WO2009081761A1 - プラズマソース機構及び成膜装置 - Google Patents
プラズマソース機構及び成膜装置 Download PDFInfo
- Publication number
- WO2009081761A1 WO2009081761A1 PCT/JP2008/072614 JP2008072614W WO2009081761A1 WO 2009081761 A1 WO2009081761 A1 WO 2009081761A1 JP 2008072614 W JP2008072614 W JP 2008072614W WO 2009081761 A1 WO2009081761 A1 WO 2009081761A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- antenna
- vacuum chamber
- film
- film formation
- plasma source
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/46—Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/56—Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
- C23C14/568—Transferring the substrates through a series of coating stations
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/58—After-treatment
- C23C14/5826—Treatment with charged particles
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32082—Radio frequency generated discharge
- H01J37/321—Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/3266—Magnetic control means
Definitions
- the present invention relates to a plasma source for processing a thin film using plasma in a vacuum and a film forming technique using the plasma source.
- ICP inductively coupled plasma
- various shapes of ICP have been proposed (for example, see Patent Documents 1 and 2).
- it has been demanded to perform ICP discharge on a large area but in order to ensure large area ICP discharge, the L (inductance) component of the antenna becomes too large and matching cannot be achieved. May not be applied.
- the present invention has been made in order to solve the problems of the conventional technology, and the object of the present invention is to generate a large-area plasma with good reproducibility, and thereby applicable to a wide range of applications. Another object of the present invention is to provide a plasma processing technique and a film forming technique using an inexpensive plasma source.
- the present invention made to achieve the above object is a plasma source mechanism applicable to a vacuum apparatus having a vacuum chamber, and is disposed outside the vacuum chamber via a dielectric part, and is a linear antenna body.
- a ring-shaped antenna unit that can apply high-frequency power, and a magnet unit that is disposed in the vicinity of the antenna unit on the outside of the vacuum chamber via the dielectric unit and has a shape corresponding to the antenna unit.
- the antenna unit includes a plurality of antenna coils arranged adjacent to each other, and the antenna coils are connected in parallel.
- the present invention is the above invention, wherein the antenna portion and the magnet portion are formed in a rectangular shape. In the present invention according to the present invention, each antenna coil of the antenna section is configured by one turn.
- the present invention is a film forming apparatus comprising a vacuum chamber and a film forming source provided inside the vacuum chamber, wherein one of the plasma source mechanisms described above is provided outside the vacuum chamber. is there.
- the present invention also provides a vacuum chamber, a film formation region for forming a plurality of films on a film formation target by magnetron sputtering, a vacuum chamber, the vacuum chamber, A plasma processing region for performing plasma processing on the film on the film object by any one of the plasma source mechanisms described above, and provided in the vacuum chamber, is rotatable while supporting the film formation object, A rotation support mechanism configured to allow the film formation target to pass through the plurality of film formation regions and the plasma processing region with rotation, and while rotating the rotation support mechanism in the vacuum chamber, A predetermined film is formed on the film formation target in the film formation region, and plasma processing is performed on the film on the film formation target in the plasma processing region.
- membrane device That.
- the antenna portion has a linear antenna body portion, for example, a plurality of rectangular annular antenna coils are arranged adjacent to each other in close proximity, the L component of the antenna portion is reduced compared to the prior art. As a result, it is possible to reliably generate a large area ICP discharge even with a high frequency power of 13.56 MHz that is normally used. Therefore, according to the present invention, it can be applied to various vacuum processing apparatuses that perform plasma processing over a large area, and versatility can be expanded.
- the magnet portion having a shape corresponding to the antenna portion is disposed in the vicinity of the antenna portion (for example, the vacuum chamber side) via the dielectric portion outside the vacuum chamber,
- the plasma can be reliably excited in the tank, and as a result, the discharge sustaining pressure can be ensured to a low pressure equivalent to that of the prior art (for example, ECR plasma source), thereby obtaining a high-density plasma.
- the prior art for example, ECR plasma source
- the present invention in various vacuum processing apparatuses (for example, a rotary drum type apparatus, a vacuum apparatus for processing a large area substrate, etc.) that have been difficult to apply due to the problem of the effective area in the prior art, It can be used as a plasma source in various processes such as oxidation, nitridation, ashing, etching, and surface modification of a film formation target.
