WO2009084622A1 - 真空紫外光照射による樹脂の接着方法、該方法を用いる樹脂物品又はマイクロチップの製造方法、該方法で製造される樹脂物品又はマイクロチップ - Google Patents

真空紫外光照射による樹脂の接着方法、該方法を用いる樹脂物品又はマイクロチップの製造方法、該方法で製造される樹脂物品又はマイクロチップ Download PDF

Info

Publication number
WO2009084622A1
WO2009084622A1 PCT/JP2008/073703 JP2008073703W WO2009084622A1 WO 2009084622 A1 WO2009084622 A1 WO 2009084622A1 JP 2008073703 W JP2008073703 W JP 2008073703W WO 2009084622 A1 WO2009084622 A1 WO 2009084622A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
ultraviolet light
vacuum ultraviolet
resins
microchip
Prior art date
Application number
PCT/JP2008/073703
Other languages
English (en)
French (fr)
Inventor
Yoshinao Taniguchi
Yoshihiro Taguchi
Hiroyuki Sugimura
Original Assignee
Alps Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co., Ltd. filed Critical Alps Electric Co., Ltd.
Priority to EP08867644A priority Critical patent/EP2236575A4/en
Publication of WO2009084622A1 publication Critical patent/WO2009084622A1/ja
Priority to US12/823,088 priority patent/US8246774B2/en
Priority to US13/396,488 priority patent/US8784973B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/001Joining in special atmospheres
    • B29C66/0012Joining in special atmospheres characterised by the type of environment
    • B29C66/0014Gaseous environments
    • B29C66/00143Active gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/1403Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the type of electromagnetic or particle radiation
    • B29C65/1406Ultraviolet [UV] radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/1429Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the way of heating the interface
    • B29C65/1432Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the way of heating the interface direct heating of the surfaces to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/76Making non-permanent or releasable joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/001Joining in special atmospheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/114Single butt joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/45Joining of substantially the whole surface of the articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/53Joining single elements to tubular articles, hollow articles or bars
    • B29C66/534Joining single elements to open ends of tubular or hollow articles or to the ends of bars
    • B29C66/5346Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially flat
    • B29C66/53461Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially flat joining substantially flat covers and/or substantially flat bottoms to open ends of container bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/82Pressure application arrangements, e.g. transmission or actuating mechanisms for joining tools or clamps
    • B29C66/826Pressure application arrangements, e.g. transmission or actuating mechanisms for joining tools or clamps without using a separate pressure application tool, e.g. the own weight of the parts to be joined
    • B29C66/8266Pressure application arrangements, e.g. transmission or actuating mechanisms for joining tools or clamps without using a separate pressure application tool, e.g. the own weight of the parts to be joined using fluid pressure directly acting on the parts to be joined
    • B29C66/82661Pressure application arrangements, e.g. transmission or actuating mechanisms for joining tools or clamps without using a separate pressure application tool, e.g. the own weight of the parts to be joined using fluid pressure directly acting on the parts to be joined by means of vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/832Reciprocating joining or pressing tools
    • B29C66/8322Joining or pressing tools reciprocating along one axis
    • B29C66/83221Joining or pressing tools reciprocating along one axis cooperating reciprocating tools, each tool reciprocating along one axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9141Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
    • B29C66/91411Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature of the parts to be joined, e.g. the joining process taking the temperature of the parts to be joined into account
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9161Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux
    • B29C66/91641Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux the heat or the thermal flux being non-constant over time
    • B29C66/91643Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux the heat or the thermal flux being non-constant over time following a heat-time profile
    • B29C66/91645Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux the heat or the thermal flux being non-constant over time following a heat-time profile by steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/95Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94
    • B29C66/953Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 by measuring or controlling the humidity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C3/00Assembling of devices or systems from individually processed components
    • B81C3/001Bonding of two components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/28Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/12Bonding of a preformed macromolecular material to the same or other solid material such as metal, glass, leather, e.g. using adhesives
    • C08J5/121Bonding of a preformed macromolecular material to the same or other solid material such as metal, glass, leather, e.g. using adhesives by heating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/123Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • C09J5/06Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers involving heating of the applied adhesive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0827Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using UV radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/1496Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation making use of masks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/731General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the intensive physical properties of the material of the parts to be joined
    • B29C66/7311Thermal properties
    • B29C66/73117Tg, i.e. glass transition temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/731General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the intensive physical properties of the material of the parts to be joined
    • B29C66/7316Surface properties
    • B29C66/73161Roughness or rugosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/733General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the optical properties of the material of the parts to be joined, e.g. fluorescence, phosphorescence
    • B29C66/7336General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the optical properties of the material of the parts to be joined, e.g. fluorescence, phosphorescence at least one of the parts to be joined being opaque, transparent or translucent to visible light
    • B29C66/73365General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the optical properties of the material of the parts to be joined, e.g. fluorescence, phosphorescence at least one of the parts to be joined being opaque, transparent or translucent to visible light at least one of the parts to be joined being transparent or translucent to visible light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/737General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined
    • B29C66/7377General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined amorphous, semi-crystalline or crystalline
    • B29C66/73771General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined amorphous, semi-crystalline or crystalline the to-be-joined area of at least one of the parts to be joined being amorphous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7394General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoset
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/832Reciprocating joining or pressing tools
    • B29C66/8322Joining or pressing tools reciprocating along one axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9141Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • B29C66/9192Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams
    • B29C66/91921Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature
    • B29C66/91941Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature in explicit relation to Tg, i.e. the glass transition temperature, of the material of one of the parts to be joined
    • B29C66/91945Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature in explicit relation to Tg, i.e. the glass transition temperature, of the material of one of the parts to be joined lower than said glass transition temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2069/00Use of PC, i.e. polycarbonates or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2017/00Carriers for sound or information
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/30Vehicles, e.g. ships or aircraft, or body parts thereof
    • B29L2031/3055Cars
    • B29L2031/3061Number plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0214Biosensors; Chemical sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/05Microfluidics
    • B81B2201/058Microfluidics not provided for in B81B2201/051 - B81B2201/054
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0174Manufacture or treatment of microstructural devices or systems in or on a substrate for making multi-layered devices, film deposition or growing
    • B81C2201/019Bonding or gluing multiple substrate layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2203/00Forming microstructural systems
    • B81C2203/03Bonding two components
    • B81C2203/032Gluing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/40Additional features of adhesives in the form of films or foils characterized by the presence of essential components
    • C09J2301/416Additional features of adhesives in the form of films or foils characterized by the presence of essential components use of irradiation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2400/00Presence of inorganic and organic materials
    • C09J2400/20Presence of organic materials
    • C09J2400/22Presence of unspecified polymer
    • C09J2400/226Presence of unspecified polymer in the substrate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2423/00Presence of polyolefin
    • C09J2423/006Presence of polyolefin in the substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
    • Y10T428/24562Interlaminar spaces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
    • Y10T428/24612Composite web or sheet
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/31909Next to second addition polymer from unsaturated monomers

