WO2009017074A1 - 二段接触気相酸化によるアクリル酸の製造方法 - Google Patents

二段接触気相酸化によるアクリル酸の製造方法 Download PDF

Info

Publication number
WO2009017074A1
WO2009017074A1 PCT/JP2008/063472 JP2008063472W WO2009017074A1 WO 2009017074 A1 WO2009017074 A1 WO 2009017074A1 JP 2008063472 W JP2008063472 W JP 2008063472W WO 2009017074 A1 WO2009017074 A1 WO 2009017074A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
catalyst
gas
acrylic acid
reaction
Prior art date
Application number
PCT/JP2008/063472
Other languages
English (en)
French (fr)
Inventor
Michio Tanimoto
Nobuyuki Hakozaki
Original Assignee
Nippon Shokubai Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co., Ltd. filed Critical Nippon Shokubai Co., Ltd.
Priority to CN200880025466A priority Critical patent/CN101754944A/zh
Priority to EP08778352A priority patent/EP2177500A1/en
Priority to JP2009525383A priority patent/JPWO2009017074A1/ja
Priority to US12/452,876 priority patent/US20100130777A1/en
Publication of WO2009017074A1 publication Critical patent/WO2009017074A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/25Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring
    • C07C51/252Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring of propene, butenes, acrolein or methacrolein
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/33Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties
    • C07C45/34Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds
    • C07C45/35Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds in propene or isobutene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/23Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups
    • C07C51/235Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups of —CHO groups or primary alcohol groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/255Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of compounds containing six-membered aromatic rings without ring-splitting
    • C07C51/265Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of compounds containing six-membered aromatic rings without ring-splitting having alkyl side chains which are oxidised to carboxyl groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

プロピレン含有ガスを第一反応器にて気相接触酸化してアクロレイン含有ガスを生成し、ついで、得られた生成ガスを第二反応器にて気相接触酸化してアクリル酸を製造することからなるプロピレンの二段接触気相酸化によるアクリル酸の製造方法の改良として、工業的な規模で長期間、安定して高収率でアクリル酸を製造することが可能な方法が提供される。この方法は、第一反応器内の触媒層のガス流れ方向に対して下流側および/または第一反応器のガス出口側に設置された冷却部に、固体不活性材料からなる充填物を、空隙率が45~99%となるように、配置することを特徴とする。

Description

明細書 二段接触気相酸化によるアタリル酸の製造方法 技術分野
本発明はプロピレンの二段接触気相酸化によるアクリル酸の製造方法に関する。
背景技術
アクリル酸は、 各種合成樹脂、 塗料、 可塑剤などの原料として工業的に重要であり、 近 年では吸水性樹脂の原料としてその重要十生が高まり、 アクリル酸の需要も増大する傾向に ある。
ァクリル酸の製法としては、 プロピレンの二段接触気相酸化法が最も一般的であり、 広 く工業的に行われている。 この方法のひとつの形態として、 原料プロピレンを、 プロピレ ンをァクロレインに変換するための触媒が充填された第一固定床反応器 (以下、 「第一反 応器 J という。 ) にて、 接触気相酸ィヒしてァクロレインを生成させ、 ついで、 得られたァ クロレインを、 アクリル酸に変換するための触媒が充填された第二固定床反応器 (以下、 「第二反応器」 という。 ) にて、 接触気相酸ィヒしてアクリル酸を製造する方法が知られて いる。
