WO2009087703A1 - 半導体装置及びその製造方法 - Google Patents

半導体装置及びその製造方法 Download PDF

Info

Publication number
WO2009087703A1
WO2009087703A1 PCT/JP2008/000010 JP2008000010W WO2009087703A1 WO 2009087703 A1 WO2009087703 A1 WO 2009087703A1 JP 2008000010 W JP2008000010 W JP 2008000010W WO 2009087703 A1 WO2009087703 A1 WO 2009087703A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
conductivity type
drain region
low
concentration
Prior art date
Application number
PCT/JP2008/000010
Other languages
English (en)
French (fr)
Inventor
Masashi Shima
Kazukiyo Joshin
Toshihide Suzuki
Original Assignee
Fujitsu Microelectronics Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Microelectronics Limited filed Critical Fujitsu Microelectronics Limited
Priority to PCT/JP2008/000010 priority Critical patent/WO2009087703A1/ja
Priority to TW097101273A priority patent/TW200931662A/zh
Priority to JP2009548805A priority patent/JP5158095B2/ja
Priority to CN2008801246016A priority patent/CN101911302B/zh
Publication of WO2009087703A1 publication Critical patent/WO2009087703A1/ja
Priority to US12/797,078 priority patent/US8410550B2/en
Priority to US13/779,163 priority patent/US8735254B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41775Source or drain electrodes for field effect devices characterised by the proximity or the relative position of the source or drain electrode and the gate electrode, e.g. the source or drain electrode separated from the gate electrode by side-walls or spreading around or above the gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/665Unipolar field-effect transistors with an insulated gate, i.e. MISFET using self aligned silicidation, i.e. salicide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66659Lateral single gate silicon transistors with asymmetry in the channel direction, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66681Lateral DMOS transistors, i.e. LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7835Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with asymmetrical source and drain regions, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26586Bombardment with radiation with high-energy radiation producing ion implantation characterised by the angle between the ion beam and the crystal planes or the main crystal surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/456Ohmic electrodes on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4916Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen
    • H01L29/4925Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen with a multiple layer structure, e.g. several silicon layers with different crystal structure or grain arrangement
    • H01L29/4933Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen with a multiple layer structure, e.g. several silicon layers with different crystal structure or grain arrangement with a silicide layer contacting the silicon layer, e.g. Polycide gate