Definitions

  • the present invention relates to a method of adhering a resin by light (vacuum ultraviolet light) irradiation, a method of manufacturing a resin article using this method, and a method of manufacturing a microchip, and a resin article manufactured using these methods. And microchips.
  • adhesion by heat fusion or adhesion by application of an organic solvent or an adhesive is generally used. Bonding by heat fusion is usually performed at a temperature above the glass transition point of the resin.
  • microchip having a structure in which a pair of substrates are bonded to face each other and in which a fine flow channel is formed on the surface of at least one of the substrates is attracting attention.
  • Microchips are also referred to as microfluidic devices.
  • a chip suitable for various applications can be configured by providing a region having various functions, such as a reaction region in which a reagent is disposed, in a flow path also called a microchannel.
  • Typical applications of microchips are analysis in the fields of genetic analysis, clinical diagnosis, chemistry such as drug screening, biochemistry, pharmacy, medicine, and veterinary medicine, or synthesis of compounds and environmental measurement.
  • microchips are used for these applications, for example, (1) the amount of sample and reagent required for analysis can be reduced compared to when using conventional analyzers suitable for similar applications, (2) analysis The time can be shortened, and (3) since the tip can be disposable, effects such as safety and measurement accuracy can be improved in the medical field and the like.
  • glass substrates have been mainly used for microchips because they are easy to manufacture and optical detection is also possible.
  • the microchip made of a glass substrate is easily damaged by an external impact, and the weight at the time of transportation, disposal, etc. becomes a problem. Therefore, development of a microchip using a resin substrate, which is lightweight but is less likely to be damaged compared to a glass substrate, and is inexpensive has been advanced.
  • a general resin adhesion method such as heat fusion
  • heat fusion heat fusion
  • the substrate may be deformed during bonding, and the function as a microchip may be lost. Further, the influence of the deformation of the substrate becomes more remarkable when the width of the flow path is narrowed or when the flow path pattern is complicated, so that the functional integration of the microchip is difficult in adhesion by heat fusion. is there.
  • Patent Document 2 discloses a method of manufacturing a microchip in which a polydimethylsiloxane (PDMS) substrate and a resin substrate (facing substrate) made of a material other than PDMS are adhered.
  • a PDMS substrate having fine channels formed on the surface and a facing substrate having a silicon oxide film formed on the surface are prepared, and the bonding surfaces of both substrates are reformed, Are adhered through the silicon oxide film.
  • an oxygen plasma process more specifically, an oxygen plasma process of irradiating excimer ultraviolet light in an oxygen atmosphere is exemplified (for example, paragraph No. of Patent Document 2) ).
  • Patent Document 3 and Patent Document 4 the surface of the olefin-based resin is irradiated with light to activate the surface (in Patent Document 3, photopolymerization is possible
  • a resin composition such as a hot melt adhesive or a UV curable resin is applied to the surface after activation, and a resin is adhered via the composition. It is disclosed.
  • Patent Document 1 when the organic solvent enters the flow path, the resin constituting the substrate is corroded, denatured, etc., causing the flow path to be blocked or the characteristic deterioration of the microchip to occur.
  • An organic solvent is applied to avoid the passage.
  • such an organic solvent application step is a factor that reduces the productivity of the microchip, and the width of the flow path is narrowed for the purpose of high performance etc., and the flow path pattern is complicated. It is difficult to cope with production depending on the degree of narrowing and complexity.
  • the method of Patent Document 2 is a method used for adhesion to a PDMS substrate which is a silicone resin having a Si-O bond and having a strong affinity with a silicon oxide film, and it is preferable to use a resin substrate other than the PDMS substrate. It can not be glued.
  • Patent Documents 3 and 4 it is necessary to apply a resin composition to the substrate surface, and blockage of the flow path occurs, so that it is difficult to apply the method as it is to a method of manufacturing a microchip. Similar to Patent Document 1, it is also conceivable to apply the resin composition so as to avoid the flow path, but as described above, such an application step is a factor that reduces the productivity of the microchip, It is difficult to cope with the narrowing of the channel width and the complication of the channel pattern.
  • the temperature lower than the adhesion by the thermal fusion without applying the organic solvent and the resin composition which lowers the productivity of the chip and also causes clogging of the flow path.
  • a resin bonding method capable of bonding resin substrates is desired.
  • such an adhesion method is expected to be applied not only to microchips but also to various resin article manufacturing methods.
  • the resin bonding method of the present invention is a resin bonding method for bonding a first resin and a second resin, and (I) oxygen molecules in contact with the surfaces of the first and second resins Irradiating vacuum ultraviolet light having a wavelength of 175 nm or less in a space containing (II) bonding the first resin and the second resin with the surface as an adhesive surface by raising the temperature in a state where the surfaces after the irradiation are in contact with each other.
  • the space in contact with the surfaces of the first and second resins means the space immediately above the surfaces of the first and second resins.
  • the distance from the surface is a space in the range of 0 to 30 mm, more preferably a space in the range of 0 to 1 mm.
  • the bonding method of the present invention can be applied to a method of manufacturing a resin article having a resin and a portion where the resin is bonded. That is, the method for producing a resin article according to the present invention is a method for producing a resin article comprising two or more parts having a resin part, wherein the two or more articles are adhered to each other in the resin part It is the method of adhere
  • the present invention also provides a resin article produced by the method for producing a resin article of the present invention described above.
  • the resin article of the present invention is a resin article produced by the method of producing a resin article of the present invention, wherein the resin parts of the two or more parts are selected from water and alcohol of 40 ° C. or higher It is releasably adhered by one liquid.
  • the method for producing a resin article according to the present invention can be applied to methods for producing various resin articles such as microchips. That is, the method of manufacturing a microchip according to the present invention is a method of manufacturing a microchip including a pair of resin substrates adhered to each other so as to face each other, and a channel is formed in at least one of the resin substrates. In the method, the resin substrates are bonded to each other by the bonding method of the present invention.
  • the present invention also provides a microchip manufactured by the method for manufacturing a microchip of the present invention described above.
  • the microchip of the present invention is a microchip manufactured by the method of manufacturing a microchip of the present invention, wherein the pair of resin substrates are at least any one liquid selected from water and alcohol of 40 ° C. or higher. It is releasably bonded by
  • the resin and the resin can be adhered with high productivity at a temperature lower than the adhesion by heat fusion without applying the organic solvent and the resin composition. Moreover, it is possible to make it easy to peel resin which was adhere
  • the resin article of the present invention produced by such a production method has reliability as an article because it has sufficient adhesive strength between parts. Furthermore, since parts can be easily disassembled, parts can also be recycled.
  • the bonding method of the present invention is applied to a method of manufacturing a microchip, that is, in the method of manufacturing a microchip of the present invention, a pair of resin substrates having flow paths formed in at least one is more than adhesion by heat fusion. Since bonding can be performed at a low temperature, deformation of the resin substrate during bonding can be suppressed. In addition, since it is not necessary to apply an organic solvent and a resin composition to the adhesive surface of the substrate, it is possible to make the manufacturing method excellent in productivity, and to suppress blockage of the flow path at the time of manufacture and characteristic deterioration of the microchip Also, it is easier to cope with the narrowing of the channel width and the complication of the channel pattern. Further, the microchip of the present invention manufactured by such a manufacturing method has sufficient adhesive strength between resin substrates, and thus has reliability as a microchip. Furthermore, since the resin substrate can be easily disassembled, the resin substrate can be recycled.
  • the space containing oxygen molecules in contact with the surfaces of the first and second resins is irradiated with vacuum ultraviolet light having a wavelength of 175 nm or less (step (I)).
  • the surface to be the adhesive surface of the first and second resins may be simply referred to as the “surface”.
  • the surfaces of the first and second resins may be further irradiated with vacuum ultraviolet light. That is, the irradiation intensity and the irradiation distance of the vacuum ultraviolet light may be appropriately adjusted so that the vacuum ultraviolet light reaches the surfaces of the first and second resins.
  • the first resin and the second resin can be efficiently bonded.
  • vacuum ultraviolet light 4 having a wavelength of 175 nm or less is formed in the space 10 in contact with the surfaces 3a and 3b of the first resin 1 and the second resin 2 to be adhesive surfaces and the surfaces 3a and 3b.
  • the space 10 in contact with the surfaces 3a and 3b contains oxygen molecules.
  • the light amount of the vacuum ultraviolet light 4 irradiated to the space 10 and the surfaces 3a and 3b is not particularly limited. However, it is possible to bond the first resin 1 and the second resin 2 efficiently in a short time by increasing the amount of light reaching the surfaces 3a and 3b.
  • the distance from the light source to the surfaces 3a and 3b so as to increase the amount of light reaching the surfaces 3a and 3b.
  • the light amount of the vacuum ultraviolet light 4 reaching the surfaces 3a and 3b (hereinafter sometimes referred to as "the reached light amount") is 0.1 J / cm 2 or more and 10 J / cm. It is desirable to appropriately adjust the irradiation intensity of the vacuum ultraviolet light 4, the distance from the light source to the surfaces 3a and 3b, and the irradiation time so as to be 2 or less.
  • the irradiation intensity of the vacuum ultraviolet light 4 reaching the surfaces 3a and 3b is 0.1 J / cm 2 or more and 10 J / cm.
  • the vacuum ultraviolet ray 4 is irradiated from the surface 3a, 3b side used as an adhesion surface
  • the irradiation method is not limited to this.
  • the vacuum ultraviolet light 4 may be irradiated to at least the space 10 in contact with the surfaces 3a and 3b.
  • the first and second resins are, for example, resin sheets of polyethylene having high permeability, it is possible to irradiate vacuum ultraviolet light 4 from the surface opposite to the surface to be the adhesive surface. .
  • step (II) After the step (I), as shown in FIG. 1B, by raising the temperature while bringing the surfaces 3a and 3b into contact with each other, the first resin 1 and the second resin are used with the surfaces 3a and 3b as adhesive surfaces. Bond with 2 (step (II)).
  • the first phenomenon will be described.
  • vacuum ultraviolet light having a wavelength of 175 nm or less is irradiated to a space containing oxygen molecules in contact with the surfaces of the first and second resins
  • the surface energy of the surfaces of the first and second resins is irradiated with vacuum ultraviolet light It increases more than before (activation), and an oxygen-containing hydrophilic functional group (hydrophilic functional group containing an oxygen atom) such as a hydroxyl group, a carbonyl group or a carboxyl group is generated on the surface.
  • an oxygen-containing hydrophilic functional group hydrophilic functional group containing an oxygen atom
  • the temperatures of the surfaces of the first and second resins are brought into contact with each other and raised in temperature, some bond via the functional group is generated between the surfaces of the first and second resins, and the surfaces are adhered It is considered that the first resin and the second resin are adhered as a surface.
  • the state of the surface is measured using FT-IR (Fourier Transform Infrared Spectrometer).
  • FT-IR Fullier Transform Infrared Spectrometer
  • FIGS. 4A and 4B and FIGS. 5A and 5B The resin used for these measurements was a cycloolefin polymer, and an excimer lamp was used as a light source.
  • the irradiation intensity was 10 mW / cm 2
  • the distance from the light source to the resin surface was 5 mm or 30 mm
  • the irradiation time was 0 minutes, 5 minutes and 10 minutes.
  • the results for an irradiation distance of 5 mm are shown in FIG. 2 and in FIGS. 4A and 4B.
  • Vacuum ultraviolet light generally refers to ultraviolet light with a wavelength of 100 to 200 nm.
  • Oxidation of organic molecules by these reactive oxygen species is believed to promote surface treatment and adhesion of the resin.
  • the ability to oxidize organic molecules is highest among singlet oxygen atoms among the above-mentioned reactive oxygen species.
  • oxygen molecules When oxygen molecules absorb vacuum ultraviolet light having a wavelength of 175 nm or less, the oxygen molecules dissociate into singlet oxygen atoms and triplet oxygen atoms. Some oxygen atoms combine with oxygen molecules to form ozone molecules. The ozone molecules absorb vacuum ultraviolet light of 175 nm or less and dissociate into singlet oxygen atoms and oxygen molecules.
  • vacuum ultraviolet light with a wavelength of 175 nm or less is irradiated to a space containing oxygen molecules in contact with the surfaces of the first and second resins, the surfaces of the first and second resins in contact with the space become smooth. It is thought that When the surfaces of the resins are brought into contact with each other by smoothing the surface, it is considered that the contact area is increased and the resins are firmly adhered.
  • the unevenness can be reduced to about 20 nm by irradiating vacuum ultraviolet light to a resin substrate having about 40 nm unevenness (roughness about 40 nm) on the surface.
  • the surface condition of the cycloolefin polymer when irradiated with vacuum ultraviolet light with a wavelength of 172 nm is confirmed with an atomic force microscope when the irradiation intensity is 10 mW / cm 2 and the distance from the light source to the resin surface is 5 mm. As a result, it was confirmed that the surface began to become smooth after 5 minutes of irradiation, and the surface smoothness increased as the irradiation time increased.
  • the irradiation of vacuum ultraviolet light in step (I) may be performed based on a general method.
  • the irradiation of vacuum ultraviolet light 4 to the first resin 1 and the irradiation of vacuum ultraviolet light 4 to the second resin 2 are simultaneously performed, but the irradiation to each resin is performed separately. It is also good.
  • the light source is not particularly limited as long as it can emit vacuum ultraviolet light having a wavelength of 175 nm or less.
  • an excimer laser or an excimer lamp can be used.
  • the irradiation intensity of the vacuum ultraviolet light by appropriately adjusting the distance and irradiation time of the light source to the surface of the resin Is preferred.
  • the resins can be efficiently bonded in a short time.
  • the resins can be bonded more reliably and more reliably, but if it exceeds 10 J / cm 2 , problems such as increase in fluorescence of the resin may occur. Therefore, it is preferable to set the reaching light amount to 10 J / cm 2 or less.
  • a more preferable reaching light amount is 1 J / cm 2 or more.
  • the first resin and the second resin can be bonded. It is possible.
  • the amount of light reached is relatively small, for example, the irradiation time of vacuum ultraviolet light is increased, the temperature rising temperature is raised in step (II), and the surfaces of the first resin and the second resin adhere to each other at the time of temperature rising. It is preferable to bond by applying a force in the direction of
  • the distance from the light source to the resin surface is 5 mm, for example, vacuum ultraviolet light emitted from the light source reaches the resin surface. Since it attenuates to about 30% by then, the amount of light reached is 0.9 J / cm 2 . Further, when the irradiation is performed for 10 minutes under the same conditions, the ultimate light amount can be set to 1.8 J / cm 2 . As described above, it is possible to appropriately adjust the reaching light amount by appropriately adjusting the irradiation distance and the irradiation time in accordance with the irradiation intensity of the light source to be used and the like.
  • a space (space in contact with the surfaces of the first and second resins) to which vacuum ultraviolet light is irradiated is a space containing oxygen molecules, such as in the air.
  • the oxygen partial pressure in this space can be, for example, 10 to 10 5 Pa.
  • the surface of each resin in contact with the space is oxidized to form a functional group containing an oxygen atom on the surface.
  • the space irradiated with the vacuum ultraviolet light is preferably at a relatively low humidity, for example, at a humidity of 50% or less, more preferably 20% or less.
  • vacuum ultraviolet light When vacuum ultraviolet light is irradiated in a high humidity environment, it takes time to hydrophilize the substrate surface, so it may be difficult to bond the resin substrate by vacuum ultraviolet light irradiation for a short time. .
  • vacuum ultraviolet light is irradiated in a high humidity environment, as the hydrophilicity of the resin substrate surface progresses, the water vapor in the periphery is adsorbed on the substrate surface, and a film of adsorbed water is formed. This film absorbs reactive oxygen (atomic oxygen or ozone) and reacts. Although this reaction generates OH radicals, OH radicals are considered to be slower in hydrophilization speed as a result of having a weaker oxidizing power than atomic oxygen and ozone.
  • the shape of the irradiation surface may be controlled by a method such as masking.
  • the temperature rise in the step (II) may be carried out by raising the temperature of the entire first and second resins, or only in the vicinity of the surface of the first and second resins.
  • the means for raising the temperature is not particularly limited, and a heater, a heating furnace or the like may be appropriately selected.
  • the temperature rise may be, for example, a temperature at which the first resin and the second resin do not thermally fuse, and may be lower than the glass transition point of the first and second resins.
  • the specific temperature raising temperature may be appropriately set according to the type of the first and second resins, and, for example, cycloolefin polymers (manufactured by Nippon Zeon Co., Ltd.) whose first and second resins will be described later in the Examples.
  • ZEONEX registered trademark
  • 330R glass transition point 123 ° C.
  • the temperature may be approximately 80 ° C. to 120 ° C.
  • a force 5 is applied in such a direction that the irradiated surface (surface 3a) of the first resin 1 and the irradiated surface (surface 3b) of the second resin 2 adhere to each other.
  • the temperature of the irradiated surface may be raised. It is usually difficult to make the surface of the resin a perfect flat surface, for example, since it is common to have warpage or the like on the surface of the resin substrate, by raising the temperature while applying a force in the above direction , And the first resin and the second resin can be adhered more reliably.
  • the magnitude of the force to be applied in the above direction may be appropriately set in accordance with the shapes of the first and second resins, in particular, the shapes of the bonding surfaces of the respective resins.
  • At least one resin selected from the first and second resins may be optically transparent.
  • the bonding method of the present invention since the first resin and the second resin can be bonded without using the organic solvent and the resin composition, even if the at least one resin is optically transparent, the bonding can be performed. It is possible to suppress the decrease in the optical transparency of the resin due to the
  • the optically transparent resin is generally an amorphous resin.
  • the first and second resins may be resins having a bond between carbon and at least one element selected from carbon, oxygen and nitrogen in the main chain.
  • one of the substrates needs to be a polydimethylsiloxane (PDMS) substrate having a main chain composed of Si—O bonds and having strong affinity with the silicon oxide film.
  • PDMS polydimethylsiloxane
  • resins having a bond between carbon and at least one element selected from carbon, oxygen and nitrogen can be bonded to each other, and the main chain is composed of the bond Adhesion between resins is also possible.