このようなプロピレンの二段接触気相酸ィヒによるアクリル酸の製造方法については、 よ り高収率でかつ長期間安定して製造することを目的とした様々な提案がされている。 例えば、 特開昭 5 5— 1 0 2 5 3 6号公報には、 第二反応器への供給ガスとして、 第一 反応器からの生成ガスと、 第二反応器からの生成ガスからァクリル酸を凝縮により分離し たあとの廃ガスに空気または酸素ガスが添加されたガスとの混合ガスを用いることにより 、 効率的な運転が可能となり、 かつ、 操作の安全性が高くなることが開示されている。 特 公昭 6 2— 1 7 5 7 9号公報には、 第一反応器に充填された触媒層の下流側に隣接して、 固体不活性物質の層からなる冷却部を備えることにより、 ァクロレインの自動酸化を抑制 できることが開示されている。 特開平 1一 1 6 5 5 4 3号公報には、 第二反応器のガス入 口部空間に、 棒状または板状の揷入物を管内空隙率が 4 0〜 9 9 %となるように挿入する ことにより、 第二反応器に充填された触媒層の副生成物による閉塞を防止できることが開 示されている。 また、 特開平 6— 2 6 2 0 8 1号公報及び特開平 6— 2 6 3 6 8 9号公報 には、 ガス中の不純物あるいは反応の副生成物などに起因して発生する固体有機物を分子 状酸素と水蒸気とを含有するガスと所定の温度で接触させることにより、 安全かつ効率的 に除去できることが開示されている。 さらに、 特開 2 0 0 7— 5 0 9 8 8 4号公報には、 プロピレンからァクロレインを製造するための触媒を、 所定の温度で、 分子状酸素と不活 性ガスおよび場合により水蒸気とで構成された混合ガスで、 1暦年毎に少なくとも 1回処 理することにより、 長期稼動が可能になることが開示されている。
発明の開示
し力 しながら、 アタリル酸は現在数百万トン Z年の規模で生産されており、 工業的規模 で 0 . ι %でも収率が向上すれば経済的に非常に大きな意味を持つことになる。 さらに、 より長期間にわたり安定に製造できればなおのことである。 前記した製造方法はいずれも 目的とするアクリル酸の収率や長期間継続運転に関しては改善が見られるものの、 近年の 需要の増大を鑑みればなお改善の余地を残すものである。
特開昭 5 5— 1 0 2 5 3 6号公報おょぴ特公昭 6 2— 1 7 5 7 9号公報に記載の方法で は、 ァクロレインの自動酸ィヒの抑制により、 効率の高いアクリル酸の製造が可能になるが 、 原料中に含まれる不純物あるいは反応の副生成物に伴う有機物や炭化物については全く 認識しておらず、 それらの実施例においてもアクリル酸製造における長期的な安定製造に 関する評価は全くなされていない。
特開平 1 _ 1 6 5 5 4 3号公報に記載の方法では、 第二反応器入口部に金属製またはセ ラミックス製の板状の挿入物を揷入することにより、 副生成物による第二反応器触媒層の 閉塞をある程度防止することが可能である。 し力 し、 このように金属製またはセラミック ス製の板状の揷入物を使用することは、 それによつて閉塞自体は防止できたとしても、 触 媒上への有機物や炭化物の付着や堆積は少なからず起こる。 また、 この公知方法では、 第 一反応器出口部と第二反応器入口部とを繋ぐ配管などにおけるァクロレインの自動酸化な らびに有機物や炭化物の付着や堆積の防止について考慮されていないため、 より長期間反 応を行った場合には有機物や炭化物の付着や堆積によつて触媒性能の低下を弓 Iき起こす可 能性が高い。
特開平 6— 2 6 2 0 8 1号公報および特開平 6— 2 6 3 6 8 9号公報に記載の方法では 、 ガス中の不純物あるいは反応の副生成物などによる有機物や炭化物の安全かつ効率的な 除去は可能となるが、 触媒層がすでに閉塞してしまった場合は、 その効果は得られない。 また、 有機物や炭化物の触媒層内への付着や堆積、 それに伴う反応管の閉塞を抑制するこ とについては、 これらの公知文献には開示されていない。
特開 2 0 0 7— 5 0 9 8 8 4号公報に記載の方法は、 プロピレンからァクロレインを製 造する方法において、 触媒層のホットスポット部の温度と反応温度との差を低く保つこと によって長期稼動を可能とするものである。 し力3し、 この公知文献には、 有機物や炭化物 の付着や堆積あるいはその安全かつ効率的な除去に関しては開示がなく、 さらに、 ァクロ レインからアクリル酸を製造する第二反応器に関する開示もない。
従って、 本発明の目的は、 プロピレンの二段接触気相酸ィヒによりアクリル酸を製造する 方法において、 工業的な規模で長期間安定して高収率でァクリル酸を製造するための方法 を提供することにある。
本発明者らは、 上記課題を解決すべく鋭意検討を行った結果、 プロピレンを原料として アクリル酸を製造する二段接触気相酸化法において、 第一固定床反応器内の触媒層のガス 流れ方向に対して下流側およひ'/または第一固定床反応器のガス出口側に設置された冷却 部に、 固体不活性材料からなる充填物を空隙率が 4 5〜 9 9 %となるように配置すること により、 高い熱効率を得ることができ、 かつ、 ァクロレインの自動酸化および有機物や炭 化物の付着や堆積をより確実に抑制できることを見出した。
斯くして、 本努明によれば、 プロピレン含有ガスを第一反応器にて気相接触酸化してァ クロレイン含有ガスを生成し、 ついで、 得られた生成ガスを第二反応器にて気相接触酸化 してァクリル酸を製造する二段接触気相酸ィヒ法において、 ァクリル酸をより高収率でかつ 長期間にわたつて安定的に製造することが可能となる。
発明を実施するための最良の形態 .
以下に、 本発明にかかる二段接触気相酸ィヒ法によるアクリル酸の製造方法について詳し く説明するが、 本発明の範囲はこれらの説明に拘束されるのではない。 以下の例示以外の 態様も、 本発明の趣旨を損なわない限り、 本発明の範囲に包含されるものと理解されるべ きである。
第一反応器内の触媒層のガス流れ方向に対して下流側および/または第一反応器のガス 出口側に設置された冷却部に充填する固体不活性材料については、 その充填時の空隙率が 4 5〜9 9 %、 好ましくは 5 0〜9 8 %、 より好ましくは 5 5〜9 7 %となるものであれ ば、 特に制限はない。 固体不活'性材料の充填時の空隙率が 4 5 %より小さくなると、 上記 冷却部での有機物や炭化物の付着や堆積が多くなり、 場合によっては、 反応管の閉塞まで 引き起こしかねない。 一方、 空隙率が 9 9 %より高くなると、 上記冷却部での熱効率が低 下するとともにァクロレインの自動酸ィヒがより発生し易くなり、 さらには、 第二反応器へ 供給される有機物や炭化物が多くなつて、 第二反応器での閉塞を引き起こし易くなる。 固体不活性材料は、 その形状についても、 反応管内に充填ないしは収納し得るものであ つて、 上記の充填時の空隙率を満足するものである限りは制限はない。 例えば、 ラシヒリ ング状、 球状、 円柱状、 リング状などのもののほかに、 塊状、 棒状、 板状、 金網状などの ものを挙げることができる。 棒状物の場合は、 単独で使用できるほか、 2つ以上を束ねて 使用することもできる。 板状物の場合は、 適当に折り曲げたり、 あるいは波状のうねりを 持たせたり、 あるいは螺旋状に変形して使用できるほか、 表面に突起物を設けて使用する こともできる。 これらのうち、 ラシヒリング状のものが好適である。
