphasenstahl, aus einem solchen Mehrphasenstahl hergestelltes kaltgewalztes Flachprodukt und Verfahren zu dessen Herstellung
US20120279617A1 (en) * 2010-01-22 2012-11-08 Jfe Steel Corporation High strength galvanized steel sheet having excellent fatigue resistance and stretch flangeability and method for manufacturing the same
WO2012165661A1 (ja) * 2011-06-01 2012-12-06 Jfeスチール株式会社 材質安定性、加工性およびめっき外観に優れた高強度溶融亜鉛めっき鋼板の製造方法
US20130133792A1 (en) * 2010-08-12 2013-05-30 Jfe Steel Corporation High-strength cold rolled sheet having excellent formability and crashworthiness and method for manufacturing the same
EP2559782A4 (en) * 2010-04-16 2015-10-21 Jfe Steel Corp HIGHLY RESISTANT STEEL PLATE OF EXCELLENT FORMABILITY AND SHOCK STRENGTH, AND METHOD FOR THE PRODUCTION THEREOF
US9546413B2 (en) 2011-03-28 2017-01-17 Nippon Steel & Sumitomo Metal Corporation Hot-rolled steel sheet and production method thereof
EP2527483A4 (en) * 2010-01-22 2017-01-18 JFE Steel Corporation High-strength hot-dip galvanized steel sheet reduced in burr formation and process for producing same
US9567658B2 (en) 2011-05-25 2017-02-14 Nippon Steel & Sumitomo Metal Corporation Cold-rolled steel sheet
JP6428987B1 (ja) * 2018-03-30 2018-11-28 新日鐵住金株式会社 合金化溶融亜鉛めっき鋼板
JPWO2021145310A1 (ja) * 2020-01-14 2021-07-22
WO2023053908A1 (ja) * 2021-09-30 2023-04-06 Jfeスチール株式会社 鋼板、部材およびそれらの製造方法
WO2023053909A1 (ja) * 2021-09-30 2023-04-06 Jfeスチール株式会社 鋼板、部材およびそれらの製造方法