  • the first and second resins may be resins other than silicone resins.
  • one of the substrates needs to be a PDMS substrate which is one of silicone resins.
  • resins other than silicone resin can be bonded.
  • At least one resin selected from the first and second resins may be at least one selected from a cycloolefin polymer and a polycarbonate.
  • cycloolefin polymers have low adhesion to cycloolefin polymers or to other resins due to their molecular structure, and adhesion using an adhesive or the like has been difficult. According to the adhesion method of the present invention, adhesion of such cycloolefin polymers is also possible.
  • the specific structure of the cycloolefin polymer is not particularly limited, and may be, for example, a polymer of bicyclic cycloolefin (bicyclic cycloolefin polymer) such as norbornenes.
  • Bicyclic cycloolefin polymers are generally amorphous polymers, and have excellent properties such as optical transparency, low birefringence, high heat resistance, low hygroscopicity, etc. It is widely used in applications.
  • the first and second resins may be identical. That is, according to the adhesion method of the present invention, cycloolefin polymers can be adhered to each other.
  • the first and second resins bonded to each other by the bonding method of the present invention are bonded with high strength. It is difficult to manually remove the resins adhered by the adhesion method of the present invention. For example, when a tensile shear force is applied to the mutually bonded resins until they are peeled using a tensile shear tester, high adhesive strength is obtained such that base material fracture (breaking of resin) occurs without peeling at the adhesive surface.
  • the resin bonding method of the present invention high adhesion strength as described above can be realized, and at least any one of water and alcohol selected from water and alcohol having a temperature of 40 ° C. or more, preferably 70 ° C. or more.
  • water and alcohol selected from water and alcohol having a temperature of 40 ° C. or more, preferably 70 ° C. or more.
  • the whole bonded resin may be immersed in water at 40 ° C. or higher, or the like, so that such a liquid may be supplied to the bonding portion.
  • the reason why the resins adhered by the adhesion method of the present invention can be easily peeled off with water or the like at 40 ° C.
  • the surface asperities are about 20 to 40 nm, while achieving strong adhesion, decomposition with water or the like becomes easy. Assuming that the irregularities on the surface of the substrate are waves, the balance between the adhesive strength and the ease of decomposition can be adjusted also by adjusting the period. For example, if the period of the unevenness is about 10 nm to 1 ⁇ m, it is possible to realize a good balance between the adhesive strength and the ease of decomposition.
  • adhesion between resin parts of two or more parts included in the article may be performed by the adhesion method according to the present invention.
  • vacuum ultraviolet light having a wavelength of 175 nm or less is irradiated to a space containing oxygen molecules in contact with the surfaces of the first and second resin portions to be adhesive surfaces, and the surfaces after the irradiation are By raising the temperature in a contact state, the first resin portion and the second resin portion are bonded with the surface as an adhesive surface.
  • the type of part having a resin part which the resin article contains.
  • the kind of resin which comprises the said resin part should just be the same as the 1st and 2nd resin mentioned above, and, specifically, at least 1 sort (s) chosen from a cycloolefin polymer and a polycarbonate may be sufficient. .
  • the resin bonded by the bonding method of the present invention can be easily peeled off on the bonding surface using water or alcohol at 40 ° C. or higher, preferably 70 ° C. or higher. Therefore, in the resin article manufactured by the method for manufacturing a resin article according to the present invention, the resin parts of the parts are releasably bonded by at least one liquid selected from water and alcohol of 40 ° C. or higher.
  • the resin article when the resin article is a microchip, that is, in the method for producing a microchip according to the present invention, a pair shown in FIG.
  • the adhesion between the resin substrates may be performed by the adhesion method of the present invention.
  • the flow path 13 is formed in the first resin substrate 11, and the surface 14 of the first resin substrate 11 on which the flow path 13 is formed, and the second resin substrate 12.
  • the microchip 16 having the flow channel 13 is formed by adhering the surface 15 of
  • vacuum ultraviolet light having a wavelength of 175 nm or less is irradiated to a space containing oxygen molecules in contact with the surfaces of the first and second resin substrates to be adhesive surfaces, and the first and second resins The temperature is raised in a state where the surfaces after the irradiation are in contact with each other while the substrates are opposed to each other, thereby bonding the first resin substrate and the second resin substrate with the surface as an adhesive surface.
  • the shape, size, and the like of the resin substrate are not particularly limited as long as a flow path is formed in at least one of the substrates. As shown in FIG. 7, the flow path may be formed on the adhesive surface of the resin substrate.
  • the flow path when a flow path is formed on the irradiation surface of the resin substrate, the flow path may be irradiated with ultraviolet light.
  • irradiation of ultraviolet light can increase the hydrophilicity of the flow path wall surface.
  • a general method such as masking can be used.
  • a microchip excellent in optical characteristics can be produced.
  • optical detection in chip applications In the case of performing the above, it is possible to reduce the optical correction to be performed at the time of the detection.
  • the resin bonded by the bonding method of the present invention can be easily peeled off on the bonding surface using water or alcohol at 40 ° C. or higher, preferably 70 ° C. or higher. Therefore, in the microchip manufactured by the method of manufacturing a microchip of the present invention, the resin substrates are releasably bonded by at least any one liquid selected from water and alcohol of 40 ° C. or higher.
  • optical parts such as a resin lens, etc. are considered besides a microchip.
  • the resin parts constituting the resin lens can be bonded at a temperature lower than adhesion by heat fusion, and the organic solvent and the resin composition do not remain on the bonding surface. It is possible to suppress the deterioration of the optical characteristics of the lens to be manufactured.
  • the combination of two or more resin parts makes it possible to manufacture an optical component having a complicated shape which has conventionally been difficult to manufacture.
  • Example 1 On each surface of a pair of resin substrates (70 mm ⁇ 20 mm, thickness 2 mm) consisting of cycloolefin polymer (ZEONEX® 330R manufactured by Nippon Zeon, glass transition point 123 ° C.), an Xe excimer lamp (manufactured by Ushio Inc., The vacuum ultraviolet light (wavelength 172 nm) was irradiated by UER20-172A). The irradiation with ultraviolet light was performed in the air, the distance between the lamp and the substrate surface was 5 mm or 30 mm, and the irradiation intensity was 10 mW / cm 2 .
  • cycloolefin polymer ZONEX® 330R manufactured by Nippon Zeon, glass transition point 123 ° C.
  • the vacuum ultraviolet light (wavelength 172 nm) was irradiated by UER20-172A).
  • the irradiation with ultraviolet light was performed in the air, the distance between the lamp and the
  • the irradiation time is 5 minutes or 10 minutes.
  • the irradiation time was 10 minutes or 40 minutes. Vacuum ultraviolet light was applied to the entire one main surface of each substrate.
  • the respective substrates after the ultraviolet light irradiation are opposed to each other so that the respective irradiation surfaces are in contact with each other, and the whole is obtained while applying a force at a pressure of 0.7 MPa in the direction in which the respective irradiation surfaces are in close contact with each other.
  • the temperature was raised to 100 ° C. and maintained for 1 hour.
  • the force was released to check whether the substrates were adhered to each other.
  • the substrates having an irradiation distance of 5 mm firmly adhered to each other for both the irradiation time of 5 minutes and the irradiation time of 10 minutes, and it was not possible to tear them apart without destruction.
  • the irradiation distance was 30 mm
  • the adhesion was insufficient when the irradiation time was 10 minutes, but when the irradiation time was 40 minutes, the substrates could be adhered firmly.
  • the resins can be easily bonded to each other even when the irradiation time is short.
  • the vacuum ultraviolet light is irradiated only to the space substantially in contact with the substrate surface, with the amount of light reached being smaller than this (the substrate surface is not irradiated with the vacuum ultraviolet light). It was found that even when the irradiation distance is 30 mm, the resins can be adhered to each other by increasing the irradiation time.
  • the irradiation distance is 5 mm or 30 mm
  • the contact time of the water droplet is an automatic contact angle meter for the substrate surface whose irradiation time is changed in 0 to 40 minutes. It measured using (DM500, Kyowa Interface Science Co., Ltd. make).
  • XPS measurement of the substrate surface was also performed. The results of the water droplet contact angle are shown in FIG. 8 and the results of the XPS measurement are shown in FIG. 9 for the case where the irradiation distance is 5 mm.
  • the results of the water droplet contact angle are shown in FIG. 10 and the results of the XPS measurement are shown in FIG.
  • the contact angle was greatly reduced and the hydrophilicity of the substrate surface was increased as the time for irradiating the vacuum ultraviolet light was prolonged (as the light amount of the vacuum ultraviolet light reaching the substrate surface was increased).
  • the ratio of oxygen atoms to carbon atoms calculated from the results of XPS measurement shown in FIG. 9 and FIG. 11 indicates that the amount of light of vacuum ultraviolet light reaching the substrate surface increases as the time for irradiating vacuum ultraviolet light increases. It is confirmed that the oxygen atom is greatly increased).
  • Example 2 On each surface of a pair of resin substrates (70 mm ⁇ 20 mm, thickness 2 mm) consisting of cycloolefin polymer (ZEONEX® 330R manufactured by Nippon Zeon, glass transition point 123 ° C.), an Xe excimer lamp (manufactured by Ushio Inc., The vacuum ultraviolet light (wavelength 172 nm) was irradiated by UER20-172A). The irradiation of vacuum ultraviolet light was performed in the atmosphere, the distance between the lamp and the substrate surface was 5 mm, the irradiation intensity was 10 mW / cm 2 , and the irradiation time was 5 minutes or 10 minutes.
  • cycloolefin polymer ZONEX® 330R manufactured by Nippon Zeon, glass transition point 123 ° C.
  • the vacuum ultraviolet light (wavelength 172 nm) was irradiated by UER20-172A). The irradiation of vacuum ultraviolet light was performed in
  • the irradiation surface of vacuum ultraviolet light was the whole of one main surface of each substrate. Note that when the distance between the lamp and the substrate surface is 5 mm, the amount of vacuum ultraviolet light reaching the substrate surface per second is 3 mJ / cm 2 ⁇ s, so the ultimate light intensity when the irradiation time is 5 minutes was 0.9 J / cm 2 , and the amount of light reached when the irradiation time was 10 minutes was 1.8 J / cm 2 .
  • the substrates after vacuum ultraviolet light irradiation are opposed to each other so that the respective irradiated surfaces are in contact with each other, and the whole is raised while applying a force (pressure) in a direction in which the respective irradiated surfaces are in close contact with each other. Warm and hold.
  • the adhesion state was confirmed by changing the pressure, the temperature increase temperature, and the holding time, and the results are shown in Tables 1 and 2.
  • the case where the adhesion state is good is indicated by ⁇
  • the case of failure is indicated by x.
  • good adhesion state means that the substrate itself is not broken if it is peeled off by hand without applying pressure shear force until it is peeled off by hand, and adhesion state is not good. When it is going to be peeled off by hand, it means that it is easily peeled off on the adhesive surface.
  • Example 3 On each surface of a pair of resin substrates (70 mm ⁇ 20 mm, thickness 2 mm) consisting of cycloolefin polymer (ZEONEX® 330R manufactured by Nippon Zeon, glass transition point 123 ° C.), an Xe excimer lamp (manufactured by Ushio Inc., The vacuum ultraviolet light (wavelength 172 nm) was irradiated by UER20-172A). The irradiation with ultraviolet light was performed in the atmosphere, the distance between the lamp and the substrate surface was 5 mm, the irradiation intensity was 10 mW / cm 2 , and the irradiation time was 5 minutes. The irradiation surface of vacuum ultraviolet light was the whole of one main surface of each substrate.
  • the respective substrates after the ultraviolet light irradiation are opposed to each other so that the respective irradiation surfaces are in contact with each other, and the whole is obtained while applying a force at a pressure of 0.7 MPa in the direction in which the respective irradiation surfaces are in close contact with each other.
  • the temperature was raised to 100 ° C. and maintained for 5 minutes.
  • the two resin substrates could be quickly disassembled by applying physical impact such as ultrasonic wave to the above sample in combination.
  • the resin article formed by bonding resin parts (the resin substrate in this example) using the bonding method of the present invention breaks the resin parts using hot water at 90 ° C. It was confirmed that it could be dismantled without
  • Example 4 On each surface of a pair of resin substrates (70 mm ⁇ 26 mm, thickness 1 mm) composed of cycloolefin polymer (ZEONEX® 330R manufactured by Zeon Corporation, glass transition point 123 ° C.), an Xe excimer lamp (manufactured by Ushio Inc., The vacuum ultraviolet light (wavelength 172 nm) was irradiated by UER20-172A). The irradiation with ultraviolet light was performed in the atmosphere, the distance between the lamp and the substrate surface was 5 mm, the irradiation intensity was 10 mW / cm 2 , and the irradiation time was 5 minutes. The irradiation surface of vacuum ultraviolet light was the whole of one main surface of each substrate.
  • the respective substrates after ultraviolet light irradiation are opposed to each other so that the respective irradiated surfaces are in contact with each other (the bonding area is 26 mm ⁇ 26 mm), and in the direction in which the respective irradiated surfaces are in close contact with each other While applying pressure at a pressure of 0.15 MPa, the whole was heated to 100 ° C. and held for 5 minutes.
  • Example 5 In the method of adhering a resin of the present invention, the influence of humidity in the atmosphere of vacuum ultraviolet light irradiation on the adhesion of the resin was examined.
  • a resin substrate (26 mm ⁇ 76 mm, thickness 1 mm) comprising a cycloolefin polymer (ZEONEX® 480R, manufactured by Nippon Zeon Co., Ltd., glass transition point 138 ° C.), an Xe excimer lamp (manufactured by Ushio Inc., UER20- The vacuum ultraviolet light (wavelength 172 nm) was irradiated by 172A). The distance between the lamp and the substrate surface was 5 mm, and the irradiation intensity was 10 mW / cm 2 . Vacuum ultraviolet light was applied to the entire one main surface of each substrate.
  • a resin substrate 26 mm ⁇ 76 mm, thickness 1 mm
  • a cycloolefin polymer manufactured by Nippon Zeon Co., Ltd., glass transition point 138 ° C.
  • an Xe excimer lamp manufactured by Ushio Inc., UER20-
  • the vacuum ultraviolet light (wavelength 172 n
  • the respective substrates after the ultraviolet light irradiation are opposed to each other so that the respective irradiated surfaces are in contact with each other, and the whole is obtained while applying a force with a pressure of 0.5 MPa in the direction in which the respective irradiated surfaces are in close contact with each other.
  • the temperature was raised to 80 ° C. and held for 5 minutes as it was to bond a pair of resin substrates.
  • the humidity of the vacuum ultraviolet light irradiation atmosphere is 0.1% (only dry air is used) or 70%.
  • the irradiation time was changed to 0, 5, 10, 20, 40, and 60 minutes for each of the humidity of 0.1% and 70%, and the state of the substrate surface irradiated with the vacuum ultraviolet light was confirmed.
  • the substrate surface state was confirmed by the water drop contact angle and the XPS measurement as in the case of Example 1.
  • the result of the water droplet contact angle is shown in FIG. 12, and the result of the XPS measurement is shown in FIG. According to the results shown in FIG.
  • the adhesion strength of a pair of resin substrates adhered at irradiation times of 5, 10, 20, 40 and 60 minutes was evaluated for humidity of 0.1% and 70% respectively.
  • the flexural strength of the adhered resin substrate was measured and used for evaluation of adhesive strength.
  • the measuring method of bending strength joins a flat sample of 76 mm ⁇ 26 mm ⁇ 1 mm thickness in a cross shape (bonding area 26 ⁇ 26 mm 2 ) and applies a force in the vertical direction from the top to the center of the bonding portion The sample was bent accordingly, and the indentation strength at that time was measured by a load cell to evaluate the adhesive strength.
  • the measurement results are as shown in Table 4.
  • Comparative example 1 As Comparative Example 1, an example is shown in which the resin substrate is irradiated with vacuum ultraviolet light in an atmosphere in which no oxygen molecule is present, and the state of the resin surface is confirmed.
  • a resin substrate (26 mm ⁇ 76 mm, thickness 1 mm) comprising a cycloolefin polymer (ZEONEX® 480R, manufactured by Nippon Zeon Co., Ltd., glass transition point 138 ° C.), an Xe excimer lamp (manufactured by Ushio Inc., UER20- The vacuum ultraviolet light (wavelength 172 nm) was irradiated by 172A). The distance between the lamp and the substrate surface was 5 mm, and the irradiation intensity was 10 mW / cm 2 . Vacuum ultraviolet light was applied to the entire one main surface of each substrate. In the present comparative example, the resin substrate was irradiated with vacuum ultraviolet light in an atmosphere in which no oxygen molecules exist by replacing air with nitrogen gas. The humidity at this time was 1 ⁇ 1%.
  • the irradiation time was changed to 0, 5, 10, 20, 40, 60 minutes, and the state of the substrate surface irradiated with the vacuum ultraviolet light was confirmed.
  • the results of water droplet contact angle, FT-IR and XPS measurements were used to confirm the substrate surface state.
  • the measurement results of the water droplet contact angle are shown in Table 5.
  • the results of FT-IR are shown in FIG.
  • the measurement results of XPS are shown in FIG. 15 and FIG. 16, and the atomic percentages of oxygen atoms and carbon atoms calculated from the results of XPS measurement are shown in Table 6.
  • Comparative example 2 As Comparative Example 2, an example is shown in which resin adhesion was attempted by irradiating the resin substrate with vacuum ultraviolet light in an atmosphere in which no oxygen molecule is present.
  • a resin substrate (26 mm ⁇ 76 mm, thickness 1 mm) comprising a cycloolefin polymer (ZEONEX® 480R, manufactured by Nippon Zeon Co., Ltd., glass transition point 138 ° C.), an Xe excimer lamp (manufactured by Ushio Inc., UER20- The vacuum ultraviolet light (wavelength 172 nm) was irradiated by 172A). The distance between the lamp and the substrate surface was 5 mm, the irradiation time was 10 minutes, and the irradiation intensity was 10 mW / cm 2 . Vacuum ultraviolet light was applied to the entire one main surface of each substrate. In the present comparative example, the resin substrate was irradiated with vacuum ultraviolet light in an atmosphere in which no oxygen molecules exist by replacing air with nitrogen gas. The humidity at this time was 1 ⁇ 1%.
  • the substrates after vacuum ultraviolet light irradiation are opposed to each other so that the respective irradiated surfaces are in contact with each other, and the whole is raised while applying a force (pressure) in a direction in which the respective irradiated surfaces are in close contact with each other. Warm and hold.
  • the adhesion state was confirmed by changing the pressure, the temperature rise temperature, and the holding time, and the results are shown in Table 7.
  • the case where the adhesion state is good is indicated by ⁇
  • the case of failure is indicated by x.
  • good adhesion state means that the substrate itself is not broken if it is peeled off by hand without applying pressure shear force until it is peeled off by hand, and adhesion state is not good. When it is going to be peeled off by hand, it means that it is easily peeled off on the adhesive surface.
  • attachment method which can adhere
  • the bonding method of the present invention can be applied to various resin article manufacturing methods, for example, to a microchip manufacturing method. Furthermore, according to the bonding method of the present invention, since the resin once bonded can be easily peeled off, it is also useful for resin recycling and the like. For example, in the case where the adhesion method of the present invention is applied to a medical microchip such as a blood test chip, it becomes possible to peel and disassemble the microchip after use to wash the microchannel portion. This also makes it possible to treat the used medical microchip as general plastic waste rather than medical waste.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Organic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

