JP7298544B2 - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
JP7298544B2
JP7298544B2 JP2020090915A JP2020090915A JP7298544B2 JP 7298544 B2 JP7298544 B2 JP 7298544B2 JP 2020090915 A JP2020090915 A JP 2020090915A JP 2020090915 A JP2020090915 A JP 2020090915A JP 7298544 B2 JP7298544 B2 JP 7298544B2
Authority
JP
Japan
Prior art keywords
fuel cell
output
cell stack
stack
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020090915A
Other languages
English (en)
Other versions
JP2021190175A (ja
Inventor
朋也 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2020090915A priority Critical patent/JP7298544B2/ja
Priority to US17/198,408 priority patent/US11611095B2/en
Priority to CN202110264676.1A priority patent/CN113725465B/zh
Priority to DE102021110057.7A priority patent/DE102021110057A1/de
Publication of JP2021190175A publication Critical patent/JP2021190175A/ja
Application granted granted Critical
Publication of JP7298544B2 publication Critical patent/JP7298544B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04925Power, energy, capacity or load
    • H01M8/0494Power, energy, capacity or load of fuel cell stacks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • B60L58/32Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load
    • B60L58/34Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load by heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/40Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for controlling a combination of batteries and fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • H01M8/04708Temperature of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04865Voltage
    • H01M8/0488Voltage of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04895Current
    • H01M8/0491Current of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04925Power, energy, capacity or load
    • H01M8/04947Power, energy, capacity or load of auxiliary devices, e.g. batteries, capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2457Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Fuel Cell (AREA)

