WO2009084616A1 - 改変型グルコース脱水素酵素遺伝子 - Google Patents

改変型グルコース脱水素酵素遺伝子 Download PDF

Info

Publication number
WO2009084616A1
WO2009084616A1 PCT/JP2008/073689 JP2008073689W WO2009084616A1 WO 2009084616 A1 WO2009084616 A1 WO 2009084616A1 JP 2008073689 W JP2008073689 W JP 2008073689W WO 2009084616 A1 WO2009084616 A1 WO 2009084616A1
Authority
WO
WIPO (PCT)
Prior art keywords
gld
modified
glucose
seq
wild
Prior art date
Application number
PCT/JP2008/073689
Other languages
English (en)
French (fr)
Inventor
Michinari Honda
Ryo Takenaka
Fuminao Kobayashi
Original Assignee
Ikeda Food Research Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ikeda Food Research Co., Ltd. filed Critical Ikeda Food Research Co., Ltd.
Priority to US12/810,213 priority Critical patent/US8445221B2/en
Priority to EP08866874A priority patent/EP2241621B1/en
Priority to CN200880126270XA priority patent/CN101970656A/zh
Priority to JP2009548079A priority patent/JP5398004B2/ja
Publication of WO2009084616A1 publication Critical patent/WO2009084616A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
    • C12Q1/32Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase involving dehydrogenase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/001Enzyme electrodes
    • C12Q1/005Enzyme electrodes involving specific analytes or enzymes
    • C12Q1/006Enzyme electrodes involving specific analytes or enzymes for glucose