- the plasma source mechanism according to the present invention is a so-called digital sputtering film forming apparatus as described below for repeatedly performing a process of forming a metal thin film on a substrate by sputtering, for example, and oxidizing the metal thin film. It can be used as a plasma processing source (oxidation source).
- This film forming apparatus includes a film forming region in which a plurality of films are formed on a film forming object by magnetron sputtering in a vacuum chamber, and a plasma treatment by the plasma source mechanism of the present invention for the film on the film forming object.
- the plasma processing region for performing the rotation and the rotation that is configured to be able to rotate while supporting the film formation target, so that the film formation target passes through the plurality of film formation regions and the plasma processing region with the rotation.
- a mixed film of a metal and an oxide can be efficiently formed with a good film quality.
- a high-density and large-area plasma can be generated with good reproducibility, thereby providing an inexpensive plasma source and vacuum processing apparatus that can be applied to a wide range of applications.
- FIG. 1 A cross-sectional view taken along line AA of FIG. 1 (a), and the plasma source mechanism attached to a vacuum chamber Of cross-sectional configuration and use state of Schematic showing the circuit configuration of the plasma source mechanism Schematic showing a modification of the circuit configuration of the plasma source mechanism
- the top view which shows the external appearance structure of the modification of the plasma source mechanism (A): Front view showing an embodiment of a film forming apparatus using a plasma source mechanism according to the present invention (b): Plan view of the film forming apparatus
- SYMBOLS 1 Plasma source mechanism 10 ... Dielectric part 11 ... Magnet part 12 ... Antenna part 13 ... Permanent magnet 14 ... 1st antenna coil 15 ... 2nd antenna coil 14a, 15a ... Long side main-body part (antenna main-body part) 14b 15b ... short side body (antenna body) 16 ... high frequency power supply 20 ... vacuum chamber 21 ... vacuum device 22 ... processing object
- FIG. 1A is a plan view showing an external configuration of an embodiment of a plasma source mechanism according to the present invention
- FIG. 1B is a cross-sectional view taken along the line AA in FIG. It is a figure which shows the cross-sectional structure and use condition of the plasma source mechanism attached to the tank.
- FIG. 2 is a schematic diagram showing a circuit configuration of the plasma source mechanism of the present embodiment.
- the plasma source mechanism 1 of the present embodiment is applied to a vacuum device 21 having a vacuum chamber 20, and an outer wall surface (for example, a top surface) of the vacuum chamber 20 is used. ) 20a.
- the vacuum chamber 20 of the vacuum device 21 is connected to a vacuum exhaust system (not shown) and to a processing gas source (not shown).
- a processing object 22 to be subjected to plasma processing by the plasma source mechanism 1 is arranged on, for example, a susceptor 23.
- a film forming source such as a sputtering target capable of applying a predetermined voltage can be provided in the vacuum chamber 20 (not shown).
- a film forming tank (not shown) for performing sputtering or the like can be connected to the vacuum tank 20 via a gate valve so that the processing object 22 can be delivered in a vacuum atmosphere.
- the plasma source mechanism 1 of the present embodiment includes a dielectric portion 10 attached on the outer wall surface 20a of the vacuum chamber 20, a magnet portion 11 provided on the dielectric portion 10, and a magnet portion 11 on the magnet portion 11.
- the antenna portion 12 is provided.
- the dielectric portion 10 is made of, for example, plate-like quartz having a predetermined thickness, and is formed in a rectangular shape in the present embodiment.
- the magnet unit 11 is configured using, for example, a large number of permanent magnets 13 and is arranged in a ring shape at a predetermined interval on the peripheral portion of the surface of the dielectric unit 10 opposite to the vacuum chamber 20.
- the annular antenna part which consists of the 1st and 2nd antenna coils 14 and 15 so that it may correspond with the shape of the magnet part 11 on the magnet part 11 comprised in this way. 12 is provided.
- the 1st and 2nd antenna coils 14 and 15 are the same rectangle which has long side main-body part (antenna main-body part) 14a, 15a and short side main-body part (antenna main-body part) 14b, 15b of the same length. They are formed in a (rectangular) shape and are arranged close to each other so as to overlap each other.
- the first and second antenna coils 14 and 15 are arranged so that each part is located at the center part in the width direction of the magnet part 11.
- the first and second antenna coils 14 and 15 are connected to a high-frequency power supply 16 as described below, and are configured to receive high-frequency power (for example, a frequency of 13.56 MHz).