Description

本明細書が開示する技術は、燃料電池システムに関する。本明細書は、燃料電池スタックの動作点の急な変化を抑えつつ、燃料電池補機の消費電力の変化に対応することができる技術を提供する。
特許文献1に、燃料電池スタックに要求される出力(要求出力)と、燃料電池スタックが発生すべき熱量(必要発熱量)を決定し、それらが実現されるように動作点を決定する燃料電池システムが開示されている。要求出力には、燃料電池スタックの運転に用いる電気デバイスの電力が含まれる。なお、本明細書では、燃料電池スタックの運転に用いる電気デバイスを燃料電池補機と称する。燃料電池スタックに空気を送るエアコンプレッサ、水素ガスの循環流量を調整する水素ポンプ、燃料電池スタックを冷却する冷却器の循環ポンプなどが、燃料電池補機の例である。
特許文献1の燃料電池システムは自動車に搭載される。必要発熱量は、燃料電池スタック自体を昇温するのに必要な熱量、あるいは、キャビンの暖房に必要とされる熱量などである。特許文献1の燃料電池スタックにはバッテリが接続されており、燃料電池スタックの出力とバッテリの出力が燃料電池補機に供給され得る。
特許第4458126号公報
燃料電池システムは、要求出力が実現されるように燃料電池スタックを制御する。燃料電池補機の消費電力は、状況に応じて時々刻々に変化する。燃料電池スタックの出力の応答性は高くない。消費電力の変化に燃料電池スタックの出力が追従しないおそれがある。消費電力の変化に応じて燃料電池スタックの動作点を無理に急に変化させると、燃料電池スタックの制御が不安定化するおそれがある。本明細書は、燃料電池スタックの動作点の急な変化を抑えつつ、燃料電池補機の消費電力の変化に対応することができる技術を提供する。
本明細書が開示する燃料電池システムは、燃料電池スタックと、燃料電池スタックの運転に用いられる燃料電池補機と、燃料電池スタックの出力端に接続されているバッテリと、燃料電池スタックの出力端に接続されている負荷デバイスと、コントローラを備える。コントローラは、燃料電池補機と負荷デバイスを制御する。コントローラは、燃料電池スタックの目標出力を記憶している。コントローラは、燃料電池補機が燃料電池スタックの運転のために消費する電力(補機予測消費電力)を予測する。コントローラは、バッテリの見込み入出力電力を決定する。コントローラは、補機予測消費電力と見込み入出力電力に基づいて燃料電池スタックに要求される出力(要求出力)を決定する。コントローラは、目標出力に基づいて燃料電池スタックの動作点を決定する。コントローラは、要求出力と目標出力の差がゼロになるように負荷デバイスの動作を制御する。
本明細書が開示する燃料電池システムでは、予め定められている目標出力が実現されるように、燃料電池スタックの動作点が決定される。なお、動作点とは、燃料電池スタックの出力電流と出力電圧の組を意味する。経時的に緩やかに変化するように目標出力が定められていれば、動作点は急激には変化しない。一方、先に述べたように、燃料電池補機の消費電力(すなわち要求電力)は時々刻々と変化する。本明細書が開示する技術は、負荷デバイスの動作(すなわち消費電力)を調整することによって、要求出力と目標出力の差を吸収する。要求出力の変化に応じて負荷デバイスの消費電力を調整することで、目標出力(すなわち、燃料電池スタックの実際の出力)を予定された値から変える必要がない。本明細書が開示する燃料電池システムは、燃料電池スタックの動作点の急な変化を抑えつつ、燃料電池補機の消費電力の変化に対応することができる。なお、目標出力は、外気温度などに応じて定められる燃料電池補機の見込み消費電力に基づいて予め定められる。
要求出力が目標出力を上回っているときに負荷デバイスが停止していると、要求出力と目標出力の差を解消できない。そこで、目標出力には、外気温度などに応じて定まる燃料電池補機の見込み消費電力と、負荷デバイスの見込み消費電力が含まれているとよい。負荷デバイスの見込み消費電力を目標電力に含むことで、要求出力が目標出力を上回ることを回避することができる。
本明細書が開示する燃料電池システムでは、燃料電池スタックにバッテリが接続されている。バッテリの出力応答性は、燃料電池スタックの応答性よりも早い。消費電力の急激な変化に対しては、バッテリで対応することができる。しかし、バッテリの残電力量(State Of Charge:SOC)が低いと、消費電力が急増したときにバッテリから燃料電池補機へ供給する電力が不足するおそれがある。それゆえ、バッテリのSOCに応じた見込み入出力電力を予め定めておき、見込み入出力電力を含めて要求電力が決定される。例えばSOCが低いときには、見込み入出力電力として、燃料電池スタックからバッテリへ向かう所定の電力(チャージ電力)が定められる。燃料電池スタックの電力の一部でバッテリが充電される。
バッテリには、入出力電力の許容範囲(入出力許容範囲)が定められている。コントローラは、バッテリの実際の入出力電力が入出力許容範囲を超えている場合、実際の入出力電力が入出力許容範囲内に戻るように、目標出力を補正するようにしてもよい。バッテリの入出力電力が許容範囲にある間は、目標出力を変える必要がなく、動作点の急激な変化は抑えられる。バッテリの入出力電力が許容範囲を外れた場合は、例外として目標出力を補正することで、バッテリを保護する。
コントローラは、目標出力が実現するように、燃料電池スタックの動作点(目標電流と目標電圧)を決める。燃料電池スタックを温めたい場合には、コントローラは、燃料電池スタックの単位時間当たりの目標発熱量を決定し、目標出力と目標発熱量が実現されるように、動作点とストイキ比を決定する。ストイキ比は、燃料電池スタックに供給される水素の量に対する酸素の量を意味する。ストイキ比を小さくすると、発電損失が大きくなる。発電損失は熱となって放出される。発電損失を意図的に大きくすることで燃料電池スタックを温めることができる。
本明細書が開示する技術の詳細とさらなる改良は以下の「発明を実施するための形態」にて説明する。
