WO2009093316A1 - 被測定信号の繰り返し周波数検出方法及びそれを用いるサンプリング装置並びに波形観測システム - Google Patents

被測定信号の繰り返し周波数検出方法及びそれを用いるサンプリング装置並びに波形観測システム Download PDF

Info

Publication number
WO2009093316A1
WO2009093316A1 PCT/JP2008/050906 JP2008050906W WO2009093316A1 WO 2009093316 A1 WO2009093316 A1 WO 2009093316A1 JP 2008050906 W JP2008050906 W JP 2008050906W WO 2009093316 A1 WO2009093316 A1 WO 2009093316A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
sampling
signal
under measurement
sample number
Prior art date
Application number
PCT/JP2008/050906
Other languages
English (en)
French (fr)
Inventor
Yukio Tsuda
Original Assignee
Anritsu Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corporation filed Critical Anritsu Corporation
Priority to EP08703736.2A priority Critical patent/EP2237054A4/en
Priority to CA002639281A priority patent/CA2639281A1/en
Priority to JP2008534804A priority patent/JP4925017B2/ja
Priority to PCT/JP2008/050906 priority patent/WO2009093316A1/ja
Priority to US12/224,241 priority patent/US7936162B2/en
Publication of WO2009093316A1 publication Critical patent/WO2009093316A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/02Arrangements for measuring frequency, e.g. pulse repetition rate; Arrangements for measuring period of current or voltage
    • G01R23/14Arrangements for measuring frequency, e.g. pulse repetition rate; Arrangements for measuring period of current or voltage by heterodyning; by beat-frequency comparison
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R13/00Arrangements for displaying electric variables or waveforms
    • G01R13/02Arrangements for displaying electric variables or waveforms for displaying measured electric variables in digital form
    • G01R13/0218Circuits therefor
    • G01R13/0272Circuits therefor for sampling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/25Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
    • G01R19/2506Arrangements for conditioning or analysing measured signals, e.g. for indicating peak values ; Details concerning sampling, digitizing or waveform capturing
    • G01R19/2509Details concerning sampling, digitizing or waveform capturing