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4998756B2 (ja) * 2009-02-25 2012-08-15 Jfeスチール株式会社 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP5483916B2 (ja) * 2009-03-27 2014-05-07 日新製鋼株式会社 曲げ性に優れた高強度合金化溶融亜鉛めっき鋼板
JP5515623B2 (ja) * 2009-10-28 2014-06-11 Jfeスチール株式会社 高強度冷延鋼板およびその製造方法
JP5786316B2 (ja) * 2010-01-22 2015-09-30 Jfeスチール株式会社 加工性および耐衝撃特性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP5786317B2 (ja) * 2010-01-22 2015-09-30 Jfeスチール株式会社 材質安定性と加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP4883216B2 (ja) * 2010-01-22 2012-02-22 Jfeスチール株式会社 加工性とスポット溶接性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP5432802B2 (ja) * 2010-03-31 2014-03-05 株式会社神戸製鋼所 加工性に優れた高降伏比高強度の溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板
JP4962594B2 (ja) * 2010-04-22 2012-06-27 Jfeスチール株式会社 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP5636727B2 (ja) * 2010-04-27 2014-12-10 新日鐵住金株式会社 溶融亜鉛めっき鋼板およびその製造方法
WO2011135700A1 (ja) * 2010-04-28 2011-11-03 住友金属工業株式会社 動的強度に優れた複相熱延鋼板およびその製造方法
CN103038383B (zh) 2010-07-28 2014-12-24 新日铁住金株式会社 热轧钢板、冷轧钢板、镀锌钢板及这些钢板的制造方法
JP5821260B2 (ja) * 2011-04-26 2015-11-24 Jfeスチール株式会社 成形性及び形状凍結性に優れた高強度溶融亜鉛めっき鋼板、並びにその製造方法
JP2012240095A (ja) * 2011-05-20 2012-12-10 Kobe Steel Ltd 高強度鋼板の温間成形方法
CN103597106B (zh) * 2011-06-10 2016-03-02 株式会社神户制钢所 热压成形品、其制造方法和热压成形用薄钢板
JP5338873B2 (ja) * 2011-08-05 2013-11-13 Jfeスチール株式会社 引張強度440MPa以上の加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
ES2732799T3 (es) * 2011-09-30 2019-11-26 Nippon Steel Corp Chapa de acero galvanizada por inmersión en caliente y método de fabricación de la misma
JP5953694B2 (ja) * 2011-09-30 2016-07-20 新日鐵住金株式会社 めっき密着性と成形性に優れた高強度溶融亜鉛めっき鋼板とその製造方法
RU2581334C2 (ru) 2012-01-13 2016-04-20 Ниппон Стил Энд Сумитомо Метал Корпорейшн Холоднокатаный стальной лист и способ его изготовления
MX2014008429A (es) 2012-01-13 2014-10-06 Nippon Steel & Sumitomo Metal Corp Articulo moldeado estampado en caliente y metodo para la produccion del mismo.
US9580767B2 (en) 2012-02-22 2017-02-28 Nippon Steel & Sumitomo Metal Corporation Cold-rolled steel sheet with controlled microstructure, grain diameters, and texture
JP5609945B2 (ja) * 2012-10-18 2014-10-22 Jfeスチール株式会社 高強度冷延鋼板およびその製造方法
EP2998415B1 (en) * 2013-08-02 2017-09-06 JFE Steel Corporation High-strength, high-young's modulus steel plate, and manufacturing method thereof
KR101536422B1 (ko) * 2013-10-10 2015-07-13 주식회사 포스코 굽힘성형성이 우수한 고강도 열연강판 및 이의 제조방법
JP6303782B2 (ja) * 2014-05-08 2018-04-04 新日鐵住金株式会社 熱延鋼板およびその製造方法
TWI558821B (zh) * 2014-06-12 2016-11-21 China Steel Corp High strength hot rolled steel and its manufacturing method
WO2016001706A1 (en) * 2014-07-03 2016-01-07 Arcelormittal Method for producing a high strength steel sheet having improved strength and formability and obtained sheet
KR101949627B1 (ko) 2014-10-30 2019-02-18 제이에프이 스틸 가부시키가이샤 고강도 강판 및 그 제조 방법
DE102014017274A1 (de) * 2014-11-18 2016-05-19 Salzgitter Flachstahl Gmbh Höchstfester lufthärtender Mehrphasenstahl mit hervorragenden Verarbeitungseigenschaften und Verfahren zur Herstellung eines Bandes aus diesem Stahl
US10494689B2 (en) 2015-02-13 2019-12-03 Jfe Steel Corporation High-strength galvanized steel sheet and method for manufacturing the same
CN107208237B (zh) 2015-02-13 2019-03-05 杰富意钢铁株式会社 高强度熔融镀锌钢板及其制造方法
MX2017010539A (es) * 2015-02-17 2017-12-14 Jfe Steel Corp Lamina de acero delgada laminada en frio de alta resistencia y metodo para la produccion de la misma.
MX2017011695A (es) * 2015-03-13 2017-11-10 Jfe Steel Corp Lamina de acero laminada en frio de alta resistencia y metodo para fabricacion de la misma.
JP6172404B1 (ja) * 2015-09-04 2017-08-02 Jfeスチール株式会社 高強度薄鋼板およびその製造方法
JP2016065319A (ja) * 2015-11-30 2016-04-28 Jfeスチール株式会社 高強度鋼板の表面性状の評価方法および高強度鋼板の製造方法
MX2018007364A (es) * 2016-03-25 2018-08-15 Nippon Steel & Sumitomo Metal Corp Lamina de acero de alta resistencia y lamina de acero galvanizada de alta resistencia.
JP6852736B2 (ja) * 2016-07-15 2021-03-31 日本製鉄株式会社 溶融亜鉛めっき冷延鋼板
WO2018043452A1 (ja) 2016-08-30 2018-03-08 Jfeスチール株式会社 高強度鋼板およびその製造方法
MX2019002138A (es) 2016-09-30 2019-06-20 Jfe Steel Corp Lamina de acero recubierta de alta resistencia y metodo para fabricar la misma.
JP6414246B2 (ja) * 2017-02-15 2018-10-31 Jfeスチール株式会社 高強度鋼板およびその製造方法
WO2018189950A1 (ja) * 2017-04-14 2018-10-18 Jfeスチール株式会社 鋼板およびその製造方法
CA3079796A1 (en) 2017-11-15 2019-05-23 Nippon Steel Corporation High-strength cold-rolled steel sheet
WO2019122965A1 (en) 2017-12-19 2019-06-27 Arcelormittal Cold rolled and coated steel sheet and a method of manufacturing thereof
WO2019187090A1 (ja) * 2018-03-30 2019-10-03 日本製鉄株式会社 鋼板およびその製造方法
US11377710B2 (en) * 2018-03-30 2022-07-05 Nippon Steel Corporation Steel sheet and manufacturing method therefor
JP6418367B1 (ja) * 2018-03-30 2018-11-07 新日鐵住金株式会社 鋼板およびその製造方法
WO2020026594A1 (ja) 2018-07-31 2020-02-06 Jfeスチール株式会社 高強度熱延めっき鋼板
WO2020058748A1 (en) 2018-09-20 2020-03-26 Arcelormittal Cold rolled and coated steel sheet and a method of manufacturing thereof
CN113366126B (zh) * 2019-01-29 2023-09-22 杰富意钢铁株式会社 高强度钢板及其制造方法
CN109868416A (zh) * 2019-03-29 2019-06-11 本钢板材股份有限公司 一种低成本热镀锌双相钢dp590的生产工艺
WO2021172297A1 (ja) 2020-02-28 2021-09-02 Jfeスチール株式会社 鋼板、部材及びそれらの製造方法
CN115151672A (zh) 2020-02-28 2022-10-04 杰富意钢铁株式会社 钢板、构件和它们的制造方法
US20230072557A1 (en) 2020-02-28 2023-03-09 Jfe Steel Corporation Steel sheet, member, and methods for manufacturing the same
MX2022012277A (es) * 2020-04-07 2022-10-27 Nippon Steel Corp Hoja de acero.