【課題】熱融着による接着よりも低い温度において、生産性よく樹脂と樹脂とを接着できる接着方法を提供する。 【解決手段】本発明の樹脂の接着方法は、第1の樹脂1と第2の樹脂2とを接着する樹脂の接着方法であって、(I)第1および第2の樹脂の表面3a、3bに接している、酸素分子を含有する空間10に、波長175nm以下の真空紫外光を照射する工程と、(II)前記照射後の表面3a、3bを互いに接触させた状態で昇温することにより、表面3a、3bを接着面として第1の樹脂1と第2の樹脂2とを接着する工程と、を含む。工程(I)において、第1および第2の樹脂の表面3a、3bにさらに真空紫外光を照射してもよい。この場合、表面3a、3bに到達する真空紫外光の光量は、例えば0.1J/cm2以上10J/cm2以下が好ましい。

Description

[規則37.2に基づきISAが決定した発明の名称] 真空紫外光照射による樹脂の接着方法、該方法を用いる樹脂物品又はマイクロチップの製造方法、該方法で製造される樹脂物品又はマイクロチップ
 本発明は、光(真空紫外光)照射による樹脂の接着方法、ならびに、この方法を用いた樹脂物品の製造方法およびマイクロチップの製造方法に関し、さらに、これらの方法を用いて製造された樹脂物品およびマイクロチップに関する。
 樹脂の接着方法としては、熱融着による接着、あるいは、有機溶剤や接着剤の塗布による接着が一般的である。熱融着による接着は、通常、樹脂のガラス転移点以上の温度で行われる。
 一方、典型的には一対の基板が対向して接着された構造を有し、少なくとも1つの上記基板の表面に微細な流路が形成されたマイクロチップが注目されている。マイクロチップは、マイクロ流体デバイスとも称される。
 マイクロチップでは、マイクロチャンネルとも呼ばれる流路に、試薬が配置された反応領域など、各種機能を有する領域を設けることにより、様々な用途に適したチップを構成できる。マイクロチップの用途としては、遺伝子解析、臨床診断、薬物スクリーニングなどの化学、生化学、薬学、医学、獣医学の分野における分析、あるいは、化合物の合成、環境計測などが代表的である。これらの用途にマイクロチップを用いた場合、例えば、同様の用途に適する従来の分析装置を用いた場合に比べて、(1)分析に必要なサンプルおよび試薬の量を低減できる、(2)分析時間を短縮できる、(3)チップの使い捨てが可能であるため、医療分野などにおいて安全性および測定精度を向上できる、などの効果を得ることができる。
 従来、マイクロチップには、製造が容易であり、光学的な検出も可能であることから、主にガラス基板が用いられてきた。しかし、ガラス基板からなるマイクロチップは、外部からの衝撃により破損しやすく、また、輸送時、廃棄時などにおける重量が問題となる。そこで、軽量でありながらガラス基板に比べて破損しにくく、かつ安価である、樹脂基板を用いたマイクロチップの開発が進められている。
 樹脂基板を用いたマイクロチップでは、樹脂基板同士の接着方法が重要となる。
 樹脂基板同士の接着には、一般的な樹脂の接着方法、例えば熱融着、を応用できる。しかし熱融着による接着は、通常、樹脂のガラス転移点以上の温度で行われるため、接着時に基板が変形し、マイクロチップとしての機能が失われることがある。また、基板の変形の影響は、流路の幅を細くした場合、あるいは、流路パターンを複雑にした場合により顕著となるため、熱融着による接着では、マイクロチップの高機能化が困難である。
 樹脂基板の変形は、より低温での接着によって抑制できる。このような接着方法として特許文献1には、表面に微細流路を有する基板における流路が無い部分に有機溶剤をコートした後、当該基板と、平坦な面を有する基板とを重ね合わせて融着する、マイクロチップの接合方法が開示されている。
 特許文献2には、ポリジメチルシロキサン(PDMS)基板と、PDMS以外の材料からなる樹脂基板(対面基板)とを接着させる、マイクロチップの製造方法が開示されている。この製造方法では、表面に微細な流路を形成したPDMS基板と、表面に酸化シリコン膜を成膜した対面基板とを準備し、双方の基板の貼り合わせ面を改質処理した後、基板同士を上記酸化シリコン膜を介して接着させる。貼り合わせ面の改質処理としては、酸素プラズマ処理、より具体的には酸素雰囲気下でエキシマ紫外光を照射する酸素プラズマ処理、が例示されている(例えば、特許文献2の段落番号[0017])。
 また、マイクロチップの製造方法とは直接関係しないが、特許文献3および特許文献4には、オレフィン系樹脂の表面に光を照射してこの表面を活性化させ(特許文献3では、光重合性を有する表面改質用樹脂を併用する)、活性化後の当該表面に、ホットメルト接着剤あるいは紫外線硬化型樹脂などの樹脂組成物を塗布し、当該組成物を介して樹脂を接着する方法が開示されている。
特開2005-80569号公報 特開2005-257283号公報 特開2005-171164号公報 特開2004-43662号公報
 特許文献1の方法では、流路へ有機溶剤が入り込むと、基板を構成する樹脂の浸食、変性などが生じ、流路が閉塞したり、マイクロチップの特性劣化などが生じる原因となるため、流路を避けるように有機溶剤が塗布されている。しかし、このような有機溶剤の塗布工程は、マイクロチップの生産性を低下させる要因となる他、高機能化などを目的として流路幅を狭小化したり、流路パターンを複雑化したマイクロチップの製造には、その狭小化、複雑化の程度によっては対応が困難である。
 特許文献2の方法では、有機溶剤および接着剤を使用しないため、特許文献1の方法に比べて、流路の閉塞、マイクロチップの特性劣化などが生じにくい。しかし特許文献2の方法は、あくまでも、Si-O結合を含み、酸化シリコン膜と強い親和性を有するシリコーン樹脂であるPDMS基板との接着に用いられる方法であり、PDMS基板以外の樹脂基板同士の接着はできない。
 特許文献3、4の方法では基板表面への樹脂組成物の塗布が必要であり、流路の閉塞などが生じるために、当該方法をそのままマイクロチップの製造方法に応用することは難しい。特許文献1と同様に、流路を避けるように樹脂組成物を塗布することも考えられるが、上述したように、このような塗布工程は、マイクロチップの生産性を低下させる要因となる他、流路幅の狭小化や流路パターンの複雑化には対応が困難である。
 このように、マイクロチップの製造時において、チップの生産性を低下させるとともに流路の閉塞などの要因ともなる有機溶剤および樹脂組成物の塗布を行うことなく、熱融着による接着よりも低い温度において、樹脂基板同士を接着できる樹脂の接着方法が望まれる。またこのような接着方法は、マイクロチップだけではなく、様々な樹脂物品の製造方法への応用が期待される。
 本発明の樹脂の接着方法は、第1の樹脂と第2の樹脂とを接着する樹脂の接着方法であって、(I)前記第1および第2の樹脂の表面に接している、酸素分子を含有する空間に、波長175nm以下の真空紫外光を照射する工程と、
 (II)前記照射後の前記表面を互いに接触させた状態で昇温することにより、前記表面を接着面として前記第1の樹脂と前記第2の樹脂とを接着する工程と、を含む。
 なお、本発明の樹脂の接着方法の工程(I)において、第1および第2の樹脂の表面に接している空間とは、第1および第2の樹脂の表面の直上の空間のことであり、好ましくは当該表面からの距離が0~30mmの範囲内の空間、より好ましくは0~1mmの範囲内の空間のことである。
 本発明の接着方法は、樹脂と樹脂とが接着された部分を有する樹脂物品の製造方法への応用が可能である。即ち、本発明の樹脂物品の製造方法は、樹脂部を有する2以上の部品を含み、前記2以上の物品が前記樹脂部において互いに接着されている樹脂物品の製造方法であって、前記樹脂部同士を、上記本発明の接着方法により接着する方法である。
 また、本発明は、上記の本発明の樹脂物品の製造方法によって製造された樹脂物品を提供する。本発明の樹脂物品は、上記本発明の樹脂物品の製造方法によって製造される樹脂物品であって、前記2以上の部品の前記樹脂部同士が、40℃以上の水およびアルコールから選ばれる少なくとも何れか1つの液体によって剥離可能に接着されている。
 本発明の樹脂物品の製造方法は、様々な樹脂物品、例えばマイクロチップ、の製造方法に適用できる。即ち、本発明のマイクロチップの製造方法は、対向するように互いに接着された一対の樹脂基板を含み、前記樹脂基板の少なくとも一方に流路が形成されているマイクロチップの製造方法であって、前記樹脂基板同士を、上記本発明の接着方法により接着する方法である。
 また、本発明は、上記の本発明のマイクロチップの製造方法によって製造されたマイクロチップも提供する。本発明のマイクロチップは、上記本発明のマイクロチップの製造方法によって製造されるマイクロチップであって、前記一対の樹脂基板同士が、40℃以上の水およびアルコールから選ばれる少なくとも何れか1つの液体によって剥離可能に接着されている。
 本発明の接着方法によれば、樹脂と樹脂とを、有機溶剤および樹脂組成物の塗布を行うことなく、熱融着による接着よりも低い温度において、生産性よく接着できる。また、この方法によって接着された樹脂同士は、40℃以上の水などの液体を用いて、その接着面で容易に剥離させることが可能である。したがって、例えばこの接着方法を用いて樹脂部品(樹脂部を含む部品)を互いに接着させて形成されている樹脂物品は、お湯に浸漬するなどして、使用後に容易に部品に解体することが可能である。このように、本発明の接着方法によれば、樹脂部品のリサイクルも容易となる。
 このような接着方法を樹脂物品の製造方法に応用した場合、即ち、本発明の樹脂物品の製造方法では、当該物品の種類に応じて様々な効果を得ることができる。また、このような製造方法で製造された本発明の樹脂物品は、部品間の十分な接着強度を備えているので物品としての信頼性を有する。さらに、容易に部品に解体することも可能であるため、部品のリサイクルも可能である。
 本発明の接着方法をマイクロチップの製造方法に応用した場合、即ち、本発明のマイクロチップの製造方法では、少なくとも一方に流路が形成された一対の樹脂基板を、熱融着による接着よりも低い温度で接着できるため、接着時における当該樹脂基板の変形を抑制できる。また、基板の接着面に有機溶剤および樹脂組成物の塗布が不要であるため、生産性に優れる製造方法とすることができ、製造時における流路の閉塞やマイクロチップの特性劣化を抑制できる他、流路幅の狭小化や流路パターンの複雑化への対応もより容易となる。また、このような製造方法で製造された本発明のマイクロチップは、樹脂基板間の十分な接着強度を備えているのでマイクロチップとしての信頼性を有する。さらに、容易に樹脂基板に解体することも可能であるため、樹脂基板のリサイクルも可能である。
 本発明の樹脂の接着方法を説明する。
 本発明の接着方法では、前記第1および第2の樹脂の表面に接している、酸素分子を含有する空間に、波長175nm以下の真空紫外光を照射する(工程(I))。なお、以下、第1および第2の樹脂の接着面となる表面のことを、単に「表面」ということがある。
 本発明の接着方法では、さらに、第1および第2の樹脂の表面に真空紫外光を照射してもよい。すなわち、第1および第2の樹脂の表面に真空紫外光が到達するように、真空紫外光の照射強度や照射距離などを適宜調整してもよい。第1および第2の樹脂の表面にも真空紫外光を照射することによって、効率良く第1の樹脂と第2の樹脂とを接着することができる。以下に、第1および第2の樹脂の表面に接している空間と当該表面とに真空紫外光を照射する場合を例にして、図面を参照しながら、本発明の接着方法を説明する。
 図1Aに示すように、接着面となる第1の樹脂1および第2の樹脂2の表面3a、3bに接している空間10と、表面3a、3bとに、波長175nm以下の真空紫外光4を照射する(工程(I))。表面3a、3bに接している空間10には、酸素分子が含まれている。このとき、空間10と表面3a、3bとに照射される真空紫外光4の光量は、特に限定されない。しかしながら、表面3a、3bに到達する光量をより多くすることによって、第1の樹脂1と第2の樹脂2とを効率良く、短時間で接着することが可能となる。そこで、表面3a、3bに到達する光量がより多くなるように、光源から表面3a、3bまでの距離などを調整することが望ましい。具体的には、工程(I)において、表面3a、3bに到達する真空紫外光4の光量(以下、「到達光量」と記載することがある。)が0.1J/cm2以上10J/cm2以下となるように、真空紫外光4の照射強度、光源から表面3a、3bまでの距離および照射時間を適宜調整することが望ましい。なお、図1Aでは、接着面となる表面3a、3b側から真空紫外線4を照射しているが、照射方法はこれに限定されない。本発明の接着方法では、少なくとも表面3a、3bに接している空間10に真空紫外光4が照射されればよい。このため、第1および第2の樹脂が、例えば透過性の高いポリエチレンなどの樹脂シートである場合は、接着面となる表面の反対側の面から真空紫外光4を照射することも可能である。
 工程(I)の後、図1Bに示すように、表面3a、3bを互いに接触させた状態で昇温することにより、表面3a、3bを接着面として、第1の樹脂1と第2の樹脂2とを接着する(工程(II))。
 工程(I)、(II)により、第1の樹脂と第2の樹脂とが接着される理由は明確ではないが、以下に示すような3つの現象が考えられる。
 まず、第1の現象について説明する。第1および第2の樹脂の表面に接している、酸素分子を含む空間に、波長が175nm以下の真空紫外光を照射すると、第1および第2の樹脂の表面の表面エネルギーが真空紫外光照射前よりも増加し(活性化し)、当該表面に、水酸基、カルボニル基、カルボキシル基などの酸素含有親水性官能基(酸素原子を含む親水性の官能基)が生じる。ここで、第1および第2の樹脂の各表面を、互いに接触させた状態で昇温すると、上記官能基を介する何らかの結合が第1および第2の樹脂の表面間に生じ、当該表面を接着面として第1の樹脂と第2の樹脂とが接着されると考えられる。
 参考のために、樹脂の表面に例えば波長172nmの真空紫外光を照射した際に、当該表面の状態をFT-IR(フーリエ変換赤外分光高度計)を用いて測定した結果を図2および図3に示し、当該表面のX線誘起光電子分光(XPS)測定した結果を図4Aおよび図4Bと、図5Aおよび図5Bとに示す。これらの測定に用いた樹脂はシクロオレフィンポリマーであり、光源にはエキシマランプを用いた。照射強度は10mW/cm2、光源から樹脂表面までの距離は5mmまたは30mmとし、照射時間は0分、5分および10分とした。照射距離5mmの場合の結果を、図2と、図4Aおよび図4Bとに示す。照射距離30mmの場合の結果を、図3と、図5Aおよび図5Bとに示す。このFT-IRの結果から、樹脂の表面においてO-H基、C=O基の量が増加していることがわかる。また、XPSの結果から、真空紫外光を照射する前に比べて照射した後では、O1sスペクトルにおける酸素からの信号の増加が顕著であり、また、C1sスペクトルにおける炭素からの信号が減少するとともに、酸素と結合状態にある炭素からの信号(結合エネルギーにして290eV近傍)が新たに見られることがわかる。これらの結果から、樹脂の表面に酸素含有親水性官能基が生じていると考えられる。
