WO2009096249A1 - ロードロック装置および基板冷却方法 - Google Patents

ロードロック装置および基板冷却方法 Download PDF

Info

Publication number
WO2009096249A1
WO2009096249A1 PCT/JP2009/050627 JP2009050627W WO2009096249A1 WO 2009096249 A1 WO2009096249 A1 WO 2009096249A1 JP 2009050627 W JP2009050627 W JP 2009050627W WO 2009096249 A1 WO2009096249 A1 WO 2009096249A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
container
cooling
pressure
deformation
Prior art date
Application number
PCT/JP2009/050627
Other languages
English (en)
French (fr)
Inventor
Yoshiaki Sasaki
Takao Sugimoto
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Priority to CN2009801039326A priority Critical patent/CN101933122B/zh
Priority to US12/865,225 priority patent/US20100326637A1/en
Publication of WO2009096249A1 publication Critical patent/WO2009096249A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67201Apparatus for manufacturing or treating in a plurality of work-stations characterized by the construction of the load-lock chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67288Monitoring of warpage, curvature, damage, defects or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68742Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a lifting arrangement, e.g. lift pins

Definitions

  • the present invention relates to a load lock device used in a vacuum processing apparatus that performs vacuum processing on a target object such as a semiconductor wafer, and a substrate cooling method in such a load lock apparatus.
  • a load lock chamber is provided between the transfer chamber and the wafer cassette in order to transfer the semiconductor wafer from the wafer cassette placed in the atmosphere to the transfer chamber held in vacuum.
  • the semiconductor wafer is transferred through this load lock chamber.
  • a semiconductor wafer as an object to be processed is taken out from the vacuum processing unit at a high temperature of about 500 ° C. Conveyed to the room.
  • the wafer is exposed to the atmosphere in such a high temperature state, the wafer is oxidized.
  • the storage container usually made of resin melts.
  • a cooling plate having a cooling mechanism for cooling the wafer is disposed in the load lock chamber, and the load lock chamber is purged to place the wafer on or close to the cooling plate.
  • the semiconductor wafer is cooled while being returned to step (1).
  • the wafer is deformed due to the difference in thermal expansion between the front and back surfaces of the wafer, and the center or edge of the semiconductor wafer is separated from the cooling plate, or the semiconductor wafer
  • the distance to the cooling plate is different between the center portion and the edge portion, and the cooling efficiency is lowered, resulting in a longer cooling time or exposure to the atmosphere at a high temperature.
  • the rate of pressure increase when returning the load lock chamber to atmospheric pressure and the height position of the wafer when the semiconductor wafer is close to the cooling plate are managed.
  • a purge recipe defining an appropriate combination of these is created for each wafer temperature.
  • the degree of deformation of the semiconductor wafer varies depending on the type of film formed on it, and there are an enormous number of such film types for each user, and an optimum purge recipe is created for each film type. It is extremely difficult to do. For this reason, depending on the type of film formed on the semiconductor wafer, even if a purge recipe for each wafer temperature is used, the above-described disadvantage may occur due to the deformation of the semiconductor wafer as described above.
  • An object of the present invention is to provide a load lock device capable of cooling a substrate at a practical speed while suppressing deformation of the substrate as much as possible.
  • Another object of the present invention is to provide a substrate cooling method in a load lock device capable of realizing such substrate cooling.
  • a load lock device used when a substrate is transferred from an atmospheric atmosphere to a vacuum chamber held in a vacuum, and a high-temperature substrate is transferred from the vacuum chamber to the atmospheric atmosphere.
  • a container provided such that the pressure can be varied between the pressure corresponding to the vacuum chamber and the atmospheric pressure, and the pressure in the container corresponds to the vacuum chamber when the inside of the container communicates with the vacuum chamber.
  • a pressure adjusting mechanism that adjusts the pressure in the container to atmospheric pressure when the inside of the container communicates with the space in the atmospheric atmosphere, a cooling mechanism, and a substrate that is provided in the container.
  • a cooling member for cooling the substrate
  • a substrate deformation detector for detecting deformation of the substrate in the container
  • the inside of the container adjusted to a pressure corresponding to the vacuum chamber High temperature from the vacuum chamber
  • the substrate deformation detection unit detects a deformation of the substrate equal to or greater than a predetermined value during the substrate cooling period from when the substrate is carried into the container until the pressure in the container is changed to atmospheric pressure.
  • a load lock device including a control mechanism that controls to relieve the cooling of the substrate and restore the deformation of the substrate.
  • the control mechanism increases the pressure when the substrate deformation detection unit detects a deformation of the substrate greater than or equal to a predetermined value while increasing the pressure in the container by the pressure adjustment mechanism. It can be stopped or the pressure can be reduced to alleviate cooling. In this case, after the control mechanism relaxes cooling, the control mechanism increases the pressure in the container when the substrate deformation detection unit detects that the deformation of the substrate is smaller than a predetermined value. It is preferable to restart.
  • substrate support pins that are provided so as to be able to project and retract with respect to the cooling member, receive the substrate in a state of protruding from the cooling member, and lower the substrate in that state to place the substrate on or close to the cooling member. And the control mechanism raises the substrate support pin when the substrate deformation detection unit detects a deformation of the substrate greater than or equal to a predetermined value, or the substrate support pin supports and lowers the substrate. In some cases, cooling can be mitigated by stopping the descent. In this case, after the control mechanism relaxes cooling, the control mechanism detects the position of the support pin when the substrate deformation detection unit detects that the deformation of the substrate is smaller than a predetermined value. Preferably, the lowering of the substrate support pins is resumed when the lowering of the substrate support pins is stopped.
  • the substrate deformation detection unit includes a first sensor that measures the displacement of the substrate center portion and a second sensor that measures the displacement of the substrate edge portion, and the detection values of these first sensors and What detects a deformation
  • a laser displacement meter can be suitably used as the first sensor and the second sensor.
  • the vacuum chamber is a transfer chamber provided with a transfer mechanism for transferring the substrate to a vacuum processing chamber that performs high-temperature processing on the substrate in vacuum, and the substrate is heated at high temperature in the vacuum processing chamber. Then, a high-temperature substrate can be transferred into the container through the vacuum chamber.
  • a container provided such that the pressure can be varied between the pressure corresponding to the vacuum chamber and the atmospheric pressure, and when the inside of the container communicates with the vacuum chamber, the container A pressure adjusting mechanism that adjusts the pressure inside the container to atmospheric pressure when the inside of the container communicates with the space of the atmospheric atmosphere, and a cooling mechanism. And a cooling member that cools the substrate, which is provided in the container, is placed on or close to the substrate, and transports the substrate from an atmospheric atmosphere to a vacuum chamber held in vacuum, A substrate cooling method in a load lock device used when a high temperature substrate is transferred from a vacuum chamber to the atmospheric atmosphere, wherein the container is adjusted to a pressure corresponding to the vacuum chamber, and the high temperature substrate from the vacuum chamber is adjusted.
  • a substrate cooling method includes relaxing the cooling of the substrate to restore deformation of the substrate.
  • the pressure increase is stopped or the pressure is decreased to cool the substrate. Can be relaxed. In this case, it is preferable to resume the pressure increase in the container when it is detected that the deformation of the substrate has become smaller than a predetermined value after the cooling is eased.
  • the load lock device is provided so as to be able to project and retract with respect to the cooling member, receives the substrate in a state of protruding from the cooling member, and lowers or lowers the substrate in that state to place or approach the substrate on the cooling member.