実施例の燃料電池システムを含む燃料電池車のブロック図である。 燃料電池スタック制御処理のフローチャートである。
図面を参照して実施例の燃料電池システム2を説明する。燃料電池システム2は、燃料電池車100に搭載されている。図1に、燃料電池システム2を含む燃料電池車100のブロック図を示す。燃料電池車100は、燃料電池システム2から電力を得て、電気モータ102で走行する。燃料電池スタック10の出力は、昇圧コンバータ62で昇圧された後にインバータ101で交流電力に変換され、走行用の電気モータ102に供給される。本明細書において、燃料電池スタック10の「出力」とは、出力電力を意味する。以下では、説明を簡単にするため、燃料電池スタック10を「FCスタック10」と表記する場合がある。また、バッテリの残電力量は「SOC」と表記する場合がある。
昇圧コンバータ62の出力端にはメインバッテリ103も接続されている。FCスタック10の出力のうち、電気モータ102で消費されなかった残りの電力はメインバッテリ103にチャージされる。FCスタック10は、出力の応答性が低い。電気モータ102へ供給する電力の変化の応答性を高めるのにメインバッテリ103の電力が用いられる。
昇圧コンバータ62の出力端には降圧コンバータ63も接続されている。降圧コンバータ63の出力端にはサブバッテリ64が接続されている。FCスタック10の出力の一部は、降圧コンバータ63で降圧され、サブバッテリ64をチャージする。
メインバッテリ103の出力電圧は100ボルトよりも高い。サブバッテリ64の出力電圧は50ボルトよりも低い。メインバッテリ103の電力は電気モータ102に供給される。サブバッテリ64の電力は、50ボルト未満の電圧で動作するデバイスに供給される。サブバッテリ64の電力で動くデバイスには、各種のコントローラ(コンピュータ)、ラジオ65などの小電力機器がある。FCスタック10の電力が、昇圧コンバータ62と降圧コンバータ63を介して小電力機器に供給される場合がある。
サブバッテリ64は、燃料電池システム2の補機(燃料電池補機)にも電力を供給する。別言すれば、燃料電池補機は、サブバッテリ64の電力で動作する。燃料電池補機とは、燃料電池スタックを起動/運転するのに用いられる電気デバイスの総称である。燃料電池補機については後述する。燃料電池補機には、昇圧コンバータ62と降圧コンバータ63を介してFCスタック10の電力が供給される場合もある。
燃料電池システム2は、サブバッテリ64の電圧を計測する電圧センサ18bと、サブバッテリ64の入出力電流を計測する電流センサ19bを備えている。電圧センサ18bと電流センサ19bの計測値はコントローラ50に送られる。
燃料電池システム2はFCスタック10と燃料タンク20を備えている。FCスタック10は、多数の燃料電池セルの集合体である。よく知られているように、それぞれの燃料電池セルは、電解質膜を挟んでアノード側とカソード側に分かれている。アノード側には、アノードガス入口16aを通じて燃料ガスが供給される。カソード側には、カソードガス入口17aを通じて空気が供給される。燃料ガスに含まれる水素がイオン化し、水素イオンがカソード側の空気に含まれる酸素と反応し、電気が生成される。燃料電池セル(FCスタック10)における化学反応は良く知られているので詳しい説明は省略する。
化学反応で余った燃料ガスと、化学反応で生成された不純物はアノードガス出口16bから排出される。アノードガス出口16bから排出されるガスは燃料オフガスと称されることがある。生成された水、および、余った空気(酸素)はカソードガス出口17bから排出される。
燃料電池システム2における燃料ガス側の設備について説明する。燃料電池システム2は、FCスタック10のアノード側へ燃料ガスを送るための設備として、燃料供給管21、インジェクタ22、オフガス排出管23、気液分離器24、戻し管25、水素ポンプ26、排気排水弁27を備えている。
燃料供給管21は、燃料タンク20とFCスタック10を接続する。燃料供給管21には2個の弁41a、41b、インジェクタ22が接続されている。弁41aは主止弁であり、燃料電池システム2が停止している間、燃料タンク20からの燃料ガスの放出を止める。弁41bは調圧弁であり、インジェクタ22に供給される燃料ガスの圧力を調整する。インジェクタ22は、燃料ガスの圧力を高めてFCスタック10に供給する。
燃料供給管21の一端はFCスタック10のアノードガス入口16aに接続されており、燃料ガスをFCスタック10のアノード側に供給する。アノードガス出口16bにはオフガス排出管23の一端が接続されており、オフガス排出管23の他端は気液分離器24に接続されている。
気液分離器24は、アノードガス出口16bから排出される燃料オフガスを水素ガス(残燃料ガス)と不純物に分離する。気液分離器24で分離される不純物の典型は、窒素ガスや水などである。窒素ガスは、カソード側に供給される空気に含まれている窒素が、電解質膜を通過してアノード側に達したものである。残燃料ガスはガス出口から放出され、不純物は不純物排出口から排出される。不純物ガス(窒素ガス)の一部は残燃料ガスとともにガス出口から流出する。
戻し管25の一端が気液分離器24のガス出口に接続しており、戻し管25の他端は燃料供給管21に接続している。戻し管25には水素ポンプ26が取り付けられている。水素ポンプ26は、気液分離器24で分離された残燃料ガスを、戻し管25と燃料供給管21を通じてFCスタック10へ戻す。すなわち、水素ポンプ26は、水素ガスの循環流量を調整する。
気液分離器24の不純物排出口には、排気排水弁27が接続されている。排気排水弁27の出口には排気管32が接続されている。排気排水弁27が開くと、気液分離器24にて燃料オフガスから分離された不純物が排気管32に排出される。
燃料電池システム2の空気供給側の設備について説明する。燃料電池システム2は、FCスタック10のカソード側へ空気(酸素)を送るための設備として、空気供給管31、空気コンプレッサ34、弁41c、41dを備えている。