Definitions

  • the present invention relates to a method for detecting a repetition frequency of a signal under measurement, a sampling apparatus using the same, and a waveform observation system, and more particularly, performs sampling on an optical signal modulated with a high-speed repetition signal to acquire and observe the waveform information.
  • the signal under measurement adopts technology that enables accurate detection of the frequency of the signal under measurement and acquisition and observation of stable waveform information.
  • the present invention relates to a signal repetition frequency detection method, a sampling apparatus using the same, and a waveform observation system.
  • the waveform observation apparatus 10 shown in FIG. 10 is used.
  • This waveform observation apparatus 10 is a predetermined value (offset delay time) from N times the repetition period Tx of the waveform of the input optical signal to be measured P (N is an arbitrary integer greater than or equal to 1, for example, 100, 1000, etc.).
  • optical sampling pulse Ps generated by the optical sampling pulse generating means 11 is input to the optical sampling unit 12 together with the measured optical signal P.
  • pulse light obtained by sampling the optical signal P to be measured with the optical sampling pulse Ps is photoelectrically converted to be converted into an electric pulse signal Eo to be analog / digital (A / D) is output to the converter 13.
  • the A / D converter 13 converts the amplitude intensity of the electric pulse signal Eo into digital data and stores it in the waveform data memory 14.
  • the series of waveform data stored in the waveform data memory 14 is read by the display control means 15 and then displayed on the display 16 as the waveform of the measured optical signal P.
  • the waveform is shifted by ⁇ T time, so that it can be obtained by sampling the waveform of the optical signal P to be measured with high resolution at a sampling rate much slower than the period Tx.
  • a series of waveform data can be observed on the screen of the display 16.
  • Such a sampling type waveform observation apparatus 10 is disclosed in, for example, Patent Document 1 described below.
  • the observation modes required for the waveform observation apparatus 10 as described above include a persistence mode and an averaging mode.
  • the persistence mode is a mode that repeats the operation of sampling the optical signal P to be measured, displaying the acquired data on the display screen for a certain period of time, and displaying the measurement waveform by the afterimage. Changes in the signal waveform can be observed almost in real time.
  • the averaging mode is a mode for sampling the optical signal P to be measured, averaging the waveform data for the plurality of data acquisition periods, and displaying the averaged waveform. Waveform observation can be performed without this.
  • the waveform of the measured optical signal is displayed as an afterimage as described above if sampling is not started from the same phase position of the repetitive waveform of the measured optical signal P when the measured optical signal P is sampled. Inconvenience that the displayed waveform is shifted in the time axis direction every time.
  • the averaging process cannot be performed correctly and the waveform cannot be reproduced correctly, and the waveform phase and amplitude fluctuation cannot be correctly grasped.
  • the repetition period of the waveform of the signal under measurement or the frequency (bit rate) of the signal itself needs to be known.
  • this type of waveform observing apparatus requires an optical mixer that generates an optical sampling pulse with a narrow width or mixes light with each other. If the display unit is included, the entire apparatus becomes complicated and expensive. There is a problem.
  • the inventor of the present application has proposed a method for detecting the frequency of the measured signal repeatedly as disclosed in Patent Document 2 described later as a prior application in Japan.
  • the signal under measurement is a sine wave having a single frequency Fx, and the frequency component of the signal Sx obtained by sampling the signal under sampling with the temporary sampling frequency Fs is considered.
  • sampling pulse is an ideal pulse having an infinitely small width
  • the signal Sx obtained by sampling with this sampling pulse includes a difference and sum component between the frequency Fx of the signal under measurement and each frequency n ⁇ Fs.
  • the lowest frequency component is the difference frequency from the spectrum component of the frequency n ⁇ Fs closest to the frequency Fx or the spectrum of the frequency (n + 1) ⁇ Fs, as shown in FIGS.
  • Fh mod [Fx, Fs] (when mod [Fx, Fs] ⁇ Fs / 2)
  • Fh (Fs / 2) -mod [Fx, Fs] (when mod [Fx, Fs]> Fs / 2)
  • mod [A, B] represents the remainder when A is divided by B.
  • the difference frequency Fh is Fs / 2 at the maximum, it can be easily extracted by using a low-pass filter having a band upper limit Fs / 2.
  • the change ⁇ Fh of the difference frequency Fh accompanying the minute change ⁇ Fs of the sampling frequency Fs is given by the following equation obtained by differentiating the difference frequency Fh with respect to the frequency Fs.
  • the symbol quotient [A, B] represents an integer quotient when A is divided by B.
  • FIG. 14 is a flowchart showing an example of the procedure of the method for detecting the repetition frequency of the signal under measurement as described above.
  • the signal under measurement is sampled at the provisional sampling frequency Fs (step S1), and the frequency Fh of the specific signal that appears in the band of 1/2 or less of the sampling frequency Fs is detected from the signals obtained by the sampling (step S1). Step S2).
  • the sampling frequency is changed by a minute amount ⁇ Fs (for example, 1 Hz) (step S3), and the frequency change amount ⁇ Fh of the specific signal at that time is detected (step S4).
  • a minute amount ⁇ Fs for example, 1 Hz
  • the repetition frequency Fx of the signal under measurement is calculated by substituting the sampling frequency Fs and the frequency change amount ⁇ Fs thereof, the frequency Fh of the specific signal and the frequency change amount ⁇ Fh into the following equation (1) (step) S5).
  • sampling frequency is a value given by the system itself, no error occurs.
  • the measurement error of the frequency Fh of the specific signal is determined by the resolution of digital signal processing such as high-speed Fourier transform (FFT) processing, and can be easily set to several Hz or less.
  • FFT high-speed Fourier transform
  • the calculation error of the repetition frequency Fx of the signal under measurement can be obtained with an accuracy of several Hz or less.
  • This error is, for example, 10 ⁇ 10 for a repetition frequency of 10 GHz, and the repetition frequency of the signal under measurement can be detected with extremely high accuracy.
  • the signal under measurement is a sine wave having a single frequency Fx, and the signal under measurement to be actually observed usually includes a plurality of frequency components.
  • the frequency corresponding to the period (waveform repetition period) equal to the code length of the modulated data is set as the lower limit, and a number of frequencies
  • the component Fx (i) exists, and the level of each frequency component depends on the pattern of the modulation data.
  • the modulation data is 10 Gbps and (10) 2-bit data
  • the level is a frequency component of 1/2 the bit rate. Highest.
  • the modulation data is 10-bit data of 10 Gbps (1111100000)
  • the component 1 GHz is the highest.
  • the period of 1 and the period of 0 are not simple patterns with a duty ratio of 50 percent appearing alternately and of equal length, but 1 period or 0 period within one code as in (1100011100)
  • the level of the frequency component of 2 GHz that is 1/5 of the bit rate is larger than the level of the frequency component that corresponds to a frequency component that is 1/2 the bit rate or a period equal to the code length.
  • Patent Document 2 discloses a waveform observation system including a sampling device to which the above-described method for detecting the frequency of a signal under measurement is applied.
  • FIG. 15 shows the configuration of a waveform observation system 20 including a sampling device to which the above-mentioned signal under measurement repetition frequency detection method is applied.
  • the waveform observation system 20 includes a sampling device 21 and a digital oscilloscope 60.
  • the sampling device 21 has a narrow-width light generated from the sampling pulse generator 24 based on the clock signal C generated by the signal generator 24 by the optical sampling unit 26 using the optical signal P to be measured input from the input terminal 21a. Sampling is performed with a sampling pulse, which is a pulse, to obtain a pulse signal Eo as waveform information.
  • the digital oscilloscope 60 stores and displays the waveform information obtained by the sampling device 21.
  • This sampling device 21 is designated when the repetition period of the waveform to be observed is accurately known, and when the repetition period of the waveform to be observed is unknown or only its approximate value is known.
  • An automatic setting mode is provided, and the manual setting mode and the automatic setting mode can be selectively designated by operating an operation unit (not shown).
  • the clock signal C and the trigger signal G generated by the signal generator 24 can be output to the outside via the clock output terminal 21b and the trigger output terminal 21d, respectively.
  • the pulse signal Eo from the optical sampling unit 26 is configured to be output to the outside via the sample signal output terminal 21c.
  • the output terminals 21b to 21d of the sampling device 21 are connected to the external clock input terminal 60a, the first channel input terminal 60b, and the second channel input terminal 60c of the digital oscilloscope 60, respectively.
  • the digital oscilloscope 60 arbitrarily designates an external clock synchronization function for performing A / D conversion processing on signals input from the channel input terminals 60b and 60c in synchronization with a clock signal input to the external clock input terminal 60a.
  • a certain period of time (depending on the display width of the time axis and the number of display points described later) elapses from the timing at which the voltage of the input signal at the channel input terminal or trigger input terminal exceeds the arbitrarily set threshold value in the predetermined direction.
  • It has an external trigger function for storing data obtained by A / D conversion processing as waveform data for each channel, and a waveform display function for displaying the stored waveform data on the time axis.
  • the display mode either the persistence display mode or the averaged display mode can be arbitrarily selected. It is configured.
  • an optical signal to be measured P having a substantially rectangular wave with a duty ratio of 50% is input to the input terminal 21a, and the approximate repetition period Tx ′ (frequency Fx ′) of the waveform is input.
  • the information corresponding to the sampling offset delay time ⁇ T are designated by the parameter designation unit 22 and the automatic setting mode is designated by an operation unit (not shown).
  • the calculation unit 23 calculates a temporary sampling frequency Fs ′ and a trigger frequency Fg ′ based on the designated approximate repetition frequency Fx ′ and offset delay time ⁇ T, and sets them in the signal generation unit 24.
  • the calculation unit 23 When the automatic setting mode is specified without specifying the repetition frequency Tx ′, the calculation unit 23 performs a calculation using a specified value, for example, 10 GHz as the repetition frequency Fx ′.
  • the signal generator 24 outputs a clock signal C having a temporary sampling frequency Fs ′.
  • the optical sampling unit 26 samples the measured optical signal P at the sampling frequency Fs ′, and the pulse signal Eo obtained by the sampling is input to the specific signal frequency detection unit 27.
  • the specific signal frequency detection unit 27 uses, as a specific signal, a frequency component having the highest level that appears in a band of 1 ⁇ 2 or less of the sampling frequency among the frequency components included in the pulse signal Eo obtained by the sampling, and the frequency Fh ′ Is detected.
  • the spectrum of the optical sampling pulse Ps used for sampling appears at intervals of the frequency Fs ′ as shown in FIG. 17, the spectrum of the waveform of the optical signal S appears at intervals of the frequency Fx, The higher the level, the smaller the level.
  • the specific signal frequency detection unit 27 obtains the difference frequency Fh ′ between the lowest-order frequency Fx and the sampling frequency component n ⁇ Fs ′ closest to the frequency Fx as the frequency of the specific signal, and sends it to the repetition frequency calculation unit 28. Output.
  • the repetition frequency calculation unit 28 stores the frequency Fh ′ and sets the sampling frequency to the signal generation unit 24.
  • An instruction is given to change a minute amount (for example, 1 Hz).
  • the signal generator 24 changes the temporary sampling frequency for the optical signal P to be measured by a minute amount ⁇ Fs, and with this change, the frequency of the specific signal detected by the specific signal frequency detector 27 is changed. From this amount of change, the repetition frequency Fx of the waveform of the optical signal P to be measured is calculated by the following equation and set in the calculation unit 23.
  • the calculation unit 23 calculates a normal sampling frequency Fs and a trigger frequency Fg that exactly correspond to the input signal on the basis of the accurate repetition frequency Fx calculated by the repetition frequency calculation unit 28 and sets it in the signal generation unit 24. .
  • the measured optical signal P is sampled by the optical sampling pulse Ps, and the pulse signal Eo obtained by the sampling is sent from the optical sampling unit 28 via the sample signal output terminal 21c as shown in FIG.
  • the signal is input to the first channel input terminal 60 b of the digital oscilloscope 60.
  • the signal generator 24 generates a trigger signal G having a period equal to the period of the waveform of the envelope connecting the peaks of the pulse signal Eo, via the trigger output terminal 21d.
  • a trigger signal G having a period equal to the period of the waveform of the envelope connecting the peaks of the pulse signal Eo, via the trigger output terminal 21d.
  • FIG. 18A shows the time axis of the waveform shown in FIG.
  • the digital oscilloscope 60 performs A / D conversion processing on the pulse signal Eo in synchronization with the clock signal C, sequentially outputs envelope data connecting the peak points of the pulse signal Eo as optical signal waveform data, and trigger signal G The acquisition of the waveform data is started from the timing when the trigger level exceeds the trigger level in the predetermined direction.
  • the waveform of the measured optical signal P is displayed as an afterimage at the point of the offset delay time ⁇ T interval.
  • the digital oscilloscope 60 starts acquiring waveform data at every timing when the trigger signal G exceeds the trigger level in a predetermined direction and updates and displays the waveform, as described above, the sampling frequency and trigger of the sampling device 20 Since the frequency accurately corresponds to the repetition frequency of the waveform of the optical signal P to which the frequency is input, the position of the waveform to be always displayed is not shifted, and stable waveform observation can be performed.
  • the waveform to be observed is a rectangular wave with a duty ratio of 50% and the level of the lowest specific signal is maximum is described.
  • the frequency component of the lowest specific signal with respect to the repetition frequency Fx corresponding to one cycle of the waveform has a low level and can accurately calculate the frequency. There may not be.
  • the specific signal frequency detection unit 27 selects a signal component having the highest level as a specific signal from signal components in a band of 1/2 or less of the sampling frequency, and detects the frequency. Therefore, the accuracy does not decrease.
  • the method for detecting the repetition frequency of the signal under measurement disclosed in Patent Document 2 is summarized as follows: Fs / 2 or less of signals obtained when the signal under measurement is sampled at a certain repetition frequency Fs. Measure the frequency Fh of the specific signal appearing in the band, and then measure the frequency change ⁇ Fh of the specific signal obtained when the sampling frequency is changed by the minute frequency ⁇ Fs and sampled. This is a method for obtaining the repetition frequency Fx of the signal for use.
  • sample number n indicates the order of the harmonic component closest to Fx among the harmonic components, and is disclosed in Patent Document 2 above.
  • the sampling frequency is changed by a very small amount within a range where the sample number n does not change (frequency wrapping does not occur by sampling).
  • the frequency fluctuation amount ⁇ Fx is directly added to the measured frequency change amount ⁇ Fh of the specific signal, so that a large error occurs in the measurement result of the repeated frequency detection of the signal under measurement.
  • An object of the present invention is to solve these problems, and to detect a frequency of a signal under measurement that can accurately detect the frequency of the signal from the sampling result even if frequency fluctuation exists in the signal under measurement. It is to provide a sampling apparatus and a waveform observation system that can acquire and observe stable waveform information by using it, and that can easily configure the entire system.
  • a second step (S13, S14) of calculating a frequency change amount ⁇ Fh of the specific signal obtained at a sampling frequency that is changed from the temporary sampling frequency Fs by a minute frequency ⁇ Fs that does not cause frequency folding at the time of sampling; N ⁇ Fh / ⁇ Fs (1) according to equation (1) in which the minute frequency ⁇ Fs in the second stage (S13, S14) is the denominator and the frequency change amount ⁇ Fh of the specific signal is the numerator.
  • the signal under measurement includes frequency fluctuations
  • a method for detecting a repetition frequency of a signal under measurement is provided.
  • the signal having the certain repetition frequency Fs is obtained.
  • a method of repeatedly measuring a signal under measurement according to the first aspect wherein a frequency Fh of a signal showing a maximum level as the specific signal appearing in a band of 1 ⁇ 2 or less is measured.
  • the fourth step (S16) shows a maximum level as the specific signal appearing in the band Fs / 2 below 1/2 of the certain repetition frequency Fs measured in the first step (S11, S12).
  • the signal under measurement is changed by changing the signal frequency Fh and the provisional sampling frequency measured in the second step (S13, S14) from the certain repetition frequency Fs by a minute frequency ⁇ Fs at which no frequency aliasing occurs during sampling.
  • Fx ′ Fh ⁇ Fs ⁇ ⁇ Fh / ⁇ Fs (when 0> ⁇ Fh / ⁇ Fs)
  • Fx ′ ⁇ Fh + Fs ⁇ ⁇ Fh / ⁇ Fs (when 0 ⁇ Fh / ⁇ Fs) ...
  • frequency wrapping occurs when sampling from the certain repetition frequency Fs as the temporary sampling frequency in the first step (S11, S12).
  • the frequency change amount dFh_meas of the specific signal obtained when the signal to be measured is sampled with the frequency dFs greatly changed to dFh_target dn ⁇ (Fs + dFs) + n ⁇ dFs (3)
  • dFh_target is a target value of the frequency change amount of the specific signal accompanying a large change in the sampling frequency, and is an arbitrary frequency defined in the range of 0 to dFs / 2.
  • the error amount en included in the sample number n calculated in the fourth step (S17, S18, S19) is calculated in the third step (S15).
  • the accurate sample number n + en is obtained by adding to the sample number n, and the n + en is reflected as ⁇ Fh / ⁇ Fs indicating the sample number in the equation (2), and is calculated in the equation (2).
  • a method for detecting a repetition frequency of a signal under measurement according to a fourth aspect is provided, wherein a normal repetition frequency Fx of the signal under measurement is calculated by correcting a provisional repetition frequency Fx ′ of the signal under measurement.
  • a signal generator (24) that selectively generates clock signals having first to third sampling frequencies according to the designation;
  • the first sampling pulse having the temporary sampling frequency Fs as the first to third sampling frequencies according to the designation, from the temporary sampling frequency Fs
  • a second sampling pulse having a sampling frequency that is changed by a minute frequency ⁇ Fs that does not cause frequency folding at the time of sampling, and a sampling frequency that is greatly changed by the frequency dFs so that frequency folding occurs at the time of sampling from the temporary sampling frequency Fs.
  • a sampling pulse generator (25) for selectively generating a third sampling pulse having, A sampling unit (26) for selectively sampling the signal under measurement by the first to third sampling pulses from the sampling pulse generation unit (25); Of the signals obtained when the sampling unit (26) samples the signal under measurement with the first sampling pulse from the sampling pulse generation unit (25), it is 1 ⁇ 2 or less of the temporary sampling frequency Fs.
  • a specific signal frequency detector (27) for detecting the frequency Fh of the specific signal appearing in the band of The specific signal detected by the specific signal frequency detection unit (27) when the signal to be measured is sampled by the sampling unit (26) with the second sampling pulse from the sampling pulse generation unit (25).
  • a frequency calculation unit (28); N ⁇ Fh / in accordance with the equation (1) using the minute frequency ⁇ Fs used in the temporary repetition frequency calculation unit (28) as a denominator and the frequency change ⁇ Fh used in the temporary repetition frequency calculation unit (28) as a numerator.
  • ⁇ Fs (1) A sample number calculation unit (33) for calculating a sample number n; Specific signal frequency change for detecting a frequency change amount dFh of the specific signal obtained when the signal to be measured is sampled by the sampling unit (26) with the third sampling pulse from the sampling pulse generator (25).
  • a device for sampling a signal under measurement is provided.
  • the specific signal frequency detection unit (27) designates the sampling pulse by designating a temporary sampling frequency having a certain repetition frequency Fs as a first sampling frequency according to the designation to the signal generation unit (24).
  • a first sampling pulse having the temporary sampling frequency is generated from the generation unit (25), and the signal to be measured is converted into the first sampling pulse having the temporary sampling frequency by the sampling unit (26).
  • the signal under measurement according to the sixth aspect is characterized in that the frequency Fh of the specific signal appearing in the band Fs / 2 that is 1/2 or less of the certain repetition frequency Fs is detected among the signals obtained when sampling at A sampling device is provided.
  • the frequency change amount calculation unit (29) changes the signal generation unit (24) from the certain repetition frequency Fs as the second sampling frequency according to the designation by a minute frequency ⁇ Fs at which no frequency aliasing occurs during sampling.
  • the second sampling pulse is generated from the sampling pulse generation unit (25) by designating a sampling frequency having a frequency that has been set, and the second measured pulse is used by the sampling unit (26) to measure the second measured pulse.
  • a sampling apparatus for a signal under measurement according to a seventh aspect is provided, wherein a frequency change amount ⁇ Fh of the specific signal obtained when a signal is sampled is calculated.
  • the specific signal frequency change amount detection unit (30) is large with respect to the signal generation unit (24) so that frequency folding occurs at the time of sampling from the certain repetition frequency Fs as a third sampling frequency according to the designation.
  • the third sampling pulse is generated from the sampling pulse generation unit (25) by designating a sampling frequency having a frequency changed by the frequency dFs, and the signal under measurement is generated by the sampling unit (26).
  • dFh_target is a target value of the frequency change amount of the specific signal accompanying a large change in the sampling frequency, and is an arbitrary frequency defined in the range of 0 to dFs / 2, and n is the sample frequency.
  • a sampled signal sampling apparatus according to a ninth aspect is provided, wherein the sample number change amount dn is calculated.
  • the frequency change amount dFh of the specific signal detected by the specific signal frequency change amount detection unit (30) is expressed by the equation (4).
  • dFh_meas dn. (Fs + dFs) + (n + en) .dFs (4) (Where en is the error included in the sample number n)
  • en (dFh_meas ⁇ dFh_target) / dFs (5)
  • the normal repetition frequency calculation unit (32) calculates the error amount en included in the sample number n calculated by the sample number error calculation unit (31) by the sample number calculation unit (33).
  • the obtained sample number n is added to obtain an accurate sample number n + en, and the n + en is expressed as ⁇ Fh / ⁇ Fs indicating the sample number n calculated by the sample number calculation unit (33) in the equation (2).
  • the normal repetition frequency Fx of the signal under measurement is calculated by correcting the provisional repetition frequency Fx ′ of the signal under measurement calculated in the equation (2).
  • the apparatus for sampling a signal under measurement according to the thirteenth aspect is further provided.
  • a sampling pulse generator (25) that selectively generates a fourth sampling pulse having a fourth sampling frequency according to the designation;
  • a sampling section (26) for selectively sampling the signal under measurement by the first to third sampling pulses and the fourth sampling pulse from the sampling pulse generation section (25); Of the signal obtained by sampling the signal under measurement with the first sampling pulse from the sampling pulse generator (25) by the sampling unit (26), it is 1 ⁇ 2 or less of the temporary sampling frequency Fs.
  • a specific signal frequency detector (27) for detecting the frequency Fh of the specific signal appearing in the band of Frequency change amount calculation for calculating the frequency change amount ⁇ Fh of the specific signal obtained when the signal to be measured is sampled by the sampling unit (26) with the second sampling pulse from the sampling pulse generation unit (25).
  • Part (29); The temporary sampling frequency Fs by the sampling pulse generator (25), the minute frequency ⁇ Fs as a change amount of the sampling frequency, and the temporary sampling frequency Fs detected by the specific signal frequency detector (27).
  • a temporary repetition frequency Fx ′ of the signal under measurement is calculated based on the frequency Fh of the specific signal with respect to and the frequency change amount ⁇ Fh of the specific signal calculated by the frequency change calculation unit (29).
  • a repetition frequency calculation unit (28); N ⁇ Fh / in accordance with the equation (1) using the minute frequency ⁇ Fs used in the temporary repetition frequency calculation unit (28) as a denominator and the frequency change ⁇ Fh used in the temporary repetition frequency calculation unit (28) as a numerator.
  • the sample number n calculated by the sample number calculation unit (33) in a state where frequency fluctuation is included in the signal under measurement based on the change amount dn of the sample number n.
  • the sampling pulse generator (25) Generating the fourth sampling pulse from the calculation unit (23), and sampling the signal under measurement with the fourth sampling pulse by the sampling unit (26);
  • An analog / digital (A / D) converter (43) for converting a signal sampled and output by the fourth sampling pulse from the sampling unit (26) into digital waveform data;
  • a waveform data memory (45) for storing the waveform data output from the A / D converter (43);
  • a data acquisition controller (44) for writing the waveform data output from the A / D converter (43) into the waveform data memory (45) in synchronization with the clock signal from the signal generator (24);
  • a display control unit (46) for reading a series of waveform data stored in the waveform data memory (45) and displaying it on the time axis of the display unit (46) at intervals corresponding to the offset delay time;
  • a system for observing a waveform of a signal under measurement is provided.
  • the specific signal frequency detection unit (27) designates the sampling pulse by designating a temporary sampling frequency having a certain repetition frequency Fs as a first sampling frequency according to the designation to the signal generation unit (24).
  • a first sampling pulse having the temporary sampling frequency is generated from the generation unit (25), and the signal to be measured is converted into the first sampling pulse having the temporary sampling frequency by the sampling unit (26).
  • the waveform of the signal under measurement according to the fifteenth aspect, wherein the frequency Fh of the specific signal appearing in a band of 1/2 or less of the certain repetition frequency Fs is detected among the signals obtained when sampling at An observation system is provided.
  • the frequency change amount calculation unit (29) changes the signal generation unit (24) from the certain repetition frequency Fs as the second sampling frequency according to the designation by a minute frequency ⁇ Fs at which no frequency aliasing occurs during sampling.
  • the second sampling pulse is generated from the sampling pulse generation unit (25) by designating a sampling frequency having a frequency that has been set, and the second measured pulse is used by the sampling unit (26) to measure the second measured pulse.
  • a waveform observation system for a signal under measurement according to the sixteenth aspect, wherein the frequency change amount ⁇ Fh of the specific signal obtained when the signal is sampled is measured.
  • the temporary repetition frequency calculation unit (28) includes the temporary sampling frequency Fs by the sampling pulse generation unit (25), the minute frequency ⁇ Fs as a change amount of the sampling frequency, and the specific signal frequency detection unit ( 27) based on the frequency Fh of the specific signal with respect to the provisional sampling frequency Fs detected by 27) and the frequency change amount ⁇ Fh of the specific signal calculated by the frequency change amount calculation unit (29).
  • Fx ′ Fh ⁇ Fs ⁇ ⁇ Fh / ⁇ Fs (when 0> ⁇ Fh / ⁇ Fs)
  • Fx ′ ⁇ Fh + Fs ⁇ ⁇ Fh / ⁇ Fs (when 0 ⁇ Fh / ⁇ Fs) ...
  • the specific signal frequency change amount detection unit (30) is large with respect to the signal generation unit (24) so that frequency folding occurs at the time of sampling from the certain repetition frequency Fs as a third sampling frequency according to the designation.
  • the third sampling pulse is generated from the sampling pulse generator (25) by designating a sampling frequency having a changed frequency, and the signal under measurement is generated by the sampling unit (26).
  • dFh_target is a target value of the frequency change amount of the specific signal accompanying a large change in the sampling frequency, and is an arbitrary frequency defined in the range of 0 to dFs / 2, and n is the sample frequency.
  • a waveform observation system for a signal under measurement according to an eighteenth aspect is provided, wherein a change amount dn of the sample number n is calculated.
  • the frequency change amount dFh_meas of the specific signal detected by the specific signal frequency change amount detection unit (30) is expressed by Equation (4).
  • dFh_meas dn.
  • the regular repetition frequency calculation unit (32) calculates the error amount en included in the sample number n calculated by the sample number error calculation unit (31) by the sample number calculation unit (33).
  • the accurate sample number n + en is obtained by adding to the sample number n, and the n + en is reflected as ⁇ Fh / ⁇ Fs indicating the sample number n calculated by the sample number calculation unit (33) in the equation (2).
  • the normal repetition frequency Fx of the signal under measurement is calculated by correcting the provisional repetition frequency Fx ′ of the signal under measurement calculated in the equation (2).
  • the specific signal frequency detection unit (27) detects the frequencies of a plurality of specific signals that appear in a band of 1 ⁇ 2 or less of the first sampling frequency
  • the temporary repetitive frequency calculation unit (28) includes a plurality of frequency components included in the signal under measurement based on frequency change amounts for the plurality of specific signals detected by the specific signal frequency detection unit (27). Is configured to determine the spectrum of
  • the display control unit (47) displays the spectrum obtained by the temporary repetition frequency calculation unit (28) on the frequency axis of the display unit (46) via the regular repetition frequency calculation unit (32).
  • a waveform observation system for a signal under measurement according to the fifteenth aspect is provided.
  • the method for detecting the repetition frequency of the signal under measurement changes the frequency of a specific signal obtained when sampling is performed by changing the sampling frequency from a temporary sampling frequency by a minute amount that does not cause frequency folding during sampling.
  • the tentative repetition frequency of the signal under measurement is obtained from the sampling frequency, and the signal under measurement is sampled sequentially at a sampling frequency from which the frequency is greatly changed so that frequency wrapping occurs during sampling from the provisional sampling frequency.
  • a frequency change amount of the obtained specific signal is detected, and based on the detected frequency change amount of the specific signal and the change amount of the sample number indicating how many times the frequency aliasing has occurred in this case.
  • the measurement signal contains frequency fluctuations
  • a normal repetition frequency of the signal under measurement by calculating the error included in the sample number and correcting the temporary repetition frequency of the signal under measurement based on the error included in the sample number. Therefore, even if there is a frequency fluctuation in the signal under measurement, the waveform repetition frequency of the signal under measurement can be detected with high accuracy.
  • the signal under measurement is accurately set by setting the sampling frequency for the signal with unknown frequency by using the method for detecting the frequency of repetition of the signal under measurement. Even if there is a frequency fluctuation, the signal to be measured can be sampled with high accuracy and the waveform of the signal under measurement can be observed with high accuracy.
  • FIG. 1 is a flowchart shown for explaining the procedure of a method for detecting a repetition frequency of a signal under measurement according to the first embodiment of the present invention.
  • FIG. 2 is a diagram for explaining the principle of the method for detecting the repetition frequency of the signal under measurement according to the first embodiment of the present invention.
  • FIG. 3 is a diagram for explaining the principle of the method for detecting the repetition frequency of the signal under measurement according to the first embodiment of the present invention.
  • FIG. 4 is a block diagram for explaining a configuration of a waveform observation system including a signal under measurement sampling apparatus according to the second embodiment of the present invention.
  • FIG. 5 is a block diagram showing a configuration example of a main part of a waveform observation system including a signal under measurement sampling apparatus according to the second embodiment of the present invention.
  • FIG. 6 is a diagram for explaining the operation of the main part of the waveform observation system including the sampling apparatus for the signal under measurement according to the second embodiment of the present invention.
  • FIG. 7 is a block diagram showing a configuration example of a main part of a waveform observation system including a signal under measurement sampling apparatus according to the second embodiment of the present invention.
  • FIG. 8 is a block diagram illustrating a configuration example of a main part of a waveform observation system including a measured signal sampling apparatus according to the second embodiment of the present invention.
  • FIG. 9 is a block diagram for explaining the configuration of a waveform observation system including a signal under measurement sampling apparatus according to the third embodiment of the present invention.
  • FIG. 10 is a block diagram shown for explaining the configuration of a conventional waveform observation apparatus.
  • FIG. 10 is a block diagram shown for explaining the configuration of a conventional waveform observation apparatus.
  • FIG. 11 is a figure shown in order to demonstrate operation
  • FIG. 12 is a diagram for explaining the principle of the method for detecting the repetition frequency of the signal under measurement according to the Japanese prior application filed by the present inventor.
  • FIG. 13 is a diagram for explaining the principle of the method for detecting the repetition frequency of the signal under measurement according to the Japanese prior application filed by the present inventor.
  • FIG. 14 is a flowchart shown for explaining the method for detecting the repetition frequency of the signal under measurement according to the Japanese prior application filed by the present inventor.
  • FIG. 15 is a block diagram shown for explaining the configuration of a waveform observation system including a measured signal sampling apparatus according to the Japanese prior application filed by the inventor of the present application.
  • FIG. 12 is a diagram for explaining the principle of the method for detecting the repetition frequency of the signal under measurement according to the Japanese prior application filed by the present inventor.
  • FIG. 13 is a diagram for explaining the principle of the method for detecting the repetition frequency of the signal under measurement according to the Japanese
  • FIG. 16 is a diagram for explaining the operation of the main part of the waveform observation system including the measured signal sampling apparatus according to the Japanese prior application filed by the inventor of the present application.