  • the cooling can be eased. In this case, after the cooling is eased, when it is detected that the deformation of the substrate is smaller than a predetermined value, the position of the support pin is returned to the original position, or the lowering of the substrate support pin is stopped. It is preferable that the lowering of the substrate support pins is resumed when the substrate is present.
  • the substrate deformation detecting means is a substrate having a predetermined value or more during the substrate cooling period from when the high temperature substrate is carried into the container from the vacuum chamber until the pressure in the container is changed to atmospheric pressure.
  • the cooling of the substrate is controlled so as to return to the deformation of the substrate, so that the substrate can be cooled at a practical speed while suppressing the deformation of the substrate as much as possible.
  • FIG. 1 is a plan view schematically showing a multi-chamber type vacuum processing system equipped with a load lock device according to an embodiment of the present invention. It is sectional drawing which shows the load lock apparatus which concerns on one Embodiment of this invention.
  • FIG. 3 is a schematic diagram showing a state in which the wafer support pins receive a wafer in the load lock device of FIG. 2. It is a schematic diagram for demonstrating the one aspect
  • FIG. 1 is a horizontal sectional view showing a schematic structure of a multi-chamber type vacuum processing system equipped with a load lock device according to an embodiment of the present invention.
  • the vacuum processing system includes four vacuum processing units 1, 2, 3, 4 that perform high-temperature processing such as film formation processing in a vacuum, and these vacuum processing units 1 to 4 have a hexagonal transfer chamber. 5 are provided in correspondence with the four sides.
  • load lock devices 6 and 7 according to the present embodiment are provided on the other two sides of the transfer chamber 5, respectively.
  • a load / unload chamber 8 is provided on the opposite side of the load lock devices 6 and 7 from the transfer chamber 5, and a semiconductor wafer W serving as a substrate to be processed is provided on the opposite side of the load lock devices 6 and 7 of the load / unload chamber 8.
  • the vacuum processing units 1, 2, 3, and 4 are configured to perform predetermined vacuum processing at a high temperature, for example, film formation processing, with the object to be processed placed on the processing plate.
  • the vacuum processing units 1 to 4 are connected to each side of the transfer chamber 5 via a gate valve G as shown in the figure, and these are communicated with the transfer chamber 5 by opening the corresponding gate valve G. By closing the corresponding gate valve G, the transfer chamber 5 is shut off.
  • the load lock devices 6 and 7 are connected to each of the remaining sides of the transfer chamber 5 via the first gate valve G1, and are connected to the carry-in / out chamber 8 via the second gate valve G2. Has been.
  • the load lock chambers 6 and 7 are communicated with the transfer chamber 5 by opening the first gate valve G1, and are shut off from the transfer chamber by closing the first gate valve G1.
  • the second gate valve G2 is opened to communicate with the loading / unloading chamber 8, and the second gate valve G2 is closed to shut off the loading / unloading chamber 8.
  • a transfer device 12 for loading and unloading the semiconductor wafer W with respect to the vacuum processing units 1 to 4 and the load lock devices 6 and 7 is provided.
  • the transfer device 12 is disposed substantially at the center of the transfer chamber 5, and has two support arms 14 a and 14 b that support the semiconductor wafer W at the tip of a rotatable / extensible / retractable portion 13 that can rotate and expand / contract. These two support arms 14a and 14b are attached to the rotating / extending / contracting portion 13 so as to face opposite directions.
  • the inside of the transfer chamber 5 is maintained at a predetermined degree of vacuum.
  • Shutters are provided in the three ports 9, 10, 11 for attaching the FOUP F, which is a wafer storage container in the loading / unloading chamber 8, and the wafers W are stored in these ports 9, 10, 11 or An empty hoop F is directly attached, and when it is attached, the shutter is released to communicate with the carry-in / out chamber 8 while preventing intrusion of outside air.
  • An alignment chamber 15 is provided on the side surface of the loading / unloading chamber 8 where the semiconductor wafer W is aligned.
  • a transfer device 16 for loading / unloading the semiconductor wafer W into / from the FOUP F and loading / unloading the semiconductor wafer W into / from the load lock devices 6, 7 is provided.
  • the transfer device 16 has an articulated arm structure and can run on the rail 18 along the direction in which the hoops F are arranged.
  • the semiconductor wafer W is placed on the hand 17 at the tip of the transfer device 16 and transferred. I do.
  • This vacuum processing system has a process controller 20 composed of a microprocessor (computer) that controls each component, and each component is connected to and controlled by this process controller 20. Also connected to the process controller 20 is a user interface 21 comprising a keyboard for an operator to input commands for managing the vacuum processing system, a display for visualizing and displaying the operating status of the plasma processing apparatus, and the like. ing.
  • a process controller 20 composed of a microprocessor (computer) that controls each component, and each component is connected to and controlled by this process controller 20.
  • a user interface 21 comprising a keyboard for an operator to input commands for managing the vacuum processing system, a display for visualizing and displaying the operating status of the plasma processing apparatus, and the like. ing.
  • the process controller 20 causes each component of the vacuum processing system to execute processing according to a control program for realizing various types of processing executed by the vacuum processing system under the control of the process controller 20 and processing conditions.
  • a storage unit 22 that stores a program for forming a film, a film forming recipe related to film forming processing, a transfer recipe related to wafer transfer, a purge recipe related to pressure adjustment of a load lock device, and the like is connected.
  • Such various recipes are stored in a storage medium (not shown) in the storage unit 22.
  • the storage medium may be a fixed medium such as a hard disk or a portable medium such as a CDROM, DVD, or flash memory.
  • an arbitrary recipe is called from the storage unit 22 by an instruction from the user interface 21 and is executed by the process controller 20, so that a desired process in the vacuum processing system can be performed under the control of the process controller 20. Processing is performed.
  • the process controller 20 can control the pressure and the height of the wafer W so as to suppress the deformation of the wafer in the process of performing processing based on the standard purge recipe in the load lock chambers 6 and 7. It has become.
  • FIG. 2 is a cross-sectional view showing the load lock device according to the present embodiment.
  • the load lock device 6 (7) has a container 31, and a cooling plate 32 that cools the wafer W by placing or approaching the wafer W in the container 31 is supported by the legs 33. Yes.
  • An opening 34 that can communicate with the transfer chamber 5 held in vacuum is provided on one side wall of the container 31, and an opening that can communicate with the loading / unloading chamber 8 held at atmospheric pressure is provided on the opposite side wall. 35 is provided.
  • the opening 34 can be opened and closed by the first gate valve G1, and the opening 35 can be opened and closed by the second gate valve G2.
  • an exhaust port 36 for evacuating the inside of the container 31 and a purge gas introducing port 37 for introducing purge gas into the container 31.
  • An exhaust pipe 41 is connected to the exhaust port 36, and an open / close valve 42, an exhaust speed adjustment valve 43, and a vacuum pump 44 are provided in the exhaust pipe 41.
  • a purge gas introduction pipe 45 for introducing purge gas into the container 31 is connected to the purge gas introduction port 37, and this purge gas introduction pipe 45 extends from a purge gas source 48.
  • An adjustment valve 47 is provided.
  • the opening / closing valve 46 is closed and the opening / closing valve 42 is opened.
  • the inside of the container 31 is evacuated by the pump 44 through the exhaust pipe 36, the pressure in the container 31 is set to a pressure corresponding to the pressure in the transfer chamber 5, and in this state, the first gate valve G1 is opened and transferred to the container 31. It communicates with the chamber 5.
  • the opening / closing valve 42 is closed and the opening / closing valve 46 is opened.
  • the purge gas is introduced from the purge gas source 48 through the purge gas introduction pipe 45 at a predetermined flow rate, for example, to bring the pressure therein to near atmospheric pressure, and in this state, the second gate valve G2 is opened to open the container 31 and the loading / unloading chamber 8.
  • Communicating with The purge gas is introduced through a break filter (registered trademark) (not shown) made of a ceramic porous body at the initial stage of introduction from the viewpoint of preventing particle rolling-up, and is purged at a predetermined flow rate when a certain pressure is reached.