Definitions

  • the present invention relates to a semiconductor device and a manufacturing method thereof, and more particularly to a semiconductor device having a metal insulator semiconductor (MIS) type transistor with improved breakdown voltage and a manufacturing method thereof.
  • MIS metal insulator semiconductor
  • MIS metal insulator semiconductor
  • MOS metal oxide semiconductor
  • FIG. 15 shows J. C. Mitros et al. IEEE transactions on electron devices vol. 48 pp1751-1754.
  • 1 is a cross-sectional view of an n-type MOS transistor disclosed in August 2001 (FIG. 1 (a)).
  • the drain n-type high concentration impurity region 102 is separated from the gate electrode 100 by an offset length D.
  • a low-concentration n-well 101 includes an n-type high-concentration impurity region 102 and extends to the lower part of the drain side portion of the gate electrode 100.
  • MOS transistors having a structure in which a high-concentration impurity region of a drain is separated from a gate electrode through a low-concentration impurity region of the drain are disclosed in, for example, Japanese Unexamined Patent Application Publication No. 2005-093458 and Japanese Unexamined Patent Application Publication No. 2006-319331. No. 1, Japanese Unexamined Patent Publication No. 2005-136169, and Japanese Unexamined Patent Publication No. 2004-207498.
  • the offset length between the high concentration impurity region of the drain and the gate is lengthened.
  • the offset length increases, the on-resistance of the transistor increases, and the driving capability of the transistor decreases.
  • An object of the present invention is to provide a semiconductor device including a MIS transistor capable of improving a breakdown voltage while suppressing an increase in on-resistance.
  • Another object of the present invention is to provide a method for manufacturing such a semiconductor device.
  • a semiconductor substrate having a first region of a first conductivity type, a gate insulating film formed on the first region, a gate electrode formed on the gate insulating film, In the first region, a source region formed on one side of the gate electrode and having a second conductivity type opposite to the first conductivity type, and in the first region, the other of the gate electrode
  • the first lightly doped drain region having the second conductivity type and the gate electrode in the first lightly doped drain region are formed so that an end on the source region side penetrates below the gate electrode.
  • a semiconductor device is provided.
  • a method for manufacturing a semiconductor device comprising: forming a source region having the second conductivity type in the first region opposite to the drain region.
  • a reverse conductivity type region of the first conductivity type is formed between the gate electrode and the high concentration drain region of the second conductivity type.
  • the reverse conductivity type region forms a pn junction with the surrounding second conductivity type region.
  • the depletion layer formed by the pn junction expands when the drain voltage is high, thereby improving the breakdown voltage.
  • FIGS. 1A and 1B are schematic cross-sectional views for explaining the manufacturing process of the MOS transistor of the first embodiment.
  • 2A to 2C are schematic cross-sectional views for explaining the manufacturing process of the MOS transistor of the first embodiment, following FIGS. 1A and 1B.
  • 3A to 3C are schematic cross-sectional views for explaining the manufacturing process of the MOS transistor of the first embodiment, following FIGS. 2A to 2C.
  • FIG. 4 is a schematic cross-sectional view of the MOS transistor of the first embodiment.
  • FIG. 5 is a graph showing current-voltage (IV) characteristics of the MOS transistor.
  • FIG. 6 is a graph showing a simulation result of investigating the relationship between the breakdown voltage performance and the on-resistance of the MOS transistor of the first embodiment.
  • FIG. IV current-voltage
  • FIG. 7A is a schematic cross-sectional view of the MOS transistor of the first embodiment showing a state in which the gate voltage V GS is close to 0 V and the drain voltage V DS is very high
  • FIG. 7B is a diagram showing a high gate voltage V GS to a certain degree.
  • FIG. 5 is a schematic cross-sectional view of the MOS transistor of the first embodiment showing a state where the drain voltage VDS is low.
  • FIG. 8 is a schematic sectional view of a MOS transistor according to a modification of the first embodiment.
  • FIG. 9 is a schematic cross-sectional view of the MOS transistor of the second embodiment.
  • FIG. 10A is a schematic cross-sectional view of the MOS transistor of the second embodiment showing a state in which the gate voltage V GS is close to 0 V and the drain voltage V DS is very high
  • FIG. 10B is a diagram showing a high gate voltage V GS of a certain level.
  • It is a schematic cross-sectional view of a MOS transistor of a second embodiment showing a state where the drain voltage VDS is low.
  • FIG. 11 is a schematic cross-sectional view for explaining a manufacturing process of the MOS transistor of the second embodiment.
  • FIG. 12 is a schematic sectional view of a MOS transistor according to a modification of the second embodiment.
  • 13A is a diagram schematically showing a portable electronic device of an application example, FIG.
  • FIG. 13B is a circuit diagram showing a power amplifier transistor of the application example
  • FIG. 13C shows an amplification gain by the power amplifier transistor of the application example. It is a graph shown roughly.
  • FIG. 14 is a graph showing a dynamic load line of the power amplifier transistor of the application example.
  • 15 is a cross-sectional view of an n-type MOS transistor described in J. C. Mitros et al.IEEE transactions on electrons devices .48 pp1751-1754March 2001.
  • FIGS. 1A to 3C are schematic cross-sectional views for explaining a manufacturing process of a MOS transistor according to the first embodiment.
  • an element isolation region 2 that defines an active region for forming a semiconductor element is formed on an n-type silicon substrate 1.
  • the element isolation region 2 can be formed by, for example, shallow trench isolation (STI).
  • boron (B) for example, as a p-type impurity is implanted into the n-type silicon substrate 1 with an acceleration energy of 200 keV and a dose of 1 ⁇ 10 13 cm ⁇ 2 (hereinafter referred to as 1E13).
  • 1E13 a dose of 1 ⁇ 10 13 cm ⁇ 2
  • B is implanted into the p-type well 3 at an acceleration energy of 20 keV and a dose of 1E12 for threshold adjustment.
  • a portion that does not require ion implantation is covered with a resist mask RM1, and phosphorus (P), for example, as an n-type impurity is applied to a part of the p-type well 3 with an acceleration energy of 200 keV and a dose of 1E13.
  • Implantation is performed to form a lightly doped drain (LDD) region 4.
  • LDD lightly doped drain
  • the surfaces of the p-type well 3 and the LDD region 4 are thermally oxidized to form a gate insulating film 5 having a thickness of 5 nm to 10 nm, for example.
  • the material and thickness of the gate insulating film are selected so as to satisfy the requirements for the withstand voltage between the gate and drain (and between the source and gate) when the MOS transistor operates at a DC voltage.
  • the gate insulating film 5 made of a silicon oxide film and having a thickness of about 5 nm to 10 nm is assumed to have a withstand voltage of 3.3 V when used with direct current.
  • gate insulating film 5 for example, polysilicon is deposited to a thickness of 100 nm by chemical vapor deposition (CVD). A region where the polysilicon layer is to be left is covered with a resist mask RM2, and an unnecessary polysilicon layer is removed by dry etching to form a gate electrode 6.
  • the gate electrode 6 is disposed so as to overlap both the p-type well 3 and the LDD region 4. After the gate electrode 6 is formed, the resist mask RM2 is removed.
  • the LDD region 4 is covered with a resist mask RM3, and further, for example, P is implanted into the p-type well 3 with an acceleration energy of 30 keV and a dose of 1E13 using the gate electrode 6 as a mask.
  • a low concentration source region 7 is formed. After the low concentration source region 7 is formed, the resist mask RM3 is removed.
  • the low concentration source region 7 is covered with a resist mask RM4, and further, for example, B is implanted into the LDD region 4 with an acceleration energy of 3 keV and a dose of 1E13 using the gate electrode 6 as a mask.
  • the conductivity type of the surface layer of the LDD region 4 is inverted from n-type to p-type to form the reverse conductivity type region 8.
  • the ion implantation in the oblique direction is performed so that the end of the reverse conductivity type region 8 on the gate electrode 6 side is formed under the gate electrode 6.
  • the resist mask RM4 is removed.
  • an insulating film such as a silicon oxide film is deposited to a thickness of 50 nm on the gate insulating film 5 so as to cover the gate electrode 6 by CVD.
  • a resist mask RM5 is formed so as to cover the drain side end of the gate electrode 6 and the gate electrode side region of the reverse conductivity type region 8.
  • RIE reactive ion etching
  • Etching is completed with the sidewall spacer 9 left on the source side wall of the gate electrode 6.
  • the silicide block insulating film 10 that covers the vicinity of the end of the gate electrode 6 on the drain side (at least covers the side surface of the gate electrode 6 on the drain side) and extends up to a part of the reverse conductivity type region 8. Remains.
  • the gate insulating film 5 is also patterned into a shape matching the sidewall spacer 9 and the silicide block insulating film 10.
  • arsenic (As) is implanted as an n-type impurity at an acceleration energy of 30 keV and a dose of 1E15 to form a high concentration source region. 11 and a high concentration drain (HDD) region 12 are formed. An n-type impurity is also implanted into the upper surface portion of the gate electrode 6 exposed without being covered with the silicide block insulating film 10.
  • N-type impurities are implanted into the reverse conductivity type region 8 and the LDD region 4 below the reverse conductivity type region 8 to form the HDD region 12.
  • the conductivity type is reversed from the p type and becomes n type again.
  • the MOS transistor of the first embodiment is manufactured.
  • the direction from the source side end of the gate electrode 6 toward the drain side is defined as the X direction.
  • the source side is called the left side
  • the drain side is called the right side.
  • the X direction is also called the horizontal direction.
  • the left end of the LDD region 4 is X1
  • the left end of the reverse conductivity type region 8 is X2
  • the right end of the reverse conductivity type region 8 is X3
  • the left end of the drain side silicide region 15 is X4
  • the right end of the gate electrode 6 is XGD.
  • the p-type well 3 and the LDD region 4 form a pn junction.
  • a reverse conductivity type region 8 and an HDD region 12 are formed inside the LDD region 4.
  • the left end X2 of the reverse conductivity type region 8 is disposed away from the left end X1 of the LDD region 4 toward the HDD region 12 (X1 ⁇ X2).
  • the LDD region 4 and the reverse conductivity type region 8 form an np junction.
  • the reverse conductivity type region 8 and the HDD region 12 form a pn junction.
  • the gate electrode 6 is formed so as to overlap both the p-type well 3 and the LDD region 4, that is, the LDD region 4 is formed so as to enter under the gate electrode 6, and the right end of the gate electrode 6 is formed.
  • the left end X1 of the LDD region 4 is closer to the source side than XGD (X1 ⁇ XGD).
  • the reverse conductivity type region 8 is also formed so as to enter under the gate electrode 6, and the left end X2 of the reverse conductivity type region 8 is closer to the source side than the right end XGD of the gate electrode 6 (X2 ⁇ XGD).
  • the reverse conductivity type region 8 is interposed between the gate electrode 6 and the HDD region 12, and the right end XGD of the gate electrode 6 and the left end of the HDD region 12 (the right end of the reverse conductivity type region 8) X3 are separated from each other. (XGD ⁇ X3).
  • the HDD region 12 below the silicide block insulating film 10 is interposed between the reverse conductivity type region 8 and the drain side silicide region 15, and the right end X3 of the reverse conductivity type region 8 and the left end X4 of the drain side silicide region 15 Are separated from each other (X3 ⁇ X4).
  • the normal direction going downward from the surface of the substrate 1 is defined as the Y direction.
  • the Y direction is also called the vertical direction.
  • the lower end of the reverse conductivity type region 8 is Y1
  • the lower end of the HDD region 12 is Y2
  • the lower end of the LDD region 4 is Y3.
  • the p-type well 3 and the LDD region 4 form a pn junction.
  • the reverse conductivity type region 8 and the HDD region 12 are formed inside the LDD region 4, and the lower end Y 1 of the reverse conductivity type region 8 and the lower end Y 2 of the HDD region 12 are spaced apart from the lower end X 3 of the LDD region 4. Are arranged (Y1, Y2 ⁇ Y3). Further, the reverse conductivity type region 8 is formed on the surface of the LDD region 4, and the lower end Y1 of the reverse conductivity type region 8 is at a position shallower than the lower end Y2 of the HDD region 12 (Y1 ⁇ Y2). At the lower end Y1 of the reverse conductivity type region 8, the LDD region 4 and the reverse conductivity type region 8 form an np junction.
  • the impurity concentrations in these regions have a relationship of NL ⁇ NP ⁇ NH.
  • FIG. 5 is a graph showing current-voltage (IV) characteristics of the MOS transistor.
  • the horizontal axis is the drain voltage (V DS ), and the vertical axis is the channel current.
  • a plurality of IV curves in which the gate voltage (V GS ) is changed from near 0 V to 3.3 V are shown. As the gate voltage increases, the current value at a predetermined drain voltage increases and the IV curve rises.
  • the operating point Ion4 is an operating point when the gate voltage is close to 0V (for example, 0.3V) and the drain voltage is very large as 10V, that is, when the potential difference between the gate and drain is very large as about 10V.
  • the behavior at the operating point Ion4 is an index indicating the withstand voltage.
  • the operating point Ion1 is an operating point when the gate voltage is 3.3V and the drain voltage is as small as 0.1V.
  • the behavior at the operating point Ion1 is an index indicating on-resistance (Ron).
  • the operating point Ion2 is an operating point when the gate voltage is 3.3V and the drain voltage is 3.3V
  • the operating point Ion3 is an operating point when the gate voltage is 3.3V and the drain voltage is 10V. is there.
  • the operating point changes on the dynamic load line.
  • an operating point having a very large potential difference between the gate and the drain such as the operating point Ion4, is included.
  • FIG. 6 is a graph showing a simulation result obtained by investigating the relationship between the breakdown voltage performance and the on-resistance of the MOS transistor of the first embodiment.
  • the relationship between the breakdown voltage performance and the on-resistance of a comparative example transistor having a structure in which the reverse conductivity type region 8 is removed from the MOS transistor of the first embodiment is also shown.
  • the horizontal axis of the graph represents the substrate voltage under the gate electrode drain end at the operating point Ion4 in V units. The lower the substrate voltage, the smaller the potential difference between the gate electrode drain end and the underlying substrate, so it can be determined that the breakdown voltage is high.
  • the vertical axis of the graph represents the on-current at the operating point Ion1 in arbitrary units. The larger the on-current, the lower the on-resistance.
  • the triangular plot (without p layer) is the result of the comparative example
  • the rhombus plot (with p layer) is the result of the first example.
  • the plot moves in the upper left direction. That is, in the embodiment, the substrate voltage under the gate electrode drain end is reduced and the breakdown voltage is improved, and the on-current is increased and the on-resistance is suppressed.
  • the principle of the withstand voltage improvement in the MOS transistor of the first embodiment will be considered, and the principle that the on-resistance increase is suppressed even when the withstand voltage is improved will be considered.
  • the depletion layer DL is formed by the reverse conductivity type region 8 forming a pn junction with the LDD region 4 and the HDD region 12.
  • the depletion layer DL spreads as the drain voltage V DS increases. Therefore, as the drain voltage V DS increases, the potential drop due to the depletion layer DL becomes large. That is, even if the drain voltage VDS is increased, an increase in the voltage applied to the substrate below the drain end of the gate electrode is suppressed and the breakdown voltage is improved.
  • the depletion layer DL Since the impurity concentration of the reverse conductivity type region 8 is higher than the impurity concentration of the LDD region 4, the depletion layer DL is more LDD than the reverse conductivity type region 8 side at the pn junction between the reverse conductivity type region 8 and the LDD region 4. It will spread to the region 4 side. In addition, since the impurity concentration of the HDD region 12 is higher than the impurity concentration of the reverse conductivity type region 8, the depletion layer DL has a reverse conductivity type than the HDD region 12 side at the pn junction between the reverse conductivity type region 8 and the HDD region 12. It will spread to the region 8 side.