Definitions

  • the present invention relates to a FAD-linked glucose dehydrogenase (GLD) that catalyzes a reaction that uses flavin adenine dinucleotide (FAD) as a coenzyme and dehydrogenates (oxidizes) the hydroxyl group at the 1-position of glucose. More specifically, modified GLD polypeptide having improved substrate specificity, polynucleotide encoding modified GLD, method for producing the enzyme, and method for measuring glucose using the enzyme
  • the present invention relates to a glucose measurement reagent composition, a biosensor for measuring glucose, and the like. In the present specification, unless otherwise specified, monosaccharides such as glucose mean D-form.
  • Blood glucose level is an important marker for diabetes.
  • glucose oxidase has been used to measure blood glucose concentration.
  • glucose oxidase is affected by the dissolved oxygen concentration, resulting in an error in the measured value.
  • Elementary enzymes are also widely used.
  • PQQ-GDH glucose dehydrogenase
  • PQQ pyrroloquinoline quinone
  • conventional PQQ-GDH is maltose and It has the disadvantage of reacting with saccharides other than glucose, such as galactose.
  • the group of the present inventors found a novel soluble GLD using FAD as a coenzyme from Aspergillus tereus FERM BP-08578 (patent document 1) and succeeded in gene cloning (patent document). 2).
  • These GLDs have an unprecedented excellent characteristic that they are not affected by dissolved oxygen, oxidize the hydroxyl group at the 1-position of glucose, and have low activity (enzyme activity) on maltose and galactose.
  • GLD has a defect that it acts on xylose, and a patient undergoing a xylose absorption test shows a higher value than the actual blood glucose level, so that attention is given to not using it.
  • the present invention solves the above problems, and is a novel gene encoding a modified GLD having excellent properties such as low reactivity to maltose and galactose and further xylose while being excellent in glucose reactivity and substrate recognition ( Polynucleotide), a method for producing the enzyme using transformed cells recombined with the gene, a method for measuring glucose characterized by using the obtained enzyme, a glucose measurement reagent composition, and glucose An object is to provide a biosensor for measurement.
  • the present invention relates to the following aspects.
  • Aspect 6 The polynucleotide according to embodiment 5, wherein the polynucleotide encoding the wild-type FAD-linked glucose dehydrogenase (GLD) amino acid sequence represented by SEQ ID NO: 1 has the base sequence represented by SEQ ID NO: 2.
  • Aspect 9 The transformed cell according to Aspect 8, which is Escherichia coli or Aspergillus oryzae.
  • a method for producing a modified GLD comprising culturing the transformed cells of Aspect 8 or 9, and collecting the modified GLD from the obtained culture.
  • a method for measuring glucose characterized in that the modified GLD according to any one of aspects 1 to 4 or the modified GLD obtained by the production method according to claim 10 is used.
  • a glucose measurement reagent composition comprising the modified GLD according to any one of aspects 1 to 4 or the modified GLD obtained by the production method according to claim 10.
  • a biosensor for measuring glucose which uses the modified GLD according to any one of aspects 1 to 4 or the modified GLD obtained by the production method according to claim 10.
  • modified GLD having excellent properties such as excellent substrate recognition for glucose and low activity for maltose and xylose can be obtained in a homogeneous and large amount by, for example, gene recombination technology. It becomes possible to produce.
  • the calibration curve for glucose measurement obtained using the modified GLD of the present invention is shown.
  • the modified GLD of the present invention has a wild-type FAD-linked glucose dehydrogenase (GLD) amino acid sequence represented by SEQ ID NO: 1 (including signal peptide) in Table 1 (single amino acid code) shown below. , 72, 73, 76, 78, 102, 217, 228, 240, 356, 407, 424, 437, 527 and at least one amino acid residue selected from the group consisting of amino acids at position 530, and The xylose activity / glucose activity is reduced with respect to wild-type GLD.
  • GLD wild-type FAD-linked glucose dehydrogenase
  • substitutions in the above amino acid residues include D72A, G73D, G73A, G73S, G73C, G73Q, G73W, G73Y, G73E, G73H, R102H, Y228H, V356A, and P527L, and S37V, S37G, T69I
  • the modified GLD of the present invention has a “xylose activity / glucose activity” (%) defined herein as a significant value compared to the wild type GLD, for example, at least 0.85 times or less, preferably 0.5 It has xylose activity reduced to double or less, more preferably 0.3 or less, and still more preferably 0.2 or less.
  • the xylose activity / glucose activity varies depending on the culture conditions of the transformant, the enzyme activity measurement conditions, and the like. Therefore, the xylose activity / glucose activity of wild-type GLD and modified GLD under the same conditions ( %) Must be measured and compared.
  • the modified GLD of the present invention preferably has an enzyme activity value against maltose (also referred to as “maltose activity / glucose activity”) of 5% or less, assuming that the enzyme activity value against D-glucose is 100%.
  • the enzyme activity value for D-galactose also referred to as “galactose action / glucose action” is 5% or less, more preferably 3% or less, more preferably 3% or less.
  • the modified GLD of the present invention has the amino acid sequence represented by SEQ ID NO: 1 as long as the xylose activity / glucose activity is reduced as compared to the wild type GLD as described above.
  • one to several amino acids may be further substituted, deleted or added.
  • modified GLD of the present invention include N64D + R102H + L250Q, G73D, Y228H + A589T in the wild-type GLD amino acid sequence represented by SEQ ID NO: 1, as specifically described in Examples.
  • the nucleotide sequence shown in SEQ ID NO: 2 (Table 2) is used as the polynucleotide encoding the amino acid sequence of wild-type GLD shown in SEQ ID NO: 1 (Table 1).
  • SEQ ID NO: 1 Table 1
  • Other codons may be used as long as they encode the same amino acid.
  • the codon used can be optimized as appropriate depending on the type of host cell transformed with the polynucleotide.
  • polynucleotide refers to a nucleoside phosphate ester (ATP (adenosine triphosphate), GTP (guanosine triphosphate), CTP (purine or pyrimidine bonded to a sugar).
  • ATP adenosine triphosphate
  • GTP guanosine triphosphate
  • CTP purine or pyrimidine bonded to a sugar
  • Cytidine triphosphate UTP (uridine triphosphate); or dATP (deoxyadenosine triphosphate), dGTP (deoxyguanosine triphosphate), dCTP (deoxycytidine triphosphate), dTTP (deoxythymidine triphosphate)
  • chromosomal DNA intron-containing DNA
  • mRNA transcribed from chromosomal DNA cDNA synthesized from mRNA, and the like
  • “Oligonucleotide” refers to a molecule in which 2-99 nucleotides are linked.
  • Polypeptide means a molecule composed of 30 or more amino acid residues linked to each other by amide bonds (peptide bonds) or unnatural residue linkages, and sugar chains are added to these. And those that have been artificially chemically modified.
  • the polynucleotide of the present invention may appropriately include a base sequence encoding a modified GLD signal sequence depending on the type of transformed cells.
  • the polynucleotide of the present invention can be easily prepared by any method known to those skilled in the art.
  • a wild-type GLD gene is isolated from a plasmid containing a polynucleotide having the base sequence shown in SEQ ID NO: 2, and based on this, A polynucleotide encoding the modified GLD of the present invention is prepared by introducing random mutations or site-specific mutations using various PCR methods known to those skilled in the art using a set of oligonucleotide primers (probes). be able to.
  • the recombinant vector of the present invention is a cloning vector or an expression vector, and is prepared by any method known to those skilled in the art, using an appropriate one according to the type of polynucleotide as an insert and the purpose of use. can do.
  • expression vectors for in vitro transcription prokaryotic cells such as Escherichia coli and Bacillus subtilis, filamentous fungi such as yeast and mold, insects
  • Expression vectors suitable for eukaryotic cells such as cells and mammalian cells can also be used.
  • prokaryotic cells such as Escherichia coli and Bacillus subtilis
  • eukaryotic cells such as yeast, mold, insect cells and mammalian cells
  • the host of these cells can be appropriately selected according to the necessity or necessity of the modified GLD sugar chain and the necessity of other peptide modifications.
  • These transformed cells can be prepared by introducing a recombinant vector into cells by any method known to those skilled in the art, such as electroporation, calcium phosphate method, liposome method, DEAE dextran method.
  • Specific examples of the recombinant vector and the transformed cell include the recombinant vector shown in the examples below, and transformed Escherichia coli and transformed fungi using this vector.
  • the modified GLD of the present invention is produced by expressing DNA in a microorganism such as Escherichia coli
  • the expression vector having an origin, promoter, ribosome binding site, DNA cloning site, terminator sequence and the like that can replicate in the microorganism is used.
  • a modified GLD can be mass-produced with a microorganism by preparing an expression vector in which the polynucleotide is recombined, transforming a host cell with this expression vector, and then culturing the obtained transformant. In this case, if a start codon and a stop codon are added before and after an arbitrary translation region and expressed, a modified GLD fragment containing the arbitrary region can also be obtained.
  • the target modified GLD can also be obtained by cleaving this fusion protein with an appropriate protease.
  • the expression vector for E. coli include pUC, pBluescript II, pET expression system, pGEX expression system, pCold expression system, and the like.
  • modified GLD of the present invention when the modified GLD of the present invention is produced by expressing it in eukaryotic cells, the polynucleotide is inserted into an expression vector for eukaryotic cells having a promoter, a splicing region, a poly (A) addition site, and the like. If a recombinant vector is prepared and introduced into eukaryotic cells, modified GLD can be produced in eukaryotic cells. It can be maintained in the cell in a state like a plasmid, or it can be maintained in a chromosome.
  • expression vectors examples include pKA1, pCDM8, pSVK3, pSVL, pBK-CMV, pBK-RSV, EBV vector, pRS, and pYE82.
  • pIND / V5-His, pFLAG-CMV-2, pEGFP-N1, pEGFP-C1, etc. are used as an expression vector, FAD-linked glucose dehydration as a fusion protein to which various tags such as His tag, FLAG tag, and GFP are added.
  • Elementary enzyme polypeptides can also be expressed.
  • eukaryotic cells cultured mammalian cells such as monkey kidney cells COS-7 and Chinese hamster ovary cells CHO, budding yeast, fission yeast, mold, silkworm cells, Xenopus egg cells, etc. are generally used. Any eukaryotic cell may be used so long as it can express type GLD.
  • a known method such as electroporation, calcium phosphate method, liposome method, DEAE dextran method can be used.
  • cloning that transforms an appropriate Aspergillus oryzae strain with a recombinant vector derived from Aspergillus oryzae carrying a polynucleotide encoding the modified GLD of the present invention is preferred.
  • the target protein is collected from the culture (bacteria or culture solution containing the enzyme secreted outside the cells, medium composition, etc.) That is, in order to isolate and purify, it can carry out combining a well-known separation operation. For example, treatment with denaturing agents and surfactants such as urea, heat treatment, pH treatment, ultrasonic treatment, enzyme digestion, salting out and solvent precipitation, dialysis, centrifugation, ultrafiltration, gel filtration, SDS-PAGE, etc.
  • denaturing agents and surfactants such as urea, heat treatment, pH treatment, ultrasonic treatment, enzyme digestion, salting out and solvent precipitation, dialysis, centrifugation, ultrafiltration, gel filtration, SDS-PAGE, etc.
  • the modified GLD of the present invention can be produced in large quantities.
  • the modified GLD of the present invention is produced in vitro by preparing RNA by in vitro transcription from a vector having the polynucleotide (cDNA or translation region thereof) of the present invention, and performing in vitro translation using this as a template. can do.
  • a recombinant vector is prepared by inserting the polynucleotide into a vector having a promoter to which RNA polymerase can bind, and this vector is converted into RNA corresponding to the promoter.
  • modified GLD can be produced in vitro.
  • promoters to which RNA polymerase can bind include T3, T7, SP6 and the like.