- the first and second antenna coils 14 and 15 are composed of one-turn winding coils, and one terminal side is grounded. Has been. The other terminal sides of the first and second antenna coils 14 and 15 are connected in parallel to the high-frequency power supply 16 via a matching box 17 having a matching circuit 17a and a tune circuit 17b, respectively.
- the plasma excited by the power application causes the magnet unit 11 located in the vacuum chamber 20.
- the magnetic poles of the magnet unit 11 are set so as to be unevenly distributed near the processing object 22 inside the vacuum chamber 20 by the magnetic field.
- the antenna unit 12 has a rectangular annular first and second antenna coils 14 and 15 each having a linear antenna main body, and is disposed adjacent to each other.
- the L component of the antenna unit 12 can be reduced, and as a result, a large-area ICP discharge can be generated even with a normally used high frequency power of 13.56 MHz. Therefore, according to this Embodiment, it can apply to the various vacuum processing apparatuses which perform a plasma process of a large area, and can expand versatility.
- the magnet unit 11 having a shape corresponding to the antenna unit 12 is arranged on the vacuum chamber 20 side near the antenna unit 12 via the dielectric unit 10 outside the vacuum chamber 20, Since the plasma is surely generated in the vacuum chamber 20, the discharge maintaining pressure can be ensured to a low pressure equivalent to that of the prior art (for example, ECR plasma source), thereby obtaining a high-density plasma. be able to.
- the present invention is not limited to the above-described embodiment, and various changes can be made.
- the case where two antenna coils are provided as the antenna unit has been described as an example.
- the present invention is not limited to this, and, for example, as shown in FIG. It is also possible to arrange the coils 14, 15, 18. According to such a configuration, if the number of turns is increased while the L component of the antenna unit is kept small, the same effect can be obtained, so that a stronger magnetic field can be formed. Therefore, matching is not lost even if the plasma density is increased, so that stable discharge can be obtained.
- the present invention is not limited to this, for example, as shown in FIG.
- the linear long side main body portions 14a and 15a and the short side main body portions 14b and 15b are formed, and the corner portions 14c (15c) are formed in a round shape to constitute the antenna coil. It is also possible. According to such a configuration, the magnetic field becomes gentle even at the corners, and a uniform plasma is formed in the same manner as in the straight part, and a uniform plasma treatment (oxidation reaction when oxidizing gas is introduced) is performed on a large-area substrate. it can.
- FIGS. 5 (a) and 5 (b) show an embodiment of a film forming apparatus using a plasma source mechanism according to the present invention.
- FIG. 5 (a) is a front view
- FIG. 5 (b) is a plan view. is there.
- the film forming apparatus 51 of the present embodiment has, for example, a polygonal cylindrical vacuum processing tank 52 connected to a vacuum exhaust system (not shown).
- a polygonal cylindrical rotation support drum (rotation support mechanism) 53 is provided concentrically with respect to the vacuum processing tank 52 at the central portion in the vacuum processing tank 52.
- the rotation support drum 53 is configured to rotate, for example, in the clockwise direction around the rotation axis O.
- a plurality of substrate holders 54 for holding a substrate 55 as a film formation target are detachably supported on a side surface portion of the rotation support drum 53.
- partition plates 56a to 56d are provided in the vacuum processing tank 52, and the space around the rotation support drum 53 in the vacuum processing tank 52 is divided into four regions by these partition plates 56a to 56d. .
- these four regions are constituted by a first film formation region 57, a preliminary region 58, a second film formation region 59, and an oxidation region 60.
- the first film formation region 57 and the oxidation region 60 are disposed adjacent to each other in the clockwise direction in order.
- magnetron type sputtering cathodes 62 a and 62 b are provided at positions facing the substrate holder 54 that is supported by and passed through the side surface of the rotation support drum 53.
- metal targets 63a and 63b such as Ta are attached to the sputter cathodes 62a and 62b, respectively.
- a first AC power supply 64 is connected to the sputter cathodes 62a and 62b, and an AC voltage is applied from the first AC power supply 64 to the metal targets 63a and 63b via the sputter cathodes 62a and 62b.
- an inert gas introduction system 70 is connected to the first film formation region 57 of the vacuum processing tank 52, and an inert gas such as argon (Ar) gas is introduced into the first film formation region 57 during sputtering. It has come to introduce.
