WO2009081803A1 - アンテナ装置及びこれを用いた無線通信機 - Google Patents

アンテナ装置及びこれを用いた無線通信機 Download PDF

Info

Publication number
WO2009081803A1
WO2009081803A1 PCT/JP2008/072912 JP2008072912W WO2009081803A1 WO 2009081803 A1 WO2009081803 A1 WO 2009081803A1 JP 2008072912 W JP2008072912 W JP 2008072912W WO 2009081803 A1 WO2009081803 A1 WO 2009081803A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
antenna device
coupling
radiation
power supply
Prior art date
Application number
PCT/JP2008/072912
Other languages
English (en)
French (fr)
Inventor
Yasumasa Harihara
Original Assignee
Tdk Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk Corporation filed Critical Tdk Corporation
Priority to CN2008801215094A priority Critical patent/CN101904050B/zh
Priority to US12/809,856 priority patent/US8253631B2/en
Priority to JP2009547054A priority patent/JP5333235B2/ja
Priority to EP08863827A priority patent/EP2237370A1/en
Publication of WO2009081803A1 publication Critical patent/WO2009081803A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2283Supports; Mounting means by structural association with other equipment or articles mounted in or on the surface of a semiconductor substrate as a chip-type antenna or integrated with other components into an IC package
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength

Definitions

  • the present invention relates to an antenna device, and more particularly to a conductor pattern shape of a surface mount antenna used for a mobile phone or the like.
  • the present invention also relates to a radio communication device using this antenna device.
  • Small antenna devices are built in small wireless communication devices such as mobile phones.
  • 18 and 19 are schematic perspective views showing an example of the configuration of a conventional antenna device.
  • the antenna device shown in FIG. 18 includes a base 1 made of a rectangular parallelepiped dielectric, and a linear radiating conductor 2 provided at the center in the width direction of the upper surface of the base 1, and one end of the radiating conductor 2 is a gap. The other end is connected to a grounding conductor 3 provided on the bottom surface of the substrate 1. Since the open end of the radiating conductor 2 is electromagnetically coupled to the feeding electrode 4 through a capacitance by the gap g, it can be excited without contact with the feeding line, and impedance matching is easy even when it is downsized. (See Patent Document 1).
  • the antenna device shown in FIG. 19 is configured in an L shape by bending the other end of the radiation conductor 2.
  • a power supply electrode 4 is formed on the surface of the base 1, and the power supply electrode 4 is connected to the short-circuited end of the radiation conductor 2 through a gap g. According to this, the resonance wavelength of the antenna can be increased with respect to the chip size (see Patent Document 2).
  • the conventional antenna device shown in FIG. 18 has a structure in which the ends of the elongated strip-shaped conductor patterns are opposed to each other with a gap g having a predetermined width, and the opposed range is narrow, so that a large capacitive coupling can be obtained. There is a problem that can not be.
  • the conventional antenna device shown in FIG. 19 has a feed conductor formed along the longitudinal direction of the radiation conductor and has a relatively wide range, so that a larger capacitive coupling can be obtained.
  • the power supply conductor is formed on both the upper surface and the side surface of the base and it is necessary to secure a wide area for forming the power supply conductor, the main surface of the base must be used efficiently for the radiation conductor. There is a problem that the whole antenna device becomes large.
  • the antenna device described in FIGS. 18 and 19 has a problem that the antenna characteristics greatly change depending on the mounting position on the printed circuit board. Such a problem is mentioned in Patent Document 3, and it is said that the antenna characteristics change when the positional relationship between the ground pattern on the printed circuit board and the antenna device changes.
  • the phenomenon that the antenna characteristics change depending on the mounting position becomes prominent when the radiation conductor and the feed conductor are capacitively coupled using a gap. For this reason, in order to suppress the change in antenna characteristics depending on the mounting position, it is considered that the radiation conductor and the feed conductor may be coupled by a method other than capacitive coupling.
  • an object of the present invention is to obtain a high radiation efficiency by increasing the electromagnetic field coupling in an antenna device that supplies a radiation current by electromagnetic field coupling.
  • an object of the present invention is to reduce the size of the entire antenna device by efficiently using the main surface of the base in an antenna device that supplies a radiation current by inductive coupling.
  • Another object of the present invention is to provide a wireless communication device using such an antenna device.
  • An antenna device includes a base made of a dielectric or magnetic material, and a conductor pattern formed on the base.
  • the conductor pattern is formed on a radiation conductor, a substantially U-shaped feeding conductor, and one end of the radiation conductor.
  • a wireless communication device includes a printed circuit board and the antenna device described above mounted on the printed circuit board.
  • the present invention since the direction of the radiation current and the direction of the feeding current and the induction current are different from each other, it is possible to suppress the phenomenon that these cancel each other. As a result, high radiation efficiency can be obtained.
  • the radiation conductor and the feed conductor are inductively coupled, there is little change in antenna characteristics depending on the mounting position.
  • the feeding conductor and the coupling conductor are formed on a surface different from the surface on which the radiation conductor is formed, it is possible to sufficiently secure the length and area of the radiation conductor. Thereby, since the main surface of a base
  • one end of the power supply conductor is connected to the power supply line and the other end of the power supply conductor is grounded.
  • one end of the power supply conductor is connected to the power supply line and the other end of the power supply conductor is open. Since the impedance when one end of the feed conductor is grounded differs from the impedance when it is open, the antenna characteristics can be improved by selecting either connection state according to the mounting state of the antenna. it can.
  • one end of the power supply conductor may be connected to the power supply line, and the other end of the power supply conductor may be grounded or opened via the switching means.
  • the antenna characteristics can be further improved by switching the connection state of the feed conductors to active using the switching means.
  • the direction in which the radiation current flows and the direction in which the feeding current flow are substantially orthogonal. According to this, it becomes possible to more effectively suppress cancellation of the radiation current and the feeding current.
  • the base body is substantially a rectangular parallelepiped, at least a part of the radiation conductor is formed on the top surface of the base body, and the feeding conductor and the coupling conductor are formed on the first side surface orthogonal to the longitudinal direction of the base body.
  • the radiation conductor is formed on almost the entire first surface of the substrate, the electrical resistance of the radiation conductor can be reduced.
  • the conductor pattern formed on the base body is bilaterally symmetric about a predetermined reference plane.
  • the reference surface is preferably a surface parallel to the side surface along the longitudinal direction of the substrate.
  • the substantially U-shaped portion of the power supply conductor may be a gently curved curved shape or a bent shape bent at a right angle.
  • capacitive coupling can be made stronger than in the case of a gently curved shape.
  • the electromagnetic field coupling can be increased, and thereby high radiation efficiency can be obtained.
  • the entire antenna device in an antenna device of a type that supplies a radiation current by electromagnetic field coupling, can be downsized by efficiently using the main surface of the base.
  • a radio communication device using such an antenna device can be provided.
  • FIG. 1 is a schematic perspective view showing the structure of an antenna device 100 according to a preferred first embodiment of the present invention.
  • FIG. 2 is a development view of the antenna device 100.
  • the antenna device 100 includes a base 110 made of a dielectric and a plurality of conductor patterns formed on the base 110.
  • the base 110 has a rectangular parallelepiped shape with the A direction as the longitudinal direction. Accordingly, the base 110 has four surfaces 111 to 114 parallel to the A direction and two surfaces 115 and 116 orthogonal to the A direction. Of these, the surface 112 is a mounting surface for the printed circuit board.
  • the material of the base 110 is not particularly limited, but a Ba—Nd—Ti-based material (relative permittivity of 80 to 120), an Nd—Al—Ca—Ti based material (relative permittivity of 43 to 46), Li—Al—Sr—Ti (relative permittivity 38 to 41), Ba—Ti based material (relative permittivity 34 to 36), Ba—Mg—W based material (relative permittivity 20 to 22), Mg—Ca— Ti-based materials (relative permittivity 19 to 21), sapphire (relative permittivity 9 to 10), alumina ceramics (relative permittivity 9 to 10), cordierite ceramics (relative permittivity 4 to 6), etc. can be used. .
  • the base 110 is produced by firing these materials using a mold.
  • the relative permittivity ⁇ r increases, a greater wavelength shortening effect can be obtained, so that the length of the radiation conductor can be shortened. However, the efficiency decreases, so that the relative permittivity ⁇ r is not necessarily larger. There is an appropriate value. Therefore, for example, when the target frequency is 2.4 GHz, it is preferable to use a material having a relative dielectric constant ⁇ r of about 5 to 30. According to this, it is possible to reduce the size of the radiation conductor while ensuring sufficient efficiency.
  • Preferred examples of the material having a relative dielectric constant ⁇ r of about 5 to 30 include Mg—Ca—Ti based dielectric ceramics. As the Mg—Ca—Ti dielectric ceramic, it is particularly preferable to use an Mg—Ca—Ti dielectric ceramic containing TiO 2 , MgO, CaO, MnO, and SiO 2 .
  • the conductor pattern includes a radiation conductor 121, a feeding conductor 122, a coupling conductor 123, and an adjustment conductor 124.
  • These conductor patterns can be formed by applying an electrode paste material by a method such as screen printing or transfer and then baking under a predetermined temperature condition.
  • the electrode paste material silver, silver-palladium, silver-platinum, copper, or the like can be used.
  • the conductor pattern can also be formed by plating or sputtering.
  • the radiation conductor 121 is formed on almost the entire surface 111, 116 of the base 110, and has a continuous belt-like structure. One end 121a of the radiation conductor 121 is connected to the coupling conductor 123, and the other end 121b is connected to the ground pattern on the printed circuit board.
  • the power supply conductor 122 is formed on a part of the surface 115 of the base body 110 and has a substantially U-shaped continuous belt-like structure. One end 122a of the power supply conductor 122 is connected to the power supply line on the printed circuit board, and the other end 122b is connected to the ground pattern on the printed circuit board.
  • the coupling conductor 123 is a part of the surface 115 of the base 110, is formed above the power supply conductor 122, and has a curved shape that matches the U-shape of the power supply conductor 122.
  • the upper end of the coupling conductor 123 is connected to one end 121a of the radiation conductor 121, and the lower end (curved portion) faces the feed conductor 122 via a gap g having a substantially constant width. Since the upper end of the coupling conductor 123 is connected to the radiation conductor 121, it also functions as a part of the radiation conductor 121. In particular, since the width of the feeding conductor 123 at the connection portion with the radiation conductor 121 matches the width of the radiation conductor 121, radiation efficiency can be increased.
  • the adjustment conductor 124 is formed on a part of the surface 112 of the base 110, and is connected to a characteristic adjustment land on the printed circuit board.
  • the power supply conductor 122 has a coupling portion 122c extending in the B direction while being curved in a substantially U shape.
  • the B direction is a direction orthogonal to the longitudinal direction.
  • the coupling portion 122c of the power supply conductor 122 is formed on the surface 115, and the power supply conductor 122 and the coupling conductor 123 are arranged in parallel at a predetermined interval. Accordingly, the coupling portion 122c of the power supply conductor 122 and the coupling conductor 123 can be electromagnetically coupled.
  • these conductor patterns formed on each surface of the substrate 110 are formed to be bilaterally symmetric with respect to a plane parallel to the side surfaces 113 and 114 of the substrate 110. According to this, even when the orientation of the antenna device 100 is rotated 180 degrees with respect to the axis (Z axis) perpendicular to the surfaces 111 and 112 of the base 110, the conductor pattern of the antenna device 100 is viewed from the end side of the printed circuit board. Since the shapes of the antennas are substantially the same, the antenna characteristics are not greatly changed depending on the mounting direction, and the antenna design can be facilitated.
  • FIG. 3 is a schematic plan view showing enlarged shapes of the power supply conductor 122 and the coupling conductor 123.
  • the insulating region (slit) 122s necessary for forming the power supply conductor 122 as a strip conductor defines the folded shape of the power supply conductor 122, but as shown by the arrows,
  • the impedance can be changed by adjusting the depth and width. If the radiating conductor is elongated for miniaturization, the electromagnetic field coupling may become too strong, but the coupling can be weakened by reducing the depth D of the slit 122s. Impedance adjustment is also possible by adjusting the gap width g between the feed conductor 422 and the coupling conductor 123, but impedance adjustment by changing the depth or width of the slit 122s is more than when adjusting the gap width g. Also has the advantage of being easy to fine tune.
  • FIG. 4 is a schematic plan view showing a pattern layout on a printed circuit board on which the antenna device 100 is mounted.
  • an antenna mounting area 21 is provided on the printed circuit board 20 so as to be surrounded by a ground pattern 22 in three directions.
  • Four lands 31 to 34 are formed in the antenna mounting area 21, and the antenna device 100 is soldered onto these lands 31 to 34.
  • the land 31 is a land connected to the other end 121 b of the radiation conductor 121.
  • the land 32 is a land connected to one end 122 a of the power supply conductor 122.
  • the land 33 is a land connected to the other end 122 b of the power supply conductor 122.
  • the land 34 is a land connected to the adjustment conductor 124. As shown in FIG. 4, the lands 31 and 33 are connected to the ground pattern 22, and the land 32 is connected to the power supply line 41. The land 34 is connected to the ground pattern 22 via the adjustment element 42.
  • the adjustment element 42 an inductance element or a capacitance element can be used. As will be described later, the adjustment element 42 is an element added when the antenna characteristic is changed. Therefore, it is not essential to connect such an adjustment element 42. When the adjustment element 42 is not used, the land 34 may be directly connected to the ground pattern 22 or may be in a floating state.
  • FIG. 5 is a schematic perspective view showing a state in which the antenna device 100 is mounted on the printed circuit board 20, and shows a part of a wireless communication device using the antenna device 100 according to the present embodiment.
  • the other end 121 b of the radiation conductor 121 is connected to the ground pattern 22 via the land 31.
  • the signal current is supplied to the one end 121a of the radiation conductor 121 via the coupling conductor 123, the radiation current Ia flows in the radiation conductor 121 mainly in the A direction which is the longitudinal direction of the base 110. It will be.
  • one end 122 a is connected to the power supply line 41 through the land 32, and the other end 122 b is connected to the ground pattern 22 through the land 33.
  • the feed current Ib supplied via the feed line 41 flows to the ground pattern 22 via the coupling portion 122c.
  • the coupling portion 122c of the feed conductor 122 and the coupling conductor 123 are connected by capacitive coupling using a gap, a part of the feeding current Ib flows into the coupling conductor 123 via capacitive coupling.
  • the coupling portion 122c is curved in a U shape and the range facing the coupling conductor 123 is wide, a larger capacitive coupling can be obtained.
  • the induced current Ic corresponding to the feeding current Ib flows through the coupling conductor 123.
  • the coupling portion 122c and the coupling conductor 123 of the power supply conductor 122 extend in the B direction orthogonal to the longitudinal direction, the direction in which the induced current Ic flows is also in the B direction.
  • the induced current Ic flowing in the B direction is supplied to the radiating conductor 121 via the coupling conductor 123.
  • the radiating current Ia flows in the A direction in the radiating conductor 121.