また、 その材質についても、 実質的に反応に関与しない物質である限り、 特に制限はな レ、。 例えば、 α—アルミナ、 アランダム、 ムライ ト、 カーボランダム、 ステンレススチ一 ル、 炭化ケィ素、 ステアタイ 卜、 陶器、 磁器、 鉄おょぴ各種セラミックスなどを挙げるこ とができる。
これら固体不活性材料は、 固体不活性材料充填層全体にわたり必ずしも均一に充填され ている必要はないが、 ァクロレイン含有ガスの自動酸化防止の面や効果的な冷却の面から 、 固体不活性材料充填層全体にわたり、 実質的に均一に充填するのが好ましい。 また、 不 活性材料は、 2種類以上の寸法、 形状あるいは材質のものを、 複数の層に積層、 あるいは 、 混合して使用することもできる。 このように 2種以上の固体不活性材料を使用する際に は、 積層した場合には各層でそれぞれが実質的に均一になるように、 また、 混合する場合 には混合層全体に実質的に均一になるように、 充填することが好ましい。
固体不活性材料の作用機能の一つは、 ァクロレイン含有反応ガスを急冷して第二反応器 における酸化反応に好適な温度範囲までガスの温度を低下させる点にあるため、 不活性材 料充填層は、 上記のような作用機能を十分発揮できる程度の長さを有するように設ける必 要がある。 その長さについては、 原科ガスの組成、 濃度、 反応温度などのような反応条件 によって適宜選択されるべきであって、 一概に特定できないが、 1 0 O mm以上が好まし く、 より好ましくは 2 0 0 mm以上である。 積層して使用する場合には、 各層の割合は適 宜自由に設定できる。
また、 本発明においては、 第二反応器に充填された触媒層への有機物や炭化物の付着や 堆積を防止するために、 第二反応器内の触媒層のガス流れ方向に対して上流側および/ま たは第二反応器のガス入口側に設置された冷却部に、 有機物および/または炭化物を吸着 および/または吸収するための処理剤を配置することが好ましい。 触媒上に有機物や炭化 物が付着してしまうと、 圧力損失の上昇や反応管の閉塞の原因になるほか、 それらを除去 するために該有機物や炭化物を高温で酸素含有ガスと接触させるエアレーション処理を実 施した場合、 それらの燃焼による熱負荷のために触媒の性能低下を引き起こし、 場合によ つては急な発熱による暴走までも引き起こす可能性がある。
有機物および/または炭化物を吸着および/または吸収できる処理剤とは、 実質的に有 機物および/または炭化物を吸着およひ 'Zまたは吸収できるものであればよく、 例えば、 クロトンアルデヒドを指標とした有機物吸着量が 0 . 0 5質量%以上であるものが好まし い。 処理剤の材質は、 特に限定されるものではないが、 例えば、 アルミニウム、 ケィ素、 チタンおよびジルコニウムから選ばれる少なくとも 1種の元素を含む酸ィヒ物、 複合酸化物 または混合物 (以下 「 (複合) 酸化物等」 という) が例示され、 中でもアルミニウムとケ ィ素とを含む複合酸化物が特に好適である。 さらに、 この処理剤には、 原料に含まれる不 純物や結合剤、 成形助剤などに由来する、 ナトリゥムゃ力リゥムなどのようなアル力リ金 属、 マグネシウムやカルシウムなどのようなアルカリ土類金属、 鉄、 ニオブ、 亜鉛などを 含有することができる。
処理剤は、 その形状について特に限定はなく、 任意の形状のものを選択すればよい。 具 体的には、 例えば、 球状、 円柱状、 円筒状、 星形状、 リング状、 タブレット状、 ペレッ ト 状などの処理剤、 すなわち、 通常の打錠成形機、 押出成形機、 造粒機などで成形されるも のが挙げられる。 また、 処理剤は、 寸法および/または組成の異なる 2種類以上の処理剤 を、 複数段に積層して使用することもでき、 また混合して使用することもできる。
処理剤の使用量は、 使用する処理剤の種類、 比重おょぴ形状、 ならびに、 触媒の種類、 比重、 形状および使用量などに応じて適宜調節すればよく、 特に限定されるものではな い。
本発明において第一反応器に充填される触媒、 すなわちプロピレンを接触気相酸ィヒして ァクロレインに変換するための触媒 (以下 「前段触媒」 と略記することもある) としては 、 特に制限はなく、 公知の一般に用いられている酸化物触媒を用いることができる。
前段触媒の好適具体例としては、 下記一般式 (I ) : MoaB i bF e cXl dX2eX3 £X4gOx (I)
(ここで、 Moはモリブデン、 B iはビスマス、 F eは鉄、 X 1はコバルトおよびニッケ ルから選ばれる少なくとも 1種の元素、 X 2はアルカリ金属、 アルカリ土類金属、 ホウ素 およびタリウムから選ばれる少なくとも 1種の元素、 X3はタングステン、 ケィ素、 アル ミニゥム、 ジルコニウムおよびチタンから選ばれる少なくとも 1種の元素、 X4はリン、 テルル、 アンチモン、 スズ、 セリウム、 鉛、 ニオブ、 マンガン、 砒素および亜鉛から選ば れる少なくとも 1種の元素、 そして Oは酸素をそれぞれ表し、 また a、 b、 c、 d、 e、 f 、 gおよび xはそれぞれ Mo、 B i、 F e、 A、 B、 C、 Dおよび Oの原子比を表し、 a = 12のとき、 b = 0. 1〜: 10、 c = 0. 1~20, d = 2〜20、 e =0. 001 〜10、 ί = 0〜30、 そして g = 0〜4であり、 Xは各元素の酸化状態によって定まる 数値である)
で示される酸化物触媒が挙げられる。
第二反; S器に充填される触媒、 すなわち、 ァクロレインを接触気相酸化してアクリル酸 に変換するための触媒 (以下 「後段触媒」 と略記することもある) についても特に制限は なく、 公知の一般に用いられている酸化触媒を用いることができる。 後段触媒の好適具体 例としては、 下記一般式 (I I) :
MohViWjY 1 kY21Y3mY4nOy (I I)