  • the drain voltage VDS is low, the spread of the depletion layer DL is small. Carriers can be transported through a wider cross section of the LDD region 4. Therefore, if the drain voltage VDS is low, the potential drop is small and an increase in on-resistance is suppressed.
  • the left end X2 of the reverse conductivity type region 8 is arranged away from the left end X1 of the LDD region 4 toward the HDD region 12 (X1 ⁇ X2). That is, the n-type LDD region 4 is secured on the source side from the p-type reverse conductivity type region 8. As a result, the on-resistance at the time of low drain voltage can be kept low compared to the case where the left end X2 of the reverse conductivity type region 8 is arranged to reach the left end X1 of the LDD region 4.
  • the left end X2 of the reverse conductivity type region 8 is closer to the source side than the right end XGD of the gate electrode 6 (X2 ⁇ XGD). That is, the reverse conductivity type region 8 is formed under the drain side end portion of the gate electrode 6.
  • the reverse conductive region 8 is interposed between the drain end of the gate electrode 6 and the LDD region 4. This makes it easy to ensure a large breakdown voltage at the drain end of the gate.
  • the right end XGD of the gate electrode 6 and the left end (right end of the reverse conductivity type region 8) X3 of the HDD region 12 are separated from each other (XGD ⁇ X3). That is, the drain end of the gate electrode 6 and the HDD region 12 are separated from each other.
  • the right end X3 of the reverse conductivity type region 8 and the left end X4 of the drain side silicide region 15 are separated from each other (X3 ⁇ X4). That is, the reverse conductivity type region 8 and the drain side silicide region 15 do not contact each other. Thereby, when a high drain voltage is applied, extension of the depletion layer at the pn junction between the reverse conductivity type region 8 and the HDD region 12 is not hindered.
  • the reverse conductivity type region 8 is covered with the silicide block insulating film 10 and is not silicided. Thereby, the extension of the depletion layer in the reverse conductivity type region 8 is not hindered.
  • the reverse conductivity type region is formed in the surface region between the HDD region and the gate electrode in the LDD region.
  • a depletion layer is formed by the pn junction that the reverse conductivity type region forms with the surrounding region.
  • the reverse conductivity type region 8 is formed away from the drain end of the gate electrode 6 toward the HDD region 12, and does not enter under the drain end of the gate electrode 6.
  • the LDD region 4 is disposed immediately below the drain end of the gate electrode 6.
  • the breakdown voltage at the drain end of the gate is slightly reduced as compared with the first embodiment.
  • the reverse conductivity type region 8 is not disposed immediately below the drain end of the gate electrode 6, the parasitic capacitance is reduced. Can be reduced and high-speed operation can be achieved.
  • the MOS transistor of this modification is also manufactured by the same process as the manufacturing method of the MOS transistor of the first embodiment described with reference to FIGS. 1A to 3C, but the reverse conductivity described with reference to FIG. 2C.
  • the forming process of the mold region 8 is different.
  • p-type impurities are ion-implanted in an oblique direction so that the reverse conductivity type region 8 is formed under the gate electrode 6.
  • p-type impurities are ion-implanted in an oblique direction from the opposite side of the first embodiment so that the reverse conductivity type region 8 is formed away from the gate electrode 6.
  • the structure of the MOS transistor according to the second embodiment will be described with reference to FIG.
  • the difference between the MOS transistor of the second embodiment and the MOS transistor of the first embodiment is that the LDD region 4 (hereinafter referred to as the first LDD region 4) is n-type.
  • An LDD region 16 having a high impurity concentration (hereinafter referred to as a second LDD region 16) is formed.
  • the left end of the second LDD region 16 is X5 in the horizontal direction.
  • the horizontal positional relationship between the second LDD region 16 and other regions will be described.
  • a second LDD region 16 is formed inside the first LDD region 4, and the left end X5 of the second LDD region 16 is closer to the drain side than the left end X1 of the first LDD region (X1 ⁇ X5).
  • the HDD area 12 is formed inside the second LDD area 16, and the left end X3 of the HDD area 12 is closer to the drain side than the left end X5 of the second LDD area 16 (X5 ⁇ X3).
  • the surface layer of the second LDD region 16 on the source side from the HDD region 12 is a reverse conductivity type region 8.
  • the reverse conductivity type region 8 protrudes from the second LDD region 16 to the first LDD region 4, and the left end X2 of the reverse conductivity type region 8 is from the left end X5 of the second LDD region 16.
  • the reverse conductivity type region 8 is formed inside the second LDD region 16, and the left end X2 of the reverse conductivity type region 8 is arranged closer to the HDD 12 than the left end X5 of the second LDD region 16 (X5). ⁇ X2) You may do it.
  • the breakdown voltage and the on-resistance (where the on-resistance is expressed by the reciprocal of the operating point Ion1 in FIG. 5) are in a trade-off relationship, with a relatively good breakdown voltage when X2 ⁇ X5 and relatively when X5 ⁇ X2. Good on-resistance.
  • the gates are formed in a self-aligned manner in order to avoid an increase in process steps.
  • the gate electrode 6 is formed so as to overlap the second LDD region 16, and the left end X5 of the second LDD region 16 is closer to the source side than the right end XGD of the gate electrode 6 (X5 ⁇ XGD ).
  • the second LDD region 16 enters the lower side of the gate in order to improve the on-resistance. Since the breakdown voltage has already been secured, it can be said that the effect of improving the breakdown voltage is not so great even if XGD ⁇ X5.
  • the lower end of the second LDD region is Y4.
  • the vertical positional relationship between the second LDD region 16 and other regions will be described.
  • a second LDD region 16 is formed inside the first LDD region 4, and the lower end Y 4 of the second LDD region 16 is disposed away from the lower end Y 3 of the first LDD region 4. (Y4 ⁇ Y3).
  • the HDD region 12 is formed inside the second LDD region 16, and the reverse conductivity type region 8 is formed on the surface of the second LDD region 16.
  • the lower end Y1 of the reverse conductivity type region 8 and the lower end Y2 of the HDD 12 are disposed away from the lower end Y4 of the second LDD region 16 (Y1 ⁇ Y2 ⁇ Y4).
  • the second LDD region 16 and the reverse conductivity type region 8 form an np junction.
  • impurity concentration NL1 of the first LDD region 4 the impurity concentration NL2 of the second LDD region 16, the impurity concentration NP of the reverse conductivity type region 8, and the impurity concentration NH of the HDD region 12 will be described.
  • impurity concentrations have a relationship of NL1 ⁇ NP ⁇ NL2 ⁇ NH.
  • the impurity concentration of the second LDD region 16 is set higher than the impurity concentration of the reverse conductivity type region 8.
  • the gate voltage V GS is close to 0 V (eg, 0.3 V) and the drain voltage V DS is very high (eg, 10 V) will be described with reference to FIG. 10A.
  • the p-type reverse conductivity type region 8 forms a pn junction with the surrounding n-type region, and the depletion layer DL extends due to the increase of the drain voltage VDS , thereby improving the breakdown voltage.
  • the impurity concentration of the second LDD region 16 is higher than the impurity concentration of the reverse conductivity type region 8
  • a depletion layer is formed at the pn junction between the reverse conductivity type region 8 and the second LDD region 16. DL spreads to the reverse conductivity type region 8 side rather than the second LDD region 16 side.
  • the depletion layer DL extends toward the reverse conductivity type region 8, the current path can be brought close to the surface. For this reason, an increase in parasitic resistance can be suppressed, the depth of the first LDD region 4 can be reduced, and the variation in channel length can be improved.
  • the reverse conductivity type region 8 is formed so as to enter under the drain side end of the gate electrode 6, and a large breakdown voltage is generated at the drain end of the gate. Easy to secure.
  • the gate voltage V GS is a certain level (for example, 3.3 V) and the drain voltage V DS is low (for example, 0.1 V) will be described with reference to FIG. 10B. Similar to the first embodiment, when the drain voltage VDS is low, the depletion layer DL has a small spread and a small potential drop, thereby suppressing an increase in on-resistance.
  • the parasitic resistance is reduced, and the on-resistance is lower than that in the first embodiment. Is also expected to improve.
  • the low-concentration source region 7 is covered with a resist mask RM6, and the gate electrode 6 is used as a mask, as in the first embodiment, for example, B is accelerated energy.
  • Implantation is performed at 3 keV and a dose of 1E13 to reverse the conductivity type of the surface layer of the first LDD region 4 from n-type to p-type, thereby forming the reverse conductivity type region 8.
  • the resist mask RM6 is removed.
  • sidewall spacers 9 and silicide block insulating films 10 are formed in the same manner as described with reference to FIGS. 3A to 3C in the first embodiment, and the high concentration source region 11 and the HDD region 12 are formed. Then, a source side silicide region 13, a gate electrode silicide region 14, and a drain side silicide region 15 are formed. In the formation of the HDD region 12, n-type impurities are implanted into the reverse conductivity type region 8 and the second LDD region 16 therebelow. As described above, the MOS transistor of the second embodiment is manufactured.
  • the reverse conductivity type region 8 is formed away from the drain end of the gate electrode 6 toward the HDD region 12 side. That is, it does not enter under the drain end of the gate electrode 6.
  • the modification of the second embodiment can reduce parasitic capacitance and perform high-speed operation. .
  • the reverse conductivity type region 8 protrudes from the second LDD region 16 to the first LDD region 4, but the reverse conductivity type region 8 is located inside the second LDD region 16.
  • the source-side ends of the reverse conductivity type region 8 and the second LDD region 16 may be aligned.
  • a method for manufacturing a MOS transistor according to a modification of the second embodiment will be described.
  • the MOS transistor of this modification is also manufactured by the same process as that of the method of manufacturing the MOS transistor of the second embodiment.
  • the reverse conductivity type region 8 has the gate electrode 6.
  • a p-type impurity is ion-implanted so as to be formed away from the substrate.
  • FIG. 13A is a diagram schematically showing the portable electronic device 50 of this application example.
  • the portable electronic device 50 is a mobile phone, for example, and includes a transmission module 51 including a power amplifier transistor 52.
  • the output of the power amplifier transistor 52 is input to the antenna 53.
  • FIG. 13B is a circuit diagram showing the power amplifier transistor 52.
  • the power amplifier transistor 52 the MOS transistor of the first or second embodiment is used. High-frequency input power is applied to the gate terminal 52a of the power amplifier transistor 52, and output power obtained by amplifying the input power is output from the drain terminal 52b.
  • the frequency of the input and output high frequency the order of 100 MHz to the order of GHz (several hundred MHz to several GHz) is assumed.
  • FIG. 13C is a graph schematically showing the amplification gain by the power amplifier transistor 52.
  • the horizontal axis and vertical axis of the graph are input power and output power, respectively, expressed in dBm.
  • Output power in which the amplification gain power is increased with respect to the input power is output.
  • 0V and 3.3V are alternately applied to the gate terminal of the power amplifier transistor as AC input voltages, and the amplified output is supplied from the drain terminal.
  • the source terminal is grounded (0 V).
  • a high frequency of the order of GHz is input / output.
  • the locus of change of the operating point of the power amplifier transistor is the dynamic load line.
  • FIG. 14 is a graph showing a dynamic load line of the power amplifier transistor of this application example.
  • the horizontal axis of the graph is the drain voltage shown in V units, and the vertical axis is the current shown in A units.
  • the gate voltage V GS is 0.3V, 0.6V, 0.9V, 1.2V, 1.5V, 1.8V, 2.1V, 2.4V, 2.7V, 3.0V, and 3.3V.
  • a dynamic load line DLL is shown along with a case IV curve.
  • the operating point P1 is the operating point P1 having the highest drain voltage of about 7V and the gate voltage of about 0.3V, which is close to 0V.
  • the operating point that captures the behavior of the power amplifier transistor in a DC manner is the bias point P0.
  • the drain voltage at the operating point P1 is about 7V, more than twice that of the operating voltage of 3.3V.
  • a withstand voltage performance that can withstand a potential difference between the gate and the drain of at least twice the operating voltage is required.
  • the MOS transistors of the first and second embodiments are improved in breakdown voltage by forming the reverse conductivity type region 8, and are suitable for use as such a power amplifier transistor. Note that the gate insulating films of the MOS transistors of the first and second embodiments have a withstand voltage assuming an operating voltage of 3.3 V when used in direct current.
  • the gate insulating film is assumed to have a withstand voltage of 3.3 V when used in a direct current, for example, for a power amplifier, etc.
  • a withstand voltage performance that can withstand a high potential difference between the gate and the drain that occurs during use at high frequencies in the GHz band.
  • an n-type MOS transistor as described in the above embodiment is preferable for use as a power amplifier transistor.
  • a p-type MOS transistor obtained by inverting n-type and p-type in the description of the embodiment With the formation of the n-type reverse conductivity type region, the breakdown voltage is improved.
  • a semiconductor device having a region having a mold and a reverse conductivity type region forming a pn junction (Appendix 2) The semiconductor device according to appendix 1, wherein the reverse conductivity type region forms a pn junction with the first low-concentration drain region. (Appendix 3) The semiconductor device according to appendix 1, wherein the reverse conductivity type region forms a pn junction with the high concentration drain region. (Appendix 4) The semiconductor device according to appendix 1, wherein an end on the source side of the reverse conductivity type region is disposed closer to the high concentration drain side than an end on the source side of the first low concentration drain region.
  • the semiconductor device according to appendix 1 wherein the second low-concentration drain region is lower and the reverse conductivity type region forms a pn junction with the second low-concentration drain region.
  • the impurity concentration of the reverse conductivity type region is higher than the impurity concentration of the first low concentration drain region
  • the impurity concentration of the second low concentration drain region is higher than the impurity concentration of the reverse conductivity type region
  • the second low concentration region The semiconductor device according to appendix 10, wherein the impurity concentration of the high concentration drain region is higher than the impurity concentration of the concentration drain region.
  • Appendix 12 The semiconductor device according to appendix 1, wherein the first conductivity type is p-type and the second conductivity type is n-type.
  • (Appendix 15) (A) preparing a semiconductor substrate having a first region of a first conductivity type; (B) forming a first low-concentration drain region having a second conductivity type opposite to the first conductivity type in the first region; (C) forming a gate insulating film on the first region and the first low-concentration drain region; (D) forming a gate electrode on the gate insulating film so as to overlap both the first region and the first low-concentration drain region; (E) implanting an impurity for determining the first conductivity type into a surface layer of the first low-concentration drain region to form a reverse conductivity type region having the first conductivity type; (F) forming an insulating film formed above the first low-concentration drain region, covering a side wall of the gate electrode on the first low-concentration drain region side, and extending to a part above the reverse conductivity type region; Process, (G) Using the insulating film as a mask, an impurity for determining the second conductivity type is

