WO2009084490A1 - 位置決定システム、送信装置、受信装置及び位置決定方法 - Google Patents

位置決定システム、送信装置、受信装置及び位置決定方法 Download PDF

Info

Publication number
WO2009084490A1
WO2009084490A1 PCT/JP2008/073251 JP2008073251W WO2009084490A1 WO 2009084490 A1 WO2009084490 A1 WO 2009084490A1 JP 2008073251 W JP2008073251 W JP 2008073251W WO 2009084490 A1 WO2009084490 A1 WO 2009084490A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
signal
pseudo
trigger signal
receiving
Prior art date
Application number
PCT/JP2008/073251
Other languages
English (en)
French (fr)
Inventor
Junichi Miyamoto
Hiroshi Kajitani
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to US12/810,879 priority Critical patent/US8498839B2/en
Priority to JP2009548020A priority patent/JP5937294B2/ja
Publication of WO2009084490A1 publication Critical patent/WO2009084490A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/043Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using propagating acoustic waves
    • G06F3/0433Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using propagating acoustic waves in which the acoustic waves are either generated by a movable member and propagated within a surface layer or propagated within a surface layer and captured by a movable member
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/18Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using ultrasonic, sonic, or infrasonic waves
    • G01S5/30Determining absolute distances from a plurality of spaced points of known location
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/523Details of pulse systems
    • G01S7/526Receivers
    • G01S7/527Extracting wanted echo signals
    • G01S7/5273Extracting wanted echo signals using digital techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0354Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 2D relative movements between the device, or an operating part thereof, and a plane or surface, e.g. 2D mice, trackballs, pens or pucks
    • G06F3/03545Pens or stylus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S11/00Systems for determining distance or velocity not using reflection or reradiation
    • G01S11/16Systems for determining distance or velocity not using reflection or reradiation using difference in transit time between electrical and acoustic signals