(ここで、 Moはモリブデン、 Vはバナジウム、 Wはタングステン、 Y1はアンチモン、 ビスマス、 クロム、 ニオブ、 リン、 鉛、 亜鉛およびスズから選ばれる少なくとも 1種の元 素、 Y 2は同および鉄から選ばれる少なくとも 1種の元素、 Y 3はアルカリ金属、 アル力 リ土類金属およびタリウムから選ばれる少なくとも 1種の元素、 Y4はケィ素、 アルミ二 ゥム、 チタン、 ジルコニウム、 イットリウム、 ロジウムおよびセリウムから選ばれる少な くとも 1種の元素、 そして Oは酸素をそれぞれ表し、 また h、 i、 ; i、 k、 1、 m、 nお よび yはそれぞれ Mo、 V、 W、 Yl、 Y2、 Υ3、 Υ 4および◦の原子比を表し、 h 1 2のとき、 i = 2〜: 14、 j =0〜1 2、 k = 0〜5、 1 =0. 01〜6、 m=0〜5
、 そして η = 0〜10であり、 yは各元素の酸化状態によって定まる数ィ直である) で示される酸化物触媒が挙げられる。
触媒は、 活性成分を一定の形状に成形する公知の押し出し成形法や打錠成形法等、 ある レ、は、 活性成分を一定の形状を有する任意の不活性担体に担持させる公知の担持法によつ て製造することができる。 これら成形触媒および担持触媒の形状についても特に制限はな く、 球状、 円柱状、 リング状、 不定形などのいずれでもよい。 もちろん、 球状という語は 、 厳密に真球であることを意味するものではなく実質的に球状であることを意味しており 、 円柱状おょぴリング状という語についても同様である。
第一反応器および第二反応器に充填される触媒は、 いずれも、 単一な触媒である必要は なく、 例えば、 第一反応器において、 活性の異なる複数種の触媒を活性の異なる順に充填 したり、 触媒の一部を不活性担体などで希釈したりしてもよい。 第二反応器についても同 様である。
第一反応器および第二反応器での反応温度は、 反応条件などに応じて適宜選択されるが 、 通常、 第一反応器では 3 0 0〜3 8 0 °Cであり、 また、 第二反応器では 2 5 0〜3 5 0 °Cである。 第一反応器の反応温度と第二反応器の反応温度との差は、 通常、 1 0〜1 1 0 °C、 好ましくは、 3 0〜8 0 °Cである。
第一反; S器の反^温度および第二反; &器の反応温度とは、 それぞれの反応器における熱 媒体入口温度に実質的に相当するものであり、 従って、 熱媒体入口温度は、 上記の範囲内 で設定された第一反応器おょぴ第二反応器のそれぞれの反応温度に応じて決定される。 第一反応器内の前記冷却部に充填された固体不活性材料の上や第二反応器内の前記冷却 部に充填された処理剤の上に析出あるいは吸着およぴ または吸収された有機物および/ または炭化物は、 分子状酸素を少なくとも 3容量%および水蒸気を少なくとも 0 . 5容量 %を含有する混合ガスを用いての 2 6 0〜4 4 0 °Cの温度でのエアレーション処理を 1年 に少なくとも 1回の頻度で行うことにより、 安全かつ効率的に除去することができる。 エアレーシヨン処理に用いる混合ガスにおいて、 分子状酸素の割合は少なくとも 3容量 %、 好ましくは 4〜 2 0容量%であり、 K蒸気の割合は少なくとも 0 . 5容量%、 好まし くは 1〜 7 5容量%である。 該混合ガス中の分子状酸素や水蒸気の割合が上記下限値より 少ないと、 有機物や炭化物を効率よく除去することができず、 従って、 エアレーシヨン処 理のために長期間にわたって反応を停止する必要を生ずるので、 経済的な不利を招く。 エアレーシヨン処理に用いる混合ガスは、 分子状酸素および水蒸気を上記範囲で含有す ればよいが、 その他の成分として窒素ガス、 二酸化炭素などのような不活性ガスを含んで いてもよい。 該混合ガス中の不活性ガスの割合は、 9 6 . 5容量0 /ο以下、 好ましくは 9 0 容量%以下である。 エアレーシヨン処理においては、 有機物および'/または炭化物と上記混合ガスとが 2 6 0〜4 4 0 °Cの温度で接触させられる。 接触処理温度が 2 6 0 °Cより低いと有機物おょぴ または炭化物の充分な除去が行われず、 また、 4 4 0 °Cより高いと異常発熱を引き起こ して装置等に損傷を与える危険がある。 好ましい接触温度は、 2 8 0〜4 2 0 °Cの温度範 囲である。 有機物および/または炭化物と混合ガスとの接触処理条件については、 特に制 限はない。 例えば、 混合ガスの導入量 (風量) については、 装置固有の能力限界によって 適宜決定され、 また接触時間についても適宜決定されるが、 通常、 酸化炭素の発生が消滅 した時点で処理を終了する。 上記処理は、 1年に少なくとも 1回の頻度で行うのがよい。 あまり長期間エアレーシヨン処理を行わないと、 触媒層にも有機物および Zまたは炭化物 が多く析出し始め、 場合によっては反応管の閉塞までも起こる可能性がある。 好ましくは 、 年 2回以上、 さらに好ましくは年 3回以上である。
エアレーション処理においては、 第一反応器と第二反応器とを接続したまま第一反応器 に上記混合ガスを導入し、 第一反応器を出た上記混合ガスをそのまま第二反応器に導入し ても良く、 或いは、 第一反応器と第二反応器とを切り離してそれぞれ単独で上記混合ガス を導入してもよい。 このエアレーシヨン処理は、 第一反応器と第二反応器とを繋ぐ配管等 に付着した有機物および/または炭化物を除去するのにも有効である。
本発明の接触気相酸化により得られたアクリル酸含有ガスは、 公知の方法によって、 例 えば、 水や高沸点の疎水性有機物などのような溶剤に吸収させるか、 あるいは直接凝縮さ せることによって、 アクリル酸含有液として捕集され、 得られたアクリル酸含有液は、 精 製アクリル酸を得るために公知の抽出法、 蒸留法、 晶析法などで精製される。
このようにして得られた精製アクリル酸およぴ またはその塩を主成分 (好ましくは 7 0モル%以上、 より好ましくは 9 0モル%以上 ) とする単量体または単量体混合物を 、 ァクリル酸に基づいて 0 . 0 0 1〜 5モル。/。程度の架橋剤および 0 . 0 0 1〜 2モル0 /0 程度のラジカル重合開始剤を用いて架橋重合させたのち、 乾燥、 粉碎などのような公知の 工程を経ることにより、 吸水性樹脂を得ることができる。
以下に、 実施例を挙げて本発明を具体的に説明するが、 本発明ほ、 もとより下記実施例 により制限を受けるものではなく、 本発明の趣旨に適合し得る範囲で適当に変更を加えて 実施することも可能である。 なお、 以下では、 便宜上、 「質量部」 を単に 「部」 、 と記す ことがある。 なお、 プロピレン転化率おょぴアクリル酸収率は次式によって求めた。 プロピレン転化率 (モル0 /0) = (反応したプロピレンのモル数 z供給したプロピレンのモ ル数) X 1 00
アクリル酸収率 (モル0 /。) = (生成したアクリル酸のモル数/供給したプロピレンのモル 数) X 1 00
<実施例 1〉
[前段触媒 1の調製]