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

【課題】オン抵抗の増加を抑制しつつ、耐圧向上を図ることができるMIS型トランジスタを含む半導体装置を提供する。 【解決手段】  半導体装置は、MIS型トランジスタのゲート電極の下方に入り込んで形成された第1低濃度ドレイン領域と、第1低濃度ドレイン領域内に、ゲート電極から離れて形成され、第1低濃度ドレイン領域よりも不純物濃度が高い高濃度ドレイン領域と、第1低濃度ドレイン領域内において、前記高濃度ドレイン領域と前記ゲート電極の間の表面領域に形成され、ドレイン領域と逆の導電型で、ドレイン領域とpn接合を形成する逆導電型領域とを有する。

Description

半導体装置及びその製造方法
 本発明は、半導体装置及びその製造方法に関し、特に、耐圧を向上させた金属絶縁体半導体(MIS)型トランジスタを有する半導体装置及びその製造方法に関する。
 金属絶縁体半導体(MIS)型トランジスタ、例えば金属酸化物半導体(MOS)トランジスタの耐圧を向上させることが行われている。
 図15は、J. C. Mitros et al. IEEE transactions on electron devices vol.48 pp1751-1754
August 2001が開示するn型MOSトランジスタの断面図(同文献Fig.1の(a))である。
 ドレインのn型高濃度不純物領域102が、オフセット長さDだけゲート電極100から離されている。低濃度のnウェル101が、n型高濃度不純物領域102を内包し、ゲート電極100のドレイン側部分下方まで延在する。ドレインへの高電圧印加時に、ゲート電極100とドレインのn型高濃度不純物領域102との間で、nウェル101が空乏化することにより、ゲート電極100のドレイン端直下の基板内にかかる電圧が緩和される。このようにして、ドレイン耐圧の向上が図られている。 
 同様に、ゲート電極から、ドレインの高濃度不純物領域を、ドレインの低濃度不純物領域を介して離す構造のMOSトランジスタが、その他、例えば、日本特開2005-093458号公報、日本特開2006-319331号公報、日本特開2005-136169号公報、日本特開2004-207498号公報に開示されている。
 上記のような構造で、より高い耐圧を得ようとすると、ドレインの高濃度不純物領域とゲートとのオフセット長さを長くすることとなる。しかし、オフセット長さが長くなると、一方でトランジスタのオン抵抗が上昇して、トランジスタの駆動能力が低下することとなる。
 本発明の一目的は、オン抵抗の増加を抑制しつつ、耐圧向上を図ることができるMIS型トランジスタを含む半導体装置を提供することである。
 本発明の他の目的は、このような半導体装置の製造方法を提供することである。
 本発明の一観点によれば、第1導電型の第1領域を有する半導体基板と、前記第1領域上に形成されたゲート絶縁膜と、前記ゲート絶縁膜上に形成されたゲート電極と、前記第1領域内において、前記ゲート電極に対し一方の側に形成され、前記第1導電型と反対の第2導電型を有するソース領域と、前記第1領域内において、前記ゲート電極に対し他方の側に、前記ソース領域側の端が該ゲート電極の下方に入り込んで形成され、前記第2導電型を有する第1低濃度ドレイン領域と、前記第1低濃度ドレイン領域内において、前記ゲート電極から離れて形成され、前記第2導電型を有し、該第1低濃度ドレイン領域よりも不純物濃度が高い高濃度ドレイン領域と、前記第1低濃度ドレイン領域内において、前記高濃度ドレイン領域と前記ゲート電極の間の表面領域に形成され、前記第1導電型を有し、該第1低濃度ドレイン領域内の前記第2導電型を有する領域とpn接合を形成する逆導電型領域とを有する半導体装置が提供される。
 本発明の他の観点によれば、(a)第1導電型の第1領域を有する半導体基板を準備する工程と、(b)前記第1領域内に、前記第1導電型と反対の第2導電型を有する第1低濃度ドレイン領域を形成する工程と、(c)前記第1領域及び前記第1低濃度ドレイン領域の上に、ゲート絶縁膜を形成する工程と、(d)前記ゲート絶縁膜の上に、前記第1領域及び前記第1低濃度ドレイン領域の双方に重なりを持つように、ゲート電極を形成する工程と、(e)前記第1低濃度ドレイン領域の表層に、前記第1導電型を決定する不純物を注入し、該第1導電型を有する逆導電型領域を形成する工程と、(f)前記第1低濃度ドレイン領域の上方に形成され、前記ゲート電極の該第1低濃度ドレイン領域側の側壁を覆い、前記逆導電型領域一部上方まで延在する絶縁膜を形成する工程と、(g)前記絶縁膜をマスクとして、前記逆導電型領域及びその下方の前記第1低濃度ドレイン領域に、前記第2導電型を決定する不純物を注入し、該第2導電型を有し、該第1低濃度ドレイン領域よりも不純物濃度が高い高濃度ドレイン領域を形成する工程と、(h)前記ゲート電極に対し、前記第1低濃度ドレイン領域と反対側の前記第1領域内に、前記第2導電型を有するソース領域を形成する工程とを有する半導体装置の製造方法が提供される。
 ゲート電極と、第2導電型の高濃度ドレイン領域との間に、第1導電型の逆導電型領域が形成されている。逆導電型領域は、周囲の第2導電型の領域とpn接合を形成する。このpn接合の作る空乏層が、高いドレイン電圧のときに拡がることにより、耐圧の向上が図られる。
図1A及び図1Bは、第1の実施例のMOSトランジスタの製造工程を説明するための概略断面図である。 図2A~図2Cは、図1A及び図1Bに引き続き、第1の実施例のMOSトランジスタの製造工程を説明するための概略断面図である。 図3A~図3Cは、図2A~図2Cに引き続き、第1の実施例のMOSトランジスタの製造工程を説明するための概略断面図である。 図4は、第1の実施例のMOSトランジスタの概略断面図である。 図5は、MOSトランジスタの電流電圧(IV)特性を示すグラフである。 図6は、第1の実施例のMOSトランジスタの耐圧性能とオン抵抗との関係を調べたシミュレーション結果を示すグラフである。 図7Aは、ゲート電圧VGSが0Vに近くドレイン電圧VDSが非常に高い状態を示す第1の実施例のMOSトランジスタの概略断面図であり、図7Bは、ゲート電圧VGSがある程度の高さでドレイン電圧VDSが低い状態を示す第1の実施例のMOSトランジスタの概略断面図である。 図8は、第1の実施例の変形例のMOSトランジスタの概略断面図である。 図9は、第2の実施例のMOSトランジスタの概略断面図である。 図10Aは、ゲート電圧VGSが0Vに近くドレイン電圧VDSが非常に高い状態を示す第2の実施例のMOSトランジスタの概略断面図であり、図10Bは、ゲート電圧VGSがある程度の高さでドレイン電圧VDSが低い状態を示す第2の実施例のMOSトランジスタの概略断面図である。 図11は、第2の実施例のMOSトランジスタの製造工程を説明するための概略断面図である。 図12は、第2の実施例の変形例のMOSトランジスタの概略断面図である。 図13Aは、応用例の携帯電子機器を概略的に示すダイヤグラムであり、図13Bは、応用例のパワーアンプトランジスタを示す回路図であり、図13Cは、応用例のパワーアンプトランジスタによる増幅ゲインを概略的に示すグラフである。 図14は、応用例のパワーアンプトランジスタのダイナミックロードラインを示すグラフである。 図15は、J. C. Mitros et al. IEEE transactions on electron devices vol.48 pp1751-1754August 2001記載のn型MOSトランジスタの断面図である。
 まず、本発明の第1の実施例による金属酸化物半導体(MOS)トランジスタの製造方法について説明する。図1A~図3Cは、第1の実施例によるMOSトランジスタの製造工程を説明するための概略断面図である。
 まず、図1Aに示すように、n型シリコン基板1に、半導体素子を形成する活性領域を画定する素子分離領域2を形成する。素子分離領域2は、例えばシャロートレンチアイソレーション(STI)により形成することができる。
 素子分離領域2の形成後、n型シリコン基板1に、例えばp型不純物としてホウ素(B)を加速エネルギ200keV、ドーズ量1×1013cm-2(以下1E13のように表記する)で注入して、p型ウェル3を形成する。次に、しきい値調整のため、p型ウェル3に、例えばBを加速エネルギ20keV、ドーズ量1E12で注入する。
 次に、図1Bに示すように、イオン注入不要な部分をレジストマスクRM1でカバーし、p型ウェル3の一部に、例えばn型不純物としてリン(P)を加速エネルギ200keV、ドーズ量1E13で注入して、低濃度ドレイン(LDD)領域4を形成する。LDD領域4形成後、レジストマスクRM1を除去する。
 次に、図2Aに示すように、p型ウェル3及びLDD領域4の表面を熱酸化して、例えば厚さ5nm~10nmのゲート絶縁膜5を形成する。ゲート絶縁膜の材料及び厚さは、MOSトランジスタの直流電圧での動作時の、ゲートドレイン間(及びソースゲート間)の耐圧の要求を満たすように選択される。シリコン酸化膜からなる厚さ5nm~10nm程度のゲート絶縁膜5は、直流での使用で、3.3Vの耐圧を想定したものである。
 ゲート絶縁膜5の上に、例えばポリシリコンを化学気相堆積(CVD)で厚さ100nm堆積する。ポリシリコン層を残す領域をレジストマスクRM2でカバーし、ドライエッチングにより不要なポリシリコン層を除去して、ゲート電極6を形成する。ゲート電極6は、p型ウェル3及びLDD領域4の双方と重なりを持つように配置される。ゲート電極6形成後、レジストマスクRM2を除去する。
 次に、図2Bに示すように、LDD領域4をレジストマスクRM3でカバーし、さらにゲート電極6をマスクとして、p型ウェル3に、例えばPを加速エネルギ30keV、ドーズ量1E13で注入して、低濃度ソース領域7を形成する。低濃度ソース領域7形成後、レジストマスクRM3を除去する。
 次に、図2Cに示すように、低濃度ソース領域7をレジストマスクRM4でカバーし、さらにゲート電極6をマスクとして、LDD領域4に、例えばBを加速エネルギ3keV、ドーズ量1E13で注入して、LDD領域4の表層の導電型をn型からp型に反転させ、逆導電型領域8を形成する。逆導電型領域8のゲート電極6側の端が、ゲート電極6の下に入り込んで形成されるように、斜め方向のイオン注入が行われる。逆導電型領域8形成後、レジストマスクRM4を除去する。
 次に、図3Aに示すように、ゲート電極6を覆ってゲート絶縁膜5上に絶縁膜、例えば酸化シリコン膜をCVDで厚さ50nm堆積する。
 この絶縁膜の上に、ゲート電極6のドレイン側端部及び逆導電型領域8のゲート電極側領域をカバーするように、レジストマスクRM5を形成する。反応性イオンエッチング(RIE)により、レジストマスクRM5でカバーされていない平坦部上面部分の酸化シリコン膜を除去する。
 ゲート電極6のソース側側壁上に、サイドウォールスペーサ9を残して、エッチングを終了する。レジストマスクRM5を除去すると、ゲート電極6のドレイン側の端近傍を覆い(少なくともゲート電極6のドレイン側の側面を覆い)、逆導電型領域8の一部上方まで延在するシリサイドブロック絶縁膜10が残る。なお、このエッチングにより、ゲート絶縁膜5も、サイドウォールスペーサ9及びシリサイドブロック絶縁膜10に整合する形状にパタニングされる。
 次に、図3Bに示すように、サイドウォールスペーサ9及びシリサイドブロック絶縁膜10をマスクとして、例えばn型不純物としてヒ素(As)を加速エネルギ30keV、ドーズ量1E15で注入して、高濃度ソース領域11及び高濃度ドレイン(HDD)領域12を形成する。なお、シリサイドブロック絶縁膜10に覆われず露出するゲート電極6の上面部分にもn型不純物が注入される。
 逆導電型領域8及びその下方のLDD領域4にn型不純物が注入されて、HDD領域12が形成される。このイオン注入がされた逆導電型領域8の部分では、導電型がp型から反転して再びn型となる。
 次に、図3Cに示すように、コバルト(Co)をスパッタリングで堆積し、熱処理を行うことにより、高濃度ソース領域11、ゲート電極6の露出した上面部分、及びHDD領域12の表層に、それぞれ、ソース側シリサイド領域13、ゲート電極上シリサイド領域14、及びドレイン側シリサイド領域15を形成する。以上のようにして、第1の実施例のMOSトランジスタが作製される。
 さらに、図4を参照して、第1の実施例のMOSトランジスタのドレイン側の構造について説明する。
 ゲート電極6のソース側端部からドレイン側に向かう方向をX方向と定義する。ソース側を左側、ドレイン側を右側と呼ぶこととする。X方向を水平方向とも呼ぶこととする。LDD領域4の左端をX1、逆導電型領域8の左端をX2、逆導電型領域8の右端をX3、ドレイン側シリサイド領域15の左端をX4とし、ゲート電極6の右端をXGDとする。まず、各領域の水平方向の位置関係について説明する。
 LDD領域4の左端X1で、p型ウェル3とLDD領域4とがpn接合を形成する。LDD領域4の内部に、逆導電型領域8及びHDD領域12が形成されている。逆導電型領域8の左端X2は、LDD領域4の左端X1からHDD領域12側に離れて配置されている(X1<X2)。逆導電型領域8の左端X2で、LDD領域4と逆導電型領域8とがnp接合を形成する。逆導電型領域8の右端X3で、逆導電型領域8とHDD領域12とがpn接合を形成する。