  • the antenna device 100 since the direction in which the radiation current Ia flows and the direction in which the feed current Ib flows are different by 90 °, they are less likely to cancel each other. For this reason, it is possible to prevent a decrease in radiation efficiency due to cancellation.
  • FIG. 6 is an equivalent circuit diagram of the antenna device 100 in a state mounted on the printed circuit board 20.
  • the antenna device 100 constitutes a kind of inverted F antenna that is fed by electromagnetic coupling. Since the feeding conductor 122 and the coupling conductor 123 are arranged close to each other, a capacitance C1 is generated between them. In particular, since the coupling portion 122c of the power feeding conductor 122 is substantially U-shaped and has a wide range facing the coupling conductor 123, a large capacitive coupling can be obtained.
  • electromagnetic field coupling is performed by a transformer M having the coupling portion 122c of the power supply conductor 122 as a primary side and the coupling conductor 123 as a secondary side. Furthermore, since the radiation conductor 121 and the adjustment conductor 124 are opposed to each other with the base 110 interposed therebetween, a capacitance C2 is generated between them. Therefore, in order to obtain a desired antenna characteristic, it is necessary to consider the coupling characteristic of the transformer M and the value of the capacitance C2 in addition to the value of the capacitance C1.
  • the adjustment conductor 124 may be directly connected to the ground pattern 22 or may be in a floating state. However, when the antenna characteristics are to be changed, the adjustment conductor 124 is adjusted as shown in FIG. The element 42 may be connected. If the adjustment element 42 is connected, the reactance between the radiation conductor 121 and the ground changes, so that the antenna characteristics can be changed accordingly.
  • the antenna device 100 is an antenna that is fed by electromagnetic coupling, and the direction in which the radiation current Ia flows differs from the direction in which the feed current Ib flows by 90 °.
  • the radiation current Ia and the feeding current Ib are less likely to cancel each other, so that it is possible to prevent a decrease in radiation efficiency.
  • the antenna device 100 includes the coupling conductor 123, and the radiation conductor 121 and the feed conductor 122 are electromagnetically coupled via the coupling conductor 123.
  • the feeding current Ib does not flow directly through the radiation conductor 121, it becomes possible to more effectively prevent cancellation of the radiation current Ia and the feeding current Ib.
  • the feeding conductor 122 is substantially U-shaped and is gently curved, electric field concentration hardly occurs.
  • the distance can be made longer, and stronger electromagnetic field coupling with the coupling conductor 123 can be obtained. Therefore, current loss can be suppressed and radiation efficiency can be increased.
  • the radiation conductor 121 is formed on the entire surface 111 parallel to the longitudinal direction, and the feeding conductor 122 and the coupling conductor 123 are formed on a surface different from the surface 111. Therefore, it is possible to secure a sufficient length and area of the radiation conductor 121. Further, since the coupling conductor 123 is connected to the radiating conductor 121 with the same width, the coupling conductor 123 can be effectively functioned as a part of the radiating conductor 121. Thereby, since the main surface of a base
  • the power supply conductor 122 and the coupling conductor 123 are formed on the surface of the base 110, it is not necessary to form a through hole or the like in the base 110, and the manufacturing cost can be suppressed.
  • FIG. 7 is a schematic plan view showing an example in which the antenna device 100 is mounted on an on-ground type printed circuit board 50 having a plurality of antenna mounting areas provided with ground patterns.
  • the 7 has two antenna mounting areas 51 and 52.
  • the antenna mounting area 51 is located at the corner of the printed circuit board 50, and is therefore surrounded by the ground pattern 53 from two directions.
  • the antenna mounting region 52 is located along the side of the printed circuit board 50 and is therefore surrounded by the ground pattern 53 from three directions.
  • FIG. 8 is a graph showing the characteristics of the antenna device mounted in the antenna mounting areas 51 and 52, (a) shows the characteristics when mounted in the antenna mounting area 51, and (b) is mounted in the antenna mounting area 52. The characteristics are shown. 8A and 8B, the characteristics when the antenna device 100 shown in FIG. 1 is mounted are shown by solid lines, and the characteristics when the conventional antenna device shown in FIG. 18 is installed are broken lines. It is shown in
  • FIG. 8A when mounted in the antenna mounting area 51, there is no significant difference between the characteristics of the two antenna devices (here, radiation efficiency and VSWR), but as shown in FIG. 8B.
  • the characteristics of the conventional antenna device are lower than those of the antenna device 100 according to the present invention. This is because when mounted on the antenna mounting area 51, the length G1 of the ground pattern 53 viewed from the gap is relatively long, whereas when mounted on the antenna mounting area 52, the ground pattern 53 viewed from the gap. This is because the length G2 is relatively short.
  • the difference in antenna characteristics depending on the mounting position is very small. This is not only large in capacitive coupling using a gap, but also inductively coupled. Because. Thus, according to the antenna device 100 according to the present embodiment, it is also possible to suppress changes in antenna characteristics due to the mounting position on the printed circuit board.
  • FIG. 9 and 10 are diagrams illustrating a configuration of an antenna device 200 according to the second embodiment of the present invention.
  • FIG. 9 is a perspective view illustrating a state where the antenna device 200 is mounted on a printed circuit board. is there.
  • FIG. 10 is a schematic plan view showing a pattern layout on a printed board on which the antenna device 200 is mounted.
  • the antenna device 200 according to the present embodiment is different from the antenna device 100 in that the land 33 on the printed circuit board 20 is not connected to the ground pattern 22 and is in a floating state. It is different. Since the other points are the same as those of the antenna device 100, the same reference numerals are given to the same elements, and duplicate descriptions are omitted.
  • one end 122a of the power supply conductor 122 is not grounded when the antenna device 200 is mounted, and is open. In this way, it is possible to change the impedance of the antenna by making the other end 122b of the feeding conductor 122 normally connected to the ground an open end. Thereby, it can be used as an impedance adjusting means when the antenna device is built in a mobile phone or the like.
  • FIG. 11 and 12 are graphs showing changes in impedance characteristics of the antenna device.
  • FIG. 11 is a graph when the land 33 is in a short state (see FIG. 4), and
  • FIG. 12 is a floating state (open state, FIG. 10).
  • 11 and 12 (a) is a Smith chart and (b) is a VSWR characteristic diagram.
  • the impedance characteristics of the antenna device are greatly different when the land 33 is short-circuited and open.
  • the change in impedance characteristics is relatively small and the VSWR characteristic has a steep peak near 2.4 GHz, whereas the land 33 is open. It can be seen that the change in impedance characteristic is relatively large and the VSWR characteristic has a gradual peak in the vicinity of 2.4 GHz.
  • the impedance characteristic of the antenna device greatly varies depending on the connection state of the land 33. Therefore, the connection state of the land 33 can be used as impedance adjustment means of the antenna device. Furthermore, the connection state of the power supply conductor 122 can be changed actively according to the change in impedance during actual use.
  • FIG. 13 is a diagram showing the configuration of the antenna device 300 according to the third embodiment of the present invention, and is an equivalent circuit diagram in a state where the antenna device 300 is mounted on the printed circuit board 20.
  • the antenna device 300 of the present embodiment is different from the antenna device 100 in that it includes switching means 129 that grounds or opens the other end 122b of the feed conductor 122. Since the other points are the same as those of the antenna device 100, the same reference numerals are given to the same elements, and duplicate descriptions are omitted.
  • the switching means 129 shown in the figure it is grounded in the on state and opened in the off state.
  • a transistor can be used as the switching unit 129, for example.
  • the switching timing of the switching means 129 may be matched with the change in the radio wave environment around the antenna. For example, when the radio wave environment changes depending on the open / close state of a bi-fold type mobile phone, switching may be performed in conjunction with the open / close state. Further, switching may be performed depending on whether or not the mobile phone is being operated (or held in the hand).
  • the antenna device 300 includes the switching unit 129 that grounds or opens the other end 122b of the power supply conductor 122. Therefore, the connection of the power supply conductor 122 according to the change in antenna impedance during actual use. The state can be changed actively, and good antenna characteristics can be maintained even if the situation around the antenna changes.
  • the connection state of the power supply conductor 122 is not limited to grounding and opening, and may be short-circuited via a predetermined resistance.
  • FIG. 14 is a schematic perspective view showing the structure of an antenna device 400 according to a preferred fourth embodiment of the present invention.
  • FIG. 15 is a development view of the antenna device 400.
  • the antenna device 400 has a substantially U-shaped power supply conductor 422, but the substantially U-shaped portion of the power supply conductor 422 is not a curved shape that is gently curved, but a right angle. It is characterized by a bent shape (a U-shape) that is bent into two.
  • the coupling conductor 423 has a bent shape that matches the U-shape of the power supply conductor 422. As a result, the power supply conductor 422 and the coupling conductor 423 are capacitively coupled via the bent gap g bent at a right angle.
  • the upper end of the coupling conductor 423 is connected to one end 121a of the radiating conductor 121, and the lower end (bent portion) faces the power supply conductor 422 via a gap g having a substantially constant width. Since other configurations are substantially the same as those of the antenna device 100 according to the first embodiment, the same components are denoted by the same reference numerals and detailed description thereof is omitted.
  • FIG. 16 is a schematic plan view showing enlarged shapes of the power supply conductor 422 and the coupling conductor 423.
  • FIG. 17 is an enlarged schematic plan view showing a modified example of the shapes of the power feeding conductor 422 and the coupling conductor 423.
  • the insulating region (slit) 422s necessary for forming the power supply conductor 422 as a strip conductor defines the folded shape of the power supply conductor 422, but as shown by the arrows,
  • the impedance can be changed by adjusting the depth and width. If the radiating conductor is elongated for miniaturization, the electromagnetic field coupling may become too strong, but the coupling can be weakened by reducing the depth D of the slit 422s. Impedance adjustment is also possible by adjusting the gap width g between the feed conductor 422 and the coupling conductor 423, but impedance adjustment by changing the depth or width of the slit 422s is more than when adjusting the gap width g. Also has the advantage of being easy to fine tune.
  • the impedance can be adjusted by changing the width W of the portion of the coupling conductor 423 extending in the direction perpendicular to the B direction (vertical direction).
  • the conductor width W is preferably not less than 0.5 times and not more than 3 times the gap g. If it is less than 0.5 times, there is a problem that electromagnetic field coupling becomes too strong, and if it exceeds 3 times, there is a problem that electromagnetic field coupling becomes too weak.
  • the conductor may be formed inside the edge 115e instead of being formed along the edge 115e of the side surface 115 of the base as shown in FIG. .
  • the antenna device 400 is capacitively coupled to the feeding conductor 422 and the coupling conductor 423 via the bent gap that is bent at a right angle. Can strengthen the capacitive coupling.
  • the impedance can be adjusted by changing the height and width of the slit 422s provided to form the feeding conductor 422 in a strip shape.
  • the base has a rectangular parallelepiped shape, but this point is not essential in the present invention. Therefore, the base may be a cube shape or a cylindrical shape. Moreover, the taper for specifying the direction may be provided in the corner
  • a dielectric is used as the material of the substrate, but a magnetic material having dielectricity may be used in addition to the dielectric.
  • a wavelength shortening effect of 1 / ⁇ ( ⁇ ⁇ ⁇ ) 1/2 ⁇ is obtained, a large wavelength shortening effect can be obtained by using a magnetic material having a high magnetic permeability ⁇ .
  • the direction in which the radiation current Ia flows and the direction in which the feeding current Ib flows form an angle of 90 °.
  • these angles are 90 °.
  • each of the antenna devices according to the above embodiments includes the adjustment conductor 124, it is not essential to provide the adjustment conductor 124 in the present invention, and this may be omitted.
  • the antenna devices according to the above embodiments are all inverted F antennas, it is not essential that the antenna device according to the present invention is an inverted F antenna, and other types may be used.
  • FIG. 1 is a schematic perspective view showing a structure of an antenna device 100 according to a preferred first embodiment of the present invention.
  • 2 is a development view of the antenna device 100.
  • FIG. FIG. 6 is a schematic plan view showing enlarged shapes of a feeding conductor 122 and a coupling conductor 123. It is a schematic plan view which shows the pattern layout on the printed circuit board with which the antenna apparatus 100 is mounted.
  • 1 is a schematic perspective view showing a state where an antenna device 100 is mounted on a printed circuit board 20.
  • FIG. 3 is an equivalent circuit diagram of the antenna device 100 in a state where the antenna device 100 is mounted on the printed circuit board 20.
  • FIG. 3 is a schematic plan view showing an example in which the antenna device 100 is mounted on an on-ground type printed circuit board 50 having a plurality of antenna mounting areas. It is a graph which shows the antenna characteristic of the antenna mounted in the antenna mounting area
  • FIG. 4A and 4B are graphs showing a change in impedance characteristics of the antenna device when the land 33 is in a short state (see FIG. 4), where FIG. 5A is a Smith chart and FIG. It is a graph which shows the change of the impedance characteristic of the antenna apparatus when the land 33 is a floating state (refer FIG. 10), (a) is a Smith chart, (b) is a VSWR characteristic figure.
  • FIG. 2 is a schematic perspective view which shows the structure of the antenna apparatus 400 by preferable 4th Embodiment of this invention.
  • FIG. 4 is a development view of the antenna device 400.
  • FIG. 5 is a schematic plan view showing enlarged shapes of a power supply conductor 422 and a coupling conductor 423.
  • 10 is an enlarged schematic plan view showing a modification of the shapes of the power supply conductor 422 and the coupling conductor 423.
  • FIG. It is a schematic perspective view which shows an example of a structure of the conventional antenna device. It is a schematic perspective view which shows the other example of a structure of the conventional antenna device.
  • Antenna device 110 Base body 111 Upper surface 111 Base bottom surface 112 to 116 Base body Side surface 121 Radiation conductor 121a Radiation conductor end 121b Radiation conductor other end 122 Feed conductor 122a Feed conductor end 122b Feed conductor other end 122c Feed conductor coupling portion 122s Slit 123 Coupling conductor 124 Adjustment conductor 129 Switching means 200 Antenna device 300 Antenna device 400 Antenna device 422 Feed conductor 422a Feed conductor one end 422b Feed conductor other end 422c Feed conductor coupling portion 422s Slit 423 For coupling Body C1, C2 capacitance g gap Ia emission current Ib feed current Ic induced current M trans

