WO2009017139A1 - 燃料電池システム及びその制御方法 - Google Patents

燃料電池システム及びその制御方法 Download PDF

Info

Publication number
WO2009017139A1
WO2009017139A1 PCT/JP2008/063624 JP2008063624W WO2009017139A1 WO 2009017139 A1 WO2009017139 A1 WO 2009017139A1 JP 2008063624 W JP2008063624 W JP 2008063624W WO 2009017139 A1 WO2009017139 A1 WO 2009017139A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
cell system
heat
voltage
amount
Prior art date
Application number
PCT/JP2008/063624
Other languages
English (en)
French (fr)
Inventor
Kota Manabe
Hiroyuki Imanishi
Tomoya Ogawa
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to KR1020107004226A priority Critical patent/KR101152856B1/ko
Priority to EP08791856.1A priority patent/EP2178148B1/en
Priority to US12/670,849 priority patent/US8859157B2/en
Priority to CN200880100131XA priority patent/CN101755359B/zh
Priority to CA2692547A priority patent/CA2692547C/en
Publication of WO2009017139A1 publication Critical patent/WO2009017139A1/ja
Priority to US14/480,971 priority patent/US9577271B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04037Electrical heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04268Heating of fuel cells during the start-up of the fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • H01M16/003Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers
    • H01M16/006Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers of fuel cells with rechargeable batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04335Temperature; Ambient temperature of cathode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04358Temperature; Ambient temperature of the coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04365Temperature; Ambient temperature of other components of a fuel cell or fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04388Pressure; Ambient pressure; Flow of anode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04395Pressure; Ambient pressure; Flow of cathode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04559Voltage of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04567Voltage of auxiliary devices, e.g. batteries, capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04574Current
    • H01M8/04589Current of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • H01M8/04731Temperature of other components of a fuel cell or fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04865Voltage
    • H01M8/04873Voltage of the individual fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04865Voltage
    • H01M8/0488Voltage of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04895Current
    • H01M8/04902Current of the individual fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04895Current
    • H01M8/0491Current of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04492Humidity; Ambient humidity; Water content
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04634Other electric variables, e.g. resistance or impedance
    • H01M8/04649Other electric variables, e.g. resistance or impedance of fuel cell stacks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the present invention relates to a fuel cell system that supplies a necessary amount of heat.
  • a fuel cell generates electric energy by reacting hydrogen gas as a fuel gas with an oxidant gas.
  • Fuel cell systems mounted on automobiles and the like are controlled so that the hydrogen energy written in the fuel cells is converted into electric energy at high efficiency (hereinafter referred to as high-efficiency power generation). For this reason, fuel cells that generate high-efficiency power have a low rate of conversion from hydrogen energy to heat energy, and generate less heat.
  • a fuel cell system including a conventional heating device includes a heating unit that heats a cooling medium in a cooling medium circulation path of the fuel cell in order to supply heat necessary for heating (hereinafter referred to as heating required heat), and And a heat exchanger for supplying heat used for air conditioning heating (see, for example, Patent Document 2 or Patent Document 3).
  • heating required heat heat necessary for heating
  • heat exchanger for supplying heat used for air conditioning heating
  • Patent Document 1 Japanese Patent Laid-Open No. 2 0 4-3 0 9 7 9
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2 00 4-3 1 1 2 2 9
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2007-0 3 8 95 2 Disclosure of Invention
  • the present invention requires a fuel cell that generates power using fuel gas and oxidant gas as reaction gas, current control means for controlling the current of the fuel cell, voltage control means for controlling the voltage of the fuel cell, and a fuel cell system.
  • a calorific value control means for controlling the calorific value by calculating the required heat quantity and determining the current target value of the current control means and the voltage target value of the voltage control means so as to generate the calculated necessary heat quantity, and A fuel cell system provided.
  • a heating device that uses heat generated by the fuel cell as a heat source is provided, and the required heat amount includes a heating required heat amount required by the operating heating device.
  • the necessary heat amount includes a required heat amount of the machine required for warming up the fuel cell.
  • the necessary heat quantity includes a necessary heat quantity necessary for maintaining the temperature of the fuel cell system at a predetermined temperature.
  • control means is preferably controlled by low-efficiency power generation in which the power generation efficiency is lower than the high-efficiency power generation of the fuel cell.
  • the voltage control means is a DCZDC converter
  • the current control means is a reaction gas supply means.
  • the present invention also provides a fuel cell that generates power using fuel gas and oxidant gas as reaction gas, a secondary battery that discharges or discharges the output of the fuel cell, and controls the voltage of the secondary battery.
  • a fuel cell system having a voltage control means the required amount of heat required by the fuel cell system and the required output are calculated, and the fuel cell is generated with high efficiency based on the calculated required amount of heat and the required output.
  • High-efficiency power generation mode the first low-efficiency power generation mode in which the power generation efficiency is lower than the high-efficiency power generation with the voltage lower limit value as the first voltage lower limit value, and the voltage lower limit value lower than the first voltage lower limit value.
  • a fuel cell system comprising control means for controlling a fuel cell so as to operate in any one of a second low-efficiency power generation mode that is a two-voltage lower limit value.
  • a fuel cell comprising: a fuel cell that generates power using a fuel gas and an oxidant gas as a reaction gas; and a voltage control unit that controls the voltage of the fuel cell.
  • the high-efficiency power generation mode in which the fuel cell generates power with high efficiency, and the first low-efficiency with lower power generation efficiency than the high-efficiency power generation with the voltage lower limit as the second voltage lower limit
  • the fuel cell system includes a control unit that controls the fuel cell to operate in any one of the power generation modes.
  • a heating device that uses heat generated by the fuel cell as a heat source is provided, and the required heat amount includes a heating required heat amount required by the operating heating device.
  • the necessary heat generation amount includes a heat amount necessary for maintaining the temperature of the fuel cell at a predetermined temperature.
  • the necessary heat amount includes a necessary heat amount necessary for warming up the fuel cell.
  • the control means preferably increases the amount of the reaction gas supplied to the fuel cell when the first low efficiency power generation mode or the second low efficiency power generation mode is shifted to the high efficiency power generation mode. is there.
  • the present invention also provides a first step for determining the required heat amount required by the fuel cell system and the required required output, and the required heat amount and required output in the current-voltage curve of the fuel cell determined by the supply state of the reaction gas.
  • the fuel cell system is equipped with a heating device that uses the heat generated by the fuel cell as a heat source, and the required amount of heat is the amount of heat required by the operating heating device and the amount of heat required for warming up the fuel cell. It is preferable to include.
  • the required output includes a driving force required by a vehicle on which the fuel cell system is mounted and an output required by an auxiliary device of the fuel cell system.
  • the fuel cell system preferably includes a converter for setting the operating point.
  • FIG. 1 is a diagram showing the configuration of the fuel cell system according to the first embodiment.
  • Fig. 2 is a diagram showing a map of the amount of heat required for heating and the amount of heat exchanged by the heat exchanger.
  • Fig. 3 is a diagram showing a map of heat required for warm-up.
  • FIG. 4 is a diagram showing a maintenance required heat quantity map for maintaining the fuel cell at a predetermined temperature.
  • Figure 5 shows the IV characteristics of the fuel cell.
  • Figure 6 shows the fuel cell operating point based on the required heat and required output.
  • FIG. 7 is a flowchart according to the first embodiment.
  • FIG. 8 is a diagram showing a configuration of a fuel cell system according to the second embodiment.
  • FIG. 9 is a flowchart according to the second embodiment. Explanation of symbols
  • the fuel cell system is applied to a fuel cell vehicle.
  • the following embodiments are merely examples of the application form of the present invention, and do not limit the present invention.
  • FIG. 1 shows a fuel cell system 10.
  • the fuel cell system 10 of the first embodiment includes a fuel cell 100, a hydrogen system 20 that supplies fuel gas to the fuel cell, an air system 30 0 that supplies oxidant gas to the fuel cell, fuel It is composed of a cooling system 400 for cooling the battery, a load system 50 0 using the electric energy of the fuel cell, and a control unit 60 0 for controlling the fuel cell system.
  • the fuel cell 100 for example, a polymer electrolyte fuel cell is used.
  • a fuel cell stack in which a plurality of unit cells are stacked is used. Electricity is generated by supplying hydrogen gas as fuel gas and air as oxidant gas.
  • a current sensor 10 0 2 for detecting the current value of the fuel cell during power generation
  • a voltage sensor 10 0 4 for detecting the voltage across the terminals of the fuel cell
  • a temperature sensor 10 0 for measuring the temperature of the fuel cell It has.
  • Each detected value is input to the control unit 600.
  • the hydrogen system 200 for supplying the fuel gas to the fuel cell is a system including a path for hydrogen gas supplied from the hydrogen tank 20 2 having hydrogen as the fuel gas to the fuel cell 100.
