WO2009099129A1 - 多層樹脂形成ダイヘッドとこれをそなえた押出成形機 - Google Patents

多層樹脂形成ダイヘッドとこれをそなえた押出成形機 Download PDF

Info

Publication number
WO2009099129A1
WO2009099129A1 PCT/JP2009/051939 JP2009051939W WO2009099129A1 WO 2009099129 A1 WO2009099129 A1 WO 2009099129A1 JP 2009051939 W JP2009051939 W JP 2009051939W WO 2009099129 A1 WO2009099129 A1 WO 2009099129A1
Authority
WO
WIPO (PCT)
Prior art keywords
molten resin
flow passage
die head
plunger
core layer
Prior art date
Application number
PCT/JP2009/051939
Other languages
English (en)
French (fr)
Inventor
Toshiki Sakaguchi
Original Assignee
Toyo Seikan Kaisha, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha, Ltd. filed Critical Toyo Seikan Kaisha, Ltd.
Priority to US12/863,196 priority Critical patent/US20110052746A1/en
Priority to CN2009801042475A priority patent/CN101939152A/zh
Priority to EP09707644A priority patent/EP2243616A4/en
Priority to JP2009552506A priority patent/JP5407873B2/ja
Publication of WO2009099129A1 publication Critical patent/WO2009099129A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C31/00Handling, e.g. feeding of the material to be shaped, storage of plastics material before moulding; Automation, i.e. automated handling lines in plastics processing plants, e.g. using manipulators or robots
    • B29C31/04Feeding of the material to be moulded, e.g. into a mould cavity
    • B29C31/042Feeding of the material to be moulded, e.g. into a mould cavity using dispensing heads, e.g. extruders, placed over or apart from the moulds
    • B29C31/048Feeding of the material to be moulded, e.g. into a mould cavity using dispensing heads, e.g. extruders, placed over or apart from the moulds the material being severed at the dispensing head exit, e.g. as ring, drop or gob, and transported immediately into the mould, e.g. by gravity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/34Feeding the material to the mould or the compression means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • B29C48/21Articles comprising two or more components, e.g. co-extruded layers the components being layers the layers being joined at their surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/32Extrusion nozzles or dies with annular openings, e.g. for forming tubular articles
    • B29C48/335Multiple annular extrusion nozzles in coaxial arrangement, e.g. for making multi-layered tubular articles
    • B29C48/336Multiple annular extrusion nozzles in coaxial arrangement, e.g. for making multi-layered tubular articles the components merging one by one down streams in the die
    • B29C48/3366Multiple annular extrusion nozzles in coaxial arrangement, e.g. for making multi-layered tubular articles the components merging one by one down streams in the die using a die with concentric parts, e.g. rings, cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/365Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using pumps, e.g. piston pumps
    • B29C48/37Gear pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/49Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using two or more extruders to feed one die or nozzle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/22Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor using multilayered preforms or parisons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B11/00Making preforms
    • B29B11/06Making preforms by moulding the material
    • B29B11/12Compression moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/34Feeding the material to the mould or the compression means
    • B29C2043/3433Feeding the material to the mould or the compression means using dispensing heads, e.g. extruders, placed over or apart from the moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/34Feeding the material to the mould or the compression means
    • B29C2043/3444Feeding the material to the mould or the compression means using pressurising feeding means located in the mould, e.g. plungers or pistons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/34Feeding the material to the mould or the compression means
    • B29C2043/3466Feeding the material to the mould or the compression means using rotating supports, e.g. turntables or drums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/58Measuring, controlling or regulating
    • B29C2043/5875Measuring, controlling or regulating the material feed to the moulds or mould parts, e.g. controlling feed flow, velocity, weight, doses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92561Time, e.g. start, termination, duration or interruption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92609Dimensions
    • B29C2948/92657Volume or quantity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • B29C2948/92876Feeding, melting, plasticising or pumping zones, e.g. the melt itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • B29C2948/92904Die; Nozzle zone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/20Making multilayered or multicoloured articles
    • B29C43/203Making multilayered articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/32Extrusion nozzles or dies with annular openings, e.g. for forming tubular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/475Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using pistons, accumulators or press rams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/10Polymers of propylene
    • B29K2023/12PP, i.e. polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2009/00Layered products