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Support Of Aerials (AREA)
  • Details Of Aerials (AREA)
  • Waveguide Aerials (AREA)

Abstract

【課題】電磁界結合により放射電流を供給するタイプのアンテナ装置において、電磁界結合を大きくすることによって高い放射効率を獲得する。 【解決手段】 基体110と、基体110に形成された放射導体121、給電導体122及び結合用導体123を含む導体パターンを備える。給電導体122及び結合用導体123は共に基体110の側面115に形成されている。給電導体122の一端122aは給電ラインに接続され、他端122bはグランドパターンに接続される。給電導体122の結合部122bは略U字状であり、結合用導体123は給電導体122の結合部122bと電磁界結合されている。給電導体122は緩やかに湾曲しているため電界集中が起こりにくい。また、給電導体122の距離をより長くすることができ、結合用導体123との間でより強い電磁界結合を得ることが可能となる。

Description

アンテナ装置及びこれを用いた無線通信機
 本発明は、アンテナ装置に関し、特に、携帯電話等に用いられる表面実装型アンテナの導体パターン形状に関するものである。また、本発明は、このアンテナ装置を用いた無線通信機に関するものである。
 携帯電話等の小型無線通信機には、小型のアンテナ装置が内蔵されている。図18及び図19は、従来のアンテナ装置の構成の一例を示す略斜視図である。
 図18に示すアンテナ装置は、直方体状の誘電体からなる基体1と、基体1の上面の幅方向中央に設けられた直線状の放射導体2とを備えており、放射導体2の一端はギャップgを介して給電電極(給電ライン)4に接続され、他端は基体1の底面に設けられた接地導体3に接続されている。放射導体2の開放端は、ギャップgによる容量を介して給電電極4と電磁界結合しているので、給電ラインと非接触にて励振ができ、且つ、小型化した場合でも、インピーダンス整合が容易である(特許文献1参照)。
 また、図19に示すアンテナ装置は、放射導体2の他端を折り曲げてL字状に構成したものである。基体1の表面には給電電極4が形成されており、給電電極4はギャップgを介して放射導体2の短絡端に接続されている。これによれば、チップサイズに対してアンテナの共振波長を大きくすることができる(特許文献2参照)。
特許第3114582号公報 特許第3114605号公報 特許第3331852号公報
 しかしながら、図18に示した従来のアンテナ装置は、細長い帯状の導体パターンの端部同士が所定幅のギャップgを介して対向した構造であり、対向する範囲が狭いので、大きな容量結合を得ることができないという問題がある。
 一方、図19に示した従来のアンテナ装置は、放射導体の長手方向に沿って給電導体が形成されており、対向する範囲が比較的広いため、より大きな容量結合を得ることができる。しかし、給電導体が基体の上面と側面の両方に形成されており、給電導体を形成するための広い領域を確保する必要があるため、基体の主面を放射導体のために効率よく利用することができず、アンテナ装置全体が大型化するという問題がある。
 また、図18,図19に記載されたアンテナ装置は、プリント基板上における搭載位置によってアンテナ特性が大きく変化するという問題があった。このような問題は特許文献3において言及されており、プリント基板上のグランドパターンとアンテナ装置との位置関係が変化することによって、アンテナ特性が変化するとされている。
 搭載位置によってアンテナ特性が変化するという現象は、ギャップを用いて放射導体と給電導体を容量結合させる場合に顕著となる。このため、搭載位置によるアンテナ特性の変化を抑制するためには、放射導体と給電導体を容量結合以外の方法で結合させればよいと考えられる。
 本発明は、このような課題を解決すべくなされたものである。したがって、本発明は、電磁界結合により放射電流を供給するタイプのアンテナ装置において、電磁界結合を大きくすることによって、高い放射効率を獲得することを目的とする。
 また、本発明は、誘導結合により放射電流を供給するタイプのアンテナ装置において、基体の主面を効率よく利用することによりアンテナ装置全体を小型化することを目的とする。
 また、本発明は、このようなアンテナ装置を用いた無線通信機を提供することを目的とする。
 本発明によるアンテナ装置は、誘電体又は磁性体からなる基体と、基体に形成された導体パターンとを備え、導体パターンは、放射導体と、略U字状の給電導体と、放射導体の一端に接続され且つ給電導体と電磁結合された結合用導体とを備え、給電導体及び結合用導体は、放射導体が形成された面とは異なる面に形成された導体パターンであり、放射導体に流れる放射電流の方向と、給電導体に流れる給電電流の方向が互いに異なっていることを特徴とする。
 また、本発明による無線通信機は、プリント基板と、プリント基板に搭載された上記のアンテナ装置とを備えることを特徴とする。
 本発明によれば、放射電流の方向と給電電流及び誘導電流の方向が互いに異なっていることから、これらが互いに打ち消し合う現象を抑制することが可能となる。その結果、高い放射効率を得ることが可能となる。また、放射導体と給電導体が誘導結合していることから、搭載位置によるアンテナ特性の変化も少ない。また、給電導体及び結合用導体は、放射導体が形成された面とは異なる面に形成されていることから、放射導体の長さや面積を十分に確保することが可能となる。これにより、基体の主面を効率よく利用することができることから、アンテナ装置全体を小型化することができる。
 本発明において、給電導体の一端は給電ラインに接続され、給電導体の他端は接地されていることが好ましい。或いは、給電導体の一端は給電ラインに接続され、給電導体の他端は開放されていることが好ましい。給電導体の一端が接地されている場合のインピーダンスと開放されているときのインピーダンスは異なることから、アンテナの実装状態に合わせていずれかの接続状態を選択することで、アンテナ特性を向上させることができる。
 さらに本発明において、給電導体の一端は給電ラインに接続され、給電導体の他端はスイッチング手段を介して接地又は開放されてもよい。スイッチング手段を用いて給電導体の接続状態をアクティブに切り替えることで、アンテナ特性をさらに向上させることができる。
 本発明において、放射電流が流れる方向と給電電流が流れる方向は、ほぼ直交していることが好ましい。これによれば、放射電流と給電電流の打ち消し合いをより効果的に抑制することが可能となる。
 本発明において、基体はほぼ直方体であり、放射導体の少なくとも一部は基体の上面に形成されており、給電導体及び結合用導体は、基体の長手方向と直交する第1の側面に形成されていることが好ましい。これによれば、放射導体の長さや面積を確保しつつ、放射電流と誘導電流の打ち消し合いを抑制することが可能となる。特に、放射電極を基体の第1の面のほぼ全面に形成すれば、放射導体の電気抵抗を低減することも可能となる。
 前記基体に形成された前記導体パターンは、所定の基準面を中心にして左右対称であることが好ましい。この基準面は、基体の長手方向に沿った側面と平行な面であることが好ましい。このように、導体パターンが対称性を有する場合には、基体の上面及び底面に垂直な軸を基準としてアンテナ装置の向きを180度回転させてもプリント基板の端部側から見た導体パターンの形状が実質的に同じになることから、実装する向きによってアンテナ特性が大きく変化することがなく、アンテナ設計を容易にすることができる。
 本発明において、給電導体の略U字部分は、緩やかにカーブした湾曲形状であってもよく、直角に折れ曲がった屈曲形状であってもよい。特に、給電導体の略U字部分が直角な屈曲形状である場合には、緩やかな湾曲形状の場合よりも容量結合を強くすることができる。
 このように、本発明によれば、電磁界結合により放射電流を供給するタイプのアンテナ装置において、電磁界結合を大きくすることができ、これにより高い放射効率を獲得することができる。
 また、本発明によれば、電磁界結合により放射電流を供給するタイプのアンテナ装置において、基体の主面を効率よく利用することによりアンテナ装置全体を小型化することができる。
 さらにまた、本発明によれば、このようなアンテナ装置を用いた無線通信機を提供することができる。
 以下、添付図面を参照しながら、本発明の好ましい実施の形態について詳細に説明する。
 図1は、本発明の好ましい第1の実施形態によるアンテナ装置100の構造を示す略斜視図である。また、図2は、アンテナ装置100の展開図である。
 図1及び図2に示すように、本実施形態によるアンテナ装置100は、誘電体からなる基体110と、基体110に形成された複数の導体パターンによって構成されている。基体110は、A方向を長手方向とする直方体形状を有している。したがって基体110は、A方向と平行な4つの面111~114と、A方向と直交する2つの面115,116とを有している。このうち面112は、プリント基板に対する搭載面である。
 基体110の材料としては、特に限定されるものではないが、Ba-Nd-Ti系材料(比誘電率80~120)、Nd-Al-Ca-Ti系材料(比誘電率43~46)、Li-Al-Sr-Ti(比誘電率38~41)、Ba-Ti系材料(比誘電率34~36)、Ba-Mg-W系材料(比誘電率20~22)、Mg-Ca-Ti系材料(比誘電率19~21)、サファイヤ(比誘電率9~10)、アルミナセラミックス(比誘電率9~10)、コージライトセラミックス(比誘電率4~6)などを用いることができる。基体110は、型枠を用いてこれらの材料を焼成することによって作製される。
 誘電体材料は、目的とする周波数に応じて適宜選択すればよい。比誘電率εが大きくなるほど大きな波長短縮効果が得られるので、放射導体の長さをより短くすることができるが、効率が低下するため、必ずしも比誘電率εが大きければよいという分けではなく、適切な値が存在する。したがって、例えば、目的とする周波数が2.4GHzである場合、比誘電率εが5~30程度の材料を用いることが好ましい。これによれば、十分な効率を確保しつつ放射導体の小型化を図ることができる。比誘電率εが5~30程度である材料としては、Mg-Ca-Ti系誘電体セラミックを好ましく挙げることができる。Mg-Ca-Ti系誘電体セラミックとしては、TiO、MgO、CaO、MnO、SiOを含有するMg-Ca-Ti系誘電体セラミックを用いることが特に好ましい。
 導体パターンは、放射導体121と、給電導体122と、結合用導体123と、調整用導体124とを含んでいる。これらの導体パターンは、電極用ペースト材をスクリーン印刷や転写などの方法によって塗布した後、所定の温度条件下で焼き付けを行うことによって形成することができる。電極用ペースト材としては、銀、銀-パラジウム、銀-白金、銅などを用いることができる。導体パターンは、この他にメッキやスパッタなどでも形成することが可能である。
 放射導体121は、基体110の面111,116のほぼ全面に形成されており、連続した帯状構造を有している。放射導体121の一端121aは結合用導体123に接続されており、他端121bはプリント基板上においてグランドパターンに接続される。
 また、給電導体122は、基体110の面115の一部に形成されており、略U字状の連続した帯状構造を有している。給電導体122の一端122aはプリント基板上において給電ラインに接続され、他端122bはプリント基板上においてグランドパターンに接続される。