  • the hydrogen gas supplied from the hydrogen tank 20 2 is in order of a pressure reducing valve 20 4 for reducing the pressure of the hydrogen gas to a predetermined pressure, a pressure sensor 2 0 6 for measuring the pressure of the hydrogen gas, and a hydrogen supply path 2 0 8 in this order. Is then supplied to the hydrogen gas flow path on the anode side of the fuel cell 100.
  • the detected hydrogen gas pressure value is input to the control unit 600, which controls the pressure reducing valve 204 so that the hydrogen gas pressure value becomes a predetermined value.
  • This hydrogen gas is used for power generation of the fuel cell 100, but not all the supplied amount is consumed, and unreacted hydrogen gas is discharged from the fuel cell 100.
  • the exhaust hydrogen gas usually has an increased content of water, which is a reaction product in the fuel cell.
  • the discharged hydrogen gas passes through the hydrogen gas circulation path 2 1 2 that joins the hydrogen pump 2 1 0 and the hydrogen supply path 2 0 8 that drive the hydrogen gas, and flows through the hydrogen supply path 2 0 8 To join.
  • the hydrogen pump 210 is shown in the present embodiment, but an ejector may be used. That is, since the hydrogen gas from the hydrogen tank has a sufficient pressure, the circulation hydrogen gas can be accompanied by the flow of the hydrogen gas from the hydrogen tank by using the execution.
  • the air system 300 that supplies the oxidant gas to the fuel cell is a route of the oxidant gas for supplying and discharging air (particularly, oxygen present in the air) to the fuel cell.
  • the air sucked from the suction port 30 2 includes a temperature sensor 3 0 4 for detecting the temperature of the air, an air pump 3 0 6 for pressurizing the air, and a pressure sensor 3 0 8 for detecting the pressure of the pressurized air.
  • the fuel cell 100 is supplied to the gas flow path on the cathode side.
  • the detected air temperature and air pressure are input to the control unit 600.
  • the air After the air is used for power generation of the fuel cell 100, it is discharged to the outside through the pressure regulating valve 30.
  • the air system for supplying air to the fuel cell 100 may be provided with a humidifier for humidifying the air.
  • the cooling system 400 for cooling the fuel cell is a cooling medium path for cooling the heat generated by the power generation of the fuel cell 100.
  • a cooling liquid is used as the cooling medium.
  • the cooling medium discharged from the fuel cell 10 0 is a temperature sensor 40 0 2 that detects the temperature of the cooling medium, a three-way valve 4 0 4 that controls the flow rate of the cooling medium to the heating heat exchange path 1 6, Evening bypass path 4 2 0 Three-way valve that controls the flow rate of the cooling medium 4 0 6, Raje evening that cools the cooling medium 4 0 8, Cooling medium pump that drives the circulation of the cooling medium 4
  • the exchange path 4 1 6 branches from the cooling medium circulation path so as to bypass the Raje evening 4 0 8, and uses the heat source of the cooling medium heated by the fuel cell 1 0 0 as the heat source of heating 4 1 After passing through 8, it merges with the coolant circulation path 4 1 4 again.
  • the Laje overnight bypass path 4 2 0 branches from the coolant circulation path 4 1 4 so as to bypass the Raje evening 4 0 8, and joins the coolant circulation path 4 1 4 again.
  • the three-way valve 4 0 4 on the heat exchange path for heating and the three-way valve 4 0 6 on the Raje overnight path are controlled by the control unit 60 0, respectively, to control the flow rate of the cooling medium.
  • the detected temperature of the cooling medium is input to the control unit 600.
  • the heat exchanger 4 1 8 functions as a heat source for the heating device 4 2 2.
  • the heating device 4 2 2 includes a heating temperature operation unit that can arbitrarily or automatically set the heating temperature. Moreover, it is preferable that the heating device 4 2 2 is provided with a temperature sensor that detects the temperature in the vehicle interior to be heated. The detected temperature in the passenger compartment is input to the control unit 600.
  • the load system that uses the electric energy of the fuel cell is connected to the fuel cell 10 0 0 and the drive motor that converts DC current to AC current 5 0 2 and the drive motor that drives the vehicle 5 0 4 is connected.
  • Inverter 502 has a three-phase bridge circuit composed of, for example, six transistors, and converts DC current into AC current by the switching action of ⁇ ranges.
  • the inverter 50 2 controls the output torque and the number of revolutions of the drive motor 50 4 by controlling the alternating current in response to the request of the control unit 600.
  • Capacitors 5 1 4 are provided to absorb surplus output from the fuel cell.
  • the load system 5 0 0 of the fuel cell is 0 so that the drive motor 5 0 2 and the drive motor 5 0 4 are in parallel.
  • a converter 5 0 6, a secondary battery 5 0 8, and auxiliary equipment 5 1 0 are provided.
  • the secondary battery 50 8 includes a voltage sensor 51 2 that measures the voltage of the secondary battery 5 08.
  • the DC / DC converter 5 0 6 controls the voltage value in the power generation of the fuel cell 10 0 0, and charges by controlling the voltage of the fuel cell 1 0 0 to the voltage of the secondary battery 5 0 8. It has a function.
  • Examples of the secondary battery 508 include a lead storage battery, a nickel metal hydride storage battery, and a lithium ion battery.
  • the auxiliary machinery 5 10 is connected to the secondary battery 5 0 8 and functions by consuming electric power supplied from the secondary battery 5 0 8.
  • Auxiliary machines 5 1 0 in the system of the present embodiment include a hydrogen pump 2 1 0, an air pump 3 0 6, a cooling medium pump 4 1 0, a humidifier, and the like. 0 Power is supplied from 8.
  • the control unit 60 that controls the fuel cell system controls the fuel cell system 10 according to the required heat amount required by the fuel cell system 10 and the required output required.
  • the required amount of heat required is the amount of heat required by the heating device 4 2 2 as a heat source, and the amount of heat required to warm up the fuel cell 1 0 0 to the optimal power generation temperature (hereinafter referred to as the amount of heat required for warm-up). ) and so on.
  • the required output includes the required output of the load system drive motor 50 4 and the required output of the auxiliary machinery 5 10.
  • the necessary heat quantity is calculated by the control unit 600.
  • the amount of heat required for heating is calculated with reference to a map of the amount of heat required for heating determined in advance based on the outside air temperature.
  • the heating required heat amount map is created in consideration of the cabin thermal insulation coefficient determined by the volume of the cabin and the presence or absence of insulation. It is also created taking into account the set temperature of the heating device 4 2 2 and the temperature in the passenger compartment.
  • Fig. 2 shows a map of the amount of heat required for heating 60 2 and the amount of heat 6 0 4 exchanged by the heat exchanger based on the outside air temperature under specified conditions. In the map of FIG. 2, for example, in the region where the temperature is 116 ° C.
  • the required heating heat amount 60 2 is larger than the heat amount 6 0 4 exchanged by the heat exchanger.
  • the amount of heat supplied to the heating device 4 2 2 is limited by the amount of heat exchanged by the heat exchanger 4 1 8. For this reason, sufficient heat cannot be supplied to the heating system in the following region, where the temperature is 116. Therefore, in the region of ⁇ 16 ° C. or lower, it is preferable to cause the fuel cell 100 to generate low-efficiency power, which will be described later, to increase the heat generation amount so that the shortage of heat can be supplied constantly. is there.
  • the required amount of heat for the dredger is the required amount of heat for the dredger determined in advance based on the outside air temperature. 4 Calculated with reference to the map.
  • Figure 3 shows a map of the required heat capacity of the machine based on the outside air temperature under specified conditions.
  • the amount of heat required for warm-up is preferably created in consideration of the temperature of the fuel cell 100 and the temperature of the cooling medium in addition to the outside air temperature.
  • the fuel cell 100 After dredging operation, the fuel cell 100 is at a predetermined temperature (around 80 degrees). Since the temperature of the fuel cell 100 after warm-up (around 80 degrees) is higher than the outside air temperature, the amount of heat that the fuel cell itself has is dissipated. In particular, under freezing conditions, the amount of heat released from the fuel cell 100 becomes greater than the amount of heat generated during normal power generation, and the fuel cell may not be maintained at a predetermined temperature. Therefore, the required heat quantity of the fuel cell after warming up must include the required heat quantity necessary for maintaining the fuel cell system 10 including the fuel cell at a predetermined temperature. A map of the required heat quantity for maintenance in the fuel cell is shown. The necessary heat quantity map in FIG.
  • the control unit 600 controls the three-way valves 4 0 4, 4 0 6 of the coolant circulation path 4 1 4.
  • the three-way valve 4 0 4 is controlled so that the cooling medium circulates through the heat exchange path 4 1 6 for heating. If heating is not required, close the three-way valve 4 0 4 leading to the heating heat exchange path so that the cooling medium does not circulate in the heating heat exchange path. If the cooling medium is not warmed, the three-way valve 4 0 6 is controlled so as to bypass the Raje evening 4 0 8 so that the cooling medium is not cooled, and the temperature of the cooling medium becomes high.
  • the three-way valve 4 06 is controlled so that the cooling medium passes through the Lager overnight 4 0 8.
  • the requested output is calculated by the control unit 600.
  • the output request of the drive motor is calculated from, for example, a request from the accelerator pedal and a vehicle speed detected by the vehicle speed sensor.
  • Auxiliary machinery 5 1 0 output demand is: hydrogen pump 2 1 0 ⁇ air pump 3 0 6 ⁇ cooling medium pump 4 1 0 Calculated by totaling the outputs required for TJP2008 / 063624.
  • control unit 600 is connected to the fuel cell 1 by D CZD C
  • FIG. Figure 5 shows the fuel cell current-voltage curve (hereinafter referred to as I-V curve) 6 0 8 and the operating point A on the I–V curve, which were experimentally determined.
  • Fuel cell high-efficiency power generation is defined as follows: Fuel cell 1 0 0 ⁇ Auxiliary machinery 5 1 0 and other fuel cell systems 1 0 Shows the optimal power generation efficiency of the entire I 1 V curve 6 0 8 There is an operating point.
  • the optimum power generation efficiency refers to the power generation efficiency at or near the maximum value or maximum value of power generation efficiency.
  • the current value is I 1 and the voltage value is V I.
  • the power generation efficiency of a fuel cell is the ratio of the output of the fuel cell to the hydrogen energy input to the fuel cell.
  • the hydrogen energy input is the product of the current value I 1 and the electromotive voltage Vma x of the fuel cell.