Definitions

  • the present invention relates to a multi-layer resin forming die head that covers and coats a core layer that flows out of a molten resin core layer forming flow passage with a main layer of a main layer forming flow passage, and an extrusion molding machine including the same.
  • the molten resin extruded by an extruder is cut into a drop (lump), then compression molded, and a preform (generally called a preform) for molding into a beverage container (generally blow molding)
  • a preform generally called a preform
  • a synthetic resin material for forming a container lid or a cup the outer molten resin layer (main layer) and the inner side of at least one layer encased in the outer molten resin layer
  • a composite molten resin material including a molten resin layer (core layer) is often used.
  • the outer molten resin a synthetic resin excellent in mechanical properties and hygiene is selected as the outer molten resin, and the inner molten resin layer is either a recycled material for resource reuse, or one of oxygen absorbing property and gas barrier property. Or, a functional synthetic resin excellent in both is selected.
  • the molten resin forming the main layer passes through the outer molten resin flow passage, the molten resin forming the core layer passes through the inner molten resin flow passage, and then from the discharge port of the die head. Discharged.
  • the extrusion machine is equipped with a plurality of die heads as described above, in order to maintain the uniformity of the molded or molded product, it is desirable that the molten resin be uniformly ejected by branching and supplying each die head, When the molten resin is a composite molten resin composed of multiple layers or lumps, or a mixture thereof, more uniformity is required.
  • each die head In order to maintain uniformity, it is necessary that an equal amount of molten resin be supplied to each die head. If each of the plurality of die heads is the same, it is considered that uniformity can be maintained if the flow path length of the branch path from the discharge port of the extruder to the die head is set to the same distance. Even if the distance from the outlet to the die head is made uniform, it is difficult to branch and supply an equal amount of molten resin to each die head due to variations in processing accuracy, temperature, etc. of each flow path and die head. In addition, the lengths of the respective flow paths may not be equal.
  • Patent Document 1 describes a molding machine that forms a composite resin material in which a plunger and a metering chamber are disposed in a die head so that a molten resin can be appropriately discharged from a discharge port.
  • a servo mechanism is used for a plunger, which is disclosed in Patent Document 2 and the like. JP-A-7-68631 JP-A-6-79771
  • Patent Document 1 and Patent Document 2 are formed so that the tomographic plane extends in the discharge direction (axial direction) of the composite molten resin, and one of the molten resins targeted by the present application is a dumpling shape.
  • the core layer a composite resin material that wraps the entire surface of the core layer with the main layer is not formed.
  • the technique disclosed in Patent Document 1 when the molten resin is supplied to the accumulator (measuring chamber) disposed in the die head, it is supplied via a rotation mechanism, so that the structure of the die head is complicated. It has become.
  • the molten resin is once supplied to a resin passage (metering chamber) and the molten resin is injected by a ring plunger.
  • the operation control of the plunger by this technology is adopted, when the molten resin is supplied to the measuring chamber, air is trapped in the molten resin due to the negative pressure (relative to the atmospheric pressure) in the measuring chamber due to the retraction of the plunger, or When a plurality of die heads are provided due to the generation of vacuum bubbles or the like, extrusion cannot be performed uniformly and with good quality.
  • the present invention has been made in view of such circumstances, and provided with a multilayer resin-forming die head provided with a plunger and a metering chamber and capable of appropriately discharging a required amount of molten resin from a die head of an extruder.
  • An object is to provide an extruder.
  • the present invention has a main layer forming flow passage that flows through the die head of the extruder and distributes the molten resin to the nozzle of the die head, and melts into the nozzle of the die head through the die head.
  • a multi-layer resin forming die head comprising at least a core layer forming flow passage through which resin is circulated and covering the core layer flowing out from the core layer forming flow passage with a main layer of the main layer forming flow passage; At least one flow passage of the main layer formation flow passage and the core layer formation flow passage is provided with a measuring chamber into which the molten resin is press-fitted by the pressure of the molten resin from the upstream side of the flow passage.
  • the provided flanger and to control the timing of at least the discharge amount and the discharge start of the metered molten resin by the plunger by the control unit for controlling the advance and return of the plunger.
  • the control unit controls the servo motor so that the plunger is in the measuring chamber.
  • the plunger can be retracted in a state where the reverse pressure is received by the molten resin press-fitted into the resin, and the retracted position of the plunger can be regulated.
  • the metering chamber and the plunger are preferably built in the die head.
  • the multilayer resin forming die head further includes one or more molten resin forming flow passages outside the core layer forming flow passage, and at least one of the forming flow passage, the main layer forming flow passage, and the core layer forming flow passage.
  • the metering chamber and the plunger can be provided in one.
  • the multilayer resin forming die head is provided with an inner movable block, and the inner movable block can also serve as an opening / closing valve of the main layer forming flow passage and a measuring chamber of the core layer.
  • the inner movable block is also an open / close valve for the core layer forming flow passage, and can be switched between opening and closing of the main laminar flow passage and the core laminar flow passage.
  • a plunger can act as a flow path opening / closing valve to the metering chamber of the main laminar flow path and / or the core laminar flow path.
  • the multilayer resin forming die head can be used in an extruder having a plurality of the multilayer resin forming die heads provided with the measuring chamber and the plunger.
  • the multi-layer resin forming die head is provided with a cutter that periodically cuts the multi-layer resin discharged from the discharge port to form a multi-layer drop, and the plunger is also moved forward and backward periodically, A multilayer drop molding machine that matches the forward / backward cycle with the multilayer resin cutting cycle of the cutter was obtained.
  • the operation of the plunger and the operation of the cutter can be synchronized.
  • the control unit controls the molten resin metering and discharge amount by the forward / backward movement of the plunger, and measures the timing of advancement (starting of molten resin discharge).
  • a suitable composite molten resin can be formed by discharging or discharging the main layer molten resin.
  • the plunger is retracted while applying pressure by the pressure of the molten resin to the corresponding plunger, and the molten resin is accommodated in the measuring chamber. It is possible to effectively prevent air entrainment or vacuum bubbles from flowing into the measuring chamber, and accurately measure and discharge the molten resin into the measuring chamber without any gaps.
  • the plunger can be measured more accurately by accurately controlling the plunger with a servo motor. Since the plunger is built in the die head, it can be measured and discharged in the vicinity of the discharge port, so that loss and variation due to pressure loss of the piping are reduced, and air entrainment and vacuum bubble prevention can be more effectively prevented.
  • a multilayer resin in which the core layer is disposed closer to the center of the discharge port can be formed.
  • the accurately measured core layer molten resin can be extruded with a high weight accuracy by preventing air entrainment and vacuum bubbles.
  • the multilayer resin-formed die head has an inner movable block, and this inner movable block serves as an on-off valve for the main layer forming flow passage and the metering chamber for the core layer, thereby simplifying the die head structure and enabling miniaturization.
  • the inner movable block is also an open / close valve for the core layer forming flow passage, and the opening and closing of the main laminar flow passage and the core laminar flow passage can be switched, so that the die head structure can be further simplified and the size can be reduced. Become.
  • the plunger acts as a flow passage opening / closing valve to the measuring chamber of the main laminar flow passage and / or the core laminar flow passage
  • the die head structure can be simplified and the size can be reduced.
  • the multilayer resin drops in a state where the core layer resin is placed at a fixed position can be continuously obtained.
  • the position of the core layer of the multilayer drop is not shifted while the multilayer resin drop is continuously formed.
  • FIG. 5 is a view for explaining the operation of the die head of FIG. 3 (following FIG.
  • A is a cross-sectional view of the molten resin in the core layer metering chamber extruded
  • B is a flow path (open / close) of the core layer molten resin
  • C is a cross-sectional view in a state in which the molten resin of the main layer is extruded.
  • FIG. 6 wherein A is a cross-sectional view at an initial position, B is a cross-sectional view of a state in which the main layer molten resin is metered, and the molten resin in the core layer is being extruded; It is sectional drawing of the state which switched the flow path of the core layer molten resin and the main layer molten resin (the core layer molten resin flow path is closed and the main layer molten resin flow path is opened).
  • FIG. 8 is a diagram for explaining the operation of the die head of FIG. 6 (continuing FIG.
  • A is a cross-sectional view of the state in which the main layer is extruded and the molten resin of the core layer is measured
  • B is the core layer molten resin
  • It is sectional drawing of the state which switched the flow path of the main layer molten resin (The core layer molten resin flow path is valve opening, and the main layer molten resin flow path is valve closing).
  • It is a schematic plan view of an extrusion molding machine that is a modification of the present invention and includes a plurality of die heads.
  • FIG. 1 is a schematic plan view of a molding system 1 as an example for carrying out compression molding by an extruder equipped with a multilayer resin die head of the present invention
  • FIG. 2 is a portion showing a compression molding part of the molding system of FIG. It is an enlarged plan view.
  • the molding system 1 includes an extrusion molding machine 2, a synthetic resin transport device 3, a compression molding device 4, and a carry-out device 5 according to the present invention.
  • the extrusion molding machine 2 includes a main layer molten resin supply means 45, a core layer molten resin supply means 50, and an outer main layer molten resin supply means 83 (each of which is made of a different molten resin as a raw material).
  • a plurality of molten resin supply means 45, 50, 83 (which may be omitted and used in the second embodiment described later) are provided.
  • Each molten resin supply means 45, 50, 83 generates each molten resin by heating and melting and kneading a synthetic resin material such as PP and PET and a functional synthetic resin material.
  • the front end side of the extrusion molding machine 2 includes a die head 7 to which a molten resin is supplied from each of the molten resin supply means 45, 50, 83.
  • the die head 7 has a discharge port 20 formed on the lower surface of the front end portion.
  • a resin flow passage extending to (see FIG. 3) is formed. That is, the molten resin supply means 45, 50, 83 sends the molten resin to the die head 7, and the molten resin sent from the molten resin supply means 45, 50, 83 is pushed out from the discharge port 20 as a composite molten resin described later.
  • the synthetic resin transfer device 3 includes a rotating disk 11 that is driven to rotate in a direction indicated by an arrow e.
  • a plurality of cutting / holding units 14 are arranged on the periphery of the rotating disk 11 at equal intervals in the circumferential direction.
  • the cutting / holding unit 14 is conveyed through a circular conveying path extending along the peripheral edge of the rotating disk 11, and is positioned immediately below the discharge port 20 of the die head 7.
  • the resin is conveyed through the receiving area 18 and the resin supply area 21 positioned above and facing a predetermined portion of the compression molding apparatus 4.
  • the cutting / holding unit 14 cuts the composite molten resin discharged from the die head 7 with the cutting / holding unit 14 to form a composite molten resin lump (multilayer drop) 8, and then the multilayer drop 8 is compressed into the compression molding apparatus 4.
  • the multilayer drop 8 is compression-molded to form a preform, a container, and the like, and then transferred by the carry-out device 5 and conveyed to the next process.
  • FIG. 3 is an enlarged cross-sectional view of the die head 7 of the extrusion machine 2.
  • the die head 7 has a circular outer peripheral shape, and an outer block 31 is disposed on the outer peripheral side.
  • the outer block 31 has a substantially annular shape, and a large-diameter hole 31a is formed at an intermediate position in the vertical direction.
  • a medium diameter hole 31b is formed above the large diameter hole 31a, that is, above the outer block 31, and a nozzle 31c is formed below the large diameter hole 31a, that is, below the outer block 31.
  • the lower side of the large-diameter hole 31a is formed in an inverted truncated cone shape.
  • An inner block 32 is disposed inside the medium diameter hole 31b and the large diameter hole 31a.
  • a cylindrical inner hole 32a having the same diameter is formed inside the inner block 32, and the lower portion of the inner hole 32a is reversed. It is formed in a truncated cone shape.
  • a shaft-like lift valve 33 is disposed at the center of the inner hole 32a with the shaft up and down.
  • a main layer weighing chamber 34 (see also FIG. 4B) is formed in the annular region between the outer block 31 and the inner block 32, which is located in the large-diameter hole 31a.
  • a main laminar flow passage 37 is formed.
  • the downstream side of the main laminar flow passage 37 (hereinafter, a portion from the molten resin supply device (for example, the main layer molten resin supply device 45 or the core layer molten resin supply device 50 in this embodiment) to the discharge port 20 of the die head 7.