  • vectors containing these promoters include pKA1, pCDM8, pT3 / T718, pT7 / 319, and pBluescript II.
  • the modified GLD of the present invention that can be produced by the method described above is an enzyme that catalyzes the reaction of dehydrogenating glucose in the presence of an electron acceptor.
  • an enzyme that catalyzes the reaction of dehydrogenating glucose in the presence of an electron acceptor.
  • substances that use coenzyme-linked glucose dehydrogenase that can be used in the medical field and clinical field, such as measuring and measuring reagents for glucose in biological materials, and using them as reagents for elimination. It can also be used in production.
  • the glucose measurement reagent composition of the present invention may be mixed together to form a single reagent, and when components that interfere with each other are present, the components may be divided so as to form an appropriate combination. .
  • These may be prepared as a solution or a powdery reagent, and may be prepared as a test paper or an analytical film by containing them in a suitable support such as a filter paper or a film.
  • you may attach the standard reagent containing deproteinizing agents, such as perchloric acid, and glucose fixed_quantity
  • the amount of the enzyme in the composition is preferably about 0.1 to 50 units per sample. Examples of the specimen for quantifying glucose include plasma, serum, spinal fluid, saliva, urine and the like.
  • the biosensor of the present invention is a glucose sensor that is used in a reaction layer containing the modified GLD of the present invention as an enzyme and measures the glucose concentration in a sample solution.
  • an electrode system consisting of a working electrode, its counter electrode and a reference electrode is formed on an insulating substrate using a method such as screen printing, and a hydrophilic polymer, an oxidoreductase, and an electron acceptor are in contact with this electrode system. It is produced by forming an enzyme reaction layer containing a body.
  • the enzyme reaction layer dissolves and the enzyme and the substrate react, and the electron acceptor is reduced accordingly.
  • the biosensor After completion of the enzymatic reaction, the reduced electron acceptor is oxidized electrochemically. At this time, the biosensor can measure the substrate concentration in the sample solution from the obtained oxidation current value. In addition, it is possible to construct a biosensor that detects color development intensity or pH change.
  • Electron carriers and redox mediators listed in 2002-526759 may be used. Specific examples include osmium compounds, quinone compounds, and ferricyan compounds.
  • the enzyme is preferably diluted appropriately so that the final concentration is 0.1 to 1.0 unit / mL.
  • the enzyme activity unit (unit) of the enzyme is an enzyme activity that oxidizes 1 ⁇ mol of glucose per minute.
  • the enzyme activity of GLD can be measured by the following method.
  • the enzyme activity for oxidizing 1 ⁇ mol of xylose, maltose and galactose per minute was measured using the same concentration of D-xylose (manufactured by SIGMA) and maltose monohydrate instead of D-glucose. It can be measured by using (Nacalai Tesque) and D-galactose (Wako Pure Chemical Industries). Further, the enzyme activity (relative activity) for oxidizing xylose when the enzyme activity (U) for oxidizing glucose is defined as 100% is defined as “xylose action / glucose action” (%).
  • the enzyme activity (relative activity) that oxidizes maltose or galactose when the enzyme activity (U) that oxidizes glucose is 100% is “maltose activity / glucose activity” (%) and “galactose activity / glucose”. Defined as “activity” (%).
  • the activity measurement can also be performed using a plate reader. In that case, the change in absorbance at 600 nm was measured using a reaction reagent having the same composition as above and an enzyme diluted as appropriate, and the absorbance of the enzyme solution whose enzyme activity was known by the activity measurement procedure using the quartz cell. By performing proportional conversion between changes, the enzyme activity of the enzyme solution can be calculated.
  • the enzyme is preferably diluted as appropriate so that the final concentration is preferably 0.2 to 0.9 mg / mL.
  • the protein concentration in the present invention was determined by using bovine serum albumin (BSA, manufactured by Wako Pure Chemical Industries, Ltd.) using Bio-Rad Protein Assay, which is a protein concentration measurement kit that can be purchased from Nippon Bio-Rad Co., Ltd. , For biochemistry) can be calculated from a calibration curve created as a standard substance.
  • BSA bovine serum albumin
  • Bio-Rad Protein Assay which is a protein concentration measurement kit that can be purchased from Nippon Bio-Rad Co., Ltd. , For biochemistry
  • Plasmid pCGLD containing the wild-type GLD gene (SEQ ID NO: 2) whose entire base sequence is disclosed in Patent Document 2 was isolated from Eschelichia coli JM109 / pCGLD (FERM BP-10243).
  • the GLD gene derived from Aspergillus terreus FERM BP-08578, which is disclosed in Patent Document 1 is isolated by a conventional method, and a signal sequence (amino acids 1 to 19 in SEQ ID NO: 1) is isolated. It can also be obtained by inserting into the KpnI-PstI site at the multicloning site of the plasmid vector pColdIII commercially available from Takara Bio, excluding the site coding for.
  • the primer DNA (F) has a restriction enzyme KpnI cleavage site
  • the primer DNA (R) has a restriction enzyme PstI cleavage site.
  • SEQ ID NO: 2 wild type GLD gene obtained in Example 1
  • R primer DNA described in SEQ ID NO: 4
  • a GeneMorph-II-Random-Mutagenesis Kit manufactured by STRATAGENE
  • coli JM109 Competent Cells (manufactured by Takara Bio Inc.) was transformed as a host, and then seeded on an LB agar plate containing 50 ⁇ g / mL of ampicillin sodium (manufactured by Wako Pure Chemical Industries, Ltd.), a selective marker, at 37 ° C. Transformants were obtained by culturing overnight.
  • Solution A consisting of tryptone (BD) 1.2% (w / v), Yeast extract (BD) 2.4% (w / v), glycerin (Nacalai Tesque) 5% (w / v) and water Prepared by autoclaving at 121 ° C. for 15 minutes.
  • Solution B consisting of potassium dihydrogen phosphate (Nacalai Tesque) 2.3%, dipotassium hydrogen phosphate (Nacalai Tesque) 12.5% and water was added to a 0.45 ⁇ m filter ( And prepared by filtration using Advantech).
  • the cultured transformants are collected by centrifugation, washed with distilled water, and then centrifuged again to add 50 ⁇ L CelLytic B Cellysis Reagent (manufactured by SIGMA) to the cells. After standing at 25 ° C. for 30 minutes, the supernatant was collected by centrifugation and used as a cell-free extract. According to the enzyme activity measurement method described above, the GLD enzyme activity of the cell-free extract was confirmed.
  • GLD enzyme activity (U / mL-b) per mL of culture solution using D-glucose as a substrate is not reduced to 1/10 or less compared to the wild type, and has xylose activity / glucose activity
  • (Xyl / Glc) was significantly lower than that of the wild strain and conducting a genetic analysis, it was as shown in Table 3.
  • coli JM109 Competent Cells (manufactured by Takara Bio Inc.) as a host, seed it on an LB agar plate (manufactured by BD) containing 50 ⁇ g / mL ampicillin sodium (manufactured by Wako Pure Chemical Industries, Ltd.) After culturing at 37 ° C. overnight, a transformant having a modified GLD gene encoding a modified GLD in which glycine at position 73 in the amino acid sequence of wild-type GLD was replaced with alanine was obtained.
  • Example 5 (Evaluation of GLD enzyme activity of transformants with modified GLD genes with site-specific substitution mutations: Part 1)
  • the transformant obtained in Example 5 was cultured in the same manner as described in Example 3, and the GLD enzyme activity of the cell-free extract was measured and evaluated.
  • GLD enzyme activity (U / mL-b) per mL of culture medium when D-glucose is used as a substrate is more than one-tenth that of wild-type GLD, and xylose / glucose activity
  • Table 4 shows the results obtained by selecting a mutant strain in which (Xyl / Glc) was significantly lower than that of the wild strain and conducting gene analysis.
  • GLD enzyme activity (U / mL-b) per mL of culture medium when D-glucose is used as a substrate is more than one-tenth that of wild-type GLD, and xylose / glucose activity Table 5 shows the results of selecting a mutant strain in which (Xyl / Glc) was significantly lower than that of the wild strain and conducting gene analysis.
  • the plasmid containing the modified GLD gene was isolated by a conventional method.
  • a transformant having a modified GLD gene encoding a modified GLD in which the arginine at position 102 of the wild-type GLD amino acid sequence was replaced with histidine S32
  • the plasmid containing the modified GLD gene was isolated by a conventional method.
  • a transformant having a modified GLD gene encoding a modified GLD in which glycine at position 73 in the amino acid sequence of wild-type GLD is substituted with serine S16 was used to isolate a plasmid containing the modified GLD gene by a conventional method.
  • Example 8 Using the plasmid containing each modified GLD gene obtained in Example 8 as a template, synthesis was performed based on the base sequence of the GLD gene derived from Aspergillus terreus FERM BP-08578 published in Patent Document 1.
  • the modified GLD gene was PCR amplified using the following primers (primers 1, 3 were used first, then 2, 3).
  • Aspergillus oryzae NS4 strain (derived from RIB40 strain) was used. This strain was found in the brewery laboratory (currently the Institute for Liquor Research) in 1997, as disclosed in known literature 1 (Biosci. Biotech. Biochem., 61 (8), 1367-1369, 1997). Those that have been bred and used for analysis of transcription factors, breeding of high-producing strains of various enzymes, etc. are available.
  • An improved promoter of the amylase system derived from Aspergillus oryzae described in publicly known document 2 Heterogeneous gene expression system of Aspergillus genus, Toshiki Mineki, Chemistry and Biology, 38, 12, P831-838, 2000).
  • Transformation is basically carried out according to the method described in known literature 2 and known literature 3 (gene manipulation technology of koji mold for sake, Katsuya Gomi, Shukyo, P494-502, 2000) to transform the transformant. I got it.
  • the culture was shaken for 3 days, and after completion of the culture, the culture supernatant was collected by centrifugation. This was filtered using a 10 ⁇ m membrane filter (manufactured by Advantech) to obtain an enzyme solution showing an approximately 81 kDa band in SDS polyacrylamide gel electrophoresis.
  • Patent Document 2 describes the culture supernatant of a transformant having a modified GLD gene encoding a modified GLD in which the glycine at position 73 in the wild-type GLD amino acid sequence is replaced with aspartic acid.
  • Enzyme purification was performed according to the above method to obtain a purified enzyme showing a single band of about 81 kDa in SDS polyacrylamide gel electrophoresis. According to the enzyme activity measurement method described above, the “xylose activity / glucose activity” of the purified modified GLD enzyme was confirmed.
  • the wild type GLD was 8.6%, whereas the glycine at position 73 was asparagine.
  • the modified GLD substituted with acid was 4.8%.
  • the purified modified GLD had “maltose activity / glucose activity” of 0.91% and “galactose activity / glucose activity” of 0.57%, which revealed that the activity was extremely low. From the above results, in addition to maltose activity and galactose activity, in addition to maltose activity and galactose activity, by cultivating transformants that produce modified GLD with reduced xylose activity, it acts on maltose and galactose. Without modification, it was confirmed that a modified GLD having a low xylose activity can be obtained.
  • Example 5 the plasmid pCGLD containing the wild-type GLD gene, each primer DNA described in SEQ ID NOs: 21 to 34 synthesized in Example 2, and a synthetic oligo complementary to each primer DNA Plasmids into which each substitution mutation was introduced were obtained using nucleotides. Transformation was performed in the same manner as described above, and transformants having modified GLD genes encoding each modified GLD in which part of the amino acid sequence of wild-type GLD was substituted were obtained.
  • GLD enzyme activity (U / mL-b) per mL of culture medium when D-glucose is used as a substrate is more than one-tenth that of wild-type GLD
  • xylose / glucose activity Table 8 shows the results of selecting a mutant strain in which (Xyl / Glc) was significantly lower than that of the wild strain and conducting gene analysis.
  • the modified GLD encoded by the polynucleotide of the present invention does not substantially act on maltose and galactose in the measurement of blood glucose, and the xylose activity is reduced as compared with wild-type GLD. It can also be used for self blood glucose measurement (SMBG) devices, which greatly contribute to self-management and treatment of diabetic patients.
  • SMBG self blood glucose measurement