  • the electromotive force Vm a X of the fuel cell is calculated as follows. For example, if a fuel cell has 400 unit cells stacked, the electromotive voltage of the unit cell is 1.23 V, so the electromotive voltage of the fuel cell is 4 9 2 V Is required.
  • the output of the fuel cell is the product of the current value I 1 and the voltage value V 1 (I 1 XV 1).
  • the calorific value of the fuel cell is the energy obtained by subtracting the output of the fuel cell from the input hydrogen energy (I I X Vma x-I 1 X V 1).
  • the voltage value of high-efficiency power generation is controlled in the range of 50% to 70% of the electromotive voltage of the fuel cell.
  • the current value I is low voltage with respect to the operating point A on the I-V curve 6 0 8 of high efficiency power generation, and the voltage value V 2 ⁇ ⁇ current The operating point is controlled to operating point B which is 2. This results in a state of low-efficiency power generation in which the power generation efficiency is lower than that of high-efficiency power generation.
  • the reaction in the force sword is hindered, and the current value decreases at a predetermined voltage value.
  • the voltage is first controlled by the DCZDC converter.
  • the I 1 V curve may be changed first by controlling the air supply amount by the air pump 310.
  • the first low-efficiency power generation mode is defined as low-efficiency power generation in which the voltage value determined from the output torque request of the drive motor is the first voltage lower limit value and the first voltage lower limit value is the voltage lower limit value.
  • the DCZDC converter is controlled so that the voltage of the fuel cell is equal to or higher than the first voltage lower limit value according to the required output and the required heat, and the current value is changed by changing the amount of air supplied to the fuel cell. Control.
  • the voltage value of the fuel cell 10 0 is determined from the voltage value determined by the control limit of the DC / DC converter (for example, 15 V), and the voltage value determined by the output torque request of the drive motor 50 4 (for example, 1 2 0 V) It is desirable to control within this range.
  • the voltage value determined from the control limit is the second voltage lower limit value.
  • the lower limit value of the voltage can be set as the second lower limit value of the voltage to increase the amount of heat generation.
  • Low-efficiency power generation with the second voltage lower limit as the voltage lower limit is designated as the second low-efficiency power generation mode.
  • the required heat quantity P and the required output Q can be satisfied at the same time.
  • step S 1 0 The heating device of the fuel cell system 10 is operating, and the calorific value of the fuel cell 100 is used as a heat source for the heating device.
  • the heating set temperature is inputted by the heating temperature operation section.
  • the amount of heat required for heating is calculated using a map (step S 1 0 3).
  • the amount of heat required for warming up the fuel cell is calculated (step S 1 0 5).
  • the total value of the heating required heat quantity and the machine required heat quantity is the required heat quantity (Q a). If the system has reached the predetermined temperature, the heat required for maintenance is calculated instead of step S 1 0 5.
  • step S 1 0 7 the required output of the total value of the output request of the drive motor and the output request of the auxiliary devices of the fuel cell system 10 is calculated by the control unit 60 (step S 1 0 7).
  • the operating point of the fuel cell that can supply the output of the calculated required output and is on the I-V curve in high-efficiency power generation is obtained.
  • Q b normal calorific value
  • step S 1 1 5 it is determined whether there is an output torque request for driving mode. If it is determined that there is a drive torque output torque request (step S1 15: YES), the first low-efficiency power generation mode in which the lower limit value of the voltage is allowed up to the first voltage lower limit value (Ste S 1 1 7).
  • the current target value determines the voltage target value that satisfies the required heat amount and the required output within the allowable voltage range (step S 1 1 9).
  • the duty ratio of the DC / DC converter is adjusted so that the voltage of the fuel cell 100 becomes the voltage target value (step S 1 2 1). Further, the air supply amount is controlled by the air pump so that the current of the fuel cell 100 becomes the current target value (step S 1 2 1).
  • step S 1 15: NO the second low-efficiency power generation mode in which the lower limit value of the voltage is allowed up to the second voltage lower limit value is set (step S1 15: NO).
  • step S 1 2 3 The current target value determines the voltage target value within the allowable voltage range and satisfying the required heat and required output (step S 1 2 5).
  • the duty ratio of the D CZD C comparator is controlled so that the voltage of the fuel cell 100 becomes the voltage target value (step S 1 2 7).
  • the air supply amount is controlled by the air pump so that the current of the fuel cell 100 becomes the current target value (step S 1 2 7).
  • step S 1 1 1 After step 1 2 1 or step 1 2 7 has passed a fixed time, return to step S 1 0 3 again.
  • the determination at step S 1 1 1 it is preferable that the determination is made when the determination criterion of Q a> Q b is satisfied for a certain time. If it is determined in step S 1 1 1 that the required heat quantity (Q a) is smaller than the normal heat value (Q b) (step S 1 1 1: NO), the fuel cell 1 0 0 is in the high-efficiency power generation mode. A state is reached (step S 1 2 9). In this state, the operating point of the fuel cell can supply the required output. The voltage target value / current target value on the curve is calculated (step S 1 3 1).
  • the fuel cell system 10 can be generated with high efficiency while supplying the required amount of heat.
  • step S 1 3 5 after the power generation state is changed from the low-efficiency power generation mode to the high-efficiency power generation mode, it is determined whether the residual water amount in the cell is larger than a predetermined value (step S 1 3 5) .
  • the amount of residual water in the cell may be estimated from the current value of the fuel cell and the amount of supplied air, or may be estimated from the resistance value of the solid polymer membrane constituting the fuel cell.
  • step S 1 3 5 YES
  • the water accumulated in the gas flow path in the cell is discharged by increasing the reaction gas flow rate.
  • Step S 1 3 7 In the gas flow path on the cathode side of the fuel cell, the air supply is increased by an air pump. As a result, water can be discharged.
  • the water accumulated in the gas flow path on the anode side of the fuel cell may be discharged by driving the hydrogen pump in the hydrogen circulation path to increase the gas supply amount.
  • the I-V curve of high-efficiency power generation shows the most efficient curve, and the power generation efficiency is saturated with respect to the air supply amount. Therefore, even if the air supply is increased during high-efficiency power generation, the characteristics of the I-V curve do not change. If the voltage value is controlled to be constant by the DC / DC converter, the operating point of the fuel cell will not change. Therefore, the output of the fuel cell is constant, and there is no problem of surplus output being supplied.
  • step S 1 3 5: N 2 O the control of this embodiment is finished as it is.
  • the system block diagram of 2nd Embodiment is shown.
  • the system configuration of the second embodiment is a configuration in which a DCDC converter 5 07 is further provided at the output terminal of the fuel cell 100 in the fuel cell load system 500 in the first embodiment. That is, the load system 5 0 0 of the fuel cell system is configured such that the fuel cell 1 0 0 is connected in series with the DCDC converter 5 0 7, the drive motor driver 5 0 2 and the drive motor driver 5 0 4, In parallel with the drive inverter 5 0 2 and the drive driver 5 0 4, a D CZD C converter 5 0 6, a secondary battery 5 0 8, and auxiliary equipment 5 1 0 are provided.
  • the drive mode is increased by boosting the voltage of the fuel cell even when the voltage of the fuel cell is lower than the first voltage lower limit value. 0 4 can be operated. As a result, the voltage of the fuel cell 100 can be lowered to the second voltage lower limit value determined from the control limit of the DC ZD C comparator 507.
  • the amount of heat required for heating required by the operating heating device (step S 2 0 1) is calculated using a map (step S 2 0 3).
  • the amount of heat necessary for maintaining the temperature of the fuel cell system is calculated using a map (step S 2 0 5).
  • the total value of the heat required for heating and the heat required for maintenance becomes the required heat (Q a).
  • the required output of the total value of the output request of the drive motor 50 4 and the output request of the auxiliary equipment of the fuel cell system 10 is calculated by the control unit 600 (step S 2 0 7).
  • the calorific value (normal calorific value, Qb) of the fuel cell at the operating point that satisfies the required output in the high-efficiency power generation state is calculated (step S 2 0 9). It is determined whether the calculated required heat quantity (Q a) is larger than the normal calorific value (Q b) (step S 2 1 1).
  • step S 2 11 YES
  • step S 2 11 YES
  • step S 2 11 YES
  • step S 2 11 YES
  • step S 2 1 3 the second low-efficiency power generation in which the lower limit value of the voltage is allowed to the second voltage lower limit value regardless of whether or not the output torque is required for the drive motor.
  • the mode is set (step S 2 2 3).
  • a voltage target value and a current target value that satisfy the heat generation request and the output request within the allowable voltage range are determined (step S 2 2 5).
  • step S 2 2 7 The duty ratio of the DCZDC converter is controlled so that the fuel cell voltage becomes the voltage target value, and the air supply amount is controlled by the air pump so that the current becomes the current target value (step S 2 2 7 ).
  • step S 2 31 the control after step S 2 31 is the same as that after step S 1 3 1 of the first embodiment.
  • the required amount of heat of the fuel cell system is supplied by the heat generated by the fuel cell.
  • a heating unit is attached to the fuel cell system, and the amount of heat obtained by removing the amount of heating by the heating unit from the required amount of heat is calculated. It is also suitable to supply without excess or deficiency.
  • water collected in the low-efficiency power generation mode is drained after shifting to the high-efficiency power generation mode.
  • the reactive gas flow rate may be forcibly increased when shifting from the low efficiency power generation mode to the high efficiency power generation mode.
  • the estimation of the residual amount in the cell may be estimated from the duration of the low-efficiency power generation mode.
  • the reaction gas increase amount for drainage may be set to increase as the residual amount in the cell increases.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Fuel Cell (AREA)

Abstract

 燃料ガスと酸化剤ガスを反応ガスとして発電する燃料電池(100)と、燃料電池の電流を制御する電流制御手段(306)と、燃料電池の電圧を制御する電圧制御手段(506)と、燃料電池システムが必要とする必要熱量を算出し、算出された必要熱量を発熱するように前記電流制御手段の電流目標値と前記電圧制御手段の電圧目標値を決定することで発熱量を制御する発熱量制御手段(600)と、を備える。これによって、燃料電池システムを大型化することなく、かつ、燃料電池システムに必要な熱量を供給できる。

Description

P T/JP2008/063624
燃料電池システム及びその制御方法 技術分野
本発明は、 必要な熱量を供給する燃料電池システムに関する。 背景技術
燃料電池は、 燃料ガスとしての水素ガスと酸化剤ガスを反応させて電 気的エネルギを生成するものである。 自動車などに車載される燃料電池 システムは、 通常時において燃料電池に書投入された水素エネルギを高効 率で電気工ネルギに変換するように制御される (以下、 高効率発電)。 そ のため、 高効率発電している燃料電池は、 水素エネルギから熱エネルギ へ変換する割合は少なく、 発熱量が少ない。
その結果、 燃料電池を発電に適した温度 ( 8 0 付近) まで一定時間 内で暖機するために必要な熱量が不足していた。 また、 燃料電池システ ムが暖房装置を備えている場合、 高効率発電時の燃料電池から生じる熱 エネルギは少なく、 暖房の熱源としては不十分である。 そのため、 不足 分の熱量を補うこと目的とした、 燃料電池システムの考案がなされてき た。
従来の燃料電池システムとして、 供給する空気量を減少させることに より燃料電池を低効率で発電させる構成が知られている (例えば特許文 献 1 を参照)。 これにより、 燃料電池を暧機するための発熱量を増加させ ることが出来る。
また、 従来の暖房装置を備える燃料電池システムは、 暖房に必要な熱 量 (以下、 暖房必要熱量) を供給するために、 燃料電池の冷却媒体循環 路に、 冷却媒体を加熱する加熱手段、 及び、 空調用暖房に用いる熱を供 給する熱交換器を備えている (例えば、 特許文献 2又は特許文献 3を参 照)。 燃料電池からの発熱量が少ない場合には、 冷却媒体を加熱手段によ り加熱して、 暖房のために不足した熱量を供給していた。
特許文献 1 : 特開 2 0 0 4— 3 0 9 7 9号公報
特許文献 2 :特開 2 0 0 4— 3 1 1 2 2 9号公報
特許文献 3 :特開 2 0 0 7— 3 8 9 5 2号公報 発明の開示
発明が解決しょうとする課題
特許文献 1に記載の従来の燃料電池システムにおいて、 燃料電池の電 流一出力曲線と燃料電池に要求される出力に基づき、 燃料電池の電流と 電圧が一義的に決定されている。 そのため、 燃料電池システムが暖機の ために必要とする必要熱量に対して供給する発熱量が不足、 又は過剰と なるという問題があつた。
特許文献 2、 3に記載の従来の燃料電池システムにおいて、 不足分の 暖房必要熱量を供給するために加熱手段による加熱量を大きくする必要 があった。 その結果、 加熱手段は大きくなり、 燃料電池システムの大型 化を招いていた。
本発明は、 燃料電池システムを大型化することなく、 かつ、 燃料電池 システムに必要な熱量を供給することを目的とする。 課題を解決するための手段
本発明は燃料ガスと酸化剤ガスを反応ガスとして発電する燃料電池と、 燃料電池の電流を制御する電流制御手段と、 燃料電池の電圧を制御する 電圧制御手段と、 燃料電池システムが必要とする必要熱量を算出し、 算 出された必要熱量を発熱するように電流制御手段の電流目標値と電圧制 御手段の電圧目標値を決定することで発熱量を制御する発熱量制御手段 と、 を備える燃料電池システムである。
また、 燃料電池の発熱を熱源として用いる暖房装置を備え、 前記必要 熱量は作動している前記暖房装置が必要とする暖房必要熱量を含むこと が好適である。 P2008/063624 また、 前記必要熱量は、 燃料電池の暖機に必要な暧機必要熱量を含む ことが好適である。
また、 必要熱量は、 燃料電池システムの温度を所定温度に維持するた めに必要な維持必要熱量を含むことが好適である。
また、 制御手段は、 燃料電池の高効率発電より発電効率を低下させた 低効率発電で制御することが好適である。
また、 前記電圧制御手段は D C Z D Cコンバータで、 前記電流制御手 段は反応ガスの供給手段であることが好適である。
また、 本発明は燃料ガスと酸化剤ガスを反応ガスとして発電する燃料 電池と、 前記燃料電池の出力を充放し又は充電した電力を放電する二次 電池と、 前記二次電池の電圧を制御する電圧制御手段と、 を有する燃料 電池システムにおいて、 燃料電池システムが必要とする必要熱量と要求 される要求出力を算出し、 算出された必要熱量と要求出力に基づいて、 燃料電池を高効率で発電させる高効率発電モードと、 電圧の下限値を第 一電圧下限値とする高効率発電より発電効率が低下した第一低効率発電 モードと、 電圧の下限値が第一電圧下限値よりも小さい第二電圧下限値 である第二低効率発電モードとのいずれかのモードで動作するように燃 料電池を制御する制御手段を備えることを特徴とする燃料電池システム である。
また、 本発明は燃料ガスと酸化剤ガスを反応ガスとして発電する燃料 電池と、 前記燃料電池の電圧を制御する電圧制御手段と、 を有する燃料 電池システムにおいて、 燃料電池システムが必要とする必要熱量と要求 される要求出力に基づいて、 燃料電池を高効率で発電させる高効率発電 モードと、 電圧の下限値を第二電圧下限値とする高効率発電より発電効 率が低下した第一低効率発電モードとのいずれかのモードで動作するよ うに燃料電池を制御する制御手段を備える燃料電池システムである。 また、 前記燃料電池の発熱を熱源として用いる暖房装置を備え、 前記 必要熱量は作動している前記暖房装置が必要とする暖房必要熱量を含む ことが好適である。 また、 必要発熱量は燃料電池の温度を所定温度に維持するために必要 な維持必要熱量を含むことが好適である。
また、 前記必要熱量は燃料電池の暖機に必要な暖機必要熱量を含むこ とが好適である。
また、 制御手段は、 前記第一低効率発電モード又は前記第二低効率発 電モードから高効率発電モードに移行した場合に、 燃料電池に供給され る前記反応ガス量を増加させることが好適である。
また、 本発明は燃料電池システムが必要とする必要熱量と要求される 要求出力とを求める第 1ステップと、 反応ガスの供給状態により決まる 燃料電池の電流一電圧曲線において必要熱量と要求出力とを満たす電流 値と電圧値で定められる動作点を求める第 2ステツプと、 動作点で燃料 電池の発電が行われるように燃料電池の電流値と電圧値を制御する第 3 ステップと、 を有する燃料電池システムの制御方法である。
また、 燃料電池システムは燃料電池の発熱を熱源として用いる暖房装 置を備え、 必要熱量は作動している暖房装置が必要とする暖房必要熱量 と燃料電池の暖機に必要な暖気必要熱量とを含むことが好適である。
また、 要求出力は燃料電池システムが搭載された車両が要求する駆動 力と燃料電池システムの補機が要求する出力とを含むことが好適である。 また、 燃料電池システムは動作点を設定するためのコンバータを備え ることが好適である。 発明の効果
本発明によれば、 燃料電池システムの必要な必要熱量を供給すること ができる。
また、 燃料電池システムが必要とする必要熱量と要求される要求出力 に基づいて燃料電池の動作点を制御するため、 燃料電池システムに要求 される出力を供給しつつ、 必要熱量を供給することが出来る。 図面の簡単な説明 24 図 1は、 第 1の実施形態に係る燃料電池システムの構成を示す図であ る。
図 2は、 暖房必要熱量と熱交換器の交換する熱量のマップを示す図で ある。
図 3は、 暖機必要熱量マップを示す図である。
図 4は、 燃料電池を所定温度に維持するための維持必要熱量マツプを 示す図である。
図 5は、 燃料電池の I —V特性を示す図である。
図 6は、 必要熱量と要求出力に基づき燃料電池の動作点を求める図で ある。
図 7は、 第 1の実施形態に係るフローチャートである。
図 8は、 第 2の実施形態に係る燃料電池システムの構成を示す図であ る。
図 9は、 第 2の実施形態に係るフローチャートである。 符号の説明
1 0 燃料電池システム、 1 0 0 燃料電池、 1 0 2 電流センサ、 1 0 4 電圧センサ、 1 0 6 温度センサ、 2 0 0 水素系、 2 0 2 水 素タンク、 2 0 4 減圧弁、 2 0 6 圧力センサ、 2 0 8 水素供給路、 2 1 0 水素ポンプ、 2 1 2 水素ガス循環路、 3 0 0 エア系、 3 0 2 吸入口、 3 0 4 空気温度センサ、 3 0 6 エアポンプ、 3 0 8 圧 力センサ、 3 1 0 調圧弁、 40 0 冷却系、 4 0 2 , 4 1 2 温度セ ンサ、 4 0 4, 4 0 6 三方弁、 4 0 8 ラジェ一夕、 4 1 0 冷却媒 体ポンプ、 4 1 4 冷却媒体循環路、 4 1 6 暖房用熱交換路、 4 1 8 熱交換器、 4 2 0 ラジェ一タバイパス路、 4 2 2 暖房装置、 5 0 0 負荷系、 5 0 2 インバ一夕、 5 0 4 駆動モー夕、 5 0 6 D C/D Cコンバータ、 5 0 8 二次電池、 5 1 0 補機類、 5 1 2 電圧セン サ、 5 1 4 コンデンサ、 6 0 0 制御部、 6 0 2 暖房必要熱量、 6 必要熱量、 6 0 8 高効率発電の I — V曲線、 6 1 0 低効率発電の I — V曲線。 発明を実施するための最良の形態
以下、 第 1の実施形態を図 1〜図 7に基づいて説明する。 なお、 第 1 の実施形態は、 燃料電池システムを燃料電池車に適用したものである。 以下の実施形態は、 本発明の適用形態の単なる例示に過ぎず、 本発明を 限定するものではない。
図 1は、 燃料電池システム 1 0を示したものである。 第 1の実施形態 の燃料電池システム 1 0は、 燃料電池 1 0 0と、 燃料電池に燃料ガスを 供給する水素系 2 0 0、燃料電池に酸化剤ガスを供給するエア系 3 0 0、 燃料電池を冷却するための冷却系 4 0 0、 燃料電池の電気的エネルギを 利用する負荷系 5 0 0、 および、 燃料電池システムを制御する制御部 6 0 0から構成される。
燃料電池 1 0 0は、 例えば固体高分子型の燃料電池が用いられる。 第 1の実施形態では、 複数の単位電池を積層した燃料電池スタックを用い る。 燃料ガスとして水素ガス、 酸化剤ガスとして空気を供給して発電を 行う。 また、 発電時における燃料電池の電流値を検出する電流センサ 1 0 2 と、 燃料電池の端子間電圧を検出する電圧センサ 1 0 4、 及び、 燃 料電池の温度を測定する温度センサ 1 0 6を備えている。 検出されたそ れぞれの値は、 制御部 6 0 0に入力される。
燃料電池に燃料ガスを供給する水素系 2 0 0は、 燃料ガスとしての水 素を有する水素タンク 2 0 2から燃料電池 1 0 0へと供給される水素ガ スの経路を含む系である。水素夕ンク 2 0 2から供給される水素ガスは、 水素ガスを所定圧力に減圧する減圧弁 2 0 4、 水素ガスの圧力を測定す る圧力センサ 2 0 6、 水素供給路 2 0 8を順番に通過した後に、 燃料電 池 1 0 0のァノード側の水素ガス流路に供給される。 検出された水素ガ スの圧力値は制御部 6 0 0に入力され、 制御部 6 0 0が水素ガスの圧力 値が所定値になるように減圧弁 2 0 4を制御する。 この水素ガスは、 燃料電池 1 0 0の発電に用いられるが、 供給される 全量が消費されるわけではなく、 未反応の水素ガスは、 燃料電池 1 0 0 から排出される。 なお、 排出水素ガスは通常燃料電池内での反応生成物 である水の含有量が増加している。 排出された水素ガスは、 水素ガスを 駆動する水素ポンプ 2 1 0、 水素供給経路 2 0 8と合流する水素ガス循 環路 2 1 2を通過して、水素供給路 2 0 8を流れる水素ガスと合流する。 水素ガスの循環の駆動力として、 本実施形態では水素ポンプ 2 1 0を示 しているがェゼクタであってもよい。 すなわち、 水素タンクからの水素 ガスが十分の圧力があるので、 ェゼク夕を利用することで、 水素タンク からの水素ガスの流れによって、循環水素ガスを随伴することができる。 燃料電池に酸化剤ガスを供給するエア系 3 0 0は、 空気 (特に、 空気 中に存在する酸素) を燃料電池に供給、 及び、 排出するための酸化剤ガ スの経路である。 吸入口 3 0 2から吸入される空気は、 空気の温度を検 出する温度センサ 3 0 4、 空気を加圧するエアポンプ 3 0 6、 加圧され た空気の圧力を検出する圧力センサ 3 0 8を通過した後に、 燃料電池 1 0 0のカゾード側のガス流路に供給される。 検出された空気温度と空気 圧力は制御部 6 0 0に入力される。 空気は、 燃料電池 1 0 0の発電に用 いられた後、 調圧弁 3 1 0を介して外部に放出される。 なお、 燃料電池 1 0 0へ空気を供給するエア系には空気を加湿するための加湿器を備え ていてもよい。