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0424418B2 (ja) 1982-03-29 1992-04-27 Kobe Steel Ltd
JPH0572462B2 (ja) 1990-02-16 1993-10-12 Kobe Steel Ltd
JPH0572460B2 (ja) 1982-03-29 1993-10-12 Kobe Steel Ltd
JPH0572461B2 (ja) 1982-03-29 1993-10-12 Kobe Steel Ltd
JPH0670246B2 (ja) 1988-10-05 1994-09-07 新日本製鐵株式会社 加工性良好な高強度鋼板の製造方法
JPH0670247B2 (ja) 1988-10-05 1994-09-07 新日本製鐵株式会社 成形性良好な高強度鋼板の製造方法
JP2006176807A (ja) * 2004-12-21 2006-07-06 Kobe Steel Ltd 伸びおよび伸びフランジ性に優れる複合組織鋼板
JP2007211280A (ja) 2006-02-08 2007-08-23 Nippon Steel Corp 成形性と穴拡げ性に優れた高強度溶融亜鉛めっき鋼板と高強度合金化溶融亜鉛めっき鋼板及び高強度溶融亜鉛めっき鋼板の製造方法並びに高強度合金化溶融亜鉛めっき鋼板の製造方法
JP2007262494A (ja) * 2006-03-28 2007-10-11 Kobe Steel Ltd 加工性に優れた高強度鋼板