  • the molten resin supply device side is called the upstream side and the discharge port side is called the downstream side
  • the downstream side is always in communication with the nozzle 31c and further with the discharge port 20 of the die head 7 on the further downstream side.
  • an annular plunger 35 connected to a device / mechanism capable of moving forward and backward in the vertical direction in the main layer weighing chamber 34, that is, raising and lowering, is disposed.
  • the device / mechanism that can move the plunger 35 up and down include an air cylinder, a hydraulic cylinder, a mechanical cam, a crank mechanism, a link mechanism, and the like.
  • a servo motor 36 is connected to the annular plunger 35, and the annular plunger 35 can be moved up and down in the main layer measuring chamber 34.
  • the servo motor 36 is connected to control means (not shown) and is electrically controlled.
  • a core layer measuring chamber 39 (see also FIG. 4B) is formed in the annular region between the inner block 32 and the lift valve 33 and is positioned in the inner hole 32 a of the inner block 32.
  • a core laminar flow passage 43 is formed on the side.
  • a valve hole 48 is provided on the downstream side of the core laminar flow passage 43. The valve hole 48 opens and closes the core laminar flow passage 43 together with the lift valve 33, and the open / close valve W (the lift valve 33 and the valve hole 48 are collectively referred to as the open / close valve W) W is closed in the lowered position shown in FIG. When the lift valve 33 is raised, the open state is established.
  • the core laminar flow passage 43 communicates with the nozzle 31c and further communicates with the discharge port 20 of the die head 7 on the downstream side.
  • the elevating valve 33 is electrically controlled by control means (not shown).
  • an annular plunger 41 connected to a device / mechanism capable of moving forward and backward in the core layer measuring chamber 39 in the vertical direction, that is, raising and lowering, is disposed.
  • a servo motor 42 is connected to the annular plunger 41, and the annular plunger 41 can move up and down in the core layer measuring chamber 39.
  • the core layer measuring portion 39a formed below the annular plunger 41 in the core layer measuring chamber 39 can be expanded and reduced in the vertical direction to increase or decrease the volume.
  • the servo motor 42 is connected to control means (not shown) and is electrically controlled.
  • the main layer supply port 44 on the upstream side of the main laminar flow passage 37 disposed outside the die head 7 is connected to the main layer molten resin supply means 45.
  • the molten resin supply means 45 includes an extruder 46 and a gear pump 47 connected to the downstream side thereof.
  • the molten main layer molten resin extruded from the extruder 46 is supplied to the main laminar flow passage 37 via the gear pump 47.
  • the core layer supply port 49 on the upstream side of the core layer flow passage 43 disposed inside the die head 7 is connected to the core layer molten resin supply means 50.
  • the molten resin supply means 50 includes an extruder 51 and a gear pump 52 connected to the downstream side thereof.
  • the molten core layer molten resin extruded from the extruder 51 is supplied to the core layer flow passage 43 via the gear pump 52.
  • the extrusion molding machine 2 shown in FIG. 1 heats and melts and kneads a synthetic resin material such as polyethylene terephthalate and conveys the molten resin 8 to the die head 7.
  • the elevating valve 33 is disposed at the lowered position, and the on-off valve W is closed. Therefore, the core laminar flow passage 43 is not in communication with the discharge port 20.
  • the annular plunger 35 of the main layer measuring chamber 34 and the annular plunger 41 of the core layer measuring chamber 39 are respectively arranged at the lowered positions.
  • annular plungers 35 and 41 are given a pressing force (load) upward by the flow of the molten resin under the control of servo motors 36 and 42 that are connected to each other. In response to this pressing force, the annular plungers 35 and 41 are raised, and the relative position or the raising speed with respect to the measuring chamber 39 is set. At this time, the main layer molten resin pressure-fed and supplied from the main layer molten resin supply means 45 to the main layer supply port 44 passes through the main layer flow passage 37 and flows almost continuously to the downstream nozzle 31c. .
  • the main layer molten resin is pumped almost continuously from the main layer molten resin supply means 45 and the core layer molten resin is continuously pumped from the core layer molten resin supply means 50.
  • the tip (lower end) portion of the annular plunger 35 is disposed at a lowered position that is a position facing the main laminar flow passage 37, and the tip of the annular plunger 35 is moved upward by the pressure of the molten resin.
  • the force which is pressed by is applied.
  • the annular plunger 35 is operated by the servo motor 36, it resists the pressing force of the main layer molten resin, but the servo motor 36 receives the pressing force while maintaining the annular plunger.
  • the plunger 35 is gradually raised, and as shown in FIG. 4B, the plunger 35 is raised to a predetermined height of the main layer metering chamber 34, and the main layer molten resin is accommodated in the main layer metering portion 34a and weighed.
  • the main layer molten resin accommodated in the main layer metering unit 34a is filled in the main layer metering unit 34a without any gap in a state where it is subjected to pressure, preferably a predetermined pressure.
  • the main layer molten resin is partially filled in the main layer measuring portion 34a by the pumping force of the main layer molten resin, and the molten resin is supplied to the main layer measuring portion 34a until a predetermined amount of the main layer molten resin is filled. And the remaining molten resin flows almost continuously into the downstream nozzle 31c.
  • the tip end portion of the annular plunger 41 is disposed at a lowered position that is a position facing the core laminar flow passage 43.
  • the on-off valve W formed by the lift valve 33 and the valve hole 48 is in a closed state, so that the core layer flow passage 43 is closed, and the annular plunger 41 is pressed upward by the pumping force of the core layer molten resin. Force that acts is applied. Since the annular plunger 41 is operated by the servo motor 42, it resists the pressing force of the core layer molten resin, but the servo motor 42 gradually raises the annular plunger 41 while receiving this pressing force.
  • the core layer measuring chamber 39 is raised to a predetermined height, and the core layer molten resin is accommodated in the core layer measuring portion 39a and weighed.
  • the core layer molten resin accommodated in the core layer measuring portion 39a is filled in the core layer measuring chamber 39 without gaps in a state of receiving a predetermined pressure, and a predetermined amount of the core layer molten resin is filled (measured) Is done.
  • the elevating valve 33 is raised and the on-off valve W is opened, and the core layer circulation is performed.
  • the servo motor 42 is operated by a control unit (not shown) to lower the annular plunger 41 on the core side so that the core layer measuring unit 39a The core layer molten resin is extruded from the valve hole 48 to the nozzle 31c.
  • the main layer molten resin is already pumped to the nozzle 31c, and the core layer molten resin is dumped in the main layer molten resin layer b (hereinafter, the main layer molten resin flowing into the nozzle 31c is denoted by the symbol b). And discharged to the nozzle 31c.
  • the annular plan on the core side is discharged.
  • the elevating valve 33 is lowered to the valve hole 48 and the on-off valve W is closed.
  • the control device lowers the annular plunger 35 on the main layer side and discharges the molten resin in the main layer metering section 34a to the nozzle 31c (hereinafter referred to as a cleaning shot).
  • the reference numeral c is added to the molten resin discharged by the cleaning shot).
  • the molten resin c discharged by this cleaning shot plays a role of causing the main layer resin to wash away the core layer molten resin adhering to the tip of the lift valve 33. Then, the core layer molten resin a discharged in a dumpling shape is the main by the cleaning shot and the flow of the main layer molten resin from the main layer flow passage 37 to the nozzle 31c when the state of FIG. The upper part is also wrapped by the layer molten resin b, and becomes a composite molten resin.
  • the core layer molten resin a is included in the main layer molten resin b, and the composite molten resin flowing through these nozzles 31c is discharged from the discharge port 20 of the die head 7 and cut at a desired position to be multilayered molten resin.
  • Lump multi-layer drop. (Normally, cutting is performed so that the core layer molten resin “a” is arranged at substantially the center of the drop.)
  • the composite molten resin including the core layer extruded from the discharge port 20 of the die head 7 is formed between the core layers. 2 is cut by a cutter 17 shown in FIG.
  • the multilayer drop 8 is held by closing the first and second clamping members 15 and 16.
  • the multilayer drop 8 held by the cutting / holding unit 14 in the closed state is moved to a position above the die (female die) 30 of the compression molding apparatus 4.
  • the composite molten resin is supplied to the mold 30 and a preform is molded by compression molding.
  • the preform is delivered to the carry-out device 5 after being cooled (see FIG. 1).
  • the servo motors 36 and 42 are driven by a control device (not shown) to control the position or the lifting speed of the annular plungers 35 and 41, or the lifting timing is measured.
  • a suitable composite molten resin can be formed by discharging the core layer molten resin or performing a cleaning shot of the main layer molten resin.
  • the annular plungers 35 and 41 are lifted while receiving a load against the pumping force of the molten resin under the control of the corresponding servo motors 36 and 42, and are melted into the respective measuring portions 34a and 39a.
  • the resin Since the resin is accommodated, it is possible to effectively prevent air from being trapped in the measured molten resin or vacuum bubbles, and accurately measure and discharge the amount of the molten resin in each of the measuring portions 34a and 39a. Can do.
  • the core layer molten resin a is discharged in a measured amount (without flowing down from the main layer resin path as in the main layer molten resin b), and a valve opening / closing operation by the lift valve 33 is also added. Therefore, the discharge amount is also accurate.
  • the gear pump 52 of the core layer molten resin supply means 50 is omitted as appropriate, it is possible to accurately maintain the discharge amount of the core layer molten resin a by the raising / lowering control of the annular plunger 41 and the lift valve 33. .
  • the main layer molten resin supply means 45, the core layer molten resin are obtained so that the multilayer molten resin lump (multilayer drop) is continuously obtained in a state where the amount of the multilayer molten resin is quantitative and the core layer resin is substantially disposed at a fixed position.
  • the reciprocating operation of the annular plungers 35 and 41 and the lift valve 33 is performed at a constant cycle, and the cutter 17 passes through the discharge port 20.
  • the frequency (the cutting cycle of the composite molten resin by the cutter 17) is also made constant, and the cycle of the reciprocating operation of the annular plungers 35 and 41 and the lift valve 33 is made to coincide with the cutting cycle of the composite molten resin by the cutter 17. Is more preferable. At that time, it is preferable to synchronize so that the movements of the annular plunger 35, the annular plunger 41, the lift valve 33, and the cutter 17 do not deviate slightly. For example, the cutter 17 passes through the discharge port 20.
  • the annular plunger 35, the annular plunger 41, and the lift valve 33 are obtained so as to obtain a desired multilayer drop. 33 may be shifted from the base point by a desired period, and the start of discharge may be commanded.
  • the other plan is based on the operation timing of the annular plunger 35, the annular plunger 41, or the lift valve 33.
  • the operation timing of the jar and the cutter 17 may be commanded.
  • the annular plungers 35 and 41, the lift valve 33, and the cutter 17 may be electrically controlled so as to be sequentially interlocked, or the drive system may be mechanically connected.
  • the types of the main layer and the core layer of the molten resin are separately formed, and the two types and three layers of the composite molten resin are formed by the die head.
  • the two types, three layers, or three types 3 are used.
  • a layer of composite molten resin is formed.
  • the die head 7 has a circular outer peripheral shape in cross section, and an outer block 55 is disposed on the outer peripheral side.
  • the outer block 55 has a substantially annular shape, and a large-diameter hole 55a is formed at an intermediate position in the vertical direction.
  • An intermediate-diameter hole 55b is formed above the large-diameter hole 55a, that is, above the outer block 55.
  • a nozzle 55c is formed below 55a, that is, below the outer block 55.
  • the lower side of the large-diameter hole 55a is formed in an inverted truncated cone shape.
  • An inner movable block 56 is disposed in the medium diameter hole 55b and the large diameter hole 55a.
  • a cylindrical inner hole 56a having the same diameter on the upper side is formed inside the inner movable block 56, and a lower portion of the inner hole 56a. Is formed in an inverted truncated cone shape.
  • a shaft-like shaft valve 57 is disposed in the vertical direction at the center of the inner hole 56a.
  • the shaft-like valve 57 has a valve body 57a formed at the tip, and a cross flow passage 67a extending in the horizontal direction or extending in one direction or two directions is formed in the upper part of the valve body, and the shaft core on the upper side of the valve body 57a.
  • a core laminar flow passage 67 having a longitudinal flow passage 67b is provided at the center of the direction.
  • a main layer metering chamber 58 is formed in an annular region between the outer block 55 and the inner movable block 56 and is located in the large-diameter hole 55a. Is formed. Inside the main layer weighing chamber 58, an annular plunger 59 connected to a device / mechanism capable of moving forward and backward in the vertical direction in the main layer weighing chamber 58, that is, raising and lowering, is disposed. A servo motor 60 is connected to the annular plunger 59, and the main layer weighing chamber 58 can be moved up and down.
  • the servo motor 60 is connected to control means (not shown) and is electrically controlled.
