WO2009081730A1 - 微生物発電装置 - Google Patents

微生物発電装置 Download PDF

Info

Publication number
WO2009081730A1
WO2009081730A1 PCT/JP2008/072385 JP2008072385W WO2009081730A1 WO 2009081730 A1 WO2009081730 A1 WO 2009081730A1 JP 2008072385 W JP2008072385 W JP 2008072385W WO 2009081730 A1 WO2009081730 A1 WO 2009081730A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
anode chamber
conductive filler
microbial
microbial power
Prior art date
Application number
PCT/JP2008/072385
Other languages
English (en)
French (fr)
Inventor
Tetsuro Fukase
Nobuhiro Orita
Original Assignee
Kurita Water Industries Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd. filed Critical Kurita Water Industries Ltd.
Priority to CN200880120931.8A priority Critical patent/CN101897069B/zh
Publication of WO2009081730A1 publication Critical patent/WO2009081730A1/ja
Priority to US12/801,697 priority patent/US8828567B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/16Biochemical fuel cells, i.e. cells in which microorganisms function as catalysts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0232Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0234Carbonaceous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0297Arrangements for joining electrodes, reservoir layers, heat exchange units or bipolar separators to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • H01M8/248Means for compression of the fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0245Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • H01M8/04194Concentration measuring cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a power generation device that utilizes a metabolic reaction of a microorganism.
  • the present invention relates to a microbial power generation apparatus that extracts, as electric energy, a reducing power obtained when an organic substance is oxidatively decomposed into microorganisms.
  • Microbial power generation is a method of generating electric power by taking out the reducing power obtained when microorganisms assimilate organic matter as electric energy.
  • microorganisms and organic substances assimilated by microorganisms are allowed to coexist in the anode chamber where the negative electrode is arranged.
  • an electron transfer medium enters the microbial body, receives electrons generated by the microorganisms oxidizing organic substances, and passes them to the negative electrode.
  • the negative electrode is electrically connected to the positive electrode, and the electrons transferred to the negative electrode move to the positive electrode and are transferred to the electron acceptor in contact with the positive electrode. By such movement of electrons, a current is generated between the positive electrode and the negative electrode, and electric energy is obtained.
  • Patent Document 1 In microbial power generation, the electron mediator extracts electrons directly from the microbial body, so the theoretical energy conversion efficiency is high. However, actual energy conversion efficiency is low, and improvement in power generation efficiency is required. Therefore, various studies and developments have been made on electrode materials and structures, types of electron mediators, and selection of microbial species in order to increase power generation efficiency (for example, Patent Document 1 and Non-Patent Document 1).
  • Patent Document 1 power generation efficiency is improved by using an anode into which a functional group that is chemically bonded to an electron mediator is introduced.
  • Patent Document 1 electrons generated when a microorganism oxidizes an electron donor (organic substance) are taken out to an anode via an electron mediator. For this reason, it is necessary to supply the anode chamber with a stock solution containing not only an electron donor but also an electron mediator. Moreover, since the process which introduce
  • the present inventors have found that the presence of a conductive filler for holding microorganisms throughout the anode chamber and preventing the stock solution from short-passing within the anode chamber contributes to the improvement of the efficiency of microbial power generation. Further, the non-conductive film separating the anode chamber and the cathode chamber is brought into close contact with the electrodes disposed in the anode chamber and the cathode chamber, thereby promoting the movement of electrons and protons (H + ) generated by the microbial reaction, thereby generating power. We found that efficiency can be improved. Specifically, the present invention provides the following.
  • an anode chamber for holding a microorganism and supplying a stock solution containing an electron donor;
  • a non-conductive film having first and second surfaces facing each other and disposed between the anode chamber and the cathode chamber;
  • the first non-conductive film has a rough surface with unevenness that spreads in close contact with the first surface, and is formed of a porous body having substantially the same shape as the inside of the anode chamber, and is disposed in the anode chamber.
  • Conductive filler of A microbial power generation device comprising: a second conductive filler having a rough surface having irregularities that spread in close contact with the second surface of the non-conductive film.
  • a microbial layer is formed between the rough surface of the first conductive filler and the first surface of the non-conductive film,
  • the microbial power generation apparatus according to (1) wherein the stock solution moves through the porous body and is supplied to the microbial layer.
  • the first conductive filler and the second conductive filler are pressed against and in close contact with the non-conductive film in a state where the unevenness of the rough surface is maintained (1 )
  • the microbial power generation device wherein the first conductive filler has elasticity, is formed larger than the shape of the inner portion of the anode chamber, is compressed, and is filled into the anode chamber.
  • the microorganism power generation apparatus according to (4), wherein the non-conductive film and the first conductive filler are pressed into contact with each other by a fastening member, or are pressed into contact with a spacer in the anode chamber.
  • the first conductive filler may be any one of a porous sheet, a foam, or a porous body in which the same polygons are arranged using at least one of felt, graphite, titanium, and stainless steel.
  • the microbial power generation apparatus wherein the first conductive filler is a solid formed in a plate shape having a thickness of 3 mm to 40 mm.
  • the three-dimensional body is an integrally formed body of porous graphite, or a laminate formed by bonding a plurality of porous graphite felt sheets.
  • the second conductive filler is a solid formed in a plate shape.
  • the microorganism power generation apparatus according to (11), wherein the three-dimensional body is an integrally formed body of porous graphite or a laminated body formed by bonding a plurality of porous graphite sheets.
  • Microbial power generator (14) The microbial power generation apparatus according to (1), wherein the stock solution includes a nitrogen source and a phosphorus source. (15) The microbial power generation apparatus according to (14), wherein the stock solution does not include an electron mediator.
  • the anode chamber has a pair of wall surfaces including an inlet through which the stock solution flows and an outlet from which the stock solution flows out,
  • the non-conductive film is a cation permeable membrane or an anion permeable membrane.
  • the power generation efficiency of microbial power generation can be increased.
  • FIG. 1 is an overall schematic diagram of a microbial power generation device according to an embodiment of the present invention. Sectional drawing in the XX line of the said microbial power generation device. The partially expanded view of the said microbial power generation apparatus. The block diagram of the microbial power generation device used for the test.
  • FIG. 1 is a perspective view showing an outline of a microbial power generation apparatus 1 according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view taken along line XX of the power generator 1
  • FIG. 3 is a partially enlarged view of FIG.
  • the power generation apparatus 1 is configured such that one cathode chamber 12 is disposed between two anode chambers 11.
  • a non-conductive film 15 is disposed between the anode chamber 11 and the cathode chamber 12.
  • a cation permeable membrane having high proton selectivity can be suitably used.
  • Nafion (registered trademark) manufactured by DuPont Co., Ltd. can be used.
  • the non-conductive film 15 is preferably thin and strong.
  • An anion-selective anion permeable membrane can also be used.
  • Each anode chamber 11 has a substantially rectangular parallelepiped shape, and a first conductive filler 21 is disposed inside.
  • the first conductive filler 21 is a solid made of a conductive material (graphite, titanium, stainless steel, etc.), and the overall shape in the anode chamber 11 is substantially the same as the inside of the anode chamber 11.
  • the first conductive filler 21 preferably has a thickness of 3 mm or more and 40 mm or less, particularly about 5 to 20 mm, is porous, and the size of the void formed in the whole is about 0.01 to 1 mm in diameter. It is preferable that
  • a porous sheet for example, graphite felt
  • a foam made of a conductive material
  • the same polygon made of a conductive material
  • porous solid for example, a lattice or a honeycomb