- magnetron-type sputter cathodes 65 a and 65 b are provided in the second film formation region 59 of the vacuum processing tank 52 at positions facing the substrate holder 54 that is supported and passed by the side surface of the rotation support drum 53. ing.
- semiconductor targets 66a and 66b such as Si are attached to the sputter cathodes 65a and 65b, respectively.
- the sputtering cathodes 65a and 65b are connected to a second AC power source 67, and are configured to apply an AC voltage from the second AC power source 67 to the semiconductor targets 66a and 66b via the sputtering cathodes 65a and 65b.
- the second film formation region 59 is connected to a second inert gas introduction system 71, and an inert gas such as argon gas is introduced into the second film formation region 59 during sputtering. ing.
- an oxidation source 69 by the plasma source mechanism according to the present invention described above is provided at a position facing the substrate holder 54 that passes therethrough.
- the oxidation region 60 is connected to an oxidation gas introduction system 72, and a film is formed by operating the oxidation source 69 while introducing, for example, oxygen (O 2 ) gas into the oxidation region 60 during sputtering. Oxygen plasma discharge is sometimes performed in the oxidation region 60.
- the inside of the vacuum processing tank 52 is evacuated until a predetermined pressure is reached, and then argon gas is introduced from the inert gas introduction system 70 into the first film formation region 57 and the second inert gas is introduced.
- Argon gas is introduced into the second film formation region 59 from the active gas introduction system 71, and oxygen gas is further introduced into the oxidation region 60 from the oxidation gas introduction system 72.
- an AC voltage is applied to the metal (Ta) targets 63a and 63b and the semiconductor (Si) targets 66a and 66b in a state where the rotation support drum 53 is rotated clockwise at a predetermined speed and a shutter (not shown) is closed. Then, pre-sputtering is performed, and the oxidation source 69 is operated to perform oxygen plasma discharge in the oxidation region 60.
- a Ta thin film of about 1 atom is formed on the substrate 55 passing through the first film formation region 57 by sputtering by opening the shutter while the rotation of the rotation support drum 53 is maintained. Further, in the second film formation region 59, a Si thin film of about 1 atom is formed on the passing substrate 55 by sputtering.
- the rotation speed of the rotation support drum 53 is not particularly limited, but from the viewpoint of forming a thin film of about 1 atom per rotation and securing a certain degree of productivity, the minute 50 to 200 rotations are preferable.
- the frequency of the AC voltage applied from the second AC power supply 67 is not particularly limited, but is preferably 20 to 100 kHz from the viewpoint of charge accumulation compensation by polarity inversion. Furthermore, in the oxidation region 60, the Si film on the substrate 55 that passes therethrough is oxidized by oxygen plasma to form a SiO 2 film. Thereafter, a Ta and SiO 2 mixed film is formed on the substrate 55 by repeating the above steps while rotating the rotary support drum 53.
- the Ta film is formed on the substrate 55 by performing magnetron sputtering while passing through the first film formation region 57 while rotating the rotary support drum 53, and further the second film formation.
- Si magnetron sputtering and oxidation are performed in the region 59 and the oxidation region 60 to form a SiO 2 film on the substrate 55, and these steps are continuously repeated to form a mixed film of Ta and SiO 2.
- the film formation time can be shortened as compared with the case of using the sintered body of 2 as a target and performing high-frequency sputtering without using a magnet.
- the present embodiment uses an oxidation source 69 that combines a plurality of rectangular antenna coils to which high-frequency power can be applied and a rectangular magnet portion corresponding to the antenna coils. Since the plasma can be confined in the rectangular region, there is an advantage that a uniform oxidation distribution can be obtained in the rectangular region.
- the composition ratio of Ta and SiO 2 in the mixed film is set.
- a mixed film having a desired resistance value distribution can be formed by arbitrarily controlling.
- the Si film is formed in the oxidation region 60 by an oxidation reaction using oxygen plasma. Since the SiO 2 film is formed on the substrate 55 by oxidation, the film formation rate can be improved without causing an oxidation reaction during sputtering. In addition, since the Si film is oxidized after the Si film is formed on the Ta film, the Ta film is hardly oxidized and the film quality can be improved.