  • the inner movable block 56 can be moved up and down by an elevating mechanism, preferably a servo motor 80, a valve body 56 b is formed at the lower end, and a valve hole 55 e provided on the downstream side of the main laminar flow passage 61 of the outer block 55.
  • the valve hole 55e and the valve body 56b form an on-off valve (the valve hole 55e and the valve body 56b are collectively referred to as a third on-off valve Z) Z, and the main laminar flow passage 61 is opened and closed. Yes.
  • the main laminar flow passage 61 In the open state of the third on-off valve Z, the main laminar flow passage 61 always communicates with the downstream nozzle 55c and further communicates with the discharge port 20 of the die head 7 further downstream.
  • a core layer measuring chamber 63 is formed in an annular region between the inner movable block 56 and the shaft-shaped valve 56 and is positioned in the inner hole 56 a of the inner movable block 56, and below the core layer measuring chamber 63.
  • a valve hole 72 is provided. The valve hole 72 opens and closes the core laminar flow passage 67 together with the valve body 57a of the shaft-like valve 57. In the state shown in FIG. 6, the valve hole 72 (the valve body 57a and the valve hole 72 are collectively referred to as the first on-off valve X). Yes) Indicates the open state of X. The first on-off valve X may be opened and closed by allowing the shaft-shaped valve 57 to be raised and lowered.
  • the inner movable block 56 is raised and lowered to open and close the first on-off valve X. 57 does not go up and down.
  • an annular plunger 65 connected to a device / mechanism capable of moving forward and backward in the core layer measuring chamber 63 in the vertical direction, that is, moving up and down is disposed.
  • a device / mechanism capable of moving forward and backward in the core layer measuring chamber 63 in the vertical direction, that is, moving up and down
  • an air cylinder or a hydraulic cylinder may be used as a device / mechanism for moving the plunger 65 up and down.
  • the servo motor 66 is connected to the annular plunger 65 to move the core layer measuring chamber 63 up and down. It can be moved up and down.
  • the core layer measuring portion 63a formed below the annular plunger 65 in the core layer measuring chamber 63 can be enlarged and reduced in the vertical direction to increase or decrease the volume.
  • the servo motor 66 is connected to control means (not shown) and is electrically controlled.
  • the core laminar flow passage 67 is formed with on / off valves at locations substantially equal to the number of the cross flow passages 67a provided radially or in one or two directions, for example, two on the left and right in FIG.
  • the on-off valve formed by the annular plunger 65 and the cross flow passage 67a is referred to as a second on-off valve Y).
  • the core laminar flow passage 67 opens the first on-off valve X and the second on-off valve Y so that the core laminar flow passage 67 communicates with the nozzle 55c, and the discharge port 20 of the die head 7 further downstream. Communicate with.
  • An outer main laminar flow passage 81 is formed below the main laminar flow passage 61 of the die head 7. The outer main laminar flow passage 81 always communicates with the nozzle 55c and further communicates with the discharge port 20 of the die head 7 on the further downstream side.
  • the main layer supply port 68 on the upstream side of the main laminar flow passage 61 disposed outside the die head 7 is connected to the main layer molten resin supply means 69.
  • the molten resin supply means 69 includes an extruder 70 and a gear pump 71 connected to the downstream side thereof.
  • the molten main layer molten resin extruded from the extruder 70 is supplied to the main laminar flow passage 61 via the gear pump 71.
  • the core layer supply port 73 on the upstream side of the core layer flow passage 67 disposed inside the die head 7 is connected to the core layer molten resin supply means 74.
  • the molten resin supply means 74 includes an extruder 75 and a gear pump 76 connected to the downstream side thereof.
  • the molten core layer molten resin extruded from the extruder 75 is supplied to the core layer flow passage 67 via the gear pump 76.
  • a main layer supply port 82 on the upstream side of the outer main layer flow passage 81 disposed below the die head 7 is connected to the outer main layer molten resin supply means 83.
  • the molten resin supply means 83 includes an extruder 84 and a gear pump 85 connected to the downstream side thereof.
  • the molten main layer molten resin extruded from the extruder 84 is supplied to the outer main layer flow passage 81 via the gear pump 85.
  • the operation of the extruder according to the second embodiment of the present invention will be described.
  • the inner movable block 56 is disposed at the lowered position, and the first on-off valve X is opened.
  • the core-side annular plunger 65 is arranged in the raised position in advance or in a state where the core layer molten resin has already been weighed through the process of FIG.
  • the second on-off valve Y is open. Therefore, the core laminar flow passage 67 is in communication with the discharge port 20.
  • the third on-off valve Z is closed, and the annular plunger 59 of the main layer measuring chamber 58 is placed in the lowered position.
  • the same type of molten resin is pumped from the main layer molten resin supply unit 69 and the outer main layer molten resin supply unit 83, and different types of molten resin are pumped from the core layer molten resin supply unit 74.
  • the outer main layer molten resin is pressure-fed from the outer main layer molten resin supply means 83 to the main layer supply port 82, and the outer main layer molten resin passes through the outer main layer flow passage 81 to the nozzle 55 c and the discharge port. 20 is almost continuously pumped and flowed. Further, the main layer molten resin is pumped almost continuously from the main layer molten resin supply means 69 to the main layer supply port 68. Similarly, the core layer molten resin from the core layer molten resin supply means 74 is substantially continuous to the core layer supply port 73 (since the core layer flow passage 67 may be completely closed by the second on-off valve Y, it may be intermittent). To be pumped.
  • the tip end portion of the annular plunger 59 is disposed at a lowered position facing the main laminar flow passage 61, and an upward pressing force is applied to the annular plunger 59 by the pumping force of the molten resin. . Since the annular plunger 59 is operated by the servo motor 60, it resists the pressing force of the molten resin, but the servo motor 60 gradually raises the annular plunger 59 while receiving this pressing force, As shown in FIG. 7B, the plunger 59 is raised to a predetermined height of the main layer metering chamber 58, and the main layer molten resin is accommodated in the main layer metering portion 58a and weighed.
  • the main layer molten resin accommodated in the main layer metering unit 58a is filled into the main layer metering unit 58a without a gap in a state where it receives a predetermined pressure.
  • the main layer molten resin is filled in the main layer metering portion 58a by the pumping force of the main layer molten resin, and the molten resin is accommodated in the main layer metering chamber 58 until a predetermined amount of the main layer molten resin is filled. .
  • the core layer side annular plunger 65 is lowered as shown in FIG.
  • the layer molten resin is extruded to the nozzle 55c.
  • the nozzle 55c has already been pumped with an outer main layer molten resin (hereinafter, the outer main layer molten resin that has flowed into the nozzle 55c is labeled d) d, and the core layer is melted into the outer main layer molten resin layer d.
  • the resin a is dumped and discharged to the nozzle 55c.
  • the annular plunger 65 closes the cross flow passage 67a of the shaft-like valve 57, thereby closing the second on-off valve Y and blocking the flow of the core layer molten resin to the core layer metering portion 63a.
  • the inner movable block 56 is arranged at the same position at the same speed as the annular plunger 65 on the core layer side, and the first on-off valve X is closed, and the core layer is closed.
  • the flow of the core layer molten resin in the flow passage 67 is blocked, the third on-off valve Z is opened, and the main laminar flow passage 61 and the nozzle 55c are communicated.
  • FIG. 8A the measurement of the core layer molten resin is started by the core layer measurement unit 63a. That is, in the cross flow passage 67 a of the core laminar flow passage 67, the tip portion of the annular plunger 65 is disposed at a position facing the core laminar flow passage 67. In this state, since the first on-off valve X is in the closed state, an upward pressing force acts on the annular plunger 65 on the core layer side by the pumping force of the core layer molten resin.
  • the annular plunger 65 Since the annular plunger 65 is operated by the servo motor 66, it resists the pressing force of the core layer molten resin, but the servo motor 66 gradually raises the annular plunger 65 while receiving this pressing force. Then, as shown in FIG. 8A, the plunger 65 is raised to a predetermined height of the core layer measurement chamber 63 to accommodate the core layer molten resin in the core layer measurement unit 63a.
  • the molten resin accommodated in the core layer metering unit 63a is filled into the core layer metering unit 63a without any gap under pressure, preferably a predetermined pressure, and filled with a predetermined amount of the core layer molten resin (
  • the core layer molten resin is accommodated in the core layer measuring portion 63a until it is measured.
  • the control device lowers the annular plunger 59 on the main layer side to discharge the molten resin from the main layer metering unit 58a, and the tip of the lift valve 57 is melted by the cleaning shot.
  • the resin c is discharged, and the core layer molten resin adhering to the tip of the lift valve 53 is washed away by the main layer resin.
  • the main layer molten resin c is extruded inside the outer main layer molten resin d, following the core layer molten resin a.
  • the inner movable block 56 is moved to the lowered position, the first on-off valve X is opened, and the third on-off valve Z is closed.
  • the die head 7 is in the initial state shown in FIG. 6 and FIG. 7A, and one cycle of the molten resin extrusion process is completed.
  • the composite molten resin 8 including the core layer extruded from the discharge port 20 of the die head 7 is cut off from the discharge port 20 and then the mold (female mold) of the compression molding apparatus 4 as in the first embodiment. ) 30, the multilayer drop 8 is supplied to the mold 30, and the preform is compression-molded.
  • the composite molten resin can be molded in the same manner as in the first embodiment.
  • a main layer molten resin (; different type molten resin) different from the outer main layer molten resin and core layer molten resin is pumped and supplied from the main layer molten resin supply means 69 (; different type molten resin supply means 69). It is also possible to form a three-layer / three-layer composite molten resin in which different types of molten resins are disposed on the core layer. Also in the second embodiment, as in the first embodiment, a cutter for cutting the composite molten resin is provided, and the cutting cycle is the operation cycle of the annular planers 59 and 65 and the inner movable block 56. It is preferable to match or synchronize, since it is possible to obtain a fixed amount and continuously drop the multilayer in a state where the core layer resin is disposed at a substantially fixed position.
  • the present invention can of course be modified or changed in various ways based on the technical idea of the present invention.
  • two types and three layers of composite molten resin are formed
  • two types and three layers of composite molten resin are formed.
  • a molten resin can be formed.
  • a new metering chamber, plunger, on-off valve, and flow passage are provided further inside (near the center) of the core layer molten resin metering chamber. It is possible to increase the type and number of layers by arranging another resin flow passage on the outer periphery of the main layer fat flow passage.
  • the annular plungers 35, 41, 59, and 65 are loaded with the servo motors 36, 42, 60, and 66, and a known mechanism is combined with the servo motor.
  • the above-described apparatus / mechanism that can be moved up and down may be used instead of the servo motor.
  • omitting the servo motor, controlling the molten resin discharge pressure of the molten resin supply means extruder and gear pump to match the rise (retreat) of the plunger, and by the load of only the molten resin pressing force You may make it measure.
  • the compression molding machine using the multilayer drop is not limited to the rotary (carousel) compression molding machine of the present embodiment, and may be a single-piece compression molding or a batch-type multi-cavity compression molding machine.
  • the multilayer drop is not limited to compression molding, and may be used as a pellet, for example.
  • the composite molten resin may not be cut in a state where each of the dumpling core layers is provided, but may be a multi-layer drop in which the core layer is halved, or may be cut in a long state including a plurality of core layers. Good.
  • the cutting cycle of the cutter in order to obtain a multilayer drop with the core layer in half, it is possible to set the cutting cycle of the cutter to twice the operation cycle of the plunger and the valve mechanism.
  • the operation cycle of the plunger and the valve mechanism can be set to an integral multiple (an integer of 2 or more) of the cutting cycle of the cutter.
  • the extruder 2 can be provided with a plurality of die heads 7 as shown in FIG.
  • a die head 7 of the form based on the above-described second embodiment is shown, and the die head 7 includes two die head portions 7a and 7b, and each die head portion 7a and 7b includes main layer molten resin supply means.
  • the flow path of the main layer molten resin supply means 45 is indicated by a solid line
  • the flow path of the core layer molten resin supply means 50 is indicated by a dotted line
  • the flow path of the outer main layer molten resin supply means 83 is indicated by a dashed line.
  • the outer main layer molten resin supply means 83 may be omitted as appropriate, or the operation may be stopped.
  • three or more die heads when they are provided, they can be arranged side by side as appropriate, such as linear, lattice, annular, radial, and the like.
  • the pressure of the molten resin from the upstream of the flow path by the molten resin supply means or the mechanism / device (for example, servo motor) for moving the plunger up and down is appropriately controlled.
  • a suitable composite molten resin can be discharged from each die head 7 almost uniformly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Robotics (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