空気供給管31の一端がFCスタック10のカソードガス入口17aに接続しており、他端は外気に開放されている。空気供給管31の途中に空気コンプレッサ34、弁41cが取り付けられている。空気コンプレッサ34が外気を圧縮し、空気供給管31を通じて空気をFCスタック10のカソード側へ供給する。FCスタック10のカソードガス出口17bには排気管32が接続されている。排気管32の途中に弁41dが取り付けられている。弁41cと弁41dは調圧弁であり、それらの調圧弁により、FCスタック10に供給される空気の圧力が調整される。
排気管32は、排気排水弁27の出口と、カソードガス出口17bに接続されている。排気管32は、FCスタック10のカソードガス出口17bから排出される排出空気と、排気排水弁27の出口から排出される不純物ガスとを混合して外気に放出する。FCスタック10で生成された水も排気管32を通して車外へ排出される。
図示は省略したが、燃料電池システム2は、各所に圧力センサや濃度センサ、あるいは流量センサを備えている。FCスタック10の出力端には、電圧センサ18aと電流センサ19aが取り付けられている。電流センサ19aは、FCスタック10から出力される電流を計測し、電圧センサ18aはFCスタック10の出力電圧を計測する。それらのセンサの計測値はコントローラ50に送られる。
燃料電池システム2は、FCスタック10を冷却する冷却器70を備えている。冷却器70は、流路管71、循環ポンプ72、熱交換器73を備えている。流路管71には冷却水が封止されている。循環ポンプ72によって、冷却水が流路管71を循環する。流路管71はFCスタック10を通過している。冷却水はFCスタック10を通過する間にFCスタック10から熱を吸収する。FCスタック10で吸収した熱は、熱交換器73でキャビン暖房器80に移される。キャビン暖房器80は、流路管81とポンプ82を備えている。ポンプ82によって、熱媒体が流路管81を循環する。キャビン暖房器80は、FCスタック10の熱を使ってキャビンを温める。キャビン暖房器80は、電気ヒータ83を備えており、FCスタック10の熱ではキャビンの暖房に足りない場合は電気ヒータ83で熱媒体を温める。
コントローラ50は、昇圧コンバータ62の出力電圧を調整することによって、FCスタック10の出力電流と出力電圧を調整する。
インジェクタ22、ポンプ26、72、82、弁41a-41e(電磁弁)、排気排水弁27、空気コンプレッサ34、昇圧コンバータ62、降圧コンバータ63、インバータ101、電気ヒータ83は、コントローラ50が制御する。それらのデバイスとコントローラ50は信号線で接続されているが、図1では信号線の図示は省略した。インジェクタ22、水素ポンプ26、循環ポンプ72、弁41a-41e、排気排水弁27、空気コンプレッサ34、昇圧コンバータ62、降圧コンバータ63、コントローラ50が、燃料電池補機に含まれる。また、電気ヒータ83、ポンプ82、ラジオ65は、FCスタック10の起動/運転には関与しないデバイスである。燃料電池補機、および、FCスタック10の運転に関与しない電気デバイス(電気ヒータ83、ポンプ82、ラジオ65)は、サブバッテリ64から電力供給を受ける。図1では、燃料電池補機およびそれ以外の電気デバイスと、サブバッテリ64を接続する電力線の図示も省略した。燃料電池補機、および、FCスタック10の運転に関与しない電気デバイスには、昇圧コンバータ62と降圧コンバータ63を介してFCスタック10の電力が供給される場合もある。
コントローラ50には不揮発性のメモリ51が接続されている。メモリ51には、コントローラ50が実行するプログラムと、プログラムで用いる変数が格納されている。プログラムで用いる変数には、FCスタック10の目標出力が含まれている。コントローラ50が実行する処理と、目標出力については後述する。
実施例の燃料電池システム2におけるFCスタック10の運転について説明する。よく知られているように、FCスタック10は、燃料ガス(水素)と酸化ガス(空気)の反応によって発電する。水素と酸素の供給量によってFCスタック10の発電量を調整することができる。コントローラ50は、FCスタック10に要求される出力(要求出力)を満足するように、燃料電池補機を使ってFCスタック10に供給する水素と酸素の量を調整する。
FCスタック10では、供給する水素の量と酸素の量に応じてIV曲線が定まる。IV曲線は、出力する電流(目標電流I)と、FCスタック10の電圧(目標出力V)の関係を示す曲線である。コントローラ50は、IV曲線上に動作点(FCスタック10の目標電流と目標電圧の組)を決め、目標電流が実現されるように、昇圧コンバータ62を制御する。先に述べたように、コントローラ50は、昇圧コンバータ62の出力電圧を調整することで、FCスタック10の出力電流を調整する。目標電流が実現されると従属的に目標電圧が実現される。
一方、FCスタック10は、出力の応答性が高くない。それゆえ、要求出力(燃料電池補機の消費電力を含む)の急激な変化には追従できない。動作点を無理に急激に変えると制御が不安定になるおそれがある。実施例の燃料電池システム2は、FCスタック10の動作点の急な変化を抑えつつ、燃料電池補機の消費電力の変化に対応することができる。
以下では、電気モータ102は停止しており、FCスタック10を急速暖機するときの処理について説明する。急速暖機とは、FCスタック10の自己発熱を利用してFCスタック10の温度を高める処理である。外気温度が低い環境において燃料電池車100のメインスイッチが入れられたとき、急速暖機が実行される。FCスタック10から強制的に水を抜くとき、あるいは、外気温度が低い環境において燃料電池車100のメインスイッチが切られたときにも急速暖機が実行される。
図2に、コントローラ50が実行するFCスタック制御処理(急速暖気処理)のフローチャートを示す。コントローラ50は、急速暖機が必要なとき、所定の周期(制御周期)で図2の処理を繰り返す。