- the rotation support mechanism a disc-like one can be used in addition to the drum-like one as in the above embodiment.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electromagnetism (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Analytical Chemistry (AREA)
- Physical Vapour Deposition (AREA)
- Plasma Technology (AREA)
- Drying Of Semiconductors (AREA)
Abstract
Description
近年、大面積領域に対してICP放電を行うことが要望されているが、大面積のICP放電を確保するためには、アンテナのL(インダクタンス)成分が大きくなり過ぎてマッチングが取れずに電力を印加できない場合がある。
その結果、従来技術では、プラズマ放電における再現性の低下等の問題があり、また、プラズマソースとして用途が限定されてしまうという問題もあった。
本発明は、前記発明において、前記アンテナ部及び磁石部が矩形状に形成されているものである。
本発明は、前記発明において、前記アンテナ部の各アンテナコイルが、1ターン巻で構成されているものである。
また、本発明は、真空槽と、前記真空槽の内部に設けられた成膜源とを備え、前記真空槽の外部に、前述のいずれかのプラズマソース機構が設けられている成膜装置である。
また、本発明は、真空槽と、前記真空槽内に設けられ、マグネトロンスパッタリングによって成膜対象物上に複数の膜を形成するための成膜領域と、前記真空槽内に設けられ、前記成膜対象物上の膜に対して前述のいずれかのプラズマソース機構によってプラズマ処理を行うプラズマ処理領域と、前記真空槽内に設けられ、前記成膜対象物を支持した状態で回転可能で、その回転に伴い当該成膜対象物が前記複数の成膜領域及び前記プラズマ処理領域を通過するように構成された回転支持機構とを備え、前記真空槽内において、前記回転支持機構を回転させつつ前記成膜領域にて前記成膜対象物上に所定の膜を形成し、かつ、前記プラズマ処理領域にて当該成膜対象物上の当該膜に対してプラズマ処理を行うように構成されている成膜装置である。
したがって、本発明によれば、大面積のプラズマ処理を行う種々の真空処理装置に適用することができ、汎用性を広げることができる。
図1(a)は、本発明に係るプラズマソース機構の実施の形態の外観構成を示す平面図であり、図1(b)は、図1(a)のA-A線断面図で、真空槽に取り付けられた同プラズマソース機構の断面構成及び使用状態を示す図である。
また、図2は、本実施の形態のプラズマソース機構の回路構成を示す概略図である。
磁石部11は、例えば多数の永久磁石13を用いて構成され、誘電体部10の真空槽20と反対側の面の周縁部上に所定の間隔をおいてリング状に配置されている。
ここで、第1及び第2のアンテナコイル14、15は、同じ長さの長辺本体部(アンテナ本体部)14a、15a及び短辺本体部(アンテナ本体部)14b、15bを有する同一の矩形(長方形)形状に形成され、それぞれが重なるように近接配置されている。
また、第1及び第2のアンテナコイル14、15は、以下に説明するように高周波電源16に接続され、それぞれ高周波電力(例えば周波数13.56MHz)が印加されるように構成されている。
したがって、本実施の形態によれば、大面積のプラズマ処理を行う種々の真空処理装置に適用することができ、汎用性を広げることができる。
例えば、上述の実施の形態では、アンテナ部として、アンテナコイルを二つ設けた場合を例にとって説明したが、本発明はこれに限られず、例えば、図3に示すように、三つ以上のアンテナコイル14、15、18…を並列接続で隣接配置することも可能である。このような構成によれば、アンテナ部のL成分を小さくしたままターン数を増やすと同等の効果があるので、より強い磁場を形成できる。そのため、プラズマ密度を上げてもマッチングが取れなくなることはなくなるので安定した放電が得られる。
図5(a)(b)に示すように、本実施の形態の成膜装置51は、図示しない真空排気系に接続された例えば多角形筒状の真空処理槽52を有している。
回転支持ドラム53の側面部には、成膜対象物である基板55を保持する複数の基板ホルダ54が着脱自在に支持されるようになっている。
本実施の形態の場合、これら4つの領域は、第一成膜領域57と、予備領域58と、第二成膜領域59と、酸化領域60とによって構成され、これらの領域57~60はこの順番で時計回り方向に隣接配置され、さらに、第一成膜領域57と酸化領域60とは互いに隣接して配置されている。
スパッタカソード62a、62bには、例えばTa等の金属ターゲット63a、63bがそれぞれ取り付けられている。
また、真空処理槽52の第一成膜領域57は不活性ガス導入系70が接続されており、スパッタリングの際に第一成膜領域57内に例えばアルゴン(Ar)ガス等の不活性ガスを導入するようになっている。
スパッタカソード65a、65bには、例えばSi等の半導体ターゲット66a、66bがそれぞれ取り付けられている。
また、第二成膜領域59は、第二不活性ガス導入系71が接続されており、スパッタリングの際に第二成膜領域59内に例えばアルゴンガス等の不活性ガスを導入するようになっている。