  • FIG. 17 is a diagram for explaining the operation of the main part of the waveform observation system including the measured signal sampling apparatus according to the Japanese prior application filed by the inventor of the present application.
  • FIG. 18 is a diagram for explaining the operation of the main part of the waveform observation system including the measured signal sampling device according to the Japanese prior application filed by the inventor of the present application.
  • FIG. 19 is a diagram for explaining an example of an observation waveform obtained by a waveform observation system including a signal-under-measurement sampling apparatus according to the Japanese prior application filed by the present inventor.
  • FIG. 1 is a flowchart shown for explaining the procedure of a method for detecting a repetition frequency of a signal under measurement according to the first embodiment of the present invention.
  • the method of detecting the repetition frequency of the signal under measurement basically has a band of 1 ⁇ 2 or less of the temporary sampling frequency Fs out of signals obtained by sampling the signal under measurement at the temporary sampling frequency Fs.
  • the frequency change amount dFh of the specific signal obtained when the signal under measurement is sequentially sampled at a sampling frequency that is greatly changed by the frequency dFs.
  • the signal under measurement includes frequency fluctuations.
  • the measured optical signal P is sampled at a temporary sampling frequency Fs (step S11).
  • step S12 the frequency Fh of the specific signal appearing in a band of 1/2 or less of the temporary sampling frequency Fs is detected (step S12).
  • Steps S11 and S12 constitute a first stage.
  • the optical signal P to be measured is sampled at a sampling frequency Fs + ⁇ Fs obtained by changing the sampling frequency from the temporary sampling frequency Fs by a minute frequency ⁇ Fs that does not cause frequency folding during sampling (step S13).
  • step S14 the frequency change amount ⁇ Fh of the specific signal obtained in a range where the sample number does not change by sampling in step S13 is calculated (step S14).
  • steps S13 and S14 constitute a second stage.
  • n ⁇ Fh / ⁇ Fs (1) according to the equation (1) using the minute frequency ⁇ Fs in the second stage (steps S13 and S14) as a denominator and the frequency change amount ⁇ Fh of the specific signal as a numerator.
  • Sample number n is calculated (step S15: third stage).
  • a provisional repetition frequency Fx ′ of the optical signal P is calculated (step S16: fourth stage).
  • the optical signal P to be measured is sampled at a sampling frequency that is greatly changed by the frequency dFs so that frequency folding occurs during sampling from the temporary sampling frequency Fs (step S17).
  • step S18 the frequency change amount dFh of the specific signal obtained by sampling in step S17 is measured (step S18).
  • step S15 the frequency change amount dFh of the specific signal measured in step S18 and the sample number n calculated in the third stage (step S15) indicating how many times the frequency aliasing has occurred in this process.
  • Steps S17, S18, and S19 constitute a fifth stage.
  • step S15 the measurement target calculated by the third step (step S15) based on the error amount en included in the sample number n calculated by the fifth step (steps S17, S18, S19).
  • step S20 the normal repetition frequency Fx of the measured optical signal P is calculated (step S20: sixth stage).
  • the signal to be measured P is a certain repetition of signals obtained when the optical signal P to be measured is sampled at a sampling frequency having a certain repetition frequency Fs as the temporary sampling frequency.
  • Fs repetition frequency
  • the sampling frequency is the tentative sampling frequency in the first stage (steps S11 and S12), and the minute frequency at which frequency folding does not occur during sampling from the certain repetition frequency Fs.
  • a frequency change amount ⁇ Fh of the specific signal obtained when the measured optical signal P is sampled while being changed by ⁇ Fs is detected.
  • step S16 the maximum level as the specific signal appearing in the band Fs / 2 below 1/2 of the certain repetition frequency Fs detected in the first stage (steps S11 and S12). And the provisional sampling frequency detected by the two steps (steps S13 and S14) are changed from the certain repetition frequency Fs by a minute frequency ⁇ Fs at which no frequency aliasing occurs during sampling.
  • Fx ′ Fh ⁇ Fs ⁇ ⁇ Fh / ⁇ Fs (in the case of 0> ⁇ Fh / ⁇ Fs) according to the equation (2)
  • Fx ′ ⁇ Fh + Fs ⁇ ⁇ Fh / ⁇ Fs (when 0 ⁇ Fh / ⁇ Fs) ...
  • a temporary repetition frequency Fx ′ of the signal under measurement is calculated.
  • step S17, S18, S19 frequency wrapping occurs when sampling from the certain repetition frequency Fs as the temporary sampling frequency in the first stage (steps S11, S12).
  • dFh_target is a target value of the frequency change amount of the envelope signal accompanying a large change in the sampling frequency, and is an arbitrary frequency defined in the range of 0 to dFs / 2.
  • the sample number calculated by the equation (1) where dn is the amount of change in the sample number n accompanying a large change in the sampling frequency, and is assumed to be included in the signal under measurement. In this range, the large change amount dFs of the sampling frequency is determined so as to be within the range that can be determined)
  • the change amount dn of the sample number n is calculated, and the frequency change amount dFh_meas of the specific signal is expressed by Equation (4).
  • dFh_meas dn.
  • step S20 the error en included in the sample number n calculated in the fifth stage (steps S17, S18, S19) is used as the third stage (step S15).
  • the accurate sample number n + en is obtained by adding to the sample number n calculated in step (b), and the n + en is reflected as ⁇ Fh / ⁇ Fs indicating the sample number n in the equation (2).
  • the normal repetition frequency Fx of the signal under measurement is calculated.
  • FIGS. 2 and 3 illustrate ⁇ Ph / ⁇ Fs indicating a sample number n smaller than 0 (FIG. 2) and larger than 0 in order to explain the principle of the method for detecting the repetition frequency of the signal under measurement according to the present invention as described above. (FIG. 3).
  • n ⁇ dFs indicates a frequency change amount of the nth harmonic component caused by changing the sampling frequency by dFs
  • dn ⁇ (Fs + dFs) is a frequency return due to frequency folding. Indicates the amount.
  • the assumed frequency fluctuation amount is ⁇ x [ppm]
  • the calculated value of n (rounded value) can be determined to be error-free.
  • this frequency change prediction (n ⁇ dFs) may differ by ⁇ y ⁇ dFs.
  • the possible range of dFs as the settable range of sampling frequency variation dFs is that the variation dn of sample number n can be determined even when this ⁇ y ⁇ dFs is considered. It becomes a condition.
  • steps S17 to S17 are performed. It is necessary to repeat S20.
  • the sampling frequency change amount dFs is gradually increased every time the steps S17 to S20 are repeated, the absolute value of the error amount y that may be included in n is gradually reduced to 1/2. It converges to the following, and the end can be determined.
  • the specified frequency obtained when sampling is performed by changing the sampling frequency from the temporary sampling frequency by a minute amount that does not cause frequency folding during sampling.
  • the temporary repetition frequency of the signal under measurement is obtained from the amount of change in the frequency of the signal, and the signal under measurement is sequentially changed at the sampling frequency at which the sampling frequency is greatly changed from the temporary sampling frequency so that frequency folding occurs during sampling.
  • the frequency change amount of the specific signal obtained when sampling is measured, and the frequency change amount of the measured specific signal and the change amount of the sample number indicating how many times the frequency aliasing has occurred in this case On the basis of the frequency fluctuation in the signal under measurement.
  • An error component included in the sample number in a rare state is calculated, and a temporary repetition frequency of the signal under measurement is corrected based on the error component included in the sample number. Since the normal repetition frequency of the measurement signal is calculated, the waveform repetition frequency of the signal under measurement can be detected with high accuracy even if there is a frequency fluctuation in the signal under measurement.
  • FIG. 4 is a block diagram for explaining a configuration of a waveform observation system including a signal under measurement sampling apparatus according to the second embodiment of the present invention.
  • the waveform observation system 20 performs steps S11 to S14 and S16 of the method for detecting a repetition frequency of a signal under measurement according to the first embodiment described above.
  • the parameter specifying unit 22, the calculation unit 23, and the signal generation unit 24, which are the same as those of the waveform observation system 20 including the sampling device for the signal under measurement according to the Japanese prior application of the present inventor shown in FIG. ,
  • control unit 34 is provided for controlling a predetermined operation as described later of the entire waveform observation system 20 according to the second embodiment.
  • FIG. 4 parts that are configured in the same manner as in FIG. 15 described above are denoted by the same reference numerals, description thereof is omitted, and parts that are not described in FIG. 15 are described below. To do.
  • the parameter specifying unit 22 is for specifying information corresponding to the repetition period Tx of the waveform of the optical signal to be measured P and the sampling offset delay time ⁇ T by operating an operation unit (not shown).
  • the manual setting mode In this case, an accurate repetition period Tx is specified, and in the automatic setting mode, the approximate value Tx ′ is specified or nothing is specified.
  • the designation information may be not only the cycle value but also a frequency value corresponding to the cycle value, and may be information such as a number for designating one from preset values.
  • the calculation unit 23 is an integer (N) of the repetition period Tx (or its approximate value) of the signal under measurement. )
  • the sampling period Ts (sampling frequency Fs) that is different from the multiple by the offset delay time ⁇ T is calculated.
  • the calculation unit 23 calculates, as a trigger period Tg (frequency Fg), a time required to obtain data for one period of the waveform to be observed with a resolution of ⁇ T in the calculated sampling period.
  • Fs Fx / (N + Fx ⁇ ⁇ T) It is calculated by the operation of
  • the trigger frequency Fg is as described above.
  • the signal generator 24 is a clock signal C having a sampling frequency Fs calculated by the calculator 23, a high-frequency signal U and a frequency Fg necessary for generating a narrow pulse light by the optical sampling pulse generator 25 described later.
  • the trigger signal G is generated and output.
  • the configuration of the signal generator 24 is arbitrary.
  • the signal U is generated by multiplying a stable and accurate reference signal (for example, 1 GHz ⁇ 1 MHz), and the signal U is divided to generate the clock signal C. And a trigger signal G is generated.
  • a stable and accurate reference signal for example, 1 GHz ⁇ 1 MHz
  • the optical sampling pulse generator 25 generates an optical sampling pulse Ps having a period equal to that of the clock signal C output from the signal generator 24.
  • the pulse width of the optical sampling pulse Ps generated by the optical sampling pulse generator 25 determines the upper limit of the sampling time resolution. The narrower the pulse width, the higher the time resolution can be sampled.
  • the optical sampling pulse generator 25 enters the continuous light CW emitted from the light source 25a into the modulator 25b and modulates it with the signal U as shown in FIG. Then, as shown in FIG. 6A, the pulse light Pa having a relatively narrow width is generated with the period Tu of the signal U, and the pulse light Pa is input to the thinning means 25c.
  • the thinning-out unit 25c has an optical switch that is turned on for a short time in the cycle of the clock signal C, and outputs the pulsed light Pb having the cycle Ts of the clock signal C as shown in FIG.
  • This pulsed light Pb is input to an automatic gain control type fiber amplifier 25d, amplified to pulsed light Pb 'having an appropriate intensity, and incident on the dispersion reducing fiber 25e.
  • An optical sampling pulse Ps having a narrow width (for example, 0.1 ps or less) is emitted from the dispersion reducing fiber 25e having received the pulse light Pb ′ having an appropriate intensity with a period Ts as shown in FIG. Is done.
  • the optical sampling pulse Ps emitted from the optical sampling pulse generator 25 is set so as to be synchronized with the clock signal C.
  • the optical sampling pulse generator 25 is synchronized with the clock signal C from the signal generator 24 under the control of the controller 34, and is temporarily set as the first to third sampling frequencies according to the designation. From the first sampling pulse having the sampling frequency Fs, the second sampling pulse having the sampling frequency changed from the temporary sampling frequency Fs by a minute frequency ⁇ Fs that does not cause frequency folding during sampling, and the temporary sampling frequency Fs A third sampling pulse having a sampling frequency that is largely changed by the frequency dFs so as to cause frequency folding at the time of sampling is selectively generated.
  • the optical sampling pulse Ps as the first to third sampling pulses selectively generated is incident on the optical sampling unit 26.
  • the optical sampling unit 26 includes an optical mixer 26a and a photoelectric converter 26b.
  • the optical signal P and the optical sampling pulse Ps input from the input terminal 21a are input to the optical mixer 26a.
  • the optical signal P to be measured is sampled by the optical sampling pulse Ps, and the pulsed light Po obtained by the sampling is converted into an electrical pulse signal Eo by the photoelectric converter 26b and output.
  • the specific signal frequency detection unit 27 operates when an automatic setting mode is designated together with a repetitive frequency calculation unit 28, which will be described later, under the control of the control unit 34, and is sampled and output from the optical sampling unit 28 with the first sampling pulse. And a frequency Fh of a specific signal appearing in a band of 1/2 or less of the sampling frequency is detected from the signal components included in the pulse signal Eo.
  • the specific signal frequency detection unit 27 inputs a pulse signal Eo to an A / D converter 27a and converts it into a digital value, and the digital value string is converted by a digital filter 27b. Then, band limiting processing of 1/2 or less of the sampling frequency is performed, and further processing such as FFT (Fast Fourier Transform) is performed by the arithmetic processing unit 27c, for example, the signal component having the highest level is set as the specific signal, The frequency Fh is obtained.
  • FFT Fast Fourier Transform
  • the temporary repetition frequency calculation unit 28 controls the signal generation unit 24 under the control of the control unit 34 when the automatic setting mode is designated, and sets the temporary sampling frequency Fs as a sampling frequency for the optical signal P to be measured to a minute frequency.
  • a frequency change amount ⁇ Fh of the specific signal sampled and output by the second sampling pulse changed by ⁇ Fs is obtained, and a temporary repetition frequency Fx ′ of the optical signal P to be measured is obtained based on the change amount. Is set in the calculation unit 23.
  • the specific signal frequency change amount detection unit 30 is a frequency change amount dFh of a specific signal obtained when the sampling unit 26 samples the signal under measurement with the third sampling pulse from the sampling pulse generation unit 25. Detect meas.
  • the sample number error calculation unit 31 includes a frequency change amount dFh of the specific signal detected by the specific signal frequency change detection unit 30. Based on meas and the amount of change dn of the sample number n indicating how many times the frequency aliasing has occurred in this process, the sample number n in a state in which the signal under measurement includes frequency fluctuations The error amount en included in is calculated.
  • the regular repetition frequency calculation unit 32 calculates the measurement target calculated by the temporary repetition frequency calculation unit 28 based on the error amount en included in the sample number n calculated by the sample number error calculation unit 31.
  • the regular repetition frequency Fx of the signal under measurement is calculated by correcting the temporary repetition frequency Fx ′ of the signal.
  • the measurement signal sampling apparatus basically selectively selects an input terminal 21a for inputting a measurement signal and a clock signal having first to third sampling frequencies according to the designation.
  • a third having a sampled frequency A sampling pulse generator 25 that selectively generates sampling pulses, a sampling unit 26 that selectively samples the signal under measurement by the first to third sampling pulses from the sampling pulse generator 25, and the sampling Of the signals obtained when the signal to be measured is sampled by the first sampling pulse from the sampling pulse generator 25 by the unit 26, it appears in a band of 1/2 or less of the temporary sampling frequency Fs.
  • a frequency change amount calculation unit 29 for calculating a frequency change amount ⁇ Fh of the specific signal; the temporary sampling frequency Fs by the sampling pulse generation unit 25; the minute frequency ⁇ Fs as the change amount of the sampling frequency; Based on the frequency Fh of the specific signal with respect to the temporary sampling frequency Fs detected by the signal frequency detection unit 27 and the frequency change amount ⁇ Fh of the specific signal calculated by the frequency change amount calculation unit 29, A temporary repetition frequency calculation unit 28 for calculating a temporary repetition frequency Fx ′ of the signal, and the frequency used by the temporary repetition frequency calculation unit 28 using the minute frequency ⁇ Fs used in the temporary repetition frequency calculation unit 28 as a denominator.
  • a sample number calculation unit 33 that calculates a sample number n, and a frequency of a specific signal obtained when the signal to be measured is sequentially sampled by the third sampling pulse from the sampling pulse generation unit 25 by the sampling unit 26
  • a specific signal frequency change amount detection unit 30 for detecting a change amount dFh; a frequency change amount dFh of the specific signal measured by the specific signal frequency change amount detection unit 30; Based on the change amount dn of the sample number n calculated by the sample number calculation unit 33 indicating whether or not the signal under measurement includes frequency fluctuations.
  • the sample number error calculation unit 31 for calculating the error amount en and the sample number error calculation unit 31 By correcting the temporary repetition frequency Fx ′ of the signal under measurement calculated by the temporary repetition frequency calculation unit 28 based on the error amount en included in the sample number n calculated in And a normal repetition frequency calculation unit 32 for calculating a normal repetition frequency Fx of the signal under measurement.
  • the specific signal frequency detector 27 designates a temporary sampling frequency having a certain repetition frequency Fs as the first sampling frequency according to the designation from the sampling pulse generator 25 by designating the signal generator 24 to the signal generator 24. Obtained when the first sampling pulse having the temporary sampling frequency is generated and the signal to be measured is sampled by the sampling unit 26 with the first sampling pulse having the temporary sampling frequency. Among the signals, the frequency Fh of the specific signal appearing in the band Fs / 2 which is 1/2 or less of the certain repetition frequency Fs is detected.
  • the frequency change amount calculation unit 29 changes a frequency obtained by changing the signal generation unit 24 from the certain repetition frequency Fs by a minute frequency ⁇ Fs at which sampling does not occur during sampling as the second sampling frequency according to the designation. It is obtained when the second sampling pulse is generated from the sampling pulse generator 25 by designating a sampling frequency having the sampling frequency and the signal under measurement is sampled by the sampling unit 26 with the second sampling pulse.
  • the frequency change amount ⁇ Fh of the specific signal is calculated.
  • the specific signal frequency change amount detection unit 30 changes the signal generation unit 24 by a frequency dFs so that frequency wrapping occurs at the time of sampling from the certain repetition frequency Fs as the third sampling frequency according to the designation.
  • the third sampling pulse is generated from the sampling pulse generator 25 by designating a sampling frequency having a frequency that has been set, and the signal under measurement is sequentially generated by the third sampling pulse by the sampling unit 26.
  • the sample number calculated by the number calculation unit 33 where dn is the amount of change in the sample number n that accompanies a large change in the sampling frequency and is assumed to be included in the signal under measurement. In this range, the large change amount dFs of the sampling frequency is determined so as to be within the range that can be determined)
  • a change amount dn of the sample number n is calculated.
  • the frequency change amount dFh_meas of the specific signal detected by the specific signal frequency change amount detection unit 30 is expressed by Equation (4).
  • dFh_meas dn. (Fs + dFs) + (n + en) .dFs (4) (Where en is the error included in the sample number n)
  • en (dFh_meas ⁇ dFh_target) / dFs (5)
  • An error en included in the sample number n is calculated.
  • the regular repetition frequency calculation unit 32 sets the error number en included in the sample number n calculated by the sample number error calculation unit 31 to the sample number n calculated by the sample number calculation unit 33.
  • An accurate sample number n + en is obtained by addition, and the n + en is reflected as ⁇ Fh / ⁇ Fs indicating the sample number n in the equation (2), and the temporary signal of the signal under measurement calculated in the equation (2) is obtained. Is corrected, the normal repetition frequency Fx of the signal under measurement is calculated.
  • the calculation unit 23 corresponds to a period Ts that is different from the integer multiple of the repetition period Tx corresponding to the normal repetition frequency Fx calculated by the normal repetition frequency calculation unit 32 by a predetermined offset delay time ⁇ T.
  • the frequency Fs is calculated as a normal sampling frequency for the signal under measurement, and the calculated normal sampling frequency is designated to the signal generator 24, so that the sampling pulse generator 25 supplies the first to first signals.
  • the sampling pulse generator 25 supplies the first to first signals.
  • the pulse signal Eo output by sampling the signal under measurement with the sampling pulse having the normal sampling frequency Fs by the sampling unit 26 is captured and displayed in the digital oscilloscope 60 in the same manner as described above with reference to FIG.
  • the sampling frequency is set for the signal under measurement whose frequency is unknown using the frequency detection method for the signal under measurement according to the first embodiment.
  • FIG. 9 is a block diagram for explaining the configuration of a waveform observation system including a signal under measurement sampling apparatus according to the third embodiment of the present invention.
  • the waveform observation system 40 including the signal-under-measurement sampling apparatus according to the third embodiment has the functions of the sampling apparatus 21 and the digital oscilloscope 60 constituting the waveform observation system 20 according to the second embodiment in a common housing. It is made into the structure which accommodated in and integrated.
  • the waveform observation system 40 including the sampling device for the signal under measurement includes an A / D converter 43, data, in addition to the components of the sampling device 21 shown in FIG.
  • An acquisition control unit 44, a waveform data memory 45, a display control unit 46, a display 47, and an observation mode designating unit 48 are provided.
  • the A / D converter 43 receives the clock signal C (or a higher-speed clock signal synchronized with the clock signal C), the A / D conversion process for the pulse signal Eo output from the optical sampling unit 26 is received.
  • the peak value data Dp of the pulse signal Eo obtained by the A / D conversion process is output to the data acquisition control unit 44.
  • the data acquisition control unit 44 starts writing the data Dp to the waveform data memory 45 in synchronization with the clock signal C from the rising (or falling) timing of the trigger signal G, and finishes writing a predetermined number of data. Then, the operation of waiting until the trigger signal G rises is repeated.
  • the number of data written in the waveform data memory 45 corresponds to the number of display points on the time axis displayed on the display 47 described later.
  • the display control unit 46 forms a waveform display unit together with the display unit 47, displays a coordinate screen composed of a time axis and a voltage axis on the display unit 47, and a series of data Dp stored in the waveform data memory 45. Are plotted and displayed on the coordinate screen, and a waveform corresponding to the read series of data Dp is displayed.
  • the display control unit 46 performs processing and display processing on the data Dp stored in the waveform data memory 45 in accordance with the observation mode specified by the observation mode specifying unit 48.
  • the waveform is displayed in a state where an afterimage of the series of data Dp stored in the waveform data memory 45 is left, and when the averaging mode is designated, the series stored in the waveform data memory 45 is displayed.
  • a predetermined set of data Dp is obtained and averaged, and a series of data obtained by the averaging is overlaid and displayed as a waveform.
  • the operation of the waveform observation system 40 configured in this manner is the same as that of the waveform observation system 20, and the repetition frequency of the optical signal to be measured is accurately obtained, and there is a frequency fluctuation in the repetition frequency of the optical signal to be measured.
  • the sampling frequency and trigger frequency corresponding to the repetition frequency are set, even if the repetition frequency is unknown or only a rough value is known, it can be displayed stably.
  • the waveform information of the signal under measurement is acquired and displayed in a single shot, it is not necessary to generate the periodic trigger signal G as described above, and for example, 1 according to a manual trigger operation.
  • the trigger signal G that rises only once may be output.
  • the normal repetition frequency of the signal under measurement can be obtained in the same manner as described above even if there is a frequency fluctuation in the repetition frequency of the signal under measurement.
  • the waveform of the signal under measurement can be accurately displayed by setting a sampling frequency that correctly corresponds to the exact repetition frequency and performing the trigger operation.
  • the waveform observation system 40 has a display function, the spectrum of the signal under measurement can be displayed.
  • the specific signal frequency detection unit 27 detects the frequencies and levels of a plurality of specific signals that appear in a band of 1 ⁇ 2 or less of the sampling frequency, and outputs them to the temporary repetition frequency calculation unit 28.
  • provisional repetition frequency calculation unit 28 obtains spectra of a plurality of frequency components included in the signal under measurement based on the respective frequency change amounts for the plurality of specific signals detected by the specific signal frequency detection unit 27, This is output to the waveform display control unit 46 via the regular repetition frequency calculation unit 32 as indicated by a broken line in FIG.
  • the waveform display control unit 46 displays the spectrum obtained from the temporary repetition frequency calculation unit 28 via the regular repetition frequency calculation unit 32 on the frequency axis of the display 47 when the automatic setting mode is designated. .
  • each of the waveform observation systems 20 and 40 described above similarly applies the present invention to an E / O sampling method for sampling an electric signal with an optical pulse instead of an O / O sampling method for sampling an optical signal with an optical pulse. Can be applied.
  • the measured signal waveform observation system basically includes an input terminal 21a for inputting a measured signal, and first to third sampling frequencies and designations according to designation.
  • a signal generator 24 that selectively generates a clock signal having a corresponding fourth sampling frequency, and the first to third sampling frequencies according to the designation in synchronization with the clock signal from the signal generator 24.
  • a first sampling pulse having a provisional sampling frequency Fs; a second sampling pulse having a sampling frequency changed from the provisional sampling frequency Fs by a minute frequency ⁇ Fs that does not cause frequency folding during sampling; and the provisional sampling frequency Fs.
  • the frequency dF is large so that frequency folding occurs during sampling from A sampling pulse generator 25 for selectively generating a third sampling pulse having a sampling frequency changed by only a fourth sampling pulse having a fourth sampling frequency according to the designation, and the signal under measurement
  • the sampling unit 26 that selectively samples the first to third sampling pulses and the fourth sampling pulse from the sampling pulse generation unit 25, and the signal to be measured from the sampling pulse generation unit 25 by the sampling unit 26.
  • a specific signal frequency detection unit 27 that detects a frequency Fh of a specific signal that appears in a band of 1 ⁇ 2 or less of the provisional sampling frequency Fs among signals obtained by sampling with the first sampling pulse of By the sampling unit 26, the measurement target
  • a frequency change amount calculating unit 29 for calculating a frequency change amount ⁇ Fh of the specific signal obtained when the signal is sampled by the second sampling pulse from the sampling pulse generating unit 25;
  • the temporary sampling frequency Fs, the minute frequency ⁇ Fs as the amount of change in the sampling frequency, the frequency Fh of the specific signal with respect to the temporary sampling frequency Fs detected by the specific signal frequency detector 27, and the frequency change amount Based on the frequency change amount ⁇ Fh of the specific signal calculated by the calculation unit 29, a temporary repetition frequency calculation unit 28 that calculates a temporary repetition frequency Fx ′ of the signal under measurement, and the temporary repetition frequency calculation unit 28 using the minute frequency ⁇ Fs used in 28 as a denominator.
  • n ⁇ Fh / ⁇ Fs ...
  • a sample number error calculation unit 31 for calculating a current error en and the sample number error calculation unit 31 thus, by correcting the provisional repetition frequency Fx ′ of the signal under measurement calculated by the provisional repetition frequency calculation unit 28 based on the error amount en included in the sample number n calculated as described above, A normal repetition frequency calculation unit 32 that calculates a normal repetition frequency Fx of the measurement signal, and an integer multiple of a repetition period Tx corresponding to the normal repetition frequency Fx calculated by the normal repetition frequency calculation unit 32 A frequency Fs corresponding to a period Ts having a difference by a predetermined offset delay time ⁇ T is calculated as a normal sampling frequency for the signal under measurement, and the calculated normal sampling frequency Fs is used as the fourth sampling frequency for the signal.
  • the sampling pulse generator 25 The fourth sampling pulse from the sampling unit 26 and the sampling unit 26 to sample the signal under measurement with the fourth sampling pulse, and the sampling unit 26 to sample with the fourth sampling pulse.
  • the analog / digital (A / D) converter 43 that converts the output signal into digital waveform data and outputs the waveform, and the waveform for storing the waveform data output from the A / D converter 43 A data memory 45; a data acquisition controller 44 for writing the waveform data output from the A / D converter 43 to the waveform data memory 45 in synchronization with the clock signal from the signal generator 24;
  • a series of waveform data stored in the data memory 45 is read out and is displayed on the time axis of the display unit 46. It is characterized by comprising a display control unit 46 to display at intervals corresponding to the offset delay time.
  • the specific signal frequency detector 27 designates a temporary sampling frequency having a certain repetition frequency Fs as the first sampling frequency according to the designation from the sampling pulse generator 25 by designating the signal generator 24 to the signal generator 24. Obtained when the first sampling pulse having the temporary sampling frequency is generated and the signal to be measured is sampled by the sampling unit 26 with the first sampling pulse having the temporary sampling frequency. Among the signals, the frequency Fh of the specific signal appearing in the band Fs / 2 which is 1/2 or less of the certain repetition frequency Fs is detected.
  • the frequency change amount calculation unit 29 changes a frequency obtained by changing the signal generation unit 24 from the certain repetition frequency Fs by a minute frequency ⁇ Fs at which sampling does not occur during sampling as the second sampling frequency according to the designation. It is obtained when the second sampling pulse is generated from the sampling pulse generator 25 by designating a sampling frequency having the sampling frequency and the signal under measurement is sampled by the sampling unit 26 with the second sampling pulse. A frequency change amount ⁇ Fh of the specific signal is calculated.
  • the specific signal frequency change amount detection unit 30 changes the signal generation unit 24 by a frequency dFs so that frequency wrapping occurs at the time of sampling from the certain repetition frequency Fs as the third sampling frequency according to the designation.
  • the third sampling pulse from the sampling pulse generator 25 is generated by designating a sampling frequency having a frequency that has been set, and the signal to be measured is sampled by the sampling unit 26 with the third sampling pulse.
  • dFh_target is a target value of the frequency change amount of the specific signal accompanying a large change in the sampling frequency, and is an arbitrary frequency defined in the range of 0 to dFs / 2, and n is the sample frequency.
  • the sample number calculated by the number calculation unit 33 where dn is the amount of change in the sample number n accompanying a large change in the sampling frequency, and is assumed to be included in the signal under measurement. In this range, the large change amount dFs of the sampling frequency is determined so as to be within the range that can be determined)
  • a change amount dn of the sample number n is calculated.
  • the frequency change amount dFh_meas of the specific signal detected by the specific signal frequency change amount detection unit 30 is expressed by Equation (4).
  • dFh_meas dn. (Fs + dFs) + (n + en) .dFs (4) (Where en is the error included in the sample number n)
  • en (dFh_meas ⁇ dFh_target) / dFs (5)
  • An error en included in the sample number n is calculated.
  • the regular repetition frequency calculation unit 32 calculates the error number en included in the sample number n calculated by the sample number error calculation unit 31 by the sample number error calculation unit 33.
  • An accurate sample number n + en is obtained by adding to n, and the n + en is reflected as ⁇ Fh / ⁇ Fs indicating the sample number n in the equation (2), and the signal under measurement calculated in the equation (2)
  • the temporary repetition frequency Fx ′ By correcting the temporary repetition frequency Fx ′, the normal repetition frequency Fx of the signal under measurement is calculated.
  • the specific signal frequency detection unit 27 detects frequencies of a plurality of specific signals appearing in a band of 1 ⁇ 2 or less of the first sampling frequency, and the temporary repetition frequency calculation unit 28 detects the specific signal frequency detection
  • the display control unit 47 is configured to obtain a spectrum of a plurality of frequency components included in the signal under measurement based on a frequency change amount for the plurality of specific signals detected by the unit 27.
  • the spectrum obtained by the repetition frequency calculation unit 28 is configured to be displayed on the frequency axis of the display unit 46 via the regular repetition frequency calculation unit 32.
  • the first measured signal sampling apparatus and waveform observation system 20 according to the second embodiment are similar to the first measured signal. Even if there is a frequency fluctuation in the signal under measurement, it is possible to accurately set the sampling frequency for the signal under unknown frequency by using the method for detecting the frequency of the signal under measurement according to the embodiment.
  • the signal can be sampled with high accuracy and the waveform of the signal under measurement can be observed with high accuracy.
  • the present invention even if there is a frequency fluctuation in the signal under measurement, the repetition of the signal under measurement can be accurately detected from the sampling result. It is possible to provide a sampling apparatus and a waveform observation system that can acquire and observe stable waveform information using the frequency detection method and the same, and that can easily configure the entire system.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Frequencies, Analyzing Spectra (AREA)