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Emergency Medicine (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

【課題】グルコースに対するより高い特異性を有するFAD結合型グルコース脱水素酵素を提供すること。 【解決手段】配列番号1で示される野生型のFAD結合型グルコース脱水素酵素(GLD)アミノ酸配列において、37, 69, 72, 73, 76, 78, 102, 217, 228, 240, 356, 407, 424, 437, 527及び530位のアミノ酸からなる群から選択される少なくとも1つのアミノ酸残基における置換を含み、且つ、野生型GLDと比較してキシロース作用性/グルコース作用性が低下した改変型GLD、該改変型GLDをコードするポリヌクレオチド、該ポリヌクレオチドを保有する組換えベクター、及び、該組換えベクターを用いることによって作製された形質転換細胞等。  

Description

改変型グルコース脱水素酵素遺伝子
 本発明は、フラビンアデニンジヌクレオチド(FAD)を補酵素とし、グルコースの1位の水酸基を脱水素(酸化)する反応を触媒する、FAD結合型グルコース脱水素酵素(GLD)に関する。より詳細には、改良された基質特異性を有する、改変型GLDポリペプチド、及び改変型GLDをコードするポリヌクレオチド、該酵素の製造方法、該酵素を使用することを特徴とするグルコースの測定方法、グルコース測定試薬組成物、並びにグルコース測定用のバイオセンサ等に関する。尚、本明細書において、特に断りがない限り、グルコース等の単糖類はD-体を意味する。
 血中グルコース濃度は糖尿病の重要なマーカーである。従来、血中グルコース濃度の測定にはグルコース酸化酵素が用いられてきたが、グルコース酸化酵素は溶存酸素濃度の影響を受け、計測値に誤差が生じるため、近年、酸素の影響を受けないグルコース脱水素酵素も広く使用されている。
 酸素の影響を受けない市販のグルコース脱水素酵素として、ピロロキノリンキノン(PQQ)を補酵素とするグルコース脱水素酵素(PQQ-GDH)が知られているが、従来のPQQ-GDHは、マルトースやガラクトース等、グルコース以外の糖類にも反応してしまうという欠点を有している。
 これに対して、本発明者のグループは、FADを補酵素とする、新規な可溶性のGLDをアスペルギルス・テレウスFERM BP-08578株から見出し(特許文献1)、遺伝子のクローニングに成功した(特許文献2)。これらのGLDは、溶存酸素の影響を受けず、グルコースの1位の水酸基を酸化し、マルトースやガラクトースに対する作用性(酵素活性)が低い、というこれまでに無い優れた特性を有するものである。
 また、特許文献3に開示されているPenicillium lilacinoechinulatum NBRC6231、Penicillium italicum NBRC32032、及びAspergillus oryzae TI株由来のグルコース脱水素酵素、あるいは特許文献4に開示されているAspergillus oryzae BB-56株由来のグルコース脱水素酵素もマルトースやガラクトースに対する作用性が低いことが示されている。
 しかしながら、これらの従来のGLDは基質特異性には未だ改良すべき問題があった。
国際公開第2004/058958号パンフレット 国際公開第2006/101239号パンフレット 国際公開第2007/116710号パンフレット 国際公開第2007/139013号パンフレット
従来知られているGLDはキシロースに作用するという欠点があり、キシロース吸収試験を実施中の患者については、実際の血糖値よりも高い値を示すため、使用しない旨の注意喚起もなされている。
従って、グルコースに対するより高い特異性を有するGLDに対するニーズがあり、これを提供することが本発明の解決すべき課題である。
 本発明は、上記課題を解決し、グルコースに対する反応性及び基質認識性に優れる一方で、マルトース及びガラクトース、更にキシロースに対する作用性が低いという優れた特性を有する改変型GLDをコードする新規な遺伝子(ポリヌクレオチド)、該遺伝子により組換えられた形質転換細胞を用いる該酵素の製造方法、並びに、得られた該酵素を使用することを特徴とするグルコースの測定方法、グルコース測定試薬組成物、及びグルコース測定用のバイオセンサ等を提供することを目的とする。
本発明は以下の各態様に係るものである。
[態様1]配列番号1で示される野生型のFAD結合型グルコース脱水素酵素(GLD)アミノ酸配列において、37, 69, 72, 73, 76, 78, 102, 217, 228, 240, 356, 407, 424, 437, 527及び530位のアミノ酸からなる群から選択される少なくとも1つのアミノ酸残基における置換を含み、且つ、野生型GLDと比較してキシロース作用性/グルコース作用性が低下した改変型GLD。
[態様2]
野生型GLDと比較してキシロース作用性/グルコース作用性が0.85倍以下に低下した、態様1記載の改変型GLD。
[態様3]
アミノ酸置換が、D72A、G73D、G73A、G73S、G73C、G73Q、G73W、G73Y、G73E、G73H、R102H、Y228H、V356A、及びP527L、並びに、S37V、S37G、T69I、L76F、F78L、R102V、N217S、P240I、P240L、Q407A、Q407S、Y424S、A437I及びT530Aからなる群から選択される、態様1又は2記載の改変型GLD。
[態様4]
配列番号1で示される野生型のFAD結合型グルコース脱水素酵素(GLD)アミノ酸配列において、N64D+R102H+L250Q、G73D、Y228H+A589T、K374Q+P527L、V356A、D72A+G210S、G73A、P527L、D72A、Y228H、G73C、G73H、R102H、D72A+G73D、G73S、G73Q、G73W、G73Y、及びG73E、並びに、S37V、S37G、T69I、L76F、F78L、R102V、N217S、P240I、P240L、Q407A、Q407S、Y424S、A437I及びT530Aからなる群から選択されるアミノ酸置換を有する改変型GLD。
[態様5]
態様1ないし4のいずれか一項に記載の改変型GLDをコードするポリヌクレオチド。
[態様6]
配列番号1で示される野生型のFAD結合型グルコース脱水素酵素(GLD)アミノ酸配列をコードするポリヌクレオチドが配列番号2に示される塩基配列を有する、態様5記載のポリヌクレオチド。
[態様7]態様5又は6記載のポリヌクレオチドを保有する組換えベクター。
[態様8]態様7記載の組換えベクターを用いることによって作製された形質転換細胞。
[態様9]大腸菌又はアスペルギルス・オリゼである、態様8記載の形質転換細胞。
[態様10]態様8又は9の形質転換細胞を培養し、得られた培養物から改変型GLDを採取することを特徴とする、改変型GLDの製造方法。
[態様11]態様1ないし4のいずれか一項に記載の改変型GLD又は請求項10記載の製造方法で得られた改変型GLDを使用することを特徴とする、グルコースの測定方法。
[態様12]態様1ないし4のいずれか一項に記載の改変型GLD又は請求項10記載の製造方法で得られた改変型GLDを含有することを特徴とする、グルコース測定試薬組成物。
[態様13]態様1ないし4のいずれか一項に記載の変型GLD又は請求項10記載の製造方法で得られた改変型GLDを使用することを特徴とする、グルコース測定用のバイオセンサ。
 本発明のポリヌクレオチドを利用することにより、グルコースに対する基質認識性に優れ、しかもマルトースやキシロースに対する作用性が低いという優れた特性を有する改変型GLDを、例えば、遺伝子組換え技術により均質かつ大量に生産することが可能となる。
本発明の改変型GLDを用いて得られたグルコース測定のための検量線を示す。
 本発明の改変型GLDは、以下の表1(アミノ酸一文字表記)の配列番号1(シグナルペプチドを含む)で示される野生型のFAD結合型グルコース脱水素酵素(GLD)アミノ酸配列において、37, 69, 72, 73, 76, 78, 102, 217, 228, 240, 356, 407, 424, 437, 527及び530位のアミノ酸からなる群から選択される少なくとも1つのアミノ酸残基における置換を含み、且つ、野生型GLDに対してキシロース作用性/グルコース作用性が低下していることを特徴とする。
上記のアミノ酸残基における置換の代表的な例として、D72A、G73D、G73A、G73S、G73C、G73Q、G73W、G73Y、G73E、G73H、R102H、Y228H、V356A、及びP527L、並びに、 S37V、S37G、T69I、L76F、F78L、R102V、N217S、P240I、P240L、Q407A、Q407S、Y424S、A437I及びT530Aからなる群から選択されるアミノ酸置換を挙げることが出来る。
本発明の改変型GLDは、本明細書中で定義される「キシロース作用性/グルコース作用性」(%)が野生型GLDと比較して有意な値、例えば、少なくとも0.85倍以下、好ましくは0.5倍以下、より好ましくは0.3倍以下、更に好ましくは0.2倍以下に低下したキシロース作用性を有するものである。尚、キシロース作用性/グルコース作用性は、形質転換体の培養条件及び酵素活性の測定条件等によって変動するので、同一の条件下で野生型GLDと改変型GLDについてキシロース作用性/グルコース作用性(%)を測定して比較する必要がある。
更に、本発明の改変型GLDは、好ましくは、D-グルコースに対する酵素活性値を100%とした場合、マルトースに対する酵素活性値(「マルトース作用性/グルコース作用性」ともいう)が5%以下、より好ましくは3%以下であり、D-ガラクトースに対する酵素活性値(「ガラクトース作用性/グルコース作用性」ともいう)が5%以下、より好ましくは3%以下という優れた特長を有するものである。
 又、本発明の改変型GLDは、上記のアミノ酸置換に加えて、上記のように野生型GLDに対してキシロース作用性/グルコース作用性が低下している限り、配列番号1で示されるアミノ酸配列において、更に1個~数個のアミノ酸が置換、欠失又は付加されていても良い。
本発明の改変型GLDの好適例は、実施例に具体的に記載されているように、配列番号1で示される野生型のGLDアミノ酸配列において、N64D+R102H+L250Q、G73D、Y228H+A589T、K374Q+P527L、V356A、D72A+G210S、G73A、P527L、D72A、Y228H、G73C、G73H、R102H、D72A+G73D、G73S、G73Q、G73W、G73Y、G73E、更に、S37V、S37G、T69I、L76F、F78L、R102V、N217S、P240I、P240L、Q407A、Q407S、Y424S、A437I、及び、T530A並びにこれらの任意の組み合わせからなる群から選択されるアミノ酸置換を有する改変型GLDである。
本発明の改変型GLDをコードするポリヌクレオチドの一例として、配列番号1(表1)で示される野生型GLDのアミノ酸配列をコードするポリヌクレオチドとして配列番号2(表2)に示される塩基配列を有するものを挙げることが出来る。その他、同一のアミノ酸をコードする限り別のコドンが使用されていても良い。例えば、ポリヌクレオチドで形質転換させる宿主細胞の種類等に応じて使用コドンを適宜最適化することが出来る。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
尚、本発明において、「ポリヌクレオチド」とは、プリン又はピリミジンが糖にβ-N-グリコシド結合したヌクレオシドのリン酸エステル(ATP(アデノシン三リン酸)、GTP(グアノシン三リン酸)、CTP(シチジン三リン酸)、UTP(ウリジン三リン酸);又はdATP(デオキシアデノシン三リン酸)、dGTP(デオキシグアノシン三リン酸)、dCTP(デオキシシチジン三リン酸)、dTTP(デオキシチミジン三リン酸))が100個以上結合した分子を言い、具体的には本発明の改変型GLDをコードする染色体DNA(イントロンを含むDNA)、染色体DNAから転写されたmRNA、mRNAから合成されたcDNA及び、それらを鋳型としてPCR増幅したポリヌクレオチドを含む。「オリゴヌクレオチド」とはヌクレオチドが2-99個連結した分子を言う。また「ポリペプチド」とは、アミド結合(ペプチド結合)又は非天然の残基連結によって互いに結合した30個以上のアミノ酸残基から構成された分子を意味し、さらには、これらに糖鎖が付加したものや、人工的に化学的修飾がなされたもの等も含む。又、本発明のポリヌクレオチドには、改変型GLDのシグナル配列をコードする塩基配列を形質転換細胞の種類等に応じて適宜含むことも出来る。
本発明のポリヌクレオチドは、当業者の公知の任意の方法で容易に調製することが可能である。例えば、本明細書の実施例に具体的に記載されているように、配列番号2に示された塩基配列を有するポリヌクレオチドを含むプラスミドから野生型GLD遺伝子を単離し、これに基づき、適当なオリゴヌクレオチドプライマー(プローブ)のセットを用いた当業者に公知の各種PCR法を利用してランダム変異又は部位特異的変異を導入することにより、本発明の改変型GLDをコードするポリヌクレオチドを調製することができる。