Definitions

  • the present invention relates to a position determination system that determines the position of a moving body using an ultrasonic signal, and in particular, a position determination system, a transmission device, and a position determination system that can determine the positions of a plurality of moving bodies accurately and stably.
  • the present invention relates to a receiving apparatus and a position determination method.
  • Patent Document 1 discloses an electronic pen system as an example of a system that determines the position of a moving body by measuring the propagation time using ultrasonic waves.
  • an ultrasonic signal and a reception trigger signal are simultaneously transmitted from an electronic pen as a transmitter at a constant period, and a reception trigger is received by a receiver and software.
  • the time from the time when the signal is received to the time when the ultrasonic signal transmitted from the electronic pen is received is measured as the propagation time of the ultrasonic wave, and the position of the electronic pen is specified using the propagation time.
  • the ultrasonic signal transmitted from the electronic pen is a burst waveform signal as shown in FIG. 17, and the same waveform is transmitted in each transmission cycle.
  • the receiver first receives a reception trigger signal, and then receives an ultrasonic signal that arrives late according to the propagation distance.
  • an ultrasonic coordinate input device that can simultaneously use a plurality of pens is described in Patent Document 2. Yes.
  • an electromagnetic wave signal such as an infrared signal including ID information is transmitted from a fixed body (receiver), and the mobile body (pen) side transmits its own electromagnetic wave signal.
  • An ultrasonic wave is transmitted only when an electromagnetic wave signal corresponding to the ID is received. Note that the interval at which the electromagnetic wave signal including the ID information is transmitted is set so that the maximum range in which the coordinate input is performed is longer than the time during which the ultrasonic wave moves.
  • the time allocated to one pen is T / n, which is determined by the relationship with the drawing range.
  • T 10 ms and the drawing range is A4 size
  • the propagation time is about 7 ms.
  • Patent Document 3 An example of a method for calculating the propagation time of a sound wave is described in Patent Document 3.
  • the sound wave propagation time calculation method described in Patent Document 3 uses an M-sequence phase-modulated wave as a transmission wave, receives the M-sequence phase-modulated wave transmitted by the transmitter, and receives the received signal and the transmission signal.
  • the correlation is acquired with a matched filter, the peak of the output of the matched filter is detected, and the propagation time of the sound wave is calculated from the peak time.
  • US Pat. No. 6,118,205 JP 2004-199560 A Patent No. 3876370
  • the detection interval T cannot be set unnecessarily long, for example, when avoiding collision of an object or reproducing handwritten handwriting of an electronic pen.
  • the propagation time is about 7 ms, and only one electronic pen can be used in consideration of the margin.
  • the burst wave is assumed as the ultrasonic transmission signal, the arrival point of the direct wave that reaches the earliest is changed due to the overlapping state of the direct wave and the reflected wave and the shape of the synthesized wave changes. This makes it difficult to detect and makes it impossible to accurately determine the position of the electronic pen as a moving object.
  • the method of calculating the propagation time of a sound wave using an M-sequence phase modulated wave as a transmission wave is to measure the propagation time of a sound wave in a different propagation path in which a transceiver is installed in advance.
  • This is a method for measuring the flow velocity of fluid flowing in an object where a transceiver is installed.
  • a plurality of transmitters moving bodies
  • the plurality of transmitters are identified. It is impossible to measure the propagation time measurement of ultrasonic waves from each transmitter, that is, to determine the positions of a plurality of moving bodies accurately and stably.
  • An object of the present invention is to provide a position determination system, a transmission device, a reception device, and a position determination method capable of accurately and stably determining the position of each moving body when a plurality of moving bodies are used simultaneously. It is in.
  • Another object of the present invention is to provide a position determination system, a transmission device, a reception device, and a position capable of accurately and stably determining the position of a plurality of moving bodies even when the propagation distance of an ultrasonic signal is long. To provide a decision method.
  • the first position detection system includes at least one transmission device that simultaneously transmits a trigger signal indicating transmission timing and an ultrasonic signal modulated based on pseudo-random sequence data having high autocorrelation.
  • At least two ultrasonic reception devices including a moving body, a receiving device that receives a trigger signal and an ultrasonic signal and detects a position of the moving body, and the reception processing device receives an ultrasonic signal set at a predetermined interval.
  • a second position detection system receives at least one moving body including a transmitter that simultaneously transmits an ultrasonic signal modulated based on a pseudorandom signal having high autocorrelation, and an ultrasonic signal.
  • a receiving device that detects a position of the moving body, the transmitting device of the moving body includes means for receiving a trigger signal indicating transmission timing, and means for transmitting an ultrasonic signal at the timing of receiving the trigger signal.
  • the reception processing apparatus determines in advance according to the means for sending the trigger signal, at least two ultrasonic receiving means for receiving the ultrasonic signal set at a predetermined interval, the received waveform of the ultrasonic signal, and the moving body.
  • Means for calculating a correlation value with the modulated reference waveform of the pseudo-random sequence, and detecting the first peak value of the calculated correlation value and receiving the trigger signal and the correlation peak The position of the moving object based on the calculated ultrasonic propagation time and the interval length between the ultrasonic receiving means, respectively, the means for calculating the ultrasonic propagation time from the detection time to the arrival of the two ultrasonic receiving means And a different sequence having a low cross-correlation is used as the pseudo-random sequence.
  • a first transmission device is a transmission device of a position detection system that receives an ultrasonic signal transmitted from a transmission device by a reception device and detects the position of the transmission device, and receives a trigger signal indicating transmission timing.
  • a second transmission device is a transmission device of a position detection system that receives an ultrasonic signal transmitted from a transmission device by a reception device and detects the position of the transmission device, and is a transmission transmitted from the reception device.
  • Ultrasonic transmission means for transmitting an ultrasonic signal modulated based on a pseudorandom signal having high autocorrelation in synchronization with a trigger signal indicating timing, and as a sequence of pseudorandom signals of ultrasonic signals, Use different sequences with low correlation.
  • a first receiving device is a receiving device of a position detection system that receives an ultrasonic signal transmitted from a transmitting device and detects the position of the transmitting device, and is a transmission transmitted from the transmitting device.
  • Trigger signal receiving means for receiving a trigger signal indicating timing, and an ultrasonic signal modulated based on a pseudorandom signal having a high autocorrelation and transmitted from the transmitter in synchronization with the trigger signal set at a predetermined interval
  • At least two ultrasonic reception means a means for calculating a correlation value between the reception waveform of the ultrasonic signal, and a modulation reference waveform predetermined according to the moving object, and Means for detecting the first peak value and calculating the ultrasonic propagation time from the time when the trigger signal is received and the time when the correlation peak value is detected until reaching the two ultrasonic receiving means; Means for calculating the position of the moving body based on the calculated ultrasonic propagation time and the interval length between the ultrasonic receiving means, and as a sequence of pseudo
  • a second receiving device is a receiving device of a position detection system that receives an ultrasonic signal transmitted from a transmitting device and detects the position of the transmitting device, and receives a trigger signal indicating transmission timing.
  • Trigger signal transmitting means for transmitting to the transmission device and an ultrasonic signal modulated based on a pseudo-random signal having high autocorrelation and transmitted from the transmission device in synchronization with the trigger signal set at a predetermined interval
  • Means for calculating a correlation value between at least two ultrasonic reception means, a reception waveform of the ultrasonic signal, and a modulation reference waveform predetermined according to the moving object; and a first peak of the calculated correlation value Means for detecting the value and calculating the ultrasonic propagation time from the time when the trigger signal is received and the time when the correlation peak value is detected until reaching the two ultrasonic receiving means,
  • Different sequences with low cross-correlation as a sequence of pseudo-random signals of ultrasonic signals transmitted by the transmission device including means for
  • the transmission device performs a step of simultaneously transmitting a trigger signal indicating transmission timing and an ultrasonic signal modulated based on a pseudo-random signal having high autocorrelation
  • a receiving device that receives the trigger signal and the ultrasonic signal and detects the position of the moving body, receives the ultrasonic signal by at least two ultrasonic receiving means set at predetermined intervals; and a received waveform of the ultrasonic signal
  • the step of calculating the ultrasonic propagation time from the time of detection of the value to the arrival of the two ultrasonic receiving means, respectively, and the calculated ultrasonic propagation time and the interval length between the ultrasonic receiving means Zui and executes the step of calculating the position of the moving body, as a sequence of pseudo-random signals of ultras
  • the transmitter receives the trigger signal indicating the transmission timing, and the ultrasonic wave modulated based on the pseudo-random signal having high autocorrelation at the timing of receiving the trigger signal.
  • the receiving device that executes the signal transmitting step, receives the ultrasonic signal, and detects the position of the moving body transmits the trigger signal, and performs at least two ultrasonic receiving units set at predetermined intervals.
  • the step of calculating the position of the moving body is executed, and as a pseudo-random sequence of the ultrasonic signal transmitted by the transmission device, Use different sequences with low cross-correlation.
  • the position of each moving body can be determined accurately and stably.
  • FIG. 1 is a block diagram showing a configuration of a position detection system according to a first embodiment of the present invention.
  • the position detection system according to the present invention is applied to an electronic pen system.
  • the position detection system includes an electronic pen 10 on which a transmitter 100 is mounted, a receiving device 20 installed at a predetermined position away from the electronic pen 10, and an electronic pen.
  • the display panel 50 that displays the trajectory drawn by 10 is provided.
  • the electronic pen 10 is used on the display panel 50.
  • the display panel 50 may be a projection screen projected by a projector.
  • the transmission unit 100 of the electronic pen 10 includes a control circuit 101, an M-sequence generation circuit 102, an ultrasonic drive circuit 103, an ultrasonic transmission unit 104, a reception trigger drive circuit 105, and a reception trigger transmission unit 106. ing.
  • the M-sequence generation circuit 102 has a function of generating an M-sequence coded bit string.
  • This M sequence is a sequence generated by defining a characteristic polynomial and initial conditions. The details of the M series are described in “M series and its applications” by Shogo Kashiwagi, March 25, 1996, Shosodo (Non-patent Document 1) and the like.
  • the control circuit 101 outputs a predetermined M-sequence characteristic polynomial and initial conditions to the M-sequence generation circuit 102.
  • the M-sequence generation circuit 102 generates an M-sequence coded bit string (M-sequence data) according to the characteristic polynomial received from the control circuit 101 and the initial conditions.
  • the ultrasonic drive circuit 103 generates and outputs a drive signal for modulating the ultrasonic wave based on the M-sequence data generated by the M-sequence generation circuit 102.
  • the ultrasonic transmission unit 104 transmits an ultrasonic signal that is M-sequence modulated by the drive signal from the ultrasonic drive circuit 103 to the space.
  • a phase modulation method is used as a modulation method of the ultrasonic signal by the ultrasonic transmission unit 104.
  • the data sequence is cyclic by changing the initial condition. Fifteen different M-sequence data that are shifted automatically are generated.
  • FIG. 2 shows an example of an ultrasonic M-sequence model waveform phase-modulated by M-sequence data.
  • each 1-bit of 15-bit M-sequence data “000100110101111” is associated with one period of the fundamental wave.
  • the bit is “0”, the inverted phase is set, and when the bit is “1”, the phase is set, and the modulated wave has a length of 15 periods of the fundamental wave.
  • control circuit 101 outputs a signal instructing the reception trigger drive circuit 105 to generate a reception trigger signal.
  • the reception trigger drive circuit 105 generates a reception trigger drive signal based on the instruction signal from the control circuit 101.
  • the reception trigger transmission unit 106 is driven by the reception trigger driving signal from the reception trigger driving circuit 105 in synchronization with the transmission timing of the ultrasonic signal of the ultrasonic transmission unit 104, and sends the reception trigger signal to space.
  • This reception trigger signal is transmitted as an infrared signal which is an electromagnetic wave signal, for example.
  • the reception trigger signal transmitted from the reception trigger transmission unit 106 is a signal that can uniquely identify each electronic pen 10.
  • the reception trigger signal is a band-divided signal so that no overlap occurs for each electronic pen 10.
  • the reception device 20 includes ultrasonic reception units 201-1 and 201-2, sampling circuits 202-1 and 202-2, a reception trigger reception unit 203, a reception trigger detection circuit 204, a memory 205, and a data processing circuit.
  • a receiving unit 200 including 206 is provided.
  • the ultrasonic receiving units 201-1 and 201-2 are installed in a state of being separated from each other by a predetermined interval length, receive an ultrasonic signal transmitted from the electronic pen 10, and use this as an electric signal. Convert to
  • Sampling circuits 202-1 and 202-2 sample the electrical signals output from the ultrasonic receivers 201-1 and 201-2 at regular intervals and sequentially store them in the memory 205.
  • the reception trigger reception unit 203 receives a reception trigger signal from the electronic pen 10, converts the reception trigger signal into an electric signal, and outputs it as a trigger pulse.
  • the reception trigger detection circuit 204 stores the detection time (arrival time) of the trigger pulse in the memory 205 as trigger detection time data.
  • the data processing circuit 206 reads out the same M-sequence initial conditions as those of the transmission unit 100 from the memory 205, generates a model waveform of the transmitted ultrasonic signal by using a preset characteristic polynomial, and generates the model Correlation processing is performed between the waveform and the ultrasonic signal waveform received by each of the ultrasonic reception units 201-1 and 201-2 stored in the memory 205, and the correlation value obtained by the correlation processing is used as the ultrasonic reception unit 201. -1 and 201-2 are sequentially stored in the memory 205 for each ultrasonic signal waveform received.
  • the data processing circuit 206 detects the first peak of the correlation value stored in the memory 205, the elapsed time from the trigger pulse arrival time to the point when the peak is detected, that is, the reception device 20 from the electronic pen 10 is detected.
  • the propagation time of the ultrasonic signal until reaching it is calculated for each ultrasonic signal received by each of the ultrasonic receiving units 201-1 and 201-2.
  • the data processing circuit 206 calculates the propagation time of the ultrasonic signal from the electronic pen 10 calculated for each ultrasonic signal received by each of the ultrasonic receiving units 201-1 and 201-2 until reaching the receiving device 20.
  • the position of the electronic pen 10 on the display panel 50 is calculated based on the distance between the ultrasonic receiving units 201-1 and 201-2.
  • the position of the electronic pen 10 can be accurately determined by the principle of triangulation.
  • the position detection system performs selection of the M series used in the system (hereinafter referred to as M series selection mode), for example, when the electronic pen system is assembled.
  • M series selection mode the M series used in the system
  • the procedure in the M-sequence selection mode will be described.
  • the reception trigger signal and the ultrasonic signal are repeatedly sent from the electronic pen 10. At that time, the electronic pen 10 transmits an ultrasonic signal modulated by different M-sequence data for each transmission.
  • the reception device 20 receives the reception trigger signal and the ultrasonic signal, the correlation value with all M-sequence model waveforms used for the ultrasonic signal is obtained, and the cross-correlation values between different M sequences are checked. At that time, M-sequence data with a smaller cross-correlation value peak value is evaluated higher, and the M-sequence (initial stage) that forms a combination of M-sequences with respect to the cross-correlation value from the smaller cross-correlation value peak of all M sequences Is assigned as the M series to be used for each electronic pen 10.
  • the reception device 20 When the reception trigger signal and the ultrasonic signal generated based on the M sequence (initial condition) assigned to each electronic pen 10 are transmitted in the ultrasonic propagation time measurement mode, the reception device 20 that has received the signal
  • the data processing circuit 206 performs correlation processing.
  • the first peak of the correlation value is detected, the elapsed time from the time when the trigger pulse is detected to the time when this peak is detected, that is, the propagation time of the ultrasonic signal from the electronic pen 10 until it reaches the receiving device 2 is calculated. To do.
  • transmission M sequence is a combination of sequence 1 and M sequence of received M sequence model waveform is sequence 2
  • transmission M sequence is a sequence in descending order of the peak value of the cross-correlation value. 1 and the M sequence of the received M sequence model waveform is a combination of the sequence 5
  • transmission M sequence is a combination of the sequence 2
  • the M sequence of the received M sequence model waveform is the combination of the sequence 6 ”.
  • the initial condition of the assigned M series is set in the control circuit 101 of the corresponding electronic pen 10, and the control circuit 101 is set in the generation of the M series data.
  • the M-sequence initial condition is output to the M-sequence generation circuit 102.
  • each cross-correlation value it is also possible to set it as the value normalized by dividing by the peak value of the autocorrelation value by the same M series.
  • the position of the electronic pen 10 and the display position in the drawing range of the display panel 50 are associated in advance, and at the time of drawing, a switch that is turned on in conjunction with a press on the display panel 50 provided at the pen tip of the electronic pen 10
  • a switch that is turned on in conjunction with a press on the display panel 50 provided at the pen tip of the electronic pen 10
  • the electronic pen 10 repeats the following operations at regular intervals during operation.
  • control circuit 101 outputs an initial condition of a preset M-sequence characteristic polynomial to the M-sequence generation circuit 102 (step A1).
  • the M-sequence generation circuit 102 generates M-sequence data based on the initial condition acquired from the control circuit 101 (step A2) and supplies it to the ultrasonic drive circuit 103.
  • the ultrasonic drive circuit 103 generates and outputs a drive signal for modulating the ultrasonic wave based on the M series data generated by the M series generation circuit 102 (step A3).
  • the ultrasonic transmission unit 104 sends an ultrasonic signal modulated in M series by the drive signal from the ultrasonic drive circuit 103 from the electronic pen 10 to the space (step A4).
  • the control circuit 101 determines the initial conditions of the M series, the control circuit 101 instructs the reception trigger driving circuit 105 to generate a reception trigger signal.
  • the reception trigger drive circuit 105 generates a reception trigger drive signal based on the instruction signal from the control circuit 101 (step A5).
  • reception trigger transmission unit 106 transmits the reception trigger signal generated by the reception trigger drive signal from the reception trigger drive circuit 105 to the space in synchronization with the transmission timing of the ultrasonic signal (step A6).