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2555760B1 (fr) 1983-11-28 1988-01-15 Commissariat Energie Atomique Procede et appareil de mesure de l'activite d'au moins un produit radioactif
JPH0949026A (ja) * 1995-08-07 1997-02-18 Kobe Steel Ltd 強度−伸びバランス及び伸びフランジ性にすぐれる高強度熱延鋼板の製造方法
JP4024418B2 (ja) 1999-03-08 2007-12-19 住友ゴム工業株式会社 農用車輪
US7090731B2 (en) * 2001-01-31 2006-08-15 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) High strength steel sheet having excellent formability and method for production thereof
CA2387322C (en) * 2001-06-06 2008-09-30 Kawasaki Steel Corporation High-ductility steel sheet excellent in press formability and strain age hardenability, and method for manufacturing the same
JP4225082B2 (ja) * 2002-03-18 2009-02-18 Jfeスチール株式会社 延性および耐疲労特性に優れる高張力溶融亜鉛めっき鋼板の製造方法
KR100608555B1 (ko) * 2002-03-18 2006-08-08 제이에프이 스틸 가부시키가이샤 연성 및 내피로특성에 우수한 고장력 용융 아연도금강판의제조방법
JP3887308B2 (ja) * 2002-12-27 2007-02-28 新日本製鐵株式会社 高強度高延性溶融亜鉛めっき鋼板とその製造方法
JP4314842B2 (ja) * 2003-02-24 2009-08-19 Jfeスチール株式会社 強度−伸びバランスおよび疲労特性に優れる高張力溶融亜鉛めっき鋼板およびその製造方法
JP4235030B2 (ja) * 2003-05-21 2009-03-04 新日本製鐵株式会社 局部成形性に優れ溶接部の硬さ上昇を抑制した引張強さが780MPa以上の高強度冷延鋼板および高強度表面処理鋼板
JP4333356B2 (ja) * 2003-12-19 2009-09-16 Jfeスチール株式会社 冷延鋼板の製造方法
WO2005095664A1 (ja) 2004-03-31 2005-10-13 Jfe Steel Corporation 高剛性高強度薄鋼板およびその製造方法
JP2006089775A (ja) * 2004-09-21 2006-04-06 Nisshin Steel Co Ltd 耐久性に優れたタイヤ中子の製造方法
JP5058508B2 (ja) * 2005-11-01 2012-10-24 新日本製鐵株式会社 低降伏比型高ヤング率鋼板、溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板及び鋼管、並びにそれらの製造方法
FR2903854A1 (fr) 2006-07-11 2008-01-18 Gen Electric Dispositif de ventilation ventilant un boitier electronique
JP5072460B2 (ja) 2006-09-20 2012-11-14 ジルトロニック アクチエンゲゼルシャフト 半導体用シリコンウエハ、およびその製造方法
JP5151246B2 (ja) * 2007-05-24 2013-02-27 Jfeスチール株式会社 深絞り性と強度−延性バランスに優れた高強度冷延鋼板および高強度溶融亜鉛めっき鋼板ならびにその製造方法
JP5072462B2 (ja) 2007-07-11 2012-11-14 旭化成イーマテリアルズ株式会社 ポジ型感光性樹脂組成物
WO2009048838A1 (en) * 2007-10-10 2009-04-16 Nucor Corporation Complex metallographic structured steel and method of manufacturing same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0424418B2 (ja) 1982-03-29 1992-04-27 Kobe Steel Ltd
JPH0572460B2 (ja) 1982-03-29 1993-10-12 Kobe Steel Ltd
JPH0572461B2 (ja) 1982-03-29 1993-10-12 Kobe Steel Ltd
JPH0670246B2 (ja) 1988-10-05 1994-09-07 新日本製鐵株式会社 加工性良好な高強度鋼板の製造方法
JPH0670247B2 (ja) 1988-10-05 1994-09-07 新日本製鐵株式会社 成形性良好な高強度鋼板の製造方法
JPH0572462B2 (ja) 1990-02-16 1993-10-12 Kobe Steel Ltd
JP2006176807A (ja) * 2004-12-21 2006-07-06 Kobe Steel Ltd 伸びおよび伸びフランジ性に優れる複合組織鋼板
JP2007211280A (ja) 2006-02-08 2007-08-23 Nippon Steel Corp 成形性と穴拡げ性に優れた高強度溶融亜鉛めっき鋼板と高強度合金化溶融亜鉛めっき鋼板及び高強度溶融亜鉛めっき鋼板の製造方法並びに高強度合金化溶融亜鉛めっき鋼板の製造方法
JP2007262494A (ja) * 2006-03-28 2007-10-11 Kobe Steel Ltd 加工性に優れた高強度鋼板

