WO2009098963A1 - 油脂の結晶化促進剤 - Google Patents

油脂の結晶化促進剤 Download PDF

Info

Publication number
WO2009098963A1
WO2009098963A1 PCT/JP2009/051202 JP2009051202W WO2009098963A1 WO 2009098963 A1 WO2009098963 A1 WO 2009098963A1 JP 2009051202 W JP2009051202 W JP 2009051202W WO 2009098963 A1 WO2009098963 A1 WO 2009098963A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
sorbitol
fats
crystallization
fatty acid
Prior art date
Application number
PCT/JP2009/051202
Other languages
English (en)
French (fr)
Inventor
Mikio Nakano
Shigemi Uesugi
Shinya Yamane
Original Assignee
Fuji Oil Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Oil Company, Limited filed Critical Fuji Oil Company, Limited
Priority to CN2009801122268A priority Critical patent/CN101990571B/zh
Priority to US12/866,569 priority patent/US8440250B2/en
Publication of WO2009098963A1 publication Critical patent/WO2009098963A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B7/00Separation of mixtures of fats or fatty oils into their constituents, e.g. saturated oils from unsaturated oils
    • C11B7/0083Separation of mixtures of fats or fatty oils into their constituents, e.g. saturated oils from unsaturated oils with addition of auxiliary substances, e.g. cristallisation promotors, filter aids, melting point depressors
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23DEDIBLE OILS OR FATS, e.g. MARGARINES, SHORTENINGS, COOKING OILS
    • A23D7/00Edible oil or fat compositions containing an aqueous phase, e.g. margarines
    • A23D7/01Other fatty acid esters, e.g. phosphatides
    • A23D7/013Spread compositions
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23DEDIBLE OILS OR FATS, e.g. MARGARINES, SHORTENINGS, COOKING OILS
    • A23D9/00Other edible oils or fats, e.g. shortenings, cooking oils
    • A23D9/007Other edible oils or fats, e.g. shortenings, cooking oils characterised by ingredients other than fatty acid triglycerides
    • A23D9/013Other fatty acid esters, e.g. phosphatides
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/003Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fatty acids with alcohols