  • the sampling circuit 202 samples each ultrasonic signal received by the ultrasonic receiving units 201-1 and 201-2 at a constant sampling interval, and stores the sampled waveform data in the memory.
  • the data is sequentially stored in 205.
  • waveform data obtained by sampling the ultrasonic signals received by the ultrasonic receiving units 201-1 and 201-2 are stored in the memory 205 separately.
  • the reception trigger detection circuit 204 detects a trigger pulse from the reception trigger signal received by the reception trigger reception unit 203, the reception trigger detection circuit 204 generates trigger detection time data indicating the detection time (arrival time) of the trigger pulse and stores it in the memory 205. .
  • the reception trigger detection circuit 204 detects a reception trigger pulse (step B1)
  • the data processing circuit 206 reads M-sequence initial condition data stored in advance from the memory 205 (step B2).
  • the data processing circuit 206 generates an M-sequence model waveform of the ultrasonic signal transmitted using the read M-sequence initial condition data and a preset characteristic polynomial (Step B3).
  • the trigger detection time indicated by the trigger detection time data stored in the memory 205 is set to the sampling start time (t) (step B4), and the waveform data of the received ultrasonic signal is read from the memory 205 (step B5).
  • the data processing circuit 206 uses the following equation (1) as the correlation value C (t) at the sampling time (t) between the waveform data of the read ultrasonic signal and the previously generated M-sequence model waveform.
  • the calculated correlation value C (t) is stored in the memory 205 (step B6).
  • i is an integer value and is a sampling time variable
  • N is the number of samplings of the model waveform
  • r (i) is the value of the model waveform at the sampling time i
  • f (i + t) is the value of the received waveform at the sampling time (i + t).
  • step B7 If not all correlation values are stored in the memory 205 (step B7), the sampling time t is incremented by the unit time “1”, and the process returns to step B5.
  • step B7 When the calculation and storage of all the correlation values are completed in step B7 by repeatedly executing the processing from step B5 to B6, the first peak (first peak) is detected from the correlation values stored in the memory 205 (step B9). ).
  • the data processing circuit 206 calculates the ultrasonic wave propagation time from the electronic pen 10 from the sampling start time (trigger detection time) set at step B4 and the detection time of the leading peak detected at step B9 (step B10).
  • the ultrasonic wave propagation time can be calculated as t ⁇ ⁇ T.
  • step B11 it is determined whether or not the processing for the ultrasonic signals received by all the ultrasonic receiving units 201-1 and 201-2 has been completed. If the processing has not been completed, the ultrasonic signal of step B5 is determined. Repeat the process from reading waveform data.
  • step B12 the propagation calculated for each ultrasonic signal received by each of the ultrasonic receiving units 201-1 and 201-2.
  • the position of the electronic pen 10 on the display panel 50 is calculated based on the time and the interval length of the ultrasonic wave receiving units 201-1 and 201-2 (step B12). Thereafter, the memory 205 is erased in step B13.
  • FIG. 5 is a diagram showing two-dimensionally the position calculation method between the electronic pen 10 and the ultrasonic receiving units 201-1 and 201-2.
  • P is the position coordinate value (x, y) in the xy coordinates on the drawing range of the display panel 50 of the electronic pen 10
  • S1 and S2 are the positions of the ultrasonic receiving units 201-1 and 201-2, respectively. Is shown.
  • d1 is a distance from the electronic pen 10 to the ultrasonic receiving unit 201-1 and d2 is a distance from the electronic pen 10 to the ultrasonic receiving unit 201-2.
  • D is the distance from the origin when the center of the ultrasonic wave receiving units 201-1 and 201-2 is the origin of the xy coordinates.
  • represents an angle formed by a straight line connecting the electronic pen 10 and the ultrasonic wave receiving unit 201-1 with the x axis.
  • the propagation times calculated based on the ultrasonic signals received by the ultrasonic receiving units 201-1 and 201-2 are t1 and t2, respectively, and the sound speed is A.
  • the position of the electronic pen 10 can be accurately determined by the principle of triangulation.
  • the reception trigger reception unit 203 receives a reception trigger for each wavelength used.
  • the reception trigger detection circuit 204 detects a trigger pulse from the output of the reception trigger reception unit 203, the reception time of the trigger pulse for each wavelength corresponding to each electronic pen 10 is stored in the memory 205.
  • Correlation processing is performed on the ultrasonic signal received by the receiving device 20 using an M-sequence model waveform assigned to each electronic pen 10, and the arrival time (trigger pulse detection time) of the detected ultrasonic signal and the correlation value are The propagation time is calculated from the detection time of the first peak.
  • an infrared signal having the same wavelength can be used as a reception trigger signal, and a different M-sequence reception trigger pulse signal can be used for each electronic pen 10.
  • the reception trigger detection circuit 204 of the reception device 20 detects the arrival time of the reception trigger pulse signal by performing correlation processing using the M-series model waveform for each electronic pen 10.
  • an M-sequence having a long bit length and changing the pulse width for each electronic pen 10 it is possible to prevent deterioration in detection accuracy when the pulse signals of the respective electronic pens 10 overlap.
  • FIG. 6 shows the waveforms of the ultrasonic signals stored in the memory 205 when the ultrasonic signals from the two electronic pens 10-1 and 10-2 are received.
  • the waveform of the ultrasonic signal stored in the memory 205 is a composite wave of the direct wave, reflected wave and noise waveform of the ultrasonic wave transmitted from the two electronic pens 10-1 and 10-2.
  • the waveform shown in FIG. 6 is a waveform when the sampling interval by the sampling circuit 202 is 8 of the fundamental wave period of the ultrasonic wave.
  • the horizontal axis indicates the time when the reception trigger signal of the electronic pen 10-2 is received as “0”. In the case of an ultrasonic wave having a frequency of 40 kHz, the cycle is 25 ms and the sampling interval is 3.125 ms.
  • FIG. 7 shows a reception waveform of the direct wave of the ultrasonic signal from the electronic pen 10-1 that is phase-modulated by the data string “100010011010111” of the 15-bit M series. This waveform is included in the synthesized waveform of FIG.
  • FIG. 8 shows a reception waveform of a direct wave of an ultrasonic signal from the electronic pen 10-2 that is phase-modulated by a data string “000100110101111” of a 15-bit M series having an initial value different from that of the electronic pen 10-1. It is also included in the composite waveform.
  • FIG. 9 shows the received waveform of the reflected wave of the ultrasonic signal from the electronic pen 10-1.
  • the phase of this reflected wave is the same as the direct wave of the electronic pen 10-2 shown in FIG.
  • FIG. 10 shows a noise waveform.
  • the reflection waveform of FIG. 9 and the noise waveform of FIG. 10 are also included in the composite waveform of FIG.
  • FIG. 11 is a diagram in which the correlation values of the composite wave shown in FIG. 6 and the modulation wave shown in FIG. 2, which is the M-series model waveform of the electronic pen 10-2, are plotted and the correlation values plotted.
  • the peak of the direct wave of the ultrasonic signal from the electronic pen 10-1 does not appear due to the M series having an initial value different from that of the electronic pen 10-2.
  • the peak of the ultrasonic signal from the electronic pen 10-2 appears first (at the top). Thereby, the arrival time of the direct wave of the electronic pen 10-2 can be reliably detected.
  • the correlation between the synthesized wave shown in FIG. 6 and the M-series model waveform of the electronic pen 10-1 is taken, the arrival time of the direct wave of the electronic pen 10-1 can now be detected.
  • the reception device 20 uses each ultrasonic pen signal that can be identified for each electronic pen 10 by using an ultrasonic signal modulated by a different M-sequence in the transmitter 100 of each electronic pen 10.
  • An M-sequence model waveform of the electronic pen 10 is generated, a correlation value is calculated between the ultrasonic signal and the generated M-sequence model waveform, an initial peak value of the correlation value is detected, and the trigger signal is This is because the ultrasonic propagation time from each electronic pen 10 can be accurately calculated from the received time and the correlation peak value detection time.
  • the position detection system includes an electronic pen 30 including a transmission unit 300, and a reception device 40 including a reception unit 400 installed at a predetermined position away from the electronic pen 30.
  • a display panel 50 that displays a locus drawn by the electronic pen 30 is provided.
  • the transmission unit 300 of the electronic pen 30 includes a control circuit 301, an M-sequence generation circuit 302, an ultrasonic drive circuit 303, an ultrasonic transmission unit 304, a transmission trigger detection circuit 305, and a transmission trigger reception unit 306. Yes.
  • a transmission trigger receiving unit 306 and a transmission trigger detecting unit 305 are provided instead of the reception trigger driving unit 105 and the reception trigger transmitting unit 106.
  • the transmission trigger signal from the receiving device 40 is received by the transmission trigger receiving unit 306 without transmitting the reception trigger signal from the electronic pen 30, and the trigger pulse is detected by the transmission trigger detecting unit 305.
  • control circuit 301 outputs the preset M-sequence characteristic polynomial and initial conditions to the M-sequence generation circuit 302 in synchronization with the trigger pulse detection notification from the transmission trigger detection unit 305.
  • the ultrasonic drive circuit 303 and the ultrasonic transmission unit 304 operate in the same manner as the ultrasonic drive circuit 103 and the ultrasonic transmission unit 104 of the first embodiment.
  • the reception unit 400 of the reception apparatus 40 includes ultrasonic reception units 401-1 and 401-2, sampling circuits 402-1 and 402-2, a transmission trigger transmission unit 403, a transmission trigger control circuit 404, a memory 405 and a data processing circuit 406 are provided.
  • a transmission trigger transmission unit 403 and a transmission trigger control circuit 404 are provided instead of the reception trigger reception unit 203 and the reception trigger detection circuit 204. .
  • the transmission trigger control circuit 404 generates a transmission trigger driving signal, and the transmission trigger transmission unit 403 is driven by the transmission trigger driving signal and sends the transmission trigger signal to space.
  • the transmission trigger control circuit 404 has a function of storing the transmission time of the transmission trigger signal transmitted from the transmission trigger transmission unit 403 in the memory 405.
  • the transmission trigger receiving unit 306 When the transmission trigger receiving unit 306 receives the transmission trigger signal from the receiving device 40 (step C1), the transmission trigger receiving unit 306 converts this into an electrical signal and outputs a trigger pulse (step C2).
  • the transmission trigger detection circuit 305 when detecting the trigger pulse from the output of the transmission trigger reception unit 306, notifies the control circuit 301 (step C3).
  • control circuit 301 When the control circuit 301 receives the notification from the transmission trigger receiving unit 306, the control circuit 301 transmits a preset M-sequence characteristic polynomial and initial conditions to the M-sequence generation circuit 302 (step C4).
  • the M-sequence generation circuit 302 generates M-sequence data which is an M-sequence coded bit string in accordance with the characteristic polynomial received from the control circuit 301 and the initial conditions (step C5).
  • the ultrasonic drive circuit 303 generates a drive signal for modulating the ultrasonic wave based on the M-sequence data from the M-sequence generation circuit 302 (step C6).
  • the ultrasonic transmission unit 304 transmits an ultrasonic signal that is M-sequence modulated by this drive signal to the space (step C7).
  • the generation of the reception trigger drive signal and the transmission step of the reception trigger signal are omitted as compared with the first embodiment.
  • FIG. 14 is a flowchart showing operations of the transmission trigger control circuit 404 and the transmission trigger transmission unit 403.
  • the transmission trigger control circuit 404 generates a transmission trigger driving signal (step D1).
  • the transmission trigger transmission unit 403 is driven by the transmission trigger driving signal from the transmission trigger control circuit 404 and transmits the transmission trigger signal from the receiving device 40 to the space (step D2).
  • the transmission trigger control circuit 404 stores the transmission time of the transmission trigger signal transmitted from the transmission trigger transmission unit 403 in the memory 405 (step D3).
  • the ultrasonic receiving units 401-1 and 401-2 receive the ultrasonic signal transmitted from the electronic pen 303 and convert it into an electric signal, and the sampling circuits 402-1 and 402-2 convert the electric signal to the electric signal. Waveform data sampled and sampled at regular intervals is sequentially stored in the memory 405.
  • FIG. 15 is a flowchart showing the processing contents of the data processing circuit 406.
  • the data processing circuit 406 reads the same M-sequence initial condition as that of the transmission unit 300 of the electronic pen 30, generates an M-sequence model waveform of the transmitted ultrasonic signal, and is stored in the memory 405. Correlation processing with the existing ultrasonic waveform is performed, and the correlation values are sequentially stored in the memory 405 (steps E1 to E6).
  • the data processing circuit 406 detects the top peak of the correlation value stored in the memory 405, the elapsed time from the transmission trigger signal transmission time to the time when the top peak is detected, that is, reception from the electronic pen 30 is detected.
  • the propagation time of the ultrasonic signal until reaching the device 40 is calculated, and the electronic pen 30 is based on the propagation time calculated for each ultrasonic signal and the interval length of the ultrasonic receiving units 401-1 and 401-2. Is calculated on the display panel 50 (steps E8 to E11).
  • the processing contents in the data processing circuit 406 are only the detection of the reception trigger pulse is omitted, and other processes are the same as those in the first embodiment. Since it is the same, detailed explanation is omitted.
  • the transmission unit 100 of the electronic pen 10 can be configured to transmit a transmission trigger signal from the reception device 20.
  • the effect which can simplify the structure of is obtained.
  • the trigger signal need not be an electromagnetic wave signal that can be identified for each electronic pen 10.
  • the M-sequence initial condition used for each electronic pen 10 is determined and assigned to the electronic pen 10 in advance in the M-sequence selection mode.
  • the M-series initial conditions to be used can be set by calibration before the electronic pen system is shipped or used.
  • the position detection system has an electronic pen 10 with a mode changeover switch 60 for switching between an M-sequence selection mode and a normal position detection mode, and an M-sequence to be used.
  • M series setting switch 70 is set.
  • the M series setting switch 70 a switch that can confirm the current setting state, such as a rotary switch, is used. Further, if the M-sequence setting switch 70 is provided with a position for turning on / off the M-sequence selection mode, the mode changeover switch 60 may be omitted if the M-sequence selection mode is switched to the normal position detection mode when the M-sequence selection mode is off. Is possible.
  • the receiving device 20 includes a setting content display unit 80 for displaying the M series set for each electronic pen 10.
  • the mode selection switch 60 of the electronic pen 10 is switched to set the M-sequence selection mode (step F1).
  • the electronic pen 10 is placed at a predetermined position from the receiving device 20.
  • ⁇ Receiving trigger signal and ultrasonic signal are repeatedly sent from the electronic pen 10.
  • the point which uses a different M series for every transmission is the same as that of the case of 1st Embodiment.
  • the receiving device 20 receives an ultrasonic signal from the electronic pen 10, it obtains correlation values with all M-sequence model waveforms used by the ultrasonic wave, and checks the cross-correlation values between different M-sequences.
  • the M-sequence data having a smaller cross-correlation value peak value is evaluated higher, and the M-sequence corresponding to the cross-correlation value is determined from the smaller cross-correlation value peak of all M sequences.
  • the M series (initial condition) forming the combination is determined as the M series to be assigned to each electronic pen 10.
  • the receiving device 20 first calculates an autocorrelation value, determines a peak time point of the autocorrelation value corresponding to each distance between the electronic pen 10 and the ultrasonic wave receiving unit of the receiving device 20, and includes the peak time point. You may make it evaluate the peak of the cross-correlation value in a predetermined time range.
  • the M series to be set for each electronic pen 10 is displayed on the setting content display unit 80 connected to the receiving device 20.
  • the M series to be used is set by operating the M series setting switch 70 of each electronic pen 10 according to the M series information displayed on the setting content display unit 80 of the receiving device 20. By such an operation, the M series is set without overlapping between the plurality of electronic pens 10.
  • control circuit 101 In the position detection mode, the control circuit 101 outputs the M-sequence initial condition set by the M-sequence setting switch 70 to the M-sequence generation circuit 102 in Step A1 of FIG.
  • the M-sequence setting switch 70 provided in the electronic pen 10 changes the setting of the M-sequence and transmits the current setting content from the reception trigger transmission unit 106 as M-sequence setting data, and the reception device 20 transmits from the electronic pen 10. It can also be configured to display the set M series setting data on the setting content display unit 80 to be connected. With such a configuration, the electronic pen 10 may not have a function of confirming the current setting state.
  • the M series used for each electronic pen 10 is set in advance in the M series selection mode, so that each electronic pen is used when used in the normal position detection mode.
  • an electronic pen in which a non-overlapping M series is set in advance is added, or the manufacturer side again selects the M series selection mode. It was necessary to carry out the above and assign an M series for each electronic pen.
  • the M-series initial conditions to be used can be set by calibration before shipping or starting to use the electronic pen system, so even during system operation.
  • the M series assigned to each electronic pen 10 by the user can be changed. Therefore, even when the number of electronic pens to be used is increased, the assignment work on the maker side becomes unnecessary, and it is possible to cope with it by changing the assignment of the M series as needed on the user side.
  • the present invention can be applied to a robot system.
  • the position of the robot in the space can be detected by installing the transmitter on the robot and installing the receiver on the ceiling or wall of a certain space. It can be used for purposes such as collision avoidance by controlling the robot by grasping the position of the robot in space.
  • the transmitting device on a person or the like and installing the receiving device on the ceiling or wall of a certain space, it can be applied to applications such as detection of flow lines and position tracking in the space.
  • M sequence modulation by M sequence has been described, but it is not limited to M sequence as long as it is a pseudo-random signal having high autocorrelation and low cross-correlation with other sequences such as Gold sequence, for example. .
  • FIG. 20 is a diagram in which an autocorrelation is calculated from an ultrasonic wave phase-modulated by a 127-bit first 15-bit partial sequence “0000111101111001” using a reference waveform of the same bit sequence.
  • FIG. 21 is a diagram in which a cross-correlation is calculated using an ultrasonic wave phase-modulated by a 127-bit 15-bit subsequence “011001001000000” and a reference waveform “0000111101111001”.
  • FIG. 22 is a diagram in which cross-correlation is calculated using an ultrasonic wave that has been phase-modulated by a 127-bit 15-bit subsequence “001111011010000” and a reference waveform “0000111101111001”.
  • the cross-correlation value peaks of “0000111101111001” and “011001001000000” are smaller than the cross-correlation value peaks of “0000111101111001” and “001111011010000”, and therefore “0000111101111001” and “011001001000000”. Will be selected.
  • the M-sequence partial sequence A is “0000111101111001” and the M-sequence partial sequence B is “011001001000000”, as shown in FIG.
  • the arrival point of the ultrasonic wave in the subsequence A can be reliably obtained as a correlation peak.
  • the received wave is correlated with the reference waveform of the partial sequence B, the arrival point of the ultrasonic wave of the partial sequence B can be reliably obtained as a correlation peak.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Human Computer Interaction (AREA)
  • Acoustics & Sound (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

