JP3552123B2 - 時間測定装置及び距離測定装置 - Google Patents
時間測定装置及び距離測定装置 Download PDFInfo
- Publication number
- JP3552123B2 JP3552123B2 JP02145395A JP2145395A JP3552123B2 JP 3552123 B2 JP3552123 B2 JP 3552123B2 JP 02145395 A JP02145395 A JP 02145395A JP 2145395 A JP2145395 A JP 2145395A JP 3552123 B2 JP3552123 B2 JP 3552123B2
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- time
- value
- lamp voltage
- calibration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Measurement Of Unknown Time Intervals (AREA)
- Optical Radar Systems And Details Thereof (AREA)
Description
【産業上の利用分野】
この発明は比較的短かい距離を測定することに利用することができる時間測定装置の校正方法及びこの校正方法を用いた時間測定装置及び距離測定装置に関する。
【0002】
【従来の技術】
例えば大型船舶の接岸時には自船と岸壁までの距離をセンチメートルの精度で計測し、表示できることが要求される。このような要求に対し、従来よりレーザ光をパルス状に発射し、その反射光を受光してレーザ光が物標までの間を復往する時間を計測する時間測定装置及びその時間から距離を求める構造の距離測定装置が考えられている。
【0003】
【発明が解決しようとする課題】
この種の時間測定装置はその測定対象となる時間が数N(ナノ)秒乃至数10N秒程度の極めて短かい時間である。この短かい時間を精度よく計測するには、例えばクロックをカウンタで計数する方法を採った場合には、1クロックの分解能を仮りに1cmとした場合、必要なクロックの周波数は15GHzとなる。このような高速クロックを計数できるカウンタを得ることはむずかしい。
【0004】
これに対し、レーザ光の発射時点からランプ電圧発生器を起動させ、レーザ光の反射光を受光した時点でランプ電圧発生回路の動作を停止させ、その停止状態にあるランプ電圧の値から距離を測定する方式がある。この方式はTAC方式(Time to Amplitude Converter)と呼ばれ、ランプ電圧を読み取るAD変換を多ビットのAD変換器を用いることにより、分解能よくランプ電圧を読み取ることができるため、分解能が要求される分野で実用されている。
【0005】
【発明が解決しようとする課題】
図5Aにランプ電圧発生回路が出力するランプ電圧の波形を示す。ランプ電圧発生回路は図5Bに示すスタート信号STの供給を受けてランプ電圧Ve の発生を開始する。然し乍ら、図示するように現実にはスタート信号STの供給時点から実際にランプ電圧Ve が変化し始めるまでに遅れ時間Δtを持つ。この遅延時間Δtは一般に数ns〜10数ns程度である。遅延時間Δtが常に一定値であれば測定された時間から遅延時間Δtを除去すればよい。然し乍ら、実際には電源投入時や環境温度の変化等で最大10ns程度変動する。光速を測定対象とした場合、10nsの変動は約1.5mの距離の誤差に相当し、TAC方式の特徴である高分解能を相殺する。
【0006】
また、ランプ電圧Ve の立ち上がり初期において直線性が悪く、これはスタート信号ST直後の時間測定に誤差が大きく出ることを意味する。この直線性の悪化状態はランプ電圧発生回路を構成する定電流回路の温度特性等によって変動し、一定でないため一義的な補正は難かしい。
また、特にランプ電圧Ve の直線特性部分においても、温度変化等によりその傾斜θ(時間対電圧上昇比、θ=ΔV/ΔT)がθ1 ,θ2 ,θ3 のように変動するおそれがある。
【0007】
更に、ランプ電圧Ve は最大電圧付近で飽和し、この飽和電圧付近で若干直線性が悪くなる。従ってこの部分にストップ信号SP(図5C)が到来するとこの部分でも測定誤差が発生する。また従来はランプ電圧Ve が飽和するだけで測定限界を越えてしまったことを表わす信号を発生していないため、飽和点近くでストップ信号SPが入力された場合、ストップ信号でランプ電圧Ve が停止したのか、飽和点に達して停止したのかを判別できない不都合がある。
【0008】
この発明の第1の目的はランプ電圧Ve の傾斜θが変動しても、その変動を検出して校正値を修正し、常に正しい測定結果を得ることができる時間測定装置の校正方法を提案すると共に、この校正方法を用いた時間測定装置及びこの時間測定装置を利用して構成した距離測定装置を提供しようとするものである。
この発明の第2の目的はランプ電圧の立上り初期に発生する遅延時間及び非直線部分で発生する測定誤差を除去することができる時間測定装置及びこの時間測定装置を利用した距離測定装置を提供しようとするものである。