Definitions

  • the present invention relates to an oil and fat crystallization accelerator.
  • oil and fat compositions such as margarine, shortening, chocolates and hard butter products used in confectionery and bread making have a large influence on the crystal behavior of the fats and oils used because the ratio of fats and oils in the composition is high. There were various problems.
  • Patent Document 1 proposes an oil and fat crystal modifier containing diglyceride in order to prevent deterioration of physical properties due to the coarsening of fat and oil crystals.
  • Patent Document 2 discloses a method for producing an oil and fat composition in which granular crystals having a diameter of 20 ⁇ m or more are not formed even under long-term storage, by rapid cooling with a refrigerant of ⁇ 20 ° C. or less, or unstable crystal particles of oil or fat.
  • oils and fats that could not be fully crystallized in the manufacturing process crystallize during storage, or unstable crystals become stabilized crystals and become coarse, and there is no crystallization of fats and oils in the manufacturing process.
  • the reason is considered to be sufficient.
  • palm oil-based fats and oils are used as raw materials for plastic fats and oils such as margarine and shortening.
  • palm oil has a slow crystallization speed, the problem of crystal coarsening during storage can be avoided.
  • Patent Document 3 proposes a method for suppressing the formation of granular crystals of palm oil in which a sorbitan saturated fatty acid ester having an esterification rate of 20% or more and less than 50% is added.
  • Patent Document 4 contains a saturated fatty acid-binding sorbitan fatty acid ester and a medium-chain fatty acid, and is a water-in-oil emulsified oil and fat composition that does not produce coarse crystals while highly containing palm oil.
  • Patent Document 5 proposes a creaming property improver containing a saturated fatty acid-bonded sorbitan fatty acid ester as an active ingredient.
  • the sheet-like plastic oil and fat composition used for folding into bread and confectionery dough has a sheet shape when the oil and fat crystallization is insufficient during the production process.
  • the effect of accelerating crystallization of fats and oils during the manufacturing process is most required, such as the difficulty of molding the product into a solid, poor stiffness and spreadability of the product.
  • transesterified oil and fat has increased.
  • transesterified fats and oils that have a slower crystallization rate than hardened oil, especially random Plastic oil compositions such as margarine and shortening used are difficult to produce stably, and a solution has been demanded.
  • the object of the present invention is crystallization that can promote crystallization of fats and oils in a short time during the production process of fats and oils compositions such as margarine, shortening, chocolates and hard butter products used in confectionery and bread making. It is an object to provide an accelerator.
  • sorbitan fatty acid esters having an esterification rate of 28 to 60% and a sorbitol-type content of 20 to 40% are crystallization of fats and oils in a short time.
  • the present inventors have found a phenomenon that exhibits a remarkable effect in promoting crystallization, and has completed the present invention.
  • the first of the present invention is a fat crystallization accelerator containing a sorbitan fatty acid ester having an esterification rate of 28 to 60% and a sorbitol type content of 20 to 40%.
  • the second is the oil crystallization accelerator according to the first aspect, wherein the content of palmitic acid and / or stearic acid is 90% by mass or more in 100% by mass of the constituent fatty acid of the sorbitan fatty acid ester.
  • the third is an oil or fat composition containing the crystallization accelerator according to any one of the first to second.
  • the oil-and-fat crystallization accelerator of the present invention can be used for confectionery, baking, margarine, shortening, chocolates, hard butter products, etc. It becomes possible to promote crystallization of fats and oils in a short time during the production process of the oil and fat composition.
  • the oil and fat crystallization accelerator of the present invention has an esterification rate of 28 to 60%, preferably 28 to 50%, more preferably 30 to 45%, and a sorbitol type content of 20 to 40%, preferably 30. It contains sorbitan fatty acid ester which is ⁇ 40%.
  • the form of sorbitol used as a raw material for the sorbitan fatty acid ester is, for example, white powder or granular D-sorbitol or D-sorbitol liquid containing about 50.0 to 70.0% by mass of D-sorbitol. Can be mentioned.
  • the constituent fatty acid of the sorbitan fatty acid ester is more preferably palmitic acid and / or stearic acid, and the content of palmitic acid and / or stearic acid is 90% by mass or more in 100% by mass of the constituent fatty acid. More preferably it is.
  • the production method of the sorbitan fatty acid ester used in the present invention is not particularly limited.
  • the esterification reaction between sorbitol and the fatty acid may be performed without a catalyst, or may be performed using an acid catalyst or an alkali catalyst. It is preferably carried out in the presence of a catalyst.
  • the acid catalyst include concentrated sulfuric acid and p-toluenesulfonic acid.
  • the alkali catalyst include potassium hydroxide, sodium hydroxide, potassium carbonate, sodium carbonate and the like.
  • the amount of the alkali catalyst used is about 0.01 to 1.0% by mass, preferably about 0.05 to 0.5% by mass, based on the total charged amount (in terms of dry matter).
  • the said esterification reaction is, for example, a stirrer, a heating jacket, a baffle plate, an inert gas blowing tube, a thermometer and a water separator with a cooler Sorbitol, fatty acid, and catalyst are supplied to a normal reaction vessel equipped with a vessel and mixed with stirring, and the water produced by the esterification reaction in an inert gas atmosphere such as nitrogen or carbon dioxide is removed from the system. While being removed, heating is performed at a predetermined temperature for a predetermined time.
  • the reaction temperature is usually in the range of about 180 to 260 ° C, preferably in the range of about 200 to 250 ° C.
  • the reaction pressure is under reduced pressure or normal pressure, and the reaction time is about 0.5 to 15 hours, preferably about 1 to 3 hours.
  • the end point of the reaction is usually determined by measuring the acid value of the reaction mixture and about 10 or less.
  • the catalyst remaining in the reaction mixture may be neutralized.
  • the temperature of the esterification reaction is 200 ° C. or higher, it is preferable to carry out the neutralization after cooling the liquid temperature to about 180 to 200 ° C.
  • reaction temperature is 200 degrees C or less, you may neutralize at the same temperature. After neutralization, it is allowed to stand at that temperature for about 0.5 hour or more, more preferably for about 1 to 10 hours.
  • unreacted sorbitol or sorbitol intramolecular condensate is separated into the lower layer, it is preferably removed.
  • the sorbitan saturated fatty acid ester used in the present invention preferably has an esterification rate in the range of 28 to 60%.
  • the esterification rate (%) is calculated by the following formula.
  • the ester value and the hydroxyl value are determined in accordance with [ 2.3.3-1996 Ester Value] and [ 2.3.6-1996 Hydroxyl] of “Standard Oil and Fat Analysis Test Method (I)” (edited by the Japan Oil Chemists' Society). Value].
  • the esterification rate of the sorbitan fatty acid ester is less than 28%, the melting point of the obtained sorbitan fatty acid ester is high, and the amount of hydrophilic ester produced increases, so that it is difficult to dissolve in fats and oils, and is not suitable for use. It is not preferable. Moreover, when the esterification rate of sorbitan fatty acid ester exceeds 60%, since the crystallization promotion effect of fats and oils reduces, it is not preferable.
  • the sorbitan saturated fatty acid ester used in the present invention preferably has a sorbitol type content in the range of 20 to 40%.
  • the sorbitol-type content means the content (%) of sorbitol in 100% of alcohol (for example, sorbitol, sorbitan, sorbide, etc.) constituting sorbitan fatty acid ester.
  • alcohol for example, sorbitol, sorbitan, sorbide, etc.
  • the fat and oil crystallization accelerator of the present invention is a fat and oil such as margarine, shortening, or chocolates and hard butter products that require an effect of promoting crystallization in a short time during the production process.
  • the effects of the present invention can be exhibited.
  • the sheet-like plastic fat composition even when a large amount of palm oil or transesterified fat with a low crystallization rate is used, the production process Since crystallization is promoted, a sheet-like plastic composition having good physical properties from the product outlet can be obtained.
  • the solidification rate during the cooling process can be increased, and the cooling process can be shortened.
  • the method for using the crystallization accelerator for fats and oils of the present invention is effective in promoting crystallization by melting in fats and oils and the crystallization accelerator from a state where the fats and crystallization accelerators are completely melted.
  • the crystallization accelerator of the present invention is added in an amount of 0.05 to 1.0% by weight, more preferably 0.1 to 0.6% by weight, based on fats and oils. I can do it.
  • SFC Solid Fat Content
  • solid fat content indicates the content (%) of solid fat present in the fat under a certain temperature. Therefore, the larger the SFC value of the fat after a certain time from the start of the cooling step (crystallization step), the faster the fat crystallization and the higher the crystallization promoting effect.
  • the evaluation test of the crystallization promoting effect can be performed as follows. First, a sample obtained by completely dissolving the crystallization accelerator in fats and oils at 80 ° C. is uniformly placed in a dedicated test tube and held in a constant temperature bath at 60 ° C. for 30 minutes. Subsequently, the SFC of the sample is measured in the nuclear magnetic resonance (NMR) apparatus after a predetermined time after the test tube containing the sample is transferred to a thermostat at 0 ° C.
  • NMR nuclear magnetic resonance
  • the evaluation test of the crystallization promotion effect can also be carried out by the following method. First, a sample obtained by completely dissolving the crystallization accelerator in fats and oils at 80 ° C. is uniformly put in a dedicated test tube. And hold in a constant temperature bath at 60 ° C. for 60 minutes. Subsequently, the SFC of the sample is measured in a nuclear magnetic resonance (NMR) apparatus after a predetermined time after the test tube containing the sample is transferred to a constant temperature bath at 15 ° C. or 20 ° C.
  • NMR nuclear magnetic resonance
  • oils and oils contained in the food containing the fats and oils include vegetable oils such as palm oil, cacao butter, coconut oil, and palm kernel oil, and animal fats such as milk fat, beef fat, lard, fish oil, whale oil, etc.
  • Oils and fats include vegetable oils such as palm oil, cacao butter, coconut oil, and palm kernel oil, and animal fats such as milk fat, beef fat, lard, fish oil, whale oil, etc.
  • Oils and fats rapeseed oil, soybean oil, sunflower seed oil, cottonseed oil, peanut oil, rice bran oil, corn oil, safflower oil, olive oil, kapok oil, sesame oil, evening primrose oil, palm oil, shea fat, monkey fat, cocoa butter, palm
  • vegetable oils such as oil, palm kernel oil, and animal oils such as milk fat, beef tallow, lard, fish oil, whale oil, etc., alone or mixed oils, or processed oils subjected to curing, fractionation, transesterification, etc.
  • the crystallization accelerator according to the present invention can be preferably applied to palm-based fats and oils, cacao butter, transesterified oils and the like that have a particularly low crystallization speed among these fats and oils, and is obtained by refining natural palm oil. Palm olein or palm stearin obtained by fractionating purified palm oil or natural palm oil can be mentioned, and transesterified oils and fats are particularly preferably applicable to random transesterified fats and oils.
  • the esterification reaction was performed at 235 ° C. for about 1.5 hours until the acid value became 10 or less.
  • the obtained reaction product was cooled to obtain about 520 g of sorbitan stearate ester (prototype 2; esterification rate: 32%, sorbitol-type content: 35%).
  • the esterification reaction was carried out at about 235 ° C. for about 2 hours until the acid value became 10 or less.
  • the obtained reaction product was cooled to obtain about 662 g of sorbitan stearate ester (Prototype 4; esterification rate 42%, sorbitol-type content 34%).
  • palmitic acid (trade name: “palmitic acid 98”: palmitic acid content 98 mass%; manufactured by Miyoshi Oil & Fats Co., Ltd.) was added, and 13 mL of a 10 w / v% aqueous solution of sodium hydroxide was added as a catalyst.
  • the esterification reaction was carried out under normal pressure at 235 ° C. in a nitrogen gas stream for about 2 hours until the acid value reached 10 or less.
  • the obtained reaction product was cooled to obtain about 624 g of sorbitan palmitate (prototype 5; esterification rate 42%, sorbitol-type content 38%).
  • stearic acid (trade name: “Stearic acid 65”; manufactured by Miyoshi Oil & Fats Co., Ltd.) was added, and 14 mL of a 10 w / v% sodium hydroxide aqueous solution was added as a catalyst.
  • the esterification reaction was carried out at about 235 ° C. for about 2 hours until the acid value became 10 or less.
  • the obtained reaction product was cooled to obtain about 685 g of sorbitan stearate ester (prototype 6; esterification rate: 45%, sorbitol-type content: 34%).
  • palmitic acid (trade name: “palmitic acid 98”; manufactured by Miyoshi Oil & Fats Co., Ltd.) was added, and 14 mL of a 10 w / v% aqueous solution of sodium hydroxide was added as a catalyst, and a nitrogen gas stream under normal pressure
  • the esterification reaction was carried out at about 235 ° C. for about 2 hours until the acid value became 10 or less.
  • the obtained reaction product was cooled to obtain about 650 g of sorbitan palmitic acid ester (prototype 7; esterification rate 45%, sorbitol-type content 37%).
  • stearic acid (trade name: “Stearic acid 65”; manufactured by Miyoshi Oil & Fats Co., Ltd.) was added, 15 mL of a 10 w / v% sodium hydroxide aqueous solution was added as a catalyst, and a nitrogen gas stream under normal pressure
  • the esterification reaction was carried out at about 235 ° C. for about 2 hours until the acid value became 10 or less.
  • the obtained reaction product was cooled to obtain about 710 g of sorbitan stearate ester (Prototype 8; esterification rate 47%, sorbitol-type content 34%).
  • palmitic acid (trade name: “palmitic acid 98”; manufactured by Miyoshi Oil & Fats Co., Ltd.) is added, and 14 mL of a 10 w / v% aqueous solution of sodium hydroxide is added as a catalyst.
  • the esterification reaction was carried out at about 235 ° C. for about 2 hours until the acid value became 10 or less.
  • the obtained reaction product was cooled to obtain about 675 g of sorbitan palmitate ester (prototype 9; esterification rate 48%, sorbitol-type content 37%).
  • stearic acid (trade name: “Stearic acid 65”; manufactured by Miyoshi Oil & Fats Co., Ltd.) was added, and 15 mL of a 10 w / v% aqueous solution of sodium hydroxide was added as a catalyst.
  • the esterification reaction was carried out at about 235 ° C. for about 2 hours until the acid value became 10 or less.
  • the obtained reaction product was cooled to obtain about 738 g of sorbitan stearate ester (prototype 10; esterification rate 49%, sorbitol type content 32%).
  • the esterification reaction was carried out at about 235 ° C. for about 2 hours until the acid value became 10 or less.
  • the obtained reaction product was cooled to obtain about 696 g of sorbitan palmitate (prototype 11; esterification rate 51%, sorbitol-type content 34%).
  • the esterification reaction was performed at 235 ° C. for about 1.5 hours until the acid value became 10 or less.
  • the obtained reaction product was cooled to obtain about 370 g of sorbitan palmitate (prototype 12; esterification rate: 26%, sorbitol-type content: 44%).
  • stearic acid (trade name: “Stearic acid 65”; manufactured by Miyoshi Oil & Fats Co., Ltd.) was added, 11 mL of a 10 w / v aqueous solution of sodium hydroxide was added as a catalyst, and a nitrogen gas stream under normal pressure
  • the esterification reaction was performed at 235 ° C. for about 1.5 hours until the acid value became 10 or less.
  • the obtained reaction product was cooled to obtain about 415 g of sorbitan stearate ester (prototype 13; esterification rate 27%, sorbitol-type content 39%).
  • sorbitan fatty acid ester was saponified and decomposed into fatty acid and polyol. Specifically, 2.0 g of a test sample is weighed into a saponification flask, added with 30 mL of 0.5 mol / L potassium hydroxide-ethanol standard solution, attached to the flask with a condenser, and occasionally shaken. The temperature was adjusted within a range of about 70 to 80 ° C. so that the refluxing ethanol did not reach the top of the condenser, and the mixture was gently heated for about 1 hour, and then 50 mL of water was added.
  • the obtained contents were transferred to a separatory funnel, 100 mL of hexane and about 5 mL of 35% hydrochloric acid were added, the separatory funnel was shaken, and then allowed to stand. Subsequently, the separated lower layer was transferred to another separatory funnel, and 50 mL of hexane was added for the same treatment.
  • the separated lower layer was taken in a beaker, neutralized by adjusting the pH with a 0.5 mol / L potassium hydroxide solution, and dehydrated by allowing the beaker to stand in a ventilation dryer at 60 ° C. After complete dehydration, add about 10 mL of methanol and a small amount of mirabilite, stir, and naturally filter the contents. The obtained filtrate was transferred to a flask, and methanol was removed with an evaporator.
  • the obtained concentrate was converted to TMS by a conventional method, and then a polyol composition analysis was performed using GC (gas chromatography). GC was performed under the following GC analysis conditions. After the analysis, the peak area corresponding to each component of the test sample recorded on the chromatogram by the data processor is measured using an integrator, and alcohol is used as the area percentage based on the measured peak area. The sorbitol type content in the composition was determined.
  • ⁇ GC analysis conditions Apparatus Gas chromatogram (Model: GC-17A; manufactured by Shimadzu Corporation) Data processing device (model: C-R7A plus; manufactured by Shimadzu Corporation) Column (Model: DB-5HT; manufactured by Agilent Technologies) Column oven conditions Initial temperature 120 ° C (1 minute) Temperature rising rate 8 ° C / min Final temperature 340 ° C (25 minutes) Detector temperature 330 ° C Inlet temperature 330 ° C Sample injection volume 3 ⁇ L Detector FID (hydrogen flame ionization detector) Carrier gas Helium 75kPa Split ratio 1:80
  • Examples 34 and 35 to which the prototype 6 was added had accelerated crystallization, and as a result, the state at the outlet had a firm and good physical property with sufficient hardness.
  • Comparative Examples 22 to 24 since the crystallization was insufficient, the state at the outlet was soft, and it was difficult to obtain a product in a sheet shape.
  • the result of the crystallization rate comparison test 1 is shown in a graph.
  • the result of the crystallization speed comparison test 2 is shown in a graph.
  • the result of the crystallization speed comparison test 3 is shown in a graph.
  • the result of the crystallization speed comparison test 4 is shown in a graph.
  • the result of the crystallization rate comparison test 5 is shown in a graph.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Edible Oils And Fats (AREA)
  • Fats And Perfumes (AREA)