 ゲート電極6は、p型ウェル3とLDD領域4の両方に重なるように形成されており、すなわち、LDD領域4が、ゲート電極6の下に入り込むように形成されており、ゲート電極6の右端XGDよりもLDD領域4の左端X1の方がソース側にある(X1<XGD)。また、逆導電型領域8も、ゲート電極6の下に入り込むように形成されており、ゲート電極6の右端XGDよりも、逆導電型領域8の左端X2の方がソース側にある(X2<XGD)。
 ゲート電極6と、HDD領域12との間に、逆導電型領域8が介在し、ゲート電極6の右端XGDとHDD領域12の左端(逆導電型領域8の右端)X3とが互いに離されている(XGD<X3)。
 逆導電型領域8とドレイン側シリサイド領域15との間に、シリサイドブロック絶縁膜10下の部分のHDD領域12が介在し、逆導電型領域8の右端X3とドレイン側シリサイド領域15の左端X4とが互いに離されている(X3<X4)。
 基板1の表面から下方に向かう法線方向をY方向と定義する。Y方向を垂直方向とも呼ぶこととする。逆導電型領域8の下端をY1、HDD領域12の下端をY2、LDD領域4の下端をY3とする。次に、各領域の垂直方向の位置関係について説明する。
 LDD領域4の下端Y3で、p型ウェル3とLDD領域4とがpn接合を形成する。LDD領域4の内部に、逆導電型領域8及びHDD領域12が形成されており、逆導電型領域8の下端Y1及びHDD領域12の下端Y2は、LDD領域4の下端X3から上側に離れて配置されている(Y1,Y2<Y3)。また、逆導電型領域8はLDD領域4の表面に形成されており、逆導電型領域8の下端Y1は、HDD領域12の下端Y2よりも浅い位置にある(Y1<Y2)。逆導電型領域8の下端Y1で、LDD領域4と逆導電型領域8とがnp接合を形成する。
 次に、LDD領域4、逆導電型領域8、及びHDD領域12の、導電型決定不純物の濃度NL、NP、NHの関係について説明する。これらの領域の不純物濃度は、NL<NP<NHという関係がある。
 次に、図5及び図6を参照して、第1の実施例のMOSトランジスタの耐圧性能について説明する。
 図5は、MOSトランジスタの電流電圧(IV)特性を示すグラフである。横軸がドレイン電圧(VDS)であり、縦軸がチャネル電流である。ゲート電圧(VGS)を0V近くから3.3Vまで変化させた複数のIV曲線を示す。ゲート電圧が増加するほど、所定ドレイン電圧での電流値が増加して、IV曲線が立ち上がる。
 グラフ中にいくつかの動作点Ionを示す。動作点Ion4は、ゲート電圧が0Vに近く(例えば0.3V)、ドレイン電圧が10Vと非常に大きい場合、すなわち、ゲートドレイン間の電位差が10V程度と非常に大きい場合の動作点である。動作点Ion4での挙動が、耐圧を示す指標となる。
 一方、動作点Ion1は、ゲート電圧が3.3Vで、ドレイン電圧が0.1Vと小さい場合の動作点である。動作点Ion1での挙動が、オン抵抗(Ron)を示す指標となる。なお、動作点Ion2は、ゲート電圧が3.3Vでドレイン電圧が3.3Vの場合の動作点であり、動作点Ion3は、ゲート電圧が3.3Vでドレイン電圧が10Vの場合の動作点である。
 後に応用例で説明するように、MOSトランジスタを、高周波を増幅するアンプ等の用途に用いるとき、動作点がダイナミックロードライン上で変化する。ダイナミックロードライン上に、動作点Ion4のようにゲートドレイン間の電位差が非常に大きい動作点が含まれる。
 図6は、第1の実施例のMOSトランジスタの耐圧性能とオン抵抗との関係を調べたシミュレーション結果を示すグラフである。なお、第1の実施例のMOSトランジスタから逆導電型領域8を除いた構造の比較例のトランジスタの耐圧性能とオン抵抗との関係も示す。
 グラフの横軸は、動作点Ion4におけるゲート電極ドレイン端下の基板電圧をV単位で示す。この基板電圧が低くなっているほど、ゲート電極ドレイン端と、その下の基板との電位差が小さくなるので、耐圧が高いと判断できる。グラフの縦軸は、動作点Ion1におけるオン電流を任意単位で示す。オン電流が大きいほど、オン抵抗が低く抑えられている。
 三角形のプロット(p層なし)が比較例の結果であり、菱形のプロット(p層あり)が第1の実施例の結果である。比較例に比べて、実施例ではプロットが左上方向に移動している。すなわち、実施例の方が、ゲート電極ドレイン端下の基板電圧が減少して耐圧が向上するとともに、オン電流が増加してオン抵抗が抑えられている。
 次に、図7A及び図7Bを参照して、第1の実施例のMOSトランジスタにおける耐圧向上の原理について考察するとともに、耐圧を向上させてもオン抵抗増加が抑制される原理について考察する。
 まず、図7Aを参照して、ゲート電圧VGSが0Vに近く(例えば0.3V)、ドレイン電圧VDSが非常に高い(例えば10V)場合の耐圧向上原理について考察する。逆導電型領域8が、LDD領域4及びHDD領域12とpn接合を形成することにより、空乏層DLが形成されている。ドレイン電圧VDSが高くなるほど空乏層DLが拡がる。従って、ドレイン電圧VDSが高くなるほど、空乏層DLによる電位降下が大きくなる。すなわち、ドレイン電圧VDSが高くなっても、ゲート電極ドレイン端下の基板にかかる電圧増加が抑制され、耐圧が向上すると考えられる。
 なお、LDD領域4の不純物濃度よりも逆導電型領域8の不純物濃度が高いので、逆導電型領域8とLDD領域4とのpn接合では、空乏層DLが逆導電型領域8側よりもLDD領域4側に拡がることとなる。また、逆導電型領域8の不純物濃度よりもHDD領域12の不純物濃度が高いので、逆導電型領域8とHDD領域12とのpn接合では、空乏層DLがHDD領域12側よりも逆導電型領域8側に拡がることとなる。
 次に、図7Bを参照して、ゲート電圧VGSがある程度の高さ(例えば3.3V)で、ドレイン電圧VDSが低い(例えば0.1V)場合に、オン抵抗が抑制される原理について考察する。ドレイン電圧VDSが低いときには、空乏層DLの拡がりが小さい。LDD領域4の、より広い断面をキャリアが輸送可能となる。従って、ドレイン電圧VDSが低ければ、電位降下が小さく、オン抵抗増加が抑制される。
 さらに、図4を参照して説明した構造の利点について考察する。逆導電型領域8の左端X2が、LDD領域4の左端X1からHDD領域12側に離れて配置されている(X1<X2)。すなわち、p型の逆導電型領域8よりソース側に、n型のLDD領域4が確保されている。これにより、逆導電型領域8の左端X2がLDD領域4の左端X1に達するように配置される場合に比べて、低ドレイン電圧時のオン抵抗が低く抑えられる。
 また、第1の実施例のMOSトランジスタでは、ゲート電極6の右端XGDよりも、逆導電型領域8の左端X2の方がソース側にある(X2<XGD)。すなわち、逆導電型領域8がゲート電極6のドレイン側端部の下に入り込んで形成されている。垂直方向について見ると、ゲート電極6のドレイン端とLDD領域4との間に、逆導電領域8が介在する。これにより、ゲートのドレイン端で大きな耐圧を確保しやすい。
 ゲート電極6の右端XGDとHDD領域12の左端(逆導電型領域8の右端)X3とが互いに離されている(XGD<X3)。すなわち、ゲート電極6のドレイン端とHDD領域12とが互いに離されている。高濃度のn型のHDD領域12を、ゲート電極6のドレイン端から離し、LDD領域4側に空乏層を拡げることにより、耐圧を稼ぎやすくなる。
 また、逆導電型領域8の右端X3とドレイン側シリサイド領域15の左端X4とが互いに離されている(X3<X4)。すなわち、逆導電型領域8とドレイン側シリサイド領域15とが接触しない。これにより、高いドレイン電圧の印加時に、逆導電型領域8とHDD領域12とのpn接合での空乏層の伸びが妨げられない。なお、逆導電型領域8は、シリサイドブロック絶縁膜10で覆われて、シリサイド化されていない。これにより、逆導電型領域8内の空乏層の伸びが妨げられない。
 以上説明したように、第1の実施例のMOSトランジスタでは、LDD領域内において、HDD領域とゲート電極との間の表面領域に、逆導電型領域が形成されている。逆導電型領域が周囲の領域と形成するpn接合により、空乏層が形成される。
 高いドレイン電圧が印加されると、この空乏層が拡がり、電位降下が大きくなり、ゲートのドレイン端の下に高い電圧が印加されることが抑制される。一方、低いドレイン電圧が印加されているときには、この空乏層の拡がりが小さくなり、電位降下が抑制され、オン抵抗の増加が抑制される。このように、オン抵抗の増加を抑制しつつ、耐圧向上を図ることができる。
 次に、図8を参照して、第1の実施例の変形例によるMOSトランジスタについて説明する。本変形例の、第1の実施例との違いは、逆導電型領域8のソース側の端(左端)X2が、ゲート電極6のドレイン端XGDよりも、HDD領域12側に配置されている(XGD<X2)ことである。
 すなわち、本変形例では、逆導電型領域8が、ゲート電極6のドレイン端からHDD領域12側に離れて形成されており、ゲート電極6のドレイン端の下に入り込んでいない。ゲート電極6のドレイン端の直下に、LDD領域4が配置される。これにより、第1の実施例に比べて、ゲートのドレイン端での耐圧がやや低下すると考えられるが、一方、ゲート電極6のドレイン端直下に逆導電型領域8が配置されないので、寄生容量を低減でき、高速動作が行える。
 本変形例のMOSトランジスタの製造方法について説明する。本変形例のMOSトランジスタも、図1A~図3Cを参照して説明した第1の実施例のMOSトランジスタの製造方法と同様な工程で作製されるが、図2Cを参照して説明した逆導電型領域8の形成工程が異なる。
 第1の実施例では、逆導電型領域8がゲート電極6の下に入り込んで形成されるように、斜め方向に、p型不純物をイオン注入した。本変形例では、逆導電型領域8がゲート電極6から離れて形成されるように、第1の実施例とは反対側から、斜め方向に、p型不純物をイオン注入する。
 次に、図9~図11を参照して、第2の実施例によるMOSトランジスタについて説明する。
 まず、図9を参照して、第2の実施例のMOSトランジスタの構造について説明する。第2の実施例のMOSトランジスタの、第1の実施例のMOSトランジスタとの違いは、LDD領域4(これを第1のLDD領域4と呼ぶこととする)の中に、それよりもn型不純物濃度の高いLDD領域16(これを第2のLDD領域16と呼ぶこととする)が形成されていることである。
 水平方向について、第2のLDD領域16の左端をX5とする。まず、第2のLDD領域16と他の領域との水平方向の位置関係について説明する。
 第1のLDD領域4の内部に、第2のLDD領域16が形成されており、第1のLDD領域の左端X1よりも第2のLDD領域16の左端X5の方がドレイン側にある(X1<X5)。
 第2のLDD領域16の内部に、HDD領域12が形成されており、第2のLDD領域16の左端X5よりもHDD領域12の左端X3の方がドレイン側にある(X5<X3)。
 第2のLDD領域16の、HDD領域12よりソース側の表層が、逆導電型領域8となっている。図9に示す例では、逆導電型領域8が、第2のLDD領域16から第1のLDD領域4に張り出し、逆導電型領域8の左端X2が、第2のLDD領域16の左端X5よりもソース側にある(X2<X5)。
 なお、第2のLDD領域16の内部に、逆導電型領域8を形成し、逆導電型領域8の左端X2が、第2のLDD領域16の左端X5よりもHDD12側に配置される(X5<X2)ようにしてもよい。あるいは、逆導電型領域8の左端X2と、第2のLDD領域16の左端X5とを揃える(X5=X2)ようにしてもよい。耐圧とオン抵抗(なお、オン抵抗は、図5の動作点Ion1の逆数で表現される)とはトレードオフの関係にあり、X2<X5では相対的に耐圧良好、X5<X2では相対的にオン抵抗良好となる。ただし、基本的には、プロセス工程の増大を避けるため、ゲートにセルフアラインで形成するので、位置関係はどちらでもよいといえる。
 また、ゲート電極6が、第2のLDD領域16と重なるように形成されており、ゲート電極6の右端XGDよりも第2のLDD領域16の左端X5の方がソース側にある(X5<XGD)。このように、ゲートの下側に第2のLDD領域16が入り込んでいることが、オン抵抗改善のために好ましい。なお、すでに耐圧は確保されているので、XGD<X5としても、耐圧向上効果はあまりないといえる。
 垂直方向について、第2のLDD領域の下端をY4とする。次に、第2のLDD領域16と他の領域との垂直方向の位置関係について説明する。
 第1のLDD領域4の内部に、第2のLDD領域16が形成されており、第2のLDD領域16の下端Y4は、第1のLDD領域4の下端Y3から上側に離れて配置されている(Y4<Y3)。
 第2のLDD領域16の内部に、HDD領域12が形成されており、また第2のLDD領域16の表面に、逆導電型領域8が形成されている。逆導電型領域8の下端Y1及びHDD12の下端Y2は、第2のLDD領域16の下端Y4から上側に離れて配置されている(Y1<Y2<Y4)。逆導電型領域8の下端Y1で、第2のLDD領域16と逆導電型領域8とがnp接合を形成する。
 次に、第1のLDD領域4の不純物濃度NL1、第2のLDD領域16の不純物濃度NL2、逆導電型領域8の不純物濃度NP、及びHDD領域12の不純物濃度NHの関係について説明する。これらの不純物濃度は、NL1<NP<NL2<NHという関係がある。
 次に、第2の実施例のMOSトランジスタの利点について説明する。第2の実施例では、逆導電型領域8の不純物濃度よりも、第2のLDD領域16の不純物濃度が高くされている。