 送信装置からの他の超音波信号による影響を受けることなく、最初に受信装置に到達する直接波によって複数の送信装置の位置を正確に検出する。  トリガ信号と自己相関性の高い擬似ランダム系列のデータに基づいて変調された超音波信号とを同時に送出する送信装置を含む移動体と、移動体の位置を検出する受信装置とを備え、受信処理装置が、超音波信号を受信する少なくとも2つの超音波受信手段と、超音波信号の受信波形と、移動体に応じて予め決められた擬似ランダム系列の変調基準波形との間で相関値を算出する手段と、トリガ信号を受信した時点と相関値の最初のピーク値の検出時点とから2つの超音波受信手段に到達するまでの超音波伝搬時間を算出する手段と、超音波伝播時間と超音波受信手段相互の間隔長に基づいて、移動体の位置を算出する手段とを含み、擬似ランダム系列として、相互相関の低い異なる系列を用いる。

Description

位置決定システム、送信装置、受信装置及び位置決定方法
 本発明は、超音波信号を用いて移動体の位置を決定する位置決定システムに関し、特に、複数の移動体の位置を正確かつ安定的に決定することを可能にする位置決定システム、送信装置、受信装置及び位置決定方法に関する。
 超音波を用いてその伝搬時間を測定し移動体の位置決定を行うシステムの一例として、電子ペンシステムが特許文献1に記載されている。この特許文献1記載の超音波の伝搬時間を利用した位置決定方法においては、送信機である電子ペンから一定周期で超音波信号ならびに受信トリガ信号を同時に送信し、レシーバならびにソフトウエアにより、受信トリガ信号を受信した時点から、電子ペンから送信された超音波信号を受信した時点までの時間を超音波の伝搬時間として測定し、その伝搬時間を利用して電子ペンの位置を特定する。
 電子ペンから送信される超音波信号は、図17に示すようなバースト状の波形の信号で、各送信周期において同じ波形のものが送信される。レシーバでは、図18に示すように、まず受信トリガ信号を受信し、次に伝搬距離に応じて遅れて到達する超音波信号を受信する。
 さらに、複数の発信源から送信される超音波の伝播時間を測定して位置決定を行う他の一例として、同時に複数のペンを利用可能な超音波型座標入力装置が特許文献2に記載されている。この特許文献2記載の超音波の伝搬時間を利用した位置決定方法においては、固定体(レシーバ)からID情報を含んだ赤外線信号等の電磁波信号を発信し、移動体(ペン)側では自身のIDに該当する電磁波信号を受信した場合にのみ超音波を発信するようにする。なお、ID情報を含む電磁波信号を送信する間隔は、座標入力を行なう最大範囲を超音波が移動する時間より長く設定する。
 図19に示すように、座標を測定するサンプリング周期Tとすると、ひとつのペンに割り当てられる時間はT/nとなり、描画範囲との関係で決まる。T=10ms、描画範囲がA4サイズの場合、超音波の伝搬距離は最長で350mm、伝搬時間で1ms程度となるため、別IDの時間枠に入らないように余裕を見てT/n=2msと設定すると、最大5本までのペンの同時使用が可能になる。
 一方、プロジェクタの投影画面での電子ペンの使用を想定すると、実用上描画範囲として画面サイズ80インチ程度が必要となるため、電子ペンから送信される超音波の受信機までに至る伝播距離は最長でおよそ2m、伝搬時間は7ms程度となる。
 また、音波の伝搬時間を算出する方法の一例が、特許文献3に記載されている。この特許文献3記載の音波の伝搬時間算出方法は、送信波にM系列位相変調波を用い、送信機により送信されたM系列位相変調波を受信機により受信し、受信信号と送信信号との相関をマッチドフィルタで取得し、マッチドフィルタの出力のピーク検出を行い、ピーク時刻により音波の伝搬時間を算出する方法である。
米国特許6118205 特開2004-199560 特許第3876370号
 複数の決定対象である移動体の超音波の伝播時間を測定する場合、超音波の検出範囲が大きいと、最遠点の超音波の伝搬時間が長くなり、上記のT/nを長く設定する必要がある。しかしながら、検出間隔Tは、例えば物体の衝突回避や電子ペンの手書きの筆跡を再現するといった場合、いたずらに長く設定することはできない。プロジェクタの投影画面で電子ペンを使用するような場合のように、最遠点が2mにも達する場合、伝搬時間は7ms程度となって、余裕を考慮すると1本の電子ペンしか使用できない。
 このように、特許文献1記載の方法では、超音波の伝搬距離が長いときは、複数の移動体(電子ペン)の位置を正確かつ安定的に検出することが困難となり、使用できないことになる。
 また、特許文献2記載の方法では、超音波送信信号として、複数のペンで同じ形状の信号波形を想定しているため、異なるペンの超音波の到達点の検出に影響を与える可能性がある。例えば、レシーバが、先に送信された超音波の長い距離を伝搬した反射波を、次のIDを持つ異なるペンから送信された直接波より先に受信して、その先に受信した反射波を直接波と誤認識して、到達時間を誤って測定するので、電子ペンの正確な位置を算出することができない。
 さらに、超音波送信信号として、バースト状の波を想定しているため、直接波と反射波の重なり具合により、合成波の形状が変化してしまい一番先に到達する直接波の到達点を検出することが困難となり、移動体である電子ペンの正確な位置決定を不可能にする。
 特許文献3記載の方法のように、送信波にM系列位相変調波を用い、音波の伝搬時間を算出する方法は、あらかじめ送受信機が設置された異なる伝搬経路の音波の伝搬時間を測定し、送受信機が設置された対象物中を流れる流体の流速を測定するための方法であり、複数の送信機(移動体)が同時にそれぞれ超音波を送信した場合に、複数の送信機を識別してそれぞれの送信機からの超音波の伝播時間測定を測定すること、すなわち複数の移動体の位置を正確かつ安定的に決定することは不可能である。
(発明の目的)
 本発明の目的は、複数の移動体を同時に使用する場合に、各移動体の位置決定を正確かつ安定的に行うことができる位置決定システム、送信装置、受信装置及び位置決定方法を提供することにある。
 本発明の他の目的は、超音波信号の伝搬距離が長い場合であっても、複数の移動体の位置決定を正確かつ安定的に行うことができる位置決定システム、送信装置、受信装置及び位置決定方法を提供することにある。
 本発明による第1の位置検出システムは、送信タイミングを示すトリガ信号と、自己相関性の高い擬似ランダム系列のデータに基づいて変調された超音波信号とを同時に送出する送信装置を含む少なくとも1つの移動体と、トリガ信号と超音波信号を受信し、移動体の位置を検出する受信装置とを備え、受信処理装置が、所定間隔で設定された超音波信号を受信する少なくとも2つの超音波受信手段と、超音波信号の受信波形と、移動体に応じて予め決められた擬似ランダム系列の変調基準波形との間で相関値を算出する手段と、算出された相関値の最初のピーク値を検出し、トリガ信号を受信した時点と該相関ピーク値の検出時点とから2つの超音波受信手段に到達するまでの超音波伝搬時間をそれぞれ算出する手段と、算出した超音波伝播時間と超音波受信手段相互の間隔長に基づいて、移動体の位置を算出する手段とを含み、擬似ランダム系列として、相互相関の低い異なる系列を用いる。
 本発明による第2の位置検出システムは、自己相関性の高い擬似ランダム信号に基づいて変調された超音波信号とを同時に送出する送信装置を含む少なくとも1つの移動体と、超音波信号を受信し、移動体の位置を検出する受信装置とを備え、移動体の送信装置が、送信タイミングを表すトリガ信号を受信する手段と、トリガ信号を受信したタイミングで超音波信号を送信する手段とを含み、受信処理装置が、トリガ信号を送出する手段と、所定間隔で設定された超音波信号を受信する少なくとも2つの超音波受信手段と、超音波信号の受信波形と、移動体に応じて予め決められた擬似ランダム系列の変調基準波形との間で相関値を算出する手段と、算出された相関値の最初のピーク値を検出し、トリガ信号を受信した時点と該相関ピーク値の検出時点とから2つの超音波受信手段に到達するまでの超音波伝搬時間をそれぞれ算出する手段と、算出した超音波伝播時間と超音波受信手段相互の間隔長に基づいて、移動体の位置を算出する手段とを含み、擬似ランダム系列として、相互相関の低い異なる系列を用いる。
 本発明による第1の送信装置は、送信装置から送信される超音波信号を受信装置で受信して送信装置の位置を検出する位置検出システムの送信装置であって、送信タイミングを示すトリガ信号を送出するトリガ信号送信手段と、トリガ信号の送信に同期して、自己相関性の高い擬似ランダム信号に基づいて変調された超音波信号を送出する超音波送信手段とを含み、超音波信号の擬似ランダム信号の系列として、相互相関の低い異なる系列を用いる。
 本発明による第2の送信装置は、送信装置から送信される超音波信号を受信装置で受信して送信装置の位置を検出する位置検出システムの送信装置であって、受信装置から送信される送信タイミングを示すトリガ信号に同期して、自己相関性の高い擬似ランダム信号に基づいて変調された超音波信号を送出する超音波送信手段とを含み、超音波信号の擬似ランダム信号の系列として、相互相関の低い異なる系列を用いる。
 本発明による第1の受信装置は、送信装置から送信される超音波信号を受信装置で受信して送信装置の位置を検出する位置検出システムの受信装置であって、送信装置から送信される送信タイミングを示すトリガ信号を受信するトリガ信号受信手段と、所定間隔で設定された、トリガ信号に同期して送信装置から送信される自己相関性の高い擬似ランダム信号に基づいて変調された超音波信号を受信する少なくとも2つの超音波受信手段と、超音波信号の受信波形と、移動体に応じて予め決められた変調基準波形との間で相関値を算出する手段と、算出された相関値の最初のピーク値を検出し、トリガ信号を受信した時点と該相関ピーク値の検出時点とから2つの超音波受信手段に到達するまでの超音波伝搬時間をそれぞれ算出する手段と、算出した超音波伝播時間と超音波受信手段相互の間隔長に基づいて、移動体の位置を算出する手段とを含み、送信装置が送信する超音波信号の擬似ランダム信号の系列として、相互相関の低い異なる系列を用いる。
 本発明による第2の受信装置は、送信装置から送信される超音波信号を受信装置で受信して送信装置の位置を検出する位置検出システムの受信装置であって、送信タイミングを示すトリガ信号を送信装置に送信するトリガ信号送信手段と、所定間隔で設定された、トリガ信号に同期して送信装置から送信される自己相関性の高い擬似ランダム信号に基づいて変調された超音波信号を受信する少なくとも2つの超音波受信手段と、超音波信号の受信波形と、移動体に応じて予め決められた変調基準波形との間で相関値を算出する手段と、算出された相関値の最初のピーク値を検出し、トリガ信号を受信した時点と該相関ピーク値の検出時点とから2つの超音波受信手段に到達するまでの超音波伝搬時間をそれぞれ算出する手段と、算出した超音波伝播時間と超音波受信手段相互の間隔長に基づいて、移動体の位置を算出する手段とを含み、送信装置が送信する超音波信号の擬似ランダム信号の系列として、相互相関の低い異なる系列を用いる。
 本発明による第1の位置検出方法は、送信装置が、送信タイミングを示すトリガ信号と、自己相関性の高い擬似ランダム信号に基づいて変調された超音波信号とを同時に送信するステップを実行し、トリガ信号と超音波信号を受信し、移動体の位置を検出する受信装置が、所定間隔で設定された少なくとも2つの超音波受信手段によって超音波信号を受信するステップと、超音波信号の受信波形と、移動体に応じて予め決められた変調基準波形との間で相関値を算出するステップと、算出された相関値の最初のピーク値を検出し、トリガ信号を受信した時点と該相関ピーク値の検出時点とから2つの超音波受信手段に到達するまでの超音波伝搬時間をそれぞれ算出するステップと、算出した超音波伝播時間と超音波受信手段相互の間隔長に基づいて、移動体の位置を算出するステップを実行し、送信装置が送出する超音波信号の擬似ランダム信号の系列として、相互相関の低い異なる系列を用いる。
 本発明による第2の位置検出方法は、送信装置が、送信タイミングを表すトリガ信号を受信するステップと、トリガ信号を受信したタイミングで自己相関性の高い擬似ランダム信号に基づいて変調された超音波信号を送信するステップを実行し、超音波信号を受信し、移動体の位置を検出する受信装置が、トリガ信号を送出するステップと、所定間隔で設定された少なくとも2つの超音波受信手段で超音波信号を受信するステップと、超音波信号の受信波形と、移動体に応じて予め決められた擬似ランダム系列の変調基準波形との間で相関値を算出するステップと、算出された相関値の最初のピーク値を検出し、トリガ信号を受信した時点と該相関ピーク値の検出時点とから2つの超音波受信手段に到達するまでの超音波伝搬時間をそれぞれ算出するステップと、算出した超音波伝播時間と超音波受信手段相互の間隔長に基づいて、移動体の位置を算出するステップを実行し、送信装置が送出する超音波信号の擬似ランダム系列として、相互相関の低い異なる系列を用いる。
 本発明によれば、複数の移動体を同時に使用する場合に、各移動体の位置決定を正確かつ安定的に行うことができる。
本発明の第1の実施の形態による位置決定システムを適用した電子ペンシステムの構成を示すブロック図である。 本発明の第1の実施の形態による受信処理装置が生成するM系列モデル波形の例を示す図である。 本発明の第1の実施の形態による電子ペンの動作を説明するフローチャートである。 本発明の第1の実施の形態による受信処理装置の動作を説明するフローチャートである。 本発明の第1の実施の形態による電子ペンの位置算出方法を2次元で示す図である。 本発明の第1の実施の形態による受信処理装置のメモリに格納される合成超音波波形の例を示す図である。 図6の合成波形に含まれる電子ペン10-1からの直接波の例を示す図である。 図6の合成波形に含まれる電子ペン10-2からの直接波の例を示す図である。 図6の合成波形に含まれる電子ペン10-2の反射波の例を示す図である。 図6の合成波形に含まれる雑音波形の例を示す図である。 本発明の第1の実施の形態による受信処理装置のデータ処理部が算出する相関値の例を示す図である。 本発明の第2の実施の形態による位置決定システムを適用した電子ペンシステムの構成を示すブロック図である。 本発明の第2の実施の形態による電子ペンの動作を説明するフローチャートである。 本発明の第2の実施の形態による受信処理装置の動作を説明するフローチャートである。 本発明の第2の実施の形態による受信処理装置の動作を説明するフローチャートである。 本発明の第3の実施の形態による位置決定システムを適用した電子ペンシステムの構成を示すブロック図である。 関連技術における超音波受信波形の例を示す図である。 関連技術における受信トリガ信号と超音波受信波形の例を示す図である。 関連技術における送信トリガ信号と超音波受信波形の例を示す図である。 7次の特性多項式より生成される127ビットの系列長のM系列から15ビットを取り出した部分列を用いる例を示す図である。 7次の特性多項式より生成される127ビットの系列長のM系列から15ビットを取り出した部分列を用いる例を示す図である。 7次の特性多項式より生成される127ビットの系列長のM系列から15ビットを取り出した部分列を用いる例を示す図である。 7次の特性多項式より生成される127ビットの系列長のM系列から15ビットを取り出した部分列を用いる例を示す図である。
 次に、本発明の実施の形態について図面を参照して詳細に説明する。
(第1の実施の形態)
 図1は、本発明の第1の実施の形態による位置検出システムの構成を示すブロック図である。以下の実施の形態においては、本発明による位置検出システムを、電子ペンシステムに適用した場合を説明する。
 図1において、本発明の第1の実施の形態による位置検出システムは、送信部100を装着する電子ペン10と、電子ペン10から離れた所定の位置に設置された受信装置20と、電子ペン10によって描いた軌跡を表示する表示パネル50を備えている。電子ペン10は、表示パネル50上で使用される。表示パネル50は、プロジェクタで投影された投影画面でも構わない。
 電子ペン10の送信部100は、制御回路101と、M系列生成回路102と、超音波駆動回路103と、超音波送信部104と、受信トリガ駆動回路105と、受信トリガ送信部106とを備えている。
 M系列生成回路102は、M系列のコード化されたビット列を生成する機能を有している。このM系列は、特性多項式と初期条件を規定することに生成される系列である。なお、M系列の詳細については、柏木濶著「M系列とその応用」1996年3月25日,昭晃堂(非特許文献1)等に記述されている。