  • a break filter registered trademark
  • the method is not limited.
  • the opening / closing valve 42, the exhaust speed adjusting valve 43, the flow rate adjusting valve 47, and the opening / closing valve 46 are controlled by the pressure adjusting mechanism 49 based on the pressure in the container 31 measured by the pressure gauge 63, and by controlling these valves.
  • the inside of the container 31 is changed between atmospheric pressure and vacuum.
  • the pressure adjustment mechanism 49 also controls these valves based on a command from the process controller 20.
  • three wafer support pins 50 (only two are shown) for wafer transfer are provided so as to be able to project and retract with respect to the surface of the cooling plate 32, and these wafer support pins 50 are fixed to the support plate 51.
  • the wafer support pins 50 are moved up and down via the support plate 51 by moving the rod 52 up and down by a drive mechanism 53 such as a motor whose height can be adjusted.
  • Reference numeral 54 denotes a bellows.
  • a cooling medium flow path 55 is formed in the cooling plate 32, and a cooling medium introduction pipe 56 and a cooling medium discharge pipe 57 are connected to the cooling medium flow path 55, and cooling is performed from a cooling medium supply unit (not shown).
  • the wafer W placed through a cooling medium such as water can be cooled.
  • the top wall 31a of the container 31 is made of a transparent material, for example, glass.
  • Displacement sensors 61 and 62 are provided on the top wall 31a at positions corresponding to the wafer center and wafer edge, respectively. These two displacement sensors 61 and 62 constitute a wafer deformation detector. These displacement sensors 61 and 62 have a function of measuring the distance to the wafer, for example. As the displacement sensors 61 and 62, a laser displacement meter is exemplified.
  • the process controller 20 also controls the load lock device 6 (7), receives distance data from the displacement sensors 61 and 62, controls the pressure adjusting mechanism 49 and the driving mechanism 53, and controls the pressure in the container 31.
  • the height position of the wafer W is controlled.
  • the wafer W is taken out from the FOUP F connected to the loading / unloading chamber 8 by the transfer device 16 and loaded into the container 31 of the load lock device 6 (or 7). At this time, the inside of the container 31 of the load lock device 6 is set to an air atmosphere, and then the wafer W is loaded with the second gate valve G2 opened.
  • the container 31 is evacuated until the pressure corresponding to the transfer chamber 5 is reached, the first gate valve is opened, and the wafer W is received from the container 31 by the transfer device 12.
  • the gate valve G is opened, a wafer W is loaded into the gate valve G, and vacuum processing at a high temperature such as film formation is performed on the wafer W.
  • the gate valve G is opened, the transfer device 12 carries the wafer W out of the corresponding vacuum processing unit, and the first gate valve G1 of any of the load lock devices 6 and 7 is opened. Then, the wafer W is carried into the container 31, and the purge gas is introduced into the container 31 while the wafer W is cooled by the cooling medium flowing through the cooling medium flow path 55 of the cooling plate 32, and the inside thereof is brought to atmospheric pressure. (Wafer cooling period). Then, the second gate valve is opened, and the processed wafer W is stored in the FOUP F by the transfer device 16.
  • the load lock device 6 may be dedicated to carry-in, and the load lock device 7 may be dedicated to carry-out.
  • the container 31 of any of the load lock devices 6 and 7 is evacuated, the first gate valve G1 is opened, and the wafer W is loaded into the container 31. As shown in FIG. The wafer W is received on the wafer support pins 50 in a state of protruding, and the first gate valve G1 is closed. Then, while passing the cooling medium through the cooling medium flow path 55 of the cooling plate 32, the wafer support pins 50 are lowered to place the wafer W on or close to the cooling plate 32, and purge gas is supplied into the container 31 at a predetermined flow rate. Introduced to atmospheric pressure while keeping the pressure rise rate constant.
  • the temperature of the wafer W when it is loaded into the container 31 is as high as 500 ° C. or higher, for example, because high temperature processing such as film formation processing is performed in the vacuum processing units 1 to 4. Therefore, if the cooling rate of the wafer W is too high, the wafer is deformed as shown in FIGS. 4A and 4B due to the difference in thermal expansion between the front and back surfaces of the wafer W during the cooling process.
  • purge gas is introduced into the container 31 at a predetermined flow rate, and the wafer support pins are lowered to cool the wafer W.
  • the displacement of the wafer W is detected by the two displacement sensors 61 and 62. Is measured, and control is performed to alleviate cooling when it is determined that a minute deformation of a predetermined value or more has occurred on the wafer W.
  • control is performed to alleviate cooling when it is determined that a minute deformation of a predetermined value or more has occurred on the wafer W.
  • the distance to the wafer measured by the displacement sensor 61 and the distance to the wafer measured by the displacement sensor 62 are compared, and when these differences are equal to or greater than a predetermined value, such cooling is performed. Control to relax.
  • the drive mechanism 53 and the displacement sensors 61 and 62 are synchronized so that the absolute value of the distance from the displacement sensors 61 and 62 to the wafer can be grasped. There is a need to.
  • the cooling rate (temperature decrease rate) of the wafer W increases as the pressure in the chamber container 31 increases, and the closer the wafer W is to the cooling plate 32, the open / close valve 46 is closed to stop the increase in pressure in the container 31.
  • the cooling of the wafer W can be relaxed (lowering the temperature lowering speed) by stopping the lowering of the wafer support pins 50 or the like if the wafer support pins 50 are raised or the wafer support pins 50 are being lowered. Then, by performing these controls to reduce the cooling, the minute deformation of the wafer W can be eliminated.
  • the process controller 20 opens and closes the open / close valve 46 when the open / close valve 46 is closed.
  • the drive mechanism 53 returns the wafer W to the original position, or when the lowering of the wafer support pins 50 is stopped while the wafer support pins 50 are being lowered.
  • the cooling rate of the wafer W is increased by restarting the lowering of the wafer W or the like.
  • the flow rate of the purge gas may be a predetermined flow rate before or a different flow rate.
  • the inside of the container 31 can be set to an air atmosphere.
  • the cooling operation in the load lock device can be optimized in actual operation, and an optimal purge recipe that does not cause deformation exceeding the allowable value in the target wafer is created based on the operation procedure at this time. Can do. Thereafter, when the wafer subjected to the same processing as the target wafer is cooled in the vacuum processing unit, it can be performed based on the created purge recipe. Then, by performing such an operation for each wafer having different film types, optimum purge recipes for wafers of various film types can be created.
  • the displacement sensors 61 and 62 can be used to monitor errors during the cooling operation.
  • a technique for actually measuring the temperature of the wafer As a technique for preventing deformation when cooling the wafer, a technique for actually measuring the temperature of the wafer has been proposed, and as a temperature measurement technique, a radiation thermometer is provided above the top wall of the processing vessel. In that case, it was necessary to use a very expensive special glass applicable to a radiation thermometer as the ceiling wall. However, in the present invention, it is not necessary to directly measure the temperature of the wafer.
  • the wall material only needs to be detected by a displacement sensor such as a laser displacement meter, and an inexpensive material such as Pyrex glass (registered trademark) is sufficient.
  • the present invention is not limited to the above-described embodiment, and various modifications can be made.
  • a multi-chamber type vacuum processing system provided with four vacuum processing units and two load lock devices has been described as an example, but the number is not limited thereto.
  • the load lock device of the present invention is not limited to such a multi-chamber type vacuum processing device, and can be applied to a system having one vacuum processing unit.
  • the deformation of the wafer is grasped using the two displacement sensors.
  • the present invention is not limited to this, and may be grasped using other means such as a CCD camera.
  • the means for relaxing the cooling can be applied other than the means shown in the above embodiment.
  • the object to be processed is not limited to a semiconductor wafer, and other objects such as a glass substrate for FPD can be targeted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