Abstract

 被測定信号の繰り返し周波数を検出する方法において、被測定信号に周波数揺らぎが存在していても被測定信号の波形繰り返し周波数を高精度に検出するために、従来技術で用いていた方法により求めた被測定信号の繰り返し周波数を被測定信号の仮の繰り返し周波数とし、サンプリング周波数を仮のサンプリング周波数からサンプリング時に周波数折り返しが発生するように大きく周波数を変化させたサンプリング周波数で前記被測定信号を順次にサンプリングした場合に得られる特定信号の周波数変化量を検出し、この検出された特定信号の周波数変化量と、この場合に何回周波数折り返しが発生したかを示すサンプル番号の変化量とに基づいて、前記被測定信号に周波数揺らぎが含まれている状態での前記サンプリング番号に含まれている誤差分を算出し、このサンプル番号に含まれている誤差分に基づいて前記被測定信号の仮の繰り返し周波数を補正することにより、前記被測定信号の正規の繰り返し周波数を算出するようにした。

Description

被測定信号の繰り返し周波数検出方法及びそれを用いるサンプリング装置並びに波形観測システム
 本発明は被測定信号の繰り返し周波数検出方法及びそれを用いるサンプリング装置並びに波形観測システムに係り、特に、高速な繰り返し信号で変調された光信号に対するサンプリングを行ってその波形情報を取得し、観測するためのシステムにおいて、被測定信号に周波数揺らぎが存在していても、被測定信号の周波数を正確に検出し、安定な波形情報の取得と観測ができるようにするための技術を採用した被測定信号の繰り返し周波数検出方法及びそれを用いるサンプリング装置並びに波形観測システムに関する。
 例えば、高速な繰り返し信号で変調された光信号の波形のデータを取得して観測するために、図10に示す波形観測装置10が用いられている。
 この波形観測装置10は、入力される被測定光信号Pの波形の繰り返し周期TxのN倍(Nは1以上の任意の整数で、例えば、100、1000等)より所定値(オフセット遅延時間)ΔTだけ長い繰り返し周期Ts(=N・Tx+ΔT)を有し、パルス幅が狭い光サンプリングパルスPsを光サンプリングパルス発生手段11によって生成する。
 そして、この光サンプリングパルス発生手段11によって生成された光サンプリングパルスPsは、被測定光信号Pと共に、光サンプリング部12に入力される。
 この光サンプリング部12では、被測定光信号Pを光サンプリングパルスPsでサンプリングすることによって得られたパルス光が、光電変換されることにより、電気のパルス信号Eoに変換されてアナログ/デジタル(A/D)変換器13に出力される。
 このA/D変換器13は、電気のパルス信号Eoの振幅強度をデジタルのデータに変換して波形データメモリ14に記憶させる。
 この波形データメモリ14に記憶された一連の波形データは、表示制御手段15によって読み出された後、表示器16に被測定光信号Pの波形として表示される。
 このようなサンプリング方式の波形観測装置10では、図11の(a)に示すように、被測定光信号Pの繰り返し波形がN回連続して入力される毎に、光サンプリングパルスPsによるサンプリングタイミングが図11の(b)のように、ΔT時間ずつシフトしていくため、周期Txに比べて格段に低速なサンプリングで、被測定用の光信号Pの波形を高分解能でサンプリングして得られる一連の波形データを表示器16の画面上で観測することができる。
 このようなサンプリング方式の波形観測装置10は、例えば、以下に記す特許文献1に開示されている。
 ところで、上記のような波形観測装置10に要求される観測モードには、パーシステンスモード、平均化モード等がある。
 パーシステンスモードは、被測定用の光信号Pをサンプリングしてその取得データを表示器の画面上にある一定時間表示し、その残像によって測定波形を表示するという動作を繰り返すモードであり、被測定光信号の波形の変化をほぼリアルタイムに観測することができる。
 また、平均化モードは、被測定用の光信号Pをサンプリングしてその複数のデータ取得期間分の波形データの平均化処理を行い、その平均化された波形を表示するモードであり、ノイズ成分を除去した波形観測が可能となる。
 しかるに、被測定光信号Pのサンプリング時にサンプリングが被測定光信号Pの繰り返し波形の同一位相位置から開始されないと、上記のように被測定光信号の波形を残像によって表示していく観測モードの場合には、表示される波形が時間軸方向に毎回ずれたりするという不都合が生じる。
 また、平均化モードでは、平均化処理が正しく行えず波形を正しく再現できなくなると共に、波形の位相や振幅の変動の大きさを正しく把握することができなくなる。
 このため、被測定信号の波形の繰り返し周期、あるいはその信号自体の周波数(ビットレート)が既知である必要がある。
 しかし、場合によっては、観測対象となる被測定信号の波形の繰り返し周期や周波数の概略値は分かっていても、その正確な値が不明な状況では、観測対象となる被測定信号の波形に対して正しいサンプリング周期の設定が行えず、所望の波形を観測することができないという問題がある。
 また、この種の波形観測装置において、狭い幅の光サンプリングパルスを生成したり、光同士のミキシングを行なう光ミキサ等が必要であり、表示部を含めると装置全体が複雑化し高価になるという別の問題がある。
 そこで、本願発明者は、これらの問題を解決するために、日本国における先願として、後述する特許文献2に開示されているような被測定信号の繰り返し周波数検出方法を提案している。
 次に、特許文献2に開示されている被測定信号の繰り返し周波数検出方法の原理について説明する。
 ここでは、被測定信号を単一周波数Fxの正弦波と仮定し、これを仮のサンプリング周波数Fsでサンプリングして得られる信号Sxの周波数成分について考察する。
 サンプリングパルスが幅無限小の理想パルスであれば、その周波数成分は、図12に示すように、周波数n・Fsの各スペクトラムを有する(n=0,1,2,…)。
 したがって、このサンプリングパルスでサンプリングして得られた信号Sxには、被測定信号の周波数Fxと各周波数n・Fsとの差及び和の成分が含まれる。
 この中で最も周波数が低い成分は、図13の(a)、(b)に示すように、周波数Fxに最も近い周波数n・Fsのスペクトラム成分との差周波数あるいは周波数(n+1)・Fsのスペクトラム成分との差周波数であり、その差周波数Fhは、次のように表すことができる。
 Fh=mod[Fx,Fs]    …(mod[Fx,Fs]≦Fs/2の場合)
 Fh=(Fs/2)-mod[Fx,Fs]                                     …(mod[Fx,Fs]>Fs/2の場合)
 ただし、記号mod[A,B]は、AをBで割ったときの余りを表す。
 この差周波数Fhは最大でFs/2なので、帯域上限Fs/2の低域通過フィルタを用いることにより簡単に抽出することができる。
 ここで、サンプリング周波数Fsの微小な変化δFsに伴う差周波数Fhの変化δFhは、差周波数Fhを周波数Fsについて微分した次の式で与えられる。
 δFh/δFs=-quotient[Fx,Fs]                                …(0<mod[Fx,Fs]<Fs/2の場合)
 δFh/δFs=1+quotient[Fx,Fs]                                 …(mod[Fx,Fs]>Fs/2の場合)
 ただし、記号quotient[A,B]は、AをBで割ったときの整数商を表す。
 上記結果、及び次の商と余りの関係、
 mod[Fx,Fs]=Fx-Fs・quotient[Fx,Fs]
から、被測定信号の周波数Fxは、次の演算で求めることができる。
 Fx=Fh-Fs・δFh/δFs           …(0>δFhの場合)
 Fx=-Fh+Fs・δFh/δFs          …(0<δFhの場合)
 図14は、以上のような被測定信号の繰り返し周波数検出方法の手順の一例を示すフローチャートである。
 まず、仮のサンプリング周波数Fsで被測定信号をサンプリングし(ステップS1)、そのサンプリングによって得られた信号のうち、サンプリング周波数Fsの1/2以下の帯域に現れる特定信号の周波数Fhを検出する(ステップS2)。
 そして、サンプリング周波数を微小量ΔFs(例えば、1Hz)だけ変化させ(ステップS3)、そのときの特定信号の周波数変化量ΔFhを検出する(ステップS4)。
 そして、サンプリング周波数Fsとその周波数変化量ΔFs、特定信号の周波数Fhとその周波数変化量ΔFhとを次式(1)に代入することにより、被測定用の信号の繰り返し周波数Fxを算出する(ステップS5)。
 Fx=Fh-Fs・ΔFh/ΔFs           …(0>ΔFhの場合)
 Fx=-Fh+Fs・ΔFh/ΔFs          …(0<ΔFhの場合)
                                   …(1)
 これにより、波形情報を取得して観測するシステムの場合には、この周波数検出処理を被測定信号について予め行い、それによって得られた周波数Fxに対応したサンプリング周波数Fsを設定すれば、被測定信号の波形情報の取得及び観測を正確に行うことができる。
 ここで、上記繰り返し周波数検出に含まれる誤差について考察すると、δFh/δFsの値は、上記定義から整数であるから、実際の測定で得られるΔFh/ΔFsが整数とならない場合、その値の少数点以下を四捨五入して整数化することにより、測定誤差をなくすことができる。
 また、サンプリング周波数の値は、システム自体が与える値であるため、誤差は発生しない。
 さらに、特定信号の周波数Fhの測定誤差は、高速フーリェ変換(FFT)処理などのデジタル信号処理の分解能で決まり、容易に数Hz以下にすることができる。
 これらのことから、被測定信号の繰り返し周波数Fxの算出誤差も、数Hz以下の精度が得られる。
 この誤差は、例えば、繰り返し周波数10GHzに対して10-10なり、極めて高精度で、被測定信号の繰り返し周波数を検出することができる。
 なお、上記説明は、被測定信号が単一周波数Fxの正弦波であると仮定したものであって、実際の観測対象となる被測定信号には、通常複数の周波数成分が含まれている。
 すなわち、被測定信号がデータによりノンリターンツーゼロ(NRZ)形式で変調された信号である場合、その変調データの符号長に等しい周期(波形繰り返し周期)に対応した周波数を下限とし、多数の周波数成分Fx(i)が存在する場合が考えられ、各周波数成分のレベルは変調データのパターンに依存する。
 例えば、変調データが10Gbpsで(10)の2ビットデータの場合、ビットレートの1/2の周波数成分5GHzとその高調波成分が存在し、そのレベルは、ビットレートの1/2の周波数成分が最も高くなる。
 また、変調データが10Gbpsで(1111100000)の10ビットデータの場合には、ビットレートの1/10の周波数成分1GHzとその高調波成分が存在し、そのレベルは、ビットレートの1/10の周波数成分1GHzが最も高くなる。
 また、上記にように1の期間と0の期間が交互に且つ等しい長さで現れるデューティ比50パーセントの単純なパターンではなく、(1100011100)のように1符号内に1の期間や0の期間が複数回現れるパターンの場合には、ビットレートの1/2の周波数成分や符号長に等しい周期に対応した周波数成分のレベルより、ビットレートの1/5の周波数成分2GHzのレベルの方が大きくなる。
 このように信号波形の繰り返し周波数と一致しなくても、レベルが大きい周波数成分を特定信号としてその周波数を検出する方がS/Nの点で有利となると共に、この特定信号の周波数から繰り返し周波数を求めた方が精度的に有利である。
 また、この特許文献2には、上記のような被測定信号の繰り返し周波数検出方法を適用したサンプリング装置を含む波形観測システムが開示されている。
 図15は、上記被測定信号の繰り返し周波数検出方法を適用したサンプリング装置を含む波形観測システム20の構成を示している。
 この波形観測システム20は、サンプリング装置21とデジタルオシロスコープ60によって構成されている。
 サンプリング装置21は、入力端子21aから入力される被測定光信号Pを光サンプリング部26により、信号発生部24が生成したクロック信号Cに基づいてサンプリングパルス発生部24から発生される幅の狭い光パルスであるサンプリングパルスでサンプリングしてその波形情報としてのパルス信号Eoを取得する。
 デジタルオシロスコープ60は、サンプリング装置21によって得られた波形情報を記憶し、表示する。
 このサンプリング装置21は、観測対象の波形の繰り返し周期が正確に分かっているような場合に指定する手動設定モードと、観測対象の波形の繰り返し周期が不明あるいはその概略値しか分からない場合に指定する自動設定モードとを有し、図示しない操作部の操作等によって、その手動設定モードと自動設定モードとを選択的に指定できるようになっている。
 なお、信号発生部24が生成したクロック信号C及びトリガ用信号Gは、それぞれ、クロック出力端子21b及びトリガ出力端子21dを介して外部に出力できるようになっている。
 同様に、光サンプリング部26からのパルス信号Eoは、サンプル信号出力端子21cを介して外部へ出力できるように構成されている。
 このサンプリング装置21の各出力端子21b~21dは、デジタルオシロスコープ60の外部クロック入力端子60a、第1チャネル入力端子60b、第2チャネル入力端子60cにそれぞれ接続されている。
 デジタルオシロスコープ60は、各チャネル入力端子60b、60cから入力される信号に対するA/D変換処理を外部クロック入力端子60aに入力されるクロック信号に同期して行う外部クロック同期機能と、任意に指定したチャネル入力端子またはトリガ入力端子の入力信号の電圧が任意に設定したしきい値を所定方向に越えたタイミングから一定時間(後述する時間軸の表示幅および表示ポイント数等に依存する)が経過する間にA/D変換処理によって得られたデータを波形データとしてチャネル毎に記憶する外部トリガ機能と、その記憶した波形データを時間軸上に表示する波形表示機能とを有しており、この波形表示のモードとして、前記したパーシステンス表示モード、平均化表示モードのいずれかを任意に選択できるように構成されている。
 次に、上記波形観測システム20の動作を説明する。
 始めに、例えば、図16の(a)に示すようにデューティ比50パーセントのほぼ矩形波の被測定光信号Pを入力端子21aに入力し、その波形の概略の繰り返し周期Tx′ (周波数Fx′)およびサンプリングのオフセット遅延時間ΔTに対応した情報をパラメータ指定部22によって指定すると共に、図示しない操作部により自動設定モードを指定する。
 演算部23は、指定された概略の繰り返し周波数Fx′とオフセット遅延時間ΔTに基づいて、仮のサンプリング周波数Fs′、トリガ周波数Fg′をそれぞれ算出し、信号発生部24に設定する。
 なお、繰り返し周波数Tx′の指定がない状態で、自動設定モードが指定された場合には、演算部23は、規定値、例えば、10GMHzを繰り返し周波数Fx′として演算を行う。
 このため、信号発生部24からは、仮のサンプリング周波数Fs′のクロック信号Cが出力される。
 そして、光サンプリング部26では被測定光信号Pに対してサンプリング周波数Fs′によるサンプリングが行われ、そのサンプリングで得られたパルス信号Eoが特定信号周波数検出部27に入力される。
 特定信号周波数検出部27は、そのサンプリングで得られたパルス信号Eoに含まれる周波数成分のうち、サンプリング周波数の1/2以下の帯域に現れる最もレベルが高い周波数成分を特定信号とし、その周波数Fh′を検出する。
 この光信号の波形の場合、サンプリングに用いられる光サンプリングパルスPsのスペクトラムは、図17に示すように周波数Fs′間隔で現れ、光信号Sの波形のスペクトラムは周波数Fxの間隔で現れ、しかも、高次のもの程レベルが小さくなる。
 したがって、特定信号周波数検出部27は、最低次の周波数Fxと、その周波数Fxに最も近いサンプリング周波数成分n・Fs′との差周波数Fh′を特定信号の周波数として求め、繰り返し周波数算出部28に出力する。
 このようにして仮のサンプリング周波数Fs′についての特定信号の周波数Fh′が得られると、繰り返し周波数算出部28は、この周波数Fh′を記憶するとともに、信号発生部24に対して、サンプリング周波数を微小量(例えば、1Hz)変化させるように指示する。
 この指示を受けた信号発生部24により、被測定光信号Pに対する仮のサンプリング周波数が微小量ΔFsだけ変化し、この変化に伴って、特定信号周波数検出部27によって検出される特定信号の周波数がΔFhだけ変化することになり、この変化量から被測定光信号Pの波形の繰り返し周波数Fxが次式により算出され、演算部23に設定される。
 Fx=Fh′-Fs′・ΔFh/ΔFs′
 演算部23は、この繰り返し周波数算出部28によって算出された正確な繰り返し周波数Fxに基づいて入力信号に正確に対応した正規のサンプリング周波数Fs及びトリガ周波数Fgを計算し、信号発生部24に設定する。
 これによって、被測定光信号Pの波形の繰り返し周期Txに対xし、N・Tx+ΔTに等しい周期を有するクロック信号Cと光サンプリングパルスPsが図16の(b)、(c)に示すように生成される。
 そして、被測定光信号Pが光サンプリングパルスPsでサンプリングされ、そのサンプリングで得られたパルス信号Eoが、図16の(d)に示すように光サンプリング部28からサンプル信号出力端子21cを介してデジタルオシロスコープ60の第1チャネル入力端子60bに入力される。
 また、信号発生部24からは、図18の(b)に示すようにパルス信号Eoのピークを結ぶ包絡線の波形の周期と等しい周期のトリガ用信号Gが生成され、トリガ出力端子21dを介してデジタルオシロスコープ60の第2チャネル入力端子60cに入力される。
 なお、図18の(a)は、図16の(d)に示す波形の時間軸を縮めて示したものである。
 デジタルオシロスコープ60は、パルス信号Eoに対するA/D変換処理をクロック信号Cに同期して行い、パルス信号Eoのピーク点を結ぶ包絡線のデータを光信号波形データとして順次出力し、トリガ用信号Gがトリガレベルを所定方向に超えるタイミングから、その波形データの取得を開始する。
 このため、デジタルオシロスコープ60の画面上に、例えば、図19に示すように、被測定光信号Pの波形がオフセット遅延時間ΔT間隔のポイントで残像表示される。
 デジタルオシロスコープ60は、トリガ用信号Gがトリガレベルを所定方向に超えるタイミング毎に波形データの取得を開始して、波形を更新表示する際に、前記したように、サンプリング装置20のサンプリング周波数やトリガ周波数が入力される光信号Pの波形の繰り返し周波数に対して正確に対応しているので、常に表示する波形の位置がずれることはなく、安定な波形観測を行うことができる。
 上記説明では、観測対象の波形がデューティ比50パーセントの矩形波で、最低次の特定信号のレベルが最大となる場合について説明している。
 しかるに、例えば、ビットレート10Gbpsで、NRZデータ(1100011100)の10ビットの波形が繰り返される場合、その繰り返し周波数Fxは、10/10=1GHzとなるが、波形に含まれる各周波数成分のレベルを考慮すると、1GHzの成分よりも、その2倍の10/2=2GHzの成分の方が大きい。
 これはパルス信号Eoに含まれる信号についても言えることであり、前記したように波形1周期分相当の繰り返し周波数Fxについて最低次の特定信号の周波数成分は、そのレベルが低く周波数算出を正確に行えない場合がある。
 このような場合でも、特定信号周波数検出部27は、サンプリング周波数の1/2以下の帯域内の信号成分のうち、最もレベルの高い信号成分を特定信号として選択し、その周波数を検出しているので精度の低下は起こらない。
特開2002-071725号公報 特開2006-3327号公報
 すなわち、上記特許文献2に開示されている被測定信号の繰り返し周波数検出方法は、要約すると、被測定信号を、ある繰り返し周波数Fsにてサンプリングした場合に得られた信号のうち、Fs/2以下の帯域に現れる特定信号の周波数Fhを測定し、次に、サンプリング周波数を微小周波数ΔFsだけ変化させてサンプリングした場合に得られた特定信号の周波数変化量ΔFhを測定し、次式にて被測定用の信号の繰り返し周波数Fxを求める方法である。
 Fx=Fh-Fs・ΔFh/ΔFs       …(0>ΔFh/ΔFsの場合)
 Fx=-Fh+Fs・ΔFh/ΔFs      …(0<ΔFh/ΔFsの場合)
 しかるに、この特許文献2に開示されている被測定信号の繰り返し周波数検出方法においても、まだ解決すべき以下のような問題を有している。
 それは、被測定信号に周波数揺らぎが存在していると、被測定信号の繰り返し周波数検出の測定結果に大きな誤差が生じてしまうということである。
 以下に、被測定信号に存在する周波数揺らぎによって、被測定信号の繰り返し周波数検出の測定結果に大きな誤差が発生する原因について説明する。
 上記被測定信号の繰り返し周波数を求める式においてΔFh/ΔFs(サンプル番号n)は、高調波成分のうち、Fxに最も近い高調波成分の次数を示しており、上記特許文献2に開示されている被測定信号の繰り返し周波数検出方法においては、このサンプル番号nが変化しない(サンプリングにより周波数折り返しが発生しない)範囲において、サンプリング周波数を微少量だけ変化させている。
 しかしながら、被測定信号の周波数が(相対的に)揺らいでいる場合、サンプリング周波数を変化させている間に、Fxの値が周波数揺らぎ量ΔFxだけ変化してしまうことになる。
 この周波数揺らぎ量ΔFxが、測定した特定信号の周波数変化量ΔFhに直接加算されてしまうことにより、被測定信号の繰り返し周波数検出の測定結果に大きな誤差が発生する。
 通常、サンプル番号nの計算は、前述したように、ΔFh/ΔFsの計算結果を四捨五入することにより、ΔFhに含まれる測定誤差を無視することができる。
 しかるに、|ΔFs/2|<|ΔFx|の場合には、これを無視することができず、測定誤差となってしまう。
 nを1間違えたとすると、Fxの計算結果は、Fsだけ違う値となってしまうので、非常に大きな測定誤差となってしまうことになる。
 次に、単純には、測定精度を上げることができない理由について説明する。
 一般的に、ΔFhを正確に測定するには、測定時間を長くしてスペクトラム解析の分解能を向上することによって対処することが考えられる。
 しかるに、この場合、測定時間を長くすると、被測定信号の周波数揺らぎ量も、それだけ大きくなってしまうので、測定時間を長くしても効果がなく、スペクトラム解析の分解能を向上することには結び付かない。
 また、ΔFh/ΔFsの計算式によるサンプル番号nの計算において、分母のΔFsを大きくすれば、分子のΔFhに含まれる誤差の許容幅を大きくすることができるものの、分母のΔFsを大きくしていくと、周波数折り返しが発生し、サンプリング周波数の変化の前後でnが異なってしまうことになるので、ΔFh/ΔFsの計算式からサンプル番号nを計算することができなくなってしまう。
 このため、ΔFh/ΔFsの計算式によるサンプル番号nの計算において、分母のΔFsをあまり大きくすることができないので、分子のΔFhに含まれる誤差の許容幅をあまり大きくすることができなくなってしまう。
 したがって、上記特許文献2に開示されている被測定用の信号の繰り返し周波数検出方法及びそれを用いるサンプリング装置及び波形観測システムでは、被測定用の信号に周波数揺らぎが存在していると、サンプリング結果から信号の周波数を正確に検出することができないので、安定な波形情報の取得と観測ができないと共に、システム全体を簡易に構成することができないという問題を有している。
 本発明の目的は、これらの問題を解決して、被測定信号に周波数揺らぎが存在していても、サンプリング結果から信号の周波数を正確に検出することができる被測定信号の繰り返し周波数検出方法及びそれを用いて安定な波形情報の取得と観測ができ、さらに、システム全体を簡易に構成することができるサンプリング装置及び波形観測システムを提供することである。
 前記目的を達成するために、本発明の第1の態様によると、
 被測定信号を仮のサンプリング周波数Fsでサンプリングして得られる信号のうち、前記仮のサンプリング周波数Fsの1/2以下の帯域に現れる特定信号の周波数Fhを検出する第1の段階(S11、S12)と、
 前記仮のサンプリング周波数Fsからサンプリング時に周波数折り返しが発生しない微小周波数ΔFsだけ変化させたサンプリング周波数で得られる前記特定信号の周波数変化量ΔFhを算出する第2の段階(S13、S14)と、
 前記第2の段階(S13、S14)における前記微小周波数ΔFsを分母とし、前記特定信号の周波数変化量ΔFhを分子とする式(1)により
 n=ΔFh/ΔFs                         …(1)
サンプル番号nを算出する第3の段階(S15)と、
 前記仮のサンプリング周波数Fsと、前記仮のサンプリング周波数Fsに対する前記特定信号の周波数Fhと、前記サンプリング周波数の変化量としての前記微小周波数ΔFs及び前記特定信号の周波数変化量ΔFhとに基づいて、前記被測定信号の仮の繰り返し周波数Fx′を算出する第4の段階(S16)と、
 前記仮のサンプリング周波数Fsからサンプリング時に周波数折り返しが発生するように大きく周波数dFsを変化させたサンプリング周波数で前記被測定信号をサンプリングした場合に得られる前記特定信号の周波数変化量dFh measを測定し、この測定された前記特定信号の周波数変化量dFh measと、この過程で周波数折り返しが何回発生したかを示す前記第3の段階(S15)によって算出された前記サンプル番号nの変化量dnとに基づいて、前記被測定信号に周波数揺らぎが含まれている状態での前記第3の段階(S15)によって算出された前記サンプル番号nに含まれている誤差分enを算出する第5の段階(S17、S18、S19)と、
 前記第5の段階(S17、S18、S19)によって算出される前記サンプル番号nに含まれている誤差分enに基づいて前記第4の段階(S16)によって算出される前記被測定信号の仮の繰り返し周波数Fx′を補正することにより、前記被測定信号の正規の繰り返し周波数Fxを算出する第6の段階(S20)と、
 を具備する被測定信号の繰り返し周波数検出方法が提供される。
 前記目的を達成するために、本発明の第2の態様によると、
 前記第1の段階(S11、S12)は、前記被測定信号を、前記仮のサンプリング周波数としてある繰り返し周波数Fsを有するサンプリング周波数にてサンプリングした場合に得られる信号のうち、前記ある繰り返し周波数Fsの1/2の以下の帯域に現れる前記特定信号として最大レベルを示す信号の周波数Fhを測定することを特徴とする第1の態様に従う被測定信号の繰り返し周波数検出方法が提供される。
 前記目的を達成するために、本発明の第3の態様によると、
 前記第4の段階(S16)は、前記第1の段階(S11、S12)によって測定された前記ある繰り返し周波数Fsの1/2の以下の帯域Fs/2に現れる前記特定信号として最大レベルを示す信号の周波数Fhと、前記第2の段階(S13、S14)によって測定された前記仮のサンプリング周波数として前記ある繰り返し周波数Fsからサンプリング時に周波数折り返しが発生しない微小周波数ΔFsだけ変化させて前記被測定信号をサンプリングした場合に得られる前記特定信号の周波数変化量ΔFhに基づいて、
 式(2)により
 Fx′=Fh-Fs・ΔFh/ΔFs      …(0>ΔFh/ΔFsの場合)
 Fx′=-Fh+Fs・ΔFh/ΔFs     …(0<ΔFh/ΔFsの場合)
                                   …(2)
前記被測定用の信号の仮の繰り返し周波数Fx′を算出することを特徴とする第2の態様に従う被測定信号の繰り返し周波数検出方法が提供される。
 前記目的を達成するために、本発明の第4の態様によると、
 前記第5の段階(S17、S18、S19)は、前記サンプリング周波数を前記第1の段階(S11、S12)における前記仮のサンプリング周波数としての前記ある繰り返し周波数Fsからサンプリング時に周波数折り返しが発生するように大きく周波数dFsだけ変化させて前記被測定信号をサンプリングした場合に得られる特定信号の周波数変化量dFh_measを検出し、式(3)により
 dFh_target=dn・(Fs+dFs)+n・dFs      …(3)
 (但し、dFh_targetは、前記サンプリング周波数の大きな変化に伴う、前記特定信号の周波数変化量の目標値であって、0~dFs/2の範囲で定められる任意の周波数であり、nは、前記(1)式で算出される前記サンプル番号であり、dnは、前記サンプリング周波数の大きな変化に伴う、前記サンプル番号の変化量であって、前記被測定信号に含まれると想定される周波数揺らぎの範囲内において、確定することができる範囲内となるように、前記サンプリング周波数の大きな変化量dFsが定められる)
前記サンプル番号nの変化量dnを算出し、
 前記特定信号の周波数変化量dFh_measが式(4)
 dFh_meas=dn・(Fs+dFs)+(n+en)・dFs   …(4)
 (但し、enは、前記サンプル番号nに含まれている誤差分である)
で表されるとき、前記式(3)及び(4)の差をとって得られる式(5)により
 en=(dFh_meas-dFh_target)/dFs      …(5)
前記サンプル番号nに含まれている誤差分enを算出することを特徴とする第3の態様に従う被測定信号の繰り返し周波数検出方法が提供される。
 前記目的を達成するために、本発明の第5の態様によると、
 前記第5の段階(S20)は、前記第4の段階(S17、S18、S19)によって算出された前記サンプル番号nに含まれている誤差分enを前記第3の段階(S15)で算出された前記サンプル番号nに加算して正確なサンプル番号n+enを得て、該n+enを前記式(2)において前記サンプル番号を示すΔFh/ΔFsとして反映させて、前記式(2)において算出される前記被測定信号の仮の繰り返し周波数Fx′を補正することにより、前記被測定信号の正規の繰り返し周波数Fxを算出することを特徴とする第4の態様に従う被測定信号の繰り返し周波数検出方法が提供される。
 前記目的を達成するために、本発明の第6の態様によると、
 被測定信号を入力するための入力端子(21a)と、
 指定に応じた第1乃至第3のサンプリング周波数のクロック信号を選択的に生成する信号発生部(24)と、
 前記信号発生部(24)からの前記クロック信号に同期し、前記指定に応じた第1乃至第3のサンプリング周波数として仮のサンプリング周波数Fsを有する第1のサンプリングパルス、前記仮のサンプリング周波数Fsからサンプリング時に周波数折り返しが発生しない微小周波数ΔFsだけ変化させたサンプリング周波数を有する第2のサンプリングパルス及び前記仮のサンプリング周波数Fsからサンプリング時に周波数折り返しが発生するように大きく周波数dFsだけ変化させたサンプリング周波数を有する第3のサンプリングパルスを選択的に発生するサンプリングパルス発生部(25)と、
 前記被測定信号を前記サンプリングパルス発生部(25)からの第1乃至第3の前記サンプリングパルスによって選択的にサンプリングするサンプリング部(26)と、
 前記サンプリング部(26)によって前記被測定信号を前記サンプリングパルス発生部(25)からの前記第1のサンプリングパルスでサンプリングした場合に得られる信号のうち、前記仮のサンプリング周波数Fsの1/2以下の帯域に現れる特定信号の周波数Fhを検出する特定信号周波数検出部(27)と、
 前記サンプリング部(26)によって前記被測定信号を前記サンプリングパルス発生部(25)からの前記第2のサンプリングパルスでサンプリングしたときに前記特定信号周波数検出部(27)によって検出される前記特定信号の周波数変化量ΔFhを算出する周波数変化量算出部(29)と、
 前記サンプリングパルス発生部(25)による前記仮のサンプリング周波数Fsと、前記サンプリング周波数の変化量としての前記微小周波数ΔFsと、前記特定信号周波数検出部(27)によって検出される前記仮のサンプリング周波数Fsに対する前記特定信号の周波数Fh及び前記周波数変化量算出部(29)によって算出される前記特定信号の周波数変化量ΔFhに基づいて、前記被測定信号の仮の繰り返し周波数Fx′を算出する仮の繰り返し周波数算出部(28)と、
 前記仮の繰り返し周波数算出部(28)で用いる前記微小周波数ΔFsを分母とし、前記仮の繰り返し周波数算出部(28)で用いる前記周波数変化量ΔFhを分子とする式 (1)により
 n=ΔFh/ΔFs                         …(1)
サンプル番号nを算出するサンプル番号算出部(33)と、
 前記サンプリング部(26)によって前記被測定信号を前記サンプリングパルス発生部(25)からの前記第3のサンプリングパルスでサンプリングした場合に得られる前記特定信号の周波数変化量dFhを検出する特定信号周波数変化量検出部(30)と、
 前記特定信号周波数変化量検出部(30)によって検出された前記特定信号の周波数変化量dFhと、この過程で何回周波数折り返しが何回発生したかを示す前記サンプル番号算出部(33)によって算出された前記サンプル番号nの変化量dnとに基づいて、前記被測定信号に周波数揺らぎが含まれている状態での前記サンプル番号算出部(33)によって算出された前記サンプル番号nに含まれている誤差分enを算出するサンプル番号誤差分算出部(31)と、
 前記サンプル番号誤差分算出部(31)によって算出される前記サンプル番号nに含まれている誤差分enに基づいて前記仮の繰り返し周波数算出部(28)によって算出される前記被測定信号の仮の繰り返し周波数Fx′を補正することにより、前記被測定信号の正規の繰り返し周波数Fxを算出する正規の繰り返し周波数算出部(32)と、
 を具備する被測定信号のサンプリング装置が提供される。
 前記目的を達成するために、本発明の第7の態様によると、
 前記特定信号周波数検出部(27)は、前記信号発生部(24)に対し、前記指定に応じた第1のサンプリング周波数としてある繰り返し周波数Fsを有する仮のサンプリング周波数を指定することにより前記サンプリングパルス発生部(25)から前記仮のサンプリング周波数を有する第1のサンプリングパルスを発生させると共に、前記サンプリング部(26)によって、前記被測定信号を、前記仮のサンプリング周波数を有する前記第1のサンプリングパルスにてサンプリングした場合に得られる信号のうち、前記ある繰り返し周波数Fsの1/2以下の帯域Fs/2に現れる特定信号の周波数Fhを検出することを特徴とする第6の態様に従う被測定信号のサンプリング装置が提供される。