 また、結合用導体123は、基体110の面115の一部であって、給電導体122の上方に形成されており、給電導体122のU字状に合わせた湾曲形状を有している。結合用導体123の上端は、放射導体121の一端121aに接続されており、下端(湾曲部分)はほぼ一定幅のギャップgを介して給電導体122と向き合っている。なお、結合用導体123の上端は放射導体121に接続されていることから、放射導体121の一部としても機能する。特に、放射導体121との接続部分における給電導体123の幅は、放射導体121の幅と一致していることから、放射効率を高めることができる。
 また、調整用導体124は、基体110の面112の一部に形成されており、プリント基板上において特性調整用のランドに接続される。
 図1に示すように、給電導体122は、略U字状に湾曲しながらB方向に延在する結合部122cを有している。B方向とは、長手方向と直交する方向である。給電導体122の結合部122cは面115に形成されており、給電導体122と結合用導体123は一定間隔をおいて平行に配置されている。これにより、給電導体122の結合部122cと結合用導体123は電磁界結合することができる。
 以上、基体110の各面に形成されたこれらの導体パターンは、基体110の側面113、114と平行な平面を基準として左右対称となるように形成されていることが好ましい。これによれば、基体110の面111、112に垂直な軸(Z軸)を基準としてアンテナ装置100の向きを180度回転させてもプリント基板の端部側から見たアンテナ装置100の導体パターンの形状が実質的に同じになることから、実装する向きによってアンテナ特性が大きく変化することがなく、アンテナ設計を容易にすることができる。
 図3は、給電導体122及び結合用導体123の形状を拡大して示す略平面図である。
 図3に示すように、給電導体122を帯状導体として形成するために必要な絶縁領域(スリット)122sは、給電導体122の折り返し形状を規定しているが、矢印で示すように、スリット122sの深さや幅を調整することによりインピーダンスの変更が可能である。小型化のために放射導体を細長くすると電磁界結合が強くなりすぎる場合があるが、スリット122sの深さDを浅くすることによって結合を弱めることが可能である。インピーダンス調整は給電導体422と結合用導体123との間のギャップ幅gを調整することによっても可能であるが、スリット122sの深さや幅の変更によるインピーダンス調整は、ギャップ幅gを調整する場合よりも微調整しやすいという利点がある。
 図4は、アンテナ装置100が実装されるプリント基板上のパターンレイアウトを示す略平面図である。
 図4に示すように、プリント基板20上には周囲3方向がグランドパターン22に囲まれたアンテナ実装領域21が設けられている。アンテナ実装領域21内には4つのランド31~34が形成されており、アンテナ装置100はこれらのランド31~34上に半田付けされる。
 ランド31は、放射導体121の他端121bに接続されるランドである。ランド32は、給電導体122の一端122aに接続されるランドである。ランド33は、給電導体122の他端122bに接続されるランドである。ランド34は、調整用導体124に接続されるランドである。図4に示すように、ランド31,33はグランドパターン22に接続されており、ランド32は給電ライン41に接続されている。また、ランド34は、調整用素子42を介してグランドパターン22に接続されている。
 調整用素子42としては、インダクタンス素子やキャパシタンス素子を用いることができる。後述するように、調整用素子42は、アンテナ特性を変化させる場合に付加される素子である。したがって、このような調整用素子42を接続することは必須でない。調整用素子42を使用しない場合には、ランド34はグランドパターン22に直接接続しても構わないし、フローティング状態としても構わない。
 図5は、プリント基板20にアンテナ装置100を実装した状態を示す略斜視図であり、本実施形態によるアンテナ装置100を用いた無線通信機の一部を示している。
 図5に示すように、プリント基板20上にアンテナ装置100を実装すると、放射導体121の他端121bは、ランド31を介してグランドパターン22に接続される。一方、放射導体121の一端121aには、結合用導体123を介して信号電流が供給されることから、放射導体121には、主に基体110の長手方向であるA方向に放射電流Iaが流れることになる。
 また、給電導体122については、一端122aがランド32を介して給電ライン41に接続され、他端122bがランド33を介してグランドパターン22に接続される。このため、給電ライン41を介して供給される給電電流Ibは、結合部122cを経由してグランドパターン22に流れることになる。ここで、給電導体122の結合部122cと結合用導体123とはギャップによる容量結合によって接続されていることから、給電電流Ibの一部は容量結合を介して結合用導体123に流れ込む。特に、結合部122cがU字状に湾曲しており、結合用導体123と対向する範囲が広いことから、より大きな容量結合を得ることができる。
 さらに、結合部122cに給電電流Ibが流れると、結合用導体123には、給電電流Ibに応じた誘導電流Icが流れる。図5に示すように、給電導体122の結合部122c及び結合用導体123は、長手方向と直交するB方向に延在していることから、誘導電流Icの流れる方向もB方向となる。B方向に流れる誘導電流Icは、結合用導体123を経由して放射導体121に供給され、その結果、放射導体121にはA方向に放射電流Iaが流れることになる。
 このように、本実施形態によるアンテナ装置100では、放射電流Iaの流れる方向と給電電流Ibの流れる方向が90°異なっていることから、これらが互いに打ち消し合うことが少ない。このため、打ち消し合いによる放射効率の低下を防止することが可能となる。
 図6は、プリント基板20に実装した状態におけるアンテナ装置100の等価回路図である。
 図6に示すように、本実施形態によるアンテナ装置100は、電磁界結合により給電される一種の逆Fアンテナを構成する。給電導体122と結合用導体123は、互いに近接して配置されていることから、両者間にはキャパシタンスC1が生じる。特に給電導体122の結合部122cが略U字状であり、結合用導体123と対向する範囲が広いことから、大きな容量結合を得ることができる。
 また、電磁界結合は、給電導体122の結合部122cを一次側とし、結合用導体123を二次側とするトランスMによって行われる。さらに、放射導体121と調整用導体124は、基体110を介して対向していることから、これらの間にもキャパシタンスC2が生じる。したがって、所望のアンテナ特性を得るためには、キャパシタンスC1の値に加え、トランスMの結合特性やキャパシタンスC2の値を考慮する必要がある。
 調整用導体124については、上述の通り、グランドパターン22に直接接続しても構わないし、フローティング状態としても構わないが、アンテナ特性を変化させたい場合には、図5に示したように調整用素子42を接続すればよい。調整用素子42を接続すれば、放射導体121とグランドとの間のリアクタンスが変化することから、これに応じてアンテナ特性を変化させることが可能となる。
 以上説明したように、本実施形態によるアンテナ装置100は、電磁界結合により給電されるアンテナであり、放射電流Iaの流れる方向と給電電流Ibの流れる方向が90°異なっている。これにより、放射電流Iaと給電電流Ibが互いに打ち消し合いにくくなることから、放射効率の低下を防止することが可能となる。
 また、本実施形態によるアンテナ装置100は結合用導体123を有しており、結合用導体123を介して放射導体121と給電導体122とが電磁界結合している。これにより、放射導体121には給電電流Ibが直接流れないことから、放射電流Iaと給電電流Ibの打ち消し合いをより効果的に防止することが可能となる。
 また、本実施形態によるアンテナ装置100は、給電導体122が略U字状であり、緩やかに湾曲しているため、電界集中が起こりにくい。特に、給電導体122を略U字状にすることでその距離をより長くすることができ、結合用導体123との間でより強い電磁界結合を得ることが可能となる。また、したがって、電流損失を抑えることができ、放射効率を高めることができる。
 また、本実施形態によるアンテナ装置100では、放射導体121が長手方向と平行な面111の全面に形成されており、給電導体122及び結合用導体123が面111とは異なる面に形成されていることから、放射導体121の長さや面積を十分に確保することが可能となる。さらに、結合用導体123が放射導体121と等幅にて接続されているので、結合用導体123を放射導体121の一部として有効に機能させることもできる。これにより、基体の主面を効率よく利用することができることから、放射効率を高めることができ、アンテナ装置全体を小型化することができる。また、放射導体121の電気抵抗を低減することも可能となる。
 しかも、給電導体122及び結合用導体123が基体110の表面に形成されていることから、基体110に貫通孔などを形成する必要がなく、製造コストを抑制することが可能となる。
 図7は、グランドパターンを配した複数のアンテナ実装領域を有するオングランド型のプリント基板50にアンテナ装置100を搭載した例を示す模式的な平面図である。
 図7に示すプリント基板50は、2つのアンテナ実装領域51,52を有している。アンテナ実装領域51は、プリント基板50のコーナー部に位置しており、このため2方向からグランドパターン53に囲まれている。一方、アンテナ実装領域52は、プリント基板50の辺に沿って位置しており、このため3方向からグランドパターン53に囲まれている。
 図8は、アンテナ実装領域51,52に搭載したアンテナ装置の特性を示すグラフであり、(a)はアンテナ実装領域51に搭載した場合の特性を示し、(b)はアンテナ実装領域52に搭載した場合の特性を示している。図8(a)及び(b)において、図1に示したアンテナ装置100を搭載した場合の特性は実線で示されており、図18に示した従来のアンテナ装置を搭載した場合の特性は破線で示されている。
 図8(a)に示すように、アンテナ実装領域51に実装した場合には、2つのアンテナ装置の特性(ここでは放射効率とVSWR)に大きな差異はないが、図8(b)に示すように、アンテナ実装領域52に実装した場合には、従来のアンテナ装置の特性が本発明によるアンテナ装置100よりも低下していることが分かる。これは、アンテナ実装領域51に実装した場合には、ギャップからみたグランドパターン53の長さG1が相対的に長いのに対し、アンテナ実装領域52に実装した場合には、ギャップからみたグランドパターン53の長さG2が相対的に短くなるからである。
 図1に示したアンテナ装置100を用いた場合には、実装位置によるアンテナ特性の差が非常に少ないが、これはギャップを用いた容量結合が大きいだけでなく、誘導結合によっても給電しているためである。このように、本実施形態によるアンテナ装置100によれば、プリント基板上の搭載位置によるアンテナ特性の変化を抑制することも可能となる。
 図9及び図10は、本発明の第2の実施形態によるアンテナ装置200の構成を示す図であって、特に、図9はアンテナ装置200がプリント基板上に実装された状態を示す斜視図である。また、図10は、アンテナ装置200が実装されるプリント基板上のパターンレイアウトを示す略平面図である。
 図9及び図10に示すように、本実施形態によるアンテナ装置200は、プリント基板20上のランド33がグランドパターン22に接続されておらず、フローティング状態となっている点において、アンテナ装置100と相違している。その他の点はアンテナ装置100と同一であることから、同一の要素には同一の符号を付し、重複する説明を省略する。
 ランド33がフローティング状態の場合、アンテナ装置200の実装時において給電導体122の一端122aは接地されず、開放状態となる。こうして通常はグランドに接続されている給電導体122の他端122bを開放端とすることにより、アンテナのインピーダンスを変化させることが可能である。これにより、アンテナ装置を携帯電話機等に内蔵するときのインピーダンス調整手段として使用することができる。
 図11及び図12は、アンテナ装置のインピーダンス特性の変化を示すグラフであって、特に図11はランド33がショート状態(図4参照)のときのグラフ、図12はフローティング状態(オープン状態、図10参照)のときのグラフを示している。図11及び図12において、(a)はスミスチャート、(b)はVSWR特性図である。
 図11及び図12に示すように、アンテナ装置のインピーダンス特性は、ランド33がショートのときとオープンの時とで大きく異なっている。特に、図11(b)に示すように、ランド33がショートのときには、インピーダンス特性の変化が比較的小さく、VSWR特性は2.4GHz付近に急峻なピークを持つのに対し、ランド33がオープンのときには、インピーダンス特性の変化が比較的大きく、VSWR特性は2.4GHz付近に緩やかなピークを持つことが分かる。このように、アンテナ装置のインピーダンス特性はランド33の接続状態によって大きく変化することから、ランド33の接続状態をアンテナ装置のインピーダンス調整手段として使用することができる。さらに、実使用時のインピーダンスの変化に合わせて、給電導体122の接続状態をアクティブに変化させることも可能である。
 図13は、本発明の第3の実施形態によるアンテナ装置300の構成を示す図であって、プリント基板20に実装した状態における等価回路図である。
 図13に示すように、本実施形態のアンテナ装置300は、給電導体122の他端122bを接地又は開放させるスイッチング手段129を備えている点において、アンテナ装置100と相違している。その他の点はアンテナ装置100と同一であることから、同一の要素には同一の符号を付し、重複する説明を省略する。
 図示のスイッチング手段129の場合、オン状態のときに接地、オフ状態のときに開放となる。特に限定されるものではないが、スイッチング手段129としては例えばトランジスタを用いることができる。スイッチング手段129の切り替えタイミングは、アンテナ周囲の電波環境の変化に合わせればよい。例えば、二つ折りタイプの携帯電話機の開閉状態によって電波環境が変化する場合には、開閉状態に連動してスイッチングさせればよい。また、携帯電話機を操作中(又は手に持っている状態)か否かによってスイッチングさせてもよい。
 このように、本実施形態のアンテナ装置300は、給電導体122の他端122bを接地又は開放させるスイッチング手段129を備えているので、実使用時のアンテナインピーダンスの変化に合わせて給電導体122の接続状態をアクティブに変化させることができ、アンテナ周囲の状況が変化したとしても良好なアンテナ特性を維持することができる。なお、給電導体122の接続状態は、接地と開放に限定されるものではなく、所定の抵抗を介して短絡させてもよい。
 図14は、本発明の好ましい第4の実施形態によるアンテナ装置400の構造を示す略斜視図である。また、図15は、アンテナ装置400の展開図である。
 図14及び図15に示すように、本実施形態によるアンテナ装置400は、略U字状の給電導体422を有するが、給電導体422の略U字部分が緩やかにカーブした湾曲形状ではなく、直角に折れ曲がった屈曲形状(コの字状)であることを特徴としている。また、結合用導体423は、給電導体422のコの字状に合わせた屈曲形状を有している。これにより、給電導体422及び結合用導体423は、直角に折れ曲がった屈曲形状のギャップgを介して容量結合されている。結合用導体423の上端は、放射導体121の一端121aに接続されており、下端(屈曲部分)はほぼ一定幅のギャップgを介して給電導体422と向き合っている。その他の構成は第1の実施形態によるアンテナ装置100と実質的に同一であることから、同一の構成要素に同一の符号を付して詳細な説明を省略する。
 図16は、給電導体422及び結合用導体423の形状を拡大して示す略平面図である。また、図17は、給電導体422及び結合用導体423の形状の変形例を拡大して示す略平面図である。
 図16に示すように、給電導体422を帯状導体として形成するために必要な絶縁領域(スリット)422sは、給電導体422の折り返し形状を規定しているが、矢印で示すように、スリット422sの深さや幅を調整することによりインピーダンスの変更が可能である。小型化のために放射導体を細長くすると電磁界結合が強くなりすぎる場合があるが、スリット422sの深さDを浅くすることによって結合を弱めることが可能である。インピーダンス調整は給電導体422と結合用導体423との間のギャップ幅gを調整することによっても可能であるが、スリット422sの深さや幅の変更によるインピーダンス調整は、ギャップ幅gを調整する場合よりも微調整しやすいという利点がある。
 さらに、結合用導体423のB方向と直交方向(上下方向)に延びる部分の幅Wを変更することにより、インピーダンスの調整が可能である。導体幅Wは、ギャップgの0.5倍以上3倍以下であることが好ましい。0.5倍未満では電磁界結合が強くなりすぎるという問題があり、3倍を超えると逆に電磁界結合が弱くなりすぎるという問題があるからである。この条件を満たすために導体幅Wを狭くしたい場合、図17に示すように、導体を基体の側面115のエッジ115eに沿って形成するのではなく、エッジ115eよりも内側に形成してもよい。
 このように、本実施形態によるアンテナ装置400は、給電導体422及び結合用導体423が直角に折れ曲がった屈曲形状のギャップを介して容量結合されていることから、緩やかな湾曲形状のギャップの場合よりも容量結合を強くすることができる。また、給電導体422を帯状に形成するために設けられたスリット422sの高さや幅を変更することでインピーダンスを調整することができる。
 以上、本発明の好ましい実施形態について説明したが、本発明は、上記の実施形態に限定されることなく、本発明の主旨を逸脱しない範囲で種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることはいうまでもない。
 例えば、上記各実施形態におけるアンテナ装置は、基体がいずれも直方体形状を有しているが、本発明においてこの点は必須でない。したがって、基体が立方体形状や円柱形状などであっても構わない。また、直方体の角部にその向きを特定するためのテーパーが設けられていても構わない。
 また、上記実施形態においては、基体の材料として誘電体を用いているが、誘電体以外に誘電性を有する磁性体を用いてもよい。この場合、1/{(ε×μ)1/2}の波長短縮効果が得られるので、透磁率μの高い磁性体を用いることによって、大きな波長短縮効果を得ることができる。
 また、上記各実施形態によるアンテナ装置においては、放射電流Iaが流れる方向と給電電流Ibが流れる方向が90°の角度を成しているが、本発明においてこれらの成す角が90°であることは必須でなく、少なくともこれらの電流方向が異なっていれば足りる。しかしながら、放射電流Iaと給電電流Ibの打ち消し合いを最も効果的に防止するためには、上記各実施形態のように、これらのなす角を90°に設定することが最も好ましい。
 また、上記各実施形態によるアンテナ装置はいずれも調整用導体124を備えているが、本発明において調整用導体124を設けることは必須でなく、これを省略しても構わない。
 また、上記各実施形態によるアンテナ装置はいずれも逆Fアンテナであるが、本発明によるアンテナ装置が逆Fアンテナであることは必須でなく、他のタイプであっても構わない。
本発明の好ましい第1の実施形態によるアンテナ装置100の構造を示す略斜視図である。 アンテナ装置100の展開図である。 給電導体122及び結合用導体123の形状を拡大して示す略平面図である。 アンテナ装置100が実装されるプリント基板上のパターンレイアウトを示す略平面図である。 プリント基板20にアンテナ装置100を実装した状態を示す略斜視図である。 プリント基板20に実装した状態におけるアンテナ装置100の等価回路図である。 複数のアンテナ実装領域を有するオングランド型のプリント基板50にアンテナ装置100を搭載した例を示す模式的な平面図である。 アンテナ実装領域51,52に搭載したアンテナのアンテナ特性を示すグラフであり、(a)はアンテナ実装領域52に搭載した場合の特性を示し、(b)はアンテナ実装領域52に搭載した場合の特性を示している。 本発明の第2の実施形態によるアンテナ装置200の構成を示す図であって、特に、アンテナ装置200がプリント基板上に実装された状態を示す斜視図である。 本発明の第2の実施形態によるアンテナ装置200の構成を示す図であって、特に、プリント基板上のパターンレイアウトを示す平面図である。 ランド33がショート状態(図4参照)のときのアンテナ装置のインピーダンス特性の変化を示すグラフであって、(a)はスミスチャート、(b)はVSWR特性図である。 ランド33がフローティング状態(図10参照)のときのアンテナ装置のインピーダンス特性の変化を示すグラフであって、(a)はスミスチャート、(b)はVSWR特性図である。 本発明の第3の実施形態によるアンテナ装置300の構成を示す図であって、プリント基板20に実装した状態における等価回路図である。 本発明の好ましい第4の実施形態によるアンテナ装置400の構造を示す略斜視図である。 アンテナ装置400の展開図である。 給電導体422及び結合用導体423の形状を拡大して示す略平面図である。 給電導体422及び結合用導体423の形状の変形例を拡大して示す略平面図である。 従来のアンテナ装置の構成の一例を示す略斜視図である。 従来のアンテナ装置の構成の他の例を示す略斜視図である。
符号の説明
20  プリント基板
21  アンテナ実装領域
22  グランドパターン
31~34  ランド
41  給電ライン
42  調整用素子
50  プリント基板
51,52  アンテナ実装領域
53  グランドパターン
100  アンテナ装置
110  基体
111  基体の上面
111  基体の底面
112~116  基体の側面
121  放射導体
121a  放射導体の一端
121b  放射導体の他端
122  給電導体
122a  給電導体の一端
122b  給電導体の他端
122c  給電導体の結合部
122s  スリット
123  結合用導体
124  調整用導体
129  スイッチング手段
200  アンテナ装置
300  アンテナ装置
400  アンテナ装置
422  給電導体
422a  給電導体の一端
422b  給電導体の他端
422c  給電導体の結合部
422s  スリット
423  結合用導体
C1,C2  キャパシタンス
g  ギャップ
Ia  放射電流
Ib  給電電流
Ic  誘導電流
M  トランス

Claims (12)

  1.  誘電体又は磁性体からなる基体と、前記基体に形成された導体パターンとを備え、
     前記導体パターンは、放射導体と、略U字状の給電導体と、前記放射導体の一端に接続され且つ前記給電導体と電磁結合された結合用導体とを備え、
     前記給電導体及び前記結合用導体は、前記放射導体が形成された面とは異なる面に形成された導体パターンであり、
     前記放射導体に流れる放射電流の方向と、前記給電導体に流れる給電電流の方向が互いに異なっていることを特徴とするアンテナ装置。
  2.  前記給電導体の一端は給電ラインに接続され、前記給電導体の他端は接地されていることを特徴とする請求項1に記載のアンテナ装置。
  3.  前記給電導体の一端は給電ラインに接続され、前記給電導体の他端は開放されていることを特徴とする請求項1に記載のアンテナ装置。
  4.  前記給電導体の一端は給電ラインに接続され、
     前記給電導体の他端はスイッチング手段を介して接地又は開放されることを特徴とする請求項1に記載のアンテナ装置。
  5.  前記放射電流が流れる方向と前記給電電流が流れる方向は、ほぼ直交していることを特徴とする請求項1乃至4のいずれか一項に記載のアンテナ装置。
  6.  前記基体はほぼ直方体であり、前記放射導体の少なくとも一部は前記基体の上面に形成されており、前記給電導体及び前記結合用導体は、前記基体の長手方向と直交する第1の側面に形成されていることを特徴とすることを特徴とする請求項1乃至5のいずれか一項に記載のアンテナ装置。
  7.  前記基体に形成された前記導体パターンは、所定の基準面を中心にして左右対称であることを特徴とする請求項1乃至6のいずれか一項に記載のアンテナ装置。
  8.  前記給電導体の略U字部分は、緩やかにカーブした湾曲形状であることを特徴とする請求項1乃至7のいずれか一項に記載のアンテナ装置。
  9.  前記給電導体の略U字部分は、直角に折れ曲がった屈曲形状であることを特徴とする請求項1乃至7のいずれか一項に記載のアンテナ装置。
  10.  プリント基板と、前記プリント基板に搭載された請求項1乃至7のいずれか一項に記載のアンテナ装置とを備えることを特徴とする無線通信機。
  11.  前記プリント基板はグランドパターンを有し、前記放射導体の他端は、前記プリント基板上の前記グランドパターンに接続されていることを特徴とする請求項10に記載の無線通信機。
  12.  前記プリント基板は、前記アンテナ装置が搭載されたアンテナ実装領域をさらに有し、前記アンテナ実装領域は、前記グランドパターンによって少なくとも2方向から囲まれていることを特徴とする請求項10又は11に記載の無線通信機。
PCT/JP2008/072912 2007-12-21 2008-12-17 アンテナ装置及びこれを用いた無線通信機 WO2009081803A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2008801215094A CN101904050B (zh) 2007-12-21 2008-12-17 天线装置及使用该天线装置的无线通信机
US12/809,856 US8253631B2 (en) 2007-12-21 2008-12-17 Antenna device and wireless communication equipment using the same
JP2009547054A JP5333235B2 (ja) 2007-12-21 2008-12-17 アンテナ装置及びこれを用いた無線通信機
EP08863827A EP2237370A1 (en) 2007-12-21 2008-12-17 Antenna device and wireless communication device using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007-330581 2007-12-21
JP2007330581 2007-12-21

Publications (1)

Publication Number Publication Date
WO2009081803A1 true WO2009081803A1 (ja) 2009-07-02

Family

ID=40801106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/072912 WO2009081803A1 (ja) 2007-12-21 2008-12-17 アンテナ装置及びこれを用いた無線通信機

Country Status (5)

Country Link
US (1) US8253631B2 (ja)
EP (1) EP2237370A1 (ja)
JP (1) JP5333235B2 (ja)
CN (1) CN101904050B (ja)
WO (1) WO2009081803A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011125707A1 (ja) * 2010-04-01 2011-10-13 Tdk株式会社 アンテナ装置及びこれを用いた無線通信機
JP5900660B2 (ja) * 2013-01-10 2016-04-06 旭硝子株式会社 Mimoアンテナおよび無線装置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4788791B2 (ja) * 2009-02-27 2011-10-05 Tdk株式会社 アンテナ装置
JP5251610B2 (ja) * 2009-03-03 2013-07-31 Tdk株式会社 アンテナ装置及びこれに用いるアンテナ素子
JP5853381B2 (ja) * 2011-03-09 2016-02-09 Tdk株式会社 アンテナ用磁性材料、並びに、アンテナ及び無線通信機器
US20130241800A1 (en) * 2012-03-14 2013-09-19 Robert W. Schlub Electronic Device with Tunable and Fixed Antennas
TW201352079A (zh) * 2012-06-13 2013-12-16 Askey Computer Corp 具有天線結構之電路板
WO2015123839A1 (zh) * 2014-02-20 2015-08-27 华为终端有限公司 天线及使用该天线的无线终端
US20170057104A1 (en) * 2014-03-31 2017-03-02 Koninklijke Philips N.V. Hair clipping device
AU2015318810B2 (en) * 2014-09-15 2021-04-22 Dti Group Limited Arcing filtering using multiple image capture devices
CN107394384B (zh) * 2017-08-09 2023-10-13 歌尔科技有限公司 印制槽隙倒f天线及蓝牙通讯装置
US10644403B2 (en) 2017-08-29 2020-05-05 Samsung Electro-Mechanics Co., Ltd. Chip antenna and manufacturing method thereof
US10305453B2 (en) * 2017-09-11 2019-05-28 Apple Inc. Electronic device antennas having multiple operating modes
JP6658704B2 (ja) * 2017-09-20 2020-03-04 Tdk株式会社 アンテナモジュール
JP6678723B1 (ja) * 2018-10-31 2020-04-08 京セラ株式会社 アンテナ、無線通信モジュール及び無線通信機器
JP2022518481A (ja) 2019-01-22 2022-03-15 東友ファインケム株式会社 アンテナ構造体及びそれを含むディスプレイ装置
KR102176860B1 (ko) * 2019-01-22 2020-11-10 동우 화인켐 주식회사 안테나 구조체 및 이를 포함하는 디스플레이 장치

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3114582B2 (ja) 1995-09-29 2000-12-04 株式会社村田製作所 表面実装型アンテナおよびこれを用いた通信機
JP3331852B2 (ja) 1996-02-16 2002-10-07 株式会社村田製作所 表面実装型アンテナの基板への実装方法およびこの基板を搭載した通信機
JP2003069331A (ja) * 2001-06-15 2003-03-07 Hitachi Metals Ltd 表面実装型アンテナ及びそれを搭載した通信機器
JP2004056506A (ja) * 2002-07-19 2004-02-19 Yokowo Co Ltd 表面実装型アンテナおよび携帯無線機
JP2004064353A (ja) * 2002-07-26 2004-02-26 Tdk Corp アンテナ用部品、アンテナ装置、および、通信機器
WO2006000650A1 (en) * 2004-06-28 2006-01-05 Pulse Finland Oy Antenna component
WO2006120763A1 (ja) * 2005-05-13 2006-11-16 Murata Manufacturing Co., Ltd. アンテナ構造およびそれを備えた無線通信機
JP3883565B1 (ja) * 2006-02-28 2007-02-21 Tdk株式会社 チップアンテナ
JP2008252156A (ja) * 2007-03-29 2008-10-16 Tdk Corp アンテナ装置及びこれを用いた無線通信機器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5696517A (en) * 1995-09-28 1997-12-09 Murata Manufacturing Co., Ltd. Surface mounting antenna and communication apparatus using the same
JP3114605B2 (ja) 1996-02-14 2000-12-04 株式会社村田製作所 表面実装型アンテナおよびこれを用いた通信機
JP2002299933A (ja) * 2001-04-02 2002-10-11 Murata Mfg Co Ltd アンテナの電極構造およびそれを備えた通信機
JP2003069330A (ja) * 2001-06-15 2003-03-07 Hitachi Metals Ltd 表面実装型アンテナ及びそれを搭載した通信機器
KR100444219B1 (ko) * 2001-09-25 2004-08-16 삼성전기주식회사 원형편파용 패치 안테나
KR100533624B1 (ko) * 2002-04-16 2005-12-06 삼성전기주식회사 듀얼 피딩 포트를 갖는 멀티밴드 칩 안테나 및 이를사용하는 이동 통신 장치
JP3931866B2 (ja) * 2002-10-23 2007-06-20 株式会社村田製作所 表面実装型アンテナおよびそれを用いたアンテナ装置および通信装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3114582B2 (ja) 1995-09-29 2000-12-04 株式会社村田製作所 表面実装型アンテナおよびこれを用いた通信機
JP3331852B2 (ja) 1996-02-16 2002-10-07 株式会社村田製作所 表面実装型アンテナの基板への実装方法およびこの基板を搭載した通信機
JP2003069331A (ja) * 2001-06-15 2003-03-07 Hitachi Metals Ltd 表面実装型アンテナ及びそれを搭載した通信機器
JP2004056506A (ja) * 2002-07-19 2004-02-19 Yokowo Co Ltd 表面実装型アンテナおよび携帯無線機
JP2004064353A (ja) * 2002-07-26 2004-02-26 Tdk Corp アンテナ用部品、アンテナ装置、および、通信機器
WO2006000650A1 (en) * 2004-06-28 2006-01-05 Pulse Finland Oy Antenna component
WO2006120763A1 (ja) * 2005-05-13 2006-11-16 Murata Manufacturing Co., Ltd. アンテナ構造およびそれを備えた無線通信機
JP3883565B1 (ja) * 2006-02-28 2007-02-21 Tdk株式会社 チップアンテナ
JP2008252156A (ja) * 2007-03-29 2008-10-16 Tdk Corp アンテナ装置及びこれを用いた無線通信機器

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011125707A1 (ja) * 2010-04-01 2011-10-13 Tdk株式会社 アンテナ装置及びこれを用いた無線通信機
CN102834967A (zh) * 2010-04-01 2012-12-19 Tdk株式会社 天线装置以及使用其的无线通信机
US9225057B2 (en) 2010-04-01 2015-12-29 Tdk Corporation Antenna apparatus and wireless communication device using same
CN102834967B (zh) * 2010-04-01 2016-04-13 Tdk株式会社 天线装置以及使用其的无线通信机
JP5900660B2 (ja) * 2013-01-10 2016-04-06 旭硝子株式会社 Mimoアンテナおよび無線装置
US10283869B2 (en) 2013-01-10 2019-05-07 AGC Inc. MIMO antenna and wireless device

Also Published As

Publication number Publication date
US20110001672A1 (en) 2011-01-06
JP5333235B2 (ja) 2013-11-06
JPWO2009081803A1 (ja) 2011-05-06
CN101904050B (zh) 2013-01-30
US8253631B2 (en) 2012-08-28
EP2237370A1 (en) 2010-10-06
CN101904050A (zh) 2010-12-01

Similar Documents

Publication Publication Date Title
JP5333235B2 (ja) アンテナ装置及びこれを用いた無線通信機
JP4867787B2 (ja) アンテナ装置
KR100707242B1 (ko) 유전체 칩 안테나
CN101826655B (zh) 天线装置及其所使用的天线元件
EP2553762B1 (en) Dielectric chip antennas
EP0863570A2 (en) A chip antenna and a method for adjusting frequency of the same
KR20070030233A (ko) 칩 안테나
JP5726983B2 (ja) チップ状アンテナ装置及び送受信用通信回路基板
KR101489182B1 (ko) 무한 파장 안테나 장치
US20100309060A1 (en) Antenna device and wireless communication equipment using the same
WO2011125707A1 (ja) アンテナ装置及びこれを用いた無線通信機
CN211088515U (zh) 天线耦合元件、天线装置及电子设备
US20100127940A1 (en) Antenna device, radio communication equipment, surface-mounted antenna, printed circuit board, and manufacturing method of the surface-mounted antenna and the printed circuit board
US8384598B2 (en) Surface-mounted antenna, antenna device using the same, and radio communication equipment
JP4848992B2 (ja) アンテナ装置及びこれを用いた無線通信機器
JP5251965B2 (ja) アンテナ装置及びその周波数調整方法
JP2011061638A (ja) アンテナ装置
JP4924399B2 (ja) アンテナ装置及びこれを用いた無線通信機
JP4775298B2 (ja) アンテナ装置及びこれを用いた無線通信機器
JP4894502B2 (ja) アンテナ装置
JP2008252155A (ja) アンテナ装置及びこれを用いた無線通信機器
CN214280210U (zh) 天线装置以及电子设备
JP4766137B2 (ja) アンテナ装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880121509.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08863827

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2009547054

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008863827

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12809856

Country of ref document: US