押出成形機のダイヘッドに供給する溶融樹脂量及びダイヘッドからの吐出量と吐出時のタイミングの均一化を図ることを目的とする。 ダイヘッド内に設けられたメイン層形成流通路、コア層流通路に、流通路の上流側から溶融樹脂圧送力によって圧入される計量室を設け、該計量室には、溶融樹脂の圧送力により後退し、計量された溶融樹脂を流通路の下流側へ吐出させるプランジャーを設け、プランジャーを制御する制御部によって、プランジャーに溶融樹脂の吐出量と吐出時のタイミングを制御するようにした。

Description

多層樹脂形成ダイヘッドとこれをそなえた押出成形機
 本発明は、溶融樹脂のコア層形成流通路で流出されるコア層の周りをメイン層形成流通路のメイン層によって被覆形成する多層樹脂形成ダイヘッドとこれをそなえた押出成形機に関する。
 押出成形機により押し出された溶融樹脂を、切断してドロップ(塊)状にした後、圧縮成形し、飲料用容器に成形(一般にブロー成形)するための前成形体(一般にプリフォームと称されている)、容器蓋或いはカップなどを形成するための合成樹脂素材として、当業者には周知の如く、外側溶融樹脂層(メイン層)とこの外側溶融樹脂層に包み込まれた少なくとも1層の内側溶融樹脂層(コア層)とを含む複合溶融樹脂素材が使用されることが少なくない。通常、外側溶融樹脂としては、機械的特性及び衛生性に優れた合成樹脂が選定され、内側溶融樹脂層としては、資源再利用のためのリサイクル材、あるいは、酸素吸収性かガスバリヤ性のうち一方または両方に優れた機能性合成樹脂が選定される。
 一方、複数のダイヘッドを有する押出成形機によって、メイン層を形成する溶融樹脂は外側溶融樹脂流通路を通り、コア層を形成する溶融樹脂は内側溶融樹脂流通路を通り、その後ダイヘッドの吐出口から吐出される。このように押出成形機に複数のダイヘッドが備えられる場合は、成形あるいは成形品の均一性を維持させるために、各ダイヘッドに均一に溶融樹脂を分岐・供給することにより吐出させることが望ましいが、溶融樹脂が複種の層または塊、あるいはその混在物からなる複合溶融樹脂の場合は、より均一性が要求される。
 均一性を維持させるためには、各ダイヘッドに均等な量の溶融樹脂が供給されることが必要である。複数の各ダイヘッドが同じものであれば、押出成形機の排出口からダイヘッドまでの分岐路の流通路長さを同じ距離に設定すれば、均一性が維持できると考えられるが、実際には排出口からダイヘッドまでの距離を均一にしても、各流通路とダイヘッドの加工精度、温度などのばらつきなどにより各ダイヘッドに均等な量の溶融樹脂を分岐・供給して吐出させることは困難である。また、各流通路長さを等しくできない場合もある。
 そのため、ダイヘッドにプランジャーと計量室を配設し、溶融樹脂を適宜、吐出口から吐出できるようにした複合樹脂素材を形成する成形機が特許文献1に記載されている。射出成形機においては、プランジャーにサーボ機構を用いることは行われており、特許文献2などに開示されている。
特開平7-68631号公報 特開平6-79771号公報
 しかしながら、上述の特許文献1及び特許文献2は、いずれも複合溶融樹脂の排出方向(軸方向)に断層面が延びるように形成され、本出願が目的とする溶融樹脂の1つを団子状のコア層として、該コア層の全表面をメイン層で包み込むような複合樹脂素材を形成するものではない。
 また、特許文献1に開示された技術では、ダイヘッドに配設されたアキュムレータ(計量室)に溶融樹脂を供給する際に、回転機構を介して供給するようにしているので、ダイヘッドの構造が複雑となっている。特許文献2に開示された技術では、溶融樹脂を一旦、樹脂通路(計量室)に供給してリングプランジャーよって溶融樹脂を射出するようにしている。この技術によるプランジャーの動作制御を採用したのでは、計量室に溶融樹脂を供給する際に、プランジャーの後退による計量室内の負圧(大気圧に対する)により溶融樹脂に空気がまきこまれ、あるいは真空気泡などが発生したりして、ダイヘッドが複数備えられているような場合は、均一かつ良品質で押出成形をすることができない。
 本発明はこのような事情に鑑みてなされたものであって、プランジャーと計量室を設け、溶融樹脂の必要量を適切に押出成形機のダイヘッドから吐出できる多層樹脂形成ダイヘッドとこれをそなえた押出成形機を提供することを目的とする。
 本発明は、上記課題を解決することを目的として、押出成形機のダイヘッドに流通し前記ダイヘッドのノズルに溶融樹脂を流通させるメイン層形成流通路と、前記ダイヘッドに流通し前記ダイヘッドのノズルに溶融樹脂を間欠的に流通させるコア層形成流通路とを少なくとも備え、該コア層形成流通路から流出されるコア層の周りをメイン層形成流通路のメイン層によって被覆形成する多層樹脂形成ダイヘッドにおいて、前記メイン層形成流通路及び前記コア層形成流通路の少なくとも1つの流通路には、該流通路の上流側から溶融樹脂の圧送力によって溶融樹脂が圧入される計量室を設け、該計量室には溶融樹脂の前記圧送力を受けながら後退しつつ溶融樹脂を計量し、計量された溶融樹脂を前記流通路の下流側へ吐出させるよう前進するプランジャーを設け、該プランジャーの前進・後退を制御する制御部によって前記プランジャーによる前記計量された溶融樹脂の少なくとも吐出量と吐出開始のタイミングとを制御するようにした。
 上記多層樹脂形成ダイヘッドは、前記プランジャーがサーボモータで駆動され、溶融樹脂が前記計量室内に圧送される際に、前記制御部は前記サーボモータを制御して、前記プランジャーが、前記計量室に圧入される溶融樹脂により後退圧をうけた状態でプランジャーを後退させるとともに、プランジャーの後退位置を規制することができる。
 上記多層樹脂形成ダイヘッドは、前記計量室及び前記プランジャーが前記ダイヘッドに内蔵されていることが好ましい。
 上記多層樹脂形成ダイヘッドは、前記コア層形成流通路の外側にさらに1以上の溶融樹脂の形成流通路を備え、該形成流通路、前記メイン層形成流通路及び前記コア層形成流通路の少なくとも1つに前記計量室及びプランジャーを設けることができる。
 上記多層樹脂形成ダイヘッドには内側可動ブロックが備えられ、前記内側可動ブロックは、前記メイン層形成流通路の開閉弁と、前記コア層の計量室とを兼ねることができる。
 内側可動ブロックは、さらに、コア層形成流通路の開閉弁でもあり、前記メイン層流通路とコア層流通路との開閉を切換可能とすることができる。
 プランジャーが、前記メイン層流通路および/またはコア層流通路の計量室への流通路開閉弁として作用することができる。
 上記多層樹脂形成ダイヘッドは、前記計量室とプランジャーとを備えた前記多層樹脂形成ダイヘッドを複数個備えた押出成形機に用いることができる。
 上記多層樹脂形成ダイヘッドに、その吐出口から吐出された多層樹脂を周期的に切断し多層ドロップにするカッターを付随して設け、上記プランジャーの前進・後退も周期的に行なわせ、プランジャーの前進・後退の周期と、カッターの多層樹脂切断周期とを一致させる、多層ドロップ成形機とした。
 上記プランジャーの動作と、上記カッターの動作とを同期させることができる。
 本発明の多層樹脂形成ダイヘッドは、制御部によって、プランジャーの前進・後退による溶融樹脂の計量および吐出量を制御し、また、前進(溶融樹脂吐出開始)のタイミングを計り、コア層溶融樹脂を吐出、あるいはメイン層溶融樹脂を吐出することによって、好適な複合溶融樹脂を形成することができる。また、溶融樹脂の計量時において、対応するプランジャーに溶融樹脂の圧送力による圧をかけながら、プランジャーを後退させ、計量室に溶融樹脂を収容するようにしているので、計量された溶融樹脂への空気のまきこみ、あるいは真空気泡を有効に防止するとともに、計量室に溶融樹脂を隙間なく正確に計量し、吐出することができる。
 より好ましくは、プランジャーをサーボモータにより正確に駆動制御することで、より好適に計量することが可能となる。
 プランジャーがダイヘッド内に内蔵されることで、吐出口近傍で計量・吐出できるので、配管の圧力損失などによるロス、ばらつきが少なくなり、空気の巻き込みや真空気泡の防止がより効果的に行える。
 コア層形成流通路の外側に1以上の溶融樹脂の形成通路を備えることで、コア層を吐出口の中心寄りに配置した多層樹脂が形成できる。ここで、コア層側にプランジャーを設けた場合、空気の巻き込みや真空気泡の防止により正確に計量されたコア層溶融樹脂を重量精度よく押し出せる。また、その他の層側にプランジャーを設ける場合はプランジャーから押し出した樹脂により、コア層を押し流すクリーニングショットが可能になる。
 多層樹脂形成ダイヘッドに内側可動ブロックを備え、この内側可動ブロックがメイン層形成流通路の開閉弁と、前記コア層の計量室とを兼ねることでダイヘッド構造を簡略にでき、小型化も可能になる。
 内側可動ブロックが、コア層形成流通路の開閉弁でもあって、メイン層流通路とコア層流通路との開閉を切換可能とすることで、よりダイヘッド構造の簡略にでき、小型化も可能になる。
 プランジャーが、メイン層流通路および/またはコア層流通路の計量室への流通路開閉弁として作用することで、ダイヘッド構造を簡略にでき、小型化も可能になる。
 押出成形機に本発明のダイヘッドが複数備えられている場合は、流通路上流からの溶融樹脂の圧送力、あるいはプランジャーを昇降させる機構・装置(例えばサーボモータ)を適宜制御することによって、各ダイヘッドから好適の複合溶融樹脂をほぼ一様に吐出することができる。
 上記多層樹脂形成ダイヘッドのプランジャーの前進・後退の動作周期と、カッターの切断周期とを一致させることで、定量、かつ、コア層樹脂が定位置に配置された状態の多層樹脂ドロップが連続して得られる成形機となる。
 上記プランジャーの動作と、前記カッターの動作とを同期させるので、多層樹脂ドロップを連続して成形している中で、多層ドロップのコア層の位置がずれていくことがない。
本発明の第1の実施形態による押出成形機の押出成形機による圧縮成形を実施するための成形システム1の概略平面図である(ダイヘッドと流通路が増えた以外は、第2の実施形態とも同じである)。 図1の成形システムの圧縮成形部を示す部分拡大平面図である。 図1の押出成形機のダイヘッドの拡大断面図である。 図3のダイヘッドの作動を説明するための図であり、Aは初期位置の断面図、Bはメイン層及びコア層の溶融樹脂の計量をしている状態の断面図、Cはコア層溶融樹脂の流通路(開閉弁)を開弁した状態の断面図である。 図3のダイヘッドの作動を説明するための図(図4に続く)であり、Aは、コア層計量室の溶融樹脂を押し出した状態の断面図、Bはコア層溶融樹脂の流通路(開閉弁)を閉塞した状態の断面図、Cはメイン層の溶融樹脂を押し出した状態の断面図である。 本発明の第2の実施形態の押出成形機のダイヘッドの拡大断面図である。 図6のダイヘッドの作動を説明するための図であり、Aは初期位置の断面図、Bはメイン層溶融樹脂の計量、コア層の溶融樹脂の押し出しをしている状態の断面図、Cはコア層溶融樹脂とメイン層溶融樹脂の流通路を切り替えた(コア層溶融樹脂流通路が閉弁,メイン層溶融樹脂流通路が開弁)状態の断面図である。 図6のダイヘッドの作動を説明するための図(図7に続く)であり、Aは、メイン層を押し出し、コア層の溶融樹脂の計量をした状態の断面図、Bはコア層溶融樹脂とメイン層溶融樹脂の流通路を切り替えた(コア層溶融樹脂流通路が開弁,メイン層溶融樹脂流通路が閉弁)状態の断面図である。 本発明の変形例であり、複数のダイヘッドを備えた押出成形機の概略平面図である。
符号の説明
 2 押出成形機
 7 ダイヘッド
 20 吐出口
 31,55 外側ブロック
 32 内側ブロック
 31c,55c 排出孔
 33 昇降弁
 34,58 メイン層計量室
 35,41,59,65 環状プランジャー
 36,42,60,66,80 昇降機構・装置(サーボモータ)
 37,61 メイン層流通路
 39,63 コア層計量室
 43,67 コア層流通路
 56 内側可動ブロック
 57 軸状弁
 W 開閉弁
 X 第1開閉弁
 Y 第2開閉弁
 Z 第3開閉弁
 以下、本発明の第1の実施形態による多層樹脂形成ダイヘッドとこれをそなえた押出成形機について、図面を参照しながら説明する。
 図1は、本発明の多層樹脂ダイヘッドを備えた押出成形機による圧縮成形を実施するための一例である成形システム1の概略平面図、図2は図1の成形システムの圧縮成形部を示す部分拡大平面図である。
 この成形システム1は、本発明に係わる押出成形機2、合成樹脂搬送装置3、圧縮成形装置4及び搬出装置5を備えている。
 押出成形機2は、各々異なる溶融樹脂を原料とするメイン層溶融樹脂供給手段45、コア層溶融樹脂供給手段50、外側メイン層溶融樹脂供給手段83(なお、当該溶融樹脂供給手段83は、本実施形態では省略してよく、後述する第2の実施形態で用いられる)の複数の溶融樹脂供給手段45,50,83を備えている。各溶融樹脂供給手段45,50,83は、PP、PET等の合成樹脂素材や、機能的な合成樹脂素材を各々加熱溶融及び混練して、各溶融樹脂を生成する。押出成形機2の先端側は、各溶融樹脂供給手段45,50,83から溶融樹脂が供給されるダイヘッド7を含んでおり、このダイヘッド7にはその先端部下面に形成されている吐出口20(図3参照)まで延びる樹脂流通路が形成されている。すなわち、溶融樹脂供給手段45,50,83は溶融樹脂をダイヘッド7に送出し、溶融樹脂供給手段45,50,83から送出された溶融樹脂が後述の複合溶融樹脂として吐出口20から押し出される。
 図1及び図2を参照して説明すると、合成樹脂搬送装置3は矢印eで示す方向に回転駆動する回転円盤11を含んでいる。この回転円盤11の周縁には、周方向に等間隔をおいて複数個の切断・保持ユニット14が配設されている。回転円盤11の回転に応じて、切断・保持ユニット14は回転円盤11の周縁に沿って延在する円形搬送径路を通して搬送され、上記ダイヘッド7の吐出口20に対向してその直ぐ下方に位置する受入域18、及び圧縮成形装置4の所定部位に対向してその上方に位置する樹脂供給域21を通して搬送される。切断・保持ユニット14は、ダイヘッド7から吐出された複合溶融樹脂を切断・保持ユニット14によって切断し、複合溶融樹脂の塊(;多層ドロップ)8とした後、多層ドロップ8を圧縮成形装置4の金型30に供給する。金型30では、多層ドロップ8の圧縮成形が行われ、プリフォーム、容器等を形成した後、搬出装置5によってそれらが受け渡され、次工程に搬送される。
 図3は、押出成形機2のダイヘッド7の拡大断面図である。(ダイヘッド7の構造、および動作状況を把握しやすくするため、奥行き線は適宜割愛する。)