 前記目的を達成するために、本発明の第8の態様によると、
 前記周波数変化量算出部(29)は、前記信号発生部(24)に対し、前記指定に応じた第2のサンプリング周波数として前記ある繰り返し周波数Fsからサンプリング時に周波数折り返しが発生しない微小周波数ΔFsだけ変化させた周波数を有するサンプリング周波数を指定することにより前記サンプリングパルス発生部(25)から前記第2のサンプリングパルスを発生させると共に、前記サンプリング部(26)によって、前記第2のサンプリングパルスで前記被測定信号をサンプリングした場合に得られる前記特定信号の周波数変化量ΔFhを算出することを特徴とする第7の態様に従う被測定信号のサンプリング装置が提供される。
 前記目的を達成するために、本発明の第9の態様によると、
 前記仮の繰り返し周波数算出部(28)は、前記サンプリングパルス発生部(25)による前記仮のサンプリング周波数Fsと、前記サンプリング周波数の変化量としての前記微小周波数ΔFsと、前記特定信号周波数検出部(27)によって検出される前記仮のサンプリング周波数に対する前記特定信号の周波数Fh及び前記周波数変化量算出部(29)によって算出される前記特定信号の周波数変化量ΔFhとに基づいて、式(2)により
 Fx′=Fh-Fs・ΔFh/ΔFs      …(0>ΔFh/ΔFsの場合)
 fx′=-fh+fs・ΔFh/ΔFs     …(0<ΔFh/ΔFsの場合)
                                   …(2)
前記被測定信号の仮の繰り返し周波数Fx′を算出することを特徴とする第8の態様に従う被測定信号のサンプリング装置が提供される。
 前記目的を達成するために、本発明の第10の態様によると、
 前記特定信号周波数変化量検出部(30)は、前記信号発生部(24)に対し、前記指定に応じた第3のサンプリング周波数として前記ある繰り返し周波数Fsからサンプリング時に周波数折り返しが発生するように大きく周波数dFsだけ変化させた周波数を有するサンプリング周波数を指定することにより前記サンプリングパルス発生部(25)から前記第3のサンプリングパルスを発生させると共に、前記サンプリング部(26)によって、前記被測定信号を前記第3のサンプリングパルスでサンプリングした場合に得られる前記特定信号の周波数変化量dFh_measを測定し、式(3)により
 dFh_target=dn・(Fs+dFs)+n・dFs      …(3)
 (但し、dFh_targetは、前記サンプリング周波数の大きな変化に伴う、前記特定信号の周波数変化量の目標値であって、0~dFs/2の範囲で定められる任意の周波数であり、nは、前記サンプル番号算出部(33)によって算出される前記サンプル番号であり、dnは、前記サンプリング周波数の大きな変化に伴う、前記サンプル番号の変化量であって、前記被測定信号に含まれると想定される周波数揺らぎの範囲内において、確定することができる範囲内となるように、前記サンプリング周波数の大きな変化量dFsが定められる)
前記サンプル番号の変化量dnを算出することを特徴とする第9の態様に従う被測定信号のサンプリング装置が提供される。
 前記目的を達成するために、本発明の第11の態様によると、
 前記サンプル番号誤差分算出部(31)は、前記特定信号周波数変化量検出部(30)によって検出される前記特定信号の周波数変化量dFhが式(4)
 dFh_meas=dn・(Fs+dFs)+(n+en)・dFs   …(4)
 (但し、enは、前記サンプル番号nに含まれている誤差分である)
で表されるとき、前記式(3)及び(4)の差をとって得られる式(5)により
 en=(dFh_meas-dFh_target)/dFs      …(5)
前記サンプル番号nに含まれている誤差分enを算出することを特徴とする第10の態様に従う被測定信号のサンプリング装置が提供される。
 前記目的を達成するために、本発明の第12の態様によると、
 前記正規の繰り返し周波数算出部(32)は、前記サンプル番号誤差分算出部(31)によって算出された前記サンプル番号nに含まれている前記誤差分enを前記サンプル番号算出部(33)によって算出された前記サンプル番号nに加算して正確なサンプル番号n+enを得て、該n+enを前記式(2)において前記サンプル番号算出部(33)によって算出された前記サンプル番号nを示すΔFh/ΔFsとして反映させて、前記式 (2)において算出される前記被測定信号の仮の繰り返し周波数Fx′を補正することにより、前記被測定信号の正規の繰り返し周波数Fxを算出することを特徴とする第11の態様に従う被測定信号のサンプリング装置が提供される。
 前記目的を達成するために、本発明の第13の態様によると、
 前記正規の繰り返し周波数算出部(32)によって算出された前記正規の繰り返し周波数Fxに対応する繰り返し周期Txの整数倍に対して所定のオフセット遅延時間ΔTだけ差のある周期Tsに対応する周波数Fsを前記被測定信号に対する正規のサンプリング周波数として算出し、この算出された正規のサンプリング周波数を前記信号発生部(24)に指定することにより、前記サンプリングパルス発生部(25)から前記第1乃至第3のサンプリングパルスに代えて前記正規のサンプリング周波数を有するサンプリングパルスを発生させて、前記サンプリング部(26)によって前記被測定信号を前記正規のサンプリング周波数を有するサンプリングパルスでサンプリングすることを可能とする演算部 (23)をさらに具備することを特徴とする第12の態様に従う被測定信号のサンプリング装置が提供される。
 前記目的を達成するために、本発明の第14の態様によると、
 前記信号発生部(24)からの前記クロック信号を外部へ出力するためのクロック出力端子(21b)と、
 前記サンプリング部(26)から出力された信号を外部へ出力するためのサンプル信号出力端子(21c)と,
 をさらに具備することを特徴とする第13の態様に従う被測定信号のサンプリング装置が提供される。
 前記目的を達成するために、本発明の第15の態様によると、
 被測定信号を入力するための入力端子(21a)と、
 指定に応じた第1乃至第3のサンプリング周波数及び指定に応じた第4のサンプリング周波数のクロック信号を選択的に生成する信号発生部(24)と、
 前記信号発生部(24)からの前記クロック信号に同期し、前記指定に応じた第1乃至第3のサンプリング周波数として仮のサンプリング周波数を有する第1のサンプリングパルス、前記仮のサンプリング周波数からサンプリング時に周波数折り返しが発生しない微小量変化させたサンプリング周波数を有する第2のサンプリングパルス、前記仮のサンプリング周波数からサンプリング時に周波数折り返しが発生するように大きく周波数を変化させたサンプリング周波数を有する第3のサンプリングパルス及び前記指定に応じた第4のサンプリング周波数を有する第4のサンプリングパルスを選択的に発生するサンプリングパルス発生部(25)と、
 前記被測定信号を前記サンプリングパルス発生部(25)からの前記第1乃至第3のサンプリングパルス及び前記第4のサンプリングパルスによって選択的にサンプリングするサンプリング部(26)と、
 前記サンプリング部(26)によって前記被測定信号を前記サンプリングパルス発生部(25)からの前記第1のサンプリングパルスでサンプリングして得られた信号のうち、前記仮のサンプリング周波数Fsの1/2以下の帯域に現れる特定信号の周波数Fhを検出する特定信号周波数検出部(27)と、
 前記サンプリング部(26)によって前記被測定信号を前記サンプリングパルス発生部(25)からの前記第2のサンプリングパルスでサンプリングしたときに得られる前記特定信号の周波数変化量ΔFhを算出する周波数変化量算出部(29)と、
 前記サンプリングパルス発生部(25)による前記仮のサンプリング周波数Fsと、前記サンプリング周波数の変化量としての前記微小周波数ΔFsと、前記特定信号周波数検出部(27)によって検出される前記仮のサンプリング周波数Fsに対する前記特定信号の周波数Fh及び前記周波数変化量算出部(29)によって算出される前記特定信号の周波数変化量ΔFhとに基づいて、前記被測定信号の仮の繰り返し周波数Fx′を算出する仮の繰り返し周波数算出部(28)と、
 前記仮の繰り返し周波数算出部(28)で用いる前記微小周波数ΔFsを分母とし、前記仮の繰り返し周波数算出部(28)で用いる前記周波数変化量ΔFhを分子とする式 (1)により
 n=ΔFh/ΔFs                         …(1)
サンプル番号nを算出するサンプル番号算出部(33)と、
 前記サンプリング部(26)によって前記被測定信号を前記サンプリングパルス発生部(25)からの前記第3のサンプリングパルスでサンプリングした場合に得られる前記特定信号の周波数変化量dFhを検出する特定信号周波数変化量検出部(30)と、
 前記特定信号周波数変化量検出部(30)によって検出された前記特定信号の周波数変化量dFhと、この過程で何回周波数折り返しが何回発生したかを示すサンプル番号算出部(33)によって算出された前記サンプル番号nの変化量dnとに基づいて、前記被測定信号に周波数揺らぎが含まれている状態での前記サンプル番号算出部(33)によって算出された前記サンプル番号nに含まれている誤差分enを算出するサンプル番号誤差分算出部(31)と、
 前記サンプル番号誤差分算出部(31)によって算出される前記サンプル番号nに含まれている誤差分enに基づいて前記仮の繰り返し周波数算出部(28)によって算出される前記被測定信号の仮の繰り返し周波数Fx′を補正することにより、前記被測定信号の正規の繰り返し周波数Fxを算出する正規の繰り返し周波数算出部(32)と、
 前記正規の繰り返し周波数算出部(32)によって算出された前記正規の繰り返し周波数Fxに対応する繰り返し周期Txの整数倍に対して所定のオフセット遅延時間ΔTだけ差のある周期Tsに対応する周波数Fsを前記被測定信号に対する正規のサンプリング周波数として算出し、この算出された正規のサンプリング周波数を前記第4のサンプリング周波数として前記信号発生部(24)に指定することにより、前記サンプリングパルス発生部(25)からの前記第4のサンプリングパルスを発生させると共に、前記サンプリング部(26)により前記被測定信号を前記第4のサンプリングパルスでサンプリングさせる演算部(23)と、
 前記サンプリング部(26)から前記第4のサンプリングパルスでサンプリングされて出力される信号をデジタルの波形データに変換して出力するアナログ/デジタル(A/D)変換器(43)と、
 前記A/D変換器(43)から出力される前記波形データを記憶するための波形データメモリ(45)と、
 前記A/D変換器(43)から出力される前記波形データを前記信号発生部(24)からの前記クロック信号に同期して前記波形データメモリ(45)に書き込むデータ取得制御部(44)と、
 前記波形データメモリ(45)に記憶された一連の波形データを読み出して表示部(46)の時間軸上に前記オフセット遅延時間に対応する間隔で表示する表示制御部(46)と、
 を具備する被測定信号の波形観測システムが提供される。
 前記目的を達成するために、本発明の第16の態様によると、
 前記特定信号周波数検出部(27)は、前記信号発生部(24)に対し、前記指定に応じた第1のサンプリング周波数としてある繰り返し周波数Fsを有する仮のサンプリング周波数を指定することにより前記サンプリングパルス発生部(25)から前記仮のサンプリング周波数を有する第1のサンプリングパルスを発生させると共に、前記サンプリング部(26)によって、前記被測定信号を、前記仮のサンプリング周波数を有する前記第1のサンプリングパルスにてサンプリングした場合に得られる信号のうち、前記ある繰り返し周波数Fsの1/2以下の帯域に現れる前記特定信号の周波数Fhを検出することを特徴とする第15の態様に従う被測定信号の波形観測システムが提供される。
 前記目的を達成するために、本発明の第17の態様によると、
 前記周波数変化量算出部(29)は、前記信号発生部(24)に対し、前記指定に応じた第2のサンプリング周波数として前記ある繰り返し周波数Fsからサンプリング時に周波数折り返しが発生しない微小周波数ΔFsだけ変化させた周波数を有するサンプリング周波数を指定することにより前記サンプリングパルス発生部(25)から前記第2のサンプリングパルスを発生させると共に、前記サンプリング部(26)によって、前記第2のサンプリングパルスで前記被測定信号をサンプリングした場合に得られる前記特定信号の周波数変化量ΔFhを測定することを特徴とする第16の態様に従う被測定信号の波形観測システムが提供される。
 前記目的を達成するために、本発明の第18の態様によると、
 前記仮の繰り返し周波数算出部(28)は、前記サンプリングパルス発生部(25)による前記仮のサンプリング周波数Fsと、前記サンプリング周波数の変化量としての前記微小周波数ΔFsと、前記特定信号周波数検出部(27)によって検出される前記仮のサンプリング周波数Fsに対する前記特定信号の周波数Fh及び前記周波数変化量算出部 (29)によって算出される前記特定信号の周波数変化量ΔFhとに基づいて、式(2)により
 Fx′=Fh-Fs・ΔFh/ΔFs      …(0>ΔFh/ΔFsの場合)
 Fx′=-Fh+Fs・ΔFh/ΔFs     …(0<ΔFh/ΔFsの場合)
                                   …(2)
前記被測定信号の仮の繰り返し周波数Fx′を算出することを特徴とする第19の態様に従う被測定信号の波形観測システムが提供される。
 前記目的を達成するために、本発明の第19の態様によると、
 前記特定信号周波数変化量検出部(30)は、前記信号発生部(24)に対し、前記指定に応じた第3のサンプリング周波数として前記ある繰り返し周波数Fsからサンプリング時に周波数折り返しが発生するように大きく変化させた周波数を有するサンプリング周波数を指定することにより前記サンプリングパルス発生部(25)から前記第3のサンプリングパルスを発生させると共に、前記サンプリング部(26)によって、前記被測定信号を前記第3のサンプリングパルスでサンプリングした場合に得られる前記特定信号の周波数変化量dFh_measを検出し、式(3)により
 dFh_target=dn・(Fs+dFs)+n・dFs      …(3)
 (但し、dFh_targetは、前記サンプリング周波数の大きな変化に伴う、前記特定信号の周波数変化量の目標値であって、0~dFs/2の範囲で定められる任意の周波数であり、nは、前記サンプル番号算出部(33)で算出される前記サンプル番号であり、dnは、前記サンプリング周波数の大きな変化に伴う、前記サンプル番号nの変化量であって、前記被測定信号に含まれると想定される周波数揺らぎの範囲内において、確定することができる範囲内となるように、前記サンプリング周波数の大きな変化量dFsが定められる)
前記サンプル番号nの変化量dnを算出することを特徴とする第18の態様に従う被測定信号の波形観測システムが提供される。
 前記目的を達成するために、本発明の第20の態様によると、
 前記サンプル番号誤差分算出部(31)は、前記特定信号周波数変化量検出部(30)によって検出される前記特定信号の周波数変化量dFh_measが式(4)
 dFh_meas=dn・(Fs+dFs)+(n+en)・dFs   …(4)
 (但し、enは、前記サンプル番号nに含まれている誤差分である)
で表されるとき、前記式(3)及び(4)の差をとって得られる式(5)により
 en=(dFh_meas-dFh_target)/dFs      …(5)
前記サンプル番号nに含まれている誤差分enを算出することを特徴とする第19の態様に従う被測定信号の波形観測システムが提供される。
 前記目的を達成するために、本発明の第21の態様によると、
 前記正規の繰り返し周波数算出部(32)は、前記サンプル番号誤差分算出部(31)によって算出される前記サンプル番号nに含まれている誤差分enを前記サンプル番号算出部(33)によって算出された前記サンプル番号nに加算して正確なサンプル番号n+enを得て、該n+enを前記式(2)において前記サンプル番号算出部(33)によって算出された前記サンプル番号nを示すΔFh/ΔFsとして反映させて、前記式(2)において算出される前記被測定信号の仮の繰り返し周波数Fx′を補正することにより、前記被測定用の信号の正規の繰り返し周波数Fxを算出することを特徴とする第20の態様に従う被測定信号の波形観測システムが提供される。
 前記目的を達成するために、本発明の第22の態様によると、
 前記特定信号周波数検出部(27)は、前記第1のサンプリング周波数の1/2以下の帯域に現れる複数の特定信号の周波数をそれぞれ検出し、
 前記仮の繰り返し周波数算出部(28)は、前記特定信号周波数検出部(27)によって検出される前記複数の特定信号についての周波数変化量に基づいて、前記被測定信号に含まれる複数の周波数成分のスペクトラムを求めるように構成され、
 前記表示制御部(47)は、前記仮の繰り返し周波数算出部(28)によって得られたスペクトラムを前記正規の繰り返し周波数算出部(32)を介して前記表示部(46の)周波数軸上に表示させるように構成されていることを特徴とする第15の態様に従う被測定用の信号の波形観測システムが提供される。
 以上のように、本発明の被測定信号の繰り返し周波数検出方法は、サンプリング周波数を仮のサンプリング周波数からサンプリング時に周波数折り返しが発生しない微小量変化させてサンプリングしたときに得られる特定信号の周波数変化量から被測定信号の仮の繰り返し周波数を求めると共に、サンプリング周波数を仮のサンプリング周波数からサンプリング時に周波数折り返しが発生するように大きく周波数を変化させたサンプリング周波数で前記被測定信号を順次にサンプリングした場合に得られる特定信号の周波数変化量を検出し、この検出された特定信号の周波数変化量と、この場合に何回周波数折り返しが発生したかを示す前記サンプル番号の変化量とに基づいて、前記被測定信号に周波数揺らぎが含まれている状態での前記サンプル番号に含まれている誤差分を算出し、このサンプル番号に含まれている誤差分に基づいて前記被測定信号の仮の繰り返し周波数を補正することにより、前記被測定信号の正規の繰り返し周波数を算出するようにしているので、被測定信号に周波数揺らぎが存在していても、被測定信号の波形繰り返し周波数を高精度に検出することができる。
 また、本発明の被測定信号のサンプリング装置及び波形観測システムにおいては、上記被測定信号の繰り返し周波数検出方法を用いて、周波数未知の信号に対するサンプリング周波数の設定を正確に行うことにより、被測定信号に周波数揺らぎが存在していても、被測定用の信号を高精度にサンプリングすることができると共に、被測定信号の波形観測を高精度に行うことができる。
図1は、本発明の第1の実施形態による被測定信号の繰り返し周波数検出方法の手順を説明するために示すフローチャートである。 図2は、本発明の第1の実施形態による被測定信号の繰り返し周波数検出方法の原理を説明するために示す図である。 図3は、本発明の第1の実施形態による被測定信号の繰り返し周波数検出方法の原理を説明するために示す図である。 図4は、本発明の第2の実施形態による被測定信号のサンプリング装置を含む波形観測システムの構成を説明するために示すブロック図である。 図5は、本発明の第2の実施形態による被測定信号のサンプリング装置を含む波形観測システムの要部の構成例を示すブロック図である。 図6は、本発明の第2の実施形態による被測定信号のサンプリング装置を含む波形観測システムの要部の動作を説明するために示す図である。 図7は、本発明の第2の実施形態による被測定信号のサンプリング装置を含む波形観測システムの要部の構成例を示すブロック図である。 図8は、本発明の第2の実施形態による被測定信号のサンプリング装置を含む波形観測システムの要部の構成例を示すブロック図である。 図9は、本発明の第3の実施形態による被測定信号のサンプリング装置を含む波形観測システムの構成を説明するために示すブロック図である。 図10は、従来の波形観測装置の構成を説明するために示すブロック図である。 図11は、従来の波形観測装置の動作を説明するために示す図である。 図12は、本願発明者の日本国先願による被測定信号の繰り返し周波数検出方法の原理を説明するために示す図である。 図13は、本願発明者の日本国先願による被測定信号の繰り返し周波数検出方法の原理を説明するために示す図である。 図14は、本願発明者の日本国先願による被測定信号の繰り返し周波数検出方法を説明するために示すフローチャートである。 図15は、本願発明者の日本国先願による被測定信号のサンプリング装置を含む波形観測システムの構成を説明するために示すブロック図である。 図16は、本願発明者の日本国先願による被測定信号のサンプリング装置を含む波形観測システムの要部の動作を説明するために示す図である。 図17は、本願発明者の日本国先願による被測定信号のサンプリング装置を含む波形観測システムの要部の動作を説明するために示す図である。 図18は、本願発明者の日本国先願による被測定信号のサンプリング装置を含む波形観測システムの要部の動作を説明するために示す図である。 図19は、本願発明者の日本国先願による被測定信号のサンプリング装置を含む波形観測システムによる観測波形の一例を説明するために示す図である。
 以下、図面を参照して本発明による実施形態について説明する。
(第1の実施形態)
 図1は、本発明の第1の実施形態による被測定信号の繰り返し周波数検出方法の手順を説明するために示すフローチャートである。
 本発明による被測定信号の繰り返し周波数検出方法は、基本的に、被測定信号を仮のサンプリング周波数Fsでサンプリングして得られる信号のうち、前記仮のサンプリング周波数Fsの1/2以下の帯域に現れる特定信号の周波数Fhを検出する第1の段階(S11、S12)と、前記仮のサンプリング周波数Fsからサンプリング時に周波数折り返しが発生しない微小周波数ΔFsだけ変化させたサンプリング周波数で得られる前記特定信号の周波数変化量ΔFhを算出する第2の段階(S13、S14)と、前記第2の段階 (S13、S14)における前記微小周波数ΔFsを分母とし、前記特定信号の周波数変化量ΔFhを分子とする式(1)により
 n=ΔFh/ΔFs                         …(1)
サンプル番号nを算出する第3の段階(S15)と、前記仮のサンプリング周波数Fsと、前記仮のサンプリング周波数Fsに対する前記特定信号の周波数Fhと、前記サンプリング周波数の変化量としての前記微小周波数ΔFs及び前記特定信号の周波数変化量ΔFhとに基づいて、前記被測定信号の仮の繰り返し周波数Fx′を算出する第4の段階(S16)と、前記仮のサンプリング周波数Fsからサンプリング時に周波数折り返しが発生するように大きく周波数dFsだけ変化させたサンプリング周波数で前記被測定信号を順次にサンプリングした場合に得られる前記特定信号の周波数変化量dFh measを検出し、この検出された前記特定信号の周波数変化量dFh measと、この過程で周波数折り返しが何回発生したかを示す前記第3の段階(S15)で算出された前記サンプル番号nの変化量dnとに基づいて、前記被測定信号に周波数揺らぎが含まれている状態での前記第3の段階(S15)で算出された前記サンプル番号nに含まれている誤差分enを算出する第5の段階(S17、S18、S19)と、前記第5の段階(S17、S18、S19)によって算出される前記サンプル番号nに含まれている誤差分enに基づいて前記第4の段階(S16)によって算出される前記被測定信号の仮の繰り返し周波数Fx′を補正することにより、前記被測定信号の正規の繰り返し周波数Fxを算出する第6の段階(S20)とを具備することを特徴としている。
 具体的には、図1に示すように、まず、被測定光信号Pが仮のサンプリング周波数Fsでサンプリングされる(ステップS11)。
 次に、ステップS11におけるサンプリングによって得られる信号のうち、前記仮のサンプリング周波数Fsの1/2以下の帯域に現れる特定信号の周波数Fhが検出される (ステップS12)。
 ここで、ステップS11、S12は、第1の段階を構成する。
 次に、サンプリング周波数を前記仮のサンプリング周波数Fsからサンプリング時に周波数折り返しが発生しない微小周波数ΔFsだけ変化させたサンプリング周波数Fs+ΔFsで前記被測定光信号Pがサンプリングされる(ステップS13)。
 次に、ステップS13におけるサンプリングによってサンプル番号が変化しない範囲で得られる前記特定信号の周波数変化量ΔFhが算出される(ステップS14)。
 ここで、ステップS13、S14は、第2の段階を構成する。
 次に、前記第2の段階(ステップS13、S14)における前記微小周波数ΔFsを分母とし、前記特定信号の周波数変化量ΔFhを分子とする式(1)により
 n=ΔFh/ΔFs                         …(1)
サンプル番号nが算出される(ステップS15:第3の段階)。
 次に、前記仮のサンプリング周波数Fsと、前記仮のサンプリング周波数Fsに対する前記特定信号の周波数Fhと、前記サンプリング周波数の変化量ΔFs及び前記特定信号の周波数変化量ΔFhとに基づいて、前記被測定光信号Pの仮の繰り返し周波数Fx′が算出される(ステップS16:第4の段階)。
 次に、前記仮のサンプリング周波数Fsからサンプリング時に周波数折り返しが発生するように大きく周波数dFsだけ変化させたサンプリング周波数で前記被測定光信号Pがサンプリングされる(ステップS17)。
 次に、ステップS17におけるサンプリングによって得られる前記特定信号の周波数変化量dFhが測定される(ステップS18)。
 次に、ステップS18で測定された前記特定信号の周波数変化量dFhと、この過程で周波数折り返しが何回発生したかを示す前記第3の段階(ステップS15)で算出された前記サンプル番号nの変化量dnとに基づいて、前記被測定光信号Pに周波数揺らぎが含まれている状態での前記第3の段階(ステップS15)で算出された前記サンプル番号nに含まれている誤差分enが算出される(ステップS19)。
 ここで、ステップS17、S18、S19は、第5の段階を構成する。
 次に、第5の段階(ステップS17、S18、S19)によって算出される前記サンプル番号nに含まれている誤差分enに基づいて前記第3の段階(ステップS15)によって算出される前記被測定光信号Pの仮の繰り返し周波数Fx′を補正することにより、前記被測定光信号Pの正規の繰り返し周波数Fxが算出される(ステップS20:第6の段階)。
 前記第1の段階(ステップS11、S12)では、前記被測定光信号Pを、前記仮のサンプリング周波数としてある繰り返し周波数Fsを有するサンプリング周波数にてサンプリングした場合に得られる信号のうち、前記ある繰り返し周波数Fsの1/2の以下の帯域に現れる前記特定信号として最大レベルを示す信号の周波数Fhが検出される。
 前記第2の段階(ステップS13、S14)では、前記サンプリング周波数を前記第1の段階(ステップS11、S12)における前記仮のサンプリング周波数として前記ある繰り返し周波数Fsからサンプリング時に周波数折り返しが発生しない微小周波数ΔFsだけ変化させて前記被測定光信号Pをサンプリングした場合に得られる前記特定信号の周波数変化量ΔFhが検出される。
 前記第3の段階(ステップS15)では、前記第2の段階(ステップS13、S14)における前記微小周波数ΔFsを分母とし、前記特定信号の周波数変化量ΔFhを分子とする式(1)により
 n=ΔFh/ΔFs                         …(1)
サンプル番号nが算出される。
 前記第4の段階(ステップS16)では、前記第1の段階(ステップS11、S12)によって検出された前記ある繰り返し周波数Fsの1/2の以下の帯域Fs/2に現れる前記特定信号として最大レベルを示す信号の周波数Fhと、前記2の段階(ステップS13、S14)によって検出された前記仮のサンプリング周波数として前記ある繰り返し周波数Fsからサンプリング時に周波数折り返しが発生しない微小周波数ΔFsだけ変化させて前記被測定信号をサンプリングした場合に得られる前記特定信号の周波数変化量ΔFhに基づいて、式(2)により
 Fx′=Fh-Fs・ΔFh/ΔFs      …(0>ΔFh/ΔFsの場合)
 Fx′=-Fh+Fs・ΔFh/ΔFs     …(0<ΔFh/ΔFsの場合)
                                   …(2)
前記被測定用の信号の仮の繰り返し周波数Fx′が算出される。
 前記第5の段階(ステップS17、S18、S19)では、前記サンプリング周波数を前記第1の段階(ステップS11、S12)における前記仮のサンプリング周波数としての前記ある繰り返し周波数Fsからサンプリング時に周波数折り返しが発生するように大きく周波数dFsだけ変化させて前記被測定信号をサンプリングした場合に得られる前記特定信号の周波数変化量dfh_measが検出され、式(3)により
 dFh_target=dn・(Fs+dFs)+n・dFs      …(3)
 (但し、dFh_targetは、前記サンプリング周波数の大きな変化に伴う、前記包絡線信号の周波数変化量の目標値であって、0~dFs/2の範囲で定められる任意の周波数であり、nは、前記(1)式で算出される前記サンプル番号であり、dnは、前記サンプリング周波数の大きな変化に伴う、前記サンプル番号nの変化量であって、前記被測定信号に含まれると想定される周波数揺らぎの範囲内において、確定することができる範囲内となるように、前記サンプリング周波数の大きな変化量dFsが定められる)
前記サンプル番号nの変化量dnが算出されると共に、前記特定信号の周波数変化量dFh_measが式(4)
 dFh_meas=dn・(Fs+dFs)+(n+en)・dFs   …(4)
 (但し、enは、前記サンプル番号nに含まれている誤差分である)
で表されるとき、前記式(3)及び(4)の差をとって得られる式(5)により
 en=(dFh_meas-dFh_target)/dFs      …(5)
前記サンプル番号nに含まれている誤差分enが算出される。
 前記第6の段階(ステップS20)では、前記第5の段階(ステップS17、S18、S19)によって算出された前記サンプル番号nに含まれている誤差分enを前記第3の段階(ステップS15)で算出された前記サンプル番号nに加算して正確なサンプル番号n+enを得て、該n+enを前記式(2)において前記サンプル番号nを示すΔFh/ΔFsとして反映させて、前記式(2)において算出される前記被測定信号の仮の繰り返し周波数Fx′を補正することにより、前記被測定信号の正規の繰り返し周波数Fxが算出される。
 図2及び図3は、以上のような本発明による被測定信号の繰り返し周波数検出方法の原理を説明するために、サンプル番号nを示すΔFh/ΔFsが0より小(図2)と0より大(図3)とに分けて示している。
 図2及び図3において、n・dFsは、サンプリング周波数をdFsだけ変化させたことに伴うn番目の高調波成分の周波数変化量を示していると共に、dn・(Fs+dFs)は周波数折り返しによる周波数戻り量を示している。
 なお、サンプル番号nに含まれるかも知れない最大誤差量について考察すると、想定される周波数揺らぎ量を±x[ppm]とし、各ステップで計算された被測定信号の正規の繰り返し周波数Fx、サンプリング周波数の変化量dFsとから、nに含まれるかも知れない誤差量yは、y=±x・Fx/dFsと見積もることができる。
 そして、この誤差量yの絶対値が1/2に満たない場合には、計算したnの値(四捨五入した値)は、誤りがないと判断することができる。
 次に、サンプリング周波数の変化量dFsの設定可能範囲について考察する。
 この場合、サンプリング周波数をdFsだけ変化させると、前記特定信号の周波数は、n・dFsだけ変化することになる。
 ここで、nに含まれるかも知れない誤差量yを考慮に入れると、実際には、この周波数変化の予測(n・dFs)よりも、±y・dFsだけ異なる可能性がある。
 したがって、サンプリング周波数の変化量dFsの設定可能範囲としてのdFsのとり得る範囲は、この±y・dFsを考慮した場合においてもサンプル番号nの変化量dnの値を確定できるものであるということが条件となる。
 そして、以上のような被測定信号の繰り返し周波数検出方法の終了の判定については、nに含まれるかも知れない誤差量yの絶対値が1/2以上であった場合には、上記ステップS17乃至S20を繰り返し行うことが必要なる。
 この場合、サンプリング周波数の変化量dFsは、上記ステップS17乃至S20を繰り返し行う度に、徐々に大きくすることになるので、nに含まれるかも知れない誤差量yの絶対値は徐々に1/2以下に収束し、終了の判定を行うことができる。
 したがって、本発明の第1の実施形態による被測定信号の繰り返し周波数検出方法によれば、サンプリング周波数を仮のサンプリング周波数からサンプリング時に周波数折り返しが発生しない微小量変化させてサンプリングしたときに得られる特定信号の周波数変化量から被測定信号の仮の繰り返し周波数を求めると共に、サンプリング周波数を仮のサンプリング周波数からサンプリング時に周波数折り返しが発生するように大きく周波数を変化させたサンプリング周波数で前記被測定信号を順次にサンプリングした場合に得られる特定信号の周波数変化量を測定し、この測定された特定信号の周波数変化量と、この場合に何回周波数折り返しが発生したかを示す前記サンプル番号の変化量とに基づいて、前記被測定信号に周波数揺らぎが含まれている状態での前記サンプル番号に含まれている誤差分を算出し、このサンプル番号に含まれている誤差分に基づいて前記被測定信号の仮の繰り返し周波数を補正することにより、前記被測定信号の正規の繰り返し周波数を算出するようにしているので、被測定信号に周波数揺らぎが存在していたとしても、被測定信号の波形繰り返し周波数を高精度に検出することができる。
(第2の実施形態)
 図4は、本発明の第2の実施形態による被測定信号のサンプリング装置を含む波形観測システムの構成を説明するために示すブロック図である。