【0009】
この発明の第3の目的はランプ電圧の飽和点近くで発生する非直線部分の影響を除去することができる、時間測定装置及び距離測定装置をも提供しようとするものである。
【0010】
【課題を解決するための手段】
この発明では校正値測定部と、この校正値測定部で測定した校正値を記憶する校正値記憶部と、この校正値記憶部に記憶した校正値により測定値を校正する演算制御器とを設け、定期的に校正モードを実行してランプ電圧の傾斜を計測し、ランプ電圧の傾斜値を校正値として記憶する構成としたものである。
【0011】
この構成によればランプ電圧の傾斜が変化しても、その傾斜の変化を校正値として測定し記憶するから、この校正値を用いて測定値を校正することができる。よって常に精度よく時間測定乃至は距離を測定することができる。
この発明では更に、ランプ電圧が、その直線特性部分の下限電圧を横切ることを検出する電圧比較器を設け、この電圧比較器がランプ電圧の直線特性部分の下限電圧を横切る状態を検出した時点から時間の測定を開始する構成としたものである。
【0012】
この構成によれば、ランプ電圧の立上り時に発生する遅延時間及び非直線部分の影響を除去することができる。
更にこの発明によれば、ランプ電圧が、その直線特性部分の上限電圧を横切ることを検出する電圧比較器を設け、この電圧比較器の検出信号をオーバーレンジの検出信号として利用する構成とするものである。
【0013】
この構成によればランプ電圧の飽和点近くで発生する非直線特性による影響を除去することができ、全体としてランプ電圧の直線特性部分だけを利用することができる利点が得られる。
【0014】
【実施例】
図1にこの発明による時間測定装置の校正方法と、この校正方法を利用した時間測定装置及びこの時間測定装置を利用した距離測定装置の一実施例を示す。図1を説明する前に、図4を用いてTAC式の時間測定装置及びこの時間測定装置を用いて構成した距離測定装置について説明する。図4に示す実施例は、ランプ電圧の立上り時に発生する遅延時間と、非直線部分の影響を除去する構成及びランプ電圧の飽和点近くで発生する非直線特性の影響を除去する構成を具備している。
【0015】
図4において10はランプ電圧発生回路を示す。このランプ電圧発生回路10は定電流回路11と、この定電流回路11から出力される定電流ICが与えられて充電されるコンデンサ12と、2個のフリップフロップFF1 及びFF2 とによって構成される。定電流回路11とコンデンサ12の接続点A点にランプ電圧Ve が出力される。
【0016】
フリップフロップFF1 はランプ電圧発生回路10を起動させる制御を行なう。またフリップフロップFF2 はランプ電圧発生回路10の動作を停止させる制御を行なう。これらフリップフロップFF1 とFF2 は常時はリセット信号によってリセットされている。
フリップフロップFF1 とFF2 がリセットされている状態ではフリップフロップFF2 の出力端子Q1 がL論理を出力するから定電流回路11に設けられているトランジスタTr3 とTr4 がオフに、トランジスタFr5 がオンに制御される。従って定電流Ic は出力点Aに出力される。
【0017】
ところでフリップフロップFF1 がリセットされていることからこのフリップフロップFF1 の出力端子Q1 に接続されているトランジスタTr1 はオフに制御され、その次段のトランジスタTr2 はオンに制御される。この結果、定電流回路11から出力される定電流Ic はトランジスタTr2 に流れ込み、出力点Aの電位を一定電位に維持する。
【0018】
この状態でフリップフロップFF1 のクロック入力端子にスタート信号STが与えられるとフリップフロップFF1 はデータ入力端子Dに接続されているH論理を読込む。この結果、出力端子Q1 はH論理に反転するから、トランジスタTr1 がオンに制御され、トランジスタTr2 がオフに制御される。よってトランジスタTr2 がオフに反転した時点からコンデンサ12に定電流Ic が流れ始め、A点の電位はコンデンサ12の充電の進行に伴なって漸次上昇し、ランプ電圧Ve が発生する。
【0019】
この発明ではA点に電圧比較器20を接続した構成を特徴とするものである。電圧比較器20の一方の入力端子には比較電圧源21を接続し、この比較電圧源21からランプ電圧Ve の直線特性部分の下限電圧Ve1に等しい電圧を与える。比較電圧源21の電圧を電圧比較器20の反転入力端子に与えたとすると、電圧比較器20の出力はランプ電圧Ve がVe1より下側にある間はL論理を出力し続けるが、ランプ電圧Ve が電圧Ve1を越えると、H論理に反転し、ランプ電圧Ve が電圧Ve1を横切ったことを表わす検出信号VTSを出力する。
【0020】
この検出信号VTSを例えばレーザ光源60に与え、レーザ光源60からレーザ光をパルス状に出射させる。レーザ光は物標61において反射し、受光器62に受光させる。受光器62は光を電気信号に変換し、この電気信号RX をフリップフロップFF2 のクロック入力端子に入力する。