 制御回路101は、予め定められたM系列の特性多項式と初期条件をM系列生成回路102に出力する。M系列生成回路102は、制御回路101から受信した特性多項式と初期条件に従ってM系列のコード化されたビット列(M系列データ)を生成する。
 超音波駆動回路103は、M系列生成回路102が生成したM系列データに基づいて超音波を変調するための駆動信号を生成し出力する。超音波送信部104は、超音波駆動回路103からの駆動信号によりM系列変調された超音波信号を空間に送出する。
 超音波送信部104による超音波信号の変調方式としては、例えば位相変調方式が使用される。
 例えば、次式のような4次の特性多項式f(x)=x+x+1により生成される系列長が15ビットであるデータ列を用いる場合、初期条件を変更することにより、データの並びが巡回的にシフトした15通りの異なるM系列データが生成される。
 図2は、M系列データにより位相変調された超音波のM系列モデル波形の例を示す。この例においては、15ビットのM系列データ「000100110101111」の各1ビットを基本波の1周期を対応させている。ビットが「0」の場合は反転位相とし、「1」の場合は順位相としたものであり、変調波は基本波15周期分の長さとなる。
 一方、制御回路101は、受信トリガ駆動回路105に対して受信トリガ信号の生成を指示する信号を出力する。受信トリガ駆動回路105は、制御回路101からの指示信号に基づき受信トリガ駆動用信号を生成する。
 受信トリガ送信部106は、超音波送信部104の超音波信号の送信タイミングに同期して、受信トリガ駆動回路105からの受信トリガ駆動用信号により駆動され、受信トリガ信号を空間に送出する。この受信トリガ信号は、例えば電磁波信号である赤外線信号として送信する。
 また、受信トリガ送信部106から送信される受信トリガ信号は、各電子ペン10を一意に識別可能な信号とする。また、複数の電子ペン10を利用する場合、受信トリガ信号としては、電子ペン10毎に重複が生じないよう帯域分割された信号を用いる。
 受信装置20は、超音波受信部201-1、201-2と、サンプリング回路202-1、202-2と、受信トリガ受信部203と、受信トリガ検出回路204と、メモリ205と、データ処理回路206を含む受信部200を備える。
 超音波受信部201-1と201-2は、予め定められた間隔長を介して互いに離した状態で設置されており、電子ペン10から送信された超音波信号を受信し、これを電気信号に変換する。
 サンプリング回路202-1、202-2は、超音波受信部201-1、201-2から出力される電気信号を一定間隔でサンプルし、順次メモリ205に格納する。
 受信トリガ受信部203は、電子ペン10からの受信トリガ信号を受信し、この受信トリガ信号を電気信号に変換し、トリガパルスとして出力する。受信トリガ検出回路204は、受信トリガ受信部203からのトリガパルスを検出すると、そのトリガパルスの検出時刻(到達時刻)をトリガ検出時刻データとしてメモリ205に格納する。
 データ処理回路206は、メモリ205から送信部100と同一のM系列の初期条件を読み出し、予め設定されている特性多項式を用いることにより、送信された超音波信号のモデル波形を生成し、当該モデル波形とメモリ205に格納されている超音波受信部201-1、201-2のそれぞれで受信した超音波信号波形との相関処理を行い、相関処理により得られた相関値を超音波受信部201-1、201-2のそれぞれで受信した超音波信号波形毎に順次メモリ205に格納する。
 また、データ処理回路206は、メモリ205に格納された相関値の先頭のピークを検出すると、トリガパルスの到達時刻からピークを検出した時点までの経過時間、即ち電子ペン10からの受信装置20に到達するまでの超音波信号の伝搬時間を、超音波受信部201-1、201-2のそれぞれで受信した超音波信号毎に算出する。
 さらに、データ処理回路206は、超音波受信部201-1、201-2のそれぞれで受信した超音波信号毎の算出された電子ペン10から受信装置20に到達するまでの超音波信号の伝搬時間と、超音波受信部201-1、201-2の間隔長とに基づいて電子ペン10の表示パネル50上における位置を算出する。
 上記のように、受信装置20の2つの超音波受信部201-1と201-2で受信した超音波信号の伝搬時間と、超音波受信部201-1、201-2の間隔長とから、三角測量の原理によって電子ペン10の位置を正確に決定することが可能となる。
 また、複数存在する電子ペン10毎にそれぞれ異なるM系列データを割り当てるものとする。異なるM系列データの相互相関値は低くなり、同一のM系列データの自己相関値は高くなる。そのため、超音波受信波形に対して、検出したいM系列のモデル波形により相関処理を行うと、超音波の到達点は該当するM系列データの相関値のピークとして検出される。
 本実施の形態による位置検出システムは、例えば、電子ペンシステムの組み立て時に、システムで使用するM系列の選択(以下、M系列選択モード)を行う。以下、そのM系列選択モードにおける手順を説明する。
 M系列選択モードの時、受信トリガ信号と超音波信号が繰り返し電子ペン10から送出する。その際、電子ペン10から送信毎に異なるM系列データによって変調した超音波信号を送出する。
 受信装置20において、受信トリガ信号と超音波信号を受信する毎に、超音波信号に使用する全てのM系列モデル波形との相関値をそれぞれ求め、異なるM系列間の相互相関値をチェックする。その際、相互相関値のピークの値が小さいM系列データほど高く評価し、全M系列の相互相関値のピークが小さいほうから、その相互相関値に対するM系列の組み合わせを形成するM系列(初期条件)を、各電子ペン10について使用するM系列として割り当てる。
 超音波伝搬時間の測定モードの時、各電子ペン10に割り当てられたM系列(初期条件)に基づき生成された受信トリガ信号と超音波信号が送出されると、信号を受信した受信装置20のデータ処理回路206が相関処理を行う。そして、相関値の最初のピークを検出するとトリガパルスの検出時刻からこのピークを検出した時点までの経過時間、即ち電子ペン10からの受信装置2に到達するまでの超音波信号の伝搬時間を算出する。
 M系列選択モードの時、例えば、相互相関値のピーク値が小さいほうから順に、「送信M系列が系列1と受信M系列モデル波形のM系列が系列2の組み合わせ」、「送信M系列が系列1と受信M系列モデル波形のM系列が系列5の組み合わせ」、「送信M系列が系列2と受信M系列モデル波形のM系列が系列6の組み合わせ」のように、相互相関値に対するM系列の組み合わせが得られた場合は、各電子ペンについて系列1、系列2、系列5、系列6のようにそれぞれを割り当てる。
 各電子ペン10に対して割り当てるM系列が決まると、割り当てられたM系列の初期条件を対応する電子ペン10の制御回路101に設定し、制御回路101は、M系列データの生成において、設定されたM系列の初期条件をM系列生成回路102に出力する。
 なお、各相互相関値については、同一のM系列による自己相関値のピーク値で割ることで正規化した値とすることも可能である。
 電子ペン10の位置と表示パネル50の描画範囲における表示位置は予め対応付けられており、描画時には、電子ペン10のペン先に設けられた表示パネル50への押圧と連動してオンとなるスイッチが押されている間、電子ペン10から一定周期で受信トリガ信号と超音波信号の送信を繰り返すことにより、複数の電子ペン10の軌跡を精度よく表示パネル50上に描画することができる。
 次に、図3のフローチャートを参照して、電子ペン10の送信部100による動作について説明する。電子ペン10は、動作中は、一定周期で以下の動作を繰り返す。
 まず、電子ペン10が動作を開始すると、制御回路101は、予め設定されているM系列特性多項式の初期条件をM系列生成回路102に出力する(ステップA1)。
 M系列生成回路102は、制御回路101から取得した初期条件に基づきM系列データを生成し(ステップA2)、超音波駆動回路103に供給する。超音波駆動回路103は、M系列生成回路102が生成したM系列データに基づいて超音波を変調するための駆動信号を生成し出力する(ステップA3)。
 ステップA3で駆動信号が生成されると、超音波送信部104は、超音波駆動回路103からの駆動信号によりM系列変調された超音波信号を電子ペン10から空間に送出する(ステップA4)。
 また、制御回路101は、M系列の初期条件を決定すると、受信トリガ駆動回路105に対し受信トリガ信号の生成を指示する。受信トリガ駆動回路105は、制御回路101からの指示信号に基づき受信トリガ駆動用信号を生成する(ステップA5)。
 また、受信トリガ送信部106は、超音波信号の送信タイミングに同期して、受信トリガ駆動回路105からの受信トリガ駆動信号で生成した受信トリガ信号を空間に送出する(ステップA6)。
 次に、図4のフローチャートを参照して、受信装置20のデータ処理回路206の動作について説明する。データ処理回路206による処理の前段階として、サンプリング回路202が超音波受信部201-1、201-2で受信したそれぞれの超音波信号を一定のサンプリング間隔でサンプルし、サンプル化した波形データをメモリ205に順次格納する。この場合、超音波受信部201-1、201-2で受信した超音波信号をサンプル化した波形データをそれぞれ別個にメモリ205に格納する。
 一方、受信トリガ検出回路204は、受信トリガ受信部203で受信した受信トリガ信号からトリガパルスを検出すると、トリガパルスの検出時刻(到達時刻)を示すトリガ検出時刻データを生成しメモリ205に格納する。
 図4において、データ処理回路206は、受信トリガ検出回路204で受信トリガパルスを検出すると(ステップB1)、予め格納されているM系列の初期条件データをメモリ205から読み出す(ステップB2)。
 次いで、データ処理回路206は、読み出されたM系列初期条件データと予め設定されている特性多項式を用いて送信された超音波信号のM系列モデル波形を生成する(ステップB3)。
 次に、メモリ205に格納されているトリガ検出時刻データで示されるトリガ検出時刻をサンプリング開始時刻(t)に設定し(ステップB4)、受信した超音波信号の波形データをメモリ205から読み出す(ステップB5)。
 データ処理回路206は、この読み出した超音波信号の波形データと先に生成したM系列のモデル波形との間のサンプリング時刻(t)における相関値C(t)を下記の式(1)を用いて算出し、算出した相関値C(t)をメモリ205に格納する(ステップB6)。
Figure JPOXMLDOC01-appb-M000001
 式(1)において、「i」は整数値でサンプリング時刻変数であり、「N」はモデル波形のサンプリング数、「r(i)」はサンプリング時刻iのモデル波形の値、「f(i+t)」はサンプリング時刻(i+t)の受信波形の値である。
 メモリ205に全ての相関値が格納されていない場合(ステップB7)、サンプリング時刻tを単位時間「1」だけインクリメントしてステップB5の処理に戻る。
 ステップB5からB6による処理を繰り返し実行することにより、ステップB7で全ての相関値の算出と格納が終了すると、メモリ205に格納された相関値から先頭ピーク(最初のピーク)を検出する(ステップB9)。
 データ処理回路206は、ステップB4で設定したサンプリング開始時刻(トリガ検出時刻)とステップB9で検出した先頭ピークの検出時刻とから電子ペン10からの超音波伝搬時間を算出する(ステップB10)。
 トリガパルスを検出した時刻であるサンプリング時刻を「0」とし、サンプリング周期をΔTとすると、超音波伝搬時間は、t×ΔTとして算出することができる。
 相関値の最大ピーク値に対し一定比率以上の値であればこれを直接波のピークとして認識することにより、反射波の影響を受けることなく先頭(最初)の直接波である超音波信号の到達時刻を確実に検出することが可能となる。
 ステップB11で、全ての超音波受信部201-1、201-2で受信した超音波信号についての処理を終了したかどうかを判別し、処理が終了していなければ、ステップB5の超音波信号の波形データの読み出しからの処理を繰り返す。
 全ての超音波受信部201-1、201-2で受信した超音波信号についての処理が終了すると、超音波受信部201-1、201-2のそれぞれで受信した超音波信号毎に算出した伝搬時間と、超音波受信部201-1、201-2の間隔長とに基づいて電子ペン10の表示パネル50上における位置を算出する(ステップB12)。その後、ステップB13でメモリ205を消去する。
 データ処理回路206による位置算出手順の例について、以下に説明する。
 図5は、電子ペン10と超音波受信部201-1、201-2との位置算出方法を2次元で示す図である。図5において、Pは電子ペン10の表示パネル50の描画範囲上のx-y座標における位置座標値(x,y)、S1、S2はそれぞれ超音波受信部201-1、201-2の位置を示している。
 また、d1は電子ペン10から超音波受信部201-1までの距離、d2は電子ペン10から超音波受信部201-2までの距離である。Dは超音波受信部201-1、201-2の中央をx-y座標の原点とした場合の原点からの距離である。また、αは電子ペン10と超音波受信部201-1とを結ぶ直線がx軸となす角度を示している。
 ここで、超音波受信部201-1と201-2で受信した超音波信号に基づいて算出した伝搬時間をそれぞれt1、t2とし、また、音速をAとする。
 距離d1、d2は、d1=A×t1、d2=A×t2として算出することができる。超音波受信部201-1と201-2間の間隔長(2D)と距離d1、d2の間には、以下の式(2)に示す関係が成立していることから、電子ペン10の位置(x、y)は、式(3)による計算を行うことで求めることができる。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
 上記のように、受信装置20の2つの超音波受信部201-1と201-2で受信した超音波信号の伝搬時間と、超音波受信部201-1、201-2の間隔長とから、三角測量の原理によって電子ペン10の位置を正確に決定することが可能となる。
 以上の動作により、予め電子ペン10の位置と表示パネル50の表示位置を対応付けておくことで、描画時には、電子ペン10のペン先に連動したスイッチによりペン先が押されている間、一定周期で受信トリガ信号と超音波信号の送信を繰り返すことにより、複数の電子ペン10に対し、順次その軌跡を精度よく描画することができる。
 なお、実施例としては、受信トリガ信号として、電子ペン10毎にお互い干渉しない程度の異なる波長の赤外線信号を使用することが可能である。この場合、受信トリガ受信部203は、使用されるそれぞれの波長の受信トリガを受信する。受信トリガ検出回路204は、受信トリガ受信部203の出力からトリガパルスを検出すると、各電子ペン10に対応した波長毎のトリガパルスの到達時刻をメモリ205に格納する。
 受信装置20において受信した超音波信号に対して、電子ペン10毎に割り当てたM系列のモデル波形によって相関処理を行い、検出される超音波信号の到達時刻(トリガパルス検出時刻)と相関値の先頭ピークの検出時刻から、伝播時間を算出する。
 また、他の実施例としては、受信トリガ信号として、同一波長の赤外線信号を使用し、電子ペン10毎に異なるM系列の受信トリガパルス信号を用いる方法も可能である。この場合、受信装置20の受信トリガ検出回路204は、電子ペン10毎のM系列のモデル波形により、相関処理を行うことにより、受信トリガパルス信号の到達時刻を検出する。この場合、ビット長の長いM系列を用い、電子ペン10毎にパルス幅を変更することで、各電子ペン10のパルス信号が重なったときの検出精度の悪化を防ぐことができる。
 以下、2つの電子ペン10-1と10-2からの超音波信号を受信した場合の例について、具体的な波形を示して説明する。
 図6は、2つの電子ペン10-1と10-2からの超音波信号を受信した場合のメモリ205に格納された超音波信号の波形を示す。メモリ205に格納される超音波信号の波形は、2つの電子ペン10-1、10-2から送信された超音波の直接波、反射波及び雑音波形の合成波となる。図6に示す波形は、サンプリング回路202によるサンプリング間隔を超音波の基本波周期の1/8とした場合の波形である。横軸は、電子ペン10-2の受信トリガ信号を受信した時点を「0」とした時刻を示している。周波数が40kHzの超音波の場合、周期は25msとなり、サンプリング間隔は3.125msとなる。