 この第2の実施形態による波形観測システム20は、具体的には、図4に示すように、前述した第1の実施形態による被測定信号の繰り返し周波数検出方法のステップS11乃至S14及びS16を遂行するために、前述した図15に示す本願発明者の日本国先願による被測定信号のサンプリング装置を含む波形観測システム20と同様のパラメータ指定部22と、演算部23と、信号発生部24と、サンプリングパルス発生部25と、光サンプリング部26と、特定信号周波数検出部27と、仮の繰り返し周波数算出部(図15では、繰り返し周波数算出部)28とを有している。
 また、この第2の実施形態による波形観測システム20は、具体的には、図4に示すように、前述した第1の実施形態による被測定信号の繰り返し周波数検出方法のステップS15及びS17乃至S20遂行するために、前述した図15に示す本願発明者の日本国先願による被測定信号のサンプリング装置を含む波形観測システム20には見られない特定信号の周波数変化量検出部30と、サンプル番号誤差分算出部31と、正規の繰り返し周波数算出部32と、サンプル番号算出部33と、制御部34とを有している。
 ここで、制御部34は、この第2の実施形態による波形観測システム20全体の後述するような所定の動作を制御するために備えられているものである。
 なお、図4において、前述した図15と同様に構成される部分については、同一の参照符号を付してそれらの説明を省略し、以下では図15では説明されなかった部分について説明するものとする。
 パラメータ指定部22は、図示しない操作部の操作等によって、被測定光信号Pの波形の繰り返し周期Txとサンプリングのオフセット遅延時間ΔTに対応する情報を指定するためのものであり、前記手動設定モードのときには、正確な繰り返し周期Txを指定すると共に、自動設定モードの場合には、その概略値Tx′を指定するか、あるいは何も指定しない。
 なお、この指定情報は、周期値だけでなく、それに対応した周波数値であってもよいと共に、予め設定されている値から一つを指定する番号等の情報であってもよい。
 また、信号の周期と周波数とは、その一方が決まれば他方が一義的に特定されるので、「周期」及びその関係を「周波数」及びその関係に置き換えたものや、逆に「周波数」及びその関係を「周期」及びその関係に置き換えたものも含まれるものとする。
 演算部23は、パラメータ指定部22によって指定された情報または後述する仮の繰り返し周波数算出部28によって得られた情報に基づいて、被測定信号の繰り返し周期Tx(またはその概略値)の整数(N)倍に対してオフセット遅延時間ΔTだけ差のあるサンプリング周期Ts(サンプリング周波数Fs)を算出する。
 この演算部23は、算出したサンプリング周期で観測対象の波形の1周期分のデータをΔTの分解能で得るのに必要な時間をトリガ周期Tg(周波数Fg)として算出する。
 すなわち、仮のサンプリング周波数Fs(=1/Ts)は、Ts=N・Tx+ΔTの関係から、
 Fs=Fx/(N+Fx・ΔT)
の演算によって求められる。
 また、トリガ周波数Fgは、前記したように、
 Fg=mod[Fx,Fs]=Fs・Fx・ΔT
の演算によって得られる。
 例えば、Fx=1GHz、ΔT=0.1ps、サンプリング周波数Fsの設定可能範囲を10MHz±1kHzとすると、
 10/(N+10・0.1×10-12
が、9.999MHzから10.001MHzの範囲に入る整数Nを求め、そのNについてFs=Fx/(N+Fx・ΔT)を満たす周波数Fsを求めればよく、上記数値例では、N=100、Fs=9.99999MHzが得られる。
 また、
 Fx/Fs=N+Fx・ΔT
であるから、FxをFsで割った余りをDとすれば、
 D/Fs=Fx・ΔT(<1)
と表すことができる。
 よって、余りDは、
 D=Fs・Fx・ΔT
となる。
 したがって、上記数値例のトリガ周波数Fgは、
 Fg=9.99999×10・1×10・0.1×10-12
   =9.99999×10(Hz)
となる。
 信号発生部24は、演算部23で算出されたサンプリング周波数Fsのクロック信号C、後述する光サンプリングパルス発生部25で幅の狭いパルス光を生成させるために必要な高い周波数の信号U及び周波数Fgのトリガ用信号Gを生成して出力する。
 この信号発生部24の構成は任意であり、例えば、安定で精度の高い基準信号(例えば、1GHz±1MHz)を逓倍して信号Uを生成し、その信号Uを分周して上記クロック信号Cおよびトリガ用信号Gを発生するように構成されている。
 光サンプリングパルス発生部25は、信号発生部24が出力するクロック信号Cと等しい周期の光サンプリングパルスPsを発生する。
 この光サンプリングパルス発生部25が発生する光サンプリングパルスPsのパルス幅は、サンプリングの時間分解能の上限を決定するものであり、パルス幅が狭い程、高い時間分解能でサンプリングを行なうことができる。
 この狭い光サンプリングパルスを得るために、光サンプリングパルス発生部25は、例えば、図5に示しているように、光源25aから出射される連続光CWを変調器25bに入射して信号Uで変調して、図6の(a)に示すように比較的狭い幅のパルス光Paを信号Uの周期Tuで生成し、そのパルス光Paを間引手段25cに入力する。
 間引部25cは、クロック信号Cの周期で短時間だけオンする光スイッチを有し、図6の(b)に示すようにクロック信号Cの周期Tsのパルス光Pbを出力する。
 このパルス光Pbは自動利得制御型のファイバアンプリファイヤ25dに入力され、適正な強度のパルス光Pb′に増幅されて分散減少ファイバ25eに入射される。
 この適正な強度のパルス光Pb′を受けた分散減少ファイバ25eからは、図6の(c)に示すように幅が狭い(例えば、0.1ps以下)の光サンプリングパルスPsが周期Tsで出射される。
 なお、この光サンプリングパルス発生部25から出射される光サンプリングパルスPsは、クロック信号Cに同期するように設定されている。
 そして、この実施形態では、光サンプリングパルス発生部25は、制御部34の制御によって信号発生部24からの前記クロック信号Cに同期し、前記指定に応じた第1乃至第3のサンプリング周波数として仮のサンプリング周波数Fsを有する第1のサンプリングパルス、前記仮のサンプリング周波数Fsからサンプリング時に周波数折り返しが発生しない微小周波数ΔFsだけ変化させたサンプリング周波数を有する第2のサンプリングパルス及び前記仮のサンプリング周波数Fsからサンプリング時に周波数折り返しが発生するように大きく周波数dFsだけ変化させたサンプリング周波数を有する第3のサンプリングパルスを選択的に発生するようになされている。
 この場合、選択的に発生される第1乃至第3のサンプリングパルスとしての光サンプリングパルスPsは、光サンプリング部26に入射される。
 光サンプリング部26は、例えば、図7に示しているように、光ミキサ26aと光電変換器26bとからなり、入力端子21aから入力される光信号Pと光サンプリングパルスPsとを光ミキサ26aに入力して、被測定光信号Pを光サンプリングパルスPsでサンプリングし、そのサンプリングによって得られたパルス光Poを光電変換器26bによって電気のパルス信号Eoに変換して出力する。
 特定信号周波数検出部27は、制御部34の制御によって後述の繰り返し周波数算出部28と共に自動設定モードが指定されたときに動作し、光サンプリング部28から第1のサンプリングパルスでサンプリングされて出力されるパルス信号Eoを受け、そのパルス信号Eoに含まれる信号成分のうち、サンプリング周波数の1/2以下の帯域に現れる特定信号の周波数Fhを検出する。
 この特定信号周波数検出部27は、例えば、図8に示すように、パルス信号EoをA/D変換器27aに入力してデジタル値に変換し、そのデジタル値列に対して、デジタルフィルタ27bにより、サンプリング周波数の1/2以下の帯域制限処理を行い、さらに演算処理部27cにより、FFT(高速フーリェ変換)演算等の処理を行って、例えば、レベルが最も高い信号成分を特定信号とし、その周波数Fhを求める。
 仮の繰り返し周波数算出部28は、自動設定モードが指定された場合に、制御部34の制御によって信号発生部24を制御し、被測定光信号Pに対するサンプリング周波数として仮のサンプリング周波数Fsを微小周波数ΔFsだけ変化させた第2のサンプリングパルスでサンプリングされて出力される特定信号の周波数変化量ΔFhを求め、その変化量に基づいて、被測定光信号Pの仮の繰り返し周波数Fx′を求め、これを演算部23に設定する。
 特定信号周波数変化量検出部30は、サンプリング部26によって被測定信号をサンプリングパルス発生部25からの前記第3のサンプリングパルスでサンプリングした場合に得られる特定信号の周波数変化量dFh measを検出する。
 サンプル番号誤差分算出部31は、特定信号周波数変化量検出部30によって検出された前記特定信号の周波数変化量dFh measと、この過程で何回周波数折り返しが何回発生したかを示す前記サンプル番号nの変化量dnとに基づいて、前記被測定信号に周波数揺らぎが含まれている状態での前記サンプル番号nに含まれている誤差分enを算出する。
 正規の繰り返し周波数算出部32は、サンプル番号誤差分算出部31によって算出される前記サンプル番号nに含まれている誤差分enに基づいて前記仮の繰り返し周波数算出部28によって算出される前記被測定信号の仮の繰り返し周波数Fx′を補正することにより、前記被測定信号の正規の繰り返し周波数Fxを算出する。
 サンプル番号算出部33は、仮の繰り返し周波数算出部28で用いる前記微小周波数ΔFsを分母とし、前記仮の繰り返し周波数算出部28で用いる前記周波数変化量ΔFhを分子とする式(1)により
 n=ΔFh/ΔFs                         …(1)
サンプル番号nを算出する。
 そして、本発明による被測定信号のサンプリング装置は、基本的には、被測定信号を入力するための入力端子21aと、指定に応じた第1乃至第3のサンプリング周波数のクロック信号を選択的に生成する信号発生部24と、前記信号発生部24からの前記クロック信号に同期し、前記指定に応じた第1乃至第3のサンプリング周波数として仮のサンプリング周波数を有する第1のサンプリングパルス、前記仮のサンプリング周波数Fsからサンプリング時に周波数折り返しが発生しない微小周波数ΔFsだけ変化させたサンプリング周波数を有する第2のサンプリングパルス及び前記仮のサンプリング周波数Fsからサンプリング時に周波数折り返しが発生するように大きく周波数dFsだけ変化させたサンプリング周波数を有する第3のサンプリングパルスを選択的に発生するサンプリングパルス発生部25と、前記被測定信号を前記サンプリングパルス発生部25からの第1乃至第3の前記サンプリングパルスによって選択的にサンプリングするサンプリング部26と、前記サンプリング部26によって前記被測定用の信号を前記サンプリングパルス発生部25からの前記第1のサンプリングパルスでサンプリングした場合に得られる信号のうち、前記仮のサンプリング周波数Fsの1/2以下の帯域に現れる特定信号の周波数Fhを検出する特定信号周波数検出部27と、前記サンプリング部26によって前記被測定信号を前記サンプリングパルス発生部25からの前記第2のサンプリングパルスでサンプリングしたときに前記特定信号周波数検出部27によって検出される前記特定信号の周波数変化量ΔFhを算出する周波数変化量算出部29と、前記サンプリングパルス発生部25による前記仮のサンプリング周波数Fsと、前記サンプリング周波数の変化量としての前記微小周波数ΔFsと、前記特定信号周波数検出部27によって検出される前記仮のサンプリング周波数Fsに対する前記特定信号の周波数Fh及び前記周波数変化量算出部29によって算出される前記特定信号の周波数変化量ΔFhとに基づいて、前記被測定信号の仮の繰り返し周波数Fx′を算出する仮の繰り返し周波数算出部28と、前記仮の繰り返し周波数算出部28で用いる前記微小周波数ΔFsを分母とし、前記仮の繰り返し周波数算出部28で用いる前記周波数変化量ΔFhを分子とする式(1)により
 n=ΔFh/ΔFs                         …(1)
サンプル番号nを算出するサンプル番号算出部33と、前記サンプリング部26によって前記被測定信号を前記サンプリングパルス発生部25からの前記第3のサンプリングパルスで順次にサンプリングした場合に得られる特定信号の周波数変化量dFhを検出する特定信号周波数変化量検出部30と、前記特定信号周波数変化量検出部30によって測定された前記特定信号の周波数変化量dFhと、この過程で何回周波数折り返しが何回発生したかを示す前記サンプル番号算出部33によって算出される前記サンプル番号nの変化量dnとに基づいて、前記被測定信号に周波数揺らぎが含まれている状態での前記サンプル番号nに含まれている誤差分enを算出するサンプル番号誤差分算出部31と、前記サンプル番号誤差分算出部31によって算出される前記サンプル番号nに含まれている誤差分enに基づいて前記仮の繰り返し周波数算出部28によって算出される前記被測定信号の仮の繰り返し周波数Fx′を補正することにより、前記被測定信号の正規の繰り返し周波数Fxを算出する正規の繰り返し周波数算出部32とを具備することを特徴とする。
 前記特定信号周波数検出部27は、前記信号発生部24に対し、前記指定に応じた第1のサンプリング周波数としてある繰り返し周波数Fsを有する仮のサンプリング周波数を指定することにより前記サンプリングパルス発生部25から前記仮のサンプリング周波数を有する第1のサンプリングパルスを発生させると共に、前記サンプリング部26によって、前記被測定信号を、前記仮のサンプリング周波数を有する前記第1のサンプリングパルスにてサンプリングした場合に得られる信号のうち、前記ある繰り返し周波数Fsの1/2以下の帯域Fs/2に現れる特定信号の周波数Fhを検出する。
 前記周波数変化量算出部29は、前記信号発生部24に対し、前記指定に応じた第2のサンプリング周波数として前記ある繰り返し周波数Fsからサンプリング時に周波数折り返しが発生しない微小周波数ΔFsだけ変化させた周波数を有するサンプリング周波数を指定することにより前記サンプリングパルス発生部25から前記第2のサンプリングパルスを発生させると共に、前記サンプリング部26によって、前記第2のサンプリングパルスで前記被測定信号をサンプリングした場合に得られる特定信号の周波数変化量ΔFhを算出する。
 前記仮の繰り返し周波数算出部28は、前記サンプリングパルス発生部25による前記仮のサンプリング周波数Fsと、前記サンプリング周波数の変化量としての前記微小周波数ΔFsと、前記特定信号周波数検出部27によって検出される前記仮のサンプリング周波数Fsに対する前記特定信号の周波数Fh及び前記周波数変化量算出部29によって算出される前記特定信号の周波数変化量ΔFhとに基づいて、式(2)により
 Fx′=Fh-Fs・ΔFh/ΔFs      …(0>ΔFh/ΔFsの場合)
 Fx′=-Fh+Fs・ΔFh/ΔFs     …(0<ΔFh/ΔFsの場合)
                                   …(2)
前記被測定信号の仮の繰り返し周波数Fx′を算出する。
 前記特定信号周波数変化量検出部30は、前記信号発生部24に対し、前記指定に応じた第3のサンプリング周波数として前記ある繰り返し周波数Fsからサンプリング時に周波数折り返しが発生するように大きく周波数dFsだけ変化させた周波数を有するサンプリング周波数を指定することにより前記サンプリングパルス発生部25から前記第3のサンプリングパルスを発生させると共に、前記サンプリング部26によって、前記被測定信号を前記第3のサンプリングパルスで順次にサンプリングした場合に得られる前記特定信号の周波数変化量dFh_measを検出し、式(3)により
 dFh_target=dn・(Fs+dFs)+n・dFs      …(3)
 (但し、dFh_targetは、前記サンプリング周波数の大きな変化に伴う、前記特定信号の周波数変化量の目標値であって、0~dFs/2の範囲で定められる任意の周波数であり、nは、前記サンプル番号算出部33によって算出される前記サンプル番号であり、dnは、前記サンプリング周波数の大きな変化に伴う、前記サンプル番号nの変化量であって、前記被測定信号に含まれると想定される周波数揺らぎの範囲内において、確定することができる範囲内となるように、前記サンプリング周波数の大きな変化量dFsが定められる)
前記サンプル番号nの変化量dnを算出する。
 前記サンプル番号誤差分算出部31は、前記特定信号周波数変化量検出部30によって検出される前記特定信号の周波数変化量dFh_measが式(4)
 dFh_meas=dn・(Fs+dFs)+(n+en)・dFs   …(4)
 (但し、enは、前記サンプル番号nに含まれている誤差分である)
で表されるとき、前記式(3)及び(4)の差をとって得られる式(5)により
 en=(dFh_meas-dFh_target)/dFs      …(5)
前記サンプル番号nに含まれている誤差分enを算出する。
 前記正規の繰り返し周波数算出部32は、前記サンプル番号誤差分算出部31によって算出された前記サンプル番号nに含まれている誤差分enを前記サンプル番号算出部33によって算出された前記サンプル番号nに加算して正確なサンプル番号n+enを得て、該n+enを前記式(2)において前記サンプル番号nを示すΔFh/ΔFsとして反映させて、前記式(2)において算出される前記被測定信号の仮の繰り返し周波数Fx′を補正することにより、前記被測定信号の正規の繰り返し周波数Fxを算出する。
 演算部23は、前記正規の繰り返し周波数算出部32によって算出された前記正規の繰り返し周波数Fxに対応する繰り返し周期Txの整数倍に対して所定のオフセット遅延時間ΔTだけ差のある周期Tsに対応する周波数Fsを前記被測定用の信号に対する正規のサンプリング周波数として算出し、この算出された正規のサンプリング周波数を前記信号発生部24に指定することにより、前記サンプリングパルス発生部25から前記第1乃至第3のサンプリングパルスに代えて前記正規のサンプリング周波数を有するサンプリングパルスを発生させて、前記サンプリング部26によって前記被測定信号を前記正規のサンプリング周波数を有するサンプリングパルスでサンプリングすることを可能とするために、備えられている。
 そして、サンプリング部26によって被測定信号を正規のサンプリング周波数Fsを有するサンプリングパルスでサンプリングされて出力されるパルス信号Eoは、前述した図15の説明と同様にしてデジタルオシロスコープ60に取り込まれて表示される。
 すなわち、本発明の被測定信号のサンプリング装置及び波形観測システムにおいては、上記第1の実施形態による被測定信号の周波数検出方法を用いて、周波数未知の被測定用の信号に対するサンプリング周波数の設定を正確に行うことにより、被測定信号に周波数揺らぎが存在していたとしても、被測定信号を高精度にサンプリングすることができると共に、被測定信号の波形観測を高精度に行うことができる。
(第3の実施形態)
 図9は、本発明の第3の実施形態による被測定信号のサンプリング装置を含む波形観測システムの構成を説明するために示すブロック図である。
 この第3の実施形態による被測定信号のサンプリング装置を含む波形観測システム40は、上記第2の実施形態による波形観測システム20を構成するサンプリング装置21とデジタルオシロスコープ60の機能とを共通の筐体内に収容して一体化した構成となされている。
 具体的には、この第3の実施形態による被測定信号のサンプリング装置を含む波形観測システム40は、前記した図4のサンプリング装置21の各構成要素の他に、A/D変換器43、データ取得制御部44、波形データメモリ45、表示制御部46、表示器47および観測モード指定部48を備えている。
 A/D変換器43は、光サンプリング部26から出力されるパルス信号Eoに対するA/D変換処理を、クロック信号C(またはクロック信号Cに同期したより高速のクロック信号でもよい)を受ける毎に行い、そのA/D変換処理によって得られたパルス信号Eoのピーク値のデータDpをデータ取得制御部44に出力する。
 データ取得制御部44は、トリガ用信号Gの立ち上がり(または立ち下がり)タイミングから、波形データメモリ45に対するデータDpの書き込みをクロック信号Cに同期して開始し、所定数のデータの書き込みが終了すると、次にトリガ用信号Gの立ち上がるまで待機するという動作を繰り返す。
 なお、波形データメモリ45に書き込むデータの数は、後述する表示器47に表示される時間軸の表示ポイント数に対応する。
 表示制御部46は、表示器47と共に波形表示部を形成するものであり、時間軸と電圧軸とからなる座標画面を表示器47に表示させ、波形データメモリ45に記憶された一連のデータDpを読み出して、座標画面上にプロット表示して、その読み出した一連のデータDpに対応する波形を表示する。
 なお、この表示制御部46は、観測モード指定部48によって指定された観測モードに応じて、波形データメモリ45に記憶されたデータDpに対する加工処理及び表示処理を行う。
 すなわち、パーシステンスモードが指定された場合、波形データメモリ45に記憶された一連のデータDpの残像を残す状態で波形表示し、平均化モードが指定された場合、波形データメモリ45に記憶された一連のデータDpを所定組求めて、その平均化処理を行い、その平均化処理で得られた一連のデータを重ねて波形として表示する。
 このように構成された波形観測システム40の動作は、前記波形観測システム20と同様であり、被測定光信号の繰り返し周波数を正確に求め、被測定光信号の繰り返し周波数に周波数揺らぎが存在していても、その繰り返し周波数に対応したサンプリング周波数とトリガ周波数が設定されるので、繰り返し周波数が未知あるいは概略値しか分からない波形であっても、安定に表示させることができる。
 なお、被測定信号の波形の情報を単発的に取得して表示する場合には、上記のように周期的なトリガ用信号Gを生成する必要がなく、例えば、手動のトリガ操作に応じて1回だけ立ち上がるトリガ用信号Gを出力すればよい。
 そして、サンプリング周波数を変えて被測定信号をサンプリングすることにより、被測定光信号の繰り返し周波数に周波数揺らぎが存在していても、前記と同様に被測定光信号の正規の繰り返し周波数を求めることができ、その正確な繰り返し周波数に正しく対応したサンプリング周波数を設定して、上記トリガ操作を行うことにより、被測定信号の波形を正確に表示させることができる。
 また、上記した波形観測システム40のように表示機能を有している場合、被測定信号のスペクトラムを表示することも可能である。
 この場合、特定信号周波数検出部27が、サンプリング周波数の1/2以下の帯域に現れる複数の特定信号の周波数とレベルをそれぞれ検出して、仮の繰り返し周波数算出部28に出力する。
 また、仮の繰り返し周波数算出部28が、特定信号周波数検出部27によって検出された複数の特定信号についての各周波数変化量に基づいて、被測定信号に含まれる複数の周波数成分のスペクトラムを求め、これを図9に破線で示すように正規の繰り返し周波数算出部32を介して波形表示制御部46に出力する。
 波形表示制御部46は、自動設定モードが指定されているときに、仮の繰り返し周波数算出部28から正規の繰り返し周波数算出部32を介して得られるスペクトラムを表示器47の周波数軸上に表示する。
 また、前記した各波形観測システム20、40は、光信号を光パルスでサンプリングするO/Oサンプリング方式に代えて、電気信号を光パルスでサンプリングするE/Oサンプリング方式についても本発明を同様に適用することができる。
 本発明の第3実施形態による被測定信号の波形観測システムは、基本的には、被測定信号を入力するための入力端子21aと、指定に応じた第1乃至第3のサンプリング周波数及び指定に応じた第4のサンプリング周波数のクロック信号を選択的に生成する信号発生部24と、前記信号発生部24からの前記クロック信号に同期し、前記指定に応じた第1乃至第3のサンプリング周波数として仮のサンプリング周波数Fsを有する第1のサンプリングパルス、前記仮のサンプリング周波数Fsからサンプリング時に周波数折り返しが発生しない微小周波数ΔFsだけ変化させたサンプリング周波数を有する第2のサンプリングパルス、前記仮のサンプリング周波数Fsからサンプリング時に周波数折り返しが発生するように大きく周波数dFsだけ変化させたサンプリング周波数を有する第3のサンプリングパルス及び前記指定に応じた第4のサンプリング周波数を有する第4のサンプリングパルスを選択的に発生するサンプリングパルス発生部25と、前記被測定信号を前記サンプリングパルス発生部25からの前記第1乃至第3のサンプリングパルス及び第4のサンプリングパルスによって選択的にサンプリングするサンプリング部26と、前記サンプリング部26によって前記被測定信号を前記サンプリングパルス発生部25からの前記第1のサンプリングパルスでサンプリングして得られた信号のうち、前記仮のサンプリング周波数Fsの1/2以下の帯域に現れる特定信号の周波数Fhを検出する特定信号周波数検出部27と、前記サンプリング部26によって前記被測定信号を前記サンプリングパルス発生部25からの前記第2のサンプリングパルスでサンプリングしたときに得られる前記特定信号の周波数変化量ΔFhを算出する周波数変化量算出部29と、前記サンプリングパルス発生部25による前記仮のサンプリング周波数Fsと、前記サンプリング周波数の変化量としての前記微小周波数ΔFsと、前記特定信号周波数検出部27によって検出される前記仮のサンプリング周波数Fsに対する前記特定信号の周波数Fh及び前記周波数変化量算出部29によって算出される前記特定信号の周波数変化量ΔFhとに基づいて、前記被測定信号の仮の繰り返し周波数Fx′を算出する仮の繰り返し周波数算出部28と、前記仮の繰り返し周波数算出部28で用いる前記微小周波数ΔFsを分母とし、前記仮の繰り返し周波数算出部28で用いる前記周波数変化量ΔFhを分子とする式(1)により
 n=ΔFh/ΔFs                         …(1)
サンプル番号nを算出するサンプル番号を算出部33と、前記サンプリング部26によって前記被測定信号を前記サンプリングパルス発生部25からの前記第3のサンプリングパルスでサンプリングした場合に得られる前記特定信号の周波数変化量dFhを検出する特定信号周波数変化量検出部30と、前記特定信号周波数変化量検出部30によって検出された前記特定信号の周波数変化量dFhと、この過程で何回周波数折り返しが何回発生したかを示す前記サンプル番号を算出部33によって算出された前記サンプル番号nの変化量dnとに基づいて、前記被測定信号に周波数揺らぎが含まれている状態での前記サンプル番号nに含まれている誤差分enを算出するサンプル番号誤差分算出部31と、前記サンプル番号誤差分算出部31によって算出される前記サンプル番号nに含まれている誤差分enに基づいて前記仮の繰り返し周波数算出部28によって算出される前記被測定信号の仮の繰り返し周波数Fx′を補正することにより、前記被測定信号の正規の繰り返し周波数Fxを算出する正規の繰り返し周波数算出部32と、前記正規の繰り返し周波数算出部32によって算出された前記正規の繰り返し周波数Fxに対応する繰り返し周期Txの整数倍に対して所定のオフセット遅延時間ΔTだけ差のある周期Tsに対応する周波数Fsを前記被測定信号に対する正規のサンプリング周波数として算出し、この算出された正規のサンプリング周波数Fsを前記第4のサンプリング周波数として前記信号発生部24に指定することにより、前記サンプリングパルス発生部25からの前記第4のサンプリングパルスを発生させると共に、前記サンプリング部26により前記被測定信号を前記第4のサンプリングパルスでサンプリングさせる演算部23と、前記サンプリング部26から前記第4のサンプリングパルスでサンプリングされて出力される信号をデジタルの波形データに変換して出力するアナログ/デジタル(A/D)変換器43と、前記A/D変換器43から出力される前記波形データを記憶するための波形データメモリ45と、前記A/D変換器43から出力される前記波形データを前記信号発生部24からの前記クロック信号に同期して前記波形データメモリ45に書き込むデータ取得制御部44と、前記波形データメモリ45に記憶された一連の波形データを読み出して表示部46の時間軸上に前記オフセット遅延時間に対応する間隔で表示する表示制御部46とを具備することを特徴としている。
 前記特定信号周波数検出部27は、前記信号発生部24に対し、前記指定に応じた第1のサンプリング周波数としてある繰り返し周波数Fsを有する仮のサンプリング周波数を指定することにより前記サンプリングパルス発生部25から前記仮のサンプリング周波数を有する第1のサンプリングパルスを発生させると共に、前記サンプリング部26によって、前記被測定信号を、前記仮のサンプリング周波数を有する前記第1のサンプリングパルスにてサンプリングした場合に得られる信号のうち、前記ある繰り返し周波数Fsの1/2以下の帯域Fs/2に現れる特定信号の周波数Fhを検出する。
 前記周波数変化量算出部29は、前記信号発生部24に対し、前記指定に応じた第2のサンプリング周波数として前記ある繰り返し周波数Fsからサンプリング時に周波数折り返しが発生しない微小周波数ΔFsだけ変化させた周波数を有するサンプリング周波数を指定することにより前記サンプリングパルス発生部25から前記第2のサンプリングパルスを発生させると共に、前記サンプリング部26によって、前記第2のサンプリングパルスで前記被測定信号をサンプリングした場合に得られる前記特定信号の周波数変化量ΔFhを算出する。
 前記仮の繰り返し周波数算出部28は、前記サンプリングパルス発生部25による前記仮のサンプリング周波数Fsと、前記サンプリング周波数の変化量としての前記微小周波数ΔFsと、前記特定信号周波数検出部27によって検出される前記仮のサンプリング周波数Fsに対する前記特定信号の周波数Fh及び前記周波数変化量算出部29によって算出される前記特定信号の周波数変化量ΔFhとに基づいて、式(2)により
 Fx′=Fh-Fs・ΔFh/ΔFs      …(0>ΔFh/ΔFsの場合)
 Fx′=-Fh+Fs・ΔFh/ΔFs     …(0<ΔFh/ΔFsの場合)
                                   …(2)
前記被測定信号の仮の繰り返し周波数Fx′を算出する。
 前記特定信号周波数変化量検出部30は、前記信号発生部24に対し、前記指定に応じた第3のサンプリング周波数として前記ある繰り返し周波数Fsからサンプリング時に周波数折り返しが発生するように大きく周波数dFsだけ変化させた周波数を有するサンプリング周波数を指定することにより前記サンプリングパルス発生部25からの前記第3のサンプリングパルスを発生させると共に、前記サンプリング部26によって、前記被測定信号を前記第3のサンプリングパルスでサンプリングした場合に得られる前記特定信号の周波数変化量dFh_measを検出し、式(3)により
 dFh_target=dn・(fs+dFs)+n・dfs      …(3)
 (但し、dFh_targetは、前記サンプリング周波数の大きな変化に伴う、前記特定信号の周波数変化量の目標値であって、0~dFs/2の範囲で定められる任意の周波数であり、nは、前記サンプル番号算出部33で算出される前記サンプル番号であり、dnは、前記サンプリング周波数の大きな変化に伴う、前記サンプル番号nの変化量であって、前記被測定信号に含まれると想定される周波数揺らぎの範囲内において、確定することができる範囲内となるように、前記サンプリング周波数の大きな変化量dFsが定められる)
前記サンプル番号nの変化量dnを算出する。
 前記サンプル番号誤差分算出部31は、前記特定信号周波数変化量検出部30によって検出される前記特定信号の周波数変化量dFh_measが式(4)
 dFh_meas=dn・(Fs+dFs)+(n+en)・dFs   …(4)
 (但し、enは、前記サンプル番号nに含まれている誤差分である)
で表されるとき、前記式(3)及び(4)の差をとって得られる式(5)により
 en=(dFh_meas-dFh_target)/dFs      …(5)
前記サンプル番号nに含まれている誤差分enを算出する。
 前記正規の繰り返し周波数算出部32は、前記サンプル番号誤差分算出部31によって算出される前記サンプル番号nに含まれている誤差分enを前記サンプル番号誤差分算出部33によって算出された前記サンプル番号nに加算して正確なサンプル番号n+enを得て、該n+enを前記式(2)において前記サンプル番号nを示すΔFh/ΔFsとして反映させて、前記式(2)において算出される前記被測定信号の仮の繰り返し周波数Fx′を補正することにより、前記被測定信号の正規の繰り返し周波数Fxを算出する。
 前記特定信号周波数検出部27は、前記第1のサンプリング周波数の1/2以下の帯域に現れる複数の特定信号の周波数をそれぞれ検出し、前記仮の繰り返し周波数算出部28は、前記特定信号周波数検出部27によって検出される前記複数の特定信号についての周波数変化量に基づいて、前記被測定信号に含まれる複数の周波数成分のスペクトラムを求めるように構成され、前記表示制御部47は、前記仮の繰り返し周波数算出部28によって得られたスペクトラムを前記正規の繰り返し周波数算出部32を介して前記表示部46の周波数軸上に表示させるように構成されている。
 すなわち、本発明の第3の実施形態による被測定信号のサンプリング装置及び波形観測システム40においては、上記第2の実施形態による被測定信号のサンプリング装置及び波形観測システム20と同様に、上記第1の実施形態による被測定信号の繰り返し周波数検出方法を用いて、周波数未知の被測定信号に対するサンプリング周波数の設定を正確に行うことにより、被測定信号に周波数揺らぎが存在していたとしても、被測定信号を高精度にサンプリングすることができると共に、被測定信号の波形観測を高精度に行うことができる。
 したがって、以上詳述したように本発明によれば、被測定信号に周波数揺らぎが存在していたとしても、サンプリング結果から被測定信号の繰り返し周波数を正確に検出することができる被測定信号の繰り返し周波数検出方法及びそれを用いて安定な波形情報の取得と観測ができ、さらに、システム全体を簡易に構成することができるサンプリング装置及び波形観測システムを提供することができる。