 ここで、波長175nm以下の真空紫外光を用いることの必要性について説明する。なお、真空紫外光とは、一般的に、波長100~200nmの紫外光のことをいう。
 紫外光で酸素分子を励起すると、一重項酸素原子、三重項酸素原子およびオゾン分子などの活性酸素種が発生する。これらの活性酸素種による有機分子の酸化が、樹脂の表面処理および接着を推進すると考えられる。有機分子を酸化する力は、上記の活性酸素種の中で、一重項酸素原子が最も高い。
 酸素分子が波長175nm以下の真空紫外光を吸収すると、酸素分子は解離して、一重項酸素原子および三重項酸素原子となる。一部の酸素原子は酸素分子と結合してオゾン分子となる。オゾン分子は175nm以下の真空紫外光を吸収し、一重項酸素原子と酸素分子とに解離する。
 このように、波長175nm以下の真空紫外光を酸素分子を含む空間に照射することによって、この空間に効率よく一重項酸素原子が生成するので、この空間に接する樹脂の表面において有機分子が効果的に酸化されて、当該表面に酸素含有親水性官能基が生成される。なお、このような現象は、樹脂の表面に真空紫外光が照射されない場合でも、当該表面に接する空間(当該表面の直上)に真空紫外光が照射されることによって生じるが、樹脂の表面に真空紫外光が照射されることによってより効果的に生じる。
 次に、第2の現象について説明する。
 樹脂表面にはある程度の凹凸が存在し、この凹凸をできるだけ小さくして平滑度を高くする程、樹脂同士を接合しやすくなる。第1および第2の樹脂の表面に接している、酸素分子を含む空間に、波長が175nm以下の真空紫外光を照射すると、この空間に接している第1および第2の樹脂の表面が平滑化すると考えられる。表面が平滑化することにより、樹脂の表面同士を接触させた際に接触面積が増加し、樹脂同士が強固に接着されると考えられる。例えば、表面に40nm程度の凹凸(高低差40nm程度の凹凸)が存在する樹脂基板に真空紫外光を照射することにより、凹凸を20nm程度まで減少させることが可能であることも、確認されている。また、シクロオレフィンポリマーの表面に、照射強度10mW/cm2、光源から樹脂表面までの距離5mmとして、波長172nmの真空紫外光を照射した際のシクロオレフィンポリマーの表面の状態を原子間顕微鏡で確認したところ、5分の照射で表面がなだらかになり始め、照射時間が長くなるにつれて表面の平滑性が増すことが確認された。
 次に、第3の現象について説明する。第1および第2の樹脂の表面に接している、酸素分子を含む空間に、波長が175nm以下の真空紫外光を照射すると、この空間に接している第1および第2の樹脂の表面における有機分子(高分子)がこの真空紫外光を吸収して、高分子鎖が切断されると予想される。このように樹脂の表面が低分子量化されて表面が柔らかくなるため、例えば樹脂の表面同士を密着させる方向に力を加えることによって、表面同士の接触面積が増加すると考えられる。また、表面の低分子量化によって、表面が熱変形しやすくなり、より低温での接着が可能になることも予想される。
 本発明のように、波長が175nm以下の真空紫外光を照射することによって、上記3つの現象が樹脂の表面に誘起されると考えられる。これら3つの現象の相乗効果によって、樹脂同士を強固に接着できると考えられる。
 工程(I)における真空紫外光の照射は、一般的な手法に基づいて行えばよい。図1Aでは、第1の樹脂1への真空紫外光4の照射と、第2の樹脂2への真空紫外光4の照射とを同時に行っているが、各樹脂への照射は別々に行ってもよい。
 光源は、波長175nm以下の真空紫外光を発射することができればよく、特には限定されない。例えば、エキシマレーザーまたはエキシマランプが使用できる。
 本発明の接着方法では、到達光量が0.1J/cm2以上10J/cm2以下となるように、真空紫外光の照射強度、光源から樹脂の表面までの距離および照射時間を適宜調整することが好ましい。到達光量を0.1J/cm2以上とすることにより、効率良く短時間で樹脂同士を接着させることができる。また、到達光量が多いほど、より確実に効率良く樹脂同士を接着できるが、10J/cm2を超えると樹脂の蛍光が大きくなるなどの問題が生じる。したがって、到達光量は10J/cm2以下とすることが好ましい。
 より好ましい到達光量は、1J/cm2以上である。このような到達光量を実現することによって、第1および第2の樹脂の表面に十分な光量の真空紫外光が到達するので、第1および第2の樹脂の表面の直上で酸素分子の励起(活性酸素種、特に反応性の極めて高い一重項酸素原子の発生)が起きる。この結果、樹脂の表面に上記の3つの現象が効果的に生じるので、当該表面を接着面として第1の樹脂と第2の樹脂とをより確実に、効率良く接着することができる。なお、到達光量が1J/cm2よりも少ない場合、さらには0.1J/cm2よりも少ない場合(実質的に、真空紫外光が第1および第2の樹脂の表面に到達しない場合)であっても、第1および第2の樹脂の表面と接する空間で酸素分子の励起が起きて当該表面に上記3つの現象が生じるので、第1の樹脂と第2の樹脂とを接着することが可能である。到達光量が比較的少ない場合は、例えば、真空紫外光の照射時間を長くする、工程(II)において昇温の温度を上げる、昇温時に第1の樹脂と第2の樹脂の表面が互いに密着する方向に力を加える、などによって接着させることが好ましい。
 例えば、波長172nm、照射強度が10mW/cm2の真空紫外光を照射する場合、光源から樹脂表面までの距離を例えば5mmとして5分間照射すると、光源から放射された真空紫外光は樹脂表面に到達するまでに約30%に減衰するので、到達光量は0.9J/cm2となる。また、同様の条件で10分間照射すると、到達光量を1.8J/cm2とできる。このように、用いる光源の照射強度などに応じて、照射距離や照射時間を適宜調整することによって、到達光量を適宜調整できる。
 真空紫外光が照射される空間(第1および第2の樹脂の表面に接する空間)は、空気中など、酸素分子を含む空間である。この空間における酸素分圧は、例えば10~105Paとできる。上述したように、酸素分子を含むこのような空間に真空紫外光を照射すると、当該空間と接する各樹脂の表面が酸化されて、当該表面に酸素原子を含む官能基が生じる。
 真空紫外光が照射される空間は、比較的低湿度であることが好ましく、例えば湿度50%以下、より好ましくは20%以下とすることが望ましい。高湿度環境下で真空紫外光を照射する場合、基板表面を親水化するのに時間を要するため、短時間の真空紫外光照射で樹脂基板を接着することが困難となる場合があるためである。高湿度環境下で真空紫外光を照射する場合、樹脂基板表面の親水性が進行すると周辺の水蒸気が基板表面に吸着し、吸着水の被膜ができる。この被膜が活性酸素(原子状酸素やオゾン)を吸収して反応する。この反応によってOHラジカルが生じるが、OHラジカルは原子状酸素やオゾンよりも酸化力が弱いため、結果として親水化速度が遅くなると考えられる。
 真空紫外光の照射時には、マスキングなどの手法により、照射面の形状を制御してもよい。
 工程(II)における昇温は、第1および第2の樹脂全体を昇温することにより行ってもよいし、第1および第2の樹脂における表面近傍のみを昇温してもよい。
 昇温の手段は特に限定されず、ヒーター、加熱炉などを適宜選択すればよい。
 昇温の温度は、例えば、第1の樹脂と第2の樹脂とが熱融着しない温度とすればよく、第1および第2の樹脂のガラス転移点未満としてもよい。具体的な昇温の温度は、第1および第2の樹脂の種類に応じて適宜設定すればよく、例えば、第1および第2の樹脂が実施例に後述するシクロオレフィンポリマー(日本ゼオン社製ZEONEX(登録商標)330R:ガラス転移点123℃)である場合、80℃~120℃程度としてもよい。
 工程(II)において、図6に示すように、第1の樹脂1の照射面(表面3a)と、第2の樹脂2の照射面(表面3b)とが互いに密着する方向に力5を加えながら、照射面を昇温してもよい。樹脂の表面を完全な平坦面とすることは通常困難であり、例えば、樹脂基板の表面には反りなどが存在することが一般的であるため、上記方向に力を加えながら昇温することにより、第1の樹脂と第2の樹脂とをより確実に接着できる。
 上記方向に加える力の大きさは、第1および第2の樹脂の形状、特に各々の樹脂における接着面の形状に応じて適宜設定すればよい。
 本発明の接着方法では、第1および第2の樹脂から選ばれる少なくとも1つの樹脂が光学的に透明であってもよい。本発明の接着方法では、有機溶剤および樹脂組成物を用いることなく第1の樹脂と第2の樹脂とを接着できるため、仮に上記少なくとも1つの樹脂が光学的に透明であった場合でも、接着による、当該樹脂の光学的な透明性の低下を抑制できる。なお、光学的に透明な樹脂とは、一般に、非晶質の樹脂である。
 本発明の接着方法では、第1および第2の樹脂が、炭素、酸素および窒素から選ばれる少なくとも1種の元素と、炭素との結合を主鎖に有する樹脂であってもよい。上述したように特許文献2の方法では、一方の基板が、Si-O結合からなる主鎖を有し、酸化シリコン膜と強い親和性を有するポリジメチルシロキサン(PDMS)基板である必要がある。これに対して本発明の接着方法によれば、炭素、酸素および窒素から選ばれる少なくとも1種の元素と、炭素との結合を主鎖に有する樹脂同士を接着でき、主鎖が当該結合からなる樹脂同士の接着も可能である。
 本発明の接着方法では、第1および第2の樹脂が、シリコーン樹脂以外の樹脂であってもよい。上述したように、特許文献2の方法では、一方の基板がシリコーン樹脂の1種であるPDMS基板である必要がある。これに対して、第1の接着方法によれば、シリコーン樹脂以外の樹脂同士を接着できる。
 本発明の接着方法では、第1および第2の樹脂から選ばれる少なくとも1つの樹脂が、シクロオレフィンポリマーおよびポリカーボネートから選ばれる少なくとも1つであってもよい。特にシクロオレフィンポリマーは、その分子構造上、シクロオレフィンポリマー同士、あるいは、他の樹脂との接着性が低く、接着剤などによる接着は困難であった。本発明の接着方法によれば、このようなシクロオレフィンポリマーの接着も可能である。
 シクロオレフィンポリマーの具体的な構造は特に限定されず、例えば、ノルボルネン類のような二環式シクロオレフィンの重合体(二環式シクロオレフィンポリマー)であってもよい。二環式シクロオレフィンポリマーは、一般に、非晶質のポリマーであり、光学的に透明、低い複屈折率、高い耐熱性、低い吸湿性などの優れた特性を有し、近年、光学部品などの用途に広く用いられている。
 本発明の接着方法では、第1および第2の樹脂が同一であってもよい。即ち、本発明の接着方法によれば、シクロオレフィンポリマー同士を接着できる。
 本発明の接着方法で互いに接着された第1および第2の樹脂は、高い強度で接着される。本発明の接着方法で接着された樹脂同士を手で剥がすことは困難である。例えば、互いに接着された樹脂に引張せん断試験機を用いて剥離するまで引張せん断力を加えた場合、接着面で剥離せずに母材破壊(樹脂の破壊)が生じるほどの高い接着強度が得られる。
 本発明の樹脂の接着方法によれば、上記のような高い接着強度を実現することができると共に、互いに接着された樹脂を40℃以上、好ましくは70℃以上の水およびアルコールから選ばれる少なくとも何れか1つの液体を用いて、その接着面で容易に剥がして分解することが可能である。例えば、接着された樹脂全体を40℃以上の水に浸漬するなど、接着部分にこのような液体が供給されるようにすればよい。本発明の接着方法によって接着された樹脂同士を40℃以上の水などで容易に剥離できる理由は明確ではないが、上記第1の現象として説明したように、接着面の親水性が高くなっているため、接着面に水やアルコールの分子が入り込みやすいなどの理由によるものではないかと考えられる。また、酸やアルカリを添加してpHを変化させた水を用いることも可能であると考えられる。また、40℃未満の水等の液体(例えば常温(20℃)の水)であっても、超音波で加振することにより、樹脂同士を剥離できる。なお、接合された第1および第2の樹脂基板を水等でより分解しやすくするため、接着面に水等の分子が入り込みやすい構成としてもよい。例えば、敢えて剥離しやすい程度の凹凸を残すために、樹脂表面を平滑にしすぎないように、照射する真空紫外光を適宜調整してもよい。例えば、表面の凹凸が20~40nm程度であれば、強い接着力を実現しつつ、且つ水等での分解も容易となる。仮に基板表面の凹凸を波と考えると、その周期を調整することによっても、接着力と分解容易性とのバランスを調整できる。例えば、凹凸の周期が10nm~1μm程度であれば、接着力と分解容易性と良好なバランスを実現できる。
 本発明の樹脂物品の製造方法では、当該物品が含む2以上の部品における各々の樹脂部同士の接着を、上記本発明の接着方法により行えばよい。
 具体的には、接着面となる第1および第2の樹脂部の表面に接している、酸素分子を含む空間に、波長175nm以下の真空紫外光を照射し、前記照射後の前記表面を互いに接触させた状態で昇温することにより、前記表面を接着面として前記第1の樹脂部と前記第2の樹脂部とを接着する。
 樹脂物品が含む、樹脂部を有する部品の種類は特に限定されない。また、当該樹脂部を構成する樹脂の種類は、上述した第1および第2の樹脂と同様であればよく、具体的には、シクロオレフィンポリマーおよびポリカーボネートから選ばれる少なくとも1種であってもよい。
 上記のとおり、本発明の接着方法で接着された樹脂は、40℃以上、好ましくは70℃以上の水やアルコールを用いて接着面で容易に剥がすことができる。したがって、本発明の樹脂物品の製造方法によって製造された樹脂物品では、部品の樹脂部同士が40℃以上の水およびアルコールから選ばれる少なくとも何れか1つの液体によって剥離可能に接着されている。
 本発明の樹脂物品の製造方法において当該樹脂物品がマイクロチップである場合、即ち、本発明のマイクロチップの製造方法では、図7に例を示す、少なくとも一方に微細な流路が形成された一対の樹脂基板(第1の樹脂基板11および第2の樹脂基板12)同士の接着を、上記本発明の接着方法により行えばよい。なお、図7に示す例では、第1の樹脂基板11に流路13が形成されており、第1の樹脂基板11における流路13が形成されている表面14と、第2の樹脂基板12の表面15とを接着することにより、流路13を有するマイクロチップ16が形成される。