燃料電池を冷却するための冷却系 4 0 0は、 燃料電池 1 0 0の発電に 伴う発熱を冷却するための冷却媒体の経路である。 本実施形態では、 冷 却媒体として冷却液を用いている。 燃料電池 1 0 0から排出される冷却 媒体は、 冷却媒体の温度を検出する温度センサ 4 0 2、 暖房用熱交換路 1 6への冷却媒体の流量を制御する三方弁 4 0 4、 ラジェ一夕バイパ ス路 4 2 0への冷却媒体の流量を制御する三方弁 4 0 6、 冷却媒体を冷 却するラジェ一夕 4 0 8、 冷却媒体の循環を駆動する冷却媒体ポンプ 4
1 0、 冷却媒体の温度を検出する温度センサ 4 1 2を順に備える冷却媒 体循環路 4 1 を流れて、 再び燃料電池 1 0 0に供給される。 暖房用熱 交換路 4 1 6は、 ラジェ一夕 4 0 8をバイパスするように冷却媒体循環 路から分岐し、 燃料電池 1 0 0により温められた冷却媒体の熱源を暖房 の熱源とする熱交換器 4 1 8を通過した後に、 再び冷却媒体循環路 4 1 4と合流する。 ラジェ一夕バイパス路 4 2 0は、 ラジェ一夕 4 0 8をバ ィパスするように冷却媒体循環路 4 1 4から分岐して、 再び冷却媒体循 環路 4 1 4と合流する。 暖房用熱交換路の三方弁 4 0 4とラジェ一夕バ ィパス路の三方弁 4 0 6はそれぞれ制御部 6 0 0により制御され、 冷却 媒体の流量を制御する。 検出された冷却媒体の温度は、 制御部 6 0 0に 入力される。
熱交換器 4 1 8は暖房装置 4 2 2の熱源として機能する。 暖房装置 4 2 2は、 暖房温度を任意に、 又は自動で設定することができる暖房温度 操作部を備えている。 また、 暖房装置 4 2 2は暖房対象の車室内の温度 を検出する温度センサを備えていることが好適である。 検出された車室 内の温度は制御部 6 0 0に入力される。
燃料電池の電気的エネルギを利用する負荷系 5 0 0は、 燃料電池 1 0 0に、直流電流を交流電流に変換する駆動モータのィンバ一夕 5 0 2と、 自動車を駆動する駆動モー夕 5 0 4とが接続されている。 インバー夕 5 0 2は、 例えば 6個のトランジスタから構成される 3相プリッジ回路を 備えており、 卜ランジス夕のスィツチング作用により直流電流を交流電 流に変換している。 インバ一夕 5 0 2は制御部 6 0 0の要求に応じて、 交流電流を制御して、 駆動モー夕 5 0 4の出力トルク及び回転数を制御 する。 燃料電池からの余剰出力を吸収するためにコンデンサ 5 1 4を備 えている。
更に、 燃料電池の負荷系 5 0 0は、 駆動モー夕のィンバ一夕 5 0 2と 駆動モ一夕 5 0 4と並列するように、 0。 0 コンバ一タ 5 0 6とニ 次電池 5 0 8と補機類 5 1 0を備えている。 二次電池 5 0 8は、 二次電 池 5 0 8の電圧を測定する電圧センサ 5 1 2を備えている。 D C / D C コンバータ 5 0 6は燃料電池 1 0 0の発電における電圧値を制御する機 能と、 燃料電池 1 0 0の電圧を二次電池 5 0 8の電圧に制御して充電す る機能を有する。 二次電池 5 0 8は、 例えば鉛蓄電池、 ニッケル水素蓄 電池、 リチウムイオン電池などが挙げられる。
補機類 5 1 0は、 二次電池 5 0 8と接続されており、 二次電池 5 0 8 から供給される電力を消費して機能する。 本実施形態のシステムにおけ る補機類 5 1 0として、 水素ポンプ 2 1 0、 エアポンプ 3 0 6、 冷却媒 体ポンプ 4 1 0、 加湿器などがあり、 これら補機類に二次電池 5 0 8か ら電力が供給される。
燃料電池システムを制御する制御部 6 0 0は、 燃料電池システム 1 0 の必要とする必要熱量、 及び、 要求する要求出力に応じて燃料電池シス テム 1 0を制御するものである。 必要とされる必要熱量として、 暖房装 置 4 2 2が熱源として要求する暖房必要熱量や、 燃料電池 1 0 0を最適 な発電温度まで暖機するために必要な熱量 (以下、 暖機必要熱量) など がある。 要求される要求出力として、 負荷系の駆動モータ 5 0 4の要求 出力や、 補機類 5 1 0での要求出力等がある。
必要熱量は制御部 6 0 0によって算出される。 暖房必要熱量は、 外気 の空気温度により予め求められた暖房必要熱量マツプを参照して、 算出 される。 暖房必要熱量マップは、 車室内の容積、 断熱材の有無等によつ て決まる車室断熱係数を考慮して作成される。 また、 暖房装置 4 2 2の 設定温度や車室内の温度も考慮して作成される。 図 2に所定条件化にお ける外気の空気温度に基づく暖房必要熱量 6 0 2と熱交換器の交換する 熱量 6 0 4のマップを示す。 図 2のマップでは、 例えば温度が一 1 6 °C 以下の領域では、 必要暖房熱量 6 0 2が熱交換器の交換する熱量 6 0 4 に対して大きくなる。 この領域では、 暖房装置 4 2 2に供給される熱量 が熱交換器 4 1 8の交換する熱量により制限される。 そのため、 温度が 一 1 6で以下の領域では十分な熱量を暖房装置に供給することが出来な いこととなる。 そこで、 — 1 6 °C以下の領域では、 燃料電池 1 0 0を後 述する低効率発電させて発熱量を増加させ、 不足分の熱量を定常的に供 給できるようにすることが好適である。
暧機必要熱量は、 外気の温度に基づいて予め求められた暧機必要熱量 4 マップを参照して、 算出される。 図 3に所定条件下における外気温度に 基づく暧機必要熱量 6 0 6のマップを示す。 なお、 暖機必要熱量は、 外 気温度に加えて燃料電池 1 0 0の温度や冷却媒体の温度を考慮して作成 することが好適である。
暧機運転後、 燃料電池 1 0 0は所定温度 ( 8 0度付近) となる。 暖機 後の燃料電池 1 0 0の温度 ( 8 0度付近) は外気温度に対して高い温度 となるため、 燃料電池自体の有する熱量を放熱してしまう。 特に、 氷点 下の条件では燃料電池 1 0 0からの放熱量が、 通常発電における発熱量 に対して大きくなり、燃料電池を所定温度に維持できない場合が生じる。 そのため、 暖気後の燃料電池の必要熱量には燃料電池を含めた燃料電池 システム 1 0を所定温度に維持するために必要な維持必要熱量を含むこ とが必要であり、 図 4に所定温度の燃料電池における維持必要熱量 6 0 7のマップを示す。 図 4の維持必要熱量マップは、 燃料電池システムの 所定温度における放熱係数と燃料電池 1 0 0の温度と外気温の差の積と して作成される。 維持必要熱量 6 0 7を考慮して燃料電池を発熱させる ことにより、 燃料電池温度が所定温度に対して低下する場合や、 燃料電 池システム 1 0が凍結する場合を防止することが出来る。
制御部 6 0 0は、 冷却媒体循環路 4 1 4の三方弁 4 0 4 , 4 0 6を制 御する。 暖房が必要な場合には暖房用熱交換路 4 1 6に冷却媒体が循環 するように三方弁 4 0 4を制御する。 また、 暖房が不要な場合は暖房用 熱交換路に冷却媒体が循環しないように、 暖房用熱交換路に通じる三方 弁 4 0 4を閉じる。 冷却媒体が暖まってない場合は冷却媒体を冷却しな いようにラジェ一夕 4 0 8をバイパスするように三方弁 4 0 6が制御さ れ、 また、 冷却媒体の温度が高温になった場合は冷却媒体がラジェ一夕 4 0 8を通過するように三方弁 4 0 6は制御される。
要求出力は、 制御部 6 0 0により算出される。 駆動モー夕 5 0 4の出 力要求は、 例えば、 アクセルペダルからの要求と、 車速センサが検出し た車速度などから算出される。 補機類 5 1 0における出力要求は、 水素 ポンプ 2 1 0 · エアポンプ 3 0 6 · 冷却媒体ポンプ 4 1 0を駆動するの TJP2008/063624 に必要な出力をそれぞれ合計して算出される。
また、 制御部 6 0 0は D CZD Cコンパ一夕 5 0 6により燃料電池 1
0 0の電圧値を制御する。 本実施形態では、 燃料電池 1 0 0の電圧値を 制御するために、 電圧センサ 1 0 4で検出される燃料電池 1 0 0の電圧 値と電圧センサ 5 1 2で検出される二次電池 5 0 8の電圧値の比に基づ き D C/D Cコンパ一夕 5 0 6のデューティー制御をしている。
図 5を用いて燃料電池 1 0 0の高効率発電に伴う発熱と出力について 説明する。 図 5には実験的に求めた高効率発電における燃料電池の電流 一電圧曲線 (以下、 I 一 V曲線) 6 0 8と、 I —V曲線上に動作点 Aを 示してある。 燃料電池の高効率発電とは、 燃料電池 1 0 0 ·補機類 5 1 0などを含めた燃料電池システム 1 0全体の最適な発電効率を示す I 一 V曲線 6 0 8上に燃料電池の動作点がある状態である。 最適な発電効率 とは、 発電効率の最大値ないし極大値又はその近傍の発電効率のことを いう。 動作点 Aにおいて電流値は I 1、 電圧値は V Iである。 燃料電池 の発電効率とは、 燃料電池に投入される水素エネルギに対する燃料電池 の出力の比である。 投入される水素エネルギとは、 電流値 I 1 と燃料電 池の起電圧 Vm a Xの積である。 燃料電池の起電圧 Vm a Xは、 次のよ うに計算される。 例えば、 燃料電池が単位電池を 4 0 0枚積層されてい る場合は、 単位電池の起電圧が 1. 2 3 Vであるので、 燃料電池の起電 圧は両者を掛け合わせて 4 9 2 Vと求められる。 燃料電池の出力は、 電 流値 I 1 と電圧値 V 1の積( I 1 XV 1 )である。燃料電池の発熱量は、 投入される水素エネルギから燃料電池の出力を引いたエネルギ ( I I X Vm a x - I 1 X V 1 ) となる。 なお、 高効率発電の電圧値は、 燃料電 池の起電圧の 5 0 %〜 7 0 %の範囲で制御されている。
燃料電池 1 0 0の発熱量を増加させるために、 高効率発電の I 一 V曲 線 6 0 8上の動作点 Aに対して低電圧であり電圧値 V 2 ·髙電流である 電流値 I 2である動作点 Bに動作点制御する。 これにより、 高効率発電 より発電効率が低下した低効率発電の状態となり、 動作点 Bの発熱量は
1 2 X Vm a X - I 2 XV 2と動作点 Aの発熱量に対して増加する。 燃料電池を動作点 Bで制御するために、 D Cノ D Cコンバータにより 電圧値を V 2に制御し、 高効率発電の I 一 V曲線 6 0 8上の動作点 Cと する。 次に、 エアポンプ 3 0 6により燃料電池への空気供給量を低下さ せ、 電流値を I 2に制御する。 ここで、 燃料電池 1 0 0への空気の供給 量が減少すると、 高効率発電の I 一 V曲線 6 0 8に対して発電効率が低 下した I — V曲線 6 1 0ができる。 空気の供給量の低下に伴い、 カソー ドにおける酸素の供給量、 及び、 生成された水の排出量が低下する。 そ のため、 力ソードにおける反応が阻害され、 所定の電圧値において電流 値が低下するからである。 なお、 実施形態では先に D C Z D Cコンバー 夕により電圧を制御したが、 エアポンプ 3 0 6による空気供給量を制御 して I 一 V曲線を先に変化させてもよい。
走行中において燃料電池 1 0 0の発熱量を増加させる場合は、 駆動モ 一夕 5 0 4等の出力要求を満たすために、 燃料電池をある程度高い電圧 値 V 2にして出力を確保するのが望ましい。 電庄値は、 駆動モー夕の出 力トルク要求から決まる電圧値 (例えば、 1 2 0 V ) から燃料電池の起 電圧の 5 0 %の範囲に制御するのが好適である。 ここで、 駆動モー夕の 出力卜ルク要求から決まる電圧値を第一電圧下限値とし、 第一電圧下限 値を電圧の下限値とする低効率発電を第一低効率発電モードとする。 第 一低効率発電では要求出力と必要熱量に応じて、 燃料電池の電圧を第一 電圧下限値以上とするように D C Z D Cコンバータにより制御し、 燃料 電池への空気の供給量を変化させ電流値を制御する。