Claims (22)

  1.  被測定信号を仮のサンプリング周波数Fsでサンプリングして得られる信号のうち、前記仮のサンプリング周波数Fsの1/2以下の帯域に現れる特定信号の周波数Fhを検出する第1の段階と、
     前記仮のサンプリング周波数Fsからサンプリング時に周波数折り返しが発生しない微小周波数ΔFsだけ変化させたサンプリング周波数で得られる前記特定信号の周波数変化量ΔFhを算出する第2の段階と、
     前記第2の段階における前記微小周波数ΔFsを分母とし、前記特定信号の周波数変化量ΔFhを分子とする式(1)により
     n=ΔFh/ΔFs                         …(1)
    サンプル番号nを算出する第3の段階と、
     前記仮のサンプリング周波数Fsと、前記仮のサンプリング周波数Fsに対する前記特定信号の周波数Fhと、前記サンプリング周波数の変化量としての前記微小周波数ΔFs及び前記特定信号の周波数変化量ΔFhとに基づいて、前記被測定信号の仮の繰り返し周波数Fx′を算出する第4の段階と、
     前記仮のサンプリング周波数Fsからサンプリング時に周波数折り返しが発生するように大きく周波数を変化させたサンプリング周波数で前記被測定信号をサンプリングした場合に得られる特定信号の周波数変化量dFh_measを検出し、この検出された前記特定信号の周波数変化量dFh_measと、この過程で周波数折り返しが何回発生したかを示す前記第3の段階によって算出された前記サンプル番号nの変化量dnとに基づいて、前記被測定信号に周波数揺らぎが含まれている状態での前記第3の段階によって算出された前記サンプル番号nに含まれている誤差分enを算出する第5の段階と、
     前記第5の段階によって算出される前記サンプル番号nに含まれている誤差分enに基づいて前記第4の段階によって算出される前記被測定信号の仮の繰り返し周波数Fx′を補正することにより、前記被測定信号の正規の繰り返し周波数Fxを算出する第6の段階と、
     を具備する被測定信号の繰り返し周波数検出方法。
  2.  前記第1の段階は、前記被測定信号を、前記仮のサンプリング周波数としてある繰り返し周波数Fsを有するサンプリング周波数にてサンプリングした場合に得られる信号のうち、前記ある繰り返し周波数Fsの1/2の以下の帯域に現れる前記特定信号として最大レベルを示す信号の周波数Fhを測定することを特徴とする請求項1に記載の被測定信号の繰り返し周波数検出方法。
  3.  前記第4の段階は、前記第1の段階によって検出された前記ある繰り返し周波数Fsの1/2の以下の帯域Fs/2に現れる前記特定信号として最大レベルを示す信号の周波数Fhと、前記第2の段階によって測定された前記仮のサンプリング周波数として前記ある繰り返し周波数Fsからサンプリング時に周波数折り返しが発生しない前記微小周波数ΔFsだけ変化させて前記被測定信号をサンプリングした場合に得られる前記特定信号の周波数変化量ΔFhに基づいて、式(2)により
     Fx′=Fh-Fs・ΔFh/ΔFs      …(0>ΔFh/ΔFsの場合)
     Fx′=-Fh+Fs・ΔFh/ΔFs     …(0<ΔFh/ΔFsの場合)
                                       …(2)
    前記被測定信号の仮の繰り返し周波数Fx′を算出することを特徴とする請求項2に記載の被測定信号の繰り返し周波数検出方法。
  4.  前記第5の段階は、前記サンプリング周波数を前記第1の段階における前記仮のサンプリング周波数としての前記ある繰り返し周波数Fsからサンプリング時に周波数折り返しが発生するように大きく周波数dFsだけ変化させて前記被測定信号をサンプリングした場合に得られる特定信号の周波数変化量dFh_measを検出し、式(3)により
     dFh_target=dn・(Fs+dFs)+n・dFs      …(3)
     (但し、dFh_targetは、前記サンプリング周波数の大きな変化に伴う、前記特定信号の周波数変化量の目標値であって、0~dFs/2の範囲で定められる任意の周波数であり、nは、前記(1)式で算出される前記サンプル番号であり、dnは、前記サンプリング周波数の大きな変化に伴う、前記サンプル番号nの変化量であって、前記被測定信号に含まれると想定される周波数揺らぎの範囲内において、確定することができる範囲内となるように、前記サンプリング周波数の大きな変化量dFsが定められる)
    前記サンプル番号nの変化量dnを算出し、
     前記特定信号の周波数変化量dFh_measが式(4)
     dFh_meas=dn・(Fs+dFs)+(n+en)・dFs   …(4)
     (但し、enは、前記サンプル番号nに含まれている誤差分である)
    で表されるとき、前記式(3)及び(4)の差をとって得られる式(5)により
     en=(dFh_meas-dFh_target)/dFs      …(5)
    前記サンプル番号nに含まれている誤差分enを算出することを特徴とする請求項3に記載の被測定信号の繰り返し周波数検出方法。
  5.  前記第6の段階は、前記第5の段階によって算出された前記サンプル番号nに含まれている誤差分enを前記第3の段階で算出された前記サンプル番号nに加算して正確なサンプル番号n+enを得て、該n+enを前記式(2)において前記サンプル番号を示すΔFh/ΔFsとして反映させて、前記式(2)において算出される前記被測定信号の仮の繰り返し周波数Fx′を補正することにより、前記被測定信号の正規の繰り返し周波数Fxを算出することを特徴とする請求項4に記載の被測定信号の繰り返し周波数検出方法。
  6.  被測定信号を入力するための入力端子と、
     指定に応じた第1乃至第3のサンプリング周波数のクロック信号を選択的に生成する信号発生部と、
     前記信号発生部からの前記クロック信号に同期し、前記指定に応じた第1乃至第3のサンプリング周波数として仮のサンプリング周波数Fsを有する第1のサンプリングパルス、前記仮のサンプリング周波数Fsからサンプリング時に周波数折り返しが発生しない微小周波数ΔFsだけ変化させたサンプリング周波数を有する第2のサンプリングパルス及び前記仮のサンプリング周波数Fsからサンプリング時に周波数折り返しが発生するように大きく周波数dFsだけ変化させたサンプリング周波数を有する第3のサンプリングパルスを選択的に発生するサンプリングパルス発生部と、
     前記被測定信号を前記サンプリングパルス発生部からの第1乃至第3の前記サンプリングパルスによって選択的にサンプリングするサンプリング部と、
     前記サンプリング部によって前記被測定信号を前記サンプリングパルス発生部からの前記第1のサンプリングパルスでサンプリングした場合に得られる信号のうち、前記仮のサンプリング周波数Fsの1/2以下の帯域に現れる特定信号の周波数Fhを検出する特定信号周波数検出部と、
     前記サンプリング部によって前記被測定信号を前記サンプリングパルス発生部からの前記第2のサンプリングパルスでサンプリングしたときに前記特定信号周波数検出部によって検出される前記特定信号の周波数変化量ΔFhを算出する周波数変化量算出部と、
     前記サンプリングパルス発生部による前記仮のサンプリング周波数Fsと、前記サンプリング周波数の変化量としての前記微小周波数ΔFsと、前記特定信号周波数検出部によって検出される前記仮のサンプリング周波数Fsに対する前記特定信号の周波数Fh及び前記周波数変化量算出部によって算出される前記特定信号の周波数変化量ΔFhとに基づいて、前記被測定信号の仮の繰り返し周波数Fx′を算出する仮の繰り返し周波数算出部と、
     前記仮の繰り返し周波数算出部で用いる前記微小周波数ΔFsを分母とし、前記仮の繰り返し周波数算出部で用いる前記周波数変化量ΔFhを分子とする式(1)により
     n=ΔFh/ΔFs                         …(1)
    サンプル番号nを算出するサンプル番号算出部と、
     前記サンプリング部によって前記被測定信号を前記サンプリングパルス発生部からの前記第3のサンプリングパルスでサンプリングした場合に得られる前記特定信号の周波数変化量dFhを検出する特定信号周波数変化量検出部と、
     前記特定信号周波数変化量検出部によって検出された前記特定信号の周波数変化量dFhと、この過程で何回周波数折り返しが何回発生したかを示す前記サンプル番号算出部によって算出された前記サンプル番号nの変化量dnとに基づいて、前記被測定信号に周波数揺らぎが含まれている状態での前記サンプル番号算出部によって算出された前記サンプル番号nに含まれている誤差分enを算出するサンプル番号誤差分算出部と、
     前記サンプル番号誤差分算出部によって算出される前記サンプル番号nに含まれている誤差分enに基づいて前記仮の繰り返し周波数算出部によって算出される前記被測定信号の仮の繰り返し周波数Fx′を補正することにより、前記被測定信号の正規の繰り返し周波数Fxを算出する正規の繰り返し周波数算出部と、
     を具備する被測定信号のサンプリング装置。
  7.  前記特定信号周波数検出部は、前記信号発生部に対し、前記指定に応じた第1のサンプリング周波数としてある繰り返し周波数Fsを有する仮のサンプリング周波数を指定することにより前記サンプリングパルス発生部から前記仮のサンプリング周波数を有する第1のサンプリングパルスを発生させると共に、前記サンプリング部によって、前記被測定信号を、前記仮のサンプリング周波数を有する前記第1のサンプリングパルスにてサンプリングした場合に得られる信号のうち、前記ある繰り返し周波数Fsの1/2以下の帯域Fs/2に現れる前記特定信号の周波数Fhを検出することを特徴とする請求項6に記載の被測定信号のサンプリング装置。
  8.  前記周波数変化量算出部は、前記信号発生部に対し、前記指定に応じた第2のサンプリング周波数として前記ある繰り返し周波数Fsからサンプリング時に周波数折り返しが発生しない前記微小周波数ΔFsだけ変化させた周波数を有するサンプリング周波数を指定することにより前記サンプリングパルス発生部から前記第2のサンプリングパルスを発生させると共に、前記サンプリング部によって、前記第2のサンプリングパルスで前記被測定信号をサンプリングした場合に得られる前記特定信号の周波数変化量ΔFhを算出することを特徴とする請求項7に記載の被測定信号のサンプリング装置。
  9.  前記仮の繰り返し周波数算出部は、前記サンプリングパルス発生部による前記仮のサンプリング周波数Fsと、前記サンプリング周波数の変化量としての前記微小周波数ΔFsと、前記特定信号周波数検出部によって検出される前記仮のサンプリング周波数に対する前記特定信号の周波数Fh及び前記周波数変化量算出部によって算出される前記特定信号の周波数変化量ΔFhとに基づいて、式(2)により
     Fx′=Fh-Fs・ΔFh/ΔFs      …(0>ΔFh/ΔFsの場合)
     Fx′=-Fh+Fs・ΔFh/ΔFs     …(0<ΔFh/ΔFsの場合)
                                       …(2)
    前記被測定信号の仮の繰り返し周波数Fx′を算出することを特徴とする請求項8に記載の被測定信号のサンプリング装置。
  10.  前記特定信号周波数変化量検出部は、前記信号発生部に対し、前記指定に応じた第3のサンプリング周波数として前記ある繰り返し周波数Fsからサンプリング時に周波数折り返しが発生するように大きく周波数dFsだけ変化させた周波数を有するサンプリング周波数を指定することにより前記サンプリングパルス発生部から前記第3のサンプリングパルスを発生させると共に、前記サンプリング部によって、前記被測定信号を前記第3のサンプリングパルスでサンプリングした場合に得られる前記特定信号の周波数変化量dFh_measを検出し、式(3)により
     dFh_target=dn・(Fs+dFs)+n・dFs      …(3)
     (但し、dFh_targetは、前記サンプリング周波数の大きな変化に伴う、前記特定信号の周波数変化量の目標値であって、0~dFs/2の範囲で定められる任意の周波数であり、nは、前記サンプル番号算出部によって算出される前記サンプル番号であり、dnは、前記サンプリング周波数の大きな変化に伴う、前記サンプル番号nの変化量であって、前記被測定信号に含まれると想定される周波数揺らぎの範囲内において、確定することができる範囲内となるように、前記サンプリング周波数の大きな変化量dFsが定められる)
    前記サンプル番号nの変化量dnを算出することを特徴とする請求項9に記載の被測定信号のサンプリング装置。
  11.  前記サンプル番号誤差分算出部は、前記特定信号周波数変化量検出部によって検出される前記特定信号の周波数変化量dFh_measが式(4)
     dFh_meas=dn・(Fs+dFs)+(n+en)・dFs   …(4)
     (但し、enは、前記サンプル番号nに含まれている誤差分である)
    で表されるとき、前記式(3)及び(4)の差をとって得られる式(5)により
     en=(dFh_meas-dFh_target)/dFs      …(5)
    前記サンプル番号nに含まれている誤差分enを算出することを特徴とする請求項10に記載の被測定信号のサンプリング装置。
  12.  前記正規の繰り返し周波数算出部は、前記サンプル番号誤差分算出部によって算出された前記サンプル番号nに含まれている誤差分enを前記サンプル番号算出部で算出された前記サンプル番号nに加算して正確なサンプル番号n+enを得て、該n+enを前記式 (2)において前記サンプル番号nを示すΔFh/ΔFsとして反映させて、前記式 (2)において算出される前記被測定信号の仮の繰り返し周波数Fx′を補正することにより、前記被測定信号の正規の繰り返し周波数Fxを算出することを特徴とする請求項11に記載の被測定信号のサンプリング装置。
  13.  前記正規の繰り返し周波数算出部によって算出された前記正規の繰り返し周波数Fxに対応する繰り返し周期Txの整数倍に対して所定のオフセット遅延時間ΔTだけ差のある周期Tsに対応する周波数Fsを前記被測定信号に対する正規のサンプリング周波数として算出し、この算出された正規のサンプリング周波数を前記信号発生部に指定することにより、前記サンプリングパルス発生部から前記第1乃至第3のサンプリングパルスに代えて前記正規のサンプリング周波数を有するサンプリングパルスを発生させて、前記サンプリング部によって前記被測定信号を前記正規のサンプリング周波数を有するサンプリングパルスでサンプリングすることを可能とする演算部をさらに具備することを特徴とする請求項12に記載の被測定信号のサンプリング装置。
  14.  前記信号発生部からの前記クロック信号を外部へ出力するためのクロック出力端子と、
     前記サンプリング部から出力された信号を外部へ出力するためのサンプル信号出力端子と、
     をさらに具備することを特徴とする請求項13に記載の被測定信号のサンプリング装置。
  15.  被測定信号を入力するための入力端子と、
     指定に応じた第1乃至第3のサンプリング周波数及び指定に応じた第4のサンプリング周波数のクロック信号を選択的に生成する信号発生部と、
     前記信号発生部からの前記クロック信号に同期し、前記指定に応じた第1乃至第3のサンプリング周波数として仮のサンプリング周波数Fsを有する第1のサンプリングパルス、前記仮のサンプリング周波数Fsからサンプリング時に周波数折り返しが発生しない微小周波数ΔFsだけ変化させたサンプリング周波数を有する第2のサンプリングパルス、前記仮のサンプリング周波数Fsからサンプリング時に周波数折り返しが発生するように大きく周波数を変化させたサンプリング周波数を有する第3のサンプリングパルス及び前記指定に応じた第4のサンプリング周波数を有する第4のサンプリングパルスを選択的に発生するサンプリングパルス発生部と、
     前記被測定信号を前記サンプリングパルス発生部からの前記第1乃至第3のサンプリングパルス及び前記第4のサンプリングパルスによって選択的にサンプリングするサンプリング部と、
     前記サンプリング部によって前記被測定信号を前記サンプリングパルス発生部からの前記第1のサンプリングパルスでサンプリングして得られた信号のうち、前記仮のサンプリング周波数Fsの1/2以下の帯域に現れる特定信号の周波数Fhを検出する特定信号周波数検出部と、
     前記サンプリング部によって前記被測定信号を前記サンプリングパルス発生部からの前記第2のサンプリングパルスでサンプリングしたときに得られる前記特定信号の周波数変化量ΔFhを算出する周波数変化量算出部と、
     前記サンプリングパルス発生部による前記仮のサンプリング周波数Fsと、前記サンプリング周波数の変化量としての前記微小周波数ΔFsと、前記特定信号周波数検出部によって検出される前記仮のサンプリング周波数Fsに対する前記特定信号の周波数Fh及び前記周波数変化量算出部によって算出される前記特定信号の周波数変化量ΔFhとに基づいて、前記被測定信号の仮の繰り返し周波数Fx′を算出する仮の繰り返し周波数算出部と、
     前記仮の繰り返し周波数算出部で用いる前記微小周波数ΔFsを分母とし、前記仮の繰り返し周波数算出部で用いる前記周波数変化量ΔFhを分子とする式(1)により
     n=ΔFh/ΔFs                         …(1)
    サンプル番号nを算出するサンプル番号算出部と、
     前記サンプリング部によって前記被測定信号を前記サンプリングパルス発生部からの前記第3のサンプリングパルスでサンプリングした場合に得られる前記特定信号の周波数変化量dFh_measを検出する特定信号周波数変化量検出部と、
     前記特定信号周波数変化量検出部によって検出された前記特定信号の周波数変化量dFh_measと、この過程で何回周波数折り返しが何回発生したかを示す前記サンプル番号算出部によって算出された前記サンプル番号nの変化量dnとに基づいて、前記被測定信号に周波数揺らぎが含まれている状態での前記サンプル番号算出部によって算出された前記サンプル番号nに含まれている誤差分enを算出するサンプル番号誤差分算出部と、
     前記サンプル番号誤差分算出部によって算出される前記サンプル番号nに含まれている誤差分enに基づいて前記仮の繰り返し周波数算出部によって算出される前記被測定信号の仮の繰り返し周波数Fx′を補正することにより、前記被測定信号の正規の繰り返し周波数Fxを算出する正規の繰り返し周波数算出部と、
     前記正規の繰り返し周波数算出部によって算出された前記正規の繰り返し周波数Fxに対応する繰り返し周期Txの整数倍に対して所定のオフセット遅延時間ΔTだけ差のある周期Tsに対応する周波数Fsを前記被測定信号に対する正規のサンプリング周波数として算出し、この算出された正規のサンプリング周波数を前記第4のサンプリング周波数として前記信号発生部に指定することにより、前記サンプリングパルス発生部からの前記第4のサンプリングパルスを発生させると共に、前記サンプリング部により前記被測定信号を前記第4のサンプリングパルスでサンプリングさせる演算部と、
     前記サンプリング部から前記第4のサンプリングパルスでサンプリングされて出力される信号をデジタルの波形データに変換して出力するアナログ/デジタル(A/D)変換器と、
     前記A/D変換器から出力される前記波形データを記憶するための波形データメモリと、
     前記A/D変換器から出力される前記波形データを前記信号発生部からの前記クロック信号に同期して前記波形データメモリに書き込むデータ取得制御部と、
     前記波形データメモリに記憶された一連の波形データを読み出して表示部の時間軸上に前記オフセット遅延時間に対応する間隔で表示する表示制御部と、
     を具備する被測定信号の波形観測システム。
  16.  前記特定信号周波数検出部は、前記信号発生部に対し、前記指定に応じた第1のサンプリング周波数としてある繰り返し周波数Fsを有する仮のサンプリング周波数を指定することにより前記サンプリングパルス発生部から前記仮のサンプリング周波数を有する第1のサンプリングパルスを発生させると共に、前記サンプリング部によって、前記被測定信号を、前記仮のサンプリング周波数を有する前記第1のサンプリングパルスにてサンプリングした場合に得られる信号のうち、前記ある繰り返し周波数Fsの1/2以下の帯域Fs/2に現れる特定信号の周波数Fhを検出することを特徴とする請求項15に記載の被測定信号の波形観測システム。
  17.  前記周波数変化量算出部は、前記信号発生部に対し、前記指定に応じた第2のサンプリング周波数として前記ある繰り返し周波数Fsからサンプリング時に周波数折り返しが発生しない微小周波数ΔFsだけ変化させた周波数を有するサンプリング周波数を指定することにより前記サンプリングパルス発生部から前記第2のサンプリングパルスを発生させると共に、前記サンプリング部によって、前記第2のサンプリングパルスで前記被測定信号をサンプリングした場合に得られる特定信号の周波数変化量ΔFhを算出することを特徴とする請求項16に記載の被測定信号の波形観測システム。
  18.  前記仮の繰り返し周波数算出部は、前記サンプリングパルス発生部による前記仮のサンプリング周波数Fsと、前記サンプリング周波数の変化量としての前記微小周波数ΔFsと、前記特定信号周波数検出部によって検出される前記仮のサンプリング周波数Fsに対する前記特定信号の周波数Fh及び前記周波数変化量算出部によって算出される前記特定信号の周波数変化量ΔFhとに基づいて、式(2)により
     Fx′=Fh-Fs・ΔFh/ΔFs      …(0>ΔFh/ΔFsの場合)
     Fx′=-Fh+Fs・ΔFh/ΔFs     …(0<ΔFh/ΔFsの場合)
                                       …(2)
    前記被測定信号の仮の繰り返し周波数Fx′を算出することを特徴とする請求項17に記載の被測定信号の波形観測システム。
  19.  前記特定信号周波数変化量検出部は、前記信号発生部に対し、前記指定に応じた第3のサンプリング周波数として前記ある繰り返し周波数Fsからサンプリング時に周波数折り返しが発生するように大きく周波数dFsだけ変化させた周波数を有するサンプリング周波数を指定することにより前記サンプリングパルス発生部から前記第3のサンプリングパルスを発生させると共に、前記サンプリング部によって、前記被測定信号を前記第3のサンプリングパルスでサンプリングした場合に得られる前記特定信号の周波数変化量dFh_measを検出し、式(3)により
     dFh_target=dn・(Fs+dFs)+n・dFs      …(3)
     (但し、dFh_targetは、前記サンプリング周波数の大きな変化に伴う、前記特定信号の周波数変化量の目標値であって、0~dFs/2の範囲で定められる任意の周波数であり、nは、前記サンプル番号算出部で算出される前記サンプル番号であり、dnは、前記サンプリング周波数の大きな変化に伴う、前記サンプル番号nの変化量であって、前記被測定信号に含まれると想定される周波数揺らぎの範囲内において、確定することができる範囲内となるように、前記サンプリング周波数の大きな変化量dFsが定められる)前記サンプル番号nの変化量dnを算出することを特徴とする請求項18に記載の被測定信号の波形観測システム。
  20.  前記サンプル番号誤差分算出部は、前記特定信号周波数変化量検出部によって検出される前記特定信号の周波数変化量dFh_measが式(4)
     dFh_meas=dn・(Fs+dFs)+(n+en)・dFs   …(4)
     (但し、enは、前記サンプル番号nに含まれている誤差分である)
    で表されるとき、前記式(3)及び(4)の差をとって得られる式(5)により
     en=(dFh_meas-dFh_target)/dFs      …(5)
    前記サンプル番号nに含まれている誤差分enを算出することを特徴とする請求項19に記載の被測定信号の波形観測システム。
  21.  前記正規の繰り返し周波数算出部は、前記サンプル番号誤差分算出部によって算出される前記サンプル番号nに含まれている誤差分enを前記サンプル番号算出部で算出された前記サンプル番号nに加算して正確なサンプル番号n+enを得て、該n+enを前記式(2)において前記サンプル番号nを示すΔFh/ΔFsに反映させて、前記式(2)において算出される前記被測定信号の仮の繰り返し周波数Fx′を補正することにより、前記被測定用の信号の正規の繰り返し周波数Fxを算出することを特徴とする請求項20に記載の被測定信号の波形観測システム。
  22.  前記特定信号周波数検出部は、前記第1のサンプリング周波数の1/2以下の帯域に現れる複数の特定信号の周波数をそれぞれ検出し、
     前記仮の繰り返し周波数算出部は、前記特定信号周波数検出部によって検出される前記複数の特定信号についての周波数変化量に基づいて、前記被測定信号に含まれる複数の周波数成分のスペクトラムを求めるように構成され、
     前記表示制御部は、前記仮の繰り返し周波数算出部によって得られたスペクトラムを前記正規の繰り返し周波数算出部を介して前記表示部の周波数軸上に表示させるように構成されていることを特徴とする請求項15に記載の被測定信号の波形観測システム。
PCT/JP2008/050906 2008-01-23 2008-01-23 被測定信号の繰り返し周波数検出方法及びそれを用いるサンプリング装置並びに波形観測システム WO2009093316A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP08703736.2A EP2237054A4 (en) 2008-01-23 2008-01-23 MEASURED SIGNAL REPETITIVE FREQUENCY DETECTION METHOD, SAMPLING APPARATUS USING THE SAME, AND WAVEFORM OBSERVATION SYSTEM
CA002639281A CA2639281A1 (en) 2008-01-23 2008-01-23 Measured-signal repetition frequency detection method, and sampling apparatus and waveform observation system using the method
JP2008534804A JP4925017B2 (ja) 2008-01-23 2008-01-23 被測定信号の繰り返し周波数検出方法及びそれを用いるサンプリング装置並びに波形観測システム
PCT/JP2008/050906 WO2009093316A1 (ja) 2008-01-23 2008-01-23 被測定信号の繰り返し周波数検出方法及びそれを用いるサンプリング装置並びに波形観測システム
US12/224,241 US7936162B2 (en) 2008-01-23 2008-01-23 Measured-signal repetition frequency detection method, and sampling apparatus and waveform observation system using the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/050906 WO2009093316A1 (ja) 2008-01-23 2008-01-23 被測定信号の繰り返し周波数検出方法及びそれを用いるサンプリング装置並びに波形観測システム