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120279617A1 (en) * 2010-01-22 2012-11-08 Jfe Steel Corporation High strength galvanized steel sheet having excellent fatigue resistance and stretch flangeability and method for manufacturing the same
EP2527483A4 (en) * 2010-01-22 2017-01-18 JFE Steel Corporation High-strength hot-dip galvanized steel sheet reduced in burr formation and process for producing same
US9617630B2 (en) 2010-04-16 2017-04-11 Jfe Steel Corporation High-strength galvanized steel sheet having excellent formability and crashworthiness and method for manufacturing the same
US9982318B2 (en) 2010-04-16 2018-05-29 Jfe Steel Corporation High-strength galvanized steel sheet having excellent formability and crashworthiness and method of manufacturing the same
EP2559782A4 (en) * 2010-04-16 2015-10-21 Jfe Steel Corp HIGHLY RESISTANT STEEL PLATE OF EXCELLENT FORMABILITY AND SHOCK STRENGTH, AND METHOD FOR THE PRODUCTION THEREOF
US20130133792A1 (en) * 2010-08-12 2013-05-30 Jfe Steel Corporation High-strength cold rolled sheet having excellent formability and crashworthiness and method for manufacturing the same
WO2012045613A1 (de) * 2010-10-05 2012-04-12 Thyssenkrupp Steel Europe Ag Mehrphasenstahl, aus einem solchen mehrphasenstahl hergestelltes kaltgewalztes flachprodukt und verfahren zu dessen herstellung
EP2439291A1 (de) * 2010-10-05 2012-04-11 ThyssenKrupp Steel Europe AG Mehrphasenstahl, aus einem solchen Mehrphasenstahl hergestelltes kaltgewalztes Flachprodukt und Verfahren zu dessen Herstellung
US9546413B2 (en) 2011-03-28 2017-01-17 Nippon Steel & Sumitomo Metal Corporation Hot-rolled steel sheet and production method thereof
US10266928B2 (en) 2011-05-25 2019-04-23 Nippon Steel & Sumitomo Metal Corporation Method for producing a cold-rolled steel sheet
US9567658B2 (en) 2011-05-25 2017-02-14 Nippon Steel & Sumitomo Metal Corporation Cold-rolled steel sheet
US9631265B2 (en) 2011-05-25 2017-04-25 Nippon Steel Hot-rolled steel sheet and method for producing same
US10167539B2 (en) 2011-05-25 2019-01-01 Nippon Steel & Sumitomo Metal Corporation Hot-rolled steel sheet and method for producing same
US9340859B2 (en) 2011-06-01 2016-05-17 Jfe Steel Corporation Method for manufacturing high strength galvanized steel sheet having excellent stability of mechanical properties, formability, and coating appearance
WO2012165661A1 (ja) * 2011-06-01 2012-12-06 Jfeスチール株式会社 材質安定性、加工性およびめっき外観に優れた高強度溶融亜鉛めっき鋼板の製造方法
CN111902552B (zh) * 2018-03-30 2022-06-14 日本制铁株式会社 合金化热浸镀锌钢板
WO2019187027A1 (ja) * 2018-03-30 2019-10-03 日本製鉄株式会社 合金化溶融亜鉛めっき鋼板
CN111902552A (zh) * 2018-03-30 2020-11-06 日本制铁株式会社 合金化热浸镀锌钢板
JP6428987B1 (ja) * 2018-03-30 2018-11-28 新日鐵住金株式会社 合金化溶融亜鉛めっき鋼板
JPWO2021145310A1 (ja) * 2020-01-14 2021-07-22
WO2021145310A1 (ja) * 2020-01-14 2021-07-22 日本製鉄株式会社 鋼板及びその製造方法
CN114945694A (zh) * 2020-01-14 2022-08-26 日本制铁株式会社 钢板及其制造方法
JP7295471B2 (ja) 2020-01-14 2023-06-21 日本製鉄株式会社 鋼板及びその製造方法
WO2023053908A1 (ja) * 2021-09-30 2023-04-06 Jfeスチール株式会社 鋼板、部材およびそれらの製造方法
WO2023053909A1 (ja) * 2021-09-30 2023-04-06 Jfeスチール株式会社 鋼板、部材およびそれらの製造方法
JP7294548B1 (ja) 2021-09-30 2023-06-20 Jfeスチール株式会社 鋼板、部材およびそれらの製造方法
JP7332062B1 (ja) 2021-09-30 2023-08-23 Jfeスチール株式会社 鋼板、部材およびそれらの製造方法