 まず、図10Aを参照して、ゲート電圧VGSが0Vに近く(例えば0.3V)、ドレイン電圧VDSが非常に高い(例えば10V)場合について説明する。第1の実施例と同様に、p型の逆導電型領域8が、周囲のn型領域とpn接合を形成しており、ドレイン電圧VDSの増加により空乏層DLが伸びて、耐圧向上が図られる。
 第2の実施例では、逆導電型領域8の不純物濃度よりも第2のLDD領域16の不純物濃度が高いので、逆導電型領域8と第2のLDD領域16とのpn接合で、空乏層DLが、第2のLDD領域16側よりも逆導電型領域8側に拡がる。
 空乏層DLが逆導電型領域8の方に伸びるので、電流パスを表面に近づけられる。このため、寄生抵抗増加を抑制して、第1のLDD領域4の深さを浅くでき、チャネル長のばらつきを改善することができる。
 なお、第2の実施例でも、第1の実施例と同様に、逆導電型領域8がゲート電極6のドレイン側端部の下に入り込んで形成されており、ゲートのドレイン端で大きな耐圧を確保しやすい。
 次に、図10Bを参照して、ゲート電圧VGSがある程度の高さ(例えば3.3V)で、ドレイン電圧VDSが低い(例えば0.1V)場合について説明する。第1の実施例と同様に、ドレイン電圧VDSが低いときには、空乏層DLの拡がりが小さく、電位降下が小さいので、オン抵抗増加が抑制される。
 第2の実施例では、第1のLDD領域4内に、それよりも高い不純物濃度の第2のLDD領域16を設けたことにより、寄生抵抗が低減され、オン抵抗が第1の実施例よりも改善することが期待される。
 次に、第2の実施例のMOSトランジスタの製造方法について説明する。図2Bを参照して説明した、低濃度ソース領域7を形成する工程までは、第1の実施例と同様である。以下、その後の工程について説明する。
 図11に示すように、低濃度ソース領域7をレジストマスクRM6でカバーし、さらにゲート電極6をマスクとして、第1の実施例と同様に、第1のLDD領域4に、例えばBを加速エネルギ3keV、ドーズ量1E13で注入して、第1のLDD領域4の表層の導電型をn型からp型に反転させ、逆導電型領域8を形成する。
 引き続き、例えばAsを加速エネルギ80keV、ドーズ量1E14とし、逆導電型領域8よりも深い飛程で注入して、逆導電型領域8の直下に、第2のLDD領域16を形成する。第2のLDD領域16の導電型決定不純物の濃度が、逆導電型領域8のそれよりも高くなるようにする。逆導電型領域8及び第2のLDD領域16形成後、レジストマスクRM6を除去する。
 その後は、第1の実施例で図3A~図3Cを参照して説明した工程と同様にして、サイドウォールスペーサ9及びシリサイドブロック絶縁膜10を形成し、高濃度ソース領域11及びHDD領域12を形成し、さらに、ソース側シリサイド領域13、ゲート電極上シリサイド領域14、及びドレイン側シリサイド領域15を形成する。HDD領域12の形成において、逆導電型領域8及びその下方の第2のLDD領域16に、n型不純物が注入される。以上のようにして、第2の実施例のMOSトランジスタが作製される。
 次に、図12を参照して、第2の実施例の変形例によるMOSトランジスタについて説明する。本変形例の、第2の実施例との違いは、第1の実施例の変形例と同様に、逆導電型領域8が、ゲート電極6のドレイン端からHDD領域12側に離れて形成されており、ゲート電極6のドレイン端の下に入り込んでいないことである。第2の実施例の変形例も、第1の実施例の変形例と同様に、ゲート電極6のドレイン端直下に逆導電型領域8が配置されないので、寄生容量を低減でき、高速動作が行える。
 なお、図12に示す例では、逆導電型領域8が、第2のLDD領域16から第1のLDD領域4に張り出しているが、第2のLDD領域16の内部に、逆導電型領域8を形成するようにしてもよいし、あるいは、逆導電型領域8及び第2のLDD領域16のソース側の端を揃えてもよい。
 第2の実施例の変形例のMOSトランジスタの製造方法について説明する。本変形例のMOSトランジスタも、第2の実施例のMOSトランジスタの製造方法と同様な工程で作製されるが、第1の実施例の変形例と同様に、逆導電型領域8がゲート電極6から離れて形成されるように、p型不純物をイオン注入する。
 次に、図13A~図13C及び図14を参照して、第1または第2の実施例のMOSトランジスタを応用した携帯電子機器について説明する。
 図13Aは、本応用例の携帯電子機器50を概略的に示すダイヤグラムである。携帯電子機器50は、例えば携帯電話であり、パワーアンプトランジスタ52を含む送信モジュール51を有する。パワーアンプトランジスタ52の出力が、アンテナ53に入力される。
 図13Bは、パワーアンプトランジスタ52を示す回路図である。パワーアンプトランジスタ52として、第1または第2の実施例のMOSトランジスタが用いられる。パワーアンプトランジスタ52のゲート端子52aに、高周波の入力電力が印加され、ドレイン端子52bから、入力電力が増幅された出力電力が出力される。入出力される高周波の周波数として、百MHzのオーダからGHzのオーダ(数百MHz~数GHz)が想定される。
 図13Cは、パワーアンプトランジスタ52による増幅ゲインを概略的に示すグラフである。グラフの横軸及び縦軸は、それぞれ、dBm単位で示す入力電力及び出力電力である。入力電力に対して増幅ゲイン分電力が増加した出力電力が出力される。
 例えば、パワーアンプトランジスタのゲート端子に交流の入力電圧として0Vと3.3Vとが交互に印加され、ドレイン端子から増幅出力が供給される。なお、ソース端子は接地される(0V)。例えばGHzオーダの高周波を入出力させる。結果的に、ドレイン電圧が非常に高い値に達し、ゲートドレイン間電位差が3.3Vを大きく超える状況が生じる。パワーアンプトランジスタの動作点変化の軌跡が、ダイナミックロードラインである。
 図14は、本応用例のパワーアンプトランジスタのダイナミックロードラインを示すグラフである。グラフの横軸がV単位で示すドレイン電圧であり、縦軸がA単位で示す電流である。ゲート電圧VGSが0.3V、0.6V、0.9V、1.2V、1.5V、1.8V、2.1V、2.4V、2.7V、3.0V、及び3.3Vの場合のIV曲線とともに、ダイナミックロードラインDLLを示す。
 ダイナミックロードラインDLL上で、ドレイン電圧が7V程度と最も高く、ゲート電圧が0.3V程度と0Vに近い動作点が動作点P1である。パワーアンプトランジスタの挙動を直流的に捉えた動作点が、バイアス点P0である。
 動作電圧3.3Vに対して、動作点P1のドレイン電圧は、その2倍以上の7V程度となっている。動作電圧に対して、少なくとも2倍以上のゲートドレイン間電位差に耐える耐圧性能が要求される。
 第1及び第2の実施例のMOSトランジスタは、逆導電型領域8を形成することにより耐圧向上が図られており、このようなパワーアンプトランジスタとしての使用に好適である。なお、第1及び第2の実施例のMOSトランジスタのゲート絶縁膜は、直流での使用時に、3.3Vの動作電圧を想定した耐圧のものである。
 以上説明したように、MOSトランジスタを第1または第2の実施例の構造とすることにより、例えば直流での使用時に3.3Vの耐圧を想定したゲート絶縁膜のままで、例えばパワーアンプ用途等、例えばGHz帯の高周波での使用時に生じる高いゲートドレイン間の電位差に耐える耐圧性能を得ることができる。
 なお、例えばパワーアンプトランジスタ用途としては、上記実施例で説明したようなn型MOSトランジスタが好ましいが、実施例の説明でn型とp型とを反転させて得られるp型MOSトランジスタにおいても、n型の逆導電型領域が形成されていることにより、耐圧の向上が図られることとなる。
 以上実施例に沿って本発明を説明したが、本発明はこれらに制限されるものではない。例えば、種々の変更、改良、組み合わせ等が可能なことは当業者に自明であろう。
 以下、本発明の特徴を付記する。
(付記1)
 第1導電型の第1領域を有する半導体基板と、
 前記第1領域上に形成されたゲート絶縁膜と、
 前記ゲート絶縁膜上に形成されたゲート電極と、
 前記第1領域内において、前記ゲート電極に対し一方の側に形成され、前記第1導電型と反対の第2導電型を有するソース領域と、
 前記第1領域内において、前記ゲート電極に対し他方の側に、前記ソース領域側の端が該ゲート電極の下方に入り込んで形成され、前記第2導電型を有する第1低濃度ドレイン領域と、
 前記第1低濃度ドレイン領域内において、前記ゲート電極から離れて形成され、前記第2導電型を有し、該第1低濃度ドレイン領域よりも不純物濃度が高い高濃度ドレイン領域と、
 前記第1低濃度ドレイン領域内において、前記高濃度ドレイン領域と前記ゲート電極の間の表面領域に形成され、前記第1導電型を有し、該第1低濃度ドレイン領域内の前記第2導電型を有する領域とpn接合を形成する逆導電型領域と
を有する半導体装置。
(付記2)
 前記逆導電型領域は、前記第1低濃度ドレイン領域とpn接合を形成する付記1に記載の半導体装置。
(付記3)
 前記逆導電型領域は、前記高濃度ドレイン領域とpn接合を形成する付記1に記載の半導体装置。
(付記4)
 前記逆導電型領域の前記ソース側の端が、前記第1低濃度ドレイン領域の前記ソース側の端よりも前記高濃度ドレイン側に配置されている付記1に記載の半導体装置。
(付記5)
 前記逆導電型領域の前記ソース側の端が、前記ゲート電極の下方に入り込んで形成されている付記1に記載の半導体装置。
(付記6)
 さらに、前記高濃度ドレイン領域の表面に形成されたシリサイド領域を有し、該シリサイド領域の前記ソース側の端が、前記逆導電型領域の該高濃度ドレイン領域側の端から離れている付記1に記載の半導体装置。
(付記7)
 さらに、前記シリサイド領域を露出させ、前記逆導電型領域を覆うように形成された絶縁膜を有する付記6に記載の半導体装置。
(付記8)
 前記逆導電型領域の不純物濃度が、前記第1低濃度ドレイン領域の不純物濃度よりも高く、前記高濃度ドレイン領域の不純物濃度よりも低い付記1に記載の半導体装置。
(付記9)
 前記逆導電型領域の前記ソース側の端が、前記ゲート電極の該第1低濃度ドレイン領域側の端から、前記高濃度ドレイン領域側に離れて形成されている付記1に記載の半導体装置。
(付記10)
 さらに、前記第1低濃度ドレイン領域内に形成され、前記第2導電型を有し、不純物濃度が、該第1低濃度ドレイン領域の不純物濃度よりも高く、前記高濃度ドレイン領域の不純物濃度よりも低い第2低濃度ドレイン領域を有し、前記逆導電型領域が、該第2低濃度ドレイン領域とpn接合を形成する付記1に記載の半導体装置。
(付記11)
 前記第1低濃度ドレイン領域の不純物濃度よりも前記逆導電型領域の不純物濃度が高く、前記逆導電型領域の不純物濃度よりも前記第2低濃度ドレイン領域の不純物濃度が高く、前記第2低濃度ドレイン領域の不純物濃度よりも前記高濃度ドレイン領域の不純物濃度が高い付記10に記載の半導体装置。
(付記12)
 前記第1導電型はp型であり、前記第2導電型はn型である付記1に記載の半導体装置。
(付記13)
 前記ゲート電極に高周波の入力電力が印加され、前記ドレイン領域は、該ゲート電極に印加された該入力電力を増幅した高周波の出力電力を出力し、携帯電子機器である付記1に記載の半導体装置。
(付記14)
 前記ゲート絶縁膜の材料及び厚さに対応して、前記ゲート電極と前記ドレイン領域との間に直流電圧が印加されたときの耐圧が想定され、
 前記ゲート電極に高周波の入力電力が印加され、前記ドレイン領域は、該ゲート電極に印加された該入力電力を増幅した高周波の出力電力を出力し、該出力電力の出力時に該ドレイン領域にかかるドレイン電圧の最大値が、前記耐圧の2倍以上である付記1に記載の半導体装置。
(付記15)
 (a)第1導電型の第1領域を有する半導体基板を準備する工程と、
 (b)前記第1領域内に、前記第1導電型と反対の第2導電型を有する第1低濃度ドレイン領域を形成する工程と、
 (c)前記第1領域及び前記第1低濃度ドレイン領域の上に、ゲート絶縁膜を形成する工程と、 
 (d)前記ゲート絶縁膜の上に、前記第1領域及び前記第1低濃度ドレイン領域の双方に重なりを持つように、ゲート電極を形成する工程と、
 (e)前記第1低濃度ドレイン領域の表層に、前記第1導電型を決定する不純物を注入し、該第1導電型を有する逆導電型領域を形成する工程と、
 (f)前記第1低濃度ドレイン領域の上方に形成され、前記ゲート電極の該第1低濃度ドレイン領域側の側壁を覆い、前記逆導電型領域一部上方まで延在する絶縁膜を形成する工程と、
 (g)前記絶縁膜をマスクとして、前記逆導電型領域及びその下方の前記第1低濃度ドレイン領域に、前記第2導電型を決定する不純物を注入し、該第2導電型を有し、該第1低濃度ドレイン領域よりも不純物濃度が高い高濃度ドレイン領域を形成する工程と、
 (h)前記ゲート電極に対し、前記第1低濃度ドレイン領域と反対側の前記第1領域内に、前記第2導電型を有するソース領域を形成する工程と
を有する半導体装置の製造方法。
(付記16)
 さらに、(i)前記工程(e)と前記工程(f)との間に、該逆導電型領域の下方の前記第1低濃度ドレイン領域内に、前記第2導電型を決定する不純物を注入し、該第1低濃度ドレイン領域よりも不純物濃度が高い第2低濃度ドレイン領域を形成する工程を有し、前記工程(g)は、前記逆導電型領域及びその下の前記第2低濃度ドレイン領域に、前記第2導電型を決定する不純物を注入し、該第2低濃度ドレイン領域よりも不純物濃度が高い高濃度ドレイン領域を形成する付記15に記載の半導体装置の製造方法。
(付記17)
 さらに、(j)前記高濃度ドレイン領域の表層をシリサイド化する工程を有する付記15に記載の半導体装置の製造方法。