フリップフロップFF2 はデータ入力端子Dに与えられているH論理を読み込む、従って出力端子Q1 がH論理に反転するから、トランジスタTr3 がオンの状態に反転し、トランジスタTr4 をオンの状態に反転させる。この結果、トランジスタTr5 がオフに制御され、定電流Ic はトランジスタTr4 に流れ出力点Aには流れない状態となる。従ってA点の電位は受光器62が反射光を受光した時点の電位に停止する。
【0021】
一方フリップフロップFF2 の状態が反転すると、出力端子Q2 に接続されているサンプルホールド回路41にトリガ信号が与えられる。よってサンプルホールド回路41はランプ電圧Ve の停止時点の電圧をサンプルホールドする。これと共に、フリップフロップFF2 の出力端子Q2 から出力されたトリガ信号は遅延素子42を通じてAD変換器40に入力されるから、AD変換器40は遅延素子42の遅延時間後に、サンプルホールド回路41にサンプルホールドされている電圧をAD変換し、そのAD変換値VX を例えばマイクロコンピュータによって構成される演算制御器50に入力する。
【0022】
演算制御器50はAD変換器40から入力されたAD変換値VX から比較電圧源21に設定した電圧Ve1を引算し、その残りの値(Vx −Ve1)を時間値又は距離値に換算して表示器51に表示させる。AD変換器40はAD変換終了後、変換終了信号ADENDを出力し、この変換終了信号ADENDをフリップフロップFF1 ,FF2 のリセット端子Rに与え、ランプ電圧発生回路10を初期状態に戻す。
【0023】
物標61が離れ過ぎている場合は、所定の時間範囲内にレーザ光が戻ってこないことになる。このためランプ電圧Ve が飽和点に達することになるが、この発明ではランプ電圧Ve が飽和点に達する前に、ランプ電圧Ve の直線特性部分の上限電圧Ve2を電圧比較器30によって検出し、その検出信号によって測定のオーバーレンジ検出信号ENDを発生させる。このために電圧比較器30の一方の入力端子に比較電圧源31を接続し、この比較電圧源31から比較電圧Ve2を電圧比較器30に与えてランプ電圧Ve がこの電圧Ve2を横切ったことを検出させる。その検出信号をオーバーレンジ検出信号ENDとして演算制御器50とオアゲート32を通じてフリップフロップFF1 ,FF2 のリセット端子Rに入力し、測定のための制御状態を初期状態に戻す。
【0024】
以上の説明によりランプ電圧Ve の起動と停止及びランプ電圧Ve が、直線特性部分の下限電圧Ve1を横切る状態を検出し、この検出時点から時間測定を開始させる構成及びランプ電圧Ve が直線特性部分の上限電圧Ve2を横切る状態を検出し、この検出時点でオーバーレンジ検出信号ENDを発生させる構成及びその動作が理解されよう。
【0025】
この発明は図4に示した構成に加えて、図1に示すようにランプ電圧Ve の傾斜を計測する校正値測定手段70と、この校正値測定手段70で測定した校正値を記憶する校正値記憶手段52及びこの校正値記憶手段52に記憶した校正値により測定値を校正する演算制御器50及び測定モードと校正モードとに切替るモード切替手段80とを設けて構成したものである。
【0026】
図1に示す70は校正値測定手段、80はモード切替手段を示す。モード切替手段80は2つの切替回路81と82によって構成される。切替回路81と82はそれぞれ演算制御器50から出力される切替制御信号CS1 によって切替制御される。つまり、例えば演算制御器50から出力される切替制御信号CS1 がH論理の場合、測定モードに制御され、このとき切替回路81と82は入力端子Aが出力端子Cに接続される。従って測定モードでは演算制御器50から出力されるスタート信号STが切替回路81を通じてランプ電圧発生回路10に入力され、また受光器62で受光したストップ信号RX を切替回路82を通じてランプ電圧発生回路10に入力する。
【0027】
測定モードにおいてランプ電圧Ve の直線特性部分の下限電圧Ve1を電圧比較器20によって検出し、測定開始信号VTSを発生させる点と、直線特性部分の上限電圧Ve2を電圧比較器30で検出し、レンジオーバーを表わす信号ENDを発生させる点の構成は図4で説明したので、ここではこれ以上の詳細説明は省略する。
【0028】
この発明の特徴とする構成はモード切替手段80の他に校正値測定手段70を設けた点である。校正値測定手段70は校正用クロック発生器71と、校正用カウンタ72,73と、これら校正用カウンタ72,73から出力される計数出力To1とTo2の何れか一方を選択してモード切替回路80に送り出す切替回路74 と、校正用クロックの立上りのタイミングに同期した校正用スタート信号Ta を生成する校正用スタート信号発生器75とによって構成される。
【0029】