 図7は、15ビットM系列のデータ列「100010011010111」により位相変調された電子ペン10-1からの超音波信号の直接波の受信波形を示している。この波形は、図6の合成波形に含まれている。
 図8は、電子ペン10-1と初期値の異なる15ビットM系列のデータ列「000100110101111」により位相変調された電子ペン10-2からの超音波信号の直接波の受信波形を示しており、同じく合成波形に含まれている。
 また、図9は電子ペン10-1からの超音波信号の反射波の受信波形を示す。この反射波の位相は、図8に示す電子ペン10-2の直接波と同じである。図10は、雑音波形を示している。図9の反射波形及び図10の雑音波形も図6の合成波形に含まれている。
 図11は、図6で示される合成波と電子ペン10-2のM系列のモデル波形である図2で示される変調波との相関をとってその相関値をプロットした図である。
 図11に示すように、電子ペン10-1からの超音波信号の直接波のピークについては、電子ペン10-2と初期値の異なるM系列のために現れていない。電子ペン10-2からの超音波信号のピークが最初に(先頭に)現れている。これにより、電子ペン10-2の直接波の到達時刻を確実に検出することができる。同様に、図6に示す合成波と電子ペン10-1のM系列のモデル波形との相関をとれば、今度は、電子ペン10-1の直接波の到達時刻を検出することができる。
(第1の実施の形態による効果)
 複数の電子ペン10を同時に使用する場合に、送信部100と受信部200の間の伝搬距離が長い場合であっても、複数の電子ペン10からの送出される複数の超音波信号の影響を受けることなく、最初に受信部200に到達する直接波によってそれぞれの電子ペン10の位置を検出することができる。よって、複数の電子ペンを同時に使用する場合に、各電子ペンの位置決定を正確かつ安定的に行うことができる。
 その理由は、各電子ペン10の送信部100で異なるM系列により変調された超音波信号を用い、トリガ信号を電子ペン10毎に識別可能な電磁波信号とすることで、受信装置20でそれぞれの電子ペン10のM系列モデル波形を生成し、該超音波信号と生成されたM系列モデル波形との間で相関値を算出し、該相関値の最初のピーク値を検出し、前記トリガ信号を受信した時点と該相関ピーク値の検出時点とから各電子ペン10からの超音波伝搬時間を正確に算出できるためである。
(第2の実施の形態)
 次に、本発明の第2の実施の形態による位置検出システムについて図12を参照して詳細に説明する。
 図12において、第2の実施の形態による位置検出システムは、送信部300を備える電子ペン30と、この電子ペン30から離れた所定の位置に設置された受信部400を備える受信装置40と、電子ペン30によって描いた軌跡を表示する表示パネル50を備えている。
 電子ペン30の送信部300は、制御回路301と、M系列生成回路302と、超音波駆動回路303と、超音波送信部304と、送信トリガ検出回路305と、送信トリガ受信部306を備えている。
 本実施の形態においては、第1の実施の形態による電子ペン10と異なり、受信トリガ駆動部105と受信トリガ送信部106の代わりに、送信トリガ受信部306と送信トリガ検出部305を備える。
 電子ペン30から受信トリガ信号を送信せずに、受信装置40からの送信トリガ信号を送信トリガ受信部306で受信し、送信トリガ検出部305でトリガパルスを検出する。
 また、制御回路301は、送信トリガ検出部305からのトリガパルス検出の通知に同期して予め設定したM系列の特性多項式と初期条件をM系列生成回路302に出力する。
 超音波駆動回路303と超音波送信部304については、第1の実施の形態の超音波駆動回路103及び超音波送信部104と同様に動作する。
 一方、受信装置40の受信部400は、超音波受信部401-1、401-2と、サンプリング回路402-1、402-2と、送信トリガ送信部403と、送信トリガ制御回路404と、メモリ405と、データ処理回路406とを備えている。
  本実施の形態においては、第1の実施の形態による電子ペン10と異なり、受信トリガ受信部203、受信トリガ検出回路204の代わりに、送信トリガ送信部403と送信トリガ制御回路404を備えている。
 送信トリガ制御回路404は、送信トリガ駆動用信号を生成し、送信トリガ送信部403は、その送信トリガ駆動用信号によって駆動され送信トリガ信号を空間に送出する。また、送信トリガ制御回路404は、送信トリガ送信部403から送信した送信トリガ信号の送信時刻をメモリ405に格納する機能を有する。
 上記電子ペン30の送信部300の動作について図13のフローチャートを参照して説明する。
 送信トリガ受信部306は、受信装置40からの送信トリガ信号を受信すると(ステップC1)、これを電気信号に変換しトリガパルスを出力する(ステップC2)。
 送信トリガ検出回路305は、送信トリガ受信部306の出力からトリガパルスを検出すると、制御回路301へ通知する(ステップC3)。
 制御回路301は、送信トリガ受信部306からの通知を受け取ると、予め設定したM系列の特性多項式と初期条件をM系列生成回路302に伝達する(ステップC4)。
 M系列生成回路302は、制御回路301から受け取った特性多項式と初期条件に従ってM系列のコード化されたビット列であるM系列データを生成する(ステップC5)。
 超音波駆動回路303は、M系列生成回路302からのM系列データにより超音波を変調する駆動信号を生成する(ステップC6)。
 超音波送信部304はこの駆動信号によりM系列変調された超音波信号を空間に送出する(ステップC7)。
 この第2の実施の形態では、第1の実施の形態と比較し、受信トリガ駆動信号の生成と受信トリガ信号の送信ステップが省かれている。
 次いで、受信装置40の動作について図14と図15のフローチャートを参照して説明する。
 図14は、送信トリガ制御回路404と送信トリガ送信部403の動作を示すフローチャートである。
 図14において、送信トリガ制御回路404は、送信トリガ駆動用信号を生成する(ステップD1)。送信トリガ送信部403は、この送信トリガ制御回路404からの送信トリガ駆動用信号によって駆動され送信トリガ信号を受信装置40から空間に送出する(ステップD2)。
 一方、送信トリガ制御回路404は、送信トリガ送信部403から送信した送信トリガ信号の送信時刻をメモリ405に格納する(ステップD3)。
 超音波受信部401-1、401-2は、電子ペン303から送信された超音波信号を受信し、これを電気信号に変換し、サンプリング回路402-1、402-2は、該電気信号を一定間隔でサンプル化しサンプル化した波形データを順次メモリ405に格納する。
 図15は、データ処理回路406の処理内容を示すフローチャートである。
 図15において、データ処理回路406は、電子ペン30の送信部300と同一のM系列の初期条件を読み出し、送信された超音波信号のM系列のモデル波形を生成し、メモリ405に格納されている超音波波形との相関処理を行い、相関値を順次メモリ405に格納していく(ステップE1~E6)。
 また、データ処理回路406は、メモリ405に格納された相関値の先頭のピークを検出すると、送信トリガ信号の送信時刻から先頭のピークを検出した時点までの経過時間、即ち電子ペン30からの受信装置40に到達するまでの超音波信号の伝搬時間を算出すると共に、超音波信号毎に算出した伝搬時間と、超音波受信部401-1、401-2の間隔長とに基づいて電子ペン30の表示パネル50上における位置を算出する(ステップE8~E11)。
 データ処理回路406における処理内容は、図4に示した第1の実施の形態と比較し、受信トリガパルスの検出が省かれているだけで、その他の処理については、第1の実施の形態と同様であるので詳細な説明は省略する。
(第2の実施の形態による効果)
 第2の実施の形態によれば、上述した第1の実施の形態と同様の効果が得られると共に、受信装置20から送信トリガ信号を送信する構成としたことにより、電子ペン10の送信部100の構成をより簡略化することできる効果が得られる。また、トリガ信号を電子ペン10毎に識別可能な電磁波信号とする必要がなくなる。
(第3の実施の形態)
 次に、本発明の第3の実施の形態による位置検出システムについて図16を参照して詳細に説明する。
 上述した第1の実施の形態では、システムの組み立てに際し、M系列選択モードにおいて、電子ペン10毎に使用するM系列の初期条件を決定して予め電子ペン10に割り当てる場合を説明したが、本実施の形態では、電子ペンシステムの製品出荷前や使用開始前に、使用するM系列の初期条件をキャリブレーションによって設定することができる構成としている。
 第3の実施の形態による位置検出システムは、図16に示すように、電子ペン10に、M系列選択モードと通常の位置検出モードの切り替えを行うためのモード切替スイッチ60と、使用するM系列を設定するM系列設定スイッチ70を備えている。
 M系列設定スイッチ70としては、例えばロータリースイッチ等のように現在の設定状態を確認することができるスイッチを使用する。また、M系列設定スイッチ70に、M系列選択モードをオンオフするポジションを設けることで、M系列選択モードがオフの時には通常の位置検出モードに切り替わるようにすれば、モード切替スイッチ60を省くことも可能である。
 また、受信装置20には、各電子ペン10毎に設定したM系列を表示するための設定内容表示部80を備えている。
 本実施の形態における電子ペン10と受信装置20の他の構成については、図1に示した第1の実施の形態の構成と同じであるので、各構成要素についての説明は省略する。
 以下、使用するM系列の初期条件をキャリブレーションによって設定する場合の手順について説明する。
 キャリブレーション時は、電子ペン10のモード切替スイッチ60を切り替えることにより、M系列選択モードに設定する(ステップF1)。
 電子ペン10を受信装置20からの予め定められた所定の位置に配置する。
 電子ペン10から受信トリガ信号と超音波信号を繰り返し送出する。その際、送信毎に異なるM系列を使用する点は第1の実施の形態の場合と同様である。
 受信装置20では、電子ペン10から超音波信号を受信する毎に、超音波の使用する全てのM系列モデル波形との相関値をそれぞれ求め、異なるM系列間の相互相関値をチェックする。
 そして、第1の実施の形態と同様に、相互相関値のピークの値が小さいM系列データほど高く評価し、全M系列の相互相関値のピークが小さいほうから、その相互相関値に対するM系列の組み合わせを形成するM系列(初期条件)を、各電子ペン10について割り当てるM系列として決定する。
 なお、受信装置20において、まず自己相関値を算出し、電子ペン10と受信装置20の超音波受信部とのそれぞれの距離に対応する自己相関値のピークの時点を決定し、ピーク時点を含む予め指定したある時間範囲での相互相関値のピークを評価するようにしてもよい。
 キャリブレーションが完了すると、受信装置20に接続される設定内容表示部80に、各電子ペン10に設定すべきM系列を表示する。
 最後に、受信装置20の設定内容表示部80に表示されるM系列の情報に従って、各電子ペン10のM系列設定スイッチ70を操作して使用するM系列を設定する。このような操作により、複数の電子ペン10間で重複することなくM系列を設定する。
 位置検出モードでは、図2のステップA1で、制御回路101はM系列設定スイッチ70で設定されたM系列の初期条件をM系列生成回路102に出力する。
 その他の電子ペン10及び受信装置20のデータ処理回路406における処理は、図4に示した第1の実施の形態による処理と同様であるので説明は省略する。
 電子ペン10に備えるM系列設定スイッチ70は、M系列の設定を変更するとともに、現在の設定内容をM系列設定データとして受信トリガ送信部106から送信し、受信装置20が、電子ペン10から送信されたM系列設定データを接続される設定内容表示部80に表示する構成とすることもできる。このような構成とすれば、電子ペン10側に現在の設定状態を確認する機能はなくても構わない。
(第3の実施の形態による効果)
 第1の実施の形態では、システムの組み立て時に、M系列選択モードで、電子ペン10毎に使用するM系列を予め割り当てて設定するため、通常の位置検出モードによる使用時等に、各電子ペン10に割り当てるM系列を変更することができず、使用する電子ペンを増やす場合には、あらかじめ重複しないM系列が設定された電子ペンを追加するか、もしくは、メーカ側において、再度M系列選択モードを実施して電子ペン毎にM系列を割り当てると言った作業が必要であった。
 この第3の実施の形態によれば、電子ペンシステムの製品出荷前や使用開始前に、使用するM系列の初期条件をキャリブレーションによって設定することができる構成としているため、システム運用中においても、利用者が各電子ペン10に割り当てるM系列を変更するができる。従って、使用する電子ペンを増やすような場合でも、メーカ側における割り当て作業が不要となり、利用者側で随時M系列の割り当てを変更することで対処することが可能となる。また、使用する周辺環境に応じて最適なM系列の割り当ても可能となる。
 以上好ましい実施の形態と実施例をあげて本発明を説明したが、本発明は必ずしも、上記実施の形態及び実施例に限定されるものでなく、その技術的思想の範囲内において様々に変形して実施することができる。
 上記各実施の形態では、本発明を電子ペンシステムに適用した場合について説明したが、ロボットシステムへ適用することが可能である。送信装置をロボットへ設置し、受信装置をある空間の天井や壁に設置することでロボットの空間内の位置を検出することができる。空間内のロボットの位置を把握することでロボットを制御し衝突回避といった用途に使用可能である。
 一方、送信装置を人間等に装着し、受信装置をある空間の天井や壁に設置することで、空間内での動線検出や位置追跡といった用途にも適用することができる。
 いずれの場合も、可動物体毎に異なるM系列の超音波を用いて、複数の可動物体が共存する環境を構築することが可能である。
 これまでは、M系列による変調について述べたが、例えばGold系列のように、自己相関性が高く、他の系列との相互相関が低い擬似ランダム信号であれば、M系列に限定するものではない。
 また、これまでは4次の特性多項式f(x)=x+x+1により生成される系列長が15ビットであるデータ列を用いたが、より長い系列長のM系列の部分列を使用し、部分相互相関が小さい組み合わせの部分列を選択することも可能である。一例として、7次の特性多項式f(x)=x7+x3+1により、初期値を「0000111」として得られる127ビットの系列長のM系列から、15ビットを取り出した部分列を用いる場合を説明する。
 図20は、127ビットの先頭の15ビットの部分列「000011101111001」により位相変調した超音波を、同じビット列の参照波形により自己相関を算出した図である。図21は、同じく127ビットの15ビットの部分列「011001001000000」により位相変調した超音波と、「000011101111001」の参照波形により相互相関を算出した図である。図22は、同じく127ビットの15ビットの部分列「001111011010000」により位相変調した超音波と、「000011101111001」の参照波形により相互相関を算出した図である。
 それぞれの相互相関値のピークを評価すると、「000011101111001」と「011001001000000」の相互相関値のピークが、「000011101111001」と「001111011010000」の相互相関値のピークに比べ小さいため、「000011101111001」と「011001001000000」を選択することとなる。
 仮に、M系列部分列Aを「000011101111001」、M系列部分列Bを「011001001000000」とすると、図23にあるように、超音波の受信波を部分列Aの参照波形で相関をとることで、部分列Aの超音波の到達点を相関ピークとして確実に得ることができる。同様に、受信波を部分列Bの参照波形で相関をとれば、部分列Bの超音波の到達点を相関ピークとして確実に得ることができる。
 また、上述した各実施例を組み合わせた構成とすることも可能である。
 以上好ましい実施の形態(及び実施例)を参照して本願発明を説明したが、本願発明は上記実施の形態(及び実施例)に限定されるものでない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2007年12月28日に出願された日本出願特願2007-339054を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (34)