また、この酸化領域60は酸化ガス導入系72が接続されており、スパッタリングの際に酸化領域60内に例えば酸素(O2)ガスを導入しつつ、酸化源69を動作させることにより、成膜時に、酸化領域60内において酸素プラズマ放電を行うようになっている。
この場合には、まず、真空処理槽52内を所定の圧力になるまで真空排気を行い、その後、不活性ガス導入系70から第一成膜領域57にアルゴンガスを導入するとともに、第二不活性ガス導入系71から第二成膜領域59にアルゴンガスを導入し、さらに、酸化ガス導入系72から酸化領域60に酸素ガスを導入する。
さらに、第二成膜領域59において、通過する基板55上にスパッタリングによって1原子程度のSi薄膜を成膜する。
さらに、酸化領域60において、通過する基板55上のSi膜を酸素プラズマにより酸化してSiO2膜とする。
その後、回転支持ドラム53を回転させながら上述した各工程を繰り返すことにより、基板55上にTaとSiO2の混合膜を成膜する。
なお、本発明においては、回転支持機構として、上記実施の形態のようなドラム状のものの他、円板状のものを用いることも可能である。
Claims (5)
- 真空槽を有する真空装置に適用可能なプラズマソース機構であって、
前記真空槽の外側に誘電体部を介して配置され、直線状のアンテナ本体部を有する高周波電力を印加可能な環状のアンテナ部と、
前記真空槽の外側に前記誘電体部を介して前記アンテナ部の近傍に配置され、前記アンテナ部と対応する形状を有する磁石部とを有し、
前記アンテナ部が、複数のアンテナコイルが隣接して近接配置され、かつ、当該各アンテナコイルが並列に接続されているプラズマソース機構。 - 前記アンテナ部及び磁石部が矩形状に形成されている請求項1記載のプラズマソース機構。
- 前記アンテナ部の各アンテナコイルが、1ターン巻で構成されている請求項1記載のプラズマソース機構。
- 真空槽と、
前記真空槽の内部に設けられた成膜源とを備え、
前記真空槽の外部に誘電体部を介して配置され直線状のアンテナ本体部を有する高周波電力を印加可能な環状のアンテナ部と、前記真空槽の外側に前記誘電体部を介して前記アンテナ部の近傍に配置され前記アンテナ部と対応する形状を有する磁石部とを有し、前記アンテナ部が、複数のアンテナコイルが隣接して近接配置され、かつ、当該各アンテナコイルが並列に接続されているプラズマソース機構が設けられている成膜装置。 - 真空槽と、
前記真空槽内に設けられ、マグネトロンスパッタリングによって成膜対象物上に複数の膜を形成するための成膜領域と、
前記真空槽内に設けられ、前記成膜対象物上の膜に対してプラズマソース機構によってプラズマ処理を行うプラズマ処理領域と、
前記真空槽内に設けられ、前記成膜対象物を支持した状態で回転可能で、その回転に伴い当該成膜対象物が前記複数の成膜領域及び前記プラズマ処理領域を通過するように構成された回転支持機構とを備え、
前記プラズマソース機構は、前記真空槽の外部に誘電体部を介して配置され直線状のアンテナ本体部を有する高周波電力を印加可能な環状のアンテナ部と、前記真空槽の外側に前記誘電体部を介して前記アンテナ部の近傍に配置され前記アンテナ部と対応する形状を有する磁石部とを有し、前記アンテナ部が、複数のアンテナコイルが隣接して近接配置され、かつ、当該各アンテナコイルが並列に接続されており、
前記真空槽内において、前記回転支持機構を回転させつつ前記成膜領域にて前記成膜対象物上に所定の膜を形成し、かつ、前記プラズマ処理領域にて当該成膜対象物上の当該膜に対してプラズマ処理を行うように構成されている成膜装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009547036A JPWO2009081761A1 (ja) | 2007-12-20 | 2008-12-12 | プラズマソース機構及び成膜装置 |
CN2008801225931A CN101904227A (zh) | 2007-12-20 | 2008-12-12 | 等离子体源机构及成膜装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007-328405 | 2007-12-20 | ||
JP2007328405 | 2007-12-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009081761A1 true WO2009081761A1 (ja) | 2009-07-02 |
Family
ID=40801067
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2008/072614 WO2009081761A1 (ja) | 2007-12-20 | 2008-12-12 | プラズマソース機構及び成膜装置 |
Country Status (5)
Country | Link |
---|---|
JP (2) | JPWO2009081761A1 (ja) |
KR (1) | KR101115273B1 (ja) |
CN (1) | CN101904227A (ja) |
TW (1) | TWI445461B (ja) |
WO (1) | WO2009081761A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009252996A (ja) * | 2008-04-07 | 2009-10-29 | Ulvac Japan Ltd | アンテナ、交流回路、及びプラズマ処理装置 |