校正用クロック発生器71は温度変化に対して周波数変動が少ない例えば水晶発振器が用いられ、例えば150MHz程度の周波数のクロックパルスCP(図2E)を発生する。校正用カウンタ72と73はこのクロックパルスCPを計数し、所定個のクロックパルスCPを計数すると計数出力信号To1とTo2を出力する。計数出力To1は図2Gに示すように校正用スタート信号Ta で起動されたランプ電圧Ve が直線特性部分の下限電圧Ve1を通過した直後のタイミングで発生するように、カウンタ72の計数値N1 を設定する。また、計数出力To2は図2Hに示すように、ランプ電圧Ve の直線特性部分の上限電圧Ve2に到達するわずか前のタイミングで発生するように、カウンタ73の計数値N2 を設定する。つまり、計数出力To1とTo2がランプ電圧Ve の直線特性の範囲内で生成されるようにカウンタ72と73の分周値を設定する。
【0030】
校正用クロックCPの周期Tc (図2E) が安定なものとすると、Tc (N2 −N1 )を基準時間TCON (図2G)として利用することができる。この基準時間TCON の間に上昇するランプ電圧Ve の量Vo2−Vo1を測定することにより、ランプ電圧Ve の傾斜θを求めることができる。
つまり、校正モードではモード切替手段80を構成する切替回路81と82は入力端子Bを出力端子Cに接続する状態に切替える。校正値測定手段70を構成する切替回路74は1回目の校正用スタート信号Ta が出力された状態では入力端子Aを出力端子Cに接続した状態に切替られる。また2回目の校正用スタート信号Ta が出力された状態では切替回路74は入力端子Bが出力端子Cに接続された状態に切替られる。
【0031】
この結果、1回目の校正用スタート信号Ta の発生サイクルでは切替回路74は計数出力To1を出力し、2回目の校正用スタート信号Ta の発生サイクルでは切替回路74は計数出力To2を出力する。従ってサンプルホールド回路41には図2IとJに示すように計数出力To1とTo2の供給タイミングにおけるランプ電圧Vo1とVo2がサンプルホールドされ、そのサンプルホールドされた電圧Vo1とVo2がそれぞれAD変換されて演算制御器50に取込まれる。
【0032】
演算制御器50では校正値として基準時間TCON とランプ電圧Ve の変化値(Vo2−Vo1)によってランプ電圧Ve の傾斜値θ1 を
θ1 =(Vo2−Vo1)/TC (N2 −N1 )
により求め、校正値記憶手段52に記憶する。校正モードは測定モードの合間に、例えば数分間に1回程度の割合で定期的に実行し、実行の都度校正値θ1 を更新する。
【0033】
測定モードでは電圧比較器20に設定した比較電圧Ve1と測定対象信号Rx が入力された時点でサンプルホールド回路41にサンプルホールドされた電圧Vx との差の値(Vx −Ve1)を計測し、この差の値(Vx −Ve1)から測定時間Bを求める。ここで測定モードにおけるランプ電圧Ve の傾斜θ2 は
θ2 =(Vx −Ve1)/B
となる。
【0034】
ここで校正モードを実行してから測定モードを実行するまでの間の時間をわずかな時間、例えば数分間程度であるものとすると、校正モードにおけるランプ電圧Ve の傾斜θ1 と、測定モードにおけるランプ電圧Ve の傾斜θ2 がθ1 =θ2 であるものと見なすことができる。従って
(Vx −Ve1)/B=(Vo2−Vo1)/TC (N2 −N1 )
が成立する。
【0035】
よって測定時間Bは
B=Tc (N2 −N1 )(Vx −Ve1)/(Vo2−Vo1)
=(Vx −Ve1)/θ1
で求められ、1/θ1 を(Vx −Ve1)に乗算することにより校正を行なうことができる。
【0036】
因みに、校正用クロックCPの周波数を150MHzとすると、その1周期TC はTc =6.6666・・・nsとなる。この周期Tc の値によれば1周期当り光が1m(往復)進むことになる。N1 とN2 をN1 =10,N2 =160に設定すると、(N2 −N1 )=150となり、基準時間TCON は150mの測定範囲を与える。
【0037】
ここで例えばVo1=0.5v,Vo2=8v,Ve1=0.2v,Vx =7.7vであったとすると、被測定時間Bは
B=6.666×10−9(160−10)(7.7−0.2)/
(8−0.5)=1μs
となる。
【0038】
この状態からVo1=0.5v,Vo2=9v,Ve1=0.2v,Vx =7.7vに変化したとする。つまり、ランプ電圧Ve の傾斜θが大きくなったとすると、
B=6.666×10−9(160−10)(7.7−0.2)/
(9−0.5)=0.88234411μs
に校正される。
【0039】
従来はVe1=0.2v,Vx =7.7vであれば、その差7.5vがそのまま時間値或は距離値に換算されるのでランプ電圧Ve の傾斜が変わっても同じ測定結果を表示器51に表示することになる。
つまり、上記したように校正モード時のランプ電圧の傾斜θ1 と測定モード時のランプ電圧Ve の傾斜θ2 をθ1 =θ2 の関係になるように測定モード時の測定電圧値(Vx −Ve1)に校正値1/θ1 を乗算したから、図3に示すように、ランプ電圧Ve の傾斜がθ1A,θ1B,θ1Cに変化しても、校正モードと測定モードはそれぞれ同一のランプ電圧VeA又はVeB又はVeCで測定されることになる。従って、どのランプ電圧VeA又はVeB又はVeCを使用したとしても、その基準時間TCON はTc (N2 −N1 )で規定されている。よって測定電圧値(Vx −Ve1)に校正値1/θ1A及び1/θ1B,1/θ1Cを乗ずることによりこの基準時間TCON を基準値とする値に校正される。