  1.  送信タイミングを示すトリガ信号と、自己相関性の高い擬似ランダム系列のデータに基づいて変調された超音波信号とを同時に送出する送信装置を含む少なくとも1つの移動体と、
     前記トリガ信号と前記超音波信号を受信し、前記移動体の位置を検出する受信装置とを備え、
     前記受信処理装置が、
     所定間隔で設定された前記超音波信号を受信する少なくとも2つの超音波受信手段と、
     前記超音波信号の受信波形と、前記移動体に応じて予め決められた前記擬似ランダム系列の変調基準波形との間で相関値を算出する手段と、
     算出された前記相関値の最初のピーク値を検出し、前記トリガ信号を受信した時点と該相関ピーク値の検出時点とから前記2つの超音波受信手段に到達するまでの超音波伝搬時間をそれぞれ算出する手段と、
     算出した前記超音波伝播時間と前記超音波受信手段相互の間隔長に基づいて、前記移動体の位置を算出する手段とを備え、
     前記擬似ランダム系列として、相互相関の低い異なる系列を用いることを特徴とする位置検出システム。
  2.  自己相関性の高い擬似ランダム信号に基づいて変調された超音波信号とを同時に送出する送信装置を含む少なくとも1つの移動体と、
     前記超音波信号を受信し、前記移動体の位置を検出する受信装置とを備え、
     前記移動体の前記送信装置が、
     送信タイミングを表すトリガ信号を受信する手段と、
     前記トリガ信号を受信したタイミングで前記超音波信号を送信する手段とを備え、
     前記受信処理装置が、
     前記トリガ信号を送出する手段と、
     所定間隔で設定された前記超音波信号を受信する少なくとも2つの超音波受信手段と、
     前記超音波信号の受信波形と、前記移動体に応じて予め決められた前記擬似ランダム系列の変調基準波形との間で相関値を算出する手段と、
     算出された前記相関値の最初のピーク値を検出し、前記トリガ信号を受信した時点と該相関ピーク値の検出時点とから前記2つの超音波受信手段に到達するまでの超音波伝搬時間をそれぞれ算出する手段と、
     算出した前記超音波伝播時間と前記超音波受信手段相互の間隔長に基づいて、前記移動体の位置を算出する手段とを備え、
     前記擬似ランダム系列として、相互相関の低い異なる系列を用いることを特徴とする位置検出システム。
  3.  前記トリガ信号が、前記送信装置を識別可能な電磁波信号であることを特徴とする請求項1に記載の位置検出システム。
  4.  前記トリガ信号が、前記送信装置毎に重複が生じないよう帯域分割された信号であることを特徴とする請求項3に記載の位置検出システム。
  5.  前記トリガ信号が、前記送信装置毎に異なる自己相関性の高い擬似ランダム信号に基づいて変調された電磁波信号であり、
     前記受信装置が、受信したトリガ信号の受信波形と、予め設定された変調基準波形との間で相関値を算出し、前記送信装置毎に異なるトリガ信号の先頭を検出し、超音波信号の到達時間の起点となるタイミングを生成することを特徴とする請求項1に記載の位置検出システム。
  6.  前記送信装置が、設定可能な複数の前記擬似ランダム系列に基づいた複数の前記超音波信号を送信し、
     前記受信装置が、前記複数の超音波信号を受信する毎に、前記超音波信号の使用する全ての前記擬似ランダム系列の変調基準波形との相関値を求め、異なるM系列間の相互相関値をチェックし、所定の基準によって前記移動体に割り当てる前記擬似ランダム系列を決定して割り当てることを特徴とする請求項1から請求項5の何れかに記載の位置検出システム。
  7.  前記受信装置が、決定した前記擬似ランダム系列の情報を表示する表示手段を備え、
     前記移動体の送信装置が、前記受信装置の表示部に表示された前記擬似ランダム系列の情報に基づいて、前記超音波信号に使用する前記擬似ランダム系列を設定する設定スイッチを備えることを特徴とする請求項6に記載の位置検出システム。
  8.  擬似ランダム系列として、M系列を用いることを特徴とする請求項1から請求項7の何れかに記載の位置検出システム。
  9.  擬似ランダム系列として、M系列の部分列を用いることを特徴とする請求項1から請求項7の何れかに記載の位置検出システム。
  10.  前記移動体が、電子ペンであることを特徴とする請求項1から請求項9の何れかに記載の位置検出システム。
  11.  前記移動体が、前記送信装置を備えたロボットであることを特徴とする請求項1から請求項9の何れかに記載の位置検出システム。
  12.  送信装置から送信される超音波信号を受信装置で受信して前記送信装置の位置を検出する位置検出システムの前記送信装置であって、
     送信タイミングを示すトリガ信号を送出するトリガ信号送信手段と、
     前記トリガ信号の送信に同期して、自己相関性の高い擬似ランダム信号に基づいて変調された超音波信号を送出する超音波送信手段とを備え、
     前記超音波信号の擬似ランダム信号の系列として、相互相関の低い異なる系列を用いることを特徴とする送信装置。
  13.  送信装置から送信される超音波信号を受信装置で受信して前記送信装置の位置を検出する位置検出システムの前記送信装置であって、
     前記受信装置から送信される送信タイミングを示すトリガ信号に同期して、自己相関性の高い擬似ランダム信号に基づいて変調された超音波信号を送出する超音波送信手段とを備え、
     前記超音波信号の擬似ランダム信号の系列として、相互相関の低い異なる系列を用いることを特徴とする送信装置。
  14.  擬似ランダム系列として、M系列を用いることを特徴とする請求項12又は請求項13に記載の送信装置。
  15.  擬似ランダム系列として、M系列の部分列を用いることを特徴とする請求項12又は請求項13に記載の送信装置。
  16.  電子ペンに設けることを特徴とする請求項12から請求項15の何れかに記載の送信装置。
  17.  送信装置から送信される超音波信号を受信装置で受信して前記送信装置の位置を検出する位置検出システムの前記受信装置であって、
     前記送信装置から送信される送信タイミングを示すトリガ信号を受信するトリガ信号受信手段と、
     所定間隔で設定された、前記トリガ信号に同期して前記送信装置から送信される自己相関性の高い擬似ランダム信号に基づいて変調された前記超音波信号を受信する少なくとも2つの超音波受信手段と、
     前記超音波信号の受信波形と、前記移動体に応じて予め決められた変調基準波形との間で相関値を算出する手段と、
     算出された前記相関値の最初のピーク値を検出し、前記トリガ信号を受信した時点と該相関ピーク値の検出時点とから前記2つの超音波受信手段に到達するまでの超音波伝搬時間をそれぞれ算出する手段と、
     算出した前記超音波伝播時間と前記超音波受信手段相互の間隔長に基づいて、前記移動体の位置を算出する手段とを備え、
     前記超音波信号の擬似ランダム信号の系列として、相互相関の低い異なる系列を用いることを特徴とする受信装置。
  18.  送信装置から送信される超音波信号を受信装置で受信して前記送信装置の位置を検出する位置検出システムの前記受信装置であって、
     送信タイミングを示すトリガ信号を前記送信装置に送信するトリガ信号送信手段と、
     所定間隔で設定された、前記トリガ信号に同期して前記送信装置から送信される自己相関性の高い擬似ランダム信号に基づいて変調された前記超音波信号を受信する少なくとも2つの超音波受信手段と、
     前記超音波信号の受信波形と、前記移動体に応じて予め決められた変調基準波形との間で相関値を算出する手段と、
     算出された前記相関値の最初のピーク値を検出し、前記トリガ信号を受信した時点と該相関ピーク値の検出時点とから前記2つの超音波受信手段に到達するまでの超音波伝搬時間をそれぞれ算出する手段と、
     算出した前記超音波伝播時間と前記超音波受信手段相互の間隔長に基づいて、前記移動体の位置を算出する手段とを備え、
     前記超音波信号の擬似ランダム信号の系列として、相互相関の低い異なる系列を用いることを特徴とする受信装置。
  19.  前記トリガ信号が、前記送信装置毎に異なる自己相関性の高い擬似ランダム信号に基づいて変調された電磁波信号であり、
     受信したトリガ信号の受信波形と、予め設定された変調基準波形との間で相関値を算出し、前記送信装置毎に異なるトリガ信号の先頭を検出し、超音波信号の到達時間の起点となるタイミングを生成することを特徴とする請求項17又は請求項18に記載の受信装置。
  20.  前記送信装置から送信される設定可能な複数の前記擬似ランダム系列に基づいた複数の前記超音波信号を受信し、
     前記複数の超音波信号を受信する毎に、前記超音波信号の使用する全ての前記擬似ランダム系列の変調基準波形との相関値を求め、異なるM系列間の相互相関値をチェックし、所定の基準によって前記移動体に割り当てる前記擬似ランダム系列を決定して割り当てることを特徴とする請求項17から請求項19の何れかに記載の受信装置。
  21.  前記受信装置が、決定した前記擬似ランダム系列の情報を表示する表示手段を備えることを特徴とする請求項20に記載の送信装置。
  22.  擬似ランダム系列として、M系列を用いることを特徴とする請求項17から請求項21の何れかに記載の送信装置。
  23.  擬似ランダム系列として、M系列の部分列を用いることを特徴とする請求項17から請求項21の何れかに記載の送信装置。
  24.  少なくとも1つの送信装置が、
     送信タイミングを示すトリガ信号と、自己相関性の高い擬似ランダム信号に基づいて変調された超音波信号とを同時に送信するステップを実行し、
     前記トリガ信号と前記超音波信号を受信し、前記移動体の位置を検出する受信装置が、
     所定間隔で設定された少なくとも2つの超音波受信手段によって前記超音波信号を受信するステップと、
     前記超音波信号の受信波形と、前記移動体に応じて予め決められた変調基準波形との間で相関値を算出するステップと、
     算出された前記相関値の最初のピーク値を検出し、前記トリガ信号を受信した時点と該相関ピーク値の検出時点とから前記2つの超音波受信手段に到達するまでの超音波伝搬時間をそれぞれ算出するステップと、
     算出した前記超音波伝播時間と前記超音波受信手段相互の間隔長に基づいて、前記移動体の位置を算出するステップを実行し、
     前記送信装置が送出する前記超音波信号の擬似ランダム信号の系列として、相互相関の低い異なる系列を用いることを特徴とする位置検出方法。
  25.  少なくとも1つの送信装置が、
     送信タイミングを表すトリガ信号を受信するステップと、
     前記トリガ信号を受信したタイミングで自己相関性の高い擬似ランダム信号に基づいて変調された超音波信号を送信するステップを実行し、
     前記超音波信号を受信し、前記移動体の位置を検出する受信装置が、
     前記トリガ信号を送出するステップと、
     所定間隔で設定された少なくとも2つの超音波受信手段で前記超音波信号を受信するステップと、
     前記超音波信号の受信波形と、前記移動体に応じて予め決められた前記擬似ランダム系列の変調基準波形との間で相関値を算出するステップと、
     算出された前記相関値の最初のピーク値を検出し、前記トリガ信号を受信した時点と該相関ピーク値の検出時点とから前記2つの超音波受信手段に到達するまでの超音波伝搬時間をそれぞれ算出するステップと、
     算出した前記超音波伝播時間と前記超音波受信手段相互の間隔長に基づいて、前記移動体の位置を算出するステップを実行し、
     前記擬似ランダム系列として、相互相関の低い異なる系列を用いることを特徴とする位置検出方法。
  26.  前記トリガ信号が、前記送信装置を識別可能な電磁波信号であることを特徴とする請求項24に記載の位置検出方法。
  27.  前記トリガ信号が、前記送信装置毎に重複が生じないよう帯域分割された信号であることを特徴とする請求項26に記載の位置検出方法。
  28.  前記トリガ信号が、前記送信装置毎に異なる自己相関性の高い擬似ランダム信号に基づいて変調された電磁波信号であり、
     前記受信装置が、受信したトリガ信号の受信波形と、予め設定された変調基準波形との間で相関値を算出し、前記送信装置毎に異なるトリガ信号の先頭を検出し、超音波信号の到達時間の起点となるタイミングを生成することを特徴とする請求項24に記載の位置検出方法。
  29.  前記送信装置が、設定可能な複数の前記擬似ランダム系列に基づいた複数の前記超音波信号を送信し、
     前記受信装置が、前記複数の超音波信号を受信する毎に、前記超音波信号の使用する全ての前記擬似ランダム系列の変調基準波形との相関値を求め、異なるM系列間の相互相関値をチェックし、所定の基準によって前記移動体に割り当てる前記擬似ランダム系列を決定して割り当てることを特徴とする請求項24から請求項28の何れかに記載の位置検出方法。
  30.  前記受信装置が、決定した前記擬似ランダム系列の情報を表示する表示手段を備え、
     前記送信装置が、前記受信装置の表示部に表示された前記擬似ランダム系列の情報に基づいて、前記超音波信号に使用する前記擬似ランダム系列を設定する設定スイッチを備えることを特徴とする請求項29に記載の位置検出方法。
  31.  擬似ランダム系列として、M系列を用いることを特徴とする請求項24から請求項30の何れかに記載の位置検出方法。
  32.  擬似ランダム系列として、M系列の部分列を用いることを特徴とする請求項24から請求項30の何れかに記載の位置検出方法。
  33.  少なくとも1つの送信装置が、
     送信タイミングを示すトリガ信号と、自己相関性の高い擬似ランダム信号に基づいて変調された超音波信号とを同時に送信するステップを実行し、
     前記トリガ信号と前記超音波信号を受信し、前記移動体の位置を検出する受信装置が、
     所定間隔で設定された少なくとも2つの超音波受信手段によって前記超音波信号を受信するステップと、
     前記超音波信号の受信波形と、前記移動体に応じて予め決められた変調基準波形との間で相関値を算出するステップと、
     算出された前記相関値の最初のピーク値を検出し、前記トリガ信号を受信した時点と該相関ピーク値の検出時点とから前記2つの超音波受信手段に到達するまでの超音波伝搬時間をそれぞれ算出するステップを実行し、
     前記送信装置が送出する前記超音波信号の擬似ランダム信号の系列として、相互相関の低い異なる系列を用いることを特徴とする伝播時間決定方法。
  34.  少なくとも1つの送信装置が、
     送信タイミングを表すトリガ信号を受信するステップと、
     前記トリガ信号を受信したタイミングで自己相関性の高い擬似ランダム信号に基づいて変調された超音波信号を送信するステップを実行し、
     前記超音波信号を受信し、前記移動体の位置を検出する受信装置が、
     前記トリガ信号を送出するステップと、
     所定間隔で設定された少なくとも2つの超音波受信手段で前記超音波信号を受信するステップと、
     前記超音波信号の受信波形と、前記移動体に応じて予め決められた前記擬似ランダム系列の変調基準波形との間で相関値を算出するステップと、
     算出された前記相関値の最初のピーク値を検出し、前記トリガ信号を受信した時点と該相関ピーク値の検出時点とから前記2つの超音波受信手段に到達するまでの超音波伝搬時間をそれぞれ算出するステップを実行し、
     前記擬似ランダム系列として、相互相関の低い異なる系列を用いることを特徴とする伝播時間決定方法。
PCT/JP2008/073251 2007-12-28 2008-12-19 位置決定システム、送信装置、受信装置及び位置決定方法 WO2009084490A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/810,879 US8498839B2 (en) 2007-12-28 2008-12-19 Position determination system, transmission device and reception device, and position determination method
JP2009548020A JP5937294B2 (ja) 2007-12-28 2008-12-19 位置決定システム、送信装置、受信装置及び位置決定方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007-339054 2007-12-28
JP2007339054 2007-12-28