 具体的には、接着面となる第1および第2の樹脂基板の表面に接している、酸素分子を含む空間に、波長175nm以下の真空紫外光を照射し、前記第1および第2の樹脂基板を対向させながら、前記照射後の前記表面を互いに接触させた状態で昇温することにより、前記表面を接着面として前記第1の樹脂基板と前記第2の樹脂基板とを接着する。
 樹脂基板の形状、サイズなどは、少なくとも一方の基板に流路が形成されている限り特に限定されない。図7に示すように、当該流路は、樹脂基板の接着面に形成されていてもよい。
 本発明のマイクロチップの製造方法では、樹脂基板の照射面に流路が形成されている場合、当該流路に紫外光を照射してもよい。基板を構成する樹脂の種類によっては、紫外光の照射により流路壁面の親水性を増大できる。流路への紫外光の照射の有無は、マスキングなどの一般的な手法を利用できる。
 本発明のマイクロチップの製造方法では、樹脂基板の接着面に有機溶剤および樹脂組成物が残留しないため、光学的な特性に優れるマイクロチップを製造でき、例えば、チップの用途上、光学的な検出を行う場合においても、当該検出時に実施する光学的な補正を軽減できる。
 上記のとおり、本発明の接着方法で接着された樹脂は、40℃以上、好ましくは70℃以上の水やアルコールを用いて接着面で容易に剥がすことができる。したがって、本発明のマイクロチップの製造方法によって製造されたマイクロチップでは、樹脂基板同士が40℃以上の水およびアルコールから選ばれる少なくとも何れか1つの液体によって剥離可能に接着されている。
 本発明の製造方法が適用できる樹脂物品としては、マイクロチップ以外にも、樹脂レンズなどの光学部品などが考えられる。
 従来、樹脂レンズなどの光学部品は、樹脂部品同士の接着による製造は困難であった。熱融着による接着では、製造した樹脂レンズに歪みが生じて光学的な特性が低下する。また、有機溶剤や樹脂組成物による接着では、接着面にこれらの塗布物が残留して光学的な特性が低下する。
 これに対して本発明の樹脂物品の製造方法では、樹脂レンズを構成する樹脂部品同士を熱融着による接着よりも低い温度で接着でき、接着面に有機溶剤および樹脂組成物が残留しないため、製造するレンズの光学的な特性の低下を抑制できる。また、2以上の樹脂部品の組み合わせにより、従来は製造が困難であった複雑な形状を有する光学部品の製造が可能となる。
 以下、実施例により、本発明をより詳細に説明する。本発明は、以下に示す実施例に限定されない。
 (実施例1)
 シクロオレフィンポリマー(日本ゼオン社製ZEONEX(登録商標)330R、ガラス転移点123℃)からなる一対の樹脂基板(70mm×20mm、厚さ2mm)の各々の表面に、Xeエキシマランプ(ウシオ電機製、UER20-172A)により真空紫外光(波長172nm)を照射した。紫外光の照射は大気中で行い、ランプと基板表面との距離を5mmまたは30mmとし、照射強度を10mW/cm2とした。照射距離が5mmの場合については、照射時間を5分または10分とした。照射距離が30mmの場合については、照射時間を10分または40分とした。真空紫外光は、各々の基板の一方の主面全体に照射した。
 次に、紫外光照射後の各基板を、各々の照射面が互いに接した状態になるように対向させ、各々の照射面が互いに密着する方向に圧力0.7MPaで力を加えながら、全体を100℃に昇温し、そのまま1時間保持した。
 次に、全体を室温まで降温させた後に上記力を抜き、基板同士が接着しているかどうかを確認した。照射距離を5mmとした基板同士は、照射時間5分の場合も10分の場合も、共に強固に接着しており、破壊することなく両者を引き剥がすことはできなかった。一方、照射距離を30mmとした基板同士は、照射時間10分の場合は接着が不十分であったが、照射時間40分の場合は基板同士を強固に接着できた。
 以上の結果から、到達光量が0.1J/cm2~10J/cm2の範囲内である照射距離5mmの場合は、照射時間が短い場合でも樹脂同士を容易に接着できることがわかった。また、到達光量がこれよりも少なく、実質的には基板表面に接している空間にのみ真空紫外光が照射されている(実質的には基板表面に真空紫外光が照射されていない)とみなすことができる照射距離30mmの場合であっても、照射時間を長くすることにより、樹脂同士を接着できることがわかった。
 ここで、真空紫外光を照射した基板表面の状態を確認するために、照射距離を5mmまたは30mmとし、照射時間を0~40分で変化させた基板表面について、水滴接触角を自動接触角計(DM500、協和界面科学社製)を用いて測定した。さらに、基板表面のXPS測定も行った。照射距離が5mmの場合について、水滴接触角の結果を図8に、XPS測定の結果を図9に示す。照射距離が30mmの場合について、水滴接触角の結果を図10に、XPS測定の結果を図11に示す。この結果から、真空紫外光を照射する時間が長くなるにつれて(基板表面に到達する真空紫外光の光量が多くなるにつれて)接触角が大きく減少し、基板表面の親水性が増大したことがわかった。また、図9および図11示す、XPS測定の結果から算出した酸素原子と炭素原子の比から、真空紫外光を照射する時間が長くなるにつれて(基板表面に到達する真空紫外光の光量が多くなるにつれて)酸素原子が大きく増加することが確認された。
 (実施例2)
 シクロオレフィンポリマー(日本ゼオン社製ZEONEX(登録商標)330R、ガラス転移点123℃)からなる一対の樹脂基板(70mm×20mm、厚さ2mm)の各々の表面に、Xeエキシマランプ(ウシオ電機製、UER20-172A)により真空紫外光(波長172nm)を照射した。真空紫外光の照射は大気中で行い、ランプと基板表面との距離を5mm、照射強度を10mW/cm2、照射時間を5分または10分とした。真空紫外光の照射面は、各々の基板の一方の主面全体とした。なお、ランプと基板表面との距離を5mmとしたときに、1秒当たりに基板表面に到達する真空紫外光の光量は3mJ/cm2・sであるため、照射時間5分の場合の到達光量は0.9J/cm2であり、照射時間10分の場合の到達光量は1.8J/cm2であった。
 次に、真空紫外光照射後の各基板を、各々の照射面が互いに接した状態になるように対向させ、各々の照射面が互いに密着する方向に力(圧力)を加えながら、全体を昇温し、そのまま保持した。圧力、昇温の温度および保持時間を変化させて、接着状態を確認した結果を、表1および表2に示す。なお、表では、接着状態が良好な場合を○、不良の場合を×と示した。また、接着状態が良好とは、手で剥がそうとしても接着面では剥がれずに、剥がれるまで引張せん断力を加えると基板自体が破壊されてしまう状態のことをいい、接着状態が不良とは、手で剥がそうとした場合に接着面で容易に剥がれる状態のことをいう。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 この結果から、到達光量が1J/cm2を超えている照射時間10分の場合の方が、接着に要する温度や圧力の条件がより緩和されることがわかった。
 (実施例3)
 シクロオレフィンポリマー(日本ゼオン社製ZEONEX(登録商標)330R、ガラス転移点123℃)からなる一対の樹脂基板(70mm×20mm、厚さ2mm)の各々の表面に、Xeエキシマランプ(ウシオ電機製、UER20-172A)により真空紫外光(波長172nm)を照射した。紫外光の照射は大気中で行い、ランプと基板表面との距離を5mm、照射強度を10mW/cm2、照射時間を5分とした。真空紫外光の照射面は、各々の基板の一方の主面全体とした。
 次に、紫外光照射後の各基板を、各々の照射面が互いに接した状態になるように対向させ、各々の照射面が互いに密着する方向に圧力0.7MPaで力を加えながら、全体を100℃に昇温し、そのまま5分間保持した。
 次に、全体を室温まで降温させた後に上記力を抜き、基板同士が接着しているかどうかを確認したところ、基板同士は強固に接着していた。
 以上のような方法で得られた樹脂基板同士が接着された状態のサンプルを5つ用意して、5℃、常温(18℃)、40℃、60℃および90℃の水にそれぞれ浸漬し、水中で保持した。サンプルのサイズは、8mm×8mmとした。その結果を、表3に示す。
Figure JPOXMLDOC01-appb-T000003
 5℃の水と常温の水に浸漬させたサンプルでは、樹脂基板の剥離が生じなかった。これに対し、40℃、60℃および90℃の水に浸漬させたサンプルは、樹脂基板がその接着面で剥離し、2つの樹脂基板に解体することができた。
 上記のサンプルに超音波等の物理的な衝撃を併用して加えることにより、2つの樹脂基板を速く解体することができた。
 また、上記サンプルと同様のサンプルを78℃の沸騰エタノール中に浸漬したところ、20分で剥離することが確認された。
 以上の結果から、本発明の接着方法を用いて樹脂部品同士(本実施例では樹脂基板)が接着されることによって形成された樹脂物品は、90℃のお湯を用いて、樹脂部品を破壊することなく解体できることが確認された。
 (実施例4)
 シクロオレフィンポリマー(日本ゼオン社製ZEONEX(登録商標)330R、ガラス転移点123℃)からなる一対の樹脂基板(70mm×26mm、厚さ1mm)の各々の表面に、Xeエキシマランプ(ウシオ電機製、UER20-172A)により真空紫外光(波長172nm)を照射した。紫外光の照射は大気中で行い、ランプと基板表面との距離を5mm、照射強度を10mW/cm2、照射時間を5分とした。真空紫外光の照射面は、各々の基板の一方の主面全体とした。
 次に、紫外光照射後の各基板を、各々の照射面が互いに接した状態になるように(接合面積が26mm×26mmになるように)対向させ、各々の照射面が互いに密着する方向に圧力0.15MPaで力を加えながら、全体を100℃に昇温し、そのまま5分間保持した。
 次に、全体を室温まで降温させた後に上記力を抜き、基板同士が接着しているかどうかを確認したところ、基板同士は強固に接着していた。
 以上のような方法で得られた樹脂基板同士が接着された状態のサンプルを、常温(20℃)の水にそれぞれ浸漬して水中で保持したが、1時間浸漬しても剥離しなかった。
 そこで、同様のサンプルを常温の水に浸漬し、且つ超音波加振を行った。超音波加振には、株式会社エスエヌディ製の超音波洗浄機(型名「US-102」)を用い、高周波出力100W、発振周波数38kHzとした。その結果、樹脂基板が36分で剥離した。
 (実施例5)
 実施例5では、本発明の樹脂の接着方法において、真空紫外光照射の雰囲気における湿度が樹脂の接着に及ぼす影響について検討した。
 シクロオレフィンポリマー(日本ゼオン社製ZEONEX(登録商標)480R、ガラス転移点138℃)からなる樹脂基板(26mm×76mm、厚さ1mm)の各々の表面に、Xeエキシマランプ(ウシオ電機製、UER20-172A)により真空紫外光(波長172nm)を照射した。ランプと基板表面との距離を5mmとし、照射強度は10mW/cm2とした。真空紫外光は、各々の基板の一方の主面全体に照射した。
 次に、紫外光照射後の各基板を、各々の照射面が互いに接した状態になるように対向させ、各々の照射面が互いに密着する方向に圧力0.5MPaで力を加えながら、全体を80℃に昇温し、そのまま5分間保持して、一対の樹脂基板を接着した。
 本実施例では、真空紫外光照射の雰囲気の湿度を、0.1%(乾燥空気のみ使用)、または、70%とした。湿度0.1%、70%それぞれについて、照射時間0、5、10、20、40、60分と変化させて、真空紫外光を照射した基板表面の状態を確認した。基板表面状態の確認は、実施例1の場合と同様に、水滴接触角とXPS測定とによって行った。水滴接触角の結果を図12に、XPS測定の結果を図13に示す。図12に示す結果によれば、湿度0.1%と湿度70%とでは、真空紫外光照射60分での最終的な水滴接触角に違いはなかったが、途中の段階(真空紫外光照射10~40分)では湿度0.1%の方が湿度70%よりも水滴接触角が大きかった。すなわち、湿度が低い方が、基板表面の親水化速度が速かった。また、図13に示すXPS測定の結果から算出した酸素原子と炭素原子との比(O1s/C1s)から、真空紫外光照射0~40分では、湿度0.1%の方が湿度70%よりも酸素原子が大きく増加することが確認された。この結果から、湿度が低い方が、短時間の真空紫外光照射で基板表面に酸素含有親水性官能基が生じていると考えられる。
 さらに、湿度0.1%、70%それぞれについて、照射時間5、10、20、40、60分で接着された一対の樹脂基板の接着強度を評価した。接着された樹脂基板の耐屈曲強度を測定して、接着強度の評価に用いた。耐屈曲強度の測定方法は、76mm×26mm×厚さ1mmの平板状のサンプルを十字状に接合し(接合面積26×26mm2)、その接合部の中心に対し上部から垂直方向に力をかけることによりサンプルを屈曲させて、その時の押し込み強度をロードセルにより測定し、接着強度を評価した。測定結果は、表4に示すとおりである。
Figure JPOXMLDOC01-appb-T000004
 この結果から、湿度0.1%の方が湿度70%よりも、短時間の紫外光照射で樹脂同士を接着できることが確認された。
 (比較例1)
 比較例1として、酸素分子が存在しない雰囲気で樹脂基板に真空紫外光を照射して、樹脂表面の状態を確認した例を示す。
 シクロオレフィンポリマー(日本ゼオン社製ZEONEX(登録商標)480R、ガラス転移点138℃)からなる樹脂基板(26mm×76mm、厚さ1mm)の各々の表面に、Xeエキシマランプ(ウシオ電機製、UER20-172A)により真空紫外光(波長172nm)を照射した。ランプと基板表面との距離を5mmとし、照射強度は10mW/cm2とした。真空紫外光は、各々の基板の一方の主面全体に照射した。本比較例では、空気を窒素ガスで置換することによって、酸素分子が存在しない雰囲気で樹脂基板に真空紫外光を照射した。この時の湿度は、1±1%であった。
 本比較例では、照射時間を0、5、10、20、40、60分と変化させて、真空紫外光を照射した基板表面の状態を確認した。基板表面状態の確認には、水滴接触角、FT-IRおよびXPS測定の結果を用いた。水滴接触角の測定結果を表5に示す。また、FT-IRの結果を図14に示す。また、XPSの測定結果を図15、図16に示し、さらにXPS測定の結果から算出した酸素原子と炭素原子との原子%を表6に示す。

Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 水滴接触角の結果から、60分間真空紫外光を照射した場合でも水滴接触角は46°であり、基板表面は十分に親水性化されていないことが確認された。また、FT-IRの結果から、真空紫外光を照射しても、樹脂の表面でO-H基、C=O基の量はそれほど増加していないことも確認された。なお、わずかに増加しているのは、雰囲気中にごくわずか存在している酸素や水蒸気の影響であると考えられる。図15および図16に示すXPSの結果でも、同様に真空紫外光照射による酸素の増加と炭素の減少が確認されたが、雰囲気中に残存する酸素や水蒸気の影響であると考えられる。表6の結果からも、本比較例の炭素原子に対する酸素原子の比が実施例1の場合よりも小さく、基板表面の酸化が不十分であることがわかった。
 (比較例2)
 比較例2として、酸素分子が存在しない雰囲気中で樹脂基板に真空紫外光を照射して、樹脂の接着を試みた例を示す。
 シクロオレフィンポリマー(日本ゼオン社製ZEONEX(登録商標)480R、ガラス転移点138℃)からなる樹脂基板(26mm×76mm、厚さ1mm)の各々の表面に、Xeエキシマランプ(ウシオ電機製、UER20-172A)により真空紫外光(波長172nm)を照射した。ランプと基板表面との距離を5mmとし、照射時間は10分、照射強度は10mW/cm2とした。真空紫外光は、各々の基板の一方の主面全体に照射した。本比較例では、空気を窒素ガスで置換することによって、酸素分子が存在しない雰囲気で樹脂基板に真空紫外光を照射した。この時の湿度は、1±1%であった。
 次に、真空紫外光照射後の各基板を、各々の照射面が互いに接した状態になるように対向させ、各々の照射面が互いに密着する方向に力(圧力)を加えながら、全体を昇温し、そのまま保持した。圧力、昇温の温度および保持時間を変化させて、接着状態を確認した結果を、表7に示す。なお、表では、接着状態が良好な場合を○、不良の場合を×と示した。また、接着状態が良好とは、手で剥がそうとしても接着面では剥がれずに、剥がれるまで引張せん断力を加えると基板自体が破壊されてしまう状態のことをいい、接着状態が不良とは、手で剥がそうとした場合に接着面で容易に剥がれる状態のことをいう。
Figure JPOXMLDOC01-appb-T000007
 表7に示すように、温度を100℃まで上昇させて、さらに圧力を0.8MPaまで上昇させても、良好な接着を得ることができなかった。この結果から、樹脂を接着するためには、酸素が存在する雰囲気下で真空紫外光を照射する必要があることがわかった。
 本発明によれば、熱融着による接着よりも低い温度において、生産性よく樹脂と樹脂とを接着できる接着方法を提供できる。本発明の接着方法は、様々な樹脂物品の製造方法に応用でき、例えば、マイクロチップの製造方法に応用できる。さらに、本発明の接着方法によれば、一度接着した樹脂を容易に剥がすことができるので、樹脂のリサイクルなどにも有用である。例えば、本発明の接着方法を、血液検査チップのような医療用マイクロチップに適用した場合、当該マイクロチップを使用後に剥離分解してマイクロ流路部分を洗浄することが可能となる。これにより、使用後の医療用マイクロチップを、医療用廃棄物としてではなく、一般プラスチック廃棄物として処理することも可能となる。
本発明の接着方法の一例を模式的に示す工程図である。 本発明の接着方法の一例を模式的に示す工程図である。 照射距離5mmで波長172nmの真空紫外光を照射した樹脂の照射面の状態を、フーリエ変換赤外分光高度計を用いて測定した結果である。 照射距離30mmで波長172nmの真空紫外光を照射した樹脂の照射面の状態を、フーリエ変換赤外分光高度計を用いて測定した結果である。 照射距離5mmで波長172nmの真空紫外光を照射した樹脂の照射面の状態を、X線誘起光電子分光測定した結果である。 照射距離5mmで波長172nmの真空紫外光を照射した樹脂の照射面の状態を、X線誘起光電子分光測定した結果である。 照射距離30mmで波長172nmの真空紫外光を照射した樹脂の照射面の状態を、X線誘起光電子分光測定した結果である。 照射距離30mmで波長172nmの真空紫外光を照射した樹脂の照射面の状態を、X線誘起光電子分光測定した結果である。 本発明の接着方法の一例を示す模式図である。 本発明のマイクロチップの製造方法の一例を示す模式図である。 照射距離を5mmとし、照射時間を0~40分で変化させた基板表面について測定した、水滴接触角の結果である。 照射距離を5mmとし、照射時間を0~40分で変化させた基板表面についてのX線誘起光電子分光測定の結果から算出した酸素原子と炭素原子の比である。 照射距離を30mmとし、照射時間を0~40分で変化させた基板表面について測定した、水滴接触角の結果である。 照射距離を30mmとし、照射時間を0~40分で変化させた基板表面についてのX線誘起光電子分光測定の結果から算出した酸素原子と炭素原子の比である。 湿度0.1%および70%において、照射時間を0~60分で変化させた基板表面について測定した、水滴接触角の結果である。 湿度0.1%および70%において、照射時間を0~60分で変化させた基板表面についてのX線誘起光電子分光測定の結果から算出した酸素原子と炭素原子の比である。 酸素分子が存在しない雰囲気で真空紫外光を照射した樹脂の照射面の状態を、フーリエ変換赤外分光高度計を用いて測定した結果である。 酸素分子が存在しない雰囲気で真空紫外光を照射した樹脂の照射面の状態を、X線誘起光電子分光測定した結果である。 酸素分子が存在しない雰囲気で真空紫外光を照射した樹脂の照射面の状態を、X線誘起光電子分光測定した結果である。
符号の説明
 1  第1の樹脂
 2  第2の樹脂
 3a、3b  表面
 4  真空紫外光
 5  力
 10  空間
 11  第1の樹脂基板
 12  第2の樹脂基板
 13  流路
 14  表面
 15  表面
 16  マイクロチップ