蒸留水 2000部を加熱攪拌しつつ、 これにモリブデン酸アンモニゥム 500部を溶解 した (A液) 。 別に、 5 00部の蒸留水に硝酸コバルト 357部および硝酸ニッケル 1 9 2部を溶解し (B液) 、 さらに別途、 3 50部の蒸留水に濃硝酸 (6 5w t %) 30部を 加えて酸性とした溶液に硝酸第二鉄 1 72部および硝酸ビスマス 1 9 5部を溶解した (C 液) 。 A液にこれらの硝酸塩溶液 (B液および C液) を滴下した。 引き続き、 硝酸力リウ ム 2. 4部を 50部の蒸留水に溶解した液を加えた。 このようにして得られた懸濁液を、 蒸発乾固にてケーキ状の固形物とし、 得られた固形物を、 440°Cで約 5時間焼成した。 焼成後の固形物を 250 m以下に粉砕し、 触媒粉体を得た。 遠心流動コーティング装置 に平均粒径 4mmの α—アルミナ球形担体を投入し、 次いで結合剤として 1 5重量%の硝 酸アンモニゥム水溶液と共に触媒粉体を 90°Cの熱風を通しながら投入して担体に担持さ せた後、 空気雰囲気下 470 °Cで 6時間熱処理をして前段触媒 1を得た。 この触媒の活性 成分 (担体以外) における酸素以外の金属元素の組成は、 原子比で以下の通りであった。 Mo 12B i !. 7F e !. 8C o 5. 2N i 2. 8K0. 1
[後段触媒 1の調製]
蒸留水 2000部を加熱攪拌しながら、 これにパラモリブデン酸アンモニゥム 350部 、 メタバナジン酸アンモニゥム 58部およびパラタングステン酸アンモニゥム 53. 5部 を溶解した。 別に、 蒸留水 200部を加熱攪拌しながら、 硝酸銅 47. 9部を溶解した。 得られた 2つの水溶液を混合し、 さらに三酸化アンチモン 1 2部を添加し、 懸濁液を得た 。 この懸濁液を、 蒸発乾固にてケーキ状の固形物とし、 得られた固形物を、 390°Cで約 5時間焼成した。 焼成後の固形物を 250 μ Ιη以下に粉砕し、 触媒粉体を得た。 遠心流動 コーティング装置に平均粒径 4 mmの α—アルミナ球形担体を投入し、 次いで結合剤とし て 1 5重量%の硝酸アンモニゥム水溶液と共に触媒粉体を 90°Cの熱風を通しながら投入 して担体に担持させた後、 空気雰囲気下 400°Cで 6時間熱処理をして後段触媒 1を得 た。 この触媒の活性成分 (担体以外) における酸素以外の金属元素の組成は、 原子比で以 下の通りであった。
Figure imgf000011_0001
[第一反応器]
内径 25mm、 長さ 3◦ 00 mmの鋼鉄製反応管を鉛直方向に用意し、 その反応管上部 から前段触媒 1、 次いで外径 7mm、 長さ 7mm、 厚さ 0. 5 mmの S U S製ラシヒリン グを落下させ、 反応管の下から前段触媒 1の層長 280 Omm、 S US製ラシヒリングの 層長 20 Ommとなるように充填した。 このとき、 S U S製ラシヒリング層の空隙率は、 95. 5%であった。 反応管下部から 2800mmまでの部分の外部に熱媒循環用のジャ ケットを設け、 熱媒の温度 (反応温度) を 330°Cに保ち、 反応管上部より 20 Ommま での部分を、 冷却部として機能させるために、 電熱ヒーターで 260°Cに保った。
[第二反応器]
内径 25mm、 長さ 3000 mmの鋼鉄製反応管を鉛直方向に用意し、 その反応管上部 より後段触媒 1を落下させ、 層長 2800mmとなるように充填した。 反応管上部より 2 00mmには何も充填せず、 空筒部とした。 反応管の全長 (3000mm) にわたつて外 部に熱媒循環用のジャケットを設け、 熱媒の温度 (反応温度) を 260でに保った。
第一反応器出口 (上端) と第二反応器の入口 (上端) を電熱ヒータ一で外部から加熱で きるようにした内径 20mm、 長さ 2000mmの鋼鉄製パイプで連結し、 1 80°Cに保 し /こ
[酸化反応]
第 1反応器の下部から、 プロピレン 5. 5体積%、 酸素 1 0体積%、 水蒸気 25体積% および窒素 59. 5体積%からなる混合ガスを、 原料ガスとして、 前段触媒に対する空間 速度 1 700 h—1 (STP) で導入し、 第一反応器で生成した反応ガスを第二反応器上部 より導入し、 気相接触酸化を行った。
[エアレーシヨン処理]
8000時間経過後に、 一旦反応を停止し內部を確認したところ、 第一反応器冷却部の S US製ラシヒリングの表面、 第二反応器入口部の反応管空筒部おょぴ後段触媒上に若干 の炭化物析出が認められた。 そこで、 第一反応器の熱媒温度および冷却部のヒーター温度 を 350°Cに、 第二反応器の熱媒温度を 340°Cに上昇させて、 第一反応器の下部から、 酸素 15容量%、 水蒸気 50容量%および窒素 35容量%からなる混合ガスを、 毎分 1 5 リットルの空間速度 (STP) で 30時間流通した。 その後に内部を確認したところ、 析 出していた炭化物は完全に除去されていた。 この処理の後、' 再度、 反応を継続した。 反応結果を表 1に示す。
く実施例 2 >
[前段触媒 2の調製]
蒸留水 2000部を加熱攪拌しつつ、 これにモリブデン酸アンモニゥム 500部を溶解 した (A液) 。 別に、 500部の蒸留水に硝酸コバルト 227部および硝酸ニッケル 22 7部を溶解し (B液) 、 さらに別途、 350部の蒸留水に濃硝酸 (65w t%) 30部を 加えて酸性とした溶液に硝酸第二鉄 57. 2部おょぴ硝酸ビスマス 1 14. 5部を溶解し た (C液) 。 A液にこれらの硝酸塩溶液 (B液および C液) を滴下した。 引き続き、 ホウ 砂 4. 5部、 2 Ow t%シリカゾル 1702部および硝酸カリウム 2. 4部を加えた。 こ のようにして得られた懸濁液を攪拌下に加熱し、 得られた乾燥物を 200°Cで再乾燥後に 粉砕し、 得られた粉末を外径 5mm、 長さ 4mmのペレット状に打錠成型した。 得られた 成形物を空気雰囲気下 470 °Cで 6時間焼成し、 前段触媒 2を得た。 この触媒における酸 素以外の金属元素の組成は、 原子比で以下の通りであった。
Mo! 2 B i! C o 3. 3 i 3. 3 Feo. e N a 0. -χ Β 0. 2Κ0. 1 S ϊ 24
[後段触媒 2の調製]
蒸留水 2000部を加熱攪拌しながら、 これにパラモリブデン酸アンモニゥム 350部 、 メタバナジン酸アンモニゥム 64. 1部およびパラタングステン酸アンモニゥム 78. 5部を溶解した。 別に、 蒸留水 200部を加熱攪拌しながら、 硝酸銅 70. 2部を溶解し た。 得られた 2つの水溶液を混合し、 さらに三酸化アンチモン 44. 5部を添加し、 懸濁 液を得た。 その懸濁液を湯浴上の磁製蒸発器に入れ、 これに平均粒子径 5 mmの球状シリ カーアルミナ担体を加え、 攪拌しながら蒸発乾固して担体に付着させた。 得られた担持体 を空気雰囲気下 400 °Cで 6時間焼成して後段触媒 2を得た。 この触媒の活性成分 (担体 以外) における酸素以外の金属元素の組成は、 原子比で以下の通りであった。