JP2011181292A (ja) * | 2010-02-26 | 2011-09-15 | Emd:Kk | プラズマ処理装置用アンテナ及び該アンテナを用いたプラズマ処理装置 |
JP2012248578A (ja) * | 2011-05-25 | 2012-12-13 | Ulvac Japan Ltd | プラズマエッチング装置 |
JP2013045903A (ja) * | 2011-08-24 | 2013-03-04 | Tokyo Electron Ltd | 成膜装置、基板処理装置及びプラズマ発生装置 |
JP2013055243A (ja) * | 2011-09-05 | 2013-03-21 | Tokyo Electron Ltd | 成膜装置、成膜方法及び記憶媒体 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101522891B1 (ko) | 2014-04-29 | 2015-05-27 | 세메스 주식회사 | 플라즈마 발생 유닛 및 그를 포함하는 기판 처리 장치 |
WO2017189234A1 (en) * | 2016-04-29 | 2017-11-02 | Retro-Semi Technologies, Llc | Vhf z-coil plasma source |
JP2017201651A (ja) * | 2016-05-02 | 2017-11-09 | 株式会社神戸製鋼所 | 酸化物半導体の製造方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0786247A (ja) * | 1993-09-16 | 1995-03-31 | Hitachi Ltd | 減圧雰囲気内における被処理物の処理方法及び処理装置 |
JP2002514356A (ja) * | 1997-09-16 | 2002-05-14 | ラム リサーチ コーポレーション | コイルの中心部分と周辺部分より低い磁束密度をプラズマにカップリングする中間部分を持つコイルを有する真空プラズマ処理装置 |
JP2006351843A (ja) * | 2005-06-16 | 2006-12-28 | Ulvac Japan Ltd | 真空処理装置及びトンネル接合素子の製造方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1164122A (zh) * | 1996-03-01 | 1997-11-05 | 株式会社日立制作所 | 等离子处理机及其处理方法 |
US6518705B2 (en) * | 1999-11-15 | 2003-02-11 | Lam Research Corporation | Method and apparatus for producing uniform process rates |
US8617351B2 (en) * | 2002-07-09 | 2013-12-31 | Applied Materials, Inc. | Plasma reactor with minimal D.C. coils for cusp, solenoid and mirror fields for plasma uniformity and device damage reduction |
KR100462584B1 (ko) * | 2001-07-06 | 2004-12-17 | 주성엔지니어링(주) | 플라즈마 공정장치 |
WO2004108979A1 (ja) * | 2003-06-02 | 2004-12-16 | Shincron Co., Ltd. | 薄膜形成装置及び薄膜形成方法 |
US7776156B2 (en) * | 2005-02-10 | 2010-08-17 | Applied Materials, Inc. | Side RF coil and side heater for plasma processing apparatus |
-
2008
- 2008-12-12 KR KR1020107012794A patent/KR101115273B1/ko active IP Right Grant
- 2008-12-12 JP JP2009547036A patent/JPWO2009081761A1/ja active Pending
- 2008-12-12 WO PCT/JP2008/072614 patent/WO2009081761A1/ja active Application Filing
- 2008-12-12 CN CN2008801225931A patent/CN101904227A/zh active Pending
- 2008-12-18 TW TW097149479A patent/TWI445461B/zh active
-
2012
- 2012-06-04 JP JP2012127190A patent/JP5439539B2/ja active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0786247A (ja) * | 1993-09-16 | 1995-03-31 | Hitachi Ltd | 減圧雰囲気内における被処理物の処理方法及び処理装置 |
JP2002514356A (ja) * | 1997-09-16 | 2002-05-14 | ラム リサーチ コーポレーション | コイルの中心部分と周辺部分より低い磁束密度をプラズマにカップリングする中間部分を持つコイルを有する真空プラズマ処理装置 |