Publications (1)

Publication Number Publication Date
WO2009084490A1 true WO2009084490A1 (ja) 2009-07-09

Family

ID=40824205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/073251 WO2009084490A1 (ja) 2007-12-28 2008-12-19 位置決定システム、送信装置、受信装置及び位置決定方法

Country Status (3)

Country Link
US (1) US8498839B2 (ja)
JP (1) JP5937294B2 (ja)
WO (1) WO2009084490A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011113143A (ja) * 2009-11-24 2011-06-09 Nec Corp 位置検出装置、位置検出方法および移動体
JP2011170545A (ja) * 2010-02-17 2011-09-01 Kddi Corp ポインティングシステム
US20120113753A1 (en) * 2009-07-14 2012-05-10 Nec Corporation Position detection system, transmission device and reception device, and position detection method
JP2012248028A (ja) * 2011-05-27 2012-12-13 Kddi Corp ポインティングシステム
JPWO2011013418A1 (ja) * 2009-07-31 2013-01-07 日本電気株式会社 位置検出装置、位置検出方法、移動体およびレシーバ
WO2023106237A1 (ja) * 2021-12-06 2023-06-15 徹 石井 空間位置算出装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9316717B2 (en) * 2010-11-24 2016-04-19 Samsung Electronics Co., Ltd. Position determination of devices using stereo audio
EP2565667A1 (en) * 2011-08-31 2013-03-06 Friedrich-Alexander-Universität Erlangen-Nürnberg Direction of arrival estimation using watermarked audio signals and microphone arrays
KR101379357B1 (ko) * 2012-02-17 2014-03-28 주식회사 피엔에프 위치 정보 입력이 가능한 키보드 및 이를 포함하는 키보드 시스템
TWI522639B (zh) * 2014-01-14 2016-02-21 宏碁股份有限公司 位置辨識裝置、位置辨識系統以及位置辨識方法
US10078069B2 (en) * 2014-11-24 2018-09-18 Electronics And Telecommunications Research Institute Device for detecting change in underground medium

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60176130A (ja) * 1984-02-22 1985-09-10 Matsushita Seiko Co Ltd 超音波投射形入力装置
JPH05164844A (ja) * 1991-12-17 1993-06-29 Clarion Co Ltd 簡易測距装置
JPH07104063A (ja) * 1993-10-04 1995-04-21 Matsushita Electric Ind Co Ltd 超音波物体計測装置
JP2001008262A (ja) * 1999-06-23 2001-01-12 Hitachi Ltd ダイナミック符号割当て符号分割多元接続通信方法、および、それを実現するための基地局
JP2004199560A (ja) * 2002-12-20 2004-07-15 Fujitsu Ltd 超音波型座標入力装置
WO2005111653A2 (en) * 2004-05-17 2005-11-24 Epos Technologies Limited Acoustic robust synchronization signaling for acoustic positioning system
JP2006090726A (ja) * 2004-09-21 2006-04-06 Nippon Telegr & Teleph Corp <Ntt> 位置検出システム、発信装置、サーバならびに同システムにおける無線信号の衝突回避方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07333331A (ja) * 1994-06-14 1995-12-22 Tech Res & Dev Inst Of Japan Def Agency 相関による音響位置測定装置
JPH10171587A (ja) * 1996-12-06 1998-06-26 Fujitsu General Ltd 超音波式ディジタイザ
US6118205A (en) * 1998-08-13 2000-09-12 Electronics For Imaging, Inc. Transducer signal waveshaping system
JP3876370B2 (ja) 1998-11-10 2007-01-31 バブコック日立株式会社 音響式流速計測装置
JP2001337157A (ja) * 2000-05-26 2001-12-07 Toyo System Kk 超音波を用いた局地測位システム
JP2006157657A (ja) * 2004-11-30 2006-06-15 Matsushita Electric Ind Co Ltd マルチキャリア送信機

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60176130A (ja) * 1984-02-22 1985-09-10 Matsushita Seiko Co Ltd 超音波投射形入力装置
JPH05164844A (ja) * 1991-12-17 1993-06-29 Clarion Co Ltd 簡易測距装置
JPH07104063A (ja) * 1993-10-04 1995-04-21 Matsushita Electric Ind Co Ltd 超音波物体計測装置
JP2001008262A (ja) * 1999-06-23 2001-01-12 Hitachi Ltd ダイナミック符号割当て符号分割多元接続通信方法、および、それを実現するための基地局
JP2004199560A (ja) * 2002-12-20 2004-07-15 Fujitsu Ltd 超音波型座標入力装置
WO2005111653A2 (en) * 2004-05-17 2005-11-24 Epos Technologies Limited Acoustic robust synchronization signaling for acoustic positioning system
JP2006090726A (ja) * 2004-09-21 2006-04-06 Nippon Telegr & Teleph Corp <Ntt> 位置検出システム、発信装置、サーバならびに同システムにおける無線信号の衝突回避方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120113753A1 (en) * 2009-07-14 2012-05-10 Nec Corporation Position detection system, transmission device and reception device, and position detection method
US9157984B2 (en) * 2009-07-14 2015-10-13 Nec Corporation Position detection system, transmission device and reception device, and position detection method
JPWO2011013418A1 (ja) * 2009-07-31 2013-01-07 日本電気株式会社 位置検出装置、位置検出方法、移動体およびレシーバ
US9052781B2 (en) 2009-07-31 2015-06-09 Nec Corporation Position detection apparatus, position detection method, mobile, and receiver
JP2011113143A (ja) * 2009-11-24 2011-06-09 Nec Corp 位置検出装置、位置検出方法および移動体
JP2011170545A (ja) * 2010-02-17 2011-09-01 Kddi Corp ポインティングシステム
JP2012248028A (ja) * 2011-05-27 2012-12-13 Kddi Corp ポインティングシステム
WO2023106237A1 (ja) * 2021-12-06 2023-06-15 徹 石井 空間位置算出装置

Also Published As

Publication number Publication date
US20100286949A1 (en) 2010-11-11
US8498839B2 (en) 2013-07-30
JPWO2009084490A1 (ja) 2011-05-19
JP5937294B2 (ja) 2016-06-22

Similar Documents

Publication Publication Date Title
JP5937294B2 (ja) 位置決定システム、送信装置、受信装置及び位置決定方法
JP5664550B2 (ja) 位置検出システム、送信装置、受信装置及び位置検出方法
JP5766903B2 (ja) 可動物体からの超音波の伝搬時間決定方法及びシステム
JP5560711B2 (ja) 最適擬似ランダム系列決定方法、位置検出システム、位置検出方法、送信装置及び受信装置
WO2011013418A1 (ja) 位置検出装置、位置検出方法、移動体およびレシーバ
JP5865914B2 (ja) 超音波反射信号に基づく物体位置推定のためのシステム及び方法
US8750076B2 (en) Position detection system, transmission device, reception device, position detection method and position detection program
US8681585B2 (en) Multi-range object location estimation
WO2013088951A1 (ja) 位置測定装置
EP2486474A1 (en) User interfaces
JP5454475B2 (ja) 位置検出システム、送信装置、受信装置、位置検出方法、位置検出プログラム
JPWO2009125843A1 (ja) 超音波伝搬時間測定システム
JP2010032442A (ja) 測位システム及び処理装置
US9109886B1 (en) Time-of-flight of light calibration
JP4741937B2 (ja) 距離測定システムおよび距離測定方法
JP4924259B2 (ja) 位置検出装置及びこれを用いた電気機器、位置検出方法
JP4136417B2 (ja) 位置検出装置
JP5278288B2 (ja) 位置検出装置、位置検出方法および移動体
JP4065958B2 (ja) 捜し物検知方法及び捜し物検知システム
CN107966682A (zh) 用于一灯塔定位系统的辅助装置
JP4779338B2 (ja) 位置検出装置、および情報端末装置
WO2018154875A1 (ja) レーダー装置、レーダーシステムおよびレーダー装置の制御方法
KR102547936B1 (ko) 초음파를 이용하여 대상체에 관한 정보를 검출하는 방법 및 이를 위한 전자 장치
JP2006127341A (ja) 位置検出装置、および情報端末装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08868322

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2009548020

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12810879

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08868322

Country of ref document: EP

Kind code of ref document: A1