Publications (1)

Publication Number Publication Date
WO2009093316A1 true WO2009093316A1 (ja) 2009-07-30

Family

ID=40900703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/050906 WO2009093316A1 (ja) 2008-01-23 2008-01-23 被測定信号の繰り返し周波数検出方法及びそれを用いるサンプリング装置並びに波形観測システム

Country Status (5)

Country Link
US (1) US7936162B2 (ja)
EP (1) EP2237054A4 (ja)
JP (1) JP4925017B2 (ja)
CA (1) CA2639281A1 (ja)
WO (1) WO2009093316A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020171145A1 (ja) * 2019-02-21 2020-08-27 日本電信電話株式会社 パルス列信号の周期推定装置、パルス列信号の周期推定方法およびパルス列信号の周期推定プログラム

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7881895B2 (en) * 2008-05-27 2011-02-01 Sony Ericsson Mobile Communications Ab Methods of calibrating a clock using multiple clock periods with a single counter and related devices and methods
US8964718B2 (en) * 2012-01-05 2015-02-24 Qualcomm Incorporated Detecting bursty interference to trigger a coexistence indication
CN103364624B (zh) * 2012-03-28 2016-02-24 南京南瑞继保电气有限公司 一种通过电流精确计算电容器暂态电压的方法
WO2016093052A1 (ja) * 2014-12-09 2016-06-16 日本電気株式会社 位置検出システム、その方法およびそのプログラム
JP6454191B2 (ja) * 2015-03-19 2019-01-16 アンリツ株式会社 測定装置及び方法、並びに測定システム
EP3455684A4 (en) 2016-05-09 2020-05-13 Strong Force Iot Portfolio 2016, LLC METHODS AND SYSTEMS FOR THE INDUSTRIAL INTERNET OF THINGS
CN112129983B (zh) * 2020-09-25 2024-05-10 中北大学 一种基于等时间间隔等效取样的波形恢复数据处理方法
CN115963312B (zh) * 2023-02-03 2023-08-08 电子科技大学 一种周期波形统计参数测量方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002071725A (ja) 2000-08-31 2002-03-12 Anritsu Corp 波形測定装置
JP2004028960A (ja) * 2002-06-28 2004-01-29 Anritsu Corp 波形観測装置
JP2006003327A (ja) 2004-06-21 2006-01-05 Anritsu Corp 周波数検出方法、サンプリング装置および波形観測システム
JP2006003326A (ja) * 2004-06-21 2006-01-05 Anritsu Corp サンプリング装置および波形観測システム
JP2007010411A (ja) * 2005-06-29 2007-01-18 Anritsu Corp サンプリング装置および波形観測システム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5162723A (en) * 1991-02-11 1992-11-10 Hewlett-Packard Company Sampling signal analyzer
US5293114A (en) * 1992-12-24 1994-03-08 The United States Of America As Represented By The Secretary Of The Air Force Frequency measurement receiver with means to resolve an ambiguity in multiple frequency estimation
JP3271504B2 (ja) * 1996-02-02 2002-04-02 三菱電機株式会社 周波数推定回路およびそれを用いたafc回路
US6026418A (en) * 1996-10-28 2000-02-15 Mcdonnell Douglas Corporation Frequency measurement method and associated apparatus
JP2000284008A (ja) * 1999-03-30 2000-10-13 Matsushita Electric Ind Co Ltd 周波数測定方法及び周波数測定装置
JP4445114B2 (ja) * 2000-01-31 2010-04-07 株式会社アドバンテスト ジッタ測定装置及びその方法
JP4667613B2 (ja) * 2001-02-07 2011-04-13 古野電気株式会社 信号周波数検出方法
US6751564B2 (en) * 2002-05-28 2004-06-15 David I. Dunthorn Waveform analysis
CN100520419C (zh) * 2003-07-11 2009-07-29 Nxp股份有限公司 改进的频率确定

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002071725A (ja) 2000-08-31 2002-03-12 Anritsu Corp 波形測定装置
JP2004028960A (ja) * 2002-06-28 2004-01-29 Anritsu Corp 波形観測装置
JP2006003327A (ja) 2004-06-21 2006-01-05 Anritsu Corp 周波数検出方法、サンプリング装置および波形観測システム
JP2006003326A (ja) * 2004-06-21 2006-01-05 Anritsu Corp サンプリング装置および波形観測システム
JP2007010411A (ja) * 2005-06-29 2007-01-18 Anritsu Corp サンプリング装置および波形観測システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2237054A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020171145A1 (ja) * 2019-02-21 2020-08-27 日本電信電話株式会社 パルス列信号の周期推定装置、パルス列信号の周期推定方法およびパルス列信号の周期推定プログラム
JPWO2020171145A1 (ja) * 2019-02-21 2021-10-14 日本電信電話株式会社 パルス列信号の周期推定装置、パルス列信号の周期推定方法およびパルス列信号の周期推定プログラム
JP7070790B2 (ja) 2019-02-21 2022-05-18 日本電信電話株式会社 パルス列信号の周期推定装置、パルス列信号の周期推定方法およびパルス列信号の周期推定プログラム

Also Published As

Publication number Publication date
US20100225302A1 (en) 2010-09-09
EP2237054A1 (en) 2010-10-06
EP2237054A4 (en) 2014-10-01
CA2639281A1 (en) 2009-07-23
JP4925017B2 (ja) 2012-04-25
JPWO2009093316A1 (ja) 2011-05-26
US7936162B2 (en) 2011-05-03

Similar Documents

Publication Publication Date Title
JP4925017B2 (ja) 被測定信号の繰り返し周波数検出方法及びそれを用いるサンプリング装置並びに波形観測システム
EP2442116A2 (en) Method of calibrating interleaved digitizer channels
EP1130376B1 (en) Optical time domain reflectometer
JP4925018B2 (ja) 基本波ビート成分検出方法及びそれを用いる被測定信号のサンプリング装置並びに波形観測システム
JP4686272B2 (ja) サンプリング装置および波形観測システム
JP4729273B2 (ja) 周波数検出方法、サンプリング装置および波形観測システム
JP2007127645A (ja) ジッタ測定装置、ジッタ測定方法、試験装置、及び電子デバイス
JP2007127644A (ja) ジッタ測定装置、ジッタ測定方法、試験装置、及び電子デバイス
US8208586B2 (en) Jitter measuring apparatus
JP4476710B2 (ja) サンプリング装置および波形観測システム
US7526701B2 (en) Method and apparatus for measuring group delay of a device under test
US7260481B1 (en) Vector detecting device and living-body complex impedance measuring apparatus having the vector detecting device
JP4074538B2 (ja) 光サンプリング装置および光波形観測システム
JP2005094172A (ja) パルスパターン発生装置
JP3474308B2 (ja) ジッタ測定装置
US8803560B2 (en) Audio frequency device for audible eyes off measurements
JP4476709B2 (ja) サンプリング装置および波形観測システム
JP3552123B2 (ja) 時間測定装置及び距離測定装置
JP2003224528A (ja) 光波形評価方法
JP2008309682A (ja) 測定装置において信号間の位相関係を調整する方法、および、測定装置
JP3552122B2 (ja) 時間測定方法及びこの方法を用いた時間測定装置・距離測定装置
JP2008219466A (ja) A/d変換装置およびそれを使用した異常検出装置
EP1816745A1 (en) Sampling circuit and tester
JP2005106637A (ja) タイミング測定装置
JP2011196720A (ja) 検出装置、測定装置、および検出方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2008534804

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12224241

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2639281

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2008703736

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008703736

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08703736

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE