WO2015123839A1 - 天线及使用该天线的无线终端 - Google Patents

天线及使用该天线的无线终端 Download PDF

Info

Publication number
WO2015123839A1
WO2015123839A1 PCT/CN2014/072309 CN2014072309W WO2015123839A1 WO 2015123839 A1 WO2015123839 A1 WO 2015123839A1 CN 2014072309 W CN2014072309 W CN 2014072309W WO 2015123839 A1 WO2015123839 A1 WO 2015123839A1
Authority
WO
WIPO (PCT)
Prior art keywords
feed
feeding
edge
auxiliary
arm
Prior art date
Application number
PCT/CN2014/072309
Other languages
English (en)
French (fr)
Inventor
张云
李伟
王汉阳
卢士强
Original Assignee
华为终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为终端有限公司 filed Critical 华为终端有限公司
Priority to PCT/CN2014/072309 priority Critical patent/WO2015123839A1/zh
Publication of WO2015123839A1 publication Critical patent/WO2015123839A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/378Combination of fed elements with parasitic elements

Definitions

  • the present invention relates to wireless communication technologies, and in particular, to an antenna and a wireless terminal using the same. Background technique
  • Antennas are devices that can receive and transmit electromagnetic waves. Antenna design is critical to wireless end products such as cell phones, navigators, PDAs, laptops, etc., directly affecting the wireless transceiver performance of these products.
  • the pattern is an indicator of the change in antenna radiation gain with azimuth.
  • the upper hemisphere scale is a parameter describing the pattern, assuming that in the three-dimensional coordinate system, the antenna pattern is an irregular pattern with (0, 0, 0) as the center of the sphere. In the area above the XOY plane (+Z direction), the ratio of the radiated (or received) energy of the antenna to the total radiated (or received) energy of the antenna is the ratio of the upper hemisphere.
  • the invention provides an antenna and a wireless terminal using the same, the antenna can realize better free space efficiency, and can conveniently realize the target pattern and improve the directivity of the antenna radiation.
  • an antenna comprising: a radiating body and a feeding unit, wherein the radiating body and the feeding unit are coupled to each other;
  • the radiation body includes a radiating portion and a feeding portion connected to each other; the radiating portion is strip-shaped, the feeding portion is connected to one end of the radiating portion; the feeding portion has a feeding edge; and the feeding unit has a feed edge; a gap is provided between the feed edge and the feed edge to couple the feed portion to the feed unit; the feed edge and the feed edge shape Cooperating, and the feeding edge and the feeding edge are bent in a meandering manner.
  • the feeding portion has at least one feeding protrusion, and the edge of the feeding portion having the feeding protrusion forms the feeding edge; the feeding unit a feed slot is provided, which is matched with the feed protrusion, and the feed protrusion is located in the feed slot, and the feed edge is formed on the feed unit and the feed is provided The edge of the battery.
  • a feeding protrusion is disposed on an edge of the feeding unit opposite to the feeding protrusion, and the feeding protrusion is at least Two feeding capacitors are formed between two adjacent feeding protrusions.
  • the feeding unit has a strip-shaped groove, the strip-shaped groove is open at one end in the longitudinal direction, and the other end is closed; the feeding portion is strip-shaped, and the feeding portion is stripped An open end of the slot extends into the strip slot; the feed edge includes a U-shaped slot inner wall of the strip slot; the feed edge includes a feed portion extending into the strip slot the edge of.
  • the feeding unit includes a feeding body and a feeding arm, and the feeding arm is connected to the feeding body;
  • the U-shaped portion is formed, and the inner cavity forms the strip-shaped groove;
  • the feeding portion is a straight strip shape, which is completely located in the strip-shaped groove, and the feeding portion is coupled with the feeding arm to feed.
  • the feeding unit includes a feeding body and a feeding arm; the feeding arm is in a strip shape, and one end thereof and the feeding body Connecting; the feeding arm extends along an edge of the feeding body, and the strip-shaped groove is formed between the feeding arm and the feeding body;
  • the feeding portion is bent in a u shape, and has a first feeding arm and a second feeding arm connected to each other, an end of the first feeding arm is connected to the radiation portion, and the second feeding arm is Forming a feed slot between the first feed arms;
  • the feed arm extends into the feed slot, the feed arm is simultaneously feedably coupled to the first feed arm and the second feed arm; the second feed arm extends to the strip In the slot, the second feed arm is simultaneously coupled to the feed arm and the feed body;
  • the feeding edge further includes another side edge of the feeding arm remote from the feeding body and An end edge of the feed arm; the feed edge further comprising an edge of the first feed arm located in the feed slot.
  • the radiating portion has a first end and a second end that are opposite in length direction; the feeding portion is connected to the radiating portion through a connecting portion; the connecting portion is strip-shaped, and has a relative a first end and a second end; the connecting portion is bent, the first end of the connecting portion is connected to the second end of the radiating portion, the second end of the connecting portion is opposite to the feeding portion Connecting, the second end of the connecting portion is adjacent to the second end of the radiating portion with respect to the first end thereof.
  • the antenna further includes an auxiliary radiation body, and the auxiliary radiation body and the power feeding unit are coupled to each other;
  • the auxiliary radiation body includes An auxiliary radiation portion and an auxiliary feeding portion that are connected to each other, wherein the auxiliary radiation portion is strip-shaped, and the auxiliary feeding portion and the feeding unit are feed-coupled;
  • the auxiliary feeding portion has an auxiliary feeding edge, the feeding unit has an auxiliary feeding edge; a gap is provided between the auxiliary feeding edge and the auxiliary feeding edge, so that the auxiliary feeding portion and the auxiliary feeding portion Feeding unit coupled feed;
  • the auxiliary feeding edge and the auxiliary feeding edge are strips; or
  • the auxiliary feed edge coincides with the shape of the auxiliary feed edge and extends and extends.
  • the auxiliary feeding portion is provided with an auxiliary feeding protrusion, and the auxiliary feeding edge is formed on the auxiliary feeding portion.
  • the auxiliary feeding slot is provided on the feeding unit, and the auxiliary feeding slot is located in the auxiliary feeding slot.
  • a wireless terminal having an antenna in any of the foregoing implementations.
  • the antenna has two kinds of feeding modes: a capacitive coupling feeding and an inductive coupling feeding, and the feeding edge and the feeding edge are both bent and extended, and the feeding can be enhanced.
  • the inductiveness of the electrical unit enables a large length of coupling in a small space.
  • the length of the feed edge or the feed edge and the number of bends can be adjusted to adjust the size of the coupled inductor; the gap between the feed edge and the feed edge is adjusted.
  • the size of the coupling capacitor can be adjusted; by adjusting the size of the coupling inductor and the coupling capacitor, the balance between bandwidth and efficiency can be achieved, and the ratio of the radiation of the antenna body to the radiation of the motherboard of the terminal product can be adjusted, thereby adjusting the antenna. Go to the target pattern and increase the antenna radiation Orientation, and can achieve better free space efficiency. Attached sleep instructions
  • FIG. 1 is a schematic diagram of an antenna according to a first embodiment of the present invention
  • FIG. 2 is a schematic diagram of an antenna according to a second embodiment of the present invention.
  • FIG. 3 is a schematic diagram of an antenna according to a third embodiment of the present invention.
  • FIG. 4 is a schematic diagram of an antenna according to a fourth embodiment of the present invention.
  • FIG. 5 is a schematic diagram of an antenna according to a fifth embodiment of the present invention.
  • FIG. 6 is a schematic diagram of an antenna according to a sixth embodiment of the present invention.
  • FIG. 7 is a schematic diagram of an antenna according to a seventh embodiment of the present invention.
  • FIG. 8 is a schematic diagram of an antenna according to an eighth embodiment of the present invention.
  • FIG. 9 is a schematic diagram of an antenna according to a ninth embodiment of the present invention. Implementation
  • the invention provides a wireless terminal comprising a structural member and an antenna disposed on the structural member.
  • the structural members can be PCB, FPC, housing, and the like.
  • the antenna of the wireless terminal can be disposed on the structural member, and the antenna can be integrated with the structural member, and the antenna can also be used as a structural member of the wireless terminal.
  • the antenna in the first embodiment of the present invention, includes a radiating body 2 and a feeding unit 1.
  • the radiation body 2 is coupled to the feed unit 1 to feed.
  • the radiation body 2 includes a radiation portion 21 and a feeding portion 22 that are connected to each other.
  • the radiation portion 21 is a main radiating portion, and the radiation portion 21 is strip-shaped.
  • the radiating portion 21 can extend along the edge of the wireless terminal on the structural member
  • the setting can radiate energy well.
  • the radiating portion 21 may be in the form of a straight strip, or may be bent in a serpentine shape, a U shape, or the like.
  • a part of a structural member (such as a metal frame) on the terminal device may be used as the radiation portion 21, or the radiation portion 21 may be thermally fused together with the structural member to facilitate the antenna layout.
  • the feedthrough 22 has a feed edge 20, and the feed unit 1 has a feed edge 10.
  • a gap is provided between the feeding edge 20 and the feeding edge 10 to feed the feeding portion 22 with the feeding unit 1; the feeding edge 20 cooperates with the shape of the feeding edge 10, and feeds the edge 20 and the feeding edge 10 is bent in a meandering manner to enhance the inductivity of the antenna, and there is an equivalent inductance between the radiating body 2 and the feeding unit 1.
  • the feed edge 20 and the feed edge 10 are bent to extend a larger length of coupling in a smaller space, and the length of the feed edge or the feed edge and the number of bends are changed to adjust the feed edge 20 and the feed edge 10
  • the length of the mating between them is such that the size of the coupling inductance between the feed portion 22 and the feed unit 1 is adjusted.
  • the equivalent inductive loading between the radiating body 2 and the feed unit 1 can be used to debug the electrical length of the antenna.
  • the antenna has two kinds of feeding modes: capacitive coupling feeding and inductive coupling feeding, which can make the radiation main body 2 nearly one-half wavelength in size, so that the antenna body occupies a larger proportion of radiation than the terminal product main board.
  • the radiating portion 21 extends along the upper edge of the terminal device, and the antenna radiation will be mostly above the terminal device main board, so that there is a good upper hemisphere ratio and performance.
  • the size of the capacitor and the inductance of the coupling feed By changing the size of the capacitor and the inductance of the coupling feed, not only can the balance be achieved between the bandwidth and the efficiency, but also the combination of the radiation body debugging and the coupling feeding mode can realize the adjustment of the pattern.
  • the electrical length of the radiating body 2 of the antenna After the size of the capacitor and the inductor are changed, in order to obtain a certain resonant frequency, the electrical length of the radiating body 2 of the antenna will be different due to the corresponding adjustment.
  • the antennas of the radiating body 2 having different electrical lengths will have different current distributions, and different current distributions can Different antenna patterns can be realized. Therefore, the direction of the capacitor can be adjusted by changing the size of the capacitor and the inductor, so that the structure of the radiation body 2 and the feeding unit 1 can be finely adjusted to make the antenna reach the target pattern better.
  • the feeding unit 1 is provided with a feeding slot 110 which is matched with the feeding protrusions.
  • the feeding protrusion 221 is located in the feeding slot 110, and the feeding edge 10 is formed on the feeding unit 1 and provided with a feeding slot.
  • the feeding unit 1 is provided with a feeding protrusion 11 on the edge opposite to the feeding protrusion 221, and the feeding protrusion 11 is at least two, and the two feeding protrusions 11 are adjacent to each other.
  • a feed slot 110 is formed therebetween.
  • the feeding protrusions 11 are three, and the three feeding protrusions 11 can form two feeding slots 110, and the two feeding protrusions 221 are respectively disposed in the two feeding slots 110, so that each feeding The electrical projections 11 are located between adjacent two feed projections 11.
  • the feeding edge 10 is formed on the edge of the feeding unit 1 on which the feeding protrusion 11 is provided. With the three feeding protrusions 11, the feeding edge 10 can be bent to match the shape of the feeding edge 20. shape.
  • the feed tank 110 may be directly formed on the power feeding unit 1.
  • the coupling inductance between the feeding portion 22 and the feeding unit 1 can be changed, so that the antenna can better achieve the target pattern and improve the directionality of the antenna radiation.
  • the feeding unit 1 has a square shape
  • the feeding protrusion 221 and the feeding protrusion 11 are square
  • the feeding groove 110 formed between the feeding protrusions 11 is also square, so that the feeding edge 10 and the feeding edge 20 are wall-like
  • the coupling inductance between the feeding portion 22 and the feeding unit 1 can be changed by cutting the height of the feeding protrusion 221 and the feeding protrusion 11 to change the coupling inductance.
  • the debugging of the antenna is further facilitated to quickly realize the target pattern of the antenna and improve the directivity of the antenna radiation.
  • the feeding protrusion 221 and the feeding protrusion 11 may also be curved, triangular, trapezoidal or other shapes.
  • the radiating portion 21 has opposite first and second ends 21a, 21b in the longitudinal direction, the feeding portion 22 is located at the second end 21b of the radiating portion 21, and the feeding portion 22 is away from the first end 21a of the radiating portion 21.
  • the direction extends to form an open radiant end 22a, that is, there is no occlusion of the feeding unit 1 in the extending direction of the radiant end 22a, so that the radiant end 22a is open, and the signal can be radiated outside the terminal device, and the radiating body 2 Both ends can be effectively radiated, thereby effectively improving the radiation performance of the antenna.
  • the feeding portion 22 is connected to the radiation portion 21 through the connecting portion 23.
  • the connecting portion 23 is in the form of a strip having opposite first and second ends.
  • the connecting portion 23 is bent, the first end of the connecting portion 23 is connected to the second end 21b of the radiating portion 21, the second end of the connecting portion 23 is connected to the feeding portion 22, and the second end of the connecting portion 23 is opposite thereto
  • the first end is adjacent to the first end 21a of the radiating portion 21 such that the feeding portion 22 extends away from the first end 21a of the radiating portion 21 without increasing the space occupied by the entire antenna.
  • the feeding portion 22 is also in the form of a strip having one end connected to the second end of the connecting portion 23 and the other end forming the radiating end 22a.
  • the feeding edge 20 is the one side edge of the feeding portion 22 which is relatively far from the radiation portion 21.
  • the feeding portion 22 may be directly connected to the radiation portion 21, and the connecting portion 23 may be a bent shape or a strip shape.
  • the feed unit 1 is provided with a feed point portion 12 for accessing the feed source and a ground portion 13 for grounding.
  • the feed point portion 12 can be used to access the feed source, and the ground portion 13 can be used to ground the feed unit 1.
  • the feed point portion 12 and the ground portion 13 are strip-shaped, and the extension directions of the two are the same, so as to reduce the size of the overall occupied space of the antenna.
  • the grounding portion 13 may not be provided.
  • the antenna includes the radiating body 2 and the feeding unit 1.
  • the radiation body 2 is coupled to the feed unit 1 to feed.
  • the radiation body 2 includes a radiating portion 21 and a feeding portion 22 which are connected to each other.
  • the radiating portion 21 is a main radiating portion, and its structure is the same as that of the first embodiment, and will not be described herein.
  • the feed portion 22 has a feed edge 20 and the feed unit 1 has a feed edge 10. A gap is provided between the feeding edge 20 and the feeding edge 10, so that the feeding portion 22 is coupled to the feeding unit 1 to feed; the feeding edge 20 is matched with the shape of the feeding edge 10, and both are in the shape of a braid Bend and extend.
  • the feeding unit 1 has a strip-shaped groove 100, and the strip-shaped groove 100 is open at one end in the longitudinal direction and closed at the other end; the feeding portion 22 is strip-shaped, and the feeding portion 22 extends from the open end of the strip-shaped groove 100 to In the strip groove 100.
  • the feeding edge 10 includes a U-shaped groove inner wall in the strip-shaped groove 100; since one end of the strip-shaped groove 100 is open and the other end is closed, the two inner walls of the two pairs and the inner wall of the closed end form a U-shaped groove inner wall, and the feeding The entry edge 20 includes an edge that extends into the feed portion 22 within the strip slot 100.
  • the feeding unit 1 includes a feeding body 131 and a feeding arm 132, and the feeding arm 132 is connected to the feeding body 131.
  • the feed arm 132 is bent into a U shape, and the inner cavity thereof forms the strip groove 100.
  • Feed One end of the arm 132 is connected to the power feeding main body 131.
  • the feed portion 22 has a straight strip shape which is completely located in the strip groove 100 and has a gap with the inner wall of the groove of the strip groove 100, so that the feed portion 22 is coupled to the feed arm 132 for feeding.
  • the inner edge of the feed arm 132 forms a U-shaped feed edge 20; the long edges and the end edges of the feed portion 22 form a U-shaped feed edge 10 such that the feed edge 20 and the feed edge 10 are both U.
  • the matching between the feeding edge 20 and the feeding edge 10 of a larger length can be realized in a small space, thereby facilitating changing the mating length of the two to adjust the coupling inductance between the feeding portion 22 and the feeding unit 1. , improve the directionality of the antenna radiation.
  • the feeding portion 22 is connected to the radiation portion 21 through the connecting portion 23.
  • the connecting portion 23 has a strip shape having opposite first and second ends.
  • the connecting portion 23 has a bent shape, the first end of which is connected to the second end 21b of the radiating portion 21, the second end is connected to the feeding portion 22, and the second end of the connecting portion 23 is adjacent to the radiating portion 21 with respect to the first end thereof.
  • the first end 21a is configured to feed the portion 22 without increasing the space occupied by the entire antenna.
  • the feed unit 1 is provided with a feed point portion 12 for accessing the feed source and a ground portion 13 for grounding.
  • the feed point portion 12 can be used to access the feed source, and the ground portion 13 can be used to ground the feed unit 1. More specifically, the feed point portion 12 and the ground portion 13 are both disposed on the feed body 131; the feed point portion 12 and the ground portion 13 are strip-shaped, and the extension directions of the two are the same, so as to reduce the size of the overall occupied space of the antenna. .
  • the grounding portion 13 may not be provided.
  • the antenna according to the fourth embodiment of the present invention the antenna according to the fourth embodiment of the present invention.
  • an antenna according to a fifth embodiment of the present invention includes an antenna 2 and a feeding unit 1.
  • the radiation body 2 is coupled to the feed unit 1 to feed.
  • the radiation body 2 includes a radiating portion 21 and a feeding portion 22 which are connected to each other.
  • the radiating portion 21 is a main radiating portion, and its structure is the same as that of the first embodiment, and will not be described herein.
  • the feeding portion 22 is connected to the radiating portion 21 through the connecting portion 23, and the structural shape of the connecting portion 23 is the same as that of the foregoing embodiment, and will not be described herein.
  • the feed unit 1 has a strip-shaped groove 150 which is open at one end in the longitudinal direction and closed at the other end. More specifically, the feed unit 1 includes a feed body 151 and a feed arm 152. Feed arm 152 In the form of a strip, one end thereof is connected to the feeding body 151, the feeding arm 152 extends along an edge of the feeding body 151, and the strip groove 150 is formed between the feeding arm 152 and the feeding body 151.
  • the feed portion 22 is strip-shaped, and the feed portion 22 extends from the open end of the strip groove 150 into the strip groove 150. More specifically, the feeding portion 22 is bent in a U shape, and has a first feeding arm 225a and a second feeding arm 225b connected to each other. The end of the first feeding arm 225a is connected to the radiation portion 21, and the second feeding A feed slot 220 is formed between the inlet arm 225b and the first feed arm 225a.
  • the feed arm 152 extends into the feed slot 220, and the feed arm 152 is simultaneously feed coupled to the first feed arm 225a and the second feed arm 225b.
  • the second feed arm 225b extends into the strip slot 150, and the second feed arm 225b is simultaneously feedably coupled to the feed arm 152 and the feed body 152.
  • the feeding edge 10 includes a U-shaped groove inner wall of the strip-shaped groove 150, the other side edge of the feeding arm 152 away from the feeding body 151, and an end edge of the feeding arm 152, that is, the entire feeding edge 10
  • the feed edge 20 includes both side edges and end edges of the second feed arm 225b (ie, the edge of the feed portion 22 extending into the strip groove 150), and the first feed arm 225a
  • the upper edge of the feed slot 220 i.e., the entire feed edge 20, is also bent into an S shape.
  • the feed arm 152 is simultaneously coupled to the first feed arm 225a and the second feed arm 225b, and the second feed arm 225b is simultaneously coupled with the feed arm 152 and the feed body 152 to save space.
  • the cooperation of the feeding edge 20 of the larger length and the feeding edge 10 is realized in a small space, thereby facilitating the adjustment of the coupling inductance between the feeding portion 22 and the feeding unit 1.
  • the feed unit 1 is provided with a feed point portion 12 for accessing the feed source and a ground portion 13 for grounding.
  • the feed point unit 12 can be used to access the feed source, and the grounding unit 13 can be used to ground the feed unit 1 to achieve miniaturization of the antenna.
  • the feed point portion 12 and the ground portion 13 are both disposed on the feed body 131; the feed point portion 12 and the ground portion 13 are strip-shaped, and the extension directions of the two are the same, so as to reduce the size of the overall occupied space of the antenna.
  • the grounding portion 13 may not be provided, and as shown in Fig. 6, the antenna according to the sixth embodiment of the present invention.
  • the antenna includes a radiating body 2, an auxiliary radiating body 3, and a feeding unit 1.
  • the coupling between the radiating body 2 and the feeding unit 1 and the structure of the radiating body 2 and the coupling structure between the radiating body 2 and the feeding unit 1 can be the same as those in the fifth embodiment, and will not be described herein.
  • the structure of the radiating body 2 and the coupling structure between the radiating body 2 and the feeding unit 1 may also be the first embodiment described above or The third embodiment is the same.
  • the auxiliary radiation main body 3 and the feeding unit 1 are coupled and fed, and the auxiliary radiation main body 3 can further improve the directionality of the antenna radiation, and the orientation of the pattern can be adjusted.
  • the auxiliary radiation body 3 includes an auxiliary radiation portion 31 and an auxiliary feeding portion 32 which are connected to each other.
  • the auxiliary radiating portion 31 is strip-shaped for signal radiation.
  • the auxiliary feed portion 32 is federically coupled to the feed unit 1.
  • the auxiliary feedthrough 32 has an auxiliary feed edge 30, and the feed unit 1 has an auxiliary feed edge 130.
  • a gap is provided between the auxiliary feed edge 30 and the auxiliary feed edge 130 to cause the auxiliary feed portion 32 to be coupled to the feed unit 1 for feeding.
  • the auxiliary feed edge 30 and the auxiliary feed edge 130 are strip-shaped so as to correspond to each other.
  • the auxiliary feeding portion 32 is strip-shaped, and the auxiliary feeding edge 30 is formed near one long edge of the feeding unit 1.
  • the auxiliary feeding edge 30 can be adjusted.
  • the length is adjusted to adjust the coupling feed length between the auxiliary feed edge 30 and the auxiliary feed unit 1, thereby adjusting the coupling inductance between the auxiliary radiation body 3 and the feed unit 1; by adjusting the auxiliary feed edge 30 and The size of the gap between the auxiliary feeding edges 130 can adjust the size of the coupling capacitance between the auxiliary feeding portion 32 and the feeding unit 1 to realize the adjustment of the pattern.
  • the feed unit 1 is provided with a feed point portion 12 for accessing the feed source and a ground portion 13 for grounding.
  • the feed point unit 12 can be used to access the feed source, and the grounding unit 13 can be used to ground the feed unit 1 to achieve miniaturization of the antenna.
  • the feed point portion 12 and the ground portion 13 are both disposed on the feed body 131; the feed point portion 12 and the ground portion 13 are strip-shaped, and the extension directions of the two are the same, so as to reduce the size of the overall occupied space of the antenna.
  • the grounding portion 13 may not be provided, and as shown in Fig. 8, the antenna according to the eighth embodiment of the present invention.
  • the antenna includes a radiating body 2, an auxiliary radiating body 3, and a feeding unit 1.
  • the coupling between the radiating body 2 and the feeding unit 1 and the structure of the radiating body 2 and the coupling structure between the radiating body 2 and the feeding unit 1 may be the same as those in the first embodiment, and will not be described herein.
  • the structure of the radiation body 2 and the coupling structure between the radiation body 2 and the power feeding unit 1 may be the same as in the third embodiment or the fifth embodiment described above.
  • the auxiliary radiation body 3 and the feed unit 1 are coupled to feed, and the auxiliary radiation body 3 can further improve the directivity of the antenna radiation.
  • the auxiliary radiation body 3 includes auxiliary radiation portions 31 connected to each other and The auxiliary feeding portion 32.
  • the auxiliary radiation portion 31 is strip-shaped for signal radiation.
  • the auxiliary feed portion 32 is fedively coupled to the feed unit 1.
  • the auxiliary feedthrough 32 has an auxiliary feed edge 30, and the feed unit 1 has an auxiliary feed edge 130. A gap is provided between the auxiliary feed edge 30 and the auxiliary feed edge 130 to cause the auxiliary feed portion 32 to be coupled to the feed unit 1 for feeding.
  • the auxiliary feeding edge 30 conforms to the shape of the auxiliary feeding edge 130 and is bent and extended to enhance the inductivity of the antenna, and the length of the auxiliary feeding edge 30 is changed in a small space to adjust the auxiliary feeding edge 30 and the auxiliary.
  • the mating length between the feed edges 130 is such that the size of the coupling inductance between the auxiliary feed portion 32 and the feed unit 1 is adjusted.
  • the auxiliary feeding portion 32 is provided with an auxiliary feeding protrusion 321 , and the auxiliary feeding edge 30 is formed on the auxiliary feeding portion 32 with the edge of the auxiliary feeding protrusion 321 , and the auxiliary feeding protrusion 321 is used for auxiliary
  • the auxiliary feed edge 30 of the feed portion 32 is bent. Two or more protrusions may be provided on the auxiliary feeding portion 32, so that the auxiliary feeding edge 30 is reciprocally bent in a meander shape to achieve a larger adjustment of the length of the auxiliary feeding edge 30 in a smaller space. Therefore, a large range of adjustment of the coupled inductor is achieved.
  • the feeding unit 1 is provided with an auxiliary feeding slot 113 which is matched with the auxiliary feeding protrusion 321 one-to-one, and the auxiliary feeding protrusion 321 is located in the auxiliary feeding slot 113.
  • the auxiliary feeding protrusion 321 and the auxiliary feeding slot 113 are square, so as to be processed and prepared, and at the same time, the height of the auxiliary feeding protrusion 321 can be adjusted to facilitate the adjustment of the size of the inductor.
  • the auxiliary feeding edge 30 and the auxiliary feeding edge can be reciprocally bent in a meandering manner, thereby achieving comparison in d and space.
  • a wide range of inductance adjustments make it easy to adjust the pattern.
  • a coupling feeding structure of the feeding portion and the feeding unit in the third embodiment or the fifth embodiment may be adopted between the auxiliary feeding portion and the feeding unit, and the auxiliary feeding edge and the auxiliary feeding are assisted.
  • the electrical edge has a meandering U-shaped extension or S-shaped extension, which also enables a wide range of inductance adjustments in a small space.
  • the radiating body 2 and the feeding unit 1 are coupled and fed, and the two are separated structures, so that the materials and implementation processes of the two can be the same or different, which can facilitate the processing and preparation of the antenna, which is beneficial to the processing.
  • the antenna and the structural member are coupled to each other to effectively utilize the structural space of the structural member to set the antenna. Thereby reducing the antenna footprint.
  • the radiation body 2 is thermally fused with the structural member by stamping (such as stamping stainless steel, copper or the like), and the feeding unit is FPC (flexible circuit board) and the structural member is attached;
  • the radiation main body and the feeding unit can be subjected to a process such as LDS (Laser-Direct-structuring).
  • the radiation body 2 and the feeding unit 1 are coupled to each other, so that the two can be disposed on the same plane or not on the same plane.
  • the radiation body 2 is disposed inside the structural member, and the feeding unit is disposed at The outer side of the structural member, or vice versa, etc., is within the scope of the present invention.
  • the feeding edge and the feeding edge are bent into a wall shape, a U shape, an S shape, etc., in the above embodiment. , all of which belong to the range of the shape of the file.
  • the shape of the file referred to in the present invention further includes the following bending mode, and the feeding edge (feeding edge) first extends in the first direction, and then the bending edge The second direction extends, and the bending extends in the first direction... and so on, there is an angle between the first direction and the second direction or opposite, that is, the feeding edge and the feeding edge are bent in a zigzag shape, a wave shape, etc. And the like, all within the range of the shape of the present invention.
  • the "feeding edge is matched with the feeding edge” means that the shape of the feeding edge and the feeding edge are substantially consistent, and both edges are wall-like or jagged. Or both are wavy to form a more uniform gap between the feed edge and the feed edge.

Abstract

本发明公开了一种天线,包括采用耦合馈电的辐射主体及馈电单元,辐射主体靠近馈电单元处为馈入部;馈入部的馈入边缘与馈电单元的馈电边缘之间设有间隙,以使二者耦合馈电。馈电单元同时具备电容耦合馈电及电感耦合馈电两种馈电方式;馈入边缘与馈电边缘均呈蜿蜒状弯折延伸,可增强馈电单元的感性,在较小空间内实现较大长度耦合,改变折弯次数可调整耦合电感大小;调整馈入边缘与馈电边缘之间的间隙大小或空间距离可调整耦合电容大小,通过调整耦合电感和耦合电容大小可以在天线带宽和效率中间取得平衡,同时还可以调整天线本体辐射和终端产品主板辐射的占比,进而实现方向图的可调。另外,本发明还提供一种使用该天线的无线终端。

Description

天线及使用该天线的无线终媒
技^!城
本发明涉及无线通讯技术, 尤其涉及一种天线及使用该天线的无线终端。 背景技术
天线是能够接收和发射电磁波的装置, 天线设计对无线终端产品如手机、 导航仪、 PDA, 笔记本电脑等等至关重要, 直接影响到这些产品的无线收发性 能。 方向图是描述天线辐射增益随方位角变化的一项指标。上半球比例是描述 方向图的一个参数, 假设在三维坐标系中, 天线方向图是以 (0, 0, 0 ) 为球 心的不规则图形。 在 XOY面以上(+Z方向) 区域, 天线辐射(或者接收)能 量占天线整体辐射(或者接收) 能量的比值即为上半球比例。
现有技术中, 以手机中 GPS天线布局方案为例, 天线置于手机背面左上 角, 馈点相对靠下设置。 天线主体在尺寸上都是四分之一个波长, 属于非平衡 天线, 能量辐射的主体仍旧是终端产品的主板, 天线辐射将有艮大部分在主板 下方, 即方向图下倾。 当 PCB (印刷电路板)上面有合适的净空, 现有技术 中的天线设计能够实现较好的空间效率(-2.5~-3dBi ), 但上半球比例最好也只 能做到 40%。
由于终端设备体积小, 天线设计复杂, 往往艮难实现天线辐射的定向性, 而 GPS天线的上半球性能、 天线性能调试均对天线的定向辐射提出了紧迫的 需求, 如何在较小空间内实现较好自由空间效率, 提高上半球比例, 将方向图 调节至目标方向图, 是亟待解决的问题。 发明内容
本发明提供一种天线及使用该天线的无线终端,天线能够实现较好的自由 空间效率, 且能方便地实现目标方向图, 提高天线辐射的定向性。
一方面, 提供了一种天线, 其特征在于, 包括辐射主体及馈电单元, 所述 辐射主体与所述馈电单元之间耦合馈电;
所述辐射主体包括相互连接的辐射部及馈入部; 所述辐射部为条状, 所述 馈入部连接在所述辐射部的一端; 所述馈入部具有馈入边缘; 所述馈电单元具 有馈电边缘; 所述馈入边缘与所述馈电边缘之间设有间隙, 以使所述馈入部与 所述馈电单元耦合馈电; 所述馈入边缘与所述馈电边缘形状相配合,且所述馈 入边缘与所述馈电边缘均呈蜿蜒状弯折延伸。
在第一种可能的实现方式中, 所述馈入部上具有至少一个馈入凸起, 所述 馈入部上具有所述馈入凸起的边缘形成所述馈入边缘;所述馈电单元上设有与 所述馈入凸起一对一配合的馈电槽, 所述馈入凸起位于所述馈电槽中, 所述馈 电边缘形成于所述馈电单元上设有所述馈电槽的边缘。
结合第一种可能的实现方式, 在第二种可能的实现方式中, 所述馈电单元 上与所述馈入凸起相对的边缘设有馈电凸起, 所述馈电凸起为至少两个,相邻 两个所述馈电凸起之间形成一所述馈电槽。
在第三种可能的实现方式中, 所述馈电单元具有条形槽, 所述条形槽在长 度方向的一端开口、 另一端闭合; 所述馈入部为条形, 所述馈入部由条形槽的 开口端延伸至所述条形槽中; 所述馈电边缘包括所述条形槽中呈 U形的槽内 壁; 所述馈入边缘包括延伸至所述条形槽内的馈入部的边缘。
结合第三种可能的实现方式, 在第四种可能的实现方式中, 所述馈电单元 包括馈电主体及馈电臂, 所述馈电臂连接至馈电主体; 所述馈电臂弯折成 U 形,其内腔形成所述条形槽;所述馈入部为直条形,其完全位于所述条形槽中, 所述馈入部与所述馈电臂耦合馈电。
结合第三种可能的实现方式, 在第五种可能的实现方式中, 所述馈电单元 包括馈电主体及馈电臂; 所述馈电臂为条形, 其一端与所述馈电主体连接; 所 述馈电臂沿所述馈电主体的一边缘延伸,所述馈电臂与所述馈电主体之间形成 所述条形槽;
馈入部弯折呈 u形, 其具有相互连接的第一馈入臂及第二馈入臂, 所述 第一馈入臂的端部连接至所述辐射部,所述第二馈入臂与所述第一馈入臂之间 形成馈入槽;
所述馈电臂延伸至所述馈入槽中,所述馈电臂同时与所述第一馈入臂及第 二馈入臂馈电耦合; 所述第二馈入臂延伸至所述条形槽中, 所述第二馈入臂同 时与所述馈电臂及所述馈电主体馈电耦合;
所述馈电边缘还包括所述馈电臂上远离所述馈电主体的另一侧边缘及所 述馈电臂的端部边缘;所述馈入边缘还包括所述第一馈入臂上位于所述馈入槽 中的边缘。
在第六种可能的实现方式中,所述辐射部具有长度方向相对的第一端和第 二端; 所述馈入部通过连接部连接至辐射部; 所述连接部为条形, 其具有相对 的第一端和第二端; 所述连接部为弯折状, 所述连接部的第一端与所述辐射部 的第二端连接、所述连接部的第二端与所述馈入部连接, 所述连接部的第二端 相对其第一端靠近所述辐射部的第二端。
结合前述任一种实现方式,在第七种可能的实现方式中, 所述天线还包括 辅助辐射主体, 所述辅助辐射主体与所述馈电单元之间耦合馈电; 所述辅助辐 射主体包括相互连接的辅助辐射部及辅助馈入部, 所述辅助辐射部为条状, 所 述辅助馈入部与所述馈电单元之间馈电耦合;
所述辅助馈入部具有辅助馈入边缘, 所述馈电单元具有辅助馈电边缘; 所 述辅助馈入边缘与所述辅助馈电边缘之间设有间隙,以使所述辅助馈入部与所 述馈电单元耦合馈电;
所述辅助馈入边缘与所述辅助馈电边缘均为条状; 或者,
所述辅助馈入边缘与所述辅助馈电边缘形状相吻合且弯折延伸。
结合第七种可能的实现方式, 在第八种可能的实现方式中, 所述辅助馈入 部上设有辅助馈入凸起,所述辅助馈入边缘形成于所述辅助馈入部上具有所述 辅助馈入凸起的边缘,所述馈电单元上设有与所述辅助馈入凸起一对一配合的 辅助馈电槽, 所述辅助馈入凸起位于所述辅助馈电槽中。
另一方面,提供了一种无线终端, 该无线终端具有前述任一种实现方式中 的天线。
根据本发明的天线及使用该天线的无线终端,天线同时具备电容耦合馈电 及电感耦合馈电两种馈电方式,馈入边缘与馈电边缘均呈蜿蜒状弯折延伸, 可 增强馈电单元的感性,在较小空间内实现较大长度的耦合, 改变馈入边缘或馈 电边缘的长度及折弯次数可调整耦合电感的大小;调整馈入边缘与馈电边缘之 间的间隙大小或者空间距离, 可调整耦合电容的大小; 通过调整耦合电感和耦 合电容的大小可以在带宽和效率中间取得平衡,同时还可以调整天线本体辐射 和终端产品主板辐射的占比, 进而使天线调整到目标方向图,提高天线辐射的 定向性, 且可以获得较好的自由空间效率。 附困说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施 例中所需要使用的附图作筒单地介绍,显而易见地, 下面描述中的附图仅仅是 本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的 前提下, 还可以根据这些附图获得其他的附图。
图 1是本发明第一实施方式提供的天线的示意图;
图 2是本发明第二实施方式提供的天线的示意图;
图 3是本发明第三实施方式提供的天线的示意图;
图 4是本发明第四实施方式提供的天线的示意图;
图 5是本发明第五实施方式提供的天线的示意图;
图 6是本发明第六实施方式提供的天线的示意图;
图 7是本发明第七实施方式提供的天线的示意图;
图 8是本发明第八实施方式提供的天线的示意图;
图 9是本发明第九实施方式提供的天线的示意图。 实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是 全部的实施例。基于本发明中的实施例, 本领域普通技术人员在没有作出创造 性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
本发明提供一种无线终端, 包括结构件及设置在结构件上的天线。 结构件 可以为 PCB、 FPC、 壳体等等。 此处, 无线终端的天线可设置在结构件上, 天 线可以与结构件为一体式结构, 天线亦可自身作为无线终端的结构件。
如图 1所示,在本发明第一实施方式中, 天线包括辐射主体 2及馈电单元 1。 辐射主体 2与馈电单元 1之间耦合馈电。
辐射主体 2包括相互连接的辐射部 21及馈入部 22。 辐射部 21为主要辐 射部分, 辐射部 21为条状。辐射部 21可以在结构件上沿无线终端的边缘延伸 设置, 能够较好地将能量辐射出去。 辐射部 21可以为直条状, 亦可弯折呈蛇 形、 U形或其他形状。 为了便于天线在终端设备上的布局, 可以利用终端设备 上的结构件(如金属框)的一部分作为辐射部 21 , 或者将辐射部 21通过与结 构件热熔在一起, 从而利于天线布局。
馈入部 22具有馈入边缘 20, 馈电单元 1具有馈电边缘 10。 馈入边缘 20 与馈电边缘 10之间设有间隙, 以使馈入部 22与馈电单元 1耦合馈电;馈入边 缘 20与馈电边缘 10形状相配合,馈入边缘 20与馈电边缘 10均呈蜿蜒状弯折 延伸, 可增强天线的感性, 在辐射主体 2与馈电单元 1之间存在等效电感。 馈 入边缘 20与馈电边缘 10弯折延伸在较小空间内实现较大长度的耦合,改变馈 入边缘或馈电边缘的长度及折弯次数,以调整馈入边缘 20与馈电边缘 10之间 的配合长度, 从而达到调整馈入部 22与馈电单元 1之间耦合电感的大小的目 的。另外辐射主体 2与馈电单元 1之间产生的等效电感加载可用于调试天线的 电长度。
馈入边缘 20与馈电边缘 10之间的间隙可使得辐射主体 2与馈电单元 1 之间存在电容,通过调整馈入边缘 20与馈电边缘 10之间的间隙大小, 可以调 整馈入部 22与馈电单元 1之间耦合电容的大小。 由于馈电单元 1与馈入部 22 可以不在同一面上, 改变二者的所在平面的空间距离, 亦可以改变馈入部 22 与馈电单元 1之间耦合电容的大小。
天线同时具备电容耦合馈电及电感耦合馈电两种馈电方式,可使得辐射主 体 2在尺寸上做到接近二分之一个波长,使得天线本体比终端产品主板占的辐 射比例更大。 辐射部 21沿终端设备的上边缘延伸走线, 天线辐射将有艮大部 分在终端设备主板的上方, 则可以有艮好的上半球比例和性能。
通过改变耦合馈电的电容及电感的大小,不仅可以在带宽和效率中间取得 平衡, 而且可以将辐射主体调试与耦合馈电方式相结合, 可以实现方向图的可 调。 电容及电感的大小改变后, 为得到某一谐振频率, 天线的辐射主体 2电长 度会因相应调整而不同, 辐射主体 2 电长度不同的天线上会有不同的电流分 布, 不同的电流分布能够实现不同的天线方向图, 因此可以通过改变电容及电 感的大小实现方向图的可调,从而改变对辐射主体 2与馈电单元 1进行结构微 调即可使天线较好地达到目标方向图, 提高天线辐射的定向性。 馈入部 22上具有至少一个馈入凸起 221 , 馈入边缘 20形成于馈入部 22 上具有馈入凸起 221的边缘, 利用馈入凸起 221使得馈入部 22的馈入边缘 20 呈蜿蜒状弯折延伸。 馈入部 22上可以设置一个馈入凸起 221 , 使馈入边缘 20 为往复折弯一次的蜿蜒状, 馈入部 22上也可以设有两个或两个以上馈入凸起 221 , 以使得馈入边缘 20为往复折弯多次的蜿蜒状, 以在较小空间内实现馈入 边缘 20长度较大范围的调整, 从而实现耦合电感较大范围的调整。
馈电单元 1上设有与馈入凸起一对一配合的馈电槽 110, 馈入凸起 221位 于馈电槽 110中, 馈电边缘 10形成于馈电单元 1上设有馈电槽 110的边缘。 本实施例中, 馈电单元 1上与所述馈入凸起 221相对的边缘上设有馈电凸起 11 , 馈电凸起 11为至少两个, 相邻两个馈电凸起 11之间形成一馈电槽 110。 更具体地, 馈电凸起 11为三个, 三个馈电凸起 11可形成两个馈电槽 110, 两 个馈入凸起 221分别设置在两个馈电槽 110中, 使得各馈电凸起 11位于相邻 两个馈电凸起 11之间。 馈电边缘 10形成于馈电单元 1上设有馈电凸起 11的 边缘上, 利用三个馈电凸起 11可使得馈电边缘 10为与馈入边缘 20形状相吻 合的蜿蜒弯折状。 此处, 作为另外的实施方式, 亦可直接在馈电单元 1上开设 馈电槽 110。
通过改变馈入凸起 221及馈电凸起 11的数目,可改变馈入部 22与馈电单 元 1之间的耦合电感大小, 方便使天线较好地实现目标方向图,提高天线辐射 的定向性。 本实施例中, 馈电单元 1 为方形片状, 馈入凸起 221及馈电凸起 11均为方形, 馈电凸起 11之间形成的馈电槽 110亦为方形, 使得馈电边缘 10 处及馈入边缘 20处均为城墙状,可通过对馈入凸起 221及馈电凸起 11突出的 高度进行裁剪, 从而改变馈入部 22与馈电单元 1之间的耦合电感大小, 从而 进一步方便天线的调试以快速使天线实现目标方向图, 提高天线辐射的定向 性。 此处, 作为另外的实施方式, 馈入凸起 221及馈电凸起 11亦可为弧形、 三角形、 梯形或其他形状。
辐射部 21在长度方向具有相对的第一端 21a和第二端 21b, 馈入部 22位 于辐射部 21的第二端 21 b处, 馈入部 22向远离所述辐射部 21的第一端 21a 的方向延伸形成开放式的辐射端 22a, 即辐射端 22a的延伸方向上无馈电单元 1的遮挡, 使得辐射端 22a处开放, 可以向终端设备外辐射信号, 辐射主体 2 的两端均可进行有效辐射, 从而有效提高天线的辐射性能。
馈入部 22通过连接部 23连接至辐射部 21。 连接部 23为条形, 其具有相 对的第一端和第二端。连接部 23为弯折状, 所述连接部 23的第一端与辐射部 21的第二端 21b连接, 连接部 23的第二端与馈入部 22连接, 连接部 23的第 二端相对其第一端靠近所述辐射部 21的第一端 21a, 以便馈入部 22向远离辐 射部 21的第一端 21a方向延伸, 而不会增大整个天线所占空间。 进一步, 馈 入部 22亦为条形, 其一端与连接部 23的第二端连接, 另一端形成所述辐射端 22a。 馈入部 22上相对远离辐射部 21的一侧边缘为所述馈入边缘 20。 此处, 作为另外的实施方式, 馈入部 22亦可直接连接于辐射部 21 , 连接部 23可以 是弯折状或条状等。
本实施例中, 馈电单元 1上设有用于接入馈源的馈点部 12、 及用于接地 的接地部 13。 利用馈点部 12可接入馈源, 利用接地部 13可实现馈电单元 1 的接地。 馈点部 12与接地部 13均为条状, 二者的延伸方向相同, 以便减小天 线整体占用空间的大小。 此处, 若无需将馈电单元 1接地, 则可以不设置接地 部 13, 如图 2所示, 本发明第二实施方式提供的天线。
如图 3所示, 在本发明第三实施方式提供的天线中, 天线包括辐射主体 2 及馈电单元 1。 辐射主体 2与馈电单元 1之间耦合馈电。
辐射主体 2包括相互连接的辐射部 21及馈入部 22。 辐射部 21为主要辐 射部分, 其结构与第一实施方式相同, 此处不再赘述。 馈入部 22具有馈入边 缘 20 , 馈电单元 1具有馈电边缘 10。 馈入边缘 20与馈电边缘 10之间设有间 隙, 以使馈入部 22与馈电单元 1耦合馈电; 馈入边缘 20与馈电边缘 10形状 相配合, 且二者均呈蜿蜒状弯折延伸。
具体地, 所述馈电单元 1具有条形槽 100, 条形槽 100在长度方向的一端 开口、 另一端闭合; 馈入部 22为条形, 馈入部 22由条形槽 100的开口端延伸 至条形槽 100中。 馈电边缘 10包括条形槽 100中呈 U形的槽内壁; 由于条形 槽 100的一端开口、 另一端闭合, 其两对的两内壁及封闭端的内壁形成 U形 的槽内壁, 所述馈入边缘 20包括延伸至条形槽 100内的馈入部 22的边缘。
更具体地, 馈电单元 1包括馈电主体 131及馈电臂 132, 馈电臂 132连接 至馈电主体 131。 馈电臂 132弯折成 U形, 其内腔形成所述条形槽 100。 馈电 臂 132的一端与馈电主体 131连接。 馈入部 22为直条形, 其完全位于条形槽 100中, 并与条形槽 100的槽内壁之间存在间隙, 使所述馈入部 22与馈电臂 132耦合馈电。 馈电臂 132的内侧边缘形成 U形的馈入边缘 20; 馈入部 22的 两侧长边缘及端部边缘形成 U形的馈电边缘 10,使得馈入边缘 20及馈电边缘 10均为 U形, 可在较小空间内实现较大长度的馈入边缘 20与馈电边缘 10的 配合, 从而利于改变二者的配合长度以调整馈入部 22与馈电单元 1之间的耦 合电感的大小, 提高天线辐射的定向性。
馈入部 22通过连接部 23连接至辐射部 21。 本实施例中, 连接部 23为条 形, 其具有相对的第一端和第二端。 连接部 23为弯折状, 其第一端与辐射部 21的第二端 21b连接, 第二端与馈入部 22连接, 连接部 23的第二端相对其 第一端靠近所述辐射部 21的第一端 21a, 以便馈入部 22的设置, 而不会增大 整个天线所占空间。
本实施例中, 馈电单元 1上设有用于接入馈源的馈点部 12、 及用于接地 的接地部 13。 利用馈点部 12可接入馈源, 利用接地部 13可实现馈电单元 1 的接地。 更具体地, 馈点部 12与接地部 13均设置在馈电主体 131上; 馈点部 12与接地部 13均为条状, 二者的延伸方向相同, 以便减小天线整体占用空间 的大小。 此处, 若无需将馈电单元 1接地, 则可以不设置接地部 13, 如图 4 所示, 本发明第四实施方式提供的天线。
如图 5所示, 本发明第五实施方式提供的天线, 天线包括辐射主体 2及馈 电单元 1。 辐射主体 2与馈电单元 1之间耦合馈电。
辐射主体 2包括相互连接的辐射部 21及馈入部 22。 辐射部 21为主要辐 射部分, 其结构与第一实施方式相同, 此处不再赘述。 馈入部 22通过连接部 23连接至辐射部 21 , 连接部 23的结构形状与前述实施方式相同, 此处不再赘 述。
馈入部 22具有馈入边缘 20, 馈电单元 1具有馈电边缘 10。 馈入边缘 20 与馈电边缘 10之间设有间隙, 以使馈入部 22与馈电单元 1耦合馈电;馈入边 缘 20与馈电边缘 10形状相配合且均呈蜿蜒状弯折延伸。
所述馈电单元 1具有条形槽 150, 条形槽 150在长度方向的一端开口、 另 一端闭合。更具体地,馈电单元 1包括馈电主体 151及馈电臂 152。馈电臂 152 为条形, 其一端与馈电主体 151连接,馈电臂 152沿馈电主体 151的一边缘延 伸, 馈电臂 152与馈电主体 151之间形成所述条形槽 150。
馈入部 22为条形, 馈入部 22由条形槽 150的开口端延伸至条形槽 150 中。 更具体地, 馈入部 22弯折呈 U形, 其具有相互连接的第一馈入臂 225a 及第二馈入臂 225b, 第一馈入臂 225a的端部连接至辐射部 21 , 第二馈入臂 225b与第一馈入臂 225a之间形成馈入槽 220。
馈电臂 152延伸至馈入槽 220中, 馈电臂 152同时与第一馈入臂 225a及 第二馈入臂 225b馈电耦合。 第二馈入臂 225b延伸至条形槽 150中, 第二馈入 臂 225b同时与馈电臂 152及馈电主体 152馈电耦合。所述馈电边缘 10包括条 形槽 150中呈 U形的槽内壁、 馈电臂 152上远离馈电主体 151的另一侧边缘 及馈电臂 152的端部边缘, 即整个馈电边缘 10弯折呈 S形; 所述馈入边缘 20 包括第二馈入臂 225b的两侧边缘与端部边缘(即延伸至条形槽 150内的馈入 部 22边缘)、 及第一馈入臂 225a上位于馈入槽 220中的边缘, 即整个馈入边 缘 20亦呈弯折呈 S形。
馈电臂 152同时与第一馈入臂 225a及第二馈入臂 225b馈电耦合,第二馈 入臂 225b同时与馈电臂 152及馈电主体 152馈电耦合, 以节省空间, 可在较 小空间内实现较大长度的馈入边缘 20与馈电边缘 10的配合,从而利于调整馈 入部 22与馈电单元 1之间的耦合电感的大小。
本实施例中, 馈电单元 1上设有用于接入馈源的馈点部 12、 及用于接地 的接地部 13。 利用馈点部 12可接入馈源, 利用接地部 13可实现馈电单元 1 的接地, 实现天线的小型化。 更具体地, 馈点部 12与接地部 13均设置在馈电 主体 131上; 馈点部 12与接地部 13均为条状, 二者的延伸方向相同, 以便减 小天线整体占用空间的大小。 此处, 若无需将馈电单元 1接地, 则可以不设置 接地部 13 , 如图 6所示, 本发明第六实施方式提供的天线。
如图 7所示,在本发明第七实施方式提供的天线中,天线包括辐射主体 2、 辅助辐射主体 3及馈电单元 1。 辐射主体 2与馈电单元 1之间耦合馈电, 辐射 主体 2的结构,及辐射主体 2与馈电单元 1之间的耦合结构, 可与前述第五实 施方式相同,在此不再赘述; 当然,在其他的实施方式中,辐射主体 2的结构, 及辐射主体 2与馈电单元 1之间的耦合结构,也可以前述的第一实施方式或者 第三实施方式相同。
辅助辐射主体 3与馈电单元 1之间耦合馈电,利用辅助辐射主体 3可进一 步提高天线辐射的定向性, 实现方向图的定向可调。
辅助辐射主体 3包括相互连接的辅助辐射部 31及辅助馈入部 32。 辅助辐 射部 31为条状, 用于进行信号辐射。辅助馈入部 32与馈电单元 1之间馈电耦 合。辅助馈入部 32具有辅助馈入边缘 30,馈电单元 1具有辅助馈电边缘 130。 辅助馈入边缘 30与辅助馈电边缘 130之间设有间隙,以使辅助馈入部 32与馈 电单元 1耦合馈电。 进一步,辅助馈入边缘 30与辅助馈电边缘 130均为条状, 以便二者之间的对应配合。 本实施例中, 辅助馈入部 32为条状, 其靠近馈电 单元 1的一侧长边缘形成所述辅助馈入边缘 30, 通过调整辅助馈入部 32的长 度, 即可调整辅助馈入边缘 30的长度, 以调整辅助馈入边缘 30与辅助馈电单 元 1之间的耦合馈电长度,从而调整辅助辐射主体 3与馈电单元 1之间的耦合 电感大小; 通过调整辅助馈入边缘 30与辅助馈电边缘 130之间的间隙大小, 可以调整辅助馈入部 32与馈电单元 1之间耦合电容的大小, 实现方向图的可 调。
本实施例中, 馈电单元 1上设有用于接入馈源的馈点部 12、 及用于接地 的接地部 13。 利用馈点部 12可接入馈源, 利用接地部 13可实现馈电单元 1 的接地, 实现天线的小型化。 更具体地, 馈点部 12与接地部 13均设置在馈电 主体 131上; 馈点部 12与接地部 13均为条状, 二者的延伸方向相同, 以便减 小天线整体占用空间的大小。 此处, 若无需将馈电单元 1接地, 则可以不设置 接地部 13 , 如图 8所示, 本发明第八实施方式提供的天线。
如图 9所示,在本发明第九实施方式提供的天线中,天线包括辐射主体 2、 辅助辐射主体 3及馈电单元 1。 辐射主体 2与馈电单元 1之间耦合馈电, 辐射 主体 2的结构,及辐射主体 2与馈电单元 1之间的耦合结构, 可与前述第一实 施方式相同,在此不再赘述; 当然,在其他的实施方式中,辐射主体 2的结构, 及辐射主体 2与馈电单元 1之间的耦合结构,也可以前述的第三实施方式或者 第五实施方式相同。
辅助辐射主体 3与馈电单元 1之间耦合馈电,利用辅助辐射主体 3可进一 步提高天线辐射的定向性。 辅助辐射主体 3包括相互连接的辅助辐射部 31及 辅助馈入部 32。 辅助辐射部 31 为条状, 用于进行信号辐射。 辅助馈入部 32 与馈电单元 1之间馈电耦合。 辅助馈入部 32具有辅助馈入边缘 30, 馈电单元 1具有辅助馈电边缘 130。辅助馈入边缘 30与辅助馈电边缘 130之间设有间隙, 以使辅助馈入部 32与馈电单元 1耦合馈电。进一步,辅助馈入边缘 30与辅助 馈电边缘 130形状相吻合且弯折延伸, 可增强天线的感性,在较小空间内改变 辅助馈入边缘 30的长度,以调整辅助馈入边缘 30与辅助馈电边缘 130之间的 配合长度, 从而达到调整辅助馈入部 32与馈电单元 1之间耦合电感的大小的 目的。
本实施例中, 辅助馈入部 32上设有辅助馈入凸起 321 , 辅助馈入边缘 30 形成于辅助馈入部 32上具有辅助馈入凸起 321的边缘,利用辅助馈入凸起 321 使得辅助馈入部 32的辅助馈入边缘 30呈弯折状。 辅助馈入部 32上可以设有 两个或两个以上凸起, 以使得辅助馈入边缘 30往复折弯呈蜿蜒状, 以在较小 空间内实现辅助馈入边缘 30长度较大范围的调整, 从而实现耦合电感较大范 围的调整。
馈电单元 1上设有与辅助馈入凸起 321一对一配合的辅助馈电槽 113 , 辅 助馈入凸起 321位于辅助馈电槽 113中。通过改变辅助馈入凸起 321及辅助馈 电电槽 113的数目,可改变辅助馈入部 32与馈电单元 1之间的耦合电感大小, 方便天线的调试。本实施例中,辅助馈入凸起 321及辅助馈电槽 113均为方形, 以便于加工制备, 同时可便于调整辅助馈入凸起 321突出的高度,从而利于调 整电感的大小。
本实施方式中, 利用辅助馈入凸起 321与辅助馈电槽 113的配合, 可使得 辅助馈入边缘 30及辅助馈电边缘往复折弯呈蜿蜒状, 从而在较 d、空间内实现 较大范围的电感调节, 方便调整方向图。 此处, 作为另外的实施方式, 辅助馈 入部与馈电单元之间亦可采用第三实施方式或第五实施方式中馈入部与馈电 单元的耦合馈电结构, 辅助馈入边缘及辅助馈电边缘呈迂回状的 U形延伸或 者 S形延伸, 同样可以在较小空间内实现较大范围的电感调节。
在上述实施方式中, 辐射主体 2与馈电单元 1之间为耦合馈电,二者为分 离式结构,使得二者的材质及实现工艺可以相同亦可不同, 可便于天线的加工 制备,利于天线与结构件的配合连接,以有效利用结构件的结构空间设置天线, 从而减小天线占用空间。 例如, 辐射主体 2采用模具沖压件(Stamping, 比如 使用模具沖压不锈钢、铜等形成的金属器件)与结构件热熔在一起, 馈电单元 为 FPC (柔性电路板)与结构件贴合连接; 辐射主体与馈电单元可采用 LDS ( Laser-Direct-structuring, 激光直接成型技术)等工艺力口工。
辐射主体 2与馈电单元 1之间为耦合馈电的分离式结构,使得二者可以设 置在同一平面上亦可不在同一平面上, 例如辐射主体 2设置在结构件内侧,馈 电单元设置在结构件外侧, 或者相反, 等等, 均在本发明的保护范围内。
本发明所述的 "馈入边缘与馈电边缘均呈蜿蜒状弯折延伸", 在上述实施 方式中, 列举了馈入边缘与馈电边缘弯折成城墙状、 U形、 S形等, 均属于蜿 蜒状的范围内, 需要进一步说明的是, 本发明所指的蜿蜒状还包括以下折弯方 式, 馈入边缘(馈电边缘)先朝第一方向延伸, 再折弯沿第二方向延伸, 再折 弯沿第一方向延伸……依次类推, 第一方向与第二方向之间存在夹角或者相 反, 即馈入边缘与馈电边缘弯折呈锯齿形、 波浪形等等, 均在本发明所述蜿蜒 状的范围内。
本发明所述的 "所述馈入边缘与所述馈电边缘形成相配合"是指馈入边缘 与馈电边缘二者的形状基本符合, 两边缘均为城墙状、 或都是锯齿状、 或都是 波浪形, 以在馈入边缘与馈电边缘之间形成宽度较为均匀的间隙。
最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对其限 制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的普通技术人员 应当理解: 其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其 中部分技术特征进行等同替换; 而这些修改或者替换, 并不使相应技术方案的 本质脱离本发明各实施例技术方案的精神和范围。