更に、文献(例えばCarruthers(1982)Cold Spring Harbor Symp. Quant. Biol. 47:411-418;Adams(1983)J. Am. Chem. Soc. 105:661; Belousov(1997)Nucleic Acid Res. 25:3440-3444; Frenkel(1995)Free Radic. Biol. Med. 19:373-380;Blommers(1994)Biochemistry 33:7886-7896; Narang(1979)Meth. Enzymol. 68:90; Brown(1979)Meth. Enzymol. 68:109; Beaucage(1981)Tetra. Lett. 22:1859; 米国特許第4,458,066号)に記載されているような周知の化学合成技術により、in vitroにおいて本発明のポリヌクレオチドを合成することができる。
 本発明の組換えベクターは、クローニングベクター又は発現ベクターであり、インサートとしてのポリヌクレオチドの種類や、その使用目的等に応じて適宜のものを使用して、当業者に公知の任意の方法で作製することができる。例えば、cDNA又はそのORF領域をインサートとして本発明の改変型GLDを生産する場合には、in vitro転写用の発現ベクターや、大腸菌、枯草菌等の原核細胞、酵母、カビなどの糸状菌、昆虫細胞、哺乳動物細胞等の真核細胞のそれぞれに適した発現ベクターを使用することもできる。
 本発明の形質転換細胞としては、例えば、大腸菌、枯草菌等の原核細胞や、酵母、カビ、昆虫細胞、哺乳動物細胞等の真核細胞等を使用することができる。これら細胞は、改変型GLDの糖鎖の要、不要、その他のペプチド修飾の必要性に応じて、適宜宿主は選択することができる。これらの形質転換細胞は、電気穿孔法、リン酸カルシウム法、リポソーム法、DEAEデキストラン法など当業者に公知の任意の方法によって組換えベクターを細胞に導入することによって調製することができる。組換えベクター及び形質転換細胞の具体例として、下記実施例に示した組換えベクターと、このベクターによる形質転換大腸菌及び形質転換カビが挙げられる。
 本発明の改変型GLDを大腸菌などの微生物でDNAを発現させて生産させる場合には、微生物中で複製可能なオリジン、プロモーター、リボソーム結合部位、DNAクローニング部位、ターミネーター配列等を有する発現ベクターに前記のポリヌクレオチドを組換えた発現ベクターを作成し、この発現ベクターで宿主細胞を形質転換したのち、得られた形質転換体を培養すれば、改変型GLDを微生物で大量生産することができる。この際、任意の翻訳領域の前後に開始コドンと停止コドンを付加して発現させれば、任意の領域を含む改変型GLD断片を得ることもできる。あるいは、他の蛋白質との融合蛋白質として発現させることもできる。この融合蛋白質を適当なプロテアーゼで切断することによっても目的とする改変型GLDを取得することができる。大腸菌用発現ベクターとしては、pUC系、pBluescriptII、pET発現システム、pGEX発現システム、pCold発現システムなどが例示できる。
 或いは、本発明の改変型GLDを真核細胞で発現させて製造する場合には、前記ポリヌクレオチドを、プロモーター、スプライシング領域、ポリ(A)付加部位等を有する真核細胞用発現ベクターに挿入して組換えベクターを作成し、真核細胞内に導入すれば、改変型GLDを真核細胞で生産することができる。プラスミドのような状態で細胞内に維持することもできるし、染色体中に組みこませて維持することもできる。発現ベクターとしては、pKA1、pCDM8、pSVK3、pSVL、pBK-CMV、pBK-RSV、EBVベクター、pRS、pYE82などが例示できる。また、pIND/V5-His、pFLAG-CMV-2、pEGFP-N1、pEGFP-C1などを発現ベクターとして用いれば、Hisタグ、FLAGタグ、GFPなど各種タグを付加した融合蛋白質としてFAD結合型グルコース脱水素酵素ポリペプチドを発現させることもできる。真核細胞としては、サル腎臓細胞COS-7、チャイニーズハムスター卵巣細胞CHOなどの哺乳動物培養細胞、出芽酵母、分裂酵母、カビ、カイコ細胞、アフリカツメガエル卵細胞などが一般に用いられるが、本発明の改変型GLDを発現できるものであれば、いかなる真核細胞でもよい。発現ベクターを真核細胞に導入するには、電気穿孔法、リン酸カルシウム法、リポソーム法、DEAEデキストラン法など公知の方法を用いることができる。
 特に、本発明の改変型GLDをコードするポリヌクレオチドを保有するアスペルギルス・オリゼ(Aspergillus oryzae)由来の組換えベクターで、適当なアスペルギルス・オリゼ株を形質転換するクローニングが好適である。
 本発明の改変型GLDを原核細胞や真核細胞で発現させた後、培養物(菌体、もしくは菌体外に分泌された酵素を含む培養液、培地組成物等)から目的蛋白質を採取、即ち、単離精製するためには、公知の分離操作を組み合わせて行うことができる。例えば、尿素などの変性剤や界面活性剤による処理、熱処理、pH処理、超音波処理、酵素消化、塩析や溶媒沈殿法、透析、遠心分離、限外濾過、ゲル濾過、SDS-PAGE、等電点電気泳動、イオン交換クロマトグラフィー、疎水性クロマトグラフィー、逆相クロマトグラフィー、アフィニティークロマトグラフィー(タグ配列を利用した方法及び改変型GLDに特異的なポリクローナル抗体、モノクローナル抗体を用いる方法も含む)、などが挙げられる。このような方法で、本発明の改変型GLDを大量に製造することができる。
 また、本発明の改変型GLDは、本発明のポリヌクレオチド(cDNA又はその翻訳領域)を有するベクターからin vitro転写によってRNAを調製し、これを鋳型としてin vitro翻訳を行うことによりin vitroで製造することができる。
改変型GLDをin vitro発現させて製造する場合には、前記のポリヌクレオチドを、RNAポリメラーゼが結合できるプロモーターを有するベクターに挿入して組換えベクターを作成し、このベクターを、プロモーターに対応するRNAポリメラーゼを含むウサギ網状赤血球溶解物や小麦胚芽抽出物などのin vitro翻訳系に添加すれば、改変型GLDをin vitroで生産することができる。RNAポリメラーゼが結合できるプロモーターとしては、T3、T7、SP6などが例示できる。これらのプロモーターを含むベクターとしては、pKA1、pCDM8、pT3/T718、pT7/319、pBluescriptIIなどが例示できる。
 以上に記載された方法で製造することができる本発明の改変型GLDは、電子受容体存在下でグルコースを脱水素する反応を触媒する酵素であるから、この反応による変化が利用できる用途であれば、特に制限されない。例えば、生体物質を含む試料中のグルコースの測定及び測定用試薬、消去用試薬へ使用するなどの医療分野、臨床分野への使用が可能であり、補酵素結合型グルコース脱水素酵素を使用した物質生産においても使用可能である。
 本発明のグルコース測定試薬組成物は、全てを混合して単一の試薬としてもよく、相互に干渉する成分が存在する場合には、各成分を適宜な組み合せとなる様に分割してもよい。また、これらは、溶液状、もしくは粉末状試薬として調製してもよく、さらにこれらを濾紙もしくはフィルムなどの適当な支持体に含有させ試験紙もしくは分析用フィルムとして調製してもよい。なお、過塩素酸などの除タンパク剤やグルコース定量を含有する標準試薬を添付してもよい。本組成物中の酵素の量は、1試料当り0.1から50単位程度が好ましい。グルコースを定量するための検体は、例えば血漿、血清、髄液、唾液、尿などが挙げられる。
 本発明のバイオセンサは、酵素として本発明の改変型GLDを含む反応層に使用し、試料液中のグルコース濃度を測定するグルコースセンサである。例えば、絶縁性基板上にスクリーン印刷などの方法を利用して作用極、その対極及び参照極からなる電極系を形成し、この電極系上に接して親水性高分子と酸化還元酵素と電子受容体とを含む酵素反応層を形成することによって作製される。このバイオセンサの酵素反応層上に基質を含む試料液を滴下すると、酵素反応層が溶解して酵素と基質が反応し、これにともなって電子受容体が還元される。酵素反応終了後、還元された電子受容体を電気化学的に酸化させ、このとき、このバイオセンサは得られる酸化電流値から試料液中の基質濃度を測定することが可能である。また、この他に、発色強度あるいはpH変化などを検知する方式のバイオセンサも構築可能である。
バイオセンサの電子受容体としては、電子の授受能に優れた化学物質を用いることができる。電子の授受能に優れた化学物質とは、一般的に「電子伝達体」、「メディエータ」あるいは「酸化還元媒介剤」と呼ばれる化学物質であり、これらに該当する化学物質として、例えば、特表2002-526759に挙げられた電子伝達体や酸化還元媒介剤などを利用してもよい。具体的には、オスミウム化合物、キノン化合物、フェリシアン化合物等が挙げられる。
GLDの活性測定においては、該酵素を、好ましくは終濃度0.1~1.0unit/mLになるように適宜希釈して用いる。なお、該酵素の酵素活性単位(unit)は1分間に1μmolのグルコースを酸化する酵素活性である。GLDの酵素活性は、次の方法で測定できる。
[酵素活性測定法]
 0.1M リン酸カリウム緩衝液(pH7.0)1.0mL、1.0M D-グルコース1.0mL、3mM 2,6-ジクロロフェノールインドフェノール(以下DCIPという)0.14mL、3mM 1-メトキシ-5-メチルフェナジウムメチルサルフェイト0.2mL、水0.61mLを3mL石英セル(光路長1cm)に添加し、恒温セルホルダー付き分光光度計にセットして37℃で10分間インキュベート後、酵素溶液0.05mLを添加後、DCIPの600nmにおける吸光度変化(ΔABS/min)を測定する。DCIPのpH7.0におけるモル吸光係数を16.3×103cm-1-1とし、1分間に1μmolのDCIPが還元される酵素活性が実質的に該酵素活性1unitと等価であることから、吸光度変化より該酵素活性を次式に従って求めた。
Figure JPOXMLDOC01-appb-M000003
 上記手順と同様にして、1分間に1μmolのキシロース、マルトース及びガラクトースを酸化する酵素活性は、D-グルコースの代わりに、夫々、同じ濃度のD-キシロース(SIGMA社製)、マルトース一水和物(ナカライテスク社製)及び、D-ガラクトース(和光純薬工業社製)を用いることで測定できる。
 また、グルコースを酸化する酵素活性(U)を100%とした場合のキシロースを酸化する酵素活性(相対活性)を「キシロース作用性/グルコース作用性」(%)と定義する。
 同じく、グルコースを酸化する酵素活性(U)を100%とした場合のマルトース又はガラクトースを酸化する酵素活性(相対活性)を「マルトース作用性/グルコース作用性」(%)及び「ガラクトース作用性/グルコース作用性」(%)と定義する。
 なお、活性測定はプレートリーダーを用いて行うこともできる。その場合には、上記と同一組成の反応試薬と適宜希釈した酵素を用いて600nmにおける吸光度変化を測定し、上記石英セルを用いた活性測定手順により酵素活性が既知となっている酵素溶液の吸光度変化との間で比例換算を行うことにより、酵素溶液の酵素活性を算出することができる。
本酵素のタンパク濃度の測定においては、該酵素を、好ましくは終濃度0.2~0.9 mg/mL になるように適宜希釈して用いる。本発明におけるタンパク濃度は、日本バイオ・ラッド(株)から購入できるタンパク濃度測定キットであるBio-Rad Protein Assayを用い、取扱説明書に従って、牛血清アルブミン(BSA,和光純薬工業(株)製,生化学用)を標準物質として作成した検量線から換算して求めることができる。
 尚、本発明を実施するために使用する様々な技術は、特にその出典を明示した技術を除いては、公知の文献等に基づいて当業者であれば容易かつ確実に実施可能である。例えば、遺伝子工学及び分子生物学的技術はSambrook and Maniatis, in Molecular Cloning-A Laboratory Manual, Cold Spring Harbor Laboratory Press, New York, 1989; Ausubel, F. M. et al., Current Protocols in Molecular Biology, John Wiley & Sons, New York, N.Y, 1995などに記載の方法あるいはそこで引用された文献記載の方法又はそれらと実質的に同様な方法や改変法に基づき実施可能である。さらに、この発明における用語は基本的にはIUPAC-IUB Commission on Biochemical Nomenclatureによるものであり、あるいは当該分野において慣用的に使用される用語の意味に基づくものである。
 