Also Published As

Publication number Publication date
KR20100101691A (ko) 2010-09-17
US8657969B2 (en) 2014-02-25
TW200938640A (en) 2009-09-16
JP2009209451A (ja) 2009-09-17
US20110036465A1 (en) 2011-02-17
EP2243852A4 (en) 2017-04-12
MX2010008558A (es) 2010-08-31
JP4894863B2 (ja) 2012-03-14
CN101939457A (zh) 2011-01-05
CA2714117A1 (en) 2009-08-13
EP2243852A1 (en) 2010-10-27
CN101939457B (zh) 2013-05-29
EP2243852B1 (en) 2019-04-24
CA2714117C (en) 2015-04-07
TWI399442B (zh) 2013-06-21
KR101218530B1 (ko) 2013-01-03

Similar Documents

Publication Publication Date Title
JP4894863B2 (ja) 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP4998756B2 (ja) 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP5454745B2 (ja) 高強度鋼板およびその製造方法
JP6354919B1 (ja) 薄鋼板およびその製造方法
JP5709151B2 (ja) 成形性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP5194841B2 (ja) 成形性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP5765092B2 (ja) 延性と穴広げ性に優れた高降伏比高強度溶融亜鉛めっき鋼板およびその製造方法
WO2012147898A1 (ja) 加工性と材質安定性に優れた高強度鋼板およびその製造方法
JP5786318B2 (ja) 疲労特性と穴拡げ性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
WO2009096344A1 (ja) 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
WO2013005618A1 (ja) 冷延鋼板
JP5786317B2 (ja) 材質安定性と加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
CN108779536B (zh) 钢板、镀覆钢板和它们的制造方法
JP2011168879A (ja) 加工性とスポット溶接性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP6384623B2 (ja) 高強度鋼板およびその製造方法
JP5434984B2 (ja) 引張強度440MPa以上の加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
CN114585758B (zh) 高强度钢板和碰撞吸收构件以及高强度钢板的制造方法
JP5825204B2 (ja) 冷延鋼板
JP5708320B2 (ja) 冷延鋼板
CN114585759B (zh) 高强度钢板和碰撞吸收构件以及高强度钢板的制造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980104374.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09708102

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2744/KOLNP/2010

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20107017398

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2714117

Country of ref document: CA

Ref document number: MX/A/2010/008558

Country of ref document: MX

Ref document number: 2009708102

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12866481

Country of ref document: US