Μθ 4. 16 Vi. ι 5 W0. 6 l C u 0. 61 S b 0. 64
[反応器および酸化反応]
各反応器への充填および酸化反応は、 前段触媒 1の代わりに前段触媒 2を、 後段触媒 1 の代わりに後段触媒 2を、 S U S製ラシヒリングの代わりに外径 7 mm、 内径 3 mm、 長 さ 6 mmからなるステアタイトをそれぞれ充填したこと以外は、 実施例 1同様に行った。 このとき、 ステアタイ ト層の空隙率は、 6 6 . 2 %であった。
8 0 0 0時間経過後に、 一旦反応を停止し内部を確認したところ、 第一反応器冷却部の ステアタイ トの表面、 第二反応器入口部の反応管空筒部および後段触媒上に若干の炭化物 析出が認、められた。 実施例 1同様の条件でエアレーシヨン処理を行ったところ、 析出して いた炭化物は完全に除去されていた。 この処理の後、 再度、 反応を継続した。
反応結果を表 1に示す。
<実施例 3 >
前段触媒 1の代わりに前段触媒 2を、 S U S製ラシヒリングの代わりに平均径 7 . 5 m mのセラミックポールをそれぞれ充填したこと以外は、 実施例 1と同様に気相接触酸化を 行った。 このとき、 セラミックボール層の空隙率は、 4 5 . 7 %であった。
8 0 0 0時間経過後に、 ー且反応を停止し内部を確認したところ、 第一反応器冷却部の セラミックボールの表面、 第二反応器入口部の反応管空简部および後段触媒上に若干の炭 化物析出が認められた。 実施例 1同様の条件でエアレーシヨン処理を行ったところ、 析出 していた炭化物は完全に除去されていた。 この処理の後、 再度、 反応を維続した。
反応結果を表 1に示す。
<比較例 1 >
第一反応器に S U S製ラシヒリングを充填しなかったこと以外は、 実施例 1と同様に気 相接触酸化を行った。
4 0 0 0時間経過時点で、 圧力損失が急激に高くなつてきたため一旦反応を停止し、 内 部を確認したところ、 第二反応器入口部の反応管空筒部および後段触媒上に多量の炭化物 が析出し、 閉塞しかかっていた。 実施例 1同様にして、 エアレーシヨン処理を実施したと ころ、 第二反応器の入口部の触媒層で急激な発熱が起こったため、 中断した。 このため、 炭化物はほとんど除去できなかった。 この状態のままで、 再度、 反応を継続させたところ 、 エアレーシヨン処理時の発熱に伴う後段触媒の劣化のため、 大きく性能が低下した。 反応結果を表 1に示す。
<比較例 2〉
第一反応器に充填したセラミックボールの平均径を 5 mmに変更したこと以外は、 実施 例 3と同様に気相接触酸化を行った。 このとき、 セラミックポール層の空隙率は、 3 2. 7%であった。
6000時間経過時点で、 圧力損失が急激に高くなつてきたため一旦反応を停止し、 内 部を確認、したところ、 第一反応器出口部の前段触媒上およびセラミックボール層に多量の 炭化物が析出し閉塞しかかっていた。 実施例 1同様にして、 エアレ一シヨン処理を実施し たところ、 第一反応器の出口部の触媒層で急激な発熱が起こったため、 中断した。 このた め、 炭化物はほとんど除去できなかった。 この状態のままで、 再度、 反応を継続させたと ころ、 エアレーシヨン時の発熱に伴う前段触媒の劣化および高温ガスが第二反応器に導入 されたことによる後段触媒の劣化のため、 大きく性能が低下した。
反応結果を表 1に示す。
<実施例 4>
[気相酸化触媒の調製]
プロピレン含有ガスを気相接触酸ィヒしてァク口レイン含有ガスを生成するための前段触 媒 3を、 特開 2003— 25 1 1 83号の触媒製造例 1記載の方法に準じて調製した。 同 様に、 ァク口レイン含有ガスを気相接触酸化してァクリル酸を製造するための後段触媒 3 を、 特開平 8— 206505号の実施例 1記載の方法に準じて調製した。 これら触媒の活 性成分 (担体以外) における酸素以外の金属元素の組成は、 原子比で以下の通りであつ た。
前段触媒 3 Mo 12B i !. 3F e o. 8 C o 5 N i 3 S i 2 K。. 08
後段触媒 3 Mo ^VeW^ U a. 2 S b 0. 5
[処理剤の調製]
平均粒子径 20 /i mのアルミナ粉体 6 0質量咅 と、 パインダ一としてのメチルセル口一 ス 5質量部とをニーダ一に投入し、 十分混合した。 次いで平均粒子 50 nmのコロイ ド状 シリカを S i 02として 40質量部となるように添加し、 さらに適量の水を添加して混合 した。 この混合物を押出成形し、 乾燥させた後 800°Cで 2時間焼成して、 平均値として 、 外径 7mm、 長さ 7. 5 mm, 肉厚 2 mmのリング状のアルミナ一シリカ処理剤を得た 。 この処理剤のクロトンアルデヒドを指標とした有機物吸着量は 0. 3質量%であった。 一有機物吸着量の測定一
処理剤 50 gを秤量し、 固定床流通装置に充填し、 350°Cに保持した。 1 70m l / 分の窒素ガスを、 1 o。cに保持したクロ 卜ンアルデヒ ド中でパプリングさせたのち、 処理 剤の上流側から 1時間導入した。 吸着処理後の処理剤全量を、 空気中で 5 0 0 °Cまで加熱 処理し、 加熱処理前後での質量変化を測定した。
有機物吸収量は、 次式によって求めた。
有機物吸着量 (質量%) = 減量 (g ) Z処理剤量 (g ) X I 0 0
[反応器および酸化反応]
用いる触媒を前段触媒 3および後段触媒 3に変更し、 第二反応器のガス入口側の空筒部 2 0 0 mmに上記処理剤を充填したこと以外は、 実施例 1と同様に行った。
8 0 0 0時間経過後に、 一旦反応を停止し内部を確認したところ、 第一反応器冷却部の s u s製ラシヒリングの表面および第二反応器入口部の処理剤上に若干の炭化物析出が認 められた。 実施例 1と同様の条件でエアレーシヨン処理を行ったところ、 析出していた炭 化物は完全に除去されていた。 この処理の後、 再度、 反応を継続した。
反応結果を表 1に示す。
<実施例 5〉
第二反応器のガス入口側空筒部 2 0 0 mmに処理剤の代わりに肉厚 0 . 4 mm、 巾 1 7 mm、 長さ 2 8 0 mmの S U S製板を 9 0度の角度でピッチ 3 5 mmでジグザグに折り曲 げた金属板を充填したこと以外は、 実施例 4と同様に行った。
8 0 0 0時間経過後に、 一旦反応を停止し内部を確認したところ、 第一反応器冷却部の
S U S製ラシヒリングの表面および第二反応器入口部の S U S製金属板上および後段触媒 上に若干の炭化物析出が認められた。 実施例 1と同様の条件でエアレ一シヨン処理を行つ たところ、 析出していた炭化物は完全に除去されていた。 この処理後、 再度、 反応を継続 した。