氷点下始動時などの車の停止時に燃料電池 1 0 0の発熱量を大きく増 加させる場合は、 駆動モー夕 5 0 4の要求出力はなく、 補機類 5 1 0を 駆動する出力のみを供給できればよい。 そのため、 所定値に固定された 電圧値 V 2よりも電圧目標値を低く設定する低電圧低効率発電により、 より大きな発熱量を供給可能である。 燃料電池 1 0 0の電圧値は、 D C / D Cコンバータの制御限界から決まる電圧値 (例えば、 1 5 V ) から 駆動モータ 5 0 4の出力トルク要求から決まる電圧値 (例えば、 1 2 0 V ) の範囲に制御するのが望ましい。 ここで、 D C Z D Cコンバータの 24 制御限界から決まる電圧値を第二電圧下限値とする。 なお、 走行中にお いても駆動モータの出力トルク要求がない場合には、 電圧の下限値を第 二電圧下限値として、 発熱量を大きくすることができる。 第二電圧下限 値を電圧の下限値とする低効率発電を第二低効率発電モードとする。 次に、 図 6を用いて、 本実施形態の低効率発電による燃料電池 1 0 0 の出力と発熱量の関係について説明する。 制御部 6 0 0により求められ た必要熱量 Q [W] と要求出力 P [W] に基づき、 動作点 Dの電流値 I 3と電圧値 V 3が求められる。 すなわち、 燃料電池で消費される水素ェ ネルギ一は I 3 XVmax=Q + Pである。 これにより、 I 3 = (Q + P) /Vmaxと、 V 3 = (VmaxX P ) / (Q + P) と求まる。 求められた動 作点 (電流値 I 3と電流値 V 3 ) に燃料電池を制御することにより、 要 求熱量 Pと要求出力 Qを同時に満足することが出来る。 なお、 上記計算 に基づく動作点制御において、 必要熱量 Qは Q= (Vmax- V) X I とし て、 要求出力 Pは P = I XVという関係式をそれぞれ満たす。
次に、 第 1の実施形態における燃料電池の運転制御の一例を図 7によ り説明する。 なお、 図 7に示す制御は、 一定時間毎に逐次演算される。 燃料電池システム 1 0の暖房装置が作動していて、 燃料電池 1 0 0の 発熱量を暖房装置の熱源として用いている (ステップ S 1 0 1 )。 このと き、 暖房温度操作部により暖房の設定温度が入力されている。 暖房必要 熱量はマップを用いて算出される(ステップ S 1 0 3)。 燃料電池の暖気 必要熱量が算出される (ステップ S 1 0 5)。 ここで、 暖房必要熱量と暧 機必要熱量の合計値が必要熱量 (Q a) となる。 なお、 システムが所定 温度に達している場合は、 ステップ S 1 0 5に代えて維持必要熱量の計 算をする。
次に、 駆動モータの出力要求と燃料電池システム 1 0の補機類の出力 要求の合計値の要求出力が、 制御部 6 0 0で算出される (ステップ S 1 0 7 )。
算出された要求出力の出力を供給でき、 かつ、 高効率発電における I 一 V曲線上にある燃料電池の動作点が求められる。 この動作点における 63624 燃料電池の発熱量(通常発熱量、 Q b)を算出する(ステップ S 1 0 9 )。 算出された必要熱量(Q a)が、 通常発熱量(Q b)より大きいか判定す る(ステップ S 1 1 1 )。判定の結果、必要熱量(Q &)が通常発熱量(<313) より大きい場合 (ステップ S 1 1 1 : YE S ) は、 燃料電池 1 0 0は低 効率発電の状態となる (ステップ S 1 1 3 )。 次に、 駆動モー夕の出力ト ルク要求があるかを判定する(ステップ S 1 1 5)。 駆動モー夕の出力ト ルク要求があると判定された場合(ステップ S 1 1 5 : YE S)は、 電圧 の下限値は第一電圧下限値まで許容される第一低効率発電モードとなる (ステップ S 1 1 7)。 許容される電圧の範囲内で、 かつ、 必要熱量と要 求出力を満たす、 電圧目標値を電流目標値が決定する(ステップ S 1 1 9 )。燃料電池 1 0 0の電圧が電圧目標値となるように D C/D Cコンバ —夕のデューティ一比が制御される(ステップ S 1 2 1)。 また、 燃料電 池 1 0 0の電流が電流目標値となるように空気の供給量がエアポンプに より制御される(ステップ S 1 2 1 )。
駆動モー夕の出力トルク要求がないと判定された場合(ステップ S 1 1 5 : NO)は、 電圧の下限値は第二電圧下限値まで許容される第二低効 率発電モードとなる(ステップ S 1 2 3 )。 許容される電圧の範囲内で、 かつ、 必要熱量と要求出力を満たす、 電圧目標値を電流目標値が決定す る(ステップ S 1 2 5)。 燃料電池 1 0 0の電圧が電圧目標値となるよう に D CZD Cコンパ一夕のデューティー比が制御される(ステップ S 1 2 7)。 また、 燃料電池 1 0 0の電流が電流目標値となるように空気の供 給量がエアポンプにより制御される(ステップ S 1 2 7 )。
ステップ 1 2 1又はステップ 1 2 7がー定時間経過した後、 再びステ ップ S 1 0 3に戻る。 なお、 ステップ S 1 1 1の判定では、 Q a >Q b の判定基準が一定時間満たされた場合に判定をすることが好ましい。 ステップ S 1 1 1において必要熱量(Q a)が通常発熱量(Q b)より小 さいと判定された場合 (ステップ S 1 1 1 : NO) は、 燃料電池 1 0 0 は高効率発電モードの状態となる (ステップ S 1 2 9)。 この状態では、 燃料電池の動作点が要求出力の出力を供給できる高効率発電時の I 一 V 曲線上の電圧目標値 ·電流目標値が計算される (ステップ S 1 3 1 )。 高 効率発電における I 一 V曲線上では、 電圧値を決めれば電流値も同時に 決まるので、 D C Z D Cコンバータのデューティー制御をすることによ り電圧値の制御のみを行えばよい (ステップ S 1 3 3 )。 高効率発電によ り、 必要熱量の発熱量を供給しながら、 燃料電池システム 1 0を高効率 で発電することができる。
一方、 燃料電池 1 0 0の低効率発電時は、 空気の供給量が少なく、 燃 料電池内から発電に伴い生成した水を効果的に排出することが出来ず、 水が溜まるという問題がある。 そこで、 本実施形態では、 低効率発電モ 一ドから高効率発電モ一ドに発電状態が変更された後に、 セル内の残水 量が所定値より大きいか判定する(ステップ S 1 3 5 )。セル内残水量は、 燃料電池の電流値及び供給した空気量から推定してもよいし、 燃料電池 を構成する固体高分子膜の抵抗値より推定してもよい。 ここで、 セル内 残水量が所定値より多いと判断された場合(ステップ S 1 3 5 : Y E S ) は、 反応ガス流量を増加させることによりセル内のガス流路に溜まつた 水分を排出する(ステップ S 1 3 7 )。 燃料電池のカソード側のガス流路 では、 空気の供給量をエアポンプにより増加させる。 これにより、 水の 排出が行える。 なお、 燃料電池のアノード側のガス流路に溜まった水の 排出は、 水素循環路の水素ポンプを駆動してガスの供給量を増加させて 行ってもよい。 所定時間、 ガス流量を増加した後に本実施形態の制御は 終了する。 ここで、 高効率発電の I 一 V曲線は最も効率のよい曲線を示 しており、 空気供給量に対して発電効率が飽和した状態である。 そのた め、 高効率発電時に空気の供給量を増加させてもその I 一 V曲線の特性 は変化しない。 D C / D Cコンバータにより電圧値が一定に制御されて いれば、 燃料電池の動作点は変化しない。 そのため、 燃料電池の出力は 一定であり、 余剰の出力が供給されるという問題は生じない。
一方、セル内残水量が所定値より少ないと判断された場合(ステツプ S 1 3 5 : N O )は、 本実施形態の制御はそのまま終了する。
次に、 第 2の実施形態について図 8と図 9を用いて説明する。 図 8に 第 2の実施形態のシステム構成図を示す。 第 2の実施形態のシステム構 成は、 第 1の実施形態と燃料電池負荷系 5 0 0において、 燃料電池 1 0 0の出力端にも D C D Cコンバータ 5 0 7が更に備えられる構成であ る。 すなわち、 燃料電池システムの負荷系 5 0 0は、 燃料電池 1 0 0が D C D Cコンバータ 5 0 7と駆動モ一夕のィンバ一夕 5 0 2と駆動モ 一夕 5 0 4と直列に接続され、 駆動モー夕のインバー夕 5 0 2と駆動モ 一夕 5 0 4と並列に、 D CZD Cコンバータ 5 0 6と 2次電池 5 0 8と 補機類 5 1 0を備えている。 燃料電池 1 0 0の出力端に D C/D Cコン バー夕 5 0 6を備える構成により、 燃料電池の電圧が第一電圧下限値よ り低い場合であっても昇圧させることにより、 駆動モー夕 5 0 4を動作 させることが出来る。 これにより、 D C ZD Cコンパ一夕 5 0 7の制御 限界から決まる第二電圧下限値まで燃料電池 1 0 0の電圧を低下させる ことが出来る。
次に、 第 2の実施形態の燃料電池システムの運転制御の一例を図 9に より説明する。 第 2の実施形態の運転制御では、 燃料電池システム 1 0 が所定温度である場合であって、 燃料電池システムの温度維持に必要な 維持必要熱量 6 0 7を燃料電池システム 1 0の必要熱量に含む制御につ いて説明する。
作動している暖房装置 (ステップ S 2 0 1 ) が必要とする暖房必要熱 量が、 マップを用いて算出される(ステップ S 2 0 3)。 燃料電池システ ムの温度維持に必要な維持必要熱量がマツプを用いて算出される (ステ ップ S 2 0 5 )。 ここで、 暖房必要熱量と維持必要熱量の合計値が必要熱 量 ( Q a ) となる。
次に、 駆動モー夕 5 0 4の出力要求と燃料電池システム 1 0の補機類 の出力要求の合計値の要求出力が、 制御部 6 0 0で算出される (ステツ プ S 2 0 7 )。高効率発電状態において要求出力を満たす動作点における 燃料電池の発熱量(通常発熱量、 Q b)を算出する(ステップ S 2 0 9 )。 算出された必要熱量(Q a)が、 通常発熱量(Q b)より大きいか判定す る(ステップ S 2 1 1 )。判定の結果、必要熱量(Q a)が通常発熱量(Q b) より大きい場合 (ステップ S 2 1 1 : Y E S ) は、 燃料電池 1 0 0は低 効率発電の状態となる(ステップ S 2 1 3 )。本実施形態で低効率発電(ス テツプ S 2 1 3 ) となると、 駆動モー夕の出力トルク要求の有無に係ら ず、 電圧の下限値が第二電圧下限値まで許容される第二低効率発電モー ドとなる (ステップ S 2 2 3 )。 許容される電圧の範囲内で、 かつ、 発熱 要求と出力要求を満たす、 電圧目標値と電流目標値が決定される (ステ ップ S 2 2 5 )。燃料電池の電圧が電圧目標値となるように D C Z D Cコ ンバ一夕のデューティ一比が制御され、 電流が電流目標値となるように 空気の供給量がエアポンプにより制御される (ステップ S 2 2 7 )。 判定の結果、 必要熱量 (Q a ) が通常発熱量 (Q b ) より小さい場合 (ステップ S 2 1 1 : N O )は、高効率発電となる(ステップ S 2 2 9 )。 ステップ S 2 3 1以降の制御は、 第 1の実施形態のステップ S 1 3 1以 降と同じである。
本実施形態では、 燃料電池システムの必要熱量を燃料電池の発熱によ り供給したが、 燃料電池システムに付属的に加熱手段を設け必要熱量か ら加熱手段による加熱量を除いた熱量を燃料電池により過不足なく供給 するのも好適である。
また、 本実施形態では低効率発電モードで溜まった水の排水を高効率 発電モードへ移行後に行っていたが、 低効率発電モードから高効率発電 モードに移行する際に排水をすることも好適である。 この場合、 低効率 発電モードからの高効率発電モードの移行時に強制的に反応ガス流量を 増加させればよい。 また、 セル内残推量の推定は、 低効率発電モードの 継続時間から推定してもよい。 さらに排水のための反応ガス増加量はセ ル内残推量が多いほど増量するように設定しても良い。