  • a plurality of porous sheets may be bonded to each other with a conductive adhesive or the like as the first conductive filler 21.
  • each anode chamber 11 such a first conductive filler 21 is arranged, and the first conductive filler 21 exists in the entire interior thereof.
  • the first conductive filler 11 may have the same size as the internal shape of the anode chamber 11 so that the first conductive filler 11 exists in the entire anode chamber 11.
  • a conductive filler having elasticity such as graphite felt may be slightly larger than the internal shape of the anode chamber 11 and pushed into the anode chamber 11.
  • a slightly smaller conductive filler than the anode chamber 11 is disposed in the anode chamber 11, and the inside of the anode chamber 11 is narrowed by sandwiching a spacer in the gap, whereby the first conductive filler 21 is entirely formed in the anode chamber 11. May be present.
  • the first conductive filler 21 holds microorganisms on its surface and inside.
  • the stock solution supplied to the anode chamber 11 moves through the porous first conductive filler 21 in the anode chamber 11, and supplies the microorganisms held in the first conductive filler 21 with an electron donor ( Organic matter) will be supplied.
  • the present invention is configured such that a phenomenon (short path) in which the stock solution passes through a space where the conductive filler 21 does not exist substantially does not occur.
  • the microorganism mainly performs a microbial reaction in which electrons are extracted from the electron donor while being held by the first conductive filler 21. If the short path is prevented in this way, the stock solution is prevented from flowing out without being used by the microorganism, and the stock solution is diffused through the inside of the porous first conductive filler 21 and supplied to the microorganism. Therefore, the efficiency of microbial power generation can be increased.
  • the first conductive filler 21 has a surface (hereinafter referred to as “contact surface”) 21 ⁇ / b> F facing the non-conductive film 15 in close contact with the first surface 15 ⁇ / b> A of the non-conductive film 15. Since the contact surface 21F of the first conductive filler 21 and the first surface 15A of the non-conductive film 15 are brought into close contact with each other, the first conductive filler 21 is a straight flat surface with no curved contact surface. It is preferable that it is flat form.
  • one side surface of the graphite felt 21D which is one of the graphite felts in the outermost layer, is the contact surface 21F, and the surface is rough and rough.
  • the contact surface 21F of the first conductive filler 21 and the first surface 15A of the non-conductive film 15 are light pressure (about 0.01 to 100 g / cm 2 , particularly about 0.1 to 10 g / cm 2 ). It is preferable that the first conductive filler is in close contact with the non-conductive film 15 while being pressed.
  • the first conductive filler 21 and the non-conductive film 15 may be in pressure contact using a fastening member such as a screw or clip.
  • a spacer may be sandwiched in the anode chamber 11, or the first conductive filler 21 may be slightly larger than the anode chamber and pushed into the anode chamber 11.
  • the porous conductive material having a rough surface is in close contact with the conductive filler in a state where minute irregularities are maintained. That is, the first conductive filler 21 and the non-conductive film 15 are integrated (that is, bonded) using a fluid material such as an adhesive to fill the surface irregularities of the conductive filler. It is not preferable.
  • the anode chamber when the anode chamber is filled with granular graphite or the like as a conductive filler, the adhesion between the conductive filler material in the anode chamber and the non-conductive film cannot be ensured, and the stock solution is likely to short pass in the anode chamber. Therefore, as the first conductive filler, a molded product that can be formed in substantially the same shape as the internal shape in the anode chamber as described above is used.
  • the molded product includes not only an integrally molded product obtained by foaming a conductive material and molding the conductive material into a predetermined shape, but also a laminated product in which a plurality of sheets are laminated.
  • the anode chamber 11 in which the first conductive filler 11 is disposed is supplied with a stock solution containing an organic substance (for example, acetic acid) that is oxidatively decomposed by microorganisms and taken out of electrons as an electron donor.
  • the stock solution is supplied from the inlet formed in the anode chamber 11 and discharged from the outlet formed on the opposite surface of the inlet.
  • the stock solution containing an electron donor preferably contains a nitrogen source and a phosphorus source, which are nutrient sources for microorganisms, in addition to an organic substance that serves as an electron donor.
  • a nitrogen source and a phosphorus source which are nutrient sources for microorganisms, in addition to an organic substance that serves as an electron donor.
  • various organic wastes and organic waste water sewage, food waste water, etc.
  • a conductive porous body having a large specific surface area is brought into close contact with the non-conductive film 15 to form a microbial layer therebetween, and an organic substance (electron donor) is supplied to the microorganism in the course of the stock solution passing through the porous body.
  • an organic substance electrochemical donor
  • Microorganisms and organic substances are not particularly limited. Although the microbial reaction in the anode chamber 11 is performed under anaerobic conditions, the microbial species held in the anode chamber 11 is not particularly limited.
  • the anode chamber 11 is supplied with activated sludge obtained from a biological treatment tank that treats organic matter-containing water such as sewage, microorganisms contained in the effluent from the first sedimentation basin of sewage, anaerobic digested sludge, etc. as planting, Microorganisms can be retained. In order to increase the power generation efficiency, the amount of microorganisms retained in the anode chamber 11 is preferably high, and for example, the microorganism concentration is preferably 1 g / L or more.
  • the electron donor (organic substance) that is oxidatively decomposed by the microbial reaction in the anode chamber 11 can also increase the power generation efficiency when the concentration is high to some extent, the organic matter concentration in the influent supplied to the anode chamber 11 is 100 to 10%. About 1,000 mg / L is preferred.
  • the first conductive filler 21 is a porous body made of a conductive material and functions as a negative electrode.
  • the thickness of the first conductive filler 21 is less than 3 mm, the amount of microorganisms retained is reduced.
  • the thickness of the first conductive filler 21 exceeds 40 mm, the movement of protons generated by the microbial reaction becomes rate-limiting.
  • microorganisms that do not contribute to microbial power generation (sulfuric acid-reducing bacteria and methane-fermenting bacteria) tend to dominate the anode chamber 11, which is not preferable.
  • the four graphite felts 21A to 21D constituting one first conductive filler 21 are arranged in parallel with a pair of wall surfaces provided with an inlet and an outlet of the anode chamber. They are arranged side by side and perpendicular to the wall surface. Therefore, the liquid supplied from the inlet flows between the graphite felts facing each other so as to travel along the surface of each graphite felt, and at the same time, diffuses through the inside of the graphite felt and is supplied to the microorganisms.
  • the microorganism is responsible for a microbial reaction in which an organic substance contained in a liquid supplied from the inlet and flowing out from the outlet is an electron donor.
  • An anode lead wire 23 is connected to each of the graphite felts 21A to 21D in order to take out electrons obtained by oxidative decomposition of organic substances by microorganisms.
  • the anode lead wire 23 is made of a conductive material such as a metal wire.
  • the anode lead line 23 is electrically connected to a cathode lead line 24 described later via a conduction line 17. With this configuration, the electrons generated in the anode chamber 11 are sent to the cathode chamber 12 via the first conductive filler 21, the anode lead wire 23, the conduction wire 17, and the cathode lead wire 24.
  • a second conductive filler 22 that functions as a positive electrode is disposed in the cathode chamber 12.
  • the raw material which comprises the 2nd electroconductive filler 22 suitably according to the kind of electron acceptor.
  • platinum is preferably used.
  • platinum, manganese, or cobalt may be supported using graphite felt as a base material.
  • an inexpensive graphite electrode may be used as it is (that is, without supporting a catalytic metal such as platinum) as the positive electrode.
  • the cathode lead wire 24 is connected to the second conductive filler 22.
  • the second conductive filler 22 is in close contact with the second surface 15B of the non-conductive film 15 over the entire surface.
  • the second conductive filler 22 is a flat plate having a straight flat surface that is not curved like the first conductive filler 21 so that the surface facing the non-conductive film 15 is rough and closely contacts the second surface 15B. It is preferable that it is a shape.