 ダイヘッド7は、水平断面の外周形状が円形であって、外周側に外側ブロック31が配設され、外側ブロック31はほぼ環状形状であって、上下方向における中間位置に大径孔31aが形成され、大径孔31aの上側、すなわち外側ブロック31の上側に中径孔31bが形成され、大径孔31aの下側、すなわち外側ブロック31の下側には、ノズル31cが形成されている。大径孔31aの下側は、逆円錐台形状に形成されている。
 中径孔31b及び大径孔31aの内部には、内側ブロック32が配設され、内側ブロック32の内部には、同一径の円柱状の内孔32aが形成され、内孔32aの下部は逆円錐台形状に形成されている。
 内孔32aの中心部には、軸状の昇降弁33が軸を上下方向にして配設されている。
 大径孔31aに位置させて、外側ブロック31と内側ブロック32との間の環状領域には、メイン層計量室34(図4Bも参照)が形成され、メイン層計量室34の下側は、メイン層流通路37が形成されている。メイン層流通路37の下流側(以下において、溶融樹脂供給装置(例えば本実施形態では、メイン層溶融樹脂供給装置45またはコア層溶融樹脂供給装置50)からダイヘッド7の吐出口20にかけてのある箇所から見たとき、溶融樹脂供給装置側を上流側、吐出口側を下流側と呼ぶ)は、ノズル31cに常時連通し、そのさらに下流側のダイヘッド7の吐出口20に連通する。
 メイン層計量室34の内部には、メイン層計量室34内を上下方向へ前進・後退、すなわち、昇降可能な装置・機構に接続された環状プランジャー35が配設されている。プランジャー35を昇降可能にする装置・機構としては例えばエアシリンダーや油圧シリンダー、機械式カム,クランク機構,リンク機構などが挙げられ、それらをさらに公知の機構・装置、例えば上記機構の他にスプリングやダンパー、に繋いだ装置などもある。本実施形態では、環状プランジャー35にサーボモータ36が連結され、環状プランジャー35はメイン層計量室34内を上下方向へ昇降が可能である。環状プランジャー35を昇降させることにより、メイン層計量室34内の環状プランジャー35の下方に形成されるメイン層計量部34aは上下方向に拡大・縮小し、容積を増減させることが可能である。サーボモータ36は、図示しない制御手段に接続され、電気的に制御される。
 内側ブロック32の内孔32aに位置させて、内側ブロック32と昇降弁33との間の環状領域には、コア層計量室39(図4Bも参照)が形成され、コア層計量室39の下側は、コア層流通路43が形成されている。コア層流通路43の下流側には、弁孔48が設けられている。弁孔48は、昇降弁33と共にコア層流通路43を開閉し、図3に示す下降位置では、開閉弁(昇降弁33と弁孔48を総称して開閉弁Wとする)Wは閉じ状態となり、昇降弁33が上昇すると開状態となる。開閉弁Wが開弁状態では、コア層流通路43はノズル31cに連通し、そのさらに下流側のダイヘッド7の吐出口20に連通する。昇降弁33は、図示しない制御手段によって電気的に制御される。
 コア層計量室39の内部には、コア層計量室39内を上下方向へ前進・後退、すなわち、昇降可能な装置・機構に接続された環状プランジャー41が配設されている。環状プランジャー35と同様に、本実施形態では、環状プランジャー41には、サーボモータ42が連結され、環状プランジャー41は、コア層計量室39内を上下方向へ昇降が可能である。環状プランジャー41を昇降させることにより、コア層計量室39内の環状プランジャー41下方に形成されるコア層計量部39aは上下方向に拡大・縮小し、容積を増減させることが可能である。サーボモータ42は、図示しない制御手段に接続され、電気的に制御される。
 ダイヘッド7の外側に配置されるメイン層流通路37の上流側のメイン層供給口44は、メイン層溶融樹脂供給手段45と接続されている。該溶融樹脂供給手段45は、押出機46とその下流側に接続されているギアポンプ47とを備えている。押出機46から押し出された溶融状態のメイン層溶融樹脂がギアポンプ47を介してメイン層流通路37に供給される。
 ダイヘッド7の内側に配置されるコア層流通路43の上流側のコア層供給口49は、コア層溶融樹脂供給手段50と接続されている。該溶融樹脂供給手段50は、押出機51とその下流側に接続されているギアポンプ52とを備えている。押出機51から押し出された溶融状態のコア層溶融樹脂がギアポンプ52を介してコア層流通路43に供給される。
 次に、本発明の第1の実施形態における押出成形機の作用について説明する。
 上述した構成により、図1に示す押出成形機2は、ポリエチレンテレフタレート等の合成樹脂素材を加熱溶融及び混練して、溶融樹脂8をダイヘッド7に搬送する。
 図3及び図4のAに示すように、初期状態では、昇降弁33を下降位置に配置し、開閉弁Wを閉弁状態にする。したがって、コア層流通路43は吐出口20と非連通状態となる。また、メイン層計量室34の環状プランジャー35及びコア層計量室39の環状プランジャー41は、各々下降位置に配置する。これらの環状プランジャー35,41は、各々が対応して連結されているサーボモータ36,42の制御によって、溶融樹脂の流れによって上方へ押圧力(負荷)が付与されている。この押圧力を受けて環状プランジャー35,41が上昇し、計量室39との相対位置または上昇速度が設定されている。このとき、メイン層溶融樹脂供給手段45からメイン層供給口44へ圧送され供給されたメイン層溶融樹脂は、メイン層流通路37を通り下流側のノズル31cにほぼ連続的に圧送され流れている。
 このようなメイン層溶融樹脂供給手段45からメイン層溶融樹脂をほぼ連続的に圧送するとともに、コア層溶融樹脂供給手段50からコア層溶融樹脂を連続的に圧送する。メイン層流通路37では、環状プランジャー35の先端(下端)部がメイン層流通路37に臨む位置である下降位置に配置され、環状プランジャー35の先端部には溶融樹脂の圧送力によって上方に押圧されるような力を作用させる。上述したように、環状プランジャー35は、サーボモータ36によって作動されているので、メイン層溶融樹脂の押圧力に抗しているが、サーボモータ36は、この押圧力を受けたまま環状プランジャー35を徐々に上昇させ、図4のBに示すように、メイン層計量室34の所定高さまでプランジャー35を上昇させて、メイン層溶融樹脂をメイン層計量部34aに収容し、計量する。この作用によって、メイン層計量部34aに収容されたメイン層溶融樹脂は、圧力、好ましくは所定の圧力を受けた状態で隙間無くメイン層計量部34aに充填される。
 このように、メイン層溶融樹脂の圧送力によって、メイン層溶融樹脂の一部はメイン層計量部34aに充填され、所定量のメイン層溶融樹脂が充填するまで、メイン層計量部34aに溶融樹脂を収容し、残りの溶融樹脂は下流側のノズル31cにほぼ連続的に流れ込む。
 一方、コア層流通路43の弁孔48(図3参照)近傍では、環状プランジャー41の先端部がコア層流通路43に臨む位置である下降位置に配置されている。この状態で昇降弁33と弁孔48による開閉弁Wが閉弁状態になっているので、コア層流通路43は閉塞され、環状プランジャー41にはコア層溶融樹脂の圧送力によって上方に押圧されるような力が作用する。環状プランジャー41は、サーボモータ42によって作動されているので、コア層溶融樹脂の押圧力に抗しているが、サーボモータ42は、この押圧力を受けたまま環状プランジャー41を徐々に上昇させ、図4のBに示すように、コア層計量室39の所定高さまで上昇し、コア層溶融樹脂をコア層計量部39aに収容し、計量する。この作用によって、コア層計量部39aに収容されたコア層溶融樹脂は、所定の圧力を受けた状態で隙間無くコア層計量室39に充填され、所定量のコア層溶融樹脂が充填(計量)される。
 コア層計量室39に所定量のコア層溶融樹脂が充填された後は、図4のCに示すように、昇降弁33を上昇させて、開閉弁Wを開弁状態にして、コア層流通路43とノズル31cとを連通させ、次いで図5のAに示すように、図示しない制御部によってサーボモータ42を作動させて、コア側の環状プランジャー41を下降させてコア層計量部39aのコア層溶融樹脂を弁孔48からノズル31cに押し出す。ノズル31cには、既にメイン層溶融樹脂が圧送されており、メイン層溶融樹脂層b(以下、ノズル31cに流れ込んだメイン層溶融樹脂に符合bを付す)の中にコア層溶融樹脂が団子状となって、ノズル31cに吐出される。
 図5のBに示すように、コア層溶融樹脂(以下、ノズル31cに吐出された団子状になったコア層溶融樹脂に符合aを付す)aを吐出させた後は、コア側の環状プランジャー41を下降位置に配置したままの状態で、昇降弁33を弁孔48まで下降させ、開閉弁Wを閉弁状態にする。
 そして、図5のCに示すように、制御装置によってメイン層側の環状プランジャー35を下降させて、メイン層計量部34aの溶融樹脂をノズル31cへ吐出させる(以下、これをクリーニングショットと呼び、クリーニングショットによって吐出された溶融樹脂に符合cを付す)。このクリーニングショットによって吐出された溶融樹脂cは、昇降弁33の先端に付着したコア層溶融樹脂をメイン層樹脂によって流し落とす役割を果たす。
 そして、上記クリーニングショット及び、図4のAの状態の戻ったときのメイン層流通路37からのメイン層溶融樹脂のノズル31cへの流れ込みにより、団子状に吐出されたコア層溶融樹脂aはメイン層溶融樹脂bによって上部も包まれ、複合溶融樹脂となる。
 こうして、メイン層溶融樹脂bの中にコア層溶融樹脂aを包含させ、これらのノズル31cを流れる複合溶融樹脂は、ダイヘッド7の吐出口20から排出され、所望の位置で切断して多層溶融樹脂の塊(多層ドロップ)になる。(通常はドロップのほぼ中央にコア層溶融樹脂aが配置される状態になるよう切断する。)
 図1,2の成形システム1の例に沿って多層ドロップ成形からプリフォーム成形までについて説明すると、ダイヘッド7の吐出口20から押し出されたコア層を含んだ複合溶融樹脂は、コア層間を、図2に示すカッター17によって切断され、吐出口20から切り離され多層ドロップ8となる。複合溶融樹脂が吐出口20から切り離され多層ドロップ8になる時には、第1及び第2の挟持部材15,16を閉じることによって多層ドロップ8を保持する。閉状態の切断・保持ユニット14に保持された多層ドロップ8は、圧縮成形装置4の金型(雌型)30の上方位置まで移動させられる。そして、複合溶融樹脂が金型30に供給されて、圧縮成形によりプリフォームが成形される。プリフォームは、冷却された後に搬出装置5に受け渡される(図1参照)。
 このように、本実施形態によれば、図示しない制御装置によって、サーボモータ36,42を駆動させることによって、環状プランジャー35,41の位置または昇降速度を制御し、あるいは昇降のタイミングを計り、コア層溶融樹脂を吐出、あるいはメイン層溶融樹脂をクリーニングショットすることによって、好適な複合溶融樹脂を形成することができる。溶融樹脂の計量時において、環状プランジャー35,41は、対応するサーボモータ36,42の制御によって、溶融樹脂の圧送力に抗して負荷をうけながら上昇し、各計量部34a,39aに溶融樹脂を収容するようにしているので、計量された溶融樹脂への空気のまきこみ、あるいは真空気泡を有効に防止するとともに、各計量部34a,39aの溶融樹脂量を正確に計量し、吐出することができる。とくに、コア層溶融樹脂aについては計量された分の吐出であって、(メイン層溶融樹脂bのようにメイン層樹脂経路から垂れ流されることなく、)さらに昇降弁33による弁開閉動作も加わるため、吐出量も正確である。そのため、コア層溶融樹脂供給手段50のギアポンプ52を適宜省略しても、環状プランジャー41,昇降弁33の昇降制御により、コア層溶融樹脂aの吐出量を正確に維持することも可能である。
 なお、この多層溶融樹脂の塊(多層ドロップ)が定量、かつ、コア層樹脂がほぼ定位置に配置された状態で、連続して得られるよう、メイン層溶融樹脂供給手段45,コア層溶融樹脂供給手段50の溶融樹脂供給速度を一定にするのとともに、環状プランジャー35,41、及び、昇降弁33の往復動作を一定の周期で行うようにし、さらに、カッター17が吐出口20を通過する頻度(;カッター17による複合溶融樹脂の切断周期)も一定にし、さらに、環状プランジャー35,41、及び、昇降弁33の往復動作の周期と、カッター17による複合溶融樹脂の切断周期を一致させるのがより好ましい。その際、環状プランジャー35、と環状プランジャー41と、昇降弁33と、カッター17との動きが微妙にずれていかないよう同期を取るのが好ましく、例えば、カッター17が吐出口20を通過し終えた時を基点として、環状プランジャー35、と環状プランジャー41と、昇降弁33との動作タイミングを取り、所望の多層ドロップが得られるよう、環状プランジャー35と環状プランジャー41と昇降弁33とをそれぞれ上記基点から所望とする期間だけずらして吐出開始を指令するようにしてもよいし、環状プランジャー35または環状プランジャー41あるいは昇降弁33のある動作時期を基点として、他方のプランジャーとカッター17の動作タイミングを指令するようにしてもよい。さらには、環状プランジャー35,41、昇降弁33、及び、カッター17を逐次連動するように電気的に制御してもよいし、機械的に駆動系を連結させてもよい。
 次に本発明の第2の実施形態による多層樹脂形成ダイヘッドとこれをそなえた押出成形機について説明する。
 上記第1の実施形態では、溶融樹脂のメイン層、コア層の種類を別々にして2種3層の複合溶融樹脂をダイヘッドによって形成したが、本実施形態では2種3層、または3種3層の複合溶融樹脂を形成する。
 図6に示すように、ダイヘッド7は、横断面の外周形状が円形であって、外周側に外側ブロック55が配設されている。外側ブロック55はほぼ環状形状であって、上下方向における中間位置に大径孔55aが形成され、大径孔55aの上側、すなわち外側ブロック55の上側に中径孔55bが形成され、大径孔55aの下側、すなわち外側ブロック55の下側には、ノズル55cが形成されている。大径孔55aの下側は、逆円錐台形状に形成されている。
 中径孔55b及び大径孔55aには、内側可動ブロック56が配設され、内側可動ブロック56の内部には、上側が同一径の円柱状の内孔56aが形成され、内孔56aの下部は逆円錐台形状に形成されている。
 内孔56aの中心部には、軸状の軸状弁57が上下方向に配設されている。軸状弁57は、先端部に弁体57aを形成し、該弁体の上部に水平方向へ放射状または1方向あるいは2方向に延びる横流通路67aを形成し、弁体57aよりも上側の軸芯方向の中心部に縦流通路67bを形成したコア層流通路67を設けている。