【0040】
【発明の効果】
以上説明したように、この発明によれば校正モードを例えば数分間隔に定期的に実行することによりランプ電圧Ve の傾斜が温度変化等の理由で変わっても、校正モードを実行する毎に、校正値1/θを更新するから、この校正値を用いて測定電圧(Vx −Ve1)を校正することにより常に正しい測定値を得ることができる。この結果、TAC方式の高分解能性を維持しつつ、然も高精度な時間測定及び距離の測定を行なうことができる。
【0041】
然も、この発明ではランプ電圧Ve の直線特性部分の下限電圧Ve1を検出してこの検出時点を測定の開始点に規定したからランプ電圧Ve の立上りの初期に発生するランプ電圧の遅延及び非直線部分を除去し、測定の開始直後から精度のよい測定結果を得ることができる。
更に、この発明ではランプ電圧Ve の直線特性部分の上限電圧Ve2を検出してオーバーレンジ検出信号ENDを生成する構成としたから、測定範囲の全範囲にわたってランプ電圧Ve の直線特性部分を用いることになり、測定範囲の全範囲にわたって高精度を保証することができる。
【図面の簡単な説明】
【図1】この発明の一実施例を示すブロック図。
【図2】この発明の動作を説明するための波形図。
【図3】この発明による時間測定の校正方法を説明するための波形図。
【図4】この発明による時間測定装置及び距離測定装置の具体的な実施例を示す接続図。
【図5】従来の技術の不都合を説明するための波形図。
【符号の説明】
10 ランプ電圧発生回路
20,30 電圧比較器
40 AD変換器
41 サンプルホールド回路
50 演算制御器
51 表示器
52 校正値記憶手段
60 レーザ光源
62 受光器
70 校正値測定手段
80 モード切替手段
Claims (2)
- スタート信号により起動するランプ電圧発生回路と、
上記ランプ電圧発生回路から出力されるランプ電圧が、その直線特性の下限電圧を横切ることを検出する電圧比較器と、
この電圧比較器の検出信号によって波動を発射させる手段と、
上記波動の反射信号の入力によりランプ電圧発生回路の動作を停止させてその電圧を測定する手段と、
上記下限電圧と停止値との間の電圧変化値により上記波動の送出時点から被測定信号が入力された時点までの時間を計測する手段と、
上記ランプ電圧の基準時間対電圧変化値を求める校正値測定手段と、
この校正値測定手段で測定した校正値を記憶する校正値記憶手段と、
測定モードにおいて上記校正値記憶手段に記憶した校正値によって測定値を校正する演算制御器と、
校正された測定値を表示する表示器とを設けたことを特徴とする時間測定装置。 - 請求項1記載の時間測定装置において、上記電圧比較器の検出信号によって波動を発射し、物標からの反射波をとらえてその受波信号によって上記ランプ電圧発生回路の動作を停止させ、上記電圧比較器の動作時点におけるランプ電圧と上記受波信号の供給時点におけるランプ電圧との値から、物標までの距離を測定する距離測定装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02145395A JP3552123B2 (ja) | 1995-02-09 | 1995-02-09 | 時間測定装置及び距離測定装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02145395A JP3552123B2 (ja) | 1995-02-09 | 1995-02-09 | 時間測定装置及び距離測定装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08220261A JPH08220261A (ja) | 1996-08-30 |
JP3552123B2 true JP3552123B2 (ja) | 2004-08-11 |
Family
ID=12055390
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP02145395A Expired - Lifetime JP3552123B2 (ja) | 1995-02-09 | 1995-02-09 | 時間測定装置及び距離測定装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3552123B2 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3945389B2 (ja) * | 2002-11-27 | 2007-07-18 | 松下電器産業株式会社 | 時間電圧変換器及び方法 |
JP2005156495A (ja) * | 2003-11-28 | 2005-06-16 | Agilent Technol Inc | 時間間隔測定器および補正量決定方法 |
JP2013219515A (ja) * | 2012-04-06 | 2013-10-24 | Advantest Corp | 測定装置及び測定方法 |
-
1995