 ロードロック装置(6,7)は、真空の搬送室(5)に対応する圧力と大気圧との間で圧力を変動可能に設けられた容器(31)と、容器(31)内の圧力を搬送室(5)に対応する真空と大気圧に調整する圧力調整機構(48)と、容器(31)内に設けられウエハWが載置または近接されて冷却されるクーリングプレート(32)と、容器(31)内においてウエハ(W)の変形を検出する変位センサー(61,62)と、搬送室(5)から高温のウエハ(W)が容器(31)内に搬入された後のウエハ冷却期間に、変位センサー(61,62)が所定値以上のウエハ(W)の変形を検出した際にウエハ(W)の冷却を緩和する制御機構(20)とを具備する。

Description

ロードロック装置および基板冷却方法
 本発明は、例えば半導体ウエハ等の被処理体に真空処理を施す真空処理装置に用いられるロードロック装置およびそのようなロードロック装置における基板冷却方法に関する。
 半導体デバイスの製造工程においては、被処理基板である半導体ウエハに対し、成膜処理やエッチング処理等の真空雰囲気で行われる真空処理が多用されている。最近では、このような真空処理の効率化の観点、および酸化やコンタミネーション等の汚染を抑制する観点から、複数の真空処理ユニットを真空に保持される搬送室に連結し、この搬送室に設けられた搬送装置により各真空処理ユニットにウエハを搬送可能としたクラスターツール型のマルチチャンバ真空処理システムが注目されている(例えば特開2000-208589号公報)。
 このようなマルチチャンバ処理システムにおいては、大気中に置かれているウエハカセットから真空に保持された搬送室へ半導体ウエハを搬送するために、搬送室とウエハカセットとの間にロードロック室を設け、このロードロック室を介して半導体ウエハが搬送される。
 ところで、このようなマルチチャンバ処理システムを成膜処理のような高温処理に適用する場合には、被処理体である半導体ウエハは真空処理ユニットから例えば500℃程度の高温のまま取り出され、ロードロック室に搬送される。しかし、このような高温状態でウエハを大気に曝露するとウエハが酸化してしまう。また、このような高温のまま半導体ウエハを収納容器に収納させると、通常樹脂製である収納容器が溶ける等の不都合が生じる。
 このような不都合を回避するためには、このような不都合が生じない温度になるまで待ってから半導体ウエハの大気曝露を行えばよいが、これではスループットが低下してしまう。このため、ロードロック室にウエハを冷却する冷却機構を備えたクーリングプレートを配置するとともにロードロック室内をパージして、ウエハをクーリングプレートに載置または近接した状態でロードロック室内を真空から大気圧に戻す間に半導体ウエハを冷却することが行われている。
 この際に、半導体ウエハが急激に冷却されるとウエハの表裏の熱膨張差に起因してウエハが変形し、半導体ウエハの中心部またはエッジ部がクーリングプレートから離隔してしまい、あるいは半導体ウエハの中心部とエッジ部とでクーリングプレートまでの距離が異なってしまい、冷却効率が低下して結果的に冷却時間が長くなってしまうか、高温のまま大気に曝露されることになる。
 このような半導体ウエハの変形が生じないようにするために、ロードロック室を大気圧に戻す際の圧力の上昇速度や、半導体ウエハをクーリングプレートに近接する場合にはウエハの高さ位置を管理しており、これらの適切な組み合わせを規定したパージレシピをウエハの温度毎に作成している。
しかしながら、半導体ウエハの変形の度合いは、その上に形成されている膜種によっても異なっており、このような膜種はユーザー毎に膨大な数であり、膜種毎に最適なパージレシピを作成することは極めて困難である。このため、半導体ウエハに形成されている膜種によっては、ウエハ温度毎のパージレシピを用いても上記のような半導体ウエハの変形が生じて上記不都合が生じる可能性がある。
 本発明の目的は、基板の変形を極力抑制しつつ実用的な速度で基板を冷却することができるロードロック装置を提供することにある。
 本発明の他の目的は、そのような基板の冷却を実現することができるロードロック装置における基板冷却方法を提供することにある。
 本発明の第1の観点によれば、大気雰囲気から真空に保持された真空室へ基板を搬送し、前記真空室から高温の基板を前記大気雰囲気に搬送する際に用いられるロードロック装置であって、真空室に対応する圧力と大気圧との間で圧力を変動可能に設けられた容器と、前記容器内が前記真空室と連通する際に、前記容器内の圧力を前記真空室に対応する圧力に調整し、前記容器内が前記大気雰囲気の空間と連通する際に、前記容器内の圧力を大気圧に調整する圧力調整機構と、冷却機構を有するとともに前記容器内に設けられ、基板が載置され、または近接して配置されて、基板を冷却する冷却部材と、前記容器内における基板の変形を検出する基板変形検出部と、前記容器内が前記真空室に対応する圧力に調整され、前記真空室から高温の基板が前記容器内に搬入されてから、前記容器内の圧力が大気圧にされるまでの間の基板冷却期間に、前記基板変形検出部が所定値以上の基板の変形を検出した際に基板の冷却を緩和して基板の変形を戻すように制御する制御機構とを具備するロードロック装置が提供される。
 上記第1の観点において、前記制御機構は、前記圧力調整機構により前記容器内の圧力を上昇させる途中で前記基板変形検出部が所定値以上の基板の変形を検出した際に、圧力の上昇を停止し、または圧力を低下させて冷却を緩和させるようにすることができる。この場合に、前記制御機構が冷却を緩和させた後、前記基板変形検出部が基板の変形が所定値よりも小さくなったことを検出した際に、前記制御機構が前記容器内の圧力上昇を再開させるようにすることが好ましい。
 また、前記冷却部材に対して突没可能に設けられ、前記冷却部材から突出した状態で基板を受け取り、その状態で降下することにより基板を前記冷却部材に載置または近接させる基板支持ピンをさらに具備し、前記制御機構は、前記基板変形検出部が所定値以上の基板の変形を検出した際に、前記基板支持ピンを上昇させる、または前記基板支持ピンが基板を支持して下降している場合には下降を停止させることにより冷却を緩和するようにすることができる。この場合に、前記制御機構が冷却を緩和させた後、前記基板変形検出部が基板の変形が所定値よりも小さくなったことを検出した際に、前記制御機構が前記支持ピンの位置を元に戻させる、または前記基板支持ピンの下降が停止している場合には前記基板支持ピンの下降を再開させるようにすることが好ましい。
 さらに、前記基板変形検出部としては、基板中心部の変位を測定する第1のセンサーと、基板エッジ部の変位を測定する第2のセンサーとを有し、これら第1のセンサーの検出値および第2のセンサーの検出値の差から基板の変形を検出するものを用いることができる。この場合に、前記第1のセンサーおよび前記第2のセンサーとしては、レーザー変位計を好適に用いることができる。
 さらにまた、前記真空室は、基板に対し真空中で高温での処理を施す真空処理室に基板を搬送する搬送機構を備えた搬送室であり、前記真空処理室において基板に対して高温の処理がなされた後、前記容器内に前記真空室を介して高温の基板が搬送される構成とすることができる。
 本発明の第2の観点によれば、真空室に対応する圧力と大気圧との間で圧力を変動可能に設けられた容器と、前記容器内が前記真空室と連通する際に、前記容器内の圧力を前記真空室に対応する圧力に調整し、前記容器内が前記大気雰囲気の空間と連通する際に、前記容器内の圧力を大気圧に調整する圧力調整機構と、冷却機構を有するとともに前記容器内に設けられ、基板が載置され、または近接して配置されて、基板を冷却する冷却部材とを具備し、大気雰囲気から真空に保持された真空室へ基板を搬送し、前記真空室から高温の基板を前記大気雰囲気に搬送する際に用いられるロードロック装置における基板冷却方法であって、前記容器内が前記真空室に対応する圧力に調整され、前記真空室から高温の基板が前記容器内に搬入されてから、前記容器内の圧力が大気圧にされるまでの間の基板冷却期間に、前記容器内における基板の変形を検出することと、基板の変形が所定値以上となったことが検出された際に基板の冷却を緩和して基板の変形を戻すようにすることとを有する基板冷却方法が提供される。
 上記第2の観点において、前記圧力調整機構により前記容器内の圧力を上昇させる途中で所定値以上の基板の変形が検出された際に、圧力の上昇を停止し、または圧力を低下させて冷却を緩和するようにすることができる。この場合に、冷却を緩和した後、基板の変形が所定値よりも小さくなったことが検出された際に、前記容器内の圧力上昇を再開することが好ましい。
 また、前記ロードロック装置は、前記冷却部材に対して突没可能に設けられ、前記冷却部材から突出した状態で基板を受け取り、その状態で降下することにより基板を前記冷却部材に載置または近接させる基板支持ピンをさらに具備し、所定値以上の基板の変形が検出された際に、前記基板支持ピンを上昇させる、または前記基板支持ピンが基板を支持して下降している場合には下降を停止させることにより冷却を緩和することができる。この場合に、冷却を緩和した後、基板の変形が所定値よりも小さくなったことが検出された際に、前記支持ピンの位置を元に戻す、または前記基板支持ピンの下降が停止している場合には前記基板支持ピンの下降を再開するようにすることが好ましい。
 本発明によれば、真空室から高温の基板が容器内に搬入されてから、容器内の圧力が大気圧にされるまでの間の基板冷却期間に、基板変形検出手段が所定値以上の基板の変形を検出した際に基板の冷却を緩和して基板の変形を戻すように制御するので、基板の変形を極力抑制しつつ実用的な速度で基板を冷却することができる。
本発明の一実施形態に係るロードロック装置が搭載されたマルチチャンバタイプの真空処理システムを模式的に示す平面図である。 本発明の一実施形態に係るロードロック装置を示す断面図である。 図2のロードロック装置において、ウエハ支持ピンがウエハを受け取った状態を示す模式図である。 ウエハの変形の一態様を説明するための模式図である。 ウエハの変形の他の態様を説明するための模式図である。
 以下、添付図面を参照して本発明の実施形態について説明する。
図1は、本発明の一実施形態に係るロードロック装置が搭載されたマルチチャンバタイプの真空処理システムの概略構造を示す水平断面図である。
真空処理システムは、例えば成膜処理のような高温処理を真空中で行う4つの真空処理ユニット1、2、3、4を備えており、これら真空処理ユニット1~4は六角形状をなす搬送室5の4つの辺にそれぞれ対応して設けられている。また、搬送室5の他の2つの辺にはそれぞれ本実施形態に係るロードロック装置6、7が設けられている。これらロードロック装置6、7の搬送室5と反対側には搬入出室8が設けられており、搬入出室8のロードロック装置6、7と反対側には被処理基板としての半導体ウエハWを収容可能な3つのフープ(FOUP;Front Opening Unified Pod)を取り付けるポート9、10、11が設けられている。真空処理ユニット1、2、3、4は、その中で処理プレート上に被処理体を載置した状態で高温での所定の真空処理、例えば成膜処理を行うようになっている。
 真空処理ユニット1~4は、同図に示すように、搬送室5の各辺にゲートバルブGを介して接続され、これらは対応するゲートバルブGを開放することにより搬送室5と連通され、対応するゲートバルブGを閉じることにより搬送室5から遮断される。また、ロードロック装置6,7は、搬送室5の残りの辺のそれぞれに、第1のゲートバルブG1を介して接続され、また、搬入出室8に第2のゲートバルブG2を介して接続されている。そして、ロードロック室6,7は、第1のゲートバルブG1を開放することにより搬送室5に連通され、第1のゲートバルブG1を閉じることにより搬送室から遮断される。また、第2のゲートバルブG2を開放することにより搬入出室8に連通され、第2のゲートバルブG2を閉じることにより搬入出室8から遮断される。
 搬送室5内には、真空処理ユニット1~4、ロードロック装置6,7に対して、半導体ウエハWの搬入出を行う搬送装置12が設けられている。この搬送装置12は、搬送室5の略中央に配設されており、回転および伸縮可能な回転・伸縮部13の先端に半導体ウエハWを支持する2つの支持アーム14a,14bを有しており、これら2つの支持アーム14a,14bは互いに反対方向を向くように回転・伸縮部13に取り付けられている。この搬送室5内は所定の真空度に保持されるようになっている。
 搬入出室8のウエハ収納容器であるフープF取り付け用の3つのポート9,10、11にはそれぞれ図示しないシャッターが設けられており、これらポート9,10,11にウエハWを収容した、または空のフープFが直接取り付けられ、取り付けられた際にシャッターが外れて外気の侵入を防止しつつ搬入出室8と連通するようになっている。また、搬入出室8の側面にはアライメントチャンバ15が設けられており、そこで半導体ウエハWのアライメントが行われる。
 搬入出室8内には、フープFに対する半導体ウエハWの搬入出およびロードロック装置6,7に対する半導体ウエハWの搬入出を行う搬送装置16が設けられている。この搬送装置16は、多関節アーム構造を有しており、フープFの配列方向に沿ってレール18上を走行可能となっていて、その先端のハンド17上に半導体ウエハWを載せてその搬送を行う。
 この真空処理システムは、各構成部を制御するマイクロプロセッサ(コンピュータ)からなるプロセスコントローラ20を有しており、各構成部がこのプロセスコントローラ20に接続されて制御される構成となっている。また、プロセスコントローラ20には、オペレータが真空処理システムを管理するためにコマンドの入力操作等を行うキーボードや、プラズマ処理装置の稼働状況を可視化して表示するディスプレイ等からなるユーザーインターフェース21が接続されている。
 また、プロセスコントローラ20には、真空処理システムで実行される各種処理をプロセスコントローラ20の制御にて実現するための制御プログラムや、処理条件に応じて真空処理システムの各構成部に処理を実行させるためのプログラム、例えば成膜処理に関わる成膜レシピ、ウエハの搬送に関わる搬送レシピ、ロードロック装置の圧力調整などに関わるパージレシピ等が格納された記憶部22が接続されている。このような各種レシピは記憶部22の中の記憶媒体(図示せず)に記憶されている。記憶媒体は、ハードディスクのような固定的なものであってもよいし、CDROM、DVD、フラッシュメモリ等の可搬性のものであってもよい。また、他の装置から、例えば専用回線を介してレシピを適宜伝送させるようにしてもよい。
 そして、必要に応じて、ユーザーインターフェース21からの指示等にて任意のレシピを記憶部22から呼び出してプロセスコントローラ20に実行させることで、プロセスコントローラ20の制御下で、真空処理システムでの所望の処理が行われる。また、プロセスコントローラ20は、ロードロック室6,7において、標準的なパージレシピに基づいて処理を行っている過程で、ウエハの変形を抑制するように、圧力やウエハWの高さを制御可能となっている。
 次に、本実施形態に係るロードロック装置6,7について詳細に説明する。
 図2は、本実施形態に係るロードロック装置を示す断面図である。ロードロック装置6(7)は、容器31を有し、容器31内にはウエハWが載置または近接されてウエハWを冷却するクーリングプレート32が脚部33に支持された状態で設けられている。
 容器31の一方の側壁には真空に保持された搬送室5と連通可能な開口34が設けられており、これと対向する側壁には大気圧に保持された搬入出室8と連通可能な開口35が設けられている。そして、開口34は第1のゲートバルブG1により開閉可能となっており、開口35は第2のゲートバルブG2により開閉可能となっている。
 容器31の底部には、容器31内を真空排気するための排気口36と容器31内にパージガスを導入するためのパージガス導入口37が設けられている。排気口36には排気管41が接続されており、この排気管41には、開閉バルブ42、排気速度調整バルブ43および真空ポンプ44が設けられている。また、パージガス導入口37には、容器31内にパージガスを導入するパージガス導入配管45が接続されており、このパージガス導入配管45はパージガス源48から延びており、その途中には開閉バルブ46および流量調節バルブ47が設けられている。
 そして、真空側の搬送室5との間でウエハWの搬送を行う場合には、開閉バルブ46を閉じ、開閉バルブ42を開けた状態として、排気速度調整バルブ43を調節して所定速度で真空ポンプ44により排気管36を介して容器31内を排気し、容器31内の圧力を搬送室5内の圧力に対応する圧力とし、その状態で第1のゲートバルブG1を開けて容器31と搬送室5との間を連通する。また、大気側の搬入出室8との間でウエハWの搬送を行う場合には、開閉バルブ42を閉じ、開閉バルブ46を開けた状態として、流量調節バルブ47を調節して容器31内にパージガス源48からパージガス導入配管45を介してパージガスを、例えば所定流量で導入してその中の圧力を大気圧近傍にし、その状態で第2のゲートバルブG2を開けて容器31と搬入出室8との間を連通する。なおパージガスの導入の仕方は、パーティクル巻上げ防止の観点から、導入の初期においてセラミック多孔体からなるブレークフィルタ(登録商標)(図示せず)を通してパージし、ある圧力になったら所定流量でパージすることが例示されるが、その方法は問わない。
 開閉バルブ42、排気速度調整バルブ43、流量調節バルブ47および開閉バルブ46は、圧力計63により測定された容器31内の圧力に基づいて圧力調整機構49により制御され、これらバルブを制御することにより、容器31内を大気圧と真空との間で変化させるようになっている。この圧力調整機構49もプロセスコントローラ20からの指令に基づいてこれらバルブの制御を行う。
 クーリングプレート32には、ウエハ搬送用の3本(2本のみ図示)のウエハ支持ピン50がクーリングプレート32の表面に対して突没可能に設けられ、これらウエハ支持ピン50は支持板51に固定されている。そして、ウエハ支持ピン50は、上昇位置の調節可能なモータ等の駆動機構53によりロッド52を昇降させることにより、支持板51を介して昇降される。なお、符号54はベローズである。
 クーリングプレート32には、冷却媒体流路55が形成されており、この冷却媒体流路55には冷却媒体導入配管56および冷却媒体排出配管57が接続されていて、図示しない冷却媒体供給部から冷却水等の冷却媒体が通流されて載置されたウエハWを冷却可能となっている。
 容器31の天壁31aは、透明材料、例えばガラスで構成されており、その上にウエハ中心部に対応する位置とウエハエッジ部に対応する位置にそれぞれ変位センサー61,62が設けられている。これら2つの変位センサー61,62は、ウエハの変形検出部を構成している。これら変位センサー61,62は、例えばウエハまでの距離を測定する機能を有する。この変位センサー61,62としてはレーザー変位計が例示される。
 プロセスコントローラ20は、ロードロック装置6(7)をも制御しており、変位センサー61、62からの距離データを受け取って、圧力調整機構49や駆動機構53を制御し、容器31内の圧力やウエハWの高さ位置を制御するようになっている。
 次に、以上のように構成されるマルチチャンバタイプの真空処理システムの動作について本実施形態のロードロック装置6、7を中心として説明する。
 まず、搬送装置16により搬入出室8に接続されたフープFからウエハWを取り出し、ロードロック装置6(または7)の容器31に搬入する。このとき、ロードロック装置6の容器31内は大気雰囲気にされ、その後第2のゲートバルブG2が開放された状態でウエハWが搬入される。
 そして、容器31内を搬送室5に対応する圧力になるまで真空排気し、第1のゲートバルブを開放して搬送装置12により容器31内からウエハWを受け取って、いずれかの真空処理ユニットのゲートバルブGを開いてその中にウエハWを搬入し、ウエハWに対して成膜等の高温での真空処理を行う。
 真空処理が終了した時点で、ゲートバルブGを開放し、搬送装置12が対応する真空処理ユニットからウエハWを搬出し、ロードロック装置6および7のいずれかの第1のゲートバルブG1を開放してウエハWを容器31内に搬入し、クーリングプレート32の冷却媒体流路55を通流する冷却媒体によりウエハWを冷却しつつ、容器31内にパージガスを導入し、その中を大気圧とする(ウエハ冷却期間)。そして、第2のゲートバルブを開け、搬送装置16により、フープFに処理後のウエハWを収納する。
 なお、2つのロードロック装置6、7について、ロードロック装置6を搬入専用にし、ロードロック装置7を搬出専用にしてもよい。
 上述のようにウエハWの真空処理が終了して搬送装置12が対応する真空処理ユニットからウエハWを搬出した後のウエハ冷却期間の操作を詳細に説明する。
 ロードロック装置6および7のいずれかの容器31内を真空引きし、第1のゲートバルブG1を開放してウエハWをその容器31内に搬入し、図3に示すように、ウエハ支持ピン50を突出させた状態でウエハWをウエハ支持ピン50上に受け取り、第1のゲートバルブG1を閉じる。そして、クーリングプレート32の冷却媒体流路55に冷却媒体を通流させながら、ウエハ支持ピン50を降下させてウエハWをクーリングプレート32に載置または近接させ、容器31内に所定流量でパージガスを導入してその中の圧力上昇速度を一定に保ちつつ大気圧とする。
 この際に、真空処理ユニット1~4では成膜処理等の高温処理が行われる関係上、容器31に搬入された時点でのウエハWの温度は例えば500℃以上と高温である。したがって、ウエハWの冷却速度が大きすぎると、冷却過程でのウエハW表裏の熱膨張差によりウエハが図4A、図4Bのように変形してしまう。
 そこで、まず、標準のパージレシピに従って、所定流量で容器31内にパージガスを導入するとともにウエハ支持ピンを降下させてウエハWを冷却させ、その際に2つの変位センサー61,62によりウエハWの変位を測定し、ウエハWに所定値以上の微小変形が生じたことを把握した時点で、冷却を緩和するように制御を行う。具体的には、変位センサー61で計測されたウエハまでの距離と、変位センサー62で計測されたウエハまでの距離とを比較してこれらの差が所定値以上となった時点でこのような冷却を緩和する制御を行う。この際に、ウエハWの変形はウエハWの降下中でも生じるため、駆動機構53と変位センサー61,62とを同期させて、変位センサー61、62からウエハまでの距離の絶対値を把握できるようにする必要がある。
 ウエハWの冷却速度(降温速度)はチャンバ容器31内の圧力が上昇するほど、またウエハWがクーリングプレート32に近いほど大きくなるから、開閉バルブ46を閉じて容器31内の圧力の上昇を停止する、またはウエハ支持ピン50を上昇させるもしくはウエハ支持ピン50の降下途中であればウエハ支持ピン50の降下を停止する等によりウエハWの冷却を緩和する(降温速度を下げる)ことができる。そして、これらの制御を行って冷却が緩和されることにより、ウエハWの微小変形を解消することができる。
 また上記に加え、操作が多少複雑になるが、真空引きを行ってチャンバ容器31内の圧力を低下させることによっても冷却を緩和することができる。
 上述のようにして冷却が緩和されて変位センサー61,62により微小変形が所定値よりも小さくなったことが把握された時点で、プロセスコントローラ20は、開閉バルブ46を閉じた場合には開閉バルブ46を開く、またはウエハ支持ピン50を上昇させた場合には駆動機構53によりウエハWを元の位置に戻す、もしくはウエハ支持ピン50の降下途中でウエハ支持ピン50の降下を停止した場合にはウエハWの降下を再開する等により、ウエハWの冷却速度を上昇させる。なお開閉バルブ46を開いてパージガスの導入を再開する際には、パージガスの流量は以前における所定流量であってもよいし、これと異なる流量であってもよい。
 そして、ウエハWに所定値以上の微小変形が生じるたびごとにこれらの操作を行うことにより、ウエハWの冷却効率に影響を与える変形を生じさせることなく実用的な速度でウエハWを冷却しつつ容器31内を大気雰囲気にすることができる。
 このように、実操業においてロードロック装置における冷却操作の最適化を行うことができ、この際の操作手順に基づいて、対象ウエハにおける許容値を超える変形が生じない最適なパージレシピを作成することができる。その後真空処理ユニットにおいて、この対象ウエハと同じ処理が施されたウエハの冷却を行う場合には、作成したパージレシピに基づいて行うことができる。そして、このような操作を形成されている膜種が異なるウエハ毎に行うことにより、種々の膜種のウエハに対する最適なパージレシピを作成することができる。
 また、変位センサー61,62により、冷却操作時のエラー監視を行うこともできる。
 なお、ウエハを冷却する際の変形防止技術としては、従来から実際にウエハの温度を測定するものが提案されており、温度測定技術としては処理容器の天壁の上方に放射温度計を設けるのが一般的であり、その場合には天壁として放射温度計に適用可能な極めて高価な特殊なガラスを用いる必要があったが、本発明では、ウエハの温度を直接測定する必要はなく、天壁の材料もレーザー変位計等の変位センサーでの検出を行えればよく、パイレックスガラス(登録商標)等の安価なもので十分である。
 なお、本発明は上記実施形態に限定されることなく、種々の変形が可能である。例えば、上記実施形態では、真空処理ユニットを4つ、ロードロック装置を2つ設けたマルチチャンバタイプの真空処理システムを例にとって説明したが、これらの数に限定されるものではない。また、本発明のロードロック装置は、このようなマルチチャンバタイプの真空処理装置に限らず、真空処理ユニットが1個のシステムであっても適用可能である。さらに、上記実施形態では、ウエハの変形を2つの変位センサーを用いて把握したが、これに限らず、CCDカメラ等の他の手段を用いて把握してもよい。また、所定値以上の基板の変形を検出する際に、変位センサーの出力の差からこれを検出したが、これに変えて変位センサーの出力の比をもって検出してもよい。さらにまた、冷却を緩和する手段としては、上記実施形態で示した手段以外にも適用することができる。さらにまた、被処理体についても、半導体ウエハに限らず、FPD用ガラス基板などの他のものを対象にすることができる。