Claims (16)

  1.  第1の樹脂と第2の樹脂とを接着する樹脂の接着方法であって、
     (I)前記第1および第2の樹脂の表面に接している、酸素分子を含有する空間に、波長175nm以下の真空紫外光を照射する工程と、
     (II)前記照射後の前記表面を互いに接触させた状態で昇温することにより、前記表面を接着面として前記第1の樹脂と前記第2の樹脂とを接着する工程と、
    を含む、樹脂の接着方法。
  2.  前記工程(I)において、前記第1および第2の樹脂の前記表面に前記真空紫外光を照射する、請求項1に記載の樹脂の接着方法。
  3.  前記工程(I)において、前記表面に到達する前記真空紫外光の光量が0.1J/cm2以上10J/cm2以下である、請求項2に記載の樹脂の接着方法。
  4.  前記工程(I)において、前記表面に到達する前記真空紫外光の光量が1J/cm2以上である、請求項3に記載の樹脂の接着方法。
  5.  前記工程(I)において、前記空間の酸素分圧が10~105Paである、請求項1~4の何れか1項に記載の樹脂の接着方法。
  6.  前記工程(II)における前記昇温の温度を、前記第1および第2の樹脂のガラス転移点未満とする、請求項1~5の何れか1項に記載の樹脂の接着方法。
  7.  前記工程(II)において、
     前記第1および第2の樹脂の前記表面が互いに密着する方向に力を加えながら、前記表面を昇温する、請求項1~6の何れか1項に記載の樹脂の接着方法。
  8.  前記第1および第2の樹脂が、炭素、酸素および窒素から選ばれる少なくとも1種の元素と、炭素との結合を主鎖に有する請求項1~7の何れか1項に記載の樹脂の接着方法。
  9.  前記第1および第2の樹脂から選ばれる少なくとも1つの樹脂が、シクロオレフィンポリマーおよびポリカーボネートから選ばれる少なくとも何れか1つである請求項1~8の何れか1項に記載の樹脂の接着方法。
  10.  前記第1および第2の樹脂から選ばれる少なくとも1つの樹脂が、二環式シクロオレフィンポリマーである請求項9に記載の樹脂の接着方法。
  11.  前記第1および第2の樹脂の種類が同一である請求項1~10の何れか1項に記載の樹脂の接着方法。
  12.  樹脂部を有する2以上の部品を含み、
     前記2以上の部品が前記樹脂部において互いに接着されている樹脂物品の製造方法であって、
     前記樹脂部同士を、請求項1~11の何れか1項に記載の樹脂の接着方法により接着する、樹脂物品の製造方法。
  13.  請求項12に記載の樹脂物品の製造方法によって製造される樹脂物品であって、
     前記2以上の部品の前記樹脂部同士が、40℃以上の水およびアルコールから選ばれる少なくとも何れかの1つ液体によって剥離可能に接着されている、樹脂物品。
  14.  対向するように互いに接着された一対の樹脂基板を含み、
     前記樹脂基板の少なくとも一方に微細な流路が形成されているマイクロチップの製造方法であって、
     前記樹脂基板同士を、請求項1~11の何れか1項に記載の樹脂の接着方法により接着する、マイクロチップの製造方法。
  15.  前記流路が、前記樹脂基板の接着面に形成されている請求項14に記載のマイクロチップの製造方法。
  16.  請求項15に記載のマイクロチップの製造方法によって製造されるマイクロチップであって、
     前記一対の樹脂基板同士が、40℃以上の水およびアルコールから選ばれる少なくとも何れか1つの液体によって剥離可能に接着されている、マイクロチップ。
PCT/JP2008/073703 2007-12-27 2008-12-26 真空紫外光照射による樹脂の接着方法、該方法を用いる樹脂物品又はマイクロチップの製造方法、該方法で製造される樹脂物品又はマイクロチップ WO2009084622A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP08867644A EP2236575A4 (en) 2007-12-27 2008-12-26 METHOD FOR BONDING A RESIN BY IRRADIATION OF EXTREME ULTRAVIOLET RADIATION, METHOD FOR MANUFACTURING RESIN ARTICLE OR RESIN MICROCHIP USING THE METHOD, AND RESIN ARTICLE OR MICROCHIP OBTAINED BY THE METHOD
US12/823,088 US8246774B2 (en) 2007-12-27 2010-06-24 Resin bonding method by photoirradiation, method for producing resin article, resin article produced by the same method, method for producing microchip, and microchip produced by the same method
US13/396,488 US8784973B2 (en) 2007-12-27 2012-02-14 Resin bonding method by photoirradiation, method for producing resin article, resin article produced by the same method, method for producing microchip, and microchip produced by the same method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007-337411 2007-12-27
JP2007337411 2007-12-27
JP2008-325346 2008-12-22
JP2008325346A JP5576040B2 (ja) 2007-12-27 2008-12-22 樹脂物品の剥離方法およびマイクロチップの剥離方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/823,088 Continuation US8246774B2 (en) 2007-12-27 2010-06-24 Resin bonding method by photoirradiation, method for producing resin article, resin article produced by the same method, method for producing microchip, and microchip produced by the same method

Publications (1)

Publication Number Publication Date
WO2009084622A1 true WO2009084622A1 (ja) 2009-07-09

Family

ID=40824335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/073703 WO2009084622A1 (ja) 2007-12-27 2008-12-26 真空紫外光照射による樹脂の接着方法、該方法を用いる樹脂物品又はマイクロチップの製造方法、該方法で製造される樹脂物品又はマイクロチップ

Country Status (3)

Country Link
EP (1) EP2236575A4 (ja)
JP (1) JP5576040B2 (ja)
WO (1) WO2009084622A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2335918A4 (en) * 2009-07-24 2015-07-15 Yasunori Taga METHOD FOR PRODUCING A JOINT STRUCTURE AND JOINT STRUCTURE
JP2016210126A (ja) * 2015-05-11 2016-12-15 東洋製罐グループホールディングス株式会社 接合方法
JP2018065376A (ja) * 2016-10-17 2018-04-26 東洋製罐グループホールディングス株式会社 接合方法
WO2018074059A1 (ja) * 2016-10-17 2018-04-26 東洋製罐グループホールディングス株式会社 接合方法
JP7018223B2 (ja) 2018-05-18 2022-02-10 国立研究開発法人物質・材料研究機構 積層体の製造方法、積層体、及び、暖房便座装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013042377A1 (ja) * 2011-09-22 2013-03-28 国立大学法人東京工業大学 合成樹脂の接着方法
JP2013103456A (ja) * 2011-11-16 2013-05-30 Kyoto Univ 複合材料およびその製造方法
JP2016026904A (ja) * 2012-12-07 2016-02-18 アルプス電気株式会社 接合部材及び接合部材の製造方法
JP6133152B2 (ja) * 2013-07-10 2017-05-24 株式会社ディスコ 樹脂シート貼着方法
WO2016060080A1 (ja) * 2014-10-15 2016-04-21 ウシオ電機株式会社 ワークの貼り合わせ方法
JP6869519B2 (ja) * 2016-04-22 2021-05-12 国立大学法人東京工業大学 合成樹脂からなる基材の接合方法
JP6848414B2 (ja) * 2016-12-16 2021-03-24 ウシオ電機株式会社 接合構造体の剥離方法
US20180348479A1 (en) * 2017-06-02 2018-12-06 Kantatsu Co., Ltd. Imaging lens unit and method for manufacturing the same
JP7272755B2 (ja) * 2017-06-02 2023-05-12 東京晨美光学電子株式会社 撮像レンズユニットおよびその製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003509251A (ja) * 1999-09-23 2003-03-11 アクララ バイオサイエンシーズ, インコーポレイテッド プラスチックからなる2つの工作物を、異物を用いずに接合するための方法
JP2004043662A (ja) 2002-07-12 2004-02-12 Dainippon Ink & Chem Inc フイルムの表面処理方法および積層フィルムの製造方法
JP2005080569A (ja) 2003-09-09 2005-03-31 Sumitomo Bakelite Co Ltd マイクロチップ基板の接合方法及びマイクロチップ
JP2005171164A (ja) 2003-12-12 2005-06-30 Toagosei Co Ltd オレフィン系樹脂の接着方法
JP2005257283A (ja) 2004-03-09 2005-09-22 Fluidware Technologies Kk マイクロチップ
WO2008007787A1 (fr) * 2006-07-13 2008-01-17 Kyoto University Procédé de liaison de résines par irradiation lumineuse et procédé de fabrication d'articles en résine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4030897B2 (ja) * 2003-03-07 2008-01-09 株式会社クラレ プラスチックの接着方法
EP1522550A3 (de) * 2003-10-09 2010-10-13 Weidmann Plastics Technology AG Verfahren zum fremdstofffreien Fugen zweier Werkstücke sowie nach diesem Verfahren gefugtes Werkstück

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003509251A (ja) * 1999-09-23 2003-03-11 アクララ バイオサイエンシーズ, インコーポレイテッド プラスチックからなる2つの工作物を、異物を用いずに接合するための方法
JP2004043662A (ja) 2002-07-12 2004-02-12 Dainippon Ink & Chem Inc フイルムの表面処理方法および積層フィルムの製造方法
JP2005080569A (ja) 2003-09-09 2005-03-31 Sumitomo Bakelite Co Ltd マイクロチップ基板の接合方法及びマイクロチップ
JP2005171164A (ja) 2003-12-12 2005-06-30 Toagosei Co Ltd オレフィン系樹脂の接着方法
JP2005257283A (ja) 2004-03-09 2005-09-22 Fluidware Technologies Kk マイクロチップ
WO2008007787A1 (fr) * 2006-07-13 2008-01-17 Kyoto University Procédé de liaison de résines par irradiation lumineuse et procédé de fabrication d'articles en résine

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
"Abstracts, Annual Meeting of The Society of Polymer Science", vol. 57, 8 May 2008, JAPAN, article KIN E. ET AL.: "Cycloolefin Polymer Kizai Hyomen no Hikari Kagaku Kasseika to Setsugo Gijutsu eno Oyo", pages: 2140, XP008138651 *
"Abstracts, Annual Meeting of The Society of Polymer Science", vol. 57, 8 May 2008, JAPAN, article TANIGUCHI Y. ET AL.: "Cycloolefin-kei Polymer Kizai no Hikari Kasseika Secchaku to Kaitai", pages: 2139, XP008138650 *
KIN E. ET AL.: "Cycloolefin Polymer Kizai no Hikari Kagaku Hyomen Henkan to Secchaku", THE SURFACE FINISHING SOCIETY OF JAPAN DAI 116 KAI KOEN TAIKAI KOEN YOSHISHU, vol. 18E-4, 11 September 2007 (2007-09-11), pages 250 - 251, XP008138649 *
MASATAKA MURAHARA: "Shinku Shigaiko ni yoru Polymer Hyomen eno Kannoki Chikan to Secchakusei no Kojo", 1995 NEN (HEISEI 7 NEN) SHUNKI DAI 42 KAI EXTENDED ABSTRACTS, vol. 0, no. 29P..., 28 March 1995 (1995-03-28), pages 1377, XP008142150 *
See also references of EP2236575A4 *
TANIGUCHI Y. ET AL.: "Cycloolefin Polymer Buzai no Hikari Kasseika Secchaku", POLYMER PREPRINTS, JAPAN, vol. 56, no. 1, 10 May 2007 (2007-05-10), pages 2399, XP008138647 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2335918A4 (en) * 2009-07-24 2015-07-15 Yasunori Taga METHOD FOR PRODUCING A JOINT STRUCTURE AND JOINT STRUCTURE
JP2016210126A (ja) * 2015-05-11 2016-12-15 東洋製罐グループホールディングス株式会社 接合方法
JP2018065376A (ja) * 2016-10-17 2018-04-26 東洋製罐グループホールディングス株式会社 接合方法
WO2018074059A1 (ja) * 2016-10-17 2018-04-26 東洋製罐グループホールディングス株式会社 接合方法
JP7069582B2 (ja) 2016-10-17 2022-05-18 東洋製罐グループホールディングス株式会社 接合方法
JP7018223B2 (ja) 2018-05-18 2022-02-10 国立研究開発法人物質・材料研究機構 積層体の製造方法、積層体、及び、暖房便座装置

Also Published As

Publication number Publication date
EP2236575A4 (en) 2012-05-02
JP2009173894A (ja) 2009-08-06
EP2236575A1 (en) 2010-10-06
JP5576040B2 (ja) 2014-08-20

Similar Documents

Publication Publication Date Title
WO2009084622A1 (ja) 真空紫外光照射による樹脂の接着方法、該方法を用いる樹脂物品又はマイクロチップの製造方法、該方法で製造される樹脂物品又はマイクロチップ
JP4919474B2 (ja) 光照射による樹脂の接着方法および樹脂物品の製造方法
US8784973B2 (en) Resin bonding method by photoirradiation, method for producing resin article, resin article produced by the same method, method for producing microchip, and microchip produced by the same method
JP4993243B2 (ja) 樹脂製微小流路化学デバイスの製造方法並びに該製法により製造された樹脂製微小流路化学デバイス構造体
JP3714338B2 (ja) 接合方法
KR101313359B1 (ko) 수지 복합 성형체의 제조방법
KR20120120241A (ko) 경질 실리콘 수지의 접착 방법, 미세 구조를 갖는 기판의 접합 방법 및 해당 접합 방법을 이용한 마이크로 유체 디바이스의 제조 방법
JPWO2008087800A1 (ja) マイクロチップの製造方法、及びマイクロチップ
JP2005257283A (ja) マイクロチップ
JP2004268383A (ja) プラスチックの接着方法
JP4313682B2 (ja) Pdms基板と他の合成樹脂基板との接着方法及びマイクロチップの製造方法
US20130248102A1 (en) Method of manufacturing microchip
JP2007240461A (ja) プラスチック製マイクロチップ、及びその接合方法、及びそれを利用したバイオチップ又はマイクロ分析チップ。
Kettner et al. New results on plasma activated bonding of imprinted polymer features for bio MEMS applications
JP5377800B1 (ja) 光学用透明粘着シートの製造方法、光学用透明粘着シート及びそれを用いた表示装置
US20040031558A1 (en) Method for the connection of plastic pieces
JP3985043B2 (ja) 光接着方法、及びマイクロチップの作製方法
JP2013137351A (ja) 光学素子
JP5115436B2 (ja) マイクロ化学デバイス及びその製造方法
JP2007299006A (ja) 液晶性転写体
JP6424450B2 (ja) インプリントモールド用基板及びその製造方法、並びにインプリントモールド
KR20080103541A (ko) 정전기력을 이용한 미세채널 형성방법 및 이를 이용한미세구조물 형성방법
JP6777168B2 (ja) 接合構造体の製造方法
JP6848414B2 (ja) 接合構造体の剥離方法
JP2012003212A (ja) 光学素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08867644

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008867644

Country of ref document: EP