コントローラ50は、まず、燃料電池補機の消費電力を予測する(ステップS2)。予測した消費電力を補機予測消費電力と称する。コントローラ50は、外気温度、FCスタック10の温度、燃料タンク20の内圧、燃料電池補機の状態などから、燃料電池補機の消費電力を予測する。例えば、コントローラ50には、外気温度、FCスタック10の温度、燃料タンク20の内圧などに基づいて補機予測消費電力を算出する関数が記憶されている。予測処理の具体例については詳細な説明は割愛する。
続いてコントローラ50は、サブバッテリ64の見込み入出力電力を決定する(ステップS3)。見込み入出力電力は、SOCなどを入力変数とする関数で得ることができる。見込み入出力電力は、現在のSOCが基準値(例えば60%)に近づくように定められている。現在のSOCが基準値よりも低い場合には、サブバッテリ64へ電流が流れ込む方向に見込み入出力電力が定められる。現在のSOCが基準値よりも高い場合にはサブバッテリ64から電流が流れ出す方向に見込み入出力電力が定められる。現在のSOCが基準値に近い場合には、見込み入出力電力としてゼロが定められている。SOCと見込み入出力電力の関係は、予めコントローラ50(メモリ51)に記憶されている。
続いてコントローラ50は、FCスタック10に要求される出力電力(要求出力)を決定する(ステップS4)。要求出力は、補機予測消費電力と見込み入出力電力から定まる。一例として、要求出力は、補機予測消費電力と見込み入出力電力の合計として決定される。この場合、サブバッテリ64へ向けて電流が流れるときが、見込み入出力電力のプラス側に相当する。
続いてコントローラ50は、メモリ51から目標出力を読み出す(ステップS5)。目標出力は、FCスタック10の出力の目標値である。目標出力は、電力(キロワット)で表される。目標出力は、外気温度、FCスタック10の温度、燃料電池補機の状を入力変数とするマップ形式あるいは関数形式でメモリ51に記憶されている。目標出力には、いくつかの電気デバイスの見込み消費電力が含まれている。見込み消費電力とは、例えば、次のように定められる。外気温度が低い場合には、キャビン暖房器80の電気ヒータ83が使われる可能性が高い。また、外気温度が高い場合には、キャビン冷却器が使われる可能性が高い。見込み消費電力は、外気温度に応じて動作が予想される電気デバイスの見込みの消費電力として予め定められる。見込み消費電力には、燃料電池補機の見込みの消費電力が含まれてもよい。コントローラ50は、現在の外気温度、FCスタック10の温度などに対応した目標出力を、メモリ51に記憶されたマップあるいは関係式から決定する。
ステップS6のバッテリ保護処理では、サブバッテリ64に実際に流れる電力が所定の許容範囲を超えていた場合に目標出力を補正する。バッテリ保護処理については後述する。ここでは、目標出力の補正は不要であるとする。
コントローラ50は、特定の負荷デバイスを制御する。コントローラ50は、負荷デバイスの消費電力が、要求電力と目標出力の電力差に等しくなるように、負荷デバイスを制御する(ステップS7)。負荷デバイスとは、予め定められている電気デバイスであり、典型的には、FCスタック10の運転に関与しない電気デバイスである。例えば、キャビン暖房器80のポンプ82、電気ヒータ83、ラジオ65などである。
より具体的には、コントローラ50は、負荷デバイスに対して、目標消費電力(すなわち、目標電力と要求電力の差)を通知する。通知を受けた負荷デバイスは、自身の消費電力が、目標消費電力に一致するように、自身の動作を制御する。別言すれば、負荷デバイスは、目標出力と要求出力の差がゼロとなるように自身の動作を制御する。
燃料電池補機が負荷デバイスに含まれる場合がある。要求電力と目標出力の電力差が小さい場合には、FCスタック10の発電に影響を及ぼさない範囲で、燃料電池補機も負荷デバイスに含まれてよい。
続いてコントローラ50は、FCスタック10の単位時間当たりの目標発熱量を決める(ステップS8)。目標発熱量は、急速暖機で必要とされる熱量である。単位時間当たりの目標発熱量は「ワット」で表される。目標発熱量は、外気温度と、FCスタック10の温度と、燃料電池車100の状態に依存して定まる。目標発熱量は、外気温度と、FCスタック10の温度と、燃料電池車100の状態を入力変数とする関数として(あるいはマップとして)メモリ51に予め記憶されている。コントローラ50は、燃料電池システム2の現在の状態に応じた目標発熱量を、メモリ51に記憶されたマップあるいは関数によって決定する。
よく知られているように、FCスタックでは、水素の量に対して適正な酸素量が決まっている。水素の量に対して酸素量が少ないと、発電効率が低下する。発電における損失は、熱となって現れる。水素の量に対して酸素の量を意図的に少なくすると、発電損失が大きくなる。損失エネルギによってFCスタック10が発熱し、温度が上昇する。水素量に対する酸素量はストイキ比と呼ばれる。
コントローラ50は、目標出力と目標発熱量からストイキ比と動作点を決定する。そして、決定したストイキ比と動作点が実現するように、FCスタック10を制御する(ステップS9)。別言すれば、コントローラ50は、FCスタック10が、決定されたストイキ比と目標出力を実現するように燃料電池補機を制御する。
動作点(FCスタック10の目標電流と目標電圧)の算出例を説明する。先に述べたように、FCスタックには、水素の量に対して適正な酸素量が決まっている。水素の量に対して適正な酸素量が供給されたときの電圧は、理論起電圧と呼ばれている。ステップS4にて要求出力が定まり、ステップS8にて目標発熱量(単位時間当たりの目標発熱量)が定まる。このとき、FCスタックが出すべきエネルギは、(要求出力+目標発熱量)となる。適正な酸素量が供給されると仮定すると、FCスタック10の出力電流(目標電流)は、次の関係式で求められる。
目標電流=(要求出力+目標発熱量)/理論起電圧
目標発熱量が熱エネルギとして放出されるようにストイキ比が決まる。FCスタック10の電力出力は要求出力だけになる。要求出力=目標電流×目標電圧であるから、目標電圧は、次の関係式で求められる。