Abstract

【課題】製菓、製パンに用いられる、マーガリン、ショートニング、あるいはチョコレート類やハードバター製品の製造工程中の短時間において油脂の結晶化を促進することができる結晶化促進剤を提供することを課題とするものである。 【解決手段】エステル化率が28~60%であり、かつソルビトール型含量が20~40%であるソルビタン脂肪酸エステルが油脂の短時間での結晶化促進に顕著な効果を発揮するという現象を見出し、本発明を完成するに至った。

Description

油脂の結晶化促進剤
本発明は、油脂の結晶化促進剤に関する。
 油脂を含む食品において、油脂の結晶挙動や特性は、その食品の開発、製造、保存、流通に至る多くのシーンにおいて重要な影響を及ぼす。そのため、油脂結晶の制御技術は、油脂食品業界において、最も重要な課題の一つである。
 とりわけ、製菓、製パンに用いられる、マーガリン、ショートニング、あるいはチョコレート類やハードバター製品などの油脂組成物は、その組成に占める油脂の割合が高いため、使用する油脂の結晶挙動の影響が大きく、さまざまな問題があった。
 たとえば、製造後保存中における、結晶の粗大化を抑える方法として、特許文献1には、油脂結晶の粗大化による物性の悪化を防止するために、ジグリセライドを含有する油脂結晶調整剤が提案されている。また、特許文献2には、長期の保存下においても直径20μm以上の粒状結晶が生成しない油脂組成物を製造する方法として、-20℃以下の冷媒で急速冷却するか、油脂の不安定型結晶粒子を添加することにより不安定型結晶を生成させ、粒状結晶を生成しない油脂又は油脂組成物の製造方法が提案されている。
 これらは、いずれも製造工程で、十分に結晶化しきれなかった油脂が保存中に結晶化し、あるいは不安定結晶が安定化結晶となり、粗大化するためであり、製造工程における油脂の結晶化が不十分であることが原因と考えられる。とくに、マーガリン、ショートニングなどの可塑性油脂組成物には、油脂原料として、パーム油系の油脂が用いられるが、パーム油は結晶化速度が遅いため、保存中における結晶の粗大化の問題は避けられず、安価なパーム油を多量に配合することが困難であるという問題があった。
 そのため、パーム油の粗大結晶の生成を抑制する方法として、特許文献3には、エステル化率が20%以上50%未満のソルビタン飽和脂肪酸エステルを添加するパーム油の粒状結晶生成抑制方法が提案されている。また、特許文献4には、飽和脂肪酸結合型ソルビタン脂肪酸エステルと中鎖脂肪酸を含有することを特徴とする、パーム油を高度に含有していながら粗大結晶が生成しない油中水型乳化油脂組成物が提案されており、また特許文献5にも、飽和脂肪酸結合型ソルビタン脂肪酸エステルを有効成分とするクリーミング性向上剤が提案されている。
 しかしながら、これらの提案は、長期の保存中における結晶の粗大化を抑制することに主眼が置かれており、いずれも、製造工程中に、油脂を十分に結晶化させるという根本的な問題は解決できておらず、製造工程中の短時間で、結晶化を促進させるという観点からの解決策はこれまでに提案されていない。
 これまでは、冷却ユニットの増設、冷却温度を極端に下げ、過冷却度をあげる、製品流量速度を落とすといった生産工程を増やしたり、テンパリング作業、製造後の安定化工程(エージング)といった煩雑な工程を付加しなければならず、生産効率は悪く、その効果は不十分であった。
 とりわけ、マーガリン、ショートニングなどの可塑性油脂組成物のなかでも、パンや菓子生地への折り込み用途に用いるシート状可塑性油脂組成物は、製造工程中に油脂の結晶化が不十分であると、シート状に成型する作業が困難であったり、製品のコシ、展延性が悪くなるなど、製造工程中における油脂の結晶化促進効果が最も必要とされる。
 また、最近はトランス酸含量の高い硬化油の使用量が少なくなり、エステル交換油脂の使用量が増えているが、硬化油に比べると結晶化速度の遅いエステル交換油脂、特にランダムエステル交換油脂を使用したマーガリン、ショートニングなどの可塑性油脂組成物は安定した製造が難しく、解決策が求められていた。
特開2000-345185号公報 特開2001-72992号公報 特開2007-124948号公報 特許第3434463号公報 特開2007-97419号公報
 本発明の目的は、製菓、製パンに用いられる、マーガリン、ショートニング、あるいはチョコレート類やハードバター製品などの油脂組成物の製造工程中の短時間において油脂の結晶化を促進することができる結晶化促進剤を提供することを課題とするものである。
 本発明者らは、上記課題を解決するため鋭意検討した結果、エステル化率が28~60%であり、かつソルビトール型含量が20~40%であるソルビタン脂肪酸エステルが油脂の短時間での結晶化促進に顕著な効果を発揮するという現象を見出し、本発明を完成するに至った。
 すなわち本発明の第一は、エステル化率が28~60%であり、かつソルビトール型含量が20~40%であるソルビタン脂肪酸エステルを含有する、油脂の結晶化促進剤である。第二は、ソルビタン脂肪酸エステルの構成脂肪酸100質量%中パルミチン酸及び/又はステアリン酸の含量が90質量%以上である第一記載の油脂の結晶化促進剤である。第三は、第一~二いずれか記載の結晶化促進剤を含有する油脂組成物である。
 本発明の油脂の結晶化促進剤により、結晶化速度の遅いパーム系の油脂や、エステル交換油脂を用いても、製菓、製パンに用いられる、マーガリン、ショートニング、あるいはチョコレート類やハードバター製品などの油脂組成物の製造工程中の短時間において油脂の結晶化を促進することが可能となる。
 本発明の油脂の結晶化促進剤は、エステル化率が28~60%、好ましくは28~50%、より好ましくは30~45%であり、かつソルビトール型含量が20~40%、好ましくは30~40%であるソルビタン脂肪酸エステルを含有することを特徴とする。
 本発明において、ソルビタン脂肪酸エステルの原料として用いられるソルビトールの形態としては、例えば、白色粉末または粒状のD-ソルビトール或いはD-ソルビトールを約50.0~70.0質量%含有するD-ソルビトール液が挙げられる。
 また、本発明において、ソルビタン脂肪酸エステルの構成脂肪酸がパルミチン酸及び/又はステアリン酸であることがより好ましく、該構成脂肪酸100質量%中、パルミチン酸及び/又はステアリン酸の含量が90質量%以上であることがさらに好ましい。油脂を構成する脂肪酸組成と類似した脂肪酸組成を有するソルビタン脂肪酸エステルを用いることで、優れた結晶化促進効果を発揮することができる。
 本発明に用いられるソルビタン脂肪酸エステルの製造方法は特に限定されないが、例えばソルビトールと脂肪酸とのエステル化反応は無触媒で行って良く、または酸触媒あるいはアルカリ触媒を用いて行っても良いが、アルカリ触媒の存在下で行われるのが好ましい。酸触媒としては、例えば、濃硫酸、p-トルエンスルホン酸などが挙げられる。アルカリ触媒としては、例えば水酸化カリウム、水酸化ナトリウム、炭酸カリウム、炭酸ナトリウムなどが挙げられる。アルカリ触媒の使用量は、全仕込み量(乾燥物換算)の約0.01~1.0質量%、好ましくは約0.05~0.5質量%である。
 本発明に用いられるソルビタン脂肪酸エステルの製造装置としては特に限定されないが、例えば上記エステル化反応は、例えば攪拌機、加熱用のジャケット、邪魔板、不活性ガス吹き込み管、温度計および冷却器付き水分分離器などを備えた通常の反応容器に、ソルビトール、脂肪酸、および触媒を供給して攪拌混合し、窒素または二酸化炭素などの任意の不活性ガス雰囲気下で、エステル化反応により生成する水を系外に除去しながら、所定温度で一定時間加熱して行われる。反応温度は通常、約180~260℃の範囲、好ましくは約200~250℃の範囲である。また、反応圧力条件は減圧下又は常圧下で、反応時間は約0.5~15時間、好ましくは約1~3時間である。反応の終点は、通常反応混合物の酸価を測定し、約10以下を目安に決められる。
 エステル化反応終了後、触媒を用いた場合は、反応混合物中に残存する触媒を中和しても良い。その際、エステル化反応の温度が200℃以上の場合は液温を約180~200℃に冷却してから中和処理を行うのが好ましい。また反応温度が200℃以下の場合は、そのままの温度で中和処理を行って良い。中和後、その温度で好ましくは約0.5時間以上、更に好ましくは約1~10時間放置する。未反応のソルビトールまたはソルビトール分子内縮合物が下層に分離した場合はそれを除去するのが好ましい。