Claims (13)

  1.  大気雰囲気から真空に保持された真空室へ基板を搬送し、前記真空室から高温の基板を前記大気雰囲気に搬送する際に用いられるロードロック装置であって、
     真空室に対応する圧力と大気圧との間で圧力を変動可能に設けられた容器と、
     前記容器内が前記真空室と連通する際に、前記容器内の圧力を前記真空室に対応する圧力に調整し、前記容器内が前記大気雰囲気の空間と連通する際に、前記容器内の圧力を大気圧に調整する圧力調整機構と、
     冷却機構を有するとともに前記容器内に設けられ、基板が載置され、または近接して配置されて、基板を冷却する冷却部材と、
     前記容器内における基板の変形を検出する基板変形検出部と、
     前記容器内が前記真空室に対応する圧力に調整され、前記真空室から高温の基板が前記容器内に搬入されてから、前記容器内の圧力が大気圧にされるまでの間の基板冷却期間に、前記基板変形検出部が所定値以上の基板の変形を検出した際に基板の冷却を緩和させて基板の変形を戻すように制御する制御機構と
    を具備するロードロック装置。
  2.  前記制御機構は、前記圧力調整機構により前記容器内の圧力を上昇させる途中で前記基板変形検出部が所定値以上の基板の変形を検出した際に、圧力の上昇を停止し、または圧力を低下させて冷却を緩和させる請求項1に記載のロードロック装置。
  3.  前記制御機構が冷却を緩和させた後、前記基板変形検出部が基板の変形が所定値よりも小さくなったことを検出した際に、前記制御機構が前記容器内の圧力上昇を再開させる請求項2に記載のロードロック装置。
  4.  前記冷却部材に対して突没可能に設けられ、前記冷却部材から突出した状態で基板を受け取り、その状態で降下することにより基板を前記冷却部材に載置または近接させる基板支持ピンをさらに具備し、
     前記制御機構は、前記基板変形検出部が所定値以上の基板の変形を検出した際に、前記基板支持ピンを上昇させる、または前記基板支持ピンが基板を支持して下降している場合には下降を停止させることにより冷却を緩和する請求項1に記載のロードロック装置。
  5.  前記制御機構が冷却を緩和させた後、前記基板変形検出部が基板の変形が所定値よりも小さくなったことを検出した際に、前記制御機構が前記支持ピンの位置を元に戻させる、または前記基板支持ピンの下降が停止している場合には前記基板支持ピンの下降を再開させる請求項4に記載のロードロック装置。
  6.  前記基板変形検出部は、基板中心部の変位を測定する第1のセンサーと、基板エッジ部の変位を測定する第2のセンサーとを有し、これら第1のセンサーの検出値および第2のセンサーの検出値の差から基板の変形を検出する請求項1に記載のロードロック装置。
  7.  前記第1のセンサーおよび前記第2のセンサーはレーザー変位計である請求項6に記載のロードロック装置。
  8.  前記真空室は、基板に対し真空中で高温での処理を施す真空処理室に基板を搬送する搬送機構を備えた搬送室であり、前記真空処理室において基板に対して高温の処理がなされた後、前記容器内に前記真空室を介して高温の基板が搬送される請求項1に記載のロードロック装置。
  9.  真空室に対応する圧力と大気圧との間で圧力を変動可能に設けられた容器と、前記容器内が前記真空室と連通する際に、前記容器内の圧力を前記真空室に対応する圧力に調整し、前記容器内が前記大気雰囲気の空間と連通する際に、前記容器内の圧力を大気圧に調整する圧力調整機構と、冷却機構を有するとともに前記容器内に設けられ、基板が載置され、または近接して配置されて、基板を冷却する冷却部材とを具備し、大気雰囲気から真空に保持された真空室へ基板を搬送し、前記真空室から高温の基板を前記大気雰囲気に搬送する際に用いられるロードロック装置における基板冷却方法であって、
     前記容器内が前記真空室に対応する圧力に調整され、前記真空室から高温の基板が前記容器内に搬入されてから、前記容器内の圧力が大気圧にされるまでの間の基板冷却期間に、前記容器内における基板の変形を検出することと、
    基板の変形が所定値以上となったことが検出された際に基板の冷却を緩和して基板の変形を戻すようにすることと
    を有する基板冷却方法。
  10.  前記圧力調整機構により前記容器内の圧力を上昇させる途中で所定値以上の基板の変形が検出された際に、圧力の上昇を停止し、または圧力を低下させて冷却を緩和する請求項9に記載の基板冷却方法。
  11. 冷却を緩和した後、基板の変形が所定値よりも小さくなったことが検出された際に、前記容器内の圧力上昇を再開する請求項10に記載の基板冷却方法。
  12.  前記ロードロック装置は、前記冷却部材に対して突没可能に設けられ、前記冷却部材から突出した状態で基板を受け取り、その状態で降下することにより基板を前記冷却部材に載置または近接させる基板支持ピンをさらに具備し、
     所定値以上の基板の変形が検出された際に、前記基板支持ピンを上昇させる、または前記基板支持ピンが基板を支持して下降している場合には下降を停止させることにより冷却を緩和する請求項9に記載の基板冷却方法。
  13. 冷却を緩和した後、基板の変形が所定値よりも小さくなったことが検出された際に、前記支持ピンの位置を元に戻す、または前記基板支持ピンの下降が停止している場合には前記基板支持ピンの下降を再開する請求項12に記載の基板冷却方法。
     
PCT/JP2009/050627 2008-01-31 2009-01-19 ロードロック装置および基板冷却方法 WO2009096249A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2009801039326A CN101933122B (zh) 2008-01-31 2009-01-19 负载锁定装置和基板冷却方法
US12/865,225 US20100326637A1 (en) 2008-01-31 2009-01-19 Load-lock apparatus and substrate cooling method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-021321 2008-01-31
JP2008021321A JP2009182235A (ja) 2008-01-31 2008-01-31 ロードロック装置および基板冷却方法

Publications (1)

Publication Number Publication Date
WO2009096249A1 true WO2009096249A1 (ja) 2009-08-06

Family

ID=40912602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/050627 WO2009096249A1 (ja) 2008-01-31 2009-01-19 ロードロック装置および基板冷却方法

Country Status (6)

Country Link
US (1) US20100326637A1 (ja)
JP (1) JP2009182235A (ja)
KR (1) KR20100116593A (ja)
CN (1) CN101933122B (ja)
TW (1) TW200941622A (ja)
WO (1) WO2009096249A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120093617A1 (en) * 2010-10-18 2012-04-19 Hitachi High-Technologies Corporation Vacuum processing apparatus and vacuum processing method
EP2444993A1 (en) * 2010-10-21 2012-04-25 Applied Materials, Inc. Load lock chamber, substrate processing system and method for venting