 大径孔55aに位置させて、外側ブロック55と内側可動ブロック56との間の環状領域には、メイン層計量室58が形成され、メイン層計量室58の下側は、メイン層流通路61が形成されている。メイン層計量室58の内部には、メイン層計量室58内を上下方向へ前進・後退、すなわち、昇降可能な装置・機構に接続された環状プランジャー59が配設されている。環状プランジャー59には、サーボモータ60が連結され、メイン層計量室58を上下方向へ昇降が可能である。環状プランジャー59を昇降させることにより、メイン層計量室58内の環状プランジャー59の下方に形成されるメイン層計量部58aは上下方向に拡大・縮小し、容積を増減させることが可能である。サーボモータ60は、図示しない制御手段に接続され、電気的に制御される。
 内側可動ブロック56は、昇降機構、好ましくはサーボモータ80によって昇降が可能であって、下端部に弁体56bを形成し、外側ブロック55のメイン層流通路61の下流側に設けた弁孔55eを閉塞し、これらの弁孔55eと弁体56bによって開閉弁(弁孔55eと弁体56bを総称して第3開閉弁Zとする)Zを形成し、メイン層流通路61を開閉している。第3開閉弁Zの開弁状態では、メイン層流通路61は、下流側のノズル55cに常時連通し、そのさらに下流側のダイヘッド7の吐出口20に連通する。
 内側可動ブロック56の内孔56aに位置させて、内側可動ブロック56と軸状弁56との間の環状領域には、コア層計量室63が形成され、コア層計量室63の下側には、弁孔72が設けられている。弁孔72は、軸状弁57の弁体57aと共にコア層流通路67を開閉し、図6に示す状態では、開閉弁(弁体57aと弁孔72を総称して第1開閉弁Xとする)Xの開弁状態を示す。なお、軸状弁57を昇降可能にして第1開閉弁Xを開閉してもよいが、本実施形態では、内側可動ブロック56が昇降して第1開閉弁Xを開閉するため、軸状弁57は昇降しない。
 コア層計量室63の内部には、コア層計量室63内を上下方向へ前進・後退、すなわち、昇降可能な装置・機構に接続された環状プランジャー65が配設されている。プランジャー65を昇降可能にする装置・機構としては例えばエアシリンダーや油圧シリンダーなどもあるが、本実施形態では、環状プランジャー65には、サーボモータ66が連結され、コア層計量室63を上下方向へ昇降が可能である。環状プランジャー65を昇降させることにより、コア層計量室63内の環状プランジャー65下方に形成されるコア層計量部63aは上下方向に拡大・縮小し、容積を増減させることが可能である。サーボモータ66は、図示しない制御手段に接続され、電気的に制御される。
 環状プランジャー65が下降した状態では、環状プランジャー65の内周面が軸状弁57に形成した横流通路67aを閉塞し、コア層流通路67を閉塞する(図7のBを参照)。したがって、コア層流通路67は実質的に放射状または1方向あるいは2方向に設けられた横流通路67aの個数分の箇所、例えば図6においては左右2カ所に開閉弁が形成されている(なお、環状プランジャー65と横流通路67aとで、形成される開閉弁を第2開閉弁Yとする)。コア層流通路67は、第1開閉弁X及び第2開閉弁Yを弁開状態にさせることによって、コア層流通路67はノズル55cに連通し、そのさらに下流側のダイヘッド7の吐出口20に連通する。
 ダイヘッド7のメイン層流通路61の下部には、外側メイン層流通路81が形成されている。外側メイン層流通路81は、常時ノズル55cに連通し、そのさらに下流側のダイヘッド7の吐出口20に連通する。
 ダイヘッド7の外側に配置されるメイン層流通路61の上流側のメイン層供給口68は、メイン層溶融樹脂供給手段69と接続されている。該溶融樹脂供給手段69は、押出機70とその下流側に接続されているギアポンプ71とを備えている。押出機70から押し出された溶融状態のメイン層溶融樹脂がギアポンプ71を介してメイン層流通路61に供給される。
 ダイヘッド7の内側に配置されるコア層流通路67の上流側のコア層供給口73は、コア層溶融樹脂供給手段74と接続されている。該溶融樹脂供給手段74は、押出機75とその下流側に接続されているギアポンプ76とを備えている。押出機75から押し出された溶融状態のコア層溶融樹脂がギアポンプ76を介してコア層流通路67に供給される。
 ダイヘッド7の下側に配置される外側メイン層流通路81の上流側のメイン層供給口82は、外側メイン層溶融樹脂供給手段83と接続されている。該溶融樹脂供給手段83は、押出機84とその下流側に接続されているギアポンプ85とを備えている。押出機84から押し出された溶融状態のメイン層溶融樹脂がギアポンプ85を介して外側メイン層流通路81に供給される。
 次に、本発明の第2の実施形態における押出成形機の作用について説明する。
 図6及び図7のAに示すように、初期状態では、内側可動ブロック56を下降位置に配置し、第1開閉弁Xを開弁状態にする。また、コア側の環状プランジャー65は予め、あるいは、前の吐出工程により、後述する図7のCから図8のAの工程を経て既にコア層溶融樹脂を計量した状態で上昇位置に配置され、第2開閉弁Yは開弁状態である。したがって、コア層流通路67は吐出口20と連通状態となる。そして、内側可動ブロック56を下降位置に配置させることによって、第3開閉弁Zを閉弁状態にするとともに、メイン層計量室58の環状プランジャー59を下降位置に配置する。本実施形態では、メイン層溶融樹脂供給手段69及び外側メイン層溶融樹脂供給手段83から同種の溶融樹脂が圧送され、コア層溶融樹脂供給手段74から異なる種類の溶融樹脂が圧送される。
 このような状態から、外側メイン層溶融樹脂供給手段83から外側メイン層溶融樹脂をメイン層供給口82へ圧送し、外側メイン層溶融樹脂は、外側メイン層流通路81を通りノズル55c及び吐出口20にほぼ連続的に圧送され流れている。また、メイン層溶融樹脂供給手段69から、メイン層溶融樹脂はメイン層供給口68へ、ほぼ連続的に圧送される。同様にコア層溶融樹脂供給手段74から、コア層溶融樹脂はコア層供給口73へほぼ連続(第2開閉弁Yによりコア層流通路67が完全閉鎖する場合があるため、間欠でもよい)的に圧送される。
 メイン層流通路61では、環状プランジャー59の先端部がメイン層流通路61に臨む位置の下降位置に配置され、環状プランジャー59には溶融樹脂の圧送力によって上方への押圧力を作用させる。環状プランジャー59は、サーボモータ60によって作動されているので、溶融樹脂の押圧力に抗しているが、サーボモータ60は、この押圧力を受けたまま環状プランジャー59を徐々に上昇させ、図7のBに示すように、メイン層計量室58の所定高さまでプランジャー59を上昇させて、メイン層溶融樹脂をメイン層計量部58aに収容し、計量する。この作用によって、メイン層計量部58aに収容されたメイン層溶融樹脂は、所定の圧力を受けた状態で隙間無くメイン層計量部58aに充填される。
 このように、メイン層溶融樹脂の圧送力によって、メイン層溶融樹脂はメイン層計量部58aに充填され、所定量のメイン層溶融樹脂が充填するまで、メイン層計量室58に溶融樹脂を収容する。
 一方、コア層流通路67の横流通路67a近傍では、コア層側の環状プランジャー65を図7のBに示すように、下降させて、前工程でコア層計量部63aに充填されていたコア層溶融樹脂をノズル55cへ押し出す。ノズル55cには、既に外側メイン層溶融樹脂(以下、ノズル55cに流れ込んだ外側メイン層溶融樹脂に符合dを付す)dが圧送されており、外側メイン層溶融樹脂層dの中にコア層溶融樹脂aが団子状となって、ノズル55cに吐出される。この際、環状プランジャー65は軸状弁57の横流通路67aを閉塞することによって、第2開閉弁Yを閉弁状態とし、コア層溶融樹脂のコア層計量部63aへの流通を遮断する。
 次に、図7のCに示すように、内側可動ブロック56を、コア層側の環状プランジャー65とほぼ同時に同速度で上昇位置に配置し、第1開閉弁Xを閉弁状態としコア層流通路67のコア層溶融樹脂の流通を遮断し、第3開閉弁Zを開弁状態にして、メイン層流通路61とノズル55cを連通させる。
 次いで、図8のAに示すように、コア層計量部63aでコア層溶融樹脂の計量を開始する。すなわち、コア層流通路67の横流通路67aでは、環状プランジャー65の先端部がコア層流通路67に臨む位置に配置されている。この状態では第1開閉弁Xが閉弁状態であるので、コア層側の環状プランジャー65にはコア層溶融樹脂の圧送力によって上方への押圧力が作用する。
 環状プランジャー65は、サーボモータ66によって作動されているので、コア層溶融樹脂の押圧力に抗しているが、サーボモータ66は、この押圧力を受けたまま環状プランジャー65を徐々に上昇させ、図8のAに示すように、コア層計量室63の所定の高さまでプランジャー65を上昇させてコア層溶融樹脂をコア層計量部63a収容する。この作用によって、コア層計量部63aに収容された溶融樹脂は、圧力、好ましくは所定の圧力を受けた状態で隙間無くコア層計量部63aに充填され、所定量のコア層溶融樹脂が充填(計量)されるまで、コア層計量部63aにコア層溶融樹脂を収容する。
 一方、メイン層計量室58では、制御装置によってメイン層側の環状プランジャー59を下降させて、メイン層計量部58aの溶融樹脂を吐出させて、昇降弁57の先端部をクリーニングショットによって、溶融樹脂cを吐出し、昇降弁53の先端に付着したコア層溶融樹脂をメイン層樹脂によって流し落としている。このメイン層溶融樹脂cは、外側メイン層溶融樹脂dの内側に、コア層溶融樹脂aの後に続いて押し出される。
 そして、図8のBに示すように、内側可動ブロック56を下降位置に移動し、第1開閉弁Xを開弁し、第3開閉弁Zを閉弁状態にする。こうして、ダイヘッド7は、図6及び図7のAに示す、初期状態となり、溶融樹脂の押出行程の1サイクルが終了する。
 ダイヘッド7の吐出口20から押し出されたコア層を含んだ複合溶融樹脂8は、上記第1の実施形態と同様に、吐出口20から切り離された後に、圧縮成形装置4の金型(雌型)30に搬送され、多層ドロップ8が金型30に供給されて、プリフォームが圧縮成形される。このように、本実施形態によっても、上記第1の実施形態と同様に複合溶融樹脂を成形することができる。また、外側メイン層溶融樹脂,コア層溶融樹脂と異なるメイン層溶融樹脂(;異種溶融樹脂)をメイン層溶融樹脂供給手段69(;異種溶融樹脂供給手段69)から圧送・供給することで団子状のコア層の上に異種溶融樹脂を配置する、3種3層の複合溶融樹脂を形成することも可能となる。
 なお、第2の実施形態においても、第1の実施形態と同様、複合溶融樹脂を切断するカッター付設させ、その切断周期を、環状プランシャー59,65、及び、内側可動ブロック56の動作周期と一致させたり、同期をとったりすると、定量、かつ、コア層樹脂がほぼ定位置に配置された状態で多層ドロップ連続して得られるので好ましい。
 以上、本発明の各実施形態について説明したが、本発明の技術的思想に基づいて、勿論、本発明は種々の変形又は変更が可能である。
 例えば、上記第1の実施形態では、2種3層の複合溶融樹脂、第2の実施形態では2種3層、または3種3層の複合溶融樹脂を形成したが、その他の多種多層の複合溶融樹脂を形成することができ、例えば、コア層溶融樹脂の計量室のさらに内方(中央寄り)に新たな計量室,プランジャー,開閉弁,流通路を設けたり、メイン層流通路や外側メイン層脂流通路の外周にさらに別の樹脂流通路を配置するなどして、層の種類や数を増やすことが可能である。また、上記各実施形態では、溶融樹脂の計量時に環状プランジャー35,41,59,65にサーボモータ36,42,60,66によって負荷をかけて計量したが、サーボモータに公知の機構を組み合わせてもよいし、サーボモータの代わりに前述の昇降可能にする装置・機構を用いてもよい。また、サーボモータを省略して、溶融樹脂供給手段の押出機、ギアポンプの溶融樹脂吐出圧を制御してプランジャーの上昇(後退)に合わせ、溶融樹脂の押圧力のみの負荷によって、溶融樹脂の計量をするようにしてもよい。
 なお、環状プランジャーの昇降制御を行うことによって負荷をかけて溶融樹脂を計量する場合は、溶融樹脂供給手段のギアポンプを省略することも可能である。
 また、多層ドロップを用いる圧縮成形機としては、本実施形態のロータリー式(カルーセル)圧縮成形機に限らず、1個取り圧縮成形でもよいし、バッチ式多数個取り圧縮成形機でもよい。また、多層ドロップは圧縮成形に用いるのに限らず、例えば、ペレットとして用いてもよい。さらには、複合溶融樹脂を団子状コア層1個ずつを備えた状態で切断せず、コア層を半分にした多層ドロップとしてもよいし、複数個コア層を含んだ長物状態で切断してもよい。その際、コア層を半分にした多層ドロップを定量で得るためには、カッターの切断周期を、プランジャー及び弁機構の動作周期の2倍に設定することで可能となる。また、複数個コア層を含んだ長物状態の多層ドロップとするためには、プランジャー及び弁機構の動作周期をカッターの切断周期の整数倍(2以上の整数)とすることで可能となる。また、プランジャー及び弁機構の作動タイミングとカッター切断タイミングとを調整して、コア層の位置をドロップ中心から上または下にずらしてもよいし、さらにずらして多層ドロップの上端と下端にコア層を分断させて配置させ、中心にはメイン層のみの配置構成としてもよい。
 特に言及しなかったが、図9に示すように押出成形機2に複数のダイヘッド7を備えることができる。この例では前述の第2の実施形態に基いた形態のダイヘッド7が示され、ダイヘッド7は、2個のダイヘッド部7a,7bを備え、各ダイヘッド部7a,7bは、メイン層溶融樹脂供給手段45(または69)、コア層溶融樹脂供給手段50(または74)、外側メイン層溶融樹脂供給手段83の各々と流通路を介して接続されている。なお、メイン層溶融樹脂供給手段45の流通路は実線、コア層溶融樹脂供給手段50の流通路は点線、外側メイン層溶融樹脂供給手段83の流通路は一点鎖線で示す。なお、第1の実施形態に沿った形態のダイヘッド7の場合は、外側メイン層溶融樹脂供給手段83を適宜割愛してもよいし、稼働を中止させてもよい。
 また、ダイヘッドが3個以上備わるときは、直線的,格子的,環状的,放射状等、適宜並べて配置することも可能である。
 このように複数のダイヘッド7を備えている場合は、溶融樹脂供給手段などによる流通路上流からの溶融樹脂の圧送力、あるいは、プランジャーを昇降させる機構・装置(例えばサーボモータ)を適宜制御することによって、各ダイヘッド7から好適の複合溶融樹脂をほぼ一様に吐出することができる。