 以下、実施例に則して本発明を更に詳しく説明する。尚、本発明の技術的範囲はこれらの記載によって何等制限されるものではない。又、本明細書中に引用される文献に記載された内容は、本明細書の一部として本明細書の開示内容を構成するものである。
(野生型GLD遺伝子の取得)
 特許文献2に全塩基配列が公開されている野生型GLD遺伝子(配列番号2)を含むプラスミドpCGLDをEschelichia coli JM109/pCGLD(FERM BP-10243)から単離した。これは、特許文献1に公開されているアスペルギルス・テレウス(Aspergillus terreus)FERM BP-08578株由来のGLD遺伝子を通常の方法により単離し、シグナル配列(配列番号1における1~19番目のアミノ酸配列)をコードする部位を除いた形で、タカラバイオより市販されているプラスミドベクターpColdIIIのマルチクローニングサイトにあるKpnI-PstI部位に挿入することでも取得できる。
(ランダム変異を導入した改変型GLD遺伝子を持つ形質転換体の取得)
 GLD遺伝子にランダム変異を導入するために、下記のようなオリゴヌクレオチドをデザインし、合成した。なお、プライマーDNA(F)は制限酵素KpnI切断部位を有し、プライマーDNA(R)は制限酵素PstI切断部位を有する。
プライマーDNA(F):5’ cgtcatggtacctccaactccacgtccgccaa 3’ (配列番号3)
プライマーDNA(R):5’ agtgtactgcagctaacgacgaccagcatcgg 3’ (配列番号4)
 実施例1で取得した野生型GLD遺伝子(配列番号2)を含むプラスミドpCGLDと、実施例2で合成した配列番号3記載のプライマーDNA(F)、及び配列番号4記載のプライマーDNA(R)を用い、GeneMorph II Random Mutagenesis Kit(STRATAGENE社製)を用いて、キットに添付されている実験手順に従ってランダム変異を導入したプラスミドを取得した。宿主としてE. coli JM109 Competent Cells(タカラバイオ社製)を形質転換した後、選択マーカーであるアンピシリンナトリウム(和光純薬社製)を50μg/mL濃度含有するLB寒天プレートにまき、37℃で一晩培養して、形質転換体を取得した。
(ランダム変異を導入した改変型GLD遺伝子を持つ形質転換体のGLD酵素活性評価)
 トリプトン(BD社製)1.2%(w/v)、Yeast extract(BD社製)2.4%(w/v)、グリセリン(ナカライテスク社製)5%(w/v)及び水からなる溶液Aを121℃、15分オートクレーブ処理して調製し、リン酸二水素カリウム(ナカライテスク社製)2.3%、リン酸水素二カリウム(ナカライテスク社製)12.5%及び水からなる溶液Bを0.45μmフィルター(アドバンテック社製)を用いてろ過調製した。上記の溶液Aと溶液BをA:B=9:1となるように無菌環境下混合し、TB培地を調製した。
96マイクロウェルプレート(Nunc社製)の各ウェルに150μLのTB培地を分注し、実施例2で取得した形質転換体を1コロニーずつ植菌した。
 37℃、1,000rpmで5時間振とう培養後、培養温度を15℃とし、1,000rpmで30分振とう後、終濃度が0.1mMとなるようにイソプロピル-β-D-1-チオガラクトピラノシド(シグマアルドリッチジャパン社製)水溶液を25μL加えて、再度、15℃、1,000rpmで13時間振とう培養した。
 培養後の形質転換体を遠心により集菌し、蒸留水で洗浄した後、再度遠心分離を行って得た菌体に1ウェルあたり50μLのCelLytic B Cellysis Reagent(SIGMA社製)を加えてから、25℃で30分間静置した後、遠心して上清を回収し、無細胞抽出液とした。
前述の酵素活性測定法に従い、無細胞抽出液のGLD酵素活性を確認した。D-グルコースを基質とした場合の培養液1mLあたりのGLD酵素活性(U/mL-b)が野生株と比べて10分の1以下に低下しておらず、かつキシロース作用性/グルコース作用性(Xyl/Glc)が野生株と比べて優位に低下していた変異株を選別し、遺伝子解析を実施した結果、表3の通りだった。
Figure JPOXMLDOC01-appb-T000004
(部位特異的な置換変異を導入した改変型GLD遺伝子を持つ形質転換体の取得:その1)
 GLD遺伝子に部位特異的な置換変異を導入するために、下記のようなオリゴヌクレオチドをデザインし、合成した。
プライマーDNA(G73A):5’ gtcacaaacgtggatgcctacgggcttgctttt 3’ (配列番号5)
プライマーDNA(P527L):5’ gttctaacttccatctcgtcggcacggctgc 3’ (配列番号6)
プライマーDNA(D72A):5’ atgtcacaaacgtggctggctacgggcttgc 3’ (配列番号7)
プライマーDNA(Y228H):5’ cgtgaatcttgaggagcatgtgcgcgaagacgc 3’ (配列番号8)
プライマーDNA(G73C):5’ tcccaatgtcacaaacgtggattgctacgggcttg 3’ (配列番号9)
プライマーDNA(G73H):5’ caatgtcacaaacgtggatcactacgggcttgcttttggg 3’ (配列番号10)
プライマーDNA(R102H):5’ tagtcaagtgcttcatgccggcaaggccc 3’ (配列番号11)
プライマーDNA(D72A+G73D):5’ ccaatgtcacaaacgtggctgactacgggcttgcttttgg 3’ (配列番号12)
プライマーDNA(G73S):5’ tcccaatgtcacaaacgtggatagctacgggcttg 3’ (配列番号13)
プライマーDNA(G73Q):5’ aacaatcccaatgtcacaaacgtggatcagtacgggcttgctttt 3’ (配列番号14)
プライマーDNA(G73W):5’cccaatgtcacaaacgtggattggtacgggcttgct 3’ (配列番号15)
プライマーDNA(G73Y):5’ ggaacaatcccaatgtcacaaacgtggattattacgggcttgcttttg 3’ (配列番号16)
プライマーDNA(G73E):5’ atgtcacaaacgtggatgagtacgggcttgcttttggg 3’ (配列番号17)
 実施例1で取得した野生型GLD遺伝子を含むプラスミドpCGLDと、実施例4で合成した配列番号5記載のプライマーDNA(G73A)、及びプライマーDNAと相補的な合成オリゴヌクレオチドを用い、QuikChangeII Site-Directed Mutagenesis Kit(STRATAGENE社製)を用いて、キットに添付されている実験手順に従って置換変異を導入したプラスミドを取得した。宿主としてE. coli JM109 Competent Cells(タカラバイオ社製)を形質転換した後、選択マーカーであるアンピシリンナトリウム(和光純薬社製)を50μg/mL含有するLB寒天(BD社製)プレートにまき、37℃で一晩培養して、野生型GLDのアミノ酸配列の73位のグリシンがアラニンに置換された改変型GLDをコードする改変型GLD遺伝子を持つ形質転換体を取得した。
上記方法と同様にして、野生型GLD遺伝子を含むプラスミドpCGLDと、実施例4で合成した配列番号6ないし17に記載の各プライマーDNA、及び各プライマーDNAと相補的な合成オリゴヌクレオチドを用いて、各々の置換変異を導入したプラスミドを取得した。形質転換も上記同様に行い、野生型GLDのアミノ酸配列の一部が置換された各々の改変型GLDをコードする改変型GLD遺伝子を持つ形質転換体を取得した。
(部位特異的な置換変異を導入した改変型GLD遺伝子を持つ形質転換体のGLD酵素活性評価:その1)
 実施例5により取得した形質転換体について、実施例3に記載の手順と同様にして培養し、無細胞抽出液のGLD酵素活性を測定評価した。D-グルコースを基質とした場合の培養液1mLあたりのGLD酵素活性(U/mL-b)が野生株GLDのそれと比べて10分の1以上保持されており、かつキシロース作用性/グルコース作用性(Xyl/Glc)が野生株と比べて優位に低下していた変異株を選別し、遺伝子解析を実施した結果を表4に示す。
Figure JPOXMLDOC01-appb-T000005
(部位特異的な置換変異を導入した改変型GLD遺伝子を持つ形質転換体のGLD酵素活性評価:その2)
 実施例5により取得した形質転換体について、TB培地に代えて、トリプトン(BD社製)4%(w/v)、Yeast extract(BD社製)2%(w/v)、グリセリン(ナカライテスク社製)4%(w/v)及び水からなる培地(pHをNaOHで7.0に調整)を121℃、15分オートクレーブ処理して調製した培地を用いて、実施例3に記載の手順と同様に培養し、無細胞抽出液のGLD酵素活性を測定評価した。D-グルコースを基質とした場合の培養液1mLあたりのGLD酵素活性(U/mL-b)が野生株GLDのそれと比べて10分の1以上保持されており、かつキシロース作用性/グルコース作用性(Xyl/Glc)が野生株と比べて優位に低下していた変異株を選別し、遺伝子解析を実施した結果を表5に示す。
Figure JPOXMLDOC01-appb-T000006
(改変型GLD遺伝子の形質転換体のアスペルギルス・オリゼへのクローニング)
実施例2において取得した形質転換体のうち、野生型GLDのアミノ酸配列の374位のリジンがグルタミンに置換され、かつ527位のプロリンがロイシンに置換された改変型GLDをコードする改変型GLD遺伝子を持つ形質転換体(R30株)を用いて、改変型GLD遺伝子を含むプラスミドを常法により単離した。
同様に、実施例2において取得した形質転換体のうち、野生型GLDのアミノ酸配列の73位のグリシンがアスパラギン酸に置換された改変型GLDをコードする改変型GLD遺伝子を持つ形質転換体(R25株)を用いて、改変型GLD遺伝子を含むプラスミドを常法により単離した。
同様にして、実施例5において取得した形質転換体のうち、野生型GLDのアミノ酸配列の102位のアルギニンがヒスチジンに置換された改変型GLDをコードする改変型GLD遺伝子を持つ形質転換体(S32株)を用いて、改変型GLD遺伝子を含むプラスミドを常法により単離した。
また同様にして、実施例5において取得した形質転換体のうち、野生型GLDのアミノ酸配列の73位のグリシンがセリンに置換された改変型GLDをコードする改変型GLD遺伝子を持つ形質転換体(S16株)を用いて、改変型GLD遺伝子を含むプラスミドを常法により単離した。
実施例8で取得した各々の改変型GLD遺伝子を含むプラスミドを鋳型とし、特許文献1に公開されているアスペルギルス・テレウス(Aspergillus terreus)FERM BP-08578株由来のGLD遺伝子の塩基配列を元に合成した以下のプライマー(まず、プライマー1、3を用い、その後2、3)を用いて改変型GLD遺伝子をPCR増幅させた。
1. gene1F-1:
5'-atgttgggaaagctctccttcctcagtgccctgtccctggcagtggcggcacctttgtccaactccacgtccgcc-3'(配列番号18)
2. gene1F-2:
5'-(acgcgtcgac)tgaccaattccgcagctcgtcaaaatgttgggaaagctctcc-3'(配列番号19)
3. gene1R:
5'-(gtg)ctaacgacgaccagcatcggccttgatgagatcc-3'(配列番号20)
(Fは5’側、Rは3’側、括弧内:制限酵素切断部位、下線部:enoA 5’-UTR、その他:ORF)
使用する宿主としては、アスペルギルス・オリゼ NS4株(RIB40株由来)を使用した。本菌株は、公知文献1(Biosci. Biotech. Biochem.,61(8),1367-1369,1997)にあるように、1997年(平成9年)に醸造試験所(現 酒類総合研究所)で育種され、転写因子の解析、各種酵素の高生産株の育種などに利用され、分譲されているものが入手可能である。
 本菌株に対し、公知文献2(Aspergillus属の異種遺伝子発現系、峰時俊貴、化学と生物、38、12、P831-838、2000)に記載してあるアスペルギルス・オリゼ由来のアミラーゼ系の改良プロモーターを使用し、その下流に上記の改変型GLD遺伝子を結合させることで、本遺伝子が発現可能なベクターを調製した。
 形質転換は、基本的には公知文献2及び公知文献3(清酒用麹菌の遺伝子操作技術、五味勝也、醸協、P494-502,2000)に記載の方法に準じて実施することで形質転換体を取得した。
比較例
(野生型GLD遺伝子(配列番号1)のアスペルギルス・オリゼへのクローニング)
 実施例1で取得したプラスミドpCGLDを用い、実施例8に記載の方法と同様の手順により、野生型GLD遺伝子(配列番号1)を持つベクターを調製し、アスペルギルス・オリゼ NS4株を形質転換することで、形質転換体を取得した。
(形質転換されたアスペルギルス・オリゼからの酵素溶液の調製)
実施例9及び比較例において取得した形質転換体について、グルコース(和光純薬工業社製)1%(w/v)、脱脂大豆(日本食販社製)2%(w/v)、コーンスティープリカー(サンエイ糖化社製)0.5%(w/v)、硫酸マグネシウム(ナカライテスク社製)0.1%(w/v)、及び水を含むpH6.0の培養液20mLを用いて、30℃、3日間振盪培養し、培養終了後、遠心して培養上清を回収した。
これを10μmメンブレンフィルター(アドバンテック社製)を用いてろ過し、SDSポリアクリルアミドゲル電気泳動において約81kDaのバンドを示す酵素溶液を得た。
(形質転換されたアスペルギルス・オリゼから取得した酵素溶液の酵素活性評価)
前述の酵素活性測定法に従い、実施例10で取得した酵素溶液のGLD酵素活性(U/mL-b)及び「キシロース作用性/グルコース作用性」(Xyl/Glc)を確認したところ、下記の表6の通りとなった。この結果から、野生型GLDに比べてキシロース作用性が低下した改変型GLDを生産する形質転換体が得られたことが分かる。
以上の結果から、野生型GLDに比べてキシロース作用性が低下した改変型GLDを生産する形質転換体を培養することにより、改変型GLDが得られたことが分かる。
Figure JPOXMLDOC01-appb-T000007
更に、上記の野生型GLDのアミノ酸配列の73位のグリシンがアスパラギン酸に置換された改変型GLDをコードする改変型GLD遺伝子を持つ形質転換体の培養上清を用いて、特許文献2に記載の方法に準じて酵素精製を実施し、SDSポリアクリルアミドゲル電気泳動において約81kDaの単一バンドを示す精製酵素を得た。
 前述の酵素活性測定法に従い、この精製された改変型GLD酵素の「キシロース作用性/グルコース作用性」を確認したところ、野生型GLDは8.6%であるのに対して、73位のグリシンがアスパラギン酸に置換した改変型GLDは4.8%だった。
尚、上記精製された改変型GLDの「マルトース作用性/グルコース作用性」は0.91%、「ガラクトース作用性/グルコース作用性」は0.57%であり、作用性が極めて低いことが明らかとなった。
以上の結果から、野生型GLDに比べて、マルトース作用性及びガラクトース作用性に加えて、更にキシロース作用性が低下した改変型GLDを生産する形質転換体を培養することにより、マルトース及びガラクトースに作用せず、更にキシロース作用性の低い改変型GLDを得ることができることが確認された。
(改変型GLDを用いたD-グルコースの測定)
 実施例12で得られた、73位のグリシンがアスパラギン酸に置換した改変型GLDを生産する形質転換体の精製酵素溶液(比活性631U/mg)の酵素溶液を使用し、吸光度変化を測定することによるD-グルコースの測定を行った。プレートリーダーを用いた反応測定系において、終濃度が0.3、1.0、5.0、10、33mMになるようD-グルコースを添加し、600nmにおけるDCIPの吸光度変化(ΔAbs/min)を測定した。この吸光度変化を既知のグルコース濃度(0.3、1.0、5.0、10、33mM)に対してプロットしたところ、表7に示す結果が得られ、それに基づき検量線が作成できた(図1)。これより本発明の改変型GLDを用いてグルコースの定量が可能であることが示された。
Figure JPOXMLDOC01-appb-T000008
(部位特異的な置換変異を導入した改変型GLD遺伝子を持つ形質転換体の取得:その2)
 実施例4に加えて、GLD遺伝子に部位特異的な置換変異を導入するために、下記のようなオリゴヌクレオチドをデザインし、合成した。
プライマーDNA(S37V):5’ attggaggcggtactgtgggtttggccgtcgca  3’ (配列番号21)
プライマーDNA(S37G):5’ attggaggcggtactggcggtttggccgtcgca  3’ (配列番号22)
プライマーDNA(T69I):5’ aacaatcccaatgtcatcaacgtggatggctac    3’ (配列番号23)
プライマーDNA(L76F):5’ tggatggctacgggttcgcttttgggtctga   3’  (配列番号24)
プライマーDNA(F78L):5’ gctacgggcttgctttggggtctgacattga      3’  (配列番号25)
プライマーDNA(R102V):5’ cttagtcaagtgcttgtcgccggcaaggccctt   3’  (配列番号26)
プライマーDNA(N217S):5’ aagatgcgcggcttttccttatacccctccacc   3’  (配列番号27)
プライマーDNA(P240I):5’ cgtgcatactactggatctacaagtcccgtccc   3’  (配列番号28)プライマーDNA(P240L):5’ cgtgcatactactggttgtacaagtcccgtccc 3’  (配列番号29) 
プライマーDNA(Q407L):5’ cgtctcttcgaggtcctgtatgaccttattttc   3’  (配列番号30)
プライマーDNA(Q407S):5’ cgtctcttcgaggtctgctatgaccttattttc   3’  (配列番号31)
プライマーDNA(Y424S):5’ cgctgaagtcctgaactcgccgggcagcgcgacgt 3’ (配列番号32) 
プライマーDNA(A437I):5’ tttgcagaattctggatcctccttcccttcgct   3’ (配列番号33)
プライマーDNA(T530A):5’ ttccatcccgtcggcgcggctgccatgatgcct   3’ (配列番号34)
 実施例5に記載の方法と同様にして、野生型GLD遺伝子を含むプラスミドpCGLDと、実施例2で合成した配列番号21ないし34に記載の各プライマーDNA、及び各プライマーDNAと相補的な合成オリゴヌクレオチドを用いて、各々の置換変異を導入したプラスミドを取得した。形質転換も上記同様に行い、野生型GLDのアミノ酸配列の一部が置換された各々の改変型GLDをコードする改変型GLD遺伝子を持つ形質転換体を取得した。
(部位特異的な置換変異を導入した改変型GLD遺伝子を持つ形質転換体のGLD酵素活性評価:その3)
 実施例15により取得した形質転換体について、TB培地に代えて、トリプトン(BD社製)4%(w/v)、Yeast extract(BD社製)2%(w/v)、グリセリン(ナカライテスク社製)4%(w/v)及び水からなる培地(pHをNaOHで7.0に調整)を121℃、15分オートクレーブ処理して調製した培地を用いて、実施例3に記載の手順と同様に培養し、無細胞抽出液のGLD酵素活性を測定評価した。D-グルコースを基質とした場合の培養液1mLあたりのGLD酵素活性(U/mL-b)が野生株GLDのそれと比べて10分の1以上保持されており、かつキシロース作用性/グルコース作用性(Xyl/Glc)が野生株と比べて優位に低下していた変異株を選別し、遺伝子解析を実施した結果を表8に示す。
Figure JPOXMLDOC01-appb-T000009
本発明のポリヌクレオチドにコードされる改変型GLDは、血糖の測定において実質的にマルトース及びガラクトースに作用せず、キシロース作用性が野生型GLDに比べて低減されていることから、より高精度な自己血糖測定(SMBG)装置にも利用することができ、糖尿病患者の自己管理・治療に大きく資する。