 本発明に用いられるソルビタン飽和脂肪酸エステルは、そのエステル化率が28~60%の範囲にあるものであることが好ましい。エステル化率(%)は下式により算出される。ここでエステル価および水酸基価は、「基準油脂分析試験法(I)」(社団法人 日本油化学会編)の[2.3.3-1996 エステル価]および[2.3.6-1996 ヒドロキシル価]に準じて測定される。
Figure JPOXMLDOC01-appb-M000001
 ソルビタン脂肪酸エステルのエステル化率が28%未満の場合は、得られるソルビタン脂肪酸エステルの融点が高く、かつ親水性のエステル生成量が多くなるため、油脂への溶解が困難となり、使用に適さず、好ましくない。また、ソルビタン脂肪酸エステルのエステル化率が60%を超える場合は、油脂の結晶化促進効果が低減するため、好ましくない。
 本発明に用いられるソルビタン飽和脂肪酸エステルは、ソルビトール型含量が20~40%の範囲にあるものであることが好ましい。ソルビトール型含量とは、ソルビタン脂肪酸エステルを構成するアルコール(例えば、ソルビトール、ソルビタン、ソルバイドなど)100%中のソルビトールの含有量(%)を意味する。ソルビトール型含量が20%未満の場合は、油脂の結晶化促進効果が低減するため、好ましくない。また、ソルビトール型含量が40%を超える場合は、親水性のエステル生成量が多くなるため、油脂への溶解が困難となり、使用に適さず、好ましくない。
 本発明の油脂の結晶化促進剤は、油脂を含む食品において、とりわけ、製造工程中の短時間での結晶化促進効果が必要とされるマーガリン、ショートニング、あるいはチョコレート類やハードバター製品などの油脂組成物において、本発明の効果を発揮することができるが、その中でも、特にシート状可塑性油脂組成物においては、結晶化速度の遅いパーム油やエステル交換油脂を多量に使用した場合でも、製造工程中に、結晶化が促進されるため、製品出口からの良好な物性のシート状可塑性組成物を得ることができる。
 さらに、本発明の油脂の結晶化促進剤は、チョコレート類やハードバター製品に使用することで、冷却工程中の固化速度を上げることができ、冷却工程を短縮することが可能になる。
 本発明の油脂の結晶化促進剤の使用方法は、油脂中に融解させ、油脂と結晶化促進剤が完全融解した状態から、結晶化工程を経ることで、結晶化促進の効果が発揮される。この際、本発明の結晶化促進剤を油脂に対して0.05~1.0重量%、より好ましくは0.1~0.6重量%添加することで、結晶化促進効果を得ることが出来る。
 ここで、油脂の結晶化促進の程度はSFCに基づいて評価される。SFCとは、Solid Fat Content(固体脂含量)の略称であり、一定の温度下で油脂中に存在する固体脂の含量(%)を示す。従って、上記冷却工程(結晶化工程)を開始してから一定時間後における油脂のSFCの値が大きいほど、油脂の結晶化が速く、結晶化促進効果が高いことを意味する。
 結晶化促進効果の評価試験は、具体的には次のように実施できる。先ず、結晶化促進剤を80℃で油脂に完全に溶解して得たサンプルを専用の試験管に均一に入れ、60℃の恒温槽で30分間保持する。続いて、サンプルの入った試験管を0℃の恒温槽に移してから一定時間後に、核磁気共鳴(NMR)装置内によりサンプルのSFCを測定する。
また、結晶化促進効果の評価試験は、次の方法でも実施することができる、先ず、結晶化促進剤を80℃で油脂に完全に溶解して得たサンプルを専用の試験管に均一に入れ、60℃の恒温槽で60分間保持する。続いて、サンプルの入った試験管を15℃又は20℃の恒温槽に移してから一定時間後に、核磁気共鳴(NMR)装置内によりサンプルのSFCを測定する。
 上記油脂を含む食品が含有する油脂としては、パーム油、カカオ脂、ヤシ油、パーム核油等の植物性油脂並びに乳脂、牛脂、ラード、魚油、鯨油等の動物性油脂が例示でき、その他の油脂として、菜種油、大豆油、ヒマワリ種子油、綿実油、落花生油、米糠油、コーン油、サフラワー油、オリーブ油、カポック油、ゴマ油、月見草油、パーム油、シア脂、サル脂、カカオ脂、ヤシ油、パーム核油等の植物性油脂並びに乳脂、牛脂、ラード、魚油、鯨油等の動物性油脂の単独又は混合油あるいはそれらの硬化、分別、エステル交換等を施した加工油脂を挙げることができる。本発明の結晶化促進剤は、これら油脂の中でも特に結晶化速度が遅いパーム系油脂やカカオ脂、エステル交換油脂等に好ましく適用でき、パーム系油脂としては、天然パーム油を精製して得られる精製パーム油や天然パーム油を分別して得られるパームオレインあるいはパームステアリンを挙げることができ、またエステル交換油脂はとくに、ランダムエステル交換油脂に好ましく適用できる。
 以下に本発明を製造例、試験例および実施例に基づいてより詳細に説明する。
[製造例1]
 撹拌機、温度計、ガス吹込管および水分離器を取り付けた1Lの四つ口フラスコに、ソルビトール(商品名:「ソルビトールS」;日研化成社製)260g(約1.0モル)を仕込み、約400Paの減圧下、75℃で約10分間脱水した。次にステアリン酸(商品名:「ステアリン酸65」:ステアリン酸含量65質量%、パルミチン酸含量35質量%;ミヨシ油脂社製)356g(約1.3モル)を仕込み、触媒として水酸化ナトリウム10w/v%水溶液11mLを加え、常圧下、窒素ガス気流中235℃で、酸価10以下となるまで約1.5時間エステル化反応を行なった。得られた反応物を冷却してソルビタンステアリン酸エステル(試作品1;エステル化率29%、ソルビトール型含量36%)約470gを得た。
[製造例2]
 撹拌機、温度計、ガス吹込管および水分離器を取り付けた1Lの四つ口フラスコに、ソルビトール(商品名:「ソルビトールS」;日研化成社製)260g(約1.0モル)を仕込み、約400Paの減圧下、75℃で約10分間脱水した。次にステアリン酸(商品名:「ステアリン酸65」;ミヨシ油脂社製)411g(約1.5モル)を仕込み、触媒として水酸化ナトリウム10w/v%水溶液11mLを加え、常圧下、窒素ガス気流中235℃で、酸価10以下となるまで約1.5時間エステル化反応を行なった。得られた反応物を冷却してソルビタンステアリン酸エステル(試作品2;エステル化率32%、ソルビトール型含量35%)約520gを得た。
[製造例3]
 撹拌機、温度計、ガス吹込管および水分離器を取り付けた1Lの四つ口フラスコに、ソルビトール(商品名:「ソルビトールS」;日研化成社製)260g(約1.0モル)を仕込み、約400Paの減圧下、75℃で約10分間脱水した。次にステアリン酸(商品名:「ステアリン酸65」;ミヨシ油脂社製)493g(約1.8モル)を仕込み、触媒として水酸化ナトリウム10w/v%水溶液13mLを加え、常圧下、窒素ガス気流中235℃で、酸価10以下となるまで約2時間エステル化反応を行なった。得られた反応物を冷却してソルビタンステアリン酸エステル(試作品3;エステル化率39%、ソルビトール型含量35%)約607gを得た。
[製造例4]
 撹拌機、温度計、ガス吹込管および水分離器を取り付けた1Lの四つ口フラスコに、ソルビトール(商品名:「ソルビトールS」;日研化成社製)260g(約1.0モル)を仕込み、約400Paの減圧下、75℃で約10分間脱水した。次にステアリン酸(商品名:「ステアリン酸65」;ミヨシ油脂社製)548g(約2.0モル)を仕込み、触媒として水酸化ナトリウム10w/v%水溶液14mLを加え、常圧下、窒素ガス気流中235℃で、酸価10以下となるまで約2時間エステル化反応を行なった。得られた反応物を冷却してソルビタンステアリン酸エステル(試作品4;エステル化率42%、ソルビトール型含量34%)約662gを得た。
[製造例5]
 撹拌機、温度計、ガス吹込管および水分離器を取り付けた1Lの四つ口フラスコに、ソルビトール(商品名:「ソルビトールS」;日研化成社製)260g(約1.0モル)を仕込み、約400Paの減圧下、75℃で約10分間脱水した。次にパルミチン酸(商品名:「パルミチン酸98」:パルミチン酸含量98質量%;ミヨシ油脂社製)512g(約2.0モル)を仕込み、触媒として水酸化ナトリウム10w/v%水溶液13mLを加え、常圧下、窒素ガス気流中235℃で、酸価10以下となるまで約2時間エステル化反応を行なった。得られた反応物を冷却してソルビタンパルミチン酸エステル(試作品5;エステル化率42%、ソルビトール型含量38%)約624gを得た。
[製造例6]
 撹拌機、温度計、ガス吹込管および水分離器を取り付けた1Lの四つ口フラスコに、ソルビトール(商品名:「ソルビトールS」;日研化成社製)260g(約1.0モル)を仕込み、約400Paの減圧下、75℃で約10分間脱水した。次にステアリン酸(商品名:「ステアリン酸65」;ミヨシ油脂社製)575g(約2.1モル)を仕込み、触媒として水酸化ナトリウム10w/v%水溶液14mLを加え、常圧下、窒素ガス気流中235℃で、酸価10以下となるまで約2時間エステル化反応を行なった。得られた反応物を冷却してソルビタンステアリン酸エステル(試作品6;エステル化率45%、ソルビトール型含量34%)約685gを得た。
[製造例7]
 撹拌機、温度計、ガス吹込管および水分離器を取り付けた1Lの四つ口フラスコに、ソルビトール(商品名:「ソルビトールS」;日研化成社製)260g(約1.0モル)を仕込み、約400Paの減圧下、75℃で約10分間脱水した。次にパルミチン酸(商品名:「パルミチン酸98」;ミヨシ油脂社製)538g(約2.1モル)を仕込み、触媒として水酸化ナトリウム10w/v%水溶液14mLを加え、常圧下、窒素ガス気流中235℃で、酸価10以下となるまで約2時間エステル化反応を行なった。得られた反応物を冷却してソルビタンパルミチン酸エステル(試作品7;エステル化率45%、ソルビトール型含量37%)約650gを得た。
[製造例8]
 撹拌機、温度計、ガス吹込管および水分離器を取り付けた1Lの四つ口フラスコに、ソルビトール(商品名:「ソルビトールS」;日研化成社製)260g(約1.0モル)を仕込み、約400Paの減圧下、75℃で約10分間脱水した。次にステアリン酸(商品名:「ステアリン酸65」;ミヨシ油脂社製)603g(約2.2モル)を仕込み、触媒として水酸化ナトリウム10w/v%水溶液15mLを加え、常圧下、窒素ガス気流中235℃で、酸価10以下となるまで約2時間エステル化反応を行なった。得られた反応物を冷却してソルビタンステアリン酸エステル(試作品8;エステル化率47%、ソルビトール型含量34%)約710gを得た。
[製造例9]
 撹拌機、温度計、ガス吹込管および水分離器を取り付けた1Lの四つ口フラスコに、ソルビトール(商品名:「ソルビトールS」;日研化成社製)260g(約1.0モル)を仕込み、約400Paの減圧下、75℃で約10分間脱水した。次にパルミチン酸(商品名:「パルミチン酸98」;ミヨシ油脂社製)563g(約2.2モル)を仕込み、触媒として水酸化ナトリウム10w/v%水溶液14mLを加え、常圧下、窒素ガス気流中235℃で、酸価10以下となるまで約2時間エステル化反応を行なった。得られた反応物を冷却してソルビタンパルミチン酸エステル(試作品9;エステル化率48%、ソルビトール型含量37%)約675gを得た。
[製造例10]
 撹拌機、温度計、ガス吹込管および水分離器を取り付けた1Lの四つ口フラスコに、ソルビトール(商品名:「ソルビトールS」;日研化成社製)260g(約1.0モル)を仕込み、約400Paの減圧下、75℃で約10分間脱水した。次にステアリン酸(商品名:「ステアリン酸65」;ミヨシ油脂社製)630g(約2.3モル)を仕込み、触媒として水酸化ナトリウム10w/v%水溶液15mLを加え、常圧下、窒素ガス気流中235℃で、酸価10以下となるまで約2時間エステル化反応を行なった。得られた反応物を冷却してソルビタンステアリン酸エステル(試作品10;エステル化率49%、ソルビトール型含量32%)約738gを得た。
[製造例11]
 撹拌機、温度計、ガス吹込管および水分離器を取り付けた1Lの四つ口フラスコに、ソルビトール(商品名:「ソルビトールS」;日研化成社製)260g(約1.0モル)を仕込み、約400Paの減圧下、75℃で約10分間脱水した。次にパルミチン酸(商品名:「パルミチン酸98」;ミヨシ油脂社製)589g(約2.3モル)を仕込み、触媒として水酸化ナトリウム10w/v%水溶液14mLを加え、常圧下、窒素ガス気流中235℃で、酸価10以下となるまで約2時間エステル化反応を行なった。得られた反応物を冷却してソルビタンパルミチン酸エステル(試作品11;エステル化率51%、ソルビトール型含量34%)約696gを得た。
[製造例12]
 撹拌機、温度計、ガス吹込管および水分離器を取り付けた1Lの四つ口フラスコに、ソルビトール(商品名:「ソルビトールS」;日研化成社製)260g(約1.0モル)を仕込み、約400Paの減圧下、75℃で約10分間脱水した。次にパルミチン酸(商品名:「パルミチン酸98」;ミヨシ油脂社製)256g(約1.0モル)を仕込み、触媒として水酸化ナトリウム10w/v%水溶液11mLを加え、常圧下、窒素ガス気流中235℃で、酸価10以下となるまで約1.5時間エステル化反応を行なった。得られた反応物を冷却してソルビタンパルミチン酸エステル(試作品12;エステル化率26%、ソルビトール型含量44%)約370gを得た。
[製造例13]
 撹拌機、温度計、ガス吹込管および水分離器を取り付けた1Lの四つ口フラスコに、ソルビトール(商品名:「ソルビトールS」;日研化成社製)260g(約1.0モル)を仕込み、約400Paの減圧下、75℃で約10分間脱水した。次にステアリン酸(商品名:「ステアリン酸65」;ミヨシ油脂社製)301g(約1.1モル)を仕込み、触媒として水酸化ナトリウム10w/v%水溶液11mLを加え、常圧下、窒素ガス気流中235℃で、酸価10以下となるまで約1.5時間エステル化反応を行なった。得られた反応物を冷却してソルビタンステアリン酸エステル(試作品13;エステル化率27%、ソルビトール型含量39%)約415gを得た。
[製造例14]
 撹拌機、温度計、ガス吹込管および水分離器を取り付けた2Lの四つ口フラスコに、ソルビトール(商品名:「ソルビトールS」;日研化成社製)260g(約1.0モル)を仕込み、約400Paの減圧下、75℃で約10分間脱水した。次にステアリン酸(商品名:「ステアリン酸65」;ミヨシ油脂社製)767g(約2.8モル)を仕込み、触媒として水酸化ナトリウム10w/v%水溶液5mLを加え、常圧下、窒素ガス気流中235℃で、酸価10以下となるまで約2.5時間エステル化反応を行なった。得られた反応物を冷却してソルビタンステアリン酸エステル(試作品14;エステル化率66%、ソルビトール型含量24%)約865gを得た。
[製造例15]
 撹拌機、温度計、ガス吹込管および水分離器を取り付けた2Lの四つ口フラスコに、ソルビトール(商品名:「ソルビトールS」;日研化成社製)260g(約1.0モル)を仕込み、約400Paの減圧下、75℃で約10分間脱水した。次にステアリン酸(商品名:「ステアリン酸65」;ミヨシ油脂社製)822g(約3.0モル)を仕込み、触媒として水酸化ナトリウム10w/v%水溶液5mLを加え、常圧下、窒素ガス気流中235℃で、酸価10以下となるまで約3時間エステル化反応を行なった。得られた反応物を冷却してソルビタンステアリン酸エステル(試作品15;エステル化率71%、ソルビトール型含量18%)約920gを得た。
[ソルビトール型含量の試験例]
 製造例1~15で得たソルビタン脂肪酸エステル(試作品1~15)並びに後述の市販品AおよびBのソルビトール型含量は、下記する方法により測定した。
 先ず、ソルビタン脂肪酸エステルを、ケン化分解処理して脂肪酸とポリオールとに分解した。具体的には、被検試料2.0gをケン化用フラスコに量り取り、これに0.5mol/L水酸化カリウム-エタノール標準液30mLを加え、該フラスコに冷却器を付け、時々振り混ぜながら、還流するエタノールが冷却器の上端に達しないように約70~80℃の範囲内で温度を調節して穏やかに約1時間加熱した後、水50mLを添加した。その後、得られた内容物を分液漏斗に移し、ヘキサン100mLおよび35%塩酸約5mL添加して分液漏斗を振り、その後静置した。続いて、分離した下層を別の分液漏斗に移しヘキサン50mLを添加して同様に処理した。分離した下層をビーカーに採り、0.5mol/L水酸化カリウム溶液でpHを調製して中和し、60℃の通風乾燥機内にビーカーを静置し、脱水した。完全に脱水したらメタノール約10mLと少量の芒硝を加えてかき混ぜ、内容物を自然濾過する。得られた濾液をフラスコに移し、エバポレータにてメタノールを除去した。
 次に、得られた濃縮物を、常法によりTMS化した後、GC(ガスクロマトグラフィー)を用いてポリオール組成分析を行った。GCは以下に示すGC分析条件で行った。分析後、データ処理装置によりクロマトグラム上に記録された被検試料の各成分に対応するピークについて、積分計を用いてピーク面積を測定し、測定されたピーク面積に基づいて、面積百分率としてアルコール組成中のソルビトール型含量を求めた。