Claims (10)

  1.  押出成形機のダイヘッドに流通し前記ダイヘッドのノズルに溶融樹脂を流通させるメイン層形成流通路と、前記ダイヘッドに流通し前記ダイヘッドのノズルに溶融樹脂を間欠的に流通させるコア層形成流通路とを少なくとも備え、該コア層形成流通路から流出されるコア層の周りをメイン層形成流通路のメイン層によって被覆形成する多層樹脂形成ダイヘッドにおいて、
     前記メイン層形成流通路及び前記コア層形成流通路の少なくとも1つの流通路には、該流通路の上流側から溶融樹脂の圧送力によって溶融樹脂が圧入される計量室を設け、該計量室には溶融樹脂の前記圧送力を受けながら後退しつつ溶融樹脂を計量し、計量された溶融樹脂を前記流通路の下流側へ吐出させるよう前進するプランジャーを設け、
     該プランジャーの前進・後退を制御する制御部によって前記プランジャーによる前記計量された溶融樹脂の少なくとも吐出量と吐出開始のタイミングとを制御するようにしたことを特徴とする多層樹脂形成ダイヘッド。
  2.  前記プランジャーがサーボモータで駆動され、溶融樹脂が前記計量室内に圧送される際に、前記制御部は前記サーボモータを制御して、前記プランジャーが、前記計量室に圧入される溶融樹脂により後退圧をうけた状態でプランジャーを後退させるとともに、該プランジャーの後退位置を規制するようにしたことを特徴とする、請求項1に記載の多層樹脂形成ダイヘッド。
  3.  前記計量室及び前記プランジャーが前記ダイヘッドに内蔵されていることを特徴とする、請求項1に記載の多層樹脂形成ダイヘッド。
  4.  前記コア層形成流通路の外側にさらに1以上の溶融樹脂の形成流通路を備え、該形成流通路、前記メイン層形成流通路及び前記コア層形成流通路の少なくとも1つに前記計量室及びプランジャーを設けるようにしたことを特徴とする、請求項1に記載の多層樹脂形成ダイヘッド。
  5.  前記多層樹脂形成ダイヘッドには内側可動ブロックが備えられ、前記内側可動ブロックは、前記メイン層形成流通路の開閉弁と、前記コア層の計量室とを兼ねていることを特徴とする、請求項1に記載の多層樹脂形成ダイヘッド。
  6.  前記内側可動ブロックは、さらに、コア層形成流通路の開閉弁でもあり、前記メイン層流通路とコア層流通路との開閉を切換可能としたことを特徴とする、請求項5に記載の多層樹脂形成ダイヘッド。
  7.  前記プランジャーが、前記メイン層流通路および/またはコア層流通路の計量室への流通路開閉弁として作用することを特徴とする、請求項1に記載の多層樹脂形成ダイヘッド。
  8.  前記計量室とプランジャーとを備えた前記多層樹脂形成ダイヘッドを複数個備えたことを特徴とする、請求項1に記載の押出成形機。
  9.  請求項1に記載の、前記計量室とプランジャーとを備えた前記多層樹脂形成ダイヘッドに、前記多層樹脂形成ダイヘッドから吐出された多層樹脂を周期的に切断し多層ドロップにするカッターを付随して設け、前記プランジャーの前進・後退も周期的に行なわせ、前記プランジャーの前進・後退の周期と、前記カッターの多層樹脂切断周期とを一致させることを特徴とする、多層ドロップ成形機。
  10.  前記プランジャーの動作と、前記カッターの動作とを同期させることを特徴とする、請求項9に記載の多層ドロップ成形機。
PCT/JP2009/051939 2008-02-07 2009-02-05 多層樹脂形成ダイヘッドとこれをそなえた押出成形機 WO2009099129A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/863,196 US20110052746A1 (en) 2008-02-07 2009-02-05 Die head for forming a multi-layer resin and an extrusion-forming machine having the same
CN2009801042475A CN101939152A (zh) 2008-02-07 2009-02-05 用于形成多层树脂的模头和具有该模头的挤出成型机
EP09707644A EP2243616A4 (en) 2008-02-07 2009-02-05 NOZZLE HEAD TO MAKE MULTILAYER RESIN AND EXTRUDER THEREOF
JP2009552506A JP5407873B2 (ja) 2008-02-07 2009-02-05 多層樹脂形成ダイヘッドとこれをそなえた押出成形機

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-027623 2008-02-07
JP2008027623 2008-02-07

Publications (1)

Publication Number Publication Date
WO2009099129A1 true WO2009099129A1 (ja) 2009-08-13

Family

ID=40952202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/051939 WO2009099129A1 (ja) 2008-02-07 2009-02-05 多層樹脂形成ダイヘッドとこれをそなえた押出成形機

Country Status (6)

Country Link
US (1) US20110052746A1 (ja)
EP (1) EP2243616A4 (ja)
JP (1) JP5407873B2 (ja)
KR (1) KR20100119870A (ja)
CN (1) CN101939152A (ja)
WO (1) WO2009099129A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013199062A (ja) * 2012-03-26 2013-10-03 Toray Ind Inc ゲートバルブおよびゲートバルブの製造方法
JP2015039857A (ja) * 2013-08-23 2015-03-02 東洋製罐グループホールディングス株式会社 複合合成樹脂押出ヘッド

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2541020C1 (ru) * 2013-08-27 2015-02-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Оренбургский государственный университет" Пресс-экструдер
JP6433370B2 (ja) * 2015-04-20 2018-12-05 キョーラク株式会社 溶融樹脂の押し出し装置、押し出し方法、並びに溶融樹脂の成形装置および成形方法
CN109352952B (zh) * 2018-10-31 2021-03-16 徐州耐克盾机械制造有限公司 一种多层共挤吹塑机储料式模头
KR102305096B1 (ko) * 2019-09-30 2021-09-27 (주)천일 식품 포장지 제조방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61158409A (ja) * 1984-12-29 1986-07-18 Ishikawajima Harima Heavy Ind Co Ltd 多層ブロ−成形装置における樹脂の充填方法
JPH02243304A (ja) * 1989-03-17 1990-09-27 Showa Denko Kk 多層成形方法
JPH03236908A (ja) * 1990-02-15 1991-10-22 Nissan Motor Co Ltd 多層ブロー成形用パリソン形成装置
JPH0679771A (ja) 1992-09-01 1994-03-22 Ishikawajima Harima Heavy Ind Co Ltd 多層パリソンの射出量検出装置
JPH0768631A (ja) 1993-09-03 1995-03-14 Ube Ind Ltd 多層パリソン形成方法
JP2003033964A (ja) * 2001-07-26 2003-02-04 Toyo Seikan Kaisha Ltd 多層ボトル
WO2007125701A1 (ja) * 2006-04-27 2007-11-08 Toyo Seikan Kaisha, Tld. 複合溶融樹脂の供給方法とその供給装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4149839A (en) * 1975-12-30 1979-04-17 Ishikawajima-Harima Jukogyo Kabushiki Kaisha Blow molding apparatus
US4165212A (en) * 1978-03-02 1979-08-21 Hoover Universal, Inc. Multiple extrusion head assembly
US4657496A (en) * 1984-06-04 1987-04-14 Gifu Husky Co., Ltd. Hot-runner mold for injection molding
ATE26906T1 (de) * 1984-07-30 1987-05-15 Frisco Findus Ag Herstellung eines nahrungsmittels.
US5162121A (en) * 1988-01-30 1992-11-10 Toyo Seikan Kaisha, Ltd. Apparatus for extruding multiple synthetic resins
JPH0577268A (ja) * 1991-09-19 1993-03-30 Ishikawajima Harima Heavy Ind Co Ltd 樹脂押出方法及び装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61158409A (ja) * 1984-12-29 1986-07-18 Ishikawajima Harima Heavy Ind Co Ltd 多層ブロ−成形装置における樹脂の充填方法
JPH02243304A (ja) * 1989-03-17 1990-09-27 Showa Denko Kk 多層成形方法
JPH03236908A (ja) * 1990-02-15 1991-10-22 Nissan Motor Co Ltd 多層ブロー成形用パリソン形成装置
JPH0679771A (ja) 1992-09-01 1994-03-22 Ishikawajima Harima Heavy Ind Co Ltd 多層パリソンの射出量検出装置
JPH0768631A (ja) 1993-09-03 1995-03-14 Ube Ind Ltd 多層パリソン形成方法
JP2003033964A (ja) * 2001-07-26 2003-02-04 Toyo Seikan Kaisha Ltd 多層ボトル
WO2007125701A1 (ja) * 2006-04-27 2007-11-08 Toyo Seikan Kaisha, Tld. 複合溶融樹脂の供給方法とその供給装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2243616A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013199062A (ja) * 2012-03-26 2013-10-03 Toray Ind Inc ゲートバルブおよびゲートバルブの製造方法
JP2015039857A (ja) * 2013-08-23 2015-03-02 東洋製罐グループホールディングス株式会社 複合合成樹脂押出ヘッド

Also Published As

Publication number Publication date
KR20100119870A (ko) 2010-11-11
EP2243616A4 (en) 2011-05-25
EP2243616A1 (en) 2010-10-27
JP5407873B2 (ja) 2014-02-05
CN101939152A (zh) 2011-01-05
JPWO2009099129A1 (ja) 2011-05-26
US20110052746A1 (en) 2011-03-03

Similar Documents

Publication Publication Date Title
JP5407873B2 (ja) 多層樹脂形成ダイヘッドとこれをそなえた押出成形機
JP6533241B2 (ja) 共射出成形システムにおいて薄肉部品を成形する方法
AU2007307905B2 (en) Method and apparatus for delivering sequential shots to multiple cavities to form multilayer articles
US10279525B2 (en) System for co-injection with continuous injection molding
JPH01500582A (ja) 物品の製造
CN101417486B (zh) 喷注模制件的高速制造
JPH0839609A (ja) 射出成形機及び射出成形方法
JP6328142B2 (ja) 熱可塑性容器を製造するための射出圧縮装置
JPH07164512A (ja) 射出成形装置
MXPA06015140A (es) Procedimiento de produccion y maquina de extrusion y soplado para recipientes de plastico.
JP6328143B2 (ja) 溶解プラスチックを押出機から予備成形品を成形するための回転機に移送するための回転接合部
JP6126237B2 (ja) 容器の製造及び充填のための装置及び方法
CN101827698B (zh) 用于拉伸吹塑的装置和用于制造半成品的方法
JP4670883B2 (ja) 溶融樹脂供給装置、溶融樹脂圧縮成形方法、溶融樹脂圧縮成形装置、及び合成樹脂製容器の製造方法
CA2714344C (en) Compression injection moulding method and device for preforms
KR102398517B1 (ko) 반응 성형기를 위한 노즐 유닛 및 플라스틱 부품을 제조하기 위한 방법
CN212446238U (zh) 吹塑机的双层模头结构
JP2004154990A (ja) 射出成形装置
JP2510754C (ja)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980104247.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09707644

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009552506

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2009707644

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20107018192

Country of ref document: KR

Kind code of ref document: A