反応結果を表 1に示す。
<比較例 3 >
第一反応器に S U S製ラシヒリングを充填しなかったこと以外は、 実施例 4と同様に気 相接触酸ィヒを行った。
4 0 0 0時間経過時点で、 圧力損失が急激に高くなつてきたためー且反応を停止し、 内 部を確認したところ、 第二反応器入口部の処理剤上および後段触媒上に多量の炭化物が析 出し、 閉塞しかかっていた。 実施例 1同様にして、 エアレーシヨン処理を実施したところ 、 第二反応器の触媒層の入口部で急激な発熱が起こったため、 中断した。 このため、 炭化 物はほとんど除去できなかった。 この状態のままで、 再度、 反応を継続させたところ、 ェ ァレーション時の発熱に伴う後段触媒の劣化のため、 大きく性能が低下した。
反応結果を表 1に示す。
ぐ実施例 6〉
8 0 0 0時間経過後に実施したエアレーション処理において使用したガスの組成を、 酸 素 2 . 5容量。 /0および窒素等の不活性ガス 9 7 . 5容量%としたこと以外は、 実施例 4と 同様に行った。 この混合ガスを毎分 1 5リツ トルの空間速度 (S T P ) で 3 0時間流通さ せたが、 析出していた炭化物は十分には除去できなかった。 そこで、 さらに処理時間を 3 0時間延長したが、 それでもなお炭化物を完全には除去できなかったので、 この状態のま まで、 再度、 反応を継続した。
反応結果を表 1に示す。
表 1
Figure imgf000017_0001
ぐ実施例 7 >
[気相酸化触媒の調製]
プロピレン含有ガスを気相接触酸ィヒしてァク口レイン含有ガスを生成するための前段触 媒 4および 5を、 特開平 4— 21 7932号の実施例 1記載の方法に準じて調製した。 同 様に、 ァク口レイン含有ガスを気相接触酸化してァクリル酸を製造するための後段触媒 4 および 5を、 特開平 9一 241209号の実施例 2 ίΞ載の方法に準じて調製した。 これら 触媒の活性成分 (担体以外)における酸素以外の金属元素の組成は、 原子比で以下の通りで あった。
前段触媒 4 : Mo 10W2B i XF e aCo4K0. 06S i J. 5 (平均直径 5 mm) 前段触媒 5 : Mo 10W2B i ! F e :C o 4K0. 06S i J. 5 (平均直径 8mm) 後段触媒 4 : Mo 12V4W2. 5Cu2Sr0. 2 (平均直径 5mm)
後段触媒 5 : Mo 12V4W2. 5Cu2Sr0. 2 (平均直径 8mm)
[第一反応器]
反応管数 1 3, 000本 (反応管径 25mm, 長さ 3000 mm) からなる固定床多管 式反応器に、 その反応管上部から前段触媒 5、 次いで前段触媒 4、 次いで外径 7mm、 長 さ 7mm、 厚さ 0. 5mmの SUS製ラシヒリングを順次落下させ、 反応管下部から順に 前段触媒 5の層長 800mm、 前段触媒 4の層長 2000 mm、 SUS製ラシヒリングの 層長 20 Ommとなるように充填した。 このとき、 S U S製ラシヒリング層の空隙率は、 95. 5%であった。 反 管下部から 2800mmまでの部分を外部に熱媒循環用のジャ ケッ卜を設け、 熱媒の温度 (反応温度) を 320 Cに保ち、 反応管上部より 200 mmま での部分を、 冷却部として機能させるために、 その外部に別途熱媒循環用のジャケットを 設けて 260°Cに保った。
[第二反応器]
反応管数 1 3, 000本 (反応管径 25 mm. 長さ 3000 mm) からなる固定床多管 式反応器に、 その反応管上部から後段触媒 4、 次いで後段触媒 5、 次いで実施例 4で用い た処理剤を順次落下させ、 反応器下部から順に後段触媒 4の層長 200 Omm、 後段触媒 5の層長 800mm、 処理剤の層長 200 mmとなるように充填した。 反 管の全長 (3 000mm) にわたつて外部に熱媒循環用のジャケットを設け、 熱媒の温度 (反応温度) を 260°Cに保った。
第一反応器出口(上端)と第 2反応器の入口(上端)を蒸気で外部から加熱できるようにし た内径 500mm, 長さ 4000 mmの鋼鉄製パイプで連結し、 1 80°Cに保温した。
C酸化反応]
第 1反応器の下部から、 プロピレン 7体積%、 酸素 1 3体積%、 水蒸気 8体積%および 窒素 72体積%からなる混合ガスを、 原料ガスとして、 前段触媒に対する空間速度 1 50 O "1 (STP) で導入し、 第一反応器で生成した反応ガスを第二反応器上部より導入し 、 気相接触酸ィ匕を行った。
[エアレーション処理]
4000時間毎に、 一旦反応を停止して、 エアレーシヨン処理を行った。 該ェアレーシ ヨン処理においては、 第一反応器の触媒層熱媒温度および冷却部の触媒層熱媒温度を 35 0°Cに、 第二反応器の触媒層熱媒温度を 340°Cに上昇させて、 第一反応器の下部から、 酸素 10容量%、 水蒸気 50容量%および窒素等の不活性ガス 40容量%からなる混合ガ スを、 毎分 1 95m3の空間速度 (STP) で 20時間流通させた。 エアレーシヨン処理 後、 再度、 反応を継続し、 合計で 16000時間経過まで反応を継続させた。 その後、 内 部を確認したが、 炭化物の析出はほとんど認められなかった。
皮応結果を表 2に示す。
Figure imgf000019_0001

Claims

請求の範囲
1. プロピレン含有ガスを、 プロピレンを接触気相酸化によりァクロレインに変換するた めの触媒を充填した第一固定床反応器にて接触気相酸化してァクロレイン含有ガスを生成 し、 ついで、 得られた反応生成ガスを、 ァクロレインを接触気相酸ィヒによりアクリル酸に 変換するための触媒を充填した第二固定床反応器にて接触気相酸ィヒしてァクリル酸を製造 することからなる二段接触気相酸化法において、 第一固定床反応器内の触媒層のガス流れ 方向に対して下流側おょぴ または第一固定床反応器のガス出口側に設置された冷却部に 、 固体不活性材料からなる充填物を、 空隙率が 45〜 99 %となるように、 配置すること を特徴とするァクリル酸の製造方法。
2 - 第二固定床反応器内の触媒層のガス流れ方向に対して上流側および/または第二固定 床反応器のガス入口側に設置された冷却部に、 有機物および Zまたは炭化物を吸着および /または吸収するための処理剤を配置することを特徴とする請求の範囲 1に記載の方法。
3. プロピレンを接触気相酸ィヒしてァク口レインに変換するために第一固定床反応器に充 填される触媒が、 下記一般式 (I)
MoaB i bFecXl dX2eX3fX4EOx ( I )