- 1995-02-09 JP JP02145395A patent/JP3552123B2/ja not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH08220261A (ja) | 1996-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4908784A (en) | Method and apparatus for asynchronous time measurement | |
KR101390274B1 (ko) | 집적된 시간 및/또는 캐패시턴스 측정 시스템, 방법 및 장치 | |
JPH025272B2 (ja) | ||
WO2007069102A2 (en) | Current measurement circuit and method | |
US4118698A (en) | Analog-to-digital converter recalibration method and apparatus | |
US6369563B1 (en) | Method for high resolution measurement of a position | |
CN115480234A (zh) | 电压校准方法、电路、激光雷达系统及存储介质 | |
JP3552123B2 (ja) | 時間測定装置及び距離測定装置 | |
JPH0666665B2 (ja) | 傾斜信号校正方法及びデジタル・タイム・ベース回路 | |
JPS6255735B2 (ja) | ||
US11333693B2 (en) | Frequency measurement apparatus, microcontroller, and electronic apparatus | |
JP3552122B2 (ja) | 時間測定方法及びこの方法を用いた時間測定装置・距離測定装置 | |
US20030193843A1 (en) | Method for high resolution measurement of a position | |
JPH11281744A (ja) | 距離測定装置 | |
US3949393A (en) | Analog sweep calibrator | |
JP2005091206A (ja) | パルス時間幅測定装置及びパルス時間幅測定方法 | |
KR100239928B1 (ko) | 오실로스코프의 수평축 전자눈금 교정하는 방법 및 장치 | |
JP3239338B2 (ja) | リップルノイズ電圧測定装置 | |
RU2231077C2 (ru) | Устройство для измерения частоты электрических сигналов | |
JP3080480B2 (ja) | 信号遅延時間測定装置 | |
JPH0664158B2 (ja) | 自動時間間隔測定方法 | |
RU2010239C1 (ru) | Цифровой стробоскопический осциллограф | |
JP2002357645A (ja) | 集積回路の検査装置及び検査方法 | |
SU1557530A1 (ru) | Устройство стробоскопической развертки | |
SU1057875A1 (ru) | Способ измерени малых интервалов времени |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040212 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040406 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7426 Effective date: 20040409 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040422 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090514 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090514 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100514 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110514 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120514 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130514 Year of fee payment: 9 |
|
EXPY | Cancellation because of completion of term |