Claims

1 . 燃料ガスと酸化剤ガスを反応ガスとして発電する燃料電池と、 前記燃料電池の電流を制御する電流制御手段と、
前記燃料電池の電圧を制御する電圧制御手段と、
燃料電池システムが必要とする必要熱量を算出し、 算出された必要熱 量を発熱するように前記電流制御手段の電流目標値と前記電圧制御手段 請
の電圧目標値を決定することで発熱量を制御する発熱量制御手段と、 を備える燃料電池システム。
2 . 請求項 1に記載の燃料電池システムにおいて、
前記燃料電池の発熱を熱源として用いる暖房装置を備え、
前記必要熱量は作動している前記暖房装置が必要とする暖房必要熱量 を含む燃料電池システム。
3 · 請求項 1又は請求項 2に記載の燃料電池システムにおいて、
前記必要熱量は、 燃料電池の暧機に必要な暖機必要熱量を含む燃料電 池システム。
4 . 請求項 1から請求項 3のいずれか一つに記載の燃料電池システムに おいて、
前記必要熱量は、 燃料電池システムの温度を所定温度に維持するため に必要な維持必要熱量を含む燃料電池システム。
5 . 請求項 1から請求項 3のいずれかの一つに記載の燃料電池システム において、
前記制御手段は、 燃料電池の髙効率発電より発電効率を低下させた低 効率発電で制御する燃料電池システム。
6 . 請求項 1から請求項 5のいずれか一つに記載の燃料電池システムに おいて、
前記電圧制御手段は D C Z D Cコンバ一夕で、 前記電流制御手段は反 応ガスの供給手段である燃料電池システム。
7 . 燃料ガスと酸化剤ガスを反応ガスとして発電する燃料電池と、
前記燃料電池の出力を充放し又は充電した電力を放電する二次電池と、 前記二次電池の電圧を制御する電圧制御手段と、
を有する燃料電池システムにおいて、
燃料電池システムが必要とする必要熱量と要求される要求出力を算出 し、 算出された必要熱量と要求出力に基づいて、 燃料電池を高効率で発 電させる高効率発電モードと、 電圧の下限値を第一電圧下限値とする高 効率発電より発電効率が低下した第一低効率発電モードと、 電圧の下限 値が第一電圧下限値よりも小さい第二電圧下限値である第二低効率発電 モードとのいずれかのモードで動作するように燃料電池を制御する制御 手段を備えることを特徴とする燃料電池システム。
8 . 燃料ガスと酸化剤ガスを反応ガスとして発電する燃料電池と、 前記燃料電池の電圧を制御する電圧制御手段と、
を有する燃料電池システムにおいて、
燃料電池システムが必要とする必要熱量と要求される要求出力に基づ いて、 燃料電池を高効率で発電させる高効率発電モードと、 電圧の下限 値を第二電圧下限値とする高効率発電より発電効率が低下した第二低効 率発電モードとのいずれかのモードで動作するように燃料電池を制御す る制御手段を備える燃料電池システム。
9 . 請求項 7又は請求項 8に記載の燃料電池システムにおいて、 前記燃料電池の発熱を熱源として用いる暖房装置を備え、
前記必要熱量は作動している前記暖房装置が必要とする暖房必要熱量 を含む燃料電池システム。
1 0 . 請求項 7から請求項 9のいずれか一つに記載の燃料電池システム において、
前記必要熱量は燃料電池の暧機に必要な暖機必要熱量を含む燃料電池 システム。
1 1 . 請求項 7から請求項 9のいずれか一つに記載の燃料電池システム において、
前記必要発熱量は燃料電池の温度を所定温度に維持するために必要な 維持必要熱量を含む燃料電池システム。
1 2 . 請求項 7から請求項 9のいずれか一つに記載の燃料電池システム において、
前記制御手段は、 前記第一低効率発電モード又は前記第二低効率発電 モードから高効率発電モードに移行した場合に、 燃料電池に供給される 前記反応ガス量を増加させる燃料電池システム。
1 3 . 燃料電池システムが必要とする必要熱量と要求される要求出力と を求める第 1ステツプと、
反応ガスの供給状態により決まる燃料電池の電流一電圧曲線において 前記必要熱量と前記要求出力とを満たす電流値と電圧値で定められる動 作点を求める第 2ステップと、
前記動作点で燃料電池の発電が行われるように燃料電池の電流値と電 圧値を制御する第 3ステップと、
を有する燃料電池システムの制御方法。
1 4 . 請求項 1 3に記載の燃料電池システムの制御方法において、 前記燃料電池システムは燃料電池の発熱を熱源として用いる暖房装置 を備え、
前記必要熱量は作動している暖房装置が必要とする暖房必要熱量と燃 料電池の暖機に必要な暖気必要熱量とを含む燃料電池システムの制御方 法。
1 5 . 請求項 1 3又は請求項 1 4に記載の燃料電池システムの制御方法 において、
前記要求出力は前記燃料電池システムが搭載された車両が要求する駆 動力と前記燃料電池システムの補機が要求する出力とを含む燃料電池シ ステムの制御方法。
1 6 . 請求項 1 3または請求項 1 4の何れか一つに記載の燃料電池シス テムの制御方法において、
前記燃料電池システムは動作点を設定するためのコンバータを備える 燃料電池システムの制御方法。
PCT/JP2008/063624 2007-07-30 2008-07-23 燃料電池システム及びその制御方法 WO2009017139A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020107004226A KR101152856B1 (ko) 2007-07-30 2008-07-23 연료전지시스템 및 그 제어방법
EP08791856.1A EP2178148B1 (en) 2007-07-30 2008-07-23 Fuel cell system and its control method
US12/670,849 US8859157B2 (en) 2007-07-30 2008-07-23 Fuel cell system and its control method
CN200880100131XA CN101755359B (zh) 2007-07-30 2008-07-23 燃料电池系统及其控制方法
CA2692547A CA2692547C (en) 2007-07-30 2008-07-23 Fuel cell system with heat generation quantity control and its control method
US14/480,971 US9577271B2 (en) 2007-07-30 2014-09-09 Fuel cell system and its control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007197057A JP4458126B2 (ja) 2007-07-30 2007-07-30 燃料電池システム及びその制御方法
JP2007-197057 2007-07-30