Claims (10)

  1.  第1導電型の第1領域を有する半導体基板と、
     前記第1領域上に形成されたゲート絶縁膜と、
     前記ゲート絶縁膜上に形成されたゲート電極と、
     前記第1領域内において、前記ゲート電極に対し一方の側に形成され、前記第1導電型と反対の第2導電型を有するソース領域と、
     前記第1領域内において、前記ゲート電極に対し他方の側に、前記ソース領域側の端が該ゲート電極の下方に入り込んで形成され、前記第2導電型を有する第1低濃度ドレイン領域と、
     前記第1低濃度ドレイン領域内において、前記ゲート電極から離れて形成され、前記第2導電型を有し、該第1低濃度ドレイン領域よりも不純物濃度が高い高濃度ドレイン領域と、
     前記第1低濃度ドレイン領域内において、前記高濃度ドレイン領域と前記ゲート電極の間の表面領域に形成され、前記第1導電型を有し、該第1低濃度ドレイン領域内の前記第2導電型を有する領域とpn接合を形成する逆導電型領域と
    を有する半導体装置。
  2.  前記逆導電型領域の前記ソース側の端が、前記第1低濃度ドレイン領域の前記ソース側の端よりも前記高濃度ドレイン側に配置されている請求項1に記載の半導体装置。
  3.  前記逆導電型領域の前記ソース側の端が、前記ゲート電極の下方に入り込んで形成されている請求項1に記載の半導体装置。
  4.  前記逆導電型領域の前記ソース側の端が、前記ゲート電極の該第1低濃度ドレイン領域側の端から、前記高濃度ドレイン領域側に離れて形成されている請求項1に記載の半導体装置。
  5.  さらに、前記第1低濃度ドレイン領域内に形成され、前記第2導電型を有し、不純物濃度が、該第1低濃度ドレイン領域の不純物濃度よりも高く、前記高濃度ドレイン領域の不純物濃度よりも低い第2低濃度ドレイン領域を有し、前記逆導電型領域が、該第2低濃度ドレイン領域とpn接合を形成する請求項1に記載の半導体装置。
  6.  前記第1低濃度ドレイン領域の不純物濃度よりも前記逆導電型領域の不純物濃度が高く、前記逆導電型領域の不純物濃度よりも前記第2低濃度ドレイン領域の不純物濃度が高く、前記第2低濃度ドレイン領域の不純物濃度よりも前記高濃度ドレイン領域の不純物濃度が高い請求項5に記載の半導体装置。
  7.  前記ゲート電極に高周波の入力電力が印加され、前記ドレイン領域は、該ゲート電極に印加された該入力電力を増幅した高周波の出力電力を出力し、携帯電子機器である請求項1に記載の半導体装置。
  8.  前記ゲート絶縁膜の材料及び厚さに対応して、前記ゲート電極と前記ドレイン領域との間に直流電圧が印加されたときの耐圧が想定され、
     前記ゲート電極に高周波の入力電力が印加され、前記ドレイン領域は、該ゲート電極に印加された該入力電力を増幅した高周波の出力電力を出力し、該出力電力の出力時に該ドレイン領域にかかるドレイン電圧の最大値が、前記耐圧の2倍以上である請求項1に記載の半導体装置。
  9.  (a)第1導電型の第1領域を有する半導体基板を準備する工程と、
     (b)前記第1領域内に、前記第1導電型と反対の第2導電型を有する第1低濃度ドレイン領域を形成する工程と、
     (c)前記第1領域及び前記第1低濃度ドレイン領域の上に、ゲート絶縁膜を形成する工程と、 
     (d)前記ゲート絶縁膜の上に、前記第1領域及び前記第1低濃度ドレイン領域の双方に重なりを持つように、ゲート電極を形成する工程と、
     (e)前記第1低濃度ドレイン領域の表層に、前記第1導電型を決定する不純物を注入し、該第1導電型を有する逆導電型領域を形成する工程と、
     (f)前記第1低濃度ドレイン領域の上方に形成され、前記ゲート電極の該第1低濃度ドレイン領域側の側壁を覆い、前記逆導電型領域一部上方まで延在する絶縁膜を形成する工程と、
     (g)前記絶縁膜をマスクとして、前記逆導電型領域及びその下方の前記第1低濃度ドレイン領域に、前記第2導電型を決定する不純物を注入し、該第2導電型を有し、該第1低濃度ドレイン領域よりも不純物濃度が高い高濃度ドレイン領域を形成する工程と、
     (h)前記ゲート電極に対し、前記第1低濃度ドレイン領域と反対側の前記第1領域内に、前記第2導電型を有するソース領域を形成する工程と
    を有する半導体装置の製造方法。
  10.  さらに、(i)前記工程(e)と前記工程(f)との間に、該逆導電型領域の下方の前記第1低濃度ドレイン領域内に、前記第2導電型を決定する不純物を注入し、該第1低濃度ドレイン領域よりも不純物濃度が高い第2低濃度ドレイン領域を形成する工程を有し、前記工程(g)は、前記逆導電型領域及びその下の前記第2低濃度ドレイン領域に、前記第2導電型を決定する不純物を注入し、該第2低濃度ドレイン領域よりも不純物濃度が高い高濃度ドレイン領域を形成する請求項9に記載の半導体装置の製造方法。
PCT/JP2008/000010 2008-01-10 2008-01-10 半導体装置及びその製造方法 WO2009087703A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2008/000010 WO2009087703A1 (ja) 2008-01-10 2008-01-10 半導体装置及びその製造方法
TW097101273A TW200931662A (en) 2008-01-10 2008-01-10 Semiconductor device and manufacturing method thereof
JP2009548805A JP5158095B2 (ja) 2008-01-10 2008-01-10 半導体装置及びその製造方法
CN2008801246016A CN101911302B (zh) 2008-01-10 2008-01-10 半导体器件及其制造方法
US12/797,078 US8410550B2 (en) 2008-01-10 2010-06-09 Breakdown voltage MOS semiconductor device
US13/779,163 US8735254B2 (en) 2008-01-10 2013-02-27 Manufacture method of a high voltage MOS semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/000010 WO2009087703A1 (ja) 2008-01-10 2008-01-10 半導体装置及びその製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/797,078 Continuation US8410550B2 (en) 2008-01-10 2010-06-09 Breakdown voltage MOS semiconductor device