  • the second conductive filler 22 is composed of a single piece of graphite felt, and has a thickness of 2 to 5 mm, particularly about 3 mm, and faces the second conductive filler 22. Is a rough surface with minute irregularities and a flat surface that does not curve.
  • the second conductive filler 22 is preferably in close contact with the non-conductive film 15 as much as possible.
  • the reaction of moving H + from the anode chamber 11 through the non-conductive film 15 and reducing in the cathode chamber 12 can be promoted.
  • they may be held in contact with each other by a fastening member, or may be bonded by welding, application of an adhesive, or the like.
  • a spacer may be sandwiched in the cathode chamber 12, or the second conductive filler 22 may be slightly larger than the anode chamber and pushed into the cathode chamber 12.
  • the reduction reaction in the cathode chamber 12 may be performed using a microbial reaction. However, when no microorganism is used, it is not necessary to hold the microorganism in the cathode chamber 12. Therefore, the second conductive filler 22 may be bonded to the non-conductive film 15 using an adhesive or the like.
  • the second conductive filler 22 is preferably a rough surface on which at least the surface in contact with the non-conductive film 15 is formed with minute irregularities.
  • a porous body made of a conductive material (for example, graphite felt) has a void formed in the entire surface, and the surface is a rough surface with minute irregularities derived from the void, and the positive electrode solution diffuses through the inside of the porous body. It can be suitably used not only as the first conductive filler 21 but also as the second conductive filler 22.
  • the cathode chamber 12 is supplied with a liquid (positive electrode solution) containing iron (II) potassium hexacyanoate (potassium ferricyanide) as an electron acceptor, and the second conductive filler 22 that functions as a positive electrode.
  • a liquid (positive electrode solution) containing iron (II) potassium hexacyanoate (potassium ferricyanide) as an electron acceptor
  • the second conductive filler 22 that functions as a positive electrode.
  • a graphite felt As a graphite felt.
  • manganese, iron, nitric acid, or the like may be used as the electron acceptor.
  • porous graphite such as graphite felt may be used as the cathode.
  • an undiluted solution containing an organic substance serving as an electron donor and preferably a nutrient source for microorganisms is supplied, and the pH of the solution in the anode chamber 11 is maintained at 7 or more and 9 or less to generate electrons and protons by microbial reaction. And generate.
  • the temperature condition of the anode chamber 11 is preferably normal temperature to medium high temperature, specifically about 10 ° C. to 70 ° C. If acetic acid is used as the electron donor, carbon dioxide, H + , and electrons are generated by the reaction shown in the following chemical formula. [Chemical formula 1] CH 3 COOH + 2H 2 O ⁇ 2CO 2 + 8H + + 8e ⁇
  • the generated H + is moved to the cathode chamber 12 through the non-conductive film 15 that allows cations to pass therethrough.
  • the cathode chamber 12 is supplied with a solution containing about 10 to 200 mM of an electron acceptor (for example, potassium ferricyanide) as a positive electrode solution and containing a phosphate buffer, and reacts electrons, protons, and electron acceptors.
  • an electron acceptor for example, potassium ferricyanide
  • a gas containing oxygen may be ventilated in the cathode chamber 12 instead of the positive electrode solution, or a phosphoric acid buffer may be filled and oxygen may be blown to react with electrons and protons using oxygen as an electron acceptor.
  • Electrons generated in the anode chamber 11 by such a reaction are taken out from the first conductive filler 21 functioning as a negative electrode, and the second conductive filler is passed through the anode lead line 23 and the cathode lead line 24. 22 side. In this process, a current flows between the first conductive filler 21 (negative electrode) and the second conductive filler 22 (positive electrode), and power can be generated.
  • Example 1 As Example 1, a microbial power generation apparatus 2 shown in FIG.
  • the power generation device 2 has a configuration in which the first conductive filler 21 for one negative electrode is sandwiched between two second conductive fillers 22 for positive electrode, and the total volume is 1050 mL, the volume of the anode chamber 11 is 700 mL, The volume of the cathode chamber 12 was 175 mL.
  • the power generation device 2 is provided with a circulation path 30 including a circulation tank for circulating the liquid discharged from the anode chamber 11, and pH adjusting means 31 for adjusting the pH of the liquid flowing through the circulation path is installed.
  • the pH of the solution was kept at 7 or more and 9 or less.
  • the first conductive filler 21 was composed of four graphite felts (manufactured by Toyo Carbon Co., Ltd.) having a thickness of 1 cm, which were bonded together with a conductive adhesive in the same manner as the power generator 1.
  • the adhesive is applied to the surface of the graphite felt partially (about 10% of the entire surface) (so-called “solid coating” is avoided), so that the fine irregularities on the surfaces of the graphite felt facing each other are adhesive. I tried not to be buried.
  • Each graphite felt has a rectangular shape with a size of 250 mm ⁇ 70 mm, and both surfaces are rough.
  • the first conductive filler 21 has a total volume of 700 cm 3 and has substantially the same shape as that in the anode chamber 11, and there is substantially no space in the anode chamber 11. Therefore, the liquid supplied to the anode chamber 11 flows through the first conductive filler 21, and a short path does not substantially occur.
  • activated sludge collected from a biological treatment tank of a sewage treatment plant was added as an inoculum and cultured to attach microorganisms to the surface of each graphite felt.
  • four graphite felt layers and five microbial layers 16 were formed in the anode chamber 11, and the microbial concentration in the anode 11 chamber was about 2,200 mg / L.
  • each of the second conductive fillers 22 for the positive electrode was composed of one piece of graphite felt having a thickness of 3 mm.
  • the second conductive filler 22 has the same configuration as the negative electrode graphite felt except that the thickness is different, and both surfaces are rough.
  • a cation permeable membrane (trade name “Nafion” manufactured by DuPont) was disposed as the non-conductive film 15. .
  • a honeycomb spacer (not shown) having a thickness of 5 mm was placed in the anode chamber 11, and the first conductive filler 21 was pressed against the non-conductive film 15 so as to be in close contact with the non-conductive film.
  • the second conductive filler 22 was also brought into close contact with the non-conductive film 15 by pressing the second conductive filler 22 against the non-conductive film 15 using a honeycomb spacer 18 having a thickness of 5 mm.
  • a liquid chamber 26 through which the positive electrode solution is passed is provided on the surface of the second conductive filler 22 on the side opposite to the side in contact with the non-conductive film 15.
  • a positive electrode solution containing 50 mM potassium ferricyanide and a phosphate buffer as an electron acceptor was supplied to the liquid chamber so as to have an inflow rate of 70 mL / min.
  • the anode chamber 11 was supplied with a stock solution containing containing acetic acid at a concentration of 1,000 mg / L, a phosphate buffer at a concentration of 50 mM, and ammonium chloride at an inflow rate of 70 mL / min.
  • An anode lead wire 23 is connected to the first conductive filler 21, a cathode lead wire 24 is connected to the second conductive filler 22, and the anode lead wire 23 and the cathode lead wire 24 are electrically connected. Conducted.
  • the anode lead wire 23 and the cathode lead wire 24 were made of stainless steel wire.
  • the generated voltage was 310 mV and the current was 1120 mA. That is, the power generation amount per anode unit volume was 496 W / m 3 . At this time, the resistance of the circuit was 0.5 ⁇ .
  • Example 2 In Example 2, instead of the first conductive filler used in Example 1, one piece of graphite felt (thickness 3 mm) was used alone as the first conductive filler. In accordance with this, the size of the anode chamber 11 was set to 52.5 mL, and graphite felt used as the first conductive filler was filled in the entire anode chamber. When other conditions were the same as in Example 1 and microbial power generation was performed, the generated voltage was 305 mV and the current was 610 mA. At this time, the resistance of the circuit was 0.5 ⁇ .
  • Comparative Example 1 As Comparative Example 1, one piece of graphite felt having a thickness of 3 mm used in Example 2 was placed in an anode chamber having a capacity of 700 mL (an anode chamber having the same size as the anode chamber of Example 1). In addition, the spacer sandwiching the second conductive filler and the non-conductive film was removed. When the microbial power generation was carried out under the same conditions as in Example 1, the generated voltage was 310 mV and the current was 15.5 mA. At this time, the resistance of the circuit was 20 ⁇ .
  • the present invention can be used for power generation using microorganisms.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Fuel Cell (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