JP2006351843A (ja) * | 2005-06-16 | 2006-12-28 | Ulvac Japan Ltd | 真空処理装置及びトンネル接合素子の製造方法 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009252996A (ja) * | 2008-04-07 | 2009-10-29 | Ulvac Japan Ltd | アンテナ、交流回路、及びプラズマ処理装置 |
JP2011181292A (ja) * | 2010-02-26 | 2011-09-15 | Emd:Kk | プラズマ処理装置用アンテナ及び該アンテナを用いたプラズマ処理装置 |
JP2012248578A (ja) * | 2011-05-25 | 2012-12-13 | Ulvac Japan Ltd | プラズマエッチング装置 |
JP2013045903A (ja) * | 2011-08-24 | 2013-03-04 | Tokyo Electron Ltd | 成膜装置、基板処理装置及びプラズマ発生装置 |
KR101509860B1 (ko) | 2011-08-24 | 2015-04-07 | 도쿄엘렉트론가부시키가이샤 | 성막 장치, 기판 처리 장치 및 플라즈마 발생 장치 |
JP2013055243A (ja) * | 2011-09-05 | 2013-03-21 | Tokyo Electron Ltd | 成膜装置、成膜方法及び記憶媒体 |
Also Published As
Publication number | Publication date |
---|---|
TW200935989A (en) | 2009-08-16 |
CN101904227A (zh) | 2010-12-01 |
JPWO2009081761A1 (ja) | 2011-05-06 |
JP2012207307A (ja) | 2012-10-25 |
TWI445461B (zh) | 2014-07-11 |
KR101115273B1 (ko) | 2012-03-05 |
JP5439539B2 (ja) | 2014-03-12 |
KR20100076067A (ko) | 2010-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5439539B2 (ja) | 成膜装置及び成膜方法 | |
JP5380464B2 (ja) | プラズマ処理装置、プラズマ処理方法、および被処理基板を備える素子の製造方法 | |
JP3874787B2 (ja) | 薄膜形成装置及び薄膜形成方法 | |
JPH08288096A (ja) | プラズマ処理装置 | |
JP3774353B2 (ja) | 金属化合物薄膜の形成方法およびその形成装置 | |
KR102698680B1 (ko) | 재료 증착 장치 및 방법 | |
CN101098980A (zh) | 溅射装置和成膜方法 | |
JP3311064B2 (ja) | プラズマ生成装置、表面処理装置および表面処理方法 | |
JP5026715B2 (ja) | 金属とSiO2の混合膜の成膜方法 | |
TWI598928B (zh) | Plasma processing equipment | |
JP2837556B2 (ja) | プラズマ反応装置とそれを用いた基板の処理方法 | |
JP4408987B2 (ja) | スパッタ処理応用のプラズマ処理装置 | |
JP4005172B2 (ja) | 両面同時成膜方法および装置 | |
JP2009074136A (ja) | 成膜方法及び成膜装置 | |
JP3122421B2 (ja) | マグネトロンスパッタリング成膜装置及び方法 | |
JP6227483B2 (ja) | プラズマ処理方法 | |
JP2937907B2 (ja) | プラズマ発生装置 | |
JP2003309107A (ja) | 積層膜のエッチング方法 | |
JP7223507B2 (ja) | エッチング方法 | |
JP4480336B2 (ja) | 誘電体薄膜の製造方法及び製造装置 | |
JP2011058072A (ja) | 基板処理装置及び半導体装置の製造方法 | |
JPH10229072A (ja) | プラズマ処理方法、プラズマ処理装置及び半導体装置の製造方法 | |
JP2009249710A (ja) | 薄膜形成装置 | |
JPH0310081A (ja) | 真空放電装置 | |
JPH05275381A (ja) | プラズマプロセス装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200880122593.1 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08864859 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20107012794 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2009547036 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 08864859 Country of ref document: EP Kind code of ref document: A1 |