Publications (1)

Publication Number Publication Date
WO2009087703A1 true WO2009087703A1 (ja) 2009-07-16

Family

ID=40852829

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/000010 WO2009087703A1 (ja) 2008-01-10 2008-01-10 半導体装置及びその製造方法

Country Status (5)

Country Link
US (2) US8410550B2 (ja)
JP (1) JP5158095B2 (ja)
CN (1) CN101911302B (ja)
TW (1) TW200931662A (ja)
WO (1) WO2009087703A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010192693A (ja) * 2009-02-18 2010-09-02 Sanyo Electric Co Ltd 半導体装置及びその製造方法
JP2011199153A (ja) * 2010-03-23 2011-10-06 Fujitsu Semiconductor Ltd 半導体装置及びその製造方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5381989B2 (ja) 2008-08-26 2014-01-08 富士通セミコンダクター株式会社 半導体装置の製造方法
JP5471320B2 (ja) 2009-11-09 2014-04-16 富士通セミコンダクター株式会社 半導体装置とその製造方法
CN102437116A (zh) * 2011-09-23 2012-05-02 上海华力微电子有限公司 一种有效减少静电放电保护电路面积的工艺集成方法
CN102315131B (zh) * 2011-09-28 2016-03-09 上海华虹宏力半导体制造有限公司 晶体管的制作方法
US10276596B2 (en) 2014-08-06 2019-04-30 Taiwan Semiconductor Manufacturing Co., Ltd. Selective polysilicon doping for gate induced drain leakage improvement
KR102227128B1 (ko) * 2014-09-03 2021-03-12 삼성전자주식회사 반도체 장치 및 이의 제조 방법
CN106298923B (zh) * 2015-06-02 2020-10-09 联华电子股份有限公司 高压金属氧化物半导体晶体管元件以及其制造方法
US20180138307A1 (en) * 2016-11-17 2018-05-17 Globalfoundries Inc. Tunnel finfet with self-aligned gate
US10157916B2 (en) * 2017-04-10 2018-12-18 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05299649A (ja) * 1991-03-19 1993-11-12 Nec Corp 半導体装置
JPH08330580A (ja) * 1995-06-01 1996-12-13 Nec Corp 高耐圧横型mosfet半導体装置
JPH1093079A (ja) * 1996-09-11 1998-04-10 Toshiba Corp Mosゲート半導体装置
JP2005236142A (ja) * 2004-02-20 2005-09-02 Shindengen Electric Mfg Co Ltd 横型短チャネルdmos及びその製造方法並びに半導体装置
JP2006319010A (ja) * 2005-05-11 2006-11-24 Matsushita Electric Ind Co Ltd Mos型半導体装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3074064B2 (ja) * 1992-05-21 2000-08-07 松下電子工業株式会社 横型mos電界効果トランジスタ
JP3424694B2 (ja) * 1993-03-08 2003-07-07 セイコーインスツルメンツ株式会社 高耐圧絶縁ゲート型電界効果トランジスタ及び半導体集積回路装置
EP0700089A1 (en) * 1994-08-19 1996-03-06 STMicroelectronics S.r.l. A device for protection against electrostatic discharges on the I/O terminals of a MOS integrated circuit
JPH09181300A (ja) * 1995-12-22 1997-07-11 Hitachi Ltd 半導体装置およびその製造方法
JP2002343806A (ja) * 2001-05-15 2002-11-29 Mitsubishi Electric Corp 半導体装置およびその製造方法
ATE429708T1 (de) * 2001-08-17 2009-05-15 Ihp Gmbh Ldmos-transistor und dessen herstellungsverfahren
JP2003086797A (ja) * 2001-09-12 2003-03-20 Matsushita Electric Ind Co Ltd 半導体装置
US20040108544A1 (en) * 2002-12-09 2004-06-10 Semiconductor Components Industries, Llc High voltage mosfet with laterally varying drain doping and method
JP2004207498A (ja) * 2002-12-25 2004-07-22 Texas Instr Japan Ltd 半導体装置およびその製造方法
JP2005093458A (ja) 2003-09-12 2005-04-07 Matsushita Electric Ind Co Ltd 半導体装置およびその製造方法
US6927453B2 (en) * 2003-09-30 2005-08-09 Agere Systems Inc. Metal-oxide-semiconductor device including a buried lightly-doped drain region
JP2005136169A (ja) 2003-10-30 2005-05-26 Seiko Epson Corp 半導体装置およびその製造方法
US7180132B2 (en) * 2004-09-16 2007-02-20 Fairchild Semiconductor Corporation Enhanced RESURF HVPMOS device with stacked hetero-doping RIM and gradual drift region
EP1717850A1 (en) * 2005-04-29 2006-11-02 STMicroelectronics S.r.l. Method of manufacturing a lateral power MOS transistor
KR100669858B1 (ko) 2005-05-13 2007-01-16 삼성전자주식회사 고전압 반도체 장치 및 그 제조 방법
US8106451B2 (en) * 2006-08-02 2012-01-31 International Rectifier Corporation Multiple lateral RESURF LDMOST

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05299649A (ja) * 1991-03-19 1993-11-12 Nec Corp 半導体装置
JPH08330580A (ja) * 1995-06-01 1996-12-13 Nec Corp 高耐圧横型mosfet半導体装置
JPH1093079A (ja) * 1996-09-11 1998-04-10 Toshiba Corp Mosゲート半導体装置
JP2005236142A (ja) * 2004-02-20 2005-09-02 Shindengen Electric Mfg Co Ltd 横型短チャネルdmos及びその製造方法並びに半導体装置
JP2006319010A (ja) * 2005-05-11 2006-11-24 Matsushita Electric Ind Co Ltd Mos型半導体装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010192693A (ja) * 2009-02-18 2010-09-02 Sanyo Electric Co Ltd 半導体装置及びその製造方法
JP2011199153A (ja) * 2010-03-23 2011-10-06 Fujitsu Semiconductor Ltd 半導体装置及びその製造方法

Also Published As

Publication number Publication date
JP5158095B2 (ja) 2013-03-06
US20100244965A1 (en) 2010-09-30
US8410550B2 (en) 2013-04-02
TW200931662A (en) 2009-07-16
CN101911302A (zh) 2010-12-08
US20130171791A1 (en) 2013-07-04
JPWO2009087703A1 (ja) 2011-05-19
CN101911302B (zh) 2013-07-03
US8735254B2 (en) 2014-05-27

Similar Documents

Publication Publication Date Title
JP5158095B2 (ja) 半導体装置及びその製造方法
US7525150B2 (en) High voltage double diffused drain MOS transistor with medium operation voltage
US8841725B2 (en) Semiconductor device having channel dose region and method for manufacturing semiconductor device
US7709330B2 (en) High voltage MOSFET having Si/SiGe heterojunction structure and method of manufacturing the same
JP5239548B2 (ja) 半導体装置及び半導体装置の製造方法
US8633075B2 (en) Semiconductor device with high voltage transistor
CN110620149B (zh) 集成电路器件
US8674442B2 (en) Semiconductor device and manufacturing method thereof
US8846478B2 (en) Manufacturing method of semiconductor device
US8048765B2 (en) Method for fabricating a MOS transistor with source/well heterojunction and related structure
US9660020B2 (en) Integrated circuits with laterally diffused metal oxide semiconductor structures and methods for fabricating the same
KR100376182B1 (ko) 절연게이트형전계효과트랜지스터및그의제조방법
US20080023761A1 (en) Semiconductor devices and methods of fabricating the same
US9105721B2 (en) Semiconductor device and manufacturing method thereof
US9397191B2 (en) Methods of making a self-aligned channel drift device
CN107180856B (zh) 一种pmos器件结构

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880124601.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08702751

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009548805

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08702751

Country of ref document: EP

Kind code of ref document: A1