 微生物を保持する第1の導電性充填材21を、通水性を有するブロック状の多孔体(例えば厚さ3~20mm程度のグラファイトシート)で構成する。第1の導電性充填材21はアノード室11内でその内部形状とほぼ同一形状となるようにすることによりアノード室11内全体に存在させる。これにより、電子供与体を含みアノード室11に供給される原液のショートパスを防止し、原液が多孔性の第1の導電性充填材21を通って微生物に供給されるようにすることによって、アノード室11全体に微生物が増殖できるようになる。また、好ましくはスペーサ18のような部材を用いて、アノード室11とカソード室12とを隔てる非導電膜15とカソード室12に配置される第2の導電性充填材22とを互いに密着させる。同様に第1の導電性充填材21も非導電膜15と密着させることが好ましい。

Description

微生物発電装置
 本発明は、微生物の代謝反応を利用する発電装置に関する。本発明は特に、有機物を微生物に酸化分解させる際に得られる還元力を電気エネルギーとして取り出す微生物発電装置に関する。
 近年、地球環境に配慮した発電方法へのニーズが高まり、微生物発電の技術開発も進められている。微生物発電は、微生物が有機物を資化する際に得られる還元力を電気エネルギーとして取り出すことにより発電する方法である。
 一般的に、微生物発電では負極が配置されたアノード室内に、微生物、微生物に資化される有機物を共存させる。また場合によっては、電子伝達媒体(電子メディエータ)は微生物体内に入り、微生物が有機物を酸化して発生する電子を受け取って負極に渡す。負極は正極と電気的に導通されており、負極に渡された電子は正極に移動して、正極と接する電子受容体に渡される。このような電子の移動により正極と負極との間に電流が生じ、電気エネルギーが得られる。
 微生物発電では、電子メディエータが微生物体から直接、電子を取り出すため、理論上のエネルギー変換効率は高い。しかし、実際のエネルギー変換効率は低く、発電効率の向上が求められている。そこで、発電効率を高めるため、電極の材料や構造、電子メディエータの種類、および微生物種の選択等について様々な検討および開発が行われている(例えば特許文献1、非特許文献1)。特許文献1では、電子メディエータと結合する化学結合する官能基を導入したアノードを用いることにより、発電効率を向上させる。
特開2007-95470号公報 P. Aelterman er al.,2006 ENVIRONMENTAL SCIENCE & TECHNOLOGY vol.40, No.10 3388-3394
 特許文献1では、微生物が電子供与体(有機物)を酸化する際に生成される電子は、電子メディエータを介してアノードに取り出される。このため、アノード室には、電子供与体のみならず電子メディエータを含む原液を供給する必要がある。また、アノードに官能基を導入する加工が必要であるため、アノードの製造コストが高くなる。よって、コスト増加を招かず発電効率を向上させる新たな技術が求められている。また、メディエータの種類によっては、微生物毒性を有し、微生物反応に悪影響を及ぼす恐れもある。
 本発明者らは、微生物を保持する導電性充填材をアノード室内全体に存在させ、アノード室内で原液がショートパスすることを防止することが、微生物発電の効率向上に寄与することを見出した。また、アノード室とカソード室とを隔てる非導電膜を、アノード室とカソード室とにそれぞれ配置される電極と密着させることで微生物反応により生じる電子およびプロトン(H)の移動を促進し、発電効率を向上させられることを見出した。具体的には、本発明は以下を提供する。
 (1) 微生物を保持し電子供与体を含む原液が供給されるアノード室と、
 電子受容体が供給されるカソード室と、
 対向する第1の面および第2の面を有し、前記アノード室と前記カソード室との間に配置される非導電膜と、
 前記非導電膜の前記第1の面に密着して広がる凹凸を有する粗面を有し、前記アノード室の内部と略同一形状とされた多孔体で構成され前記アノード室内に配置された第1の導電性充填材と、
 前記非導電膜の前記第2の面と密着して広がる凹凸を有する粗面を有する第2の導電性充填材と、を含む微生物発電装置。
 (2) 前記第1の導電性充填材の前記粗面と前記非導電膜の前記第1の面の間に微生物層が形成され、
 前記原液は前記多孔体内を通って移動して前記微生物層に供給される(1)に記載の微生物発電装置。
 (3) 前記第1の導電性充填材および前記第2の導電性充填材は、それぞれの前記粗面の凹凸が維持された状態で、前記非導電膜に押しつけられ密着させられている(1)に記載の微生物発電装置。
 (4) 前記第1の導電性充填材は、0.01g/cm以上100g/cm以下で加圧されて前記非導電膜に密着させられている(3)に記載の微生物発電装置。
 (5) 前記第1の導電性充填材は弾性を有し、前記アノード室内部形状より大きく成形され、圧縮されて前記アノード室に充填される(4)に記載の微生物発電装置。
 (6) 前記非導電膜と前記第1の導電充填材とは、締付部材によって圧接されるか、または前記アノード室内にスペーサを挟み込んで圧接される(4)に記載の微生物発電装置。
 (7) 前記第1の導電性充填材は、フェルト、グラファイト、チタンまたはステンレスの少なくともいずれか一つを材料とする多孔性シート、発泡体または同一の多角形を並べた多孔体のいずれかによって形成される(1)に記載の微生物発電装置。
 (8) 前記第1の導電性充填材は厚さが3mm以上40mm以下の板状に成形された立体である(1)に記載の微生物発電装置。
 (9) 前記立体は、多孔性グラファイトの一体成形体、または複数の多孔性グラファイトフェルトシートを貼り合わせて構成された積層体である(8)に記載の微生物発電装置。
 (10) 前記積層体は、導電性接着剤で接着されて貼り合わされる(9)に記載の微生物発電装置。
 (11) 前記第2の導電性充填材は、板状に形成された立体である(1)に記載の微生物発電装置。
 (12) 前記立体は、多孔性グラファイトの一体成形体、または複数の多孔性グラファイトシートを貼り合わせて構成された積層体である(11)に記載の微生物発電装置。
 (13) 前記立体は、多孔性グラファイトの一体成形体、または複数の多孔性グラファイトシートを貼り合わせて構成された積層体に白金、マンガンまたはコバルトを担持させた立体である(11)に記載の微生物発電装置。
 (14) 前記原液は、窒素源およびリン源を含む(1)に記載の微生物発電装置。
 (15) 前記原液は、電子メディエータを含まない(14)に記載の微生物発電装置。
 (16) 前記原液は、有機物濃度100mg/L以上10,000mg/L以下である(15)に記載の微生物発電装置。
 (17) 前記アノード室は、官能基を含まない(1)に記載の微生物発電装置。
 (18) 前記アノード室は、微生物濃度1g/L以上の微生物を保持する(17)に記載の微生物発電装置。
 (19) 前記アノード室は、前記原液が流入する流入口及び前記原液が流出する流出口を備える一対の壁面を有し、
 複数の多孔性グラファイトシートを貼り合わせて構成された積層体から成る前記第1の導電性充填材が、積層面を前記壁面に対して直交するように配置される(1)に記載の微生物発電装置。
 (20) 前記非導電膜はカチオン透過膜またはアニオン透過膜である(1)に記載の微生物発電装置。
 本発明によれば、微生物発電の発電効率を高くすることができる。
本発明の一実施形態に係る微生物発電装置の全体模式図。 前記微生物発電装置のX-X線での断面図。 前記微生物発電装置の一部拡大図。 試験に用いた微生物発電装置の構成図。
 以下、図面を参照して本発明について詳細に説明する。以下の図において、同一部材には同一符号を付し、説明を省略または簡略化する。図面は発明の構成を模式的に示すものであり、構成の一部を省略または簡略化しており、寸法も実際の装置とは必ずしも同一ではない。
 図1は、本発明の一実施形態に係る微生物発電装置1の概要を示す斜視図である。図2は発電装置1のX-X線での切断面模式図、図3は、図2の一部拡大図である。発電装置1は、2つのアノード室11の間に1つのカソード室12を配置した構成とされている。アノード室11とカソード室12の間には、非導電膜15が配置されている。
 非導電膜15としては、プロトン選択性の高いカチオン透過膜を好適に使用でき、例えばデュポン株式会社製ナフィオン(登録商標)等が使用できる。非導電膜15は、薄くて丈夫であることが好ましい。また、アニオン選択性のアニオン透過膜も使用できる。