目標電圧=理論起電圧×要求出力/(要求出力+目標発熱量)
コントローラ50は、FCスタック10の温度が所定の温度閾値に達するまで、上記の処理を繰り返す(ステップS10:NO、S2)。FCスタック10の温度が温度閾値に達すると、コントローラ50は、処理を終える(ステップS10:YES)。
図2の処理の利点を説明する。コントローラ50は、予め定められている目標出力と、外気温度とFCスタック10の温度で定まる目標発熱量に基づいて、FCスタック10のストイキ比と動作点を決める。そして、決定したストイキ比と動作点が実現するように燃料電池補機を制御する。目標出力は、時間に対して緩やかに変化するように予め定められている。それゆえ、動作点は、急激には変化せず、緩やかに変化する。
一方、FCスタック10を運転するのに用いる燃料電池補機の消費電力は時々刻々と変化する。コントローラ50は、消費電力(FCスタック10に対する要求出力)に対応するように動作点を決定するのはなく、目標出力に応じて動作点を決定する。FCスタック10からは、目標出力に相当する電力が出力される。FCスタック10の実際の出力(目標出力)と要求電力には差が生じる。コントローラ50は、その差を満たすように、負荷デバイスを制御する。
実施例の燃料電池システム2のコントローラ50は、FCスタック10の出力を目標出力に追従させるので、動作点は急激には変化しない。すなわち、動作点の急激な変化は抑制される。一方、燃料電池補機の消費電力(要求出力)は、燃料電池補機の状態や温度(FCスタックの温度、あるいは外気温度)に応じて時々刻々と変化する。実際の出力(目標出力)と要求出力の差は、負荷デバイスの消費電力で調整される。実施例の燃料電池システム2は、時々刻々変化する要求出力を満たしつつ、動作点の急激な変化を抑制することができる。
目標出力には、負荷デバイスの見込み消費電力が含まれており、要求電力が予定よりも大きい場合は負荷デバイスの消費電力が見込み消費電力よりも小さくなるように負荷デバイスを制御する。目標出力に含まれている負荷デバイスの見込み消費電力よりも負荷デバイスの実際の消費電力が小さくなるので、FCスタック10から燃料電池補機に供給される電力が増える。
図2のステップS6のバッテリ保護制御について説明する。サブバッテリ64の入出力電力には許容範囲(入出力許容範囲)がある。コントローラ50は、サブバッテリ64の入出力電力が入出力許容範囲を外れている場合、サブバッテリ64の実際の入出力電力が入出力許容範囲内に戻るように、FCスタック10の目標出力を補正する。コントローラ50は、サブバッテリ64の出力が入出力許容範囲を超えている場合、目標出力を大きくする。目標出力を大きくすることで、FCスタック10の実際の出力が大きくなり、サブバッテリ64の出力が下がる。
あるいは、サブバッテリ64に供給されるチャージ電力が入出力許容範囲を超えている場合、コントローラ50は、目標出力を小さくする。目標出力を小さくすることで、FCスタック10の実際の出力が小さくなり、サブバッテリ64に供給されるチャージ電力が下がる。
コントローラ50は、サブバッテリ64の入出力電力が所定時間の間、入出力許容範囲との差が所定量を上回っているときに、目標出力を補正する。燃料電池車100のメインスイッチがオンされた後、サブバッテリ64の入出力電力が入出力許容範囲を外れることが複数回起こり得る。サブバッテリ64の入出力電力が最初に入出力許容範囲を外れたときの所定時間と所定量を第1所定時間と第1所定量と称する。サブバッテリ64の入出力電力が入出力許容範囲を外れることが2回目以降のときの所定時間と所定量を第2所定時間と第2所定量と称する。第2所定時間は第1所定時間よりも短い値に設定され、第2所定量は第1所定量よりも小さい値に設定される。
実施例で説明した技術に関する留意点を述べる。サブバッテリ64が、FCスタック10の出力端に接続されており、燃料電池補機に電力を供給するバッテリの一例に相当する。負荷デバイスの典型例は、ラジオ65など、FCスタック10の運転に関与しない電気デバイスである。要求電力と目標電力の差が小さいときには、燃料電池補機が負荷デバイスであってもよい。
図2の処理は、急速暖機(FCスタック10を急速に温める処理)が必要とされる場合に実行される。このとき、燃料電池車100は停車中である。すなわち、インバータ101と電気モータ102は停止している。それゆえ、目標出力が事前に正確に定まる。図2の処理が走行中に実行される場合、目標出力は、外気温度、FCスタックの温度、および、アクセル開度と車速を含む関数として、予め定められるものであってもよい。
急速暖機が必要とされない場合には、図2のステップS8とS10の処理は省かれる。このとき、ステップS9のストイキ比は、供給される水素の量に対して最適な酸素量が供給されるように定められる。
以上、本発明の具体例を詳細に説明したが、これらは例示に過ぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成し得るものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。
2 :燃料電池システム
10 :燃料電池スタック(FCスタック)
18a、18b:電圧センサ
19a、19b:電流センサ
20 :燃料タンク
21 :燃料供給管
22 :インジェクタ
23 :オフガス排出管
24 :気液分離器
25 :戻し管
26 :水素ポンプ
27 :排気排水弁
31 :空気供給管
32 :排気管
34 :空気コンプレッサ
41a-41e :弁
50 :コントローラ
51 :メモリ
62 :昇圧コンバータ
63 :降圧コンバータ
64 :サブバッテリ
65 :ラジオ
70 :冷却器
71 :流路管
72 :循環ポンプ
73 :熱交換器
80 :キャビン暖房器
81 :流路管
82 :ポンプ
83 :電気ヒータ
100:燃料電池車
101:インバータ
102:電気モータ
103:メインバッテリ