 <GC分析条件>
 装置
   ガスクロマトグラム(型式:GC-17A;島津製作所社製)
   データ処理装置(型式:C-R7A plus;島津製作所社製)
   カラム(型式:DB-5HT;Agilent Technologies社製)
 カラムオーブン条件
   初期温度 120℃(1分間)
   昇温速度 8℃/分
   最終温度 340℃(25分間)
   検出器温度 330℃
   注入口温度 330℃
 試料注入量 3μL
 検出機  FID(水素炎イオン化検出器)
 キャリアガス ヘリウム75kPa
 スプリット比 1:80
(結晶化速度比較テスト1)
 精製パーム油に、製造例1~15で作製したソルビタン脂肪酸エステル(試作品1~15)、および市販のソルビタン脂肪酸エステル(市販品AおよびB)を各々0.5質量%添加し、品温80℃にて、完全に溶解後、各サンプルを60℃の恒温槽で30分間保持した。その後、各サンプルを0℃の恒温槽に移し、20分後に各サンプルのSFCを測定した。
 なお、市販品AおよびBは、以下を使用した。
市販品A:ソルビタンステアリン酸エステル(商品名:ポエムS-300V;エステル化率31%、ソルビトール型含量57%;理研ビタミン社製)
市販品B:ソルビタンステアリン酸エステル(商品名:ポエムS-60V;エステル化率37%、ソルビトール型含量13%;理研ビタミン社製)
 テストの結果、試作品1~11のソルビタン脂肪酸エステルを添加することにより、パーム油の結晶化の促進が確認できた。一方、試作品12、13のソルビタン脂肪酸エステルおよび市販品Aは、加熱しても、油脂への完全な融解が困難で、使用に不適であった。結果を表1に示す。
表1
Figure JPOXMLDOC01-appb-I000002
(結晶化速度比較テスト2)
 パーム油50部、パーム核油40部、パームステアリン10部を混合し、金属触媒(ナトリウムメトキシド)0.3部を加え、真空下80℃で1時間非選択的エステル交換反応を行った後、定法に従い精製したエステル交換油脂Aに、製造例1~15で作製したソルビタン脂肪酸エステル(試作品1~15)並びに市販品AおよびBを各々0.5質量%添加し、品温80℃にて、完全に溶解後、各サンプルを60℃の恒温槽で30分間保持した。その後、各サンプルを0℃の恒温槽に移し、3分後に各サンプルのSFCを測定した。
 テストの結果、試作品1~11のソルビタン脂肪酸エステルを添加することにより、エステル交換油脂Aの結晶化の促進が確認できた。一方、試作品12、13のソルビタン脂肪酸エステルおよび市販品Aは、加熱しても、油脂への完全な融解が困難で、使用に不適であった。結果を表2に示す。
表2
Figure JPOXMLDOC01-appb-I000003
(結晶化速度比較テスト3)
 ヤシ油50部、パームステアリン40部、菜種極度硬化油10部を混合し、金属触媒(ナトリウムメトキシド)0.3部を加え、真空下80℃で1時間非選択的エステル交換反応を行った後、定法に従い精製したエステル交換油脂Bに、製造例1~15で作製したソルビタン脂肪酸エステル(試作品1~15)並びに市販品AおよびBを各々0.5質量%添加し、品温80℃にて、完全に溶解後、各サンプルを60℃の恒温槽で30分間保持した。その後、各サンプルを0℃の恒温槽に移し、3分後に各サンプルのSFCを測定した。
 テストの結果、試作品1~10のソルビタン脂肪酸エステルを添加することにより、エステル交換油脂Bの結晶化の促進が確認できた。一方、試作品12、13のソルビタン脂肪酸エステルおよび市販品Aは、加熱しても、油脂への完全な融解が困難で、使用に不適であった。結果を表3に示す。
表3
Figure JPOXMLDOC01-appb-I000004
(シートマーガリンの試作テスト)
 表4の配合にてシートマーガリンを試作し、試作直後のシートノズル出口での物性を評価した。
表4中のエステル交換油脂Cはパーム油30部、パームステアリン65部、菜種極度硬化油5部を混合し、金属触媒(ナトリウムメトキシド)0.3部を加え、真空下80℃で1時間非選択的エステル交換反応を行った後、定法に従い精製して得られた油脂を用いた。
なお、硬さの測定はレオメーターで行い、直径10mmのプランジャー、テーブルスピード5cm/分で測定した。
表4
Figure JPOXMLDOC01-appb-I000005
 シートマーガリンを試作した結果、試作品6を添加した実施例34、35は結晶化が促進された結果、出口での状態が、十分に硬さのあるしっかりとした良好な物性であった。一方、比較例22~24においては、結晶化が不十分であるため、出口での状態が軟らかく、シート形状で製品を得ることが困難であった。
(マイグレーション抑制効果比較テスト1)
 パーム中融点画分を融点36℃まで水素添加した硬化油(油脂D)に、製造例6で作製したソルビタン脂肪酸エステル(試作品6)並びに市販品B、C、D、EおよびFを各々0.5質量%添加し、品温85℃にて、完全に溶解後、軟化点(環玉法)測定用リング(内径15.9/19.8mm、高さ6.4mm)に1g流し込み、0℃恒温器内で2時間固化させた。
 固化後、リングをろ紙(No.2、直径125mm)中央に置き、30℃恒温器内で24時間静置させた。
静置後、リング内の油脂から、ろ紙へ染み込んだ油脂の量を測定し、染み出し率を求めた。
 なお、市販品C、D、EおよびFは、以下を使用した。
市販品C:ソルビタンステアリン酸エステル(商品名:ポエムS-65V;エステル化率72%、ソルビトール型含量29%;理研ビタミン社製)
市販品D:ソルビタンベヘニン酸エステル(商品名:ポエムB-150;エステル化率67%、ソルビトール型含量24%;理研ビタミン社製)
市販品E:ポリグリセリン脂肪酸エステル(商品名:ポエムJ-46B;理研ビタミン社製)
市販品F:ショ糖脂肪酸エステル(商品名:シュガーエステルP-170;三菱化学フーズ社製)
 テストの結果、試作品6のソルビタン脂肪酸エステルを添加することにより、リング内の油脂から、ろ紙への油脂の移行が抑えられ、染み出し率が低く、マイグレーション抑制効果が確認できた。結果を表5に示す。
表5
Figure JPOXMLDOC01-appb-I000006
(マイグレーション抑制効果比較テスト2)
 油脂Dに、製造例6で作製したソルビタン脂肪酸エステル(試作品6)並びに市販品B、C、D、EおよびFを各々0.5質量%添加し、品温85℃にて、完全に溶解後、内径65mm、高さ40mmのプラスチック製カップに50g流し込み、0℃恒温器内で2時間固化させた。
 固化後、カップ表面にろ紙(No.2、幅10mm、高さ200mm)を垂直に立て、30℃恒温器内で24時間静置させた。24時間静置後、カップの油脂から、ろ紙へ染み込んだ油脂の量(高さ)を測定した。
 テストの結果、試作品6のソルビタン脂肪酸エステルを添加することにより、カップの油脂から、ろ紙への油脂の移行が抑えられ、ろ紙へ染み込んだ油脂の高さは低く、マイグレーション抑制効果が確認できた。結果を表6に示す。
表6
Figure JPOXMLDOC01-appb-I000007
(結晶化速度比較テスト4、5)
 エステル交換油脂Bを90部とパームオレイン(ヨウ素価:67)を10部混合した油脂Eに、製造例6で作製したソルビタン脂肪酸エステル(試作品6)並びに市販品B、D、E、FおよびGを各々1.0質量%添加し、品温85℃にて、完全に溶解後、各サンプルを60℃の恒温槽で60分間保持した。その後、各サンプルを15℃又は20℃の恒温槽に移し、6分後に各サンプルのSFCを測定した。
 なお、市販品Gは以下を使用した。
市販品G:グリセリン脂肪酸エステル(商品名:ポエムB-100;理研ビタミン社製)
 テストの結果、試作品6のソルビタン脂肪酸エステルを添加することにより、15℃冷却、20℃冷却のいずれにおいても油脂Eの結晶化の促進が確認できた。結果を表7及び表8に示す。
表7(15℃冷却)
Figure JPOXMLDOC01-appb-I000008
表8(20℃冷却)
Figure JPOXMLDOC01-appb-I000009
結晶化速度比較テスト1の結果をグラフで示した。 結晶化速度比較テスト2の結果をグラフで示した。 結晶化速度比較テスト3の結果をグラフで示した。 結晶化速度比較テスト4の結果をグラフで示した。 結晶化速度比較テスト5の結果をグラフで示した。