 各アノード室11は略直方体状であり、第1の導電性充填材21が内部に配置されている。第1の導電性充填材21は、導電性材料(グラファイト、チタン、およびステンレス等)で構成された立体で、アノード室11内では、その全体形状がアノード室11の内部とほぼ同一となるようにされている。第1の導電性充填材21は、厚みが3mm以上40mm以下、特に5~20mm程度であることが好ましく、多孔質で、全体に形成された空隙の大きさは直径が0.01~1mm程度であることが好ましい。
 このような第1の導電性充填材21としては、導電性材料で構成された多孔性シート(例えばグラファイトフェルト)、導電性材料で構成された発泡体、導電性材料で構成され同一の多角形(例えば四角形、六角形、八角形等)を並べた形状の多孔性の立体(例えば格子やハニカム)が挙げられる。多孔性シートは、複数枚を導電性接着剤等で接着して第1の導電性充填材21としてもよい。
 各アノード室11には、このような第1の導電性充填材21が配置され、その内部全体に第1の導電性充填材21を存在させる。第1の導電性充填材11は、アノード室11内部形状と実質的に同一の大きさとすることでアノード室11全体に第1の導電性充填材11が存在するようにしてもよい。また、グラファイトフェルトのような弾性を有する導電性充填材をアノード室11内部形状より若干、大きくしてアノード室11に押し込むようにしてもよい。さらに、アノード室11より若干、小さな導電性充填材をアノード室11に配置し、スペーサを隙間に挟み込むことでアノード室11の内部を狭めることでアノード室11全体に第1の導電性充填材21が存在するようにしてもよい。
 第1の導電性充填材21は、その表面および内部に微生物を保持する。アノード室11に供給された原液は、多孔性の第1の導電性充填材21を通ってアノード室11内を移動し、第1の導電性充填材21に保持された微生物に電子供与体(有機物)を供給することになる。換言すれば、本発明では導電性充填材21が存在していない空間を原液が通る現象(ショートパス)が実質的に起こらないように構成されている。
 アノード室11内では、微生物は主として第1の導電性充填材21に保持された状態で電子供与体から電子を取り出す微生物反応を行う。このようにショートパスを防止すれば原液が微生物に利用されずに流出することが防止され、原液は多孔性の第1の導電性充填材21の内部を通って拡散して微生物に供給されるので、微生物発電の効率を上げることができる。
 本実施態様では、4枚のグラファイトフェルト21A~21Dを張り合わせ、全体としてアノード室11内とほぼ同じ形状の一枚の板状の多孔体となるようにしたものを第1の導電性充填材21としている。第1の導電性充填材21は、非導電膜15と向かい合う面(以下、「接触面」)21Fが非導電膜15の第1の面15Aと全面に渡って密着させられている。第1の導電性充填材21の接触面21Fと非導電膜15の第1の面15Aとを全面的に互いに密着させるため、第1の導電性充填材21は接触面が湾曲しない真っ直ぐな平面をなす平板状であることが好ましい。本実施態様では、最外層にあるグラファイトフェルトの一つであるグラファイトフェルト21Dの片側面が接触面21Fとなっており、その面は湾曲しない平面で粗である。
 第1の導電性充填材21の接触面21Fと非導電膜15の第1の面15Aとは、軽い圧力(0.01~100g/cm程度、特に0.1~10g/cm程度)がかかった状態で第1の導電性充填材が非導電膜15に押しつけられるようにして互いに密着されていることが好ましい。例えば第1の導電性充填材21と非導電膜15とは、ネジやクリップのような締付部材を用いて圧接してもよい。あるいは、アノード室11内にスペーサを挟み込んだり第1の導電性充填材21をアノード室内より若干大きくしてアノード室11に押し込むようにしたりしてもよい。この程度の圧着であれば、電子供与体の存在下、第1の導電性充填材21と非導電膜15との間には十分な量の微生物が付着できる。多孔質で表面が粗な導電性充填材の表面の微小な凹凸が維持された状態で両者が密着されるようにするとさらによい。すなわち、第1の導電性充填材21と非導電膜15とを、接着剤のような流動性材料を用いて一体化して(すなわち接着して)導電性充填材の表面の凹凸を埋めることは好ましくない。
 なお、アノード室内に導電性充填材として粒状のグラファイト等を充填すると、アノード室内の導電性充填材料と非導電膜との密着性が確保できず、アノード室内で原液がショートパスしやすくなる。よって、第1の導電性充填材としては、上述したとおりアノード室内においてその内部形状と略同一形状にできる成形物を用いる。ここで成形物には、導電性材料を発泡等させて所定の形状に成型した一体成形物のみならず、複数のシートを積層したような積層物も含まれるとする。
 上記第1の導電性充填材11が配置されたアノード室11には、電子供与体として微生物により酸化分解され電子が取り出される有機物(例えば酢酸)を含む原液が供給される。原液は、アノード室11に形成された流入口から供給され、流入口の反対面に形成された流出口から排出される。
 電子供与体を含む原液としては、電子供与体となる有機物の他、微生物の栄養源である窒素源およびリン源を含むことが好ましい。原液としては、種々の有機性廃棄物や有機性廃水(下水や食品排水等)を利用できる。本発明では、比表面積が大きい導電性多孔体を非導電膜15と密着させて微生物層を両者間に形成させ、原液が多孔体を通る過程で微生物に有機物(電子供与体)が供給されるように構成している。このような構成とすれば、微生物は電子を直接、負極に渡すと推定され、電子メディエータを不要とすることができる。
 微生物および有機物は特に限定されない。アノード室11内での微生物反応は嫌気的条件で行うが、アノード室11に保持される微生物種は特に限定されない。アノード室11には、下水等の有機物含有水を処理する生物処理槽から得られる活性汚泥、下水の最初沈殿池からの流出水に含まれる微生物、嫌気性消化汚泥等を植種として供給し、微生物を保持させることができる。また、発電効率を高くするためには、アノード室11内に保持される微生物量は高濃度であることが好ましく、例えば微生物濃度は1g/L以上であることが好ましい。さらに、アノード室11での微生物反応により酸化分解される電子供与体(有機物)もある程度、濃度が高い方が発電効率を高くできるため、アノード室11に供給する流入液の有機物濃度は100~10,000mg/L程度が好ましい。
 有機物は、微生物により酸化され、その際に発生する電子は第1の導電性充填材21を負極としてアノード室11外へ取り出される。第1の導電性充填材21は、上述したとおり、導電性材料で構成された多孔体で、負極として機能する。第1の導電性充填材21の厚みが3mm未満であると微生物の保持量が少なくなる。一方、第1の導電性充填材21の厚みが40mmを超えると微生物反応で生じたプロトンの移動が律速になる。この結果、微生物発電には寄与しない微生物(硫酸還元菌やメタン発酵菌)がアノード室11に優占しやすくなるため好ましくない。
 本実施形態では、一つの第1の導電性充填材21を構成する4枚のグラファイトフェルト21A~Dは、アノード室の、流入口と流出口とが設けられた一対の壁面に対して並列に並んで壁面と直交するように配置されている。よって、流入口から供給された液は、各グラファイトフェルトの表面を伝うように向かい合うグラファイトフェルト同士の間を流れ、同時にグラファイトフェルト内部を通って拡散して微生物に供給される。微生物は、アノード室11において、流入口から供給され流出口から流出する液中に含まれる有機物を電子供与体とする微生物反応を担う。
 微生物による有機物の酸化分解により得られた電子を取り出すため、各グラファイトフェルト21A~21Dには、アノード引き出し線23が接続されている。アノード引き出し線23は、金属線等の導電性材料で構成される。アノード引き出し線23は、導通線17を介して後述するカソード引き出し線24と電気的に接続されている。この構成により、アノード室11で生成された電子は、第1の導電性充填材21、アノード引き出し線23、導通線17、およびカソード引き出し線24を経てカソード室12に送られる。
 カソード室12には、正極として機能する第2の導電性充填材22が配置されている。第2の導電性充填材22を構成する素材は、電子受容体の種類によって適宜、選択すればよい。例えば、酸素を電子受容体とする場合は白金を用いることが好ましく、例えばグラファイトフェルトを基材として白金、マンガンまたはコバルトを坦持させるとよい。電子受容体とする物質の種類によっては安価なグラファイト電極をそのまま(つまり、白金等の触媒金属を担持させずに)正極として使用してもよい。