Claims (5)

  1. 燃料電池スタックと、
    前記燃料電池スタックの運転に用いられる燃料電池補機と、
    前記燃料電池スタックの出力端に接続されているバッテリと、
    前記燃料電池スタックの前記出力端に接続されている負荷デバイスと、
    前記燃料電池補機と前記負荷デバイスを制御するとともに、前記燃料電池スタックの目標出力を記憶しているコントローラと、
    を備えており、
    前記目標出力には、外気温度に応じて定められる前記燃料電池補機の見込み消費電力と、予め定められている前記負荷デバイスの見込み消費電力が含まれており、
    前記コントローラは、
    前記燃料電池補機が前記燃料電池スタックの運転のために消費する電力(補機予測消費電力)を予測し、
    前記バッテリの見込み入出力電力を決定し、
    前記補機予測消費電力と前記見込み入出力電力に基づいて前記燃料電池スタックに要求される出力(要求出力)を決定し、
    前記目標出力に基づいて前記燃料電池スタックの動作点を決定し、
    記要求出力と前記目標出力の差がゼロとなるように前記負荷デバイスの動作を制御する、燃料電池システム。
  2. 燃料電池スタックと、
    前記燃料電池スタックの運転に用いられる燃料電池補機と、
    前記燃料電池スタックの出力端に接続されているバッテリと、
    前記燃料電池スタックの前記出力端に接続されている負荷デバイスと、
    前記燃料電池補機と前記負荷デバイスを制御するとともに、前記燃料電池スタックの目標出力を記憶しているコントローラと、
    を備えており、
    前記コントローラは、
    前記燃料電池補機が前記燃料電池スタックの運転のために消費する電力(補機予測消費電力)を予測し、
    前記バッテリの見込み入出力電力を決定し、
    前記補機予測消費電力と前記見込み入出力電力に基づいて前記燃料電池スタックに要求される出力(要求出力)を決定し、
    外気温度と前記燃料電池スタックの温度に基づいて前記燃料電池スタックの単位時間当たりの目標発熱量を決定し、
    前記目標発熱量と前記目標出力に基づいて、前記燃料電池スタックの動作点と、前記燃料電池スタックに供給する水素と酸素のストイキ比を決定し、
    前記要求出力と前記目標出力の差がゼロとなるように前記負荷デバイスの動作を制御する、燃料電池システム。
  3. 前記コントローラは、前記バッテリの実際の入出力電力が前記バッテリの入出力許容範囲を超えている場合、前記実際の入出力電力が前記入出力許容範囲内に戻るように、前記目標出力を補正する、請求項1または2に記載の燃料電池システム。
  4. 前記見込み入出力電力は、前記バッテリの残電力量に応じて定められている、請求項1から3のいずれか1項に記載の燃料電池システム。
  5. 前記負荷デバイスは、前記燃料電池スタックの運転に影響を与えない電気デバイスである、請求項1から4のいずれか1項に記載の燃料電池システム。
JP2020090915A 2020-05-25 2020-05-25 燃料電池システム Active JP7298544B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020090915A JP7298544B2 (ja) 2020-05-25 2020-05-25 燃料電池システム
US17/198,408 US11611095B2 (en) 2020-05-25 2021-03-11 Fuel cell system
CN202110264676.1A CN113725465B (zh) 2020-05-25 2021-03-11 燃料电池系统
DE102021110057.7A DE102021110057A1 (de) 2020-05-25 2021-04-21 Brennstoffzellensystem