Claims (3)

  1. エステル化率が28~60%であり、かつソルビトール型含量が20~40%であるソルビタン脂肪酸エステルを含有する、油脂の結晶化促進剤。
  2. ソルビタン脂肪酸エステルの構成脂肪酸100質量%中パルミチン酸及び/又はステアリン酸の含量が90質量%以上である請求項1記載の油脂の結晶化促進剤。
  3. 請求項1~2いずれか記載の結晶化促進剤を含有する油脂組成物。
PCT/JP2009/051202 2008-02-08 2009-01-26 油脂の結晶化促進剤 WO2009098963A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2009801122268A CN101990571B (zh) 2008-02-08 2009-01-26 脂肪结晶促进剂
US12/866,569 US8440250B2 (en) 2008-02-08 2009-01-26 Fat crystallization accelerator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008028290 2008-02-08
JP2008-028290 2008-02-08

Publications (1)

Publication Number Publication Date
WO2009098963A1 true WO2009098963A1 (ja) 2009-08-13

Family

ID=40952041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/051202 WO2009098963A1 (ja) 2008-02-08 2009-01-26 油脂の結晶化促進剤

Country Status (5)

Country Link
US (1) US8440250B2 (ja)
JP (1) JP5293221B2 (ja)
CN (1) CN101990571B (ja)
TW (1) TWI454569B (ja)
WO (1) WO2009098963A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012052048A (ja) * 2010-09-02 2012-03-15 Riken Vitamin Co Ltd 油脂の結晶成長抑制剤
US8648065B2 (en) 2002-10-02 2014-02-11 Meiji Seika Pharma Co., Ltd. Antibacterial medicinal composition of enhanced oral absorptivity
JP2016002069A (ja) * 2014-06-19 2016-01-12 ミヨシ油脂株式会社 離型油
JP2016144434A (ja) * 2015-02-09 2016-08-12 理研ビタミン株式会社 マイグレーション抑制剤
CN115053931A (zh) * 2022-05-31 2022-09-16 江南大学 一种油脂结晶促进剂及其制备方法和应用