 第2の導電性充填材22にはカソード引き出し線24が接続されている。また、第2の導電性充填材22は、非導電膜15の第2の面15Bと全面に渡って密着させられている。第2の導電性充填材22は、非導電膜15に面する面が粗で第2の面15Bに密着するよう、第1の導電性充填材21と同様に湾曲しない真っ直ぐな平面を有する平板状であることが好ましい。本実施態様では、第2の導電性充填材22は、一枚のグラファイトフェルトで構成され、その厚さは2~5mm、特に3mm程度であり、第2の導電性充填材22に面する面は、微小な凹凸を有する粗な面で、湾曲しない平面である。
 第2の導電性充填材22は、非導電膜15とできるだけ密に接していることが好ましい。第2の導電性充填材22と非導電膜15とを密着させることで、非導電膜15を介してアノード室11からHを移動させてカソード室12で還元する反応を促進できる。第2の導電性充填材22と非導電膜15とを密着させるため、両者を締付部材で挟んで密着させてもよく、溶着や接着剤の塗布等によって接着してもよい。また、カソード室12内にスペーサを挟み込んだり、第2の導電性充填材22をアノード室内より若干大きくしてカソード室12に押し込むようにしたりしてもよい。カソード室12での還元反応は微生物反応を利用して行ってもよいが、微生物を利用しない場合は、カソード室12に微生物を保持する必要がない。このため、第2の導電性充填材22は接着剤等を用いて非導電膜15と接着してもよい。
 第2の導電性充填材22は、少なくとも非導電膜15と接する面が微小な凹凸が形成された粗面であることが好ましい。導電性材料で構成された多孔体(例えばグラファイトフェルト)は、全体に空隙が形成され表面は空隙由来の微小な凹凸のある粗面であり、正極溶液が多孔体内部を通って拡散するため、第1の導電性充填材21としてのみならず第2の導電性充填材22としても好適に使用できる。
 本実施態様では、カソード室12には電子受容体としてヘキサシアノ酸鉄(II)カリウム(フェリシアン化カリウム)を含む液(正極溶液)を供給することとし、正極として機能する第2の導電性充填材22としては、グラファイトフェルトを使用している。電子受容体としては他にマンガン、鉄、および硝酸等を用いてもよく、この場合もカソードとしてはグラファイトフェルトのような多孔性のグラファイトを使用するとよい。
 アノード室11では、電子供与体となる有機物と、好ましくは微生物の栄養源とを含む原液を供給し、アノード室11内の液のpHを7以上9以下に維持して微生物反応により電子とプロトンとを生成させる。アノード室11の温度条件は常温から中高温、具体的には10℃~70℃程度とすることが好ましい。電子供与体として酢酸が用いられる場合であれば、下記化学式に示す反応により二酸化炭素、H、および電子が生成される。
[化学式1]
CHCOOH+2HO→2CO+8H+8e
 生成されたHは、カチオンを透過させる非導電膜15を通ってカソード室12に移動させる。一方、カソード室12には、正極溶液として電子受容体(例えばフェリシアン化カリウム)を10~200mM程度、含み、リン酸バッファを含む液を供給し、電子とプロトンと電子受容体とを反応させる。カソード室12には正極溶液に代えて酸素を含むガスを通気してもよく、リン酸バッファを充填して酸素を吹き込んで酸素を電子受容体として電子およびプロトンと反応させてもよい。
 電子受容体としてフェリシアン化カリウムを用いる場合は、カソード室12では下記化学式による還元反応により電子とプロトンが消費される。
[化学式2]
8Fe(CN) 3-+8e+8H→8FeH(CN) 3-
 正極として例えば白金を使用する等して酸素を電子受容体とするような場合であれば、下記化学式による還元反応を行わせてもよい。
[化学式3]
2O+8H+8e→4H
 このような反応によりアノード室11で生成された電子は負極として機能する第1の導電性充填材21から取り出され、アノード引き出し線23とカソード引き出し線24とを介して第2の導電性充填材22側に送られる。この過程で第1の導電性充填材21(負極)と第2の導電性充填材22(正極)との間に電流が流れ、発電することができる。
[実施例1]
 実施例1として図4に示す微生物発電装置2を作成した。発電装置2は、2つの正極用第2の導電性充填材22で1つの負極用の第1の導電性充填材21を挟む構成とし、全体で容積1050mL、アノード室11の容積は700mL、各カソード室12の容積は175mLとした。発電装置2には、アノード室11からの排出液を循環させる循環槽を備える循環路30を設け、循環路を流れる液のpHを調整するpH調整手段31を設置して、アノード室11内の液のpHが7以上9以下に保たれるようにした。pH調整手段31としては、アルカリ注入装置を用いた。
 第1の導電性充填材21は、発電装置1と同様に厚さ1cmのグラファイトフェルト(東洋カーボン株式会社製)4枚を導電性接着剤で張り合わせて構成した。接着剤は、グラファイトフェルトの面に部分的に(面全体の10%程度)に塗布すること(いわゆる「ベタ塗り」を避けること)で、互いに向かい合うグラファイトフェルトの面の微小な凹凸が接着剤で埋められてしまわないようにした。
 各グラファイトフェルトは大きさが250mm×70mmの長方形状であり、両表面は粗面である。第1の導電性充填材21は全体の体積が700cmで、アノード室11内とほぼ同一形状とされ、アノード室11内には空間が実質的に存在しない。よって、アノード室11に供給された液は第1の導電性充填材21を通って流れ、ショートパスは実質的に起こらない。アノード室11には種菌として下水処理場の生物処理槽から採取した活性汚泥を添加して培養し各グラファイトフェルト表面に微生物を付着させた。これにより、アノード室11内には4層のグラファイトフェルト層と5層の微生物層16とが形成され、アノード11室内の微生物濃度は約2,200mg/Lであった。
 一方、正極用の第2の導電性充填材22はそれぞれ、厚さ3mmのグラファイトフェルト1枚で構成した。第2の導電性充填材22は、厚さが異なる以外は負極用のグラファイトフェルトと同様の構成であり、両表面は粗面である。
 負極用の第1の導電性充填材21と正極用の第2の導電性充填材22との間には非導電膜15としてカチオン透過膜(デュポン株式会社製 商品名「ナフィオン」)を配置した。アノード室11には厚さ5mmのハニカムスペーサ(図では省略)を入れ、第1の導電性充填材21を非導電膜15に押しつけるようにして非導電膜と密着させた。第2の導電性充填材22も、厚さ5mmのハニカムスペーサ18を用いて第2の導電性充填材22を非導電膜15に押しつけるようにして非導電膜15と密着させた。
 カソード室12には、第2の導電性充填材22の表面のうち非導電膜15と接する側と反対側に、正極溶液が通液される液室26を設けた。液室には、電子受容体として50mMのフェリシアン化カリウムとリン酸バッファとを含む正極溶液を70mL/minの流入量となるように供給した。一方、アノード室11には、1,000mg/Lの濃度の酢酸と、50mMの濃度のリン酸バッファ、および塩化アンモニウムとを含む原液を70mL/minの流入量で供給した。
 第1の導電性充填材21にはアノード引き出し線23を接続し、第2の導電性充填材22にはカソード引き出し線24を接続し、アノード引き出し線23とカソード引き出し線24とを電気的に導通させた。アノード引き出し線23とカソード引き出し線24とはステンレス製針金で構成した。
 上記条件で微生物発電を行ったところ、発生した電圧は310mV、電流は1120mAであった。すなわち、アノード単位容積当りの発電量は、496W/mであった。このとき、回路の抵抗は、0.5Ωであった。
[実施例2]
 実施例2では、実施例1で用いた第1の導電性充填材の代わりに、1枚のグラファイトフェルト(厚さ3mm)を単独で第1の導電性充填材として用いた。これに合わせ、アノード室11の大きさを52.5mLにして第1の導電性充填材として用いるグラファイトフェルトがアノード室全体に充填されるようにした。その他の条件は実施例1と同じにして微生物発電を行ったところ、発生した電圧は305mV、電流は610mAであった。このとき、回路の抵抗は、0.5Ωであった。
[比較例1]
 比較例1として、実施例2で用いた厚さ3mmのグラファイトフェルト1枚を容積700mLのアノード室(実施例1のアノード室と同じ大きさのアノード室)に配置した。また、第2の導電性充填材と非導電膜とを挟むスペーサを取り外した。その他の条件は実施例1と同じにして微生物発電を行ったところ、発生した電圧は310mV、電流は15.5mAであった。このとき、回路の抵抗は、20Ωであった。
 上述した通り、本発明によれば、微生物を利用して高い発電効率で発電できることが示された。
 本発明は、微生物を利用した発電に用いることができる。