Claims (13)

  1. 配列番号1で示される野生型のFAD結合型グルコース脱水素酵素(GLD)アミノ酸配列において、37, 69, 72, 73, 76, 78, 102, 217, 228, 240, 356, 407, 424, 437, 527及び530位のアミノ酸からなる群から選択される少なくとも1つのアミノ酸残基における置換を含み、且つ、野生型GLDと比較してキシロース作用性/グルコース作用性が低下した改変型GLD。
  2. 野生型GLDと比較してキシロース作用性/グルコース作用性が0.85倍以下に低下した、請求項1記載の改変型GLD。
  3. アミノ酸置換が、D72A、G73D、G73A、G73S、G73C、G73Q、G73W、G73Y、G73E、G73H、R102H、Y228H、V356A、及びP527L、並びに、 S37V、S37G、T69I、L76F、F78L、R102V、N217S、P240I、P240L、Q407A、Q407S、Y424S、A437I及びT530Aからなる群から選択される、請求項1又は2記載の改変型GLD。
  4. 配列番号1で示される野生型のFAD結合型グルコース脱水素酵素(GLD)アミノ酸配列において、N64D+R102H+L250Q、G73D、Y228H+A589T、K374Q+P527L、V356A、D72A+G210S、G73A、P527L、D72A、Y228H、G73C、G73H、R102H、D72A+G73D、G73S、G73Q、G73W、G73Y、及びG73E、並びに、S37V、S37G、T69I、L76F、F78L、R102V、N217S、P240I、P240L、Q407A、Q407S、Y424S、A437I及びT530Aからなる群から選択されるアミノ酸置換を有する改変型GLD。
  5. 請求項1ないし4のいずれか一項に記載の改変型GLDをコードするポリヌクレオチド。
  6. 配列番号1で示される野生型のFAD結合型グルコース脱水素酵素(GLD)アミノ酸配列をコードするポリヌクレオチドが配列番号2に示される塩基配列を有する、請求項5記載のポリヌクレオチド。
  7. 請求項5又は6記載のポリヌクレオチドを保有する組換えベクター。
  8. 請求項7記載の組換えベクターを用いることによって作製された形質転換細胞。
  9. 大腸菌又はアスペルギルス・オリゼである、請求項8記載の形質転換細胞。
  10. 請求項8又は9の形質転換細胞を培養し、得られた培養物から改変型GLDを採取することを特徴とする、改変型GLDの製造方法。
  11. 請求項1ないし4のいずれか一項に記載の改変型GLD又は請求項10記載の製造方法で得られた改変型GLDを使用することを特徴とする、グルコースの測定方法。
  12. 請求項1ないし4のいずれか一項に記載の改変型GLD又は請求項10記載の製造方法で得られた改変型GLDを含有することを特徴とする、グルコース測定試薬組成物。
  13. 請求項1ないし4のいずれか一項に記載の改変型GLD又は請求項10記載の製造方法で得られた改変型GLDを使用することを特徴とする、グルコース測定用のバイオセンサ。
PCT/JP2008/073689 2007-12-28 2008-12-26 改変型グルコース脱水素酵素遺伝子 WO2009084616A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/810,213 US8445221B2 (en) 2007-12-28 2008-12-26 Modified glucose dehydrogenase gene
EP08866874A EP2241621B1 (en) 2007-12-28 2008-12-26 Modified glucose dehydrogenase gene
CN200880126270XA CN101970656A (zh) 2007-12-28 2008-12-26 经修饰葡萄糖脱氢酶基因
JP2009548079A JP5398004B2 (ja) 2007-12-28 2008-12-26 改変型グルコース脱水素酵素遺伝子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007340477 2007-12-28
JP2007-340477 2007-12-28

Publications (1)

Publication Number Publication Date
WO2009084616A1 true WO2009084616A1 (ja) 2009-07-09

Family

ID=40824329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/073689 WO2009084616A1 (ja) 2007-12-28 2008-12-26 改変型グルコース脱水素酵素遺伝子

Country Status (5)

Country Link
US (1) US8445221B2 (ja)
EP (1) EP2241621B1 (ja)
JP (1) JP5398004B2 (ja)
CN (1) CN101970656A (ja)
WO (1) WO2009084616A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010053161A1 (ja) * 2008-11-06 2010-05-14 ユニチカ株式会社 改変型フラビンアデニンジヌクレオチド依存性グルコースデヒドロゲナーゼ
JP2011097931A (ja) * 2009-10-09 2011-05-19 Toyobo Co Ltd Fadジヌクレオチド依存性グルコースデヒドロゲナーゼの温度依存性を改善する方法
JP2011115156A (ja) * 2009-11-06 2011-06-16 Toyobo Co Ltd フラビンアデニンジヌクレオチド依存性グルコースデヒドロゲナーゼの温度依存性を改善する方法
JP2011152129A (ja) * 2009-12-28 2011-08-11 Toyobo Co Ltd フラビンアデニンジヌクレオチド依存性グルコースデヒドロゲナーゼの温度依存性を改善する方法
JP2011217731A (ja) * 2010-03-26 2011-11-04 Toyobo Co Ltd 改変型フラビンアデニンジヌクレオチド依存性グルコースデヒドロゲナーゼ
JP2012029677A (ja) * 2010-07-08 2012-02-16 Toyobo Co Ltd フラビンアデニンジヌクレオチド依存性グルコースデヒドロゲナーゼの基質特異性を改善するための方法
JP2012055229A (ja) * 2010-09-09 2012-03-22 Toyobo Co Ltd フラビンアデニンジヌクレオチド依存性グルコースデヒドロゲナーゼの比活性を向上するための方法
US20130065261A1 (en) * 2011-09-09 2013-03-14 Michinari Honda Modified glucose dehydrogenase gene
WO2013065770A1 (ja) * 2011-11-02 2013-05-10 キッコーマン株式会社 基質特異性が向上したフラビン結合型グルコースデヒドロゲナーゼ
JPWO2013099294A1 (ja) * 2011-12-28 2015-04-30 有限会社アルティザイム・インターナショナル グルコース脱水素酵素
WO2015099112A1 (ja) * 2013-12-27 2015-07-02 キッコーマン株式会社 熱安定性が向上したフラビン結合型グルコースデヒドロゲナーゼ
US9074239B2 (en) 2011-06-07 2015-07-07 Kikkoman Corporation Flavin-binding glucose dehydrogenase, method for producing flavin-binding glucose dehydrogenase, and glucose measurement method
JP2015519892A (ja) * 2012-05-03 2015-07-16 エフ ホフマン−ラ ロッシュ アクチェン ゲゼルシャフト グリコシル化されている修飾フラビンアデニンジヌクレオチド依存性グルコース脱水素酵素
US9238802B2 (en) 2010-12-01 2016-01-19 Kikkoman Corporation E. coli transformant, method for producing flavin-bound glucose dehydrogenase using the same, and mutant flavin-bound glucose dehydrogenases
US9469844B2 (en) 2010-12-02 2016-10-18 Kikkoman Corporation Flavin-bound glucose dehydrogenases, a method for producing a flavin-bound glucose dehydrogenase, and yeast transformant used for the same
JP2016208915A (ja) * 2015-05-08 2016-12-15 国立研究開発法人産業技術総合研究所 フラビンアデニンジヌクレオチド依存型グルコース脱水素酵素活性を有する変異型タンパク質
US11066690B2 (en) 2016-05-09 2021-07-20 Kikkoman Corporation Flavin-binding glucose dehydrogenase variant
US11725193B2 (en) 2017-06-14 2023-08-15 Ikeda Food Research Co., Ltd. Modified glucose dehydrogenase