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3024649B2 (ja) * 1999-07-15 2000-03-21 株式会社日立製作所 ディスクカ―トリッジ
CN104378995A (zh) * 2012-04-09 2015-02-25 不二制油株式会社 裹油用乳化油脂组合物
CN104302749B (zh) * 2012-05-18 2016-12-07 J-制油株式会社 结晶化促进剂
CN103421605B (zh) * 2012-05-25 2017-03-15 丰益(上海)生物技术研发中心有限公司 用赤藓糖醇脂肪酸酯分提油脂的方法及其应用
JP6121739B2 (ja) * 2013-02-08 2017-04-26 理研ビタミン株式会社 油脂固化剤
JP6158609B2 (ja) * 2013-06-25 2017-07-05 理研ビタミン株式会社 油脂固化剤
JP6289834B2 (ja) * 2013-08-12 2018-03-07 ミヨシ油脂株式会社 製菓製パン用油脂組成物およびその製造方法
CN104629906B (zh) * 2013-11-07 2019-10-15 丰益(上海)生物技术研发中心有限公司 一种助晶剂及分提油脂的方法
JP6196168B2 (ja) * 2014-02-04 2017-09-13 理研ビタミン株式会社 ラウリン系油脂の結晶成長抑制剤
JP6430724B2 (ja) * 2014-06-13 2018-11-28 ミヨシ油脂株式会社 加熱調理用油脂組成物
JP6382588B2 (ja) * 2014-06-16 2018-08-29 ミヨシ油脂株式会社 水産加工食品用油脂組成物とそれを用いた可塑性油脂組成物及び水産加工食品
US20190335781A1 (en) * 2018-05-03 2019-11-07 Utah State University Methods for reduced oil migration
WO2020218315A1 (ja) * 2019-04-25 2020-10-29 阪本薬品工業株式会社 油脂の結晶化促進剤
JP6894999B1 (ja) * 2020-04-16 2021-06-30 昭和産業株式会社 可塑性油脂組成物およびその製造方法
CN114190538B (zh) * 2021-12-21 2023-11-24 郑州轻工业大学 一种促β′晶型形成的油脂促结晶剂及应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007124948A (ja) * 2005-11-04 2007-05-24 Riken Vitamin Co Ltd パーム油またはパーム油を含有する混合油脂の粒状結晶生成抑制方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2322820A (en) * 1939-01-24 1943-06-29 Atlas Powder Co Monoesters of inner ethers of hexahydric alcohols
US2996387A (en) * 1958-09-08 1961-08-15 Glidden Co Hexitol and hexitan partial esters and shortening agents containing same
US2996237A (en) * 1959-05-15 1961-08-15 Cons Paper Company Collapsible container
US3547655A (en) * 1967-09-18 1970-12-15 Atlas Chem Ind Method for improving yeast-raised baked products
US3649647A (en) * 1968-09-21 1972-03-14 Okamura Oil Mill Ltd Mixed sugar alcohol esters of higher and lower saturated fatty acids
US3795627A (en) * 1971-06-04 1974-03-05 Ici America Inc Stable liquid emulsifier compositions
NL158165B (nl) * 1973-05-15 1978-10-16 Amsterdam Chem Comb Werkwijze voor de bereiding van carbonzuuresters van lineaire alifatische suikeralcoholen.
US4209547A (en) * 1978-12-07 1980-06-24 Scm Corporation High melting fat composition and process of making
FR2678432B1 (fr) * 1991-06-27 1993-09-03 Alsthom Gec Procede de liaison entre une ceramique supraconductrice a haute temperature critique et un conducteur supraconducteur a base de niobium-titane.
US5306831A (en) * 1992-10-15 1994-04-26 Shell Oil Company Sorbitan ester purification process
IL126741A0 (en) * 1998-10-25 1999-08-17 Yam Daniel Solidification of fluid oils and their use
CA2389704A1 (en) * 1999-11-03 2001-05-10 Forbes Medi-Tech Inc. Compositions comprising edible oils and phytosterols and/or phytostanols substantially dissolved therein, method of making the same, and use thereof in treating or preventing cardiovascular disease, and its underlying conditions
US6384248B1 (en) * 2000-08-17 2002-05-07 Fan Tech Ltd Meadowfoam based sorbitan esters
CN1174141C (zh) 2000-12-14 2004-11-03 中国科学院长春应用化学研究所 一种提高生丝强度的浸渍油剂
AU3821002A (en) * 2001-10-05 2003-04-10 Malaysian Palm Oil Board A process to prevent and delay clouding in palm olein
GB0425888D0 (en) 2004-11-24 2004-12-29 Nestec Sa Chocolate
JP4874616B2 (ja) 2005-10-03 2012-02-15 日清オイリオグループ株式会社 油脂組成物

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007124948A (ja) * 2005-11-04 2007-05-24 Riken Vitamin Co Ltd パーム油またはパーム油を含有する混合油脂の粒状結晶生成抑制方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Riken Vitamin no Shokuhin'yo Nyukazai Seihin Date Sorbitan Shibosan Esther", 2001, Retrieved from the Internet <URL:http://www.rikenvitamin.jp/ingredient/techInfo/emulsifier/spec/06sorbit.htm> [retrieved on 20090209] *
GIACOMETTI ET AL.: "Process for Preparing Nonionic Surfactant Sorbitan Fatty Acid Esters with and without Previous Sorbitol Cyclization", J.AGRIC. FOOD CHEM., vol. 44, no. 12, 1996, pages 3950 - 3954 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8648065B2 (en) 2002-10-02 2014-02-11 Meiji Seika Pharma Co., Ltd. Antibacterial medicinal composition of enhanced oral absorptivity
JP2012052048A (ja) * 2010-09-02 2012-03-15 Riken Vitamin Co Ltd 油脂の結晶成長抑制剤
JP2016002069A (ja) * 2014-06-19 2016-01-12 ミヨシ油脂株式会社 離型油
JP2016144434A (ja) * 2015-02-09 2016-08-12 理研ビタミン株式会社 マイグレーション抑制剤
CN115053931A (zh) * 2022-05-31 2022-09-16 江南大学 一种油脂结晶促进剂及其制备方法和应用
CN115053931B (zh) * 2022-05-31 2023-08-25 江南大学 一种油脂结晶促进剂及其制备方法和应用

Also Published As

Publication number Publication date
CN101990571A (zh) 2011-03-23
US8440250B2 (en) 2013-05-14
TW200940703A (en) 2009-10-01
US20110250343A1 (en) 2011-10-13
JP5293221B2 (ja) 2013-09-18
JP2009209350A (ja) 2009-09-17
CN101990571B (zh) 2013-07-24
TWI454569B (zh) 2014-10-01

Similar Documents

Publication Publication Date Title
JP5293221B2 (ja) 油脂の結晶化促進剤
JP4952865B2 (ja) トリ飽和脂肪酸グリセリド含有油脂組成物の製造方法
US20130045321A1 (en) Liquid oil and fat, and production method therefor
JP2010209147A (ja) 油脂の製造方法
JP4894975B2 (ja) 可塑性油脂用改質剤
JP5736706B2 (ja) 可塑性油脂用改質剤
JP2007124948A (ja) パーム油またはパーム油を含有する混合油脂の粒状結晶生成抑制方法
JP2014011962A (ja) 油脂の結晶化を促進させる方法
JP7083070B2 (ja) 油脂の結晶化促進剤
JPWO2013088971A1 (ja) 起泡性水中油型乳化物用油脂および該油脂を含んでなる起泡性水中油型乳化物
CN110996672B (zh) 油脂组合物、油性食品及制法、起霜和粒化抑制剂及方法
JP6121739B2 (ja) 油脂固化剤
JPH02132191A (ja) 乳脂様油脂の製造法
EP0109721B1 (en) Margarine fat blend
JP2013110975A (ja) 可塑性油脂組成物
Lee et al. Blending, hydrogenation, fractionation and interesterification processing
JP5493310B2 (ja) 油脂の微細結晶析出方法
JP6793280B2 (ja) ココアバター相溶性向上剤およびその製造方法、並びに、ノーテンパリング型チョコレート及びその油脂組成物
JP6324064B2 (ja) 即席調理食品用油脂組成物とそれを用いた即席調理食品
JP6158609B2 (ja) 油脂固化剤
JP7544170B1 (ja) チョコレート類用油脂
JPS61231947A (ja) 可塑性油脂の耐熱性向上用配合剤
JP7029231B2 (ja) パーム系油脂の硬化抑制剤
JP5921886B2 (ja) 可塑性油脂組成物
JP2022041277A (ja) バタークリーム用油脂組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980112226.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09709009

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12866569

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09709009

Country of ref document: EP

Kind code of ref document: A1