Claims

权 利 要 求
1、 一种天线, 其特征在于, 包括辐射主体及馈电单元, 所述辐射主体与 所述馈电单元之间耦合馈电;
所述辐射主体包括相互连接的辐射部及馈入部; 所述辐射部为条状, 所述 馈入部连接在所述辐射部的一端; 所述馈入部具有馈入边缘; 所述馈电单元具 有馈电边缘; 所述馈入边缘与所述馈电边缘之间设有间隙, 以使所述馈入部与 所述馈电单元耦合馈电; 所述馈入边缘与所述馈电边缘形状相配合,且所述馈 入边缘与所述馈电边缘均呈蜿蜒状弯折延伸。
2、 如权利要求 1所述的天线, 其特征在于, 所述馈入部上具有至少一个 馈入凸起, 所述馈入部上具有所述馈入凸起的边缘形成所述馈入边缘; 所述馈 电单元上设有与所述馈入凸起一对一配合的馈电槽,所述馈入凸起位于所述馈 电槽中, 所述馈电边缘形成于所述馈电单元上设有所述馈电槽的边缘。
3、 如权利要求 2所述的天线, 其特征在于, 所述馈电单元上与所述馈入 凸起相对的边缘设有馈电凸起, 所述馈电凸起为至少两个,相邻两个所述馈电 凸起之间形成一所述馈电槽。
4、 如权利要求 1所述的天线, 其特征在于, 所述馈电单元具有条形槽, 所述条形槽在长度方向的一端开口、 另一端闭合; 所述馈入部为条形, 所述馈 入部由条形槽的开口端延伸至所述条形槽中;所述馈电边缘包括所述条形槽中 呈 U形的槽内壁; 所述馈入边缘包括延伸至所述条形槽内的馈入部的边缘。
5、 如权利要求 4所述的天线, 其特征在于, 所述馈电单元包括馈电主体 及馈电臂, 所述馈电臂连接至馈电主体; 所述馈电臂弯折成 U形, 其内腔形 成所述条形槽; 所述馈入部为直条形, 其完全位于所述条形槽中, 所述馈入部 与所述馈电臂耦合馈电。
6、 如权利要求 4所述的天线, 其特征在于, 所述馈电单元包括馈电主体 及馈电臂; 所述馈电臂为条形, 其一端与所述馈电主体连接; 所述馈电臂沿所 述馈电主体的一边缘延伸, 所述馈电臂与所述馈电主体之间形成所述条形槽; 馈入部弯折呈 U形, 其具有相互连接的第一馈入臂及第二馈入臂, 所述 第一馈入臂的端部连接至所述辐射部,所述第二馈入臂与所述第一馈入臂之间 形成馈入槽;
所述馈电臂延伸至所述馈入槽中,所述馈电臂同时与所述第一馈入臂及第 二馈入臂馈电耦合; 所述第二馈入臂延伸至所述条形槽中, 所述第二馈入臂同 时与所述馈电臂及所述馈电主体馈电耦合;
所述馈电边缘还包括所述馈电臂上远离所述馈电主体的另一侧边缘及所 述馈电臂的端部边缘;所述馈入边缘还包括所述第一馈入臂上位于所述馈入槽 中的边缘。
7、 如权利要求 1所述的天线, 其特征在于, 所述辐射部在长度方向具有 相对的第一端和第二端; 所述馈入部通过连接部连接至辐射部; 所述连接部为 条形, 其具有相对的第一端和第二端; 所述连接部为弯折状, 所述连接部的第 一端与所述辐射部的第二端连接、所述连接部的第二端与所述馈入部连接, 所 述连接部的第二端相对其第一端靠近所述辐射部的第一端。
8、 如权利要求 1至 7任一项所述的天线, 其特征在于, 所述天线还包括 辅助辐射主体, 所述辅助辐射主体与所述馈电单元之间耦合馈电; 所述辅助辐 射主体包括相互连接的辅助辐射部及辅助馈入部, 所述辅助辐射部为条状, 所 述辅助馈入部与所述馈电单元之间耦合馈电;
所述辅助馈入部具有辅助馈入边缘, 所述馈电单元具有辅助馈电边缘; 所 述辅助馈入边缘与所述辅助馈电边缘之间设有间隙,以使所述辅助馈入部与所 述馈电单元耦合馈电;
所述辅助馈入边缘与所述辅助馈电边缘均为条状; 或者,
所述辅助馈入边缘与所述辅助馈电边缘形状相吻合且弯折延伸。
9、 如权利要求 8所述的天线, 其特征在于, 所述辅助馈入部上设有辅助 馈入凸起,所述辅助馈入边缘形成于所述辅助馈入部上具有所述辅助馈入凸起 的边缘, 所述馈电单元上设有与所述辅助馈入凸起一对一配合的辅助馈电槽, 所述辅助馈入凸起位于所述辅助馈电槽中。
10、 一种无线终端, 其特征在于, 所述无线终端具有权利要求 1至 10任 一项所述的天线。
PCT/CN2014/072309 2014-02-20 2014-02-20 天线及使用该天线的无线终端 WO2015123839A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/072309 WO2015123839A1 (zh) 2014-02-20 2014-02-20 天线及使用该天线的无线终端

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/072309 WO2015123839A1 (zh) 2014-02-20 2014-02-20 天线及使用该天线的无线终端

Publications (1)

Publication Number Publication Date
WO2015123839A1 true WO2015123839A1 (zh) 2015-08-27

Family

ID=53877526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/072309 WO2015123839A1 (zh) 2014-02-20 2014-02-20 天线及使用该天线的无线终端

Country Status (1)

Country Link
WO (1) WO2015123839A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI671948B (zh) * 2017-12-25 2019-09-11 廣達電腦股份有限公司 行動裝置
CN110838612A (zh) * 2018-08-17 2020-02-25 深圳富泰宏精密工业有限公司 天线结构及具有该天线结构的无线通信装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1322392A (zh) * 1999-09-30 2001-11-14 株式会社村田制作所 表面安装型天线和包括它的通信装置
WO2009146282A1 (en) * 2008-05-29 2009-12-03 Motorola, Inc. Self-resonating antenna
CN101904050A (zh) * 2007-12-21 2010-12-01 Tdk株式会社 天线装置及使用该天线装置的无线通信机

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1322392A (zh) * 1999-09-30 2001-11-14 株式会社村田制作所 表面安装型天线和包括它的通信装置
CN101904050A (zh) * 2007-12-21 2010-12-01 Tdk株式会社 天线装置及使用该天线装置的无线通信机
WO2009146282A1 (en) * 2008-05-29 2009-12-03 Motorola, Inc. Self-resonating antenna

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI671948B (zh) * 2017-12-25 2019-09-11 廣達電腦股份有限公司 行動裝置
CN110838612A (zh) * 2018-08-17 2020-02-25 深圳富泰宏精密工业有限公司 天线结构及具有该天线结构的无线通信装置

Similar Documents

Publication Publication Date Title
JP5284491B2 (ja) ハーフループチップアンテナ及び関連する方法
US20160181701A1 (en) Antenna having a reflector for improved efficiency, gain, and directivity
TWM529948U (zh) 通訊裝置
TW201511406A (zh) 寬頻天線
EP2833475B1 (en) Dipole antenna
CN104183912A (zh) 一种基于超材料单元的小型化双频带单极子天线
WO2015123839A1 (zh) 天线及使用该天线的无线终端
TW201126812A (en) Dipole antenna
TW201719967A (zh) 行動通訊裝置
TWM499663U (zh) 偶極天線
CN102456951B (zh) 一种基站天线
CN106505307B (zh) 一种移动设备的天线及应用该天线的移动设备
TW201417399A (zh) 寬頻天線及具有該寬頻天線的可攜帶型電子裝置
TWM463913U (zh) 天線結構
JP6221937B2 (ja) アンテナ装置
CN206834329U (zh) 一种应用于智能终端的小型化蓝牙天线组件
TW201304271A (zh) 天線
CN102163764A (zh) 小型立体天线
CN104425886A (zh) 天线装置及无线收发器
CN212968043U (zh) 同心半圆环wlan微带天线、无线传感器天线及无线通信设备
CN110867655B (zh) 一种高前后比定向天线
CN109346822B (zh) 一种双辐射臂wifi天线
TWI464965B (zh) 小型立體天線
EP3827474B1 (en) Antenna and wireless communication device
TWI492452B (zh) 耦合饋入式迴圈天線

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14882830

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14882830

Country of ref document: EP

Kind code of ref document: A1