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004058958A1 (ja) 2002-12-24 2004-07-15 Ikeda Food Research Co., Ltd. 補酵素結合型グルコース脱水素酵素
EP2380980B1 (en) 2005-03-25 2014-11-05 Ikeda Food Research Co. Ltd. Coenzyme-linked glucose dehydrogenase and polynucleotide encoding the same
US8999691B2 (en) * 2010-06-29 2015-04-07 Ultizyme International Ltd. Glucose dehydrogenase
EP2607490A1 (de) * 2011-12-22 2013-06-26 Evonik Industries AG Verfahren zur verbesserten Abtrennung einer hydrophoben organischen Lösung von einem wässrigen Kulturmedium
WO2016114334A1 (ja) * 2015-01-16 2016-07-21 東洋紡株式会社 Fad依存型グルコースデヒドロゲナーゼ
CN110438098B (zh) * 2019-08-29 2020-12-29 遵义医科大学珠海校区 一种葡萄糖脱氢酶突变体及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4458066A (en) 1980-02-29 1984-07-03 University Patents, Inc. Process for preparing polynucleotides
JP2002526759A (ja) 1998-10-08 2002-08-20 セラセンス、インク. 非浸出性または拡散性の酸化還元媒介剤を用いた小体積生体外分析物センサー
WO2004058958A1 (ja) 2002-12-24 2004-07-15 Ikeda Food Research Co., Ltd. 補酵素結合型グルコース脱水素酵素
WO2005103248A1 (ja) * 2004-04-23 2005-11-03 Arkray, Inc. 変異グルコース脱水素酵素
WO2006101239A1 (ja) 2005-03-25 2006-09-28 Ikeda Food Research Co., Ltd. 補酵素結合型グルコース脱水素酵素及びこれをコードするポリヌクレオチド
WO2006137283A1 (ja) * 2005-06-20 2006-12-28 Arkray, Inc. 変異グルコース脱水素酵素
WO2007116710A1 (ja) 2006-03-31 2007-10-18 Toyo Boseki Kabushiki Kaisha グルコースデヒドロゲナーゼ
WO2007139013A1 (ja) 2006-05-29 2007-12-06 Amano Enzyme Inc. フラビンアデニンジヌクレオチド結合型グルコース脱水素酵素
WO2008001903A1 (en) * 2006-06-29 2008-01-03 Ikeda Food Research Co., Ltd. Fad-conjugated glucose dehydrogenase gene
WO2008059777A1 (fr) * 2006-11-14 2008-05-22 Toyo Boseki Kabushiki Kaisha Glucose déshydrogénase dépendante du flavine-adénine dinucléotide modifiée

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007289148A (ja) * 2006-03-31 2007-11-08 Toyobo Co Ltd アスペルギルス・オリゼ由来グルコースデヒドロゲナーゼの製造方法
JP4348563B2 (ja) * 2006-11-14 2009-10-21 東洋紡績株式会社 改変型フラビンアデニンジヌクレオチド依存性グルコースデヒドロゲナーゼ

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4458066A (en) 1980-02-29 1984-07-03 University Patents, Inc. Process for preparing polynucleotides
JP2002526759A (ja) 1998-10-08 2002-08-20 セラセンス、インク. 非浸出性または拡散性の酸化還元媒介剤を用いた小体積生体外分析物センサー
WO2004058958A1 (ja) 2002-12-24 2004-07-15 Ikeda Food Research Co., Ltd. 補酵素結合型グルコース脱水素酵素
WO2005103248A1 (ja) * 2004-04-23 2005-11-03 Arkray, Inc. 変異グルコース脱水素酵素
WO2006101239A1 (ja) 2005-03-25 2006-09-28 Ikeda Food Research Co., Ltd. 補酵素結合型グルコース脱水素酵素及びこれをコードするポリヌクレオチド
WO2006137283A1 (ja) * 2005-06-20 2006-12-28 Arkray, Inc. 変異グルコース脱水素酵素
WO2007116710A1 (ja) 2006-03-31 2007-10-18 Toyo Boseki Kabushiki Kaisha グルコースデヒドロゲナーゼ
WO2007139013A1 (ja) 2006-05-29 2007-12-06 Amano Enzyme Inc. フラビンアデニンジヌクレオチド結合型グルコース脱水素酵素
WO2008001903A1 (en) * 2006-06-29 2008-01-03 Ikeda Food Research Co., Ltd. Fad-conjugated glucose dehydrogenase gene
WO2008059777A1 (fr) * 2006-11-14 2008-05-22 Toyo Boseki Kabushiki Kaisha Glucose déshydrogénase dépendante du flavine-adénine dinucléotide modifiée

Non-Patent Citations (13)

* Cited by examiner, † Cited by third party
Title
"Abstracts of the Annual Meeting of the Society for Biotechnology, Japan", 2004, article KEIICHI YOSHIMATSU ET AL.: "Tainetsusei FAD Glucose Datsusuiso Koso no Cysteine Cluster eno Hen'i Donyu ni yoru Kaiseki", pages: 127 *
"Dai 59 Kai Abstracts of the Annual Meeting of the Society for Biotechnology, Japan", 2 August 2007, article KOJI HAYADE ET AL.: "FAD Glucose Datsusuiso Koso no Kishitsu Tokuisei no Kairyo", pages: 69 *
ADAMS, J. AM. CHEM. SOC., vol. 105, 1983, pages 661
BEAUCAGE, TETRA. LETT., vol. 22, 1981, pages 1859
BELOUSOV, NUCLEIC ACID RES., vol. 25, 1997, pages 3440 - 3444
BIOSCI. BIOTECH. BIOCHEM., vol. 61, no. 8, 1997, pages 1367 - 1369
BLOMMERS, BIOCHEMISTRY, vol. 33, 1994, pages 7886 - 7896
BROWN, METH. ENZYMOL., vol. 68, 1979, pages 109
FRENKEL, FREE RADIC. BIOL. MED., vol. 19, 1995, pages 373 - 380
GOMI KATSUYA, JOURNAL OF THE BREWING SOCIETY OF JAPAN, 2000, pages 494 - 502
MINETOKI TOSHITAKA, CHEMISTRY & BIOLOGY, vol. 38, no. 12, 2000, pages 831 - 838
NARANG, METH. ENZYMOL., vol. 68, 1979, pages 90
See also references of EP2241621A4 *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010053161A1 (ja) * 2008-11-06 2010-05-14 ユニチカ株式会社 改変型フラビンアデニンジヌクレオチド依存性グルコースデヒドロゲナーゼ
JP2011097931A (ja) * 2009-10-09 2011-05-19 Toyobo Co Ltd Fadジヌクレオチド依存性グルコースデヒドロゲナーゼの温度依存性を改善する方法
JP2011115156A (ja) * 2009-11-06 2011-06-16 Toyobo Co Ltd フラビンアデニンジヌクレオチド依存性グルコースデヒドロゲナーゼの温度依存性を改善する方法
JP2011152129A (ja) * 2009-12-28 2011-08-11 Toyobo Co Ltd フラビンアデニンジヌクレオチド依存性グルコースデヒドロゲナーゼの温度依存性を改善する方法
JP2011217731A (ja) * 2010-03-26 2011-11-04 Toyobo Co Ltd 改変型フラビンアデニンジヌクレオチド依存性グルコースデヒドロゲナーゼ
JP2012029677A (ja) * 2010-07-08 2012-02-16 Toyobo Co Ltd フラビンアデニンジヌクレオチド依存性グルコースデヒドロゲナーゼの基質特異性を改善するための方法
JP2012055229A (ja) * 2010-09-09 2012-03-22 Toyobo Co Ltd フラビンアデニンジヌクレオチド依存性グルコースデヒドロゲナーゼの比活性を向上するための方法
US9238802B2 (en) 2010-12-01 2016-01-19 Kikkoman Corporation E. coli transformant, method for producing flavin-bound glucose dehydrogenase using the same, and mutant flavin-bound glucose dehydrogenases
US9469844B2 (en) 2010-12-02 2016-10-18 Kikkoman Corporation Flavin-bound glucose dehydrogenases, a method for producing a flavin-bound glucose dehydrogenase, and yeast transformant used for the same
US9074239B2 (en) 2011-06-07 2015-07-07 Kikkoman Corporation Flavin-binding glucose dehydrogenase, method for producing flavin-binding glucose dehydrogenase, and glucose measurement method
US8969060B2 (en) * 2011-09-09 2015-03-03 Ikeda Food Research Co., Ltd. Modified glucose dehydrogenase
JP2013055917A (ja) * 2011-09-09 2013-03-28 Ikeda Shokken Kk 改変型グルコース脱水素酵素遺伝子
US20130065261A1 (en) * 2011-09-09 2013-03-14 Michinari Honda Modified glucose dehydrogenase gene
JPWO2013065770A1 (ja) * 2011-11-02 2015-04-02 キッコーマン株式会社 基質特異性が向上したフラビン結合型グルコースデヒドロゲナーゼ
WO2013065770A1 (ja) * 2011-11-02 2013-05-10 キッコーマン株式会社 基質特異性が向上したフラビン結合型グルコースデヒドロゲナーゼ
US9493814B2 (en) 2011-11-02 2016-11-15 Kikkoman Corporation Flavin-binding glucose dehydrogenase having improved substrate specificity
JPWO2013099294A1 (ja) * 2011-12-28 2015-04-30 有限会社アルティザイム・インターナショナル グルコース脱水素酵素
JP2015519892A (ja) * 2012-05-03 2015-07-16 エフ ホフマン−ラ ロッシュ アクチェン ゲゼルシャフト グリコシル化されている修飾フラビンアデニンジヌクレオチド依存性グルコース脱水素酵素
WO2015099112A1 (ja) * 2013-12-27 2015-07-02 キッコーマン株式会社 熱安定性が向上したフラビン結合型グルコースデヒドロゲナーゼ
JP2016208915A (ja) * 2015-05-08 2016-12-15 国立研究開発法人産業技術総合研究所 フラビンアデニンジヌクレオチド依存型グルコース脱水素酵素活性を有する変異型タンパク質
US11066690B2 (en) 2016-05-09 2021-07-20 Kikkoman Corporation Flavin-binding glucose dehydrogenase variant
US11725193B2 (en) 2017-06-14 2023-08-15 Ikeda Food Research Co., Ltd. Modified glucose dehydrogenase

Also Published As

Publication number Publication date
US20100323378A1 (en) 2010-12-23
JPWO2009084616A1 (ja) 2011-05-19
JP5398004B2 (ja) 2014-01-29
EP2241621B1 (en) 2012-08-15
US8445221B2 (en) 2013-05-21
CN101970656A (zh) 2011-02-09
EP2241621A1 (en) 2010-10-20
EP2241621A4 (en) 2011-02-02

Similar Documents

Publication Publication Date Title
JP5398004B2 (ja) 改変型グルコース脱水素酵素遺伝子
JP7162646B2 (ja) グルコース測定用バイオセンサ
JP5020070B2 (ja) 補酵素結合型グルコース脱水素酵素をコードするポリヌクレオチド
WO2010126139A1 (ja) 蛋白質性電子メディエータ
JP5896375B2 (ja) 改変型グルコース脱水素酵素遺伝子
WO2013051704A1 (ja) グルコース脱水素酵素

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880126270.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08866874

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2009548079

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008866874

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12810213

Country of ref document: US