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020090915A JP7298544B2 (ja) 2020-05-25 2020-05-25 燃料電池システム

Publications (2)

Publication Number Publication Date
JP2021190175A JP2021190175A (ja) 2021-12-13
JP7298544B2 true JP7298544B2 (ja) 2023-06-27

Family

ID=78408717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020090915A Active JP7298544B2 (ja) 2020-05-25 2020-05-25 燃料電池システム

Country Status (4)

Country Link
US (1) US11611095B2 (ja)
JP (1) JP7298544B2 (ja)
CN (1) CN113725465B (ja)
DE (1) DE102021110057A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114889791B (zh) * 2022-04-02 2023-06-13 广东逸动科技有限公司 一种用于增程式能源系统的控制方法、系统及新能源船舶
WO2024090575A1 (ja) * 2022-10-28 2024-05-02 富士電機株式会社 燃料電池発電装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017147121A (ja) 2016-02-17 2017-08-24 本田技研工業株式会社 燃料電池システムの電力制御方法
JP2018133147A (ja) 2017-02-13 2018-08-23 トヨタ自動車株式会社 燃料電池システム
JP2020068051A (ja) 2018-10-19 2020-04-30 本田技研工業株式会社 燃料電池システム及び燃料電池システムの制御方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4856456B2 (ja) * 2006-03-22 2012-01-18 本田技研工業株式会社 電動車両
JP4458126B2 (ja) 2007-07-30 2010-04-28 トヨタ自動車株式会社 燃料電池システム及びその制御方法
JP4591721B2 (ja) * 2007-11-21 2010-12-01 トヨタ自動車株式会社 燃料電池システム
US8206860B2 (en) * 2009-10-09 2012-06-26 GM Global Technology Operations LLC Method to perform adaptive voltage suppression of a fuel cell stack based on stack parameters
CN105612653B (zh) * 2013-10-08 2017-07-21 日产自动车株式会社 燃料电池系统以及燃料电池系统的控制方法
JP6048473B2 (ja) * 2014-10-27 2016-12-21 トヨタ自動車株式会社 車両に搭載された燃料電池及び二次電池を利用して外部に電力を供給する外部給電システムの制御方法および外部給電システム
CN110182071B (zh) * 2019-05-10 2022-09-13 中国第一汽车股份有限公司 一种功率跟随型燃料电池整车能量管理控制方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017147121A (ja) 2016-02-17 2017-08-24 本田技研工業株式会社 燃料電池システムの電力制御方法
JP2018133147A (ja) 2017-02-13 2018-08-23 トヨタ自動車株式会社 燃料電池システム
JP2020068051A (ja) 2018-10-19 2020-04-30 本田技研工業株式会社 燃料電池システム及び燃料電池システムの制御方法

Also Published As

Publication number Publication date
US11611095B2 (en) 2023-03-21
US20210367246A1 (en) 2021-11-25
JP2021190175A (ja) 2021-12-13
CN113725465B (zh) 2024-04-05
DE102021110057A1 (de) 2021-11-25
CN113725465A (zh) 2021-11-30

Similar Documents

Publication Publication Date Title
JP6206440B2 (ja) 燃料電池システム
KR101151749B1 (ko) 연료전지시스템
US10276882B2 (en) Fuel cell system and method for controlling fuel cell system
KR101859803B1 (ko) 연료 전지 시스템 및 연료 전지 시스템의 운전 제어 방법
JP4656539B2 (ja) 燃料電池システム
US8384342B2 (en) Fuel cell system and control method thereof
KR101798718B1 (ko) 연료 전지 시스템 및 연료 전지 시스템의 운전 제어 방법
US20140342258A1 (en) Fuel cell startup method for fast freeze startup
WO2011135610A1 (ja) 燃料電池システム
US20100167148A1 (en) Temperature control system for fuel cell
JP2007250374A (ja) 燃料電池システム
US10014539B2 (en) Fuel cell system
JP7298544B2 (ja) 燃料電池システム
KR102507226B1 (ko) 연료전지용 cod 제어방법 및 제어시스템
JP4375208B2 (ja) 燃料電池の出力制限装置
KR20200068460A (ko) 연료전지시스템의 공기유량 제어 장치 및 그 방법
JP2016136480A (ja) 燃料電池システム
JP2009170295A (ja) 燃料電池システムおよび燃料電池システムの制御方法
JP2008103154A (ja) 燃料電池システム
US20130101913A1 (en) Method for operating a fuel cell and fuel cell system with improved thermal control
JP6582614B2 (ja) エア供給量の制御装置
JP7342731B2 (ja) 燃料電池システム
KR102540935B1 (ko) 연료전지시스템의 운전 제어 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230529

R151 Written notification of patent or utility model registration

Ref document number: 7298544

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151