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/670,849 A-371-Of-International US8859157B2 (en) 2007-07-30 2008-07-23 Fuel cell system and its control method
US14/480,971 Continuation US9577271B2 (en) 2007-07-30 2014-09-09 Fuel cell system and its control method

Publications (1)

Publication Number Publication Date
WO2009017139A1 true WO2009017139A1 (ja) 2009-02-05

Family

ID=40304369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/063624 WO2009017139A1 (ja) 2007-07-30 2008-07-23 燃料電池システム及びその制御方法

Country Status (7)

Country Link
US (2) US8859157B2 (ja)
EP (1) EP2178148B1 (ja)
JP (1) JP4458126B2 (ja)
KR (1) KR101152856B1 (ja)
CN (1) CN101755359B (ja)
CA (1) CA2692547C (ja)
WO (1) WO2009017139A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130059214A1 (en) * 2010-05-27 2013-03-07 Utc Power Corporation Fuel cell contaminant removal method

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4910791B2 (ja) * 2007-03-12 2012-04-04 トヨタ自動車株式会社 燃料電池システム
JP5476800B2 (ja) * 2009-06-04 2014-04-23 トヨタ自動車株式会社 燃料電池システム
KR101033900B1 (ko) * 2009-06-23 2011-05-11 현대자동차주식회사 연료전지 수퍼캡 직결형 하이브리드 차량의 동력분배장치 및 방법
JP5333007B2 (ja) * 2009-07-27 2013-11-06 トヨタ自動車株式会社 燃料電池システム
WO2011135610A1 (ja) * 2010-04-27 2011-11-03 トヨタ自動車株式会社 燃料電池システム
WO2011148426A1 (ja) 2010-05-27 2011-12-01 トヨタ自動車株式会社 燃料電池システム
CN102623725A (zh) * 2011-01-30 2012-08-01 扬光绿能股份有限公司 燃料电池系统及其控制方法
JP5786446B2 (ja) * 2011-05-18 2015-09-30 日産自動車株式会社 燃料電池システム
JP5736282B2 (ja) * 2011-09-09 2015-06-17 本田技研工業株式会社 燃料電池車両
EP2763226A4 (en) * 2011-09-29 2015-06-10 Toto Ltd SOLID ELECTROLYTE FUEL CELL
CN102723513A (zh) * 2012-06-29 2012-10-10 上海锦众信息科技有限公司 一种燃料电池的运行方法
US9577274B2 (en) * 2012-09-17 2017-02-21 Korea Institute Of Energy Research Apparatus and method for managing fuel cell vehicle system
CN102956905B (zh) * 2012-09-21 2014-10-22 同济大学 一种燃料电池堆热管理模拟系统
TWI539124B (zh) * 2012-11-13 2016-06-21 財團法人工業技術研究院 發熱裝置的供熱方法
JP6239912B2 (ja) * 2013-09-24 2017-11-29 トヨタ自動車株式会社 温度制御装置、温度制御方法
US9929449B2 (en) 2014-06-10 2018-03-27 Vertiv Energy Systems, Inc. Systems and methods for warming batteries
JP6123774B2 (ja) * 2014-11-11 2017-05-10 トヨタ自動車株式会社 燃料電池システム
JP6229642B2 (ja) 2014-11-15 2017-11-15 トヨタ自動車株式会社 電源システムおよび燃料電池の電圧制御方法
JP6304141B2 (ja) 2015-06-24 2018-04-04 トヨタ自動車株式会社 燃料電池システム
JP6582614B2 (ja) * 2015-06-26 2019-10-02 トヨタ自動車株式会社 エア供給量の制御装置
KR101836611B1 (ko) 2016-04-07 2018-03-09 현대자동차주식회사 연료전지차량의 시동 제어방법
KR101866020B1 (ko) * 2016-04-26 2018-06-08 현대자동차주식회사 연료전지 차량의 시동 제어방법
KR101836624B1 (ko) 2016-04-26 2018-03-08 현대자동차주식회사 연료전지 차량의 시동 제어방법
DE102017202704A1 (de) 2017-02-20 2018-08-23 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Betrieb eines Brennstoffzellensystems
JP2018147614A (ja) * 2017-03-02 2018-09-20 三菱自動車工業株式会社 燃料電池システム
JP6958419B2 (ja) * 2018-02-22 2021-11-02 トヨタ自動車株式会社 燃料電池システムおよびその制御方法
JP7322498B2 (ja) * 2019-05-15 2023-08-08 株式会社デンソー 燃料電池システム
JP7200953B2 (ja) * 2020-01-08 2023-01-10 トヨタ自動車株式会社 燃料電池システムおよび燃料電池システムの制御方法
JP7298544B2 (ja) * 2020-05-25 2023-06-27 トヨタ自動車株式会社 燃料電池システム
JP7306327B2 (ja) * 2020-05-29 2023-07-11 トヨタ自動車株式会社 燃料電池システム
DE102020124577A1 (de) 2020-09-22 2022-03-24 Audi Aktiengesellschaft Verfahren zum Regeln und Einstellen von Spannungs-Strom-Paaren wenigstens einer Brennstoffzelle, Brennstoffzellensystem und Kraftfahrzeug
JP7434142B2 (ja) * 2020-12-18 2024-02-20 株式会社東芝 燃料電池システムの運転方法及び燃料電池システム
CN113745587B (zh) * 2021-07-27 2023-05-30 东风汽车集团股份有限公司 一种低温冷启动燃料电池用电负载加载方法及系统
KR20230033281A (ko) 2021-09-01 2023-03-08 현대자동차주식회사 연료전지 운전제어기 및 운전제어방법
CN114188571B (zh) * 2021-12-03 2023-08-08 北京亿华通科技股份有限公司 一种车载燃料电池系统及其启动运行控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06260196A (ja) * 1993-03-05 1994-09-16 Fuji Electric Co Ltd 燃料電池式電気自動車の暖房装置
JP2000048845A (ja) * 1998-07-24 2000-02-18 Toyota Motor Corp 燃料電池システム
JP2004030979A (ja) 2002-06-21 2004-01-29 Equos Research Co Ltd 燃料電池システム
JP2004311229A (ja) 2003-04-08 2004-11-04 Nissan Motor Co Ltd 燃料電池システム
JP2007038952A (ja) 2005-08-05 2007-02-15 Suzuki Motor Corp 燃料電池を搭載した車両の空調装置
JP2007149595A (ja) * 2005-11-30 2007-06-14 Toyota Motor Corp 燃料電池システム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6096449A (en) * 1997-11-20 2000-08-01 Avista Labs Fuel cell and method for controlling same
JP4464474B2 (ja) * 1998-06-25 2010-05-19 トヨタ自動車株式会社 燃料電池システム、燃料電池車両及び燃料電池制御方法
JP4053289B2 (ja) * 2001-12-12 2008-02-27 本田技研工業株式会社 蓄電池の温度制御装置、及びそれを用いた車両装置
JP4811626B2 (ja) * 2003-08-25 2011-11-09 トヨタ自動車株式会社 車両用の燃料電池システム及び電気自動車
JP2006134674A (ja) 2004-11-05 2006-05-25 Honda Motor Co Ltd 燃料電池システム
JP4030063B2 (ja) * 2004-12-28 2008-01-09 本田技研工業株式会社 燃料電池システムおよび燃料電池システムの起動方法
US7393602B2 (en) * 2005-04-14 2008-07-01 Gm Global Technology Operations, Inc. Method to begin coolant circulation to prevent MEA overheating during cold start
JP2007095617A (ja) * 2005-09-30 2007-04-12 Hitachi Ltd 燃料電池装置及びその制御方法
JP2007149574A (ja) * 2005-11-30 2007-06-14 Toyota Motor Corp 燃料電池システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06260196A (ja) * 1993-03-05 1994-09-16 Fuji Electric Co Ltd 燃料電池式電気自動車の暖房装置
JP2000048845A (ja) * 1998-07-24 2000-02-18 Toyota Motor Corp 燃料電池システム
JP2004030979A (ja) 2002-06-21 2004-01-29 Equos Research Co Ltd 燃料電池システム
JP2004311229A (ja) 2003-04-08 2004-11-04 Nissan Motor Co Ltd 燃料電池システム
JP2007038952A (ja) 2005-08-05 2007-02-15 Suzuki Motor Corp 燃料電池を搭載した車両の空調装置
JP2007149595A (ja) * 2005-11-30 2007-06-14 Toyota Motor Corp 燃料電池システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2178148A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130059214A1 (en) * 2010-05-27 2013-03-07 Utc Power Corporation Fuel cell contaminant removal method

Also Published As

Publication number Publication date
JP2009032605A (ja) 2009-02-12
CN101755359A (zh) 2010-06-23
KR20100035182A (ko) 2010-04-02
CN101755359B (zh) 2013-03-27
CA2692547A1 (en) 2009-02-05
JP4458126B2 (ja) 2010-04-28
US20150064589A1 (en) 2015-03-05
CA2692547C (en) 2012-03-20
EP2178148A4 (en) 2012-06-27
US8859157B2 (en) 2014-10-14
US9577271B2 (en) 2017-02-21
EP2178148B1 (en) 2013-08-21
KR101152856B1 (ko) 2012-06-12
US20100203409A1 (en) 2010-08-12
EP2178148A1 (en) 2010-04-21

Similar Documents

Publication Publication Date Title
WO2009017139A1 (ja) 燃料電池システム及びその制御方法
US9987904B2 (en) Fuel cell vehicle air-conditioning apparatus and control method thereof
KR101046559B1 (ko) 연료전지시스템, 그 제어방법 및 이동체
US8600599B2 (en) Fuel cell vehicle
JP4656539B2 (ja) 燃料電池システム
JP5456721B2 (ja) 燃料電池システム
KR101135654B1 (ko) 연료전지시스템 및 그 제어방법
KR101858809B1 (ko) 연료 전지 시스템
JP5825839B2 (ja) 燃料電池車両
JP4114525B2 (ja) 燃料電池システム、それを搭載した車両及び燃料電池システムの制御方法
CN113725465A (zh) 燃料电池系统
JP2008034309A (ja) 燃料電池システム
JP2021057127A (ja) 燃料電池システム、燃料電池システムの制御方法、およびプログラム
JP5651528B2 (ja) 燃料電池システム
KR101804774B1 (ko) 연료전지 차량과 그 제어방법
JP2021106089A (ja) Fcシステムモジュール及び燃料電池システム
JP2013058416A (ja) 燃料電池車両

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880100131.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08791856

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2692547

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2008791856

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12670849

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20107004226

Country of ref document: KR

Kind code of ref document: A