Claims (20)

  1.  微生物を保持し電子供与体を含む原液が供給されるアノード室と、
     電子受容体が供給されるカソード室と、
     対向する第1の面および第2の面を有し、前記アノード室と前記カソード室との間に配置される非導電膜と、
     前記非導電膜の前記第1の面に密着して広がる凹凸を有する粗面を有し、前記アノード室の内部と略同一形状とされた多孔体で構成され前記アノード室内に配置された第1の導電性充填材と、
     前記非導電膜の前記第2の面と密着して広がる凹凸を有する粗面を有する第2の導電性充填材と、を含む微生物発電装置。
  2.  前記第1の導電性充填材の前記粗面と前記非導電膜の前記第1の面の間に微生物層が形成され、
     前記原液は前記多孔体内を通って移動して前記微生物層に供給される請求項1に記載の微生物発電装置。
  3.  前記第1の導電性充填材および前記第2の導電性充填材は、それぞれの前記粗面の凹凸が維持された状態で、前記非導電膜に押しつけられ密着させられている請求項1に記載の微生物発電装置。
  4.  前記第1の導電性充填材は、0.01g/cm以上100g/cm以下で加圧されて前記非導電膜に密着させられている請求項3に記載の微生物発電装置。
  5.  前記第1の導電性充填材は弾性を有し、前記アノード室内部形状より大きく成形され、圧縮されて前記アノード室に充填される請求項4に記載の微生物発電装置。
  6.  前記非導電膜と前記第1の導電充填材とは、締付部材によって圧接されるか、または前記アノード室内にスペーサを挟み込んで圧接される請求項4に記載の微生物発電装置。
  7.  前記第1の導電性充填材は、フェルト、グラファイト、チタンまたはステンレスの少なくともいずれか一つを材料とする多孔性シート、発泡体または同一の多角形を並べた多孔体のいずれかによって形成される請求項1に記載の微生物発電装置。
  8.  前記第1の導電性充填材は、厚さが3mm以上40mm以下の板状に成形された立体である請求項1に記載の微生物発電装置。
  9. 前記立体は、多孔性グラファイトの一体成形体、または複数の多孔性グラファイトフェルトシートを貼り合わせて構成された積層体である請求項8に記載の微生物発電装置。
  10.  前記積層体は、導電性接着剤で接着されて貼り合わされる請求項9に記載の微生物発電装置。
  11.  前記第2の導電性充填材は、板状に形成された立体である請求項1に記載の微生物発電装置。
  12.  前記立体は、多孔性グラファイトの一体成形体、または複数の多孔性グラファイトシートを貼り合わせて構成された積層体である請求項11に記載の微生物発電装置。
  13.  前記立体は、多孔性グラファイトの一体成形体、または複数の多孔性グラファイトシートを貼り合わせて構成された積層体に白金、マンガンまたはコバルトを担持させた立体である請求項11に記載の微生物発電装置。
  14.  前記原液は、窒素源およびリン源を含む請求項1に記載の微生物発電装置。
  15.  前記原液は、電子メディエータを含まない請求項14に記載の微生物発電装置。
  16.  前記原液は、有機物濃度100mg/L以上10,000mg/L以下である請求項15に記載の微生物発電装置。
  17.  前記アノード室は、官能基を含まない請求項1に記載の微生物発電装置。
  18.  前記アノード室は、微生物濃度1g/L以上の微生物を保持する請求項17に記載の微生物発電装置。
  19.  前記アノード室は、前記原液が流入する流入口及び前記原液が流出する流出口を備える一対の壁面を有し、
     複数の多孔性グラファイトシートを貼り合わせて構成された積層体から成る前記第1の導電性充填材が、積層面を前記壁面に対して直交するように配置される請求項1に記載の微生物発電装置。
  20.  前記非導電膜はカチオン透過膜またはアニオン透過膜である請求項1に記載の微生物発電装置。
PCT/JP2008/072385 2007-12-21 2008-12-10 微生物発電装置 WO2009081730A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN200880120931.8A CN101897069B (zh) 2007-12-21 2008-12-10 微生物发电装置
US12/801,697 US8828567B2 (en) 2007-12-21 2010-06-21 Microbial power generation device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007329691A JP5458489B2 (ja) 2007-12-21 2007-12-21 微生物発電装置
JP2007-329691 2007-12-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/801,697 Continuation US8828567B2 (en) 2007-12-21 2010-06-21 Microbial power generation device

Publications (1)

Publication Number Publication Date
WO2009081730A1 true WO2009081730A1 (ja) 2009-07-02

Family

ID=40801038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/072385 WO2009081730A1 (ja) 2007-12-21 2008-12-10 微生物発電装置

Country Status (5)