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140034318A (ko) * 2009-09-28 2014-03-19 도쿄엘렉트론가부시키가이샤 피처리체의 냉각 방법, 냉각 장치 및 컴퓨터 판독 가능한 기억 매체
JP5387444B2 (ja) * 2010-02-25 2014-01-15 株式会社ニコン 搬送装置および基板接合装置
WO2012002499A1 (ja) * 2010-06-30 2012-01-05 株式会社アルバック 基板処理装置及び基板冷却方法
US9228685B2 (en) 2010-12-09 2016-01-05 Tokyo Electron Limited Load lock device
CN103592070B (zh) * 2013-11-20 2015-12-09 太仓思比科微电子技术有限公司 一种可视化芯片挑晶机气压检测方法
US9817407B2 (en) * 2014-12-01 2017-11-14 Varian Semiconductor Equipment Associates, Inc. System and method of opening a load lock door valve at a desired pressure after venting
CN104388907B (zh) * 2014-12-03 2016-12-07 京东方科技集团股份有限公司 一种监控装置以及磁控溅射设备
KR102381000B1 (ko) * 2014-12-30 2022-04-04 (주)선익시스템 기판냉각장치
KR102136295B1 (ko) * 2015-02-16 2020-08-27 주식회사 원익아이피에스 웨이퍼 워피지 센서를 구비한 웨이퍼 처리 장치 및 방법
JP6288470B2 (ja) * 2015-05-22 2018-03-07 株式会社ダイフク 平面保管設備における入出庫装置の制御方法
WO2017066418A1 (en) * 2015-10-15 2017-04-20 Applied Materials, Inc. Substrate carrier system
JP6554387B2 (ja) 2015-10-26 2019-07-31 東京エレクトロン株式会社 ロードロック装置における基板冷却方法、基板搬送方法、およびロードロック装置
JP6270952B1 (ja) * 2016-09-28 2018-01-31 株式会社日立国際電気 基板処理装置、半導体装置の製造方法および記録媒体。
KR102193373B1 (ko) * 2016-12-05 2020-12-22 주식회사 원익아이피에스 웨이퍼 처리 방법
US10720348B2 (en) * 2018-05-18 2020-07-21 Applied Materials, Inc. Dual load lock chamber
CN110854010B (zh) * 2018-08-20 2022-07-22 北京北方华创微电子装备有限公司 冷却晶圆的方法、装置和半导体处理设备
JP7279406B2 (ja) * 2019-02-26 2023-05-23 東京エレクトロン株式会社 ロードロックモジュール、基板処理装置及び基板の搬送方法
CN110079781B (zh) * 2019-04-11 2020-06-19 北京北方华创微电子装备有限公司 冷却腔室、aln缓冲层生长工艺设备和冷却处理的方法
KR20210026672A (ko) 2019-08-30 2021-03-10 캐논 톡키 가부시키가이샤 진공장치
KR20210081729A (ko) * 2019-12-24 2021-07-02 에스케이하이닉스 주식회사 반도체 테스트 시스템 및 방법
US11557496B2 (en) * 2020-03-23 2023-01-17 Applied Materials, Inc. Load lock with integrated features
JP6990800B1 (ja) * 2020-03-24 2022-01-14 株式会社日立ハイテク 真空処理装置
KR102396431B1 (ko) * 2020-08-14 2022-05-10 피에스케이 주식회사 기판 처리 장치 및 기판 반송 방법
TW202230583A (zh) * 2020-12-22 2022-08-01 日商東京威力科創股份有限公司 基板處理系統及微粒去除方法
CN113035758B (zh) * 2020-12-31 2022-06-24 中科晶源微电子技术(北京)有限公司 腔室装置、晶片输送设备和晶片处理方法
CN113478080B (zh) * 2021-09-06 2022-02-18 佛山汇百盛激光科技有限公司 一种变位工作台
US20240141483A1 (en) * 2022-10-26 2024-05-02 Applied Materials, Inc. Apparatus, systems, and methods of using an atmospheric epitaxial deposition transfer chamber

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06244124A (ja) * 1993-01-28 1994-09-02 Applied Materials Inc 改良されたスループットを有する真空処理装置
JPH08162405A (ja) * 1994-10-05 1996-06-21 Tokyo Electron Ltd 熱処理方法及び熱処理装置並びに処理装置
JP2005101310A (ja) * 2003-09-25 2005-04-14 Smc Corp 半導体基板の温度調節装置
JP2006176842A (ja) * 2004-12-22 2006-07-06 Mitsubishi Heavy Ind Ltd ガラス基板の成膜装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5228208A (en) * 1991-06-17 1993-07-20 Applied Materials, Inc. Method of and apparatus for controlling thermal gradient in a load lock chamber
US5620560A (en) * 1994-10-05 1997-04-15 Tokyo Electron Limited Method and apparatus for heat-treating substrate
TW418429B (en) * 1998-11-09 2001-01-11 Tokyo Electron Ltd Processing apparatus
JP3535457B2 (ja) * 2000-09-11 2004-06-07 東京エレクトロン株式会社 基板の熱処理装置
KR100441654B1 (ko) * 2001-09-18 2004-07-27 주성엔지니어링(주) 웨이퍼 감지시스템
KR20030096732A (ko) * 2002-06-17 2003-12-31 삼성전자주식회사 반도체소자 제조용 화학기상증착장치의 쿨링 스테이지
JP4454243B2 (ja) * 2003-03-31 2010-04-21 キヤノンアネルバ株式会社 基板温度調整装置および基板温度調整方法
JP2005116655A (ja) * 2003-10-06 2005-04-28 Canon Inc ロードロックチャンバー、露光装置、デバイスの製造方法、真空排気方法
JP4907079B2 (ja) * 2004-12-22 2012-03-28 新日鐵住金ステンレス株式会社 拡管加工性に優れたフェライト系ステンレス鋼溶接管及び溶接管用のフェライト系ステンレス鋼板
US7665951B2 (en) * 2006-06-02 2010-02-23 Applied Materials, Inc. Multiple slot load lock chamber and method of operation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06244124A (ja) * 1993-01-28 1994-09-02 Applied Materials Inc 改良されたスループットを有する真空処理装置
JPH08162405A (ja) * 1994-10-05 1996-06-21 Tokyo Electron Ltd 熱処理方法及び熱処理装置並びに処理装置
JP2005101310A (ja) * 2003-09-25 2005-04-14 Smc Corp 半導体基板の温度調節装置
JP2006176842A (ja) * 2004-12-22 2006-07-06 Mitsubishi Heavy Ind Ltd ガラス基板の成膜装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120093617A1 (en) * 2010-10-18 2012-04-19 Hitachi High-Technologies Corporation Vacuum processing apparatus and vacuum processing method
EP2444993A1 (en) * 2010-10-21 2012-04-25 Applied Materials, Inc. Load lock chamber, substrate processing system and method for venting
WO2012052334A1 (en) * 2010-10-21 2012-04-26 Applied Materials, Inc. Load lock chamber, substrate processing system and method for venting
US20120097093A1 (en) * 2010-10-21 2012-04-26 Applied Materials, Inc. Load lock chamber, substrate processing system and method for venting

Also Published As

Publication number Publication date
CN101933122B (zh) 2012-09-19
TW200941622A (en) 2009-10-01
US20100326637A1 (en) 2010-12-30
JP2009182235A (ja) 2009-08-13
CN101933122A (zh) 2010-12-29
KR20100116593A (ko) 2010-11-01

Similar Documents

Publication Publication Date Title
WO2009096249A1 (ja) ロードロック装置および基板冷却方法
JP5108557B2 (ja) ロードロック装置および基板冷却方法
JP5916608B2 (ja) ロードロック装置
JP5106331B2 (ja) 基板載置台の降温方法、コンピュータ読み取り可能な記憶媒体および基板処理システム
JP4781192B2 (ja) ロードロック装置、それを備えた基板処理装置および基板処理システム
JP5036290B2 (ja) 基板処理装置および基板搬送方法、ならびにコンピュータプログラム
JP6944990B2 (ja) 基板処理装置、半導体装置の製造方法およびプログラム
JP2012119626A (ja) ロードロック装置
TW201921567A (zh) 基板處理裝置、半導體裝置之製造方法及記錄媒體
KR101500050B1 (ko) 피처리체의 냉각 방법, 냉각 장치 및 컴퓨터 판독 가능한 기억 매체
WO2013136916A1 (ja) ロードロック装置
US20170198397A1 (en) Substrate processing apparatus
JP2017084897A (ja) ロードロック装置における基板冷却方法、基板搬送方法、およびロードロック装置
US10777439B1 (en) Substrate processing apparatus
JPH0525642A (ja) 熱処理装置
JP2012079835A (ja) 真空処理装置
JP7285276B2 (ja) 冷却方法及び半導体装置の製造方法及び処理装置
WO2020171101A1 (ja) 基板処理装置及び炉口閉塞ユニット及び半導体装置の製造方法
WO2024057590A1 (ja) 排気構造、排気システム、処理装置及び半導体装置の製造方法
WO2022196063A1 (ja) 基板処理装置、半導体装置の製造方法及びプログラム
KR102641232B1 (ko) 기판 처리 시스템 및 기판 처리 시스템의 제어 방법
KR20220147022A (ko) 기판 반송 장치 및 암의 냉각 방법
JP2011171648A (ja) 基板処理システム
JP2007281010A (ja) 基板ステージとそれを用いた基板処理装置及び方法
JP2006093204A (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980103932.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09705970

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12865225

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20107017134

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09705970

Country of ref document: EP

Kind code of ref document: A1