Country Link
US (1) US8828567B2 (ja)
JP (1) JP5458489B2 (ja)
KR (1) KR101560425B1 (ja)
CN (1) CN101897069B (ja)
WO (1) WO2009081730A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105355928A (zh) * 2015-11-28 2016-02-24 成都九十度工业产品设计有限公司 一种表面钛/氮掺杂介孔石墨烯气凝胶电极
WO2018061058A1 (ja) * 2016-09-29 2018-04-05 パナソニック株式会社 微生物燃料電池及び廃液処理装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5359725B2 (ja) * 2009-09-16 2013-12-04 栗田工業株式会社 微生物発電方法及び微生物発電装置
CN102324526B (zh) * 2011-08-25 2014-07-30 哈尔滨佳泰达科技有限公司 一种微生物燃料电池复合材料阳极及制造方法
WO2013116950A1 (en) * 2012-02-09 2013-08-15 Kashuba Terry Microbial power cell
CN105981208A (zh) * 2014-02-13 2016-09-28 松下电器产业株式会社 微生物燃料电池、微生物燃料电池系统以及微生物燃料电池的使用方法
CN105355953A (zh) * 2015-11-28 2016-02-24 成都九十度工业产品设计有限公司 一种基于2,6-二叔丁基吡啶介质的微生物燃料电池
US10164282B2 (en) * 2016-11-13 2018-12-25 Soheil Bahrebar Microbial fuel cells and methods for generating an electric current
CN109534456B (zh) * 2018-11-12 2021-04-30 北京工业大学 一种应用于阳极氧化体系的Co3O4/石墨毡复合电极制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10233226A (ja) * 1996-08-29 1998-09-02 Korea Advanced Inst Of Sci Technol 電子伝達媒介体を使用しない生物燃料電池
JP2000133326A (ja) * 1998-10-30 2000-05-12 Canon Inc 生体代謝利用発電方法及び電池
JP2004517437A (ja) * 1999-07-07 2004-06-10 コリア インスティテュート オブ サイエンス アンド テクノロジー 廃水および廃水処理用活性スラッジを利用した生物燃料電池
JP2004342412A (ja) * 2003-05-14 2004-12-02 Ebara Corp 有機性物質を利用する発電方法及び装置
JP2006159112A (ja) * 2004-12-08 2006-06-22 National Institute Of Advanced Industrial & Technology 微生物担持電池兼電解装置及びこれを用いた電解方法
JP2007095470A (ja) * 2005-09-28 2007-04-12 Ebara Corp 生物発電用アノード及びその製造方法、並びに発電装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8277984B2 (en) * 2006-05-02 2012-10-02 The Penn State Research Foundation Substrate-enhanced microbial fuel cells
CN100405655C (zh) * 2005-06-03 2008-07-23 清华大学 一种以有机废水为燃料的单池式微生物电池
US20100178530A1 (en) * 2007-03-12 2010-07-15 Danmarks Tekniske Universitet (Technical Universit y of Denmark) Microbial Fuel Cell
WO2010078423A2 (en) * 2008-12-30 2010-07-08 The Penn State Research Foundation Cathodes for microbial electrolysis cells and microbial fuel cells

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10233226A (ja) * 1996-08-29 1998-09-02 Korea Advanced Inst Of Sci Technol 電子伝達媒介体を使用しない生物燃料電池
JP2000133326A (ja) * 1998-10-30 2000-05-12 Canon Inc 生体代謝利用発電方法及び電池
JP2004517437A (ja) * 1999-07-07 2004-06-10 コリア インスティテュート オブ サイエンス アンド テクノロジー 廃水および廃水処理用活性スラッジを利用した生物燃料電池
JP2004342412A (ja) * 2003-05-14 2004-12-02 Ebara Corp 有機性物質を利用する発電方法及び装置
JP2006159112A (ja) * 2004-12-08 2006-06-22 National Institute Of Advanced Industrial & Technology 微生物担持電池兼電解装置及びこれを用いた電解方法
JP2007095470A (ja) * 2005-09-28 2007-04-12 Ebara Corp 生物発電用アノード及びその製造方法、並びに発電装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
LOGAN B. ET AL.: "Graphite Fiber Brush Anodes for Increased Power Production in Air-Cathode Microbial Fuel Cells", ENVIRON. SCI. TECHNOL., vol. 41, no. 9, May 2007 (2007-05-01), pages 3341 - 3346, XP055008962, DOI: doi:10.1021/es062644y *
RABAEY K. ET AL.: "Tubular Microbial Fuel Cells for Efficient Electricity Generation", ENVIRON. SCI. TECHNOL., vol. 39, no. 20, 2005, pages 8077 - 8082, XP008142174, DOI: doi:10.1021/es050986i *
YI ZUO ET AL.: "Tubular Membrane Cathodes for Scalable Power Generation in Microbial Fuel Cells", ENVIRON. SCI. TECHNOL., vol. 41, no. 9, May 2007 (2007-05-01), pages 3347 - 3353 *
ZHEN HE ET AL.: "An Upflow Microbial Fuel Cell with an Interior Cathode: Assessment of the Internal Resistance by Impedance Spectroscopy", ENVIRON. SCI. TECHNOL., vol. 40, no. 17, 2006, pages 5212 - 5217, XP002458204, DOI: doi:10.1021/es060394f *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105355928A (zh) * 2015-11-28 2016-02-24 成都九十度工业产品设计有限公司 一种表面钛/氮掺杂介孔石墨烯气凝胶电极
WO2018061058A1 (ja) * 2016-09-29 2018-04-05 パナソニック株式会社 微生物燃料電池及び廃液処理装置

Also Published As

Publication number Publication date
CN101897069A (zh) 2010-11-24
US8828567B2 (en) 2014-09-09
JP5458489B2 (ja) 2014-04-02
JP2009152091A (ja) 2009-07-09
KR20100095553A (ko) 2010-08-31
KR101560425B1 (ko) 2015-10-26
US20100330397A1 (en) 2010-12-30
CN101897069B (zh) 2014-03-19

Similar Documents

Publication Publication Date Title
WO2009081730A1 (ja) 微生物発電装置
Tartakovsky et al. A comparison of air and hydrogen peroxide oxygenated microbial fuel cell reactors
US7491453B2 (en) Bio-electrochemically assisted microbial reactor that generates hydrogen gas and methods of generating hydrogen gas
JP5428328B2 (ja) 微生物発電方法及び微生物発電装置
JP5298589B2 (ja) 微生物発電装置
WO2008109911A1 (en) Microbial fuel cell
JP2006159112A (ja) 微生物担持電池兼電解装置及びこれを用いた電解方法
Pandey et al. Production of bio-electricity during wastewater treatment using a single chamber microbial fuel cell
JP2009158426A (ja) 微生物発電方法および微生物発電装置
EP2176405A1 (en) Method for obtaining a cathodophilic, hydrogen-producing.microbial culture, microbial culture obtained with this method and use of this microbial culture
JP5332196B2 (ja) 微生物発電方法および微生物発電装置
Liu et al. Enhancing the performance of a microbial electrochemical system with carbon-based dynamic membrane as both anode electrode and filtration media
US20200317543A1 (en) Purification unit and purification device
US20200317544A1 (en) Purification unit and purification device
TW201939801A (zh) 微生物發電裝置及微生物發電裝置的運轉方法
US8409735B2 (en) Microbial power generation method and microbial power generation device
KR20100109096A (ko) 기능성 전극을 장착한 미생물 연료 전지 단위체 및 이를 이용한 미생물 연료 전지
Cano Energy generation in a novel microbial fuel cell: characterization and dynamics of microbial communities using organic matter and ammonia as electron donors
JP5338588B2 (ja) 微生物発電方法および装置
JP6652149B2 (ja) 殺菌剤を用いる微生物発電装置及び微生物発電装置の運転方法
JP2009231230A (ja) 微生物発電方法および装置
WO2019078003A1 (ja) 微生物燃料電池、液体処理システム、及び液体処理構造体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880120931.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08863464

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107012178

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08863464

Country of ref document: EP

Kind code of ref document: A1