(ここで、 Moはモリブデン、 B iはビスマス、 F eは鉄、 X 1はコバルトおよびニッケ ルから選ばれる少なくとも 1種の元素、 X 2はアル力リ金属、 アル力リ土類金属、 ホゥ素 およびタリウムから選ばれる少なくとも 1種の元素、 X3はタングステン、 ケィ素、 アル ミニゥム、 ジルコニウムおよびチタンから選ばれる少なくとも 1種の元素、 X4はリン、 テルル、 アンチモン、 スズ、 セリウム、 鉛、 ニオブ、 マンガン、 砒素および亜鉛から選ば れる少なくとも 1種の元素、 そして〇は酸素をそれぞれ表し、 また a、 b、 c、 d、 e、 f 、 gおよび xはそれぞれ Mo、 B i、 F e、 A、 B、 C、 Dおよび Oの原子比を表し、 a = 12のとき、 b = 0. 1 ~10, c =0. 1 ~20, d = 2〜20、 e = 0. 001 〜10、 ί=0〜30、 そして g = 0〜4であり、 xは各元素の酸化状態によって定まる ' 数値である)
で表されることを特徴とする請求の範囲 1または 2に記載の方法。
4. ァクロレインを接触気相酸化してァクリル酸に変換するために第二固定床反応器に充 填される触媒が、 下記一般式 (I I)
MohViWjY l kY21Y 3mY4nOy (I I )
(ここで、 Moはモリブデン、 Vはバナジウム、 Wはタングステン、 Y 1はアンチモン、 ビスマス、 クロム、 ニオブ、 リン、 鉛、 亜鉛およびスズから選ばれる少なくとも 1種の元 素、 Y 2は銅および鉄から選ばれる少なくとも 1種の元素、 Y 3はアルカリ金属、 アル力 リ土類金属およびタリウムから選ばれる少なくとも 1種の元素、 Y4はケィ素、 アルミ二 ゥム、 チタン、 ジルコニウム、 イットリウム、 ロジウムおよびセリウムから選ばれる少な くとも 1種の元素、 そして Oは酸素をそれぞれ表し、 また h、 i、 j、 k、 1、 m、 nお よび yはそれぞれ Mo、 V、 W、 Y l、 Y2、 Y3、 Y 4および Oの原子比を表し、 h = 1 2のとき、 i =2〜; 1 4、 j =0〜: 1 2、 k = 0〜5、 1 =0. 0 1〜6、 m=0〜5 、 そして η = 0〜10であり、 yは各元素の酸化状態によって定まる数^ tである) で表されることを特徴とする請求の範囲 1〜 3にいずれか 1つに記載の方法。
5. 請求の範囲 1〜4のいずれか 1つに記載の方法において、 1年に少なくとも 1回の頻 度で一旦反応を停止し、 260〜440°Cの温度で、 分子状酸素を少なくとも 3容量%お よび水蒸気を少なくとも 0. 5容量%を含有する混合ガスでエアレーション処理を行うこ とを特徴とするアタリル酸の製造方法。
PCT/JP2008/063472 2007-07-27 2008-07-18 二段接触気相酸化によるアクリル酸の製造方法 WO2009017074A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN200880025466A CN101754944A (zh) 2007-07-27 2008-07-18 通过两段催化气相氧化制备丙烯酸的方法
EP08778352A EP2177500A1 (en) 2007-07-27 2008-07-18 Process for producing acrylic acid by two-stage catalytic vapor-phase oxidation
JP2009525383A JPWO2009017074A1 (ja) 2007-07-27 2008-07-18 二段接触気相酸化によるアクリル酸の製造方法
US12/452,876 US20100130777A1 (en) 2007-07-27 2008-07-18 Process for producing acrylic acid by two-stage catalytic vapor-phase oxidation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007-195322 2007-07-27
JP2007195322 2007-07-27

Publications (1)

Publication Number Publication Date
WO2009017074A1 true WO2009017074A1 (ja) 2009-02-05

Family

ID=40304305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/063472 WO2009017074A1 (ja) 2007-07-27 2008-07-18 二段接触気相酸化によるアクリル酸の製造方法

Country Status (5)

Country Link
US (1) US20100130777A1 (ja)
EP (1) EP2177500A1 (ja)
JP (1) JPWO2009017074A1 (ja)
CN (1) CN101754944A (ja)
WO (1) WO2009017074A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011102249A (ja) * 2009-11-10 2011-05-26 Nippon Shokubai Co Ltd アクリル酸の製造方法
JP2012077074A (ja) * 2010-09-07 2012-04-19 Mitsubishi Chemicals Corp 共役ジエンの製造方法
JP2014076952A (ja) * 2012-10-09 2014-05-01 Nippon Shokubai Co Ltd (メタ)アクリル酸の製造方法
JP2014181203A (ja) * 2013-03-19 2014-09-29 Sumitomo Chemical Co Ltd メタクリル酸の製造方法
JP2015098455A (ja) * 2013-11-19 2015-05-28 旭化成ケミカルズ株式会社 不飽和ニトリルの製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010038677A1 (ja) * 2008-09-30 2010-04-08 株式会社日本触媒 アクロレインおよび/またはアクリル酸製造用の触媒および該触媒を用いたアクロレインおよび/またはアクリル酸の製造方法
JP5548132B2 (ja) * 2008-09-30 2014-07-16 株式会社日本触媒 アクリル酸製造用の触媒および該触媒を用いたアクリル酸の製造方法
KR101749483B1 (ko) * 2014-04-30 2017-06-22 미쯔비시 케미컬 주식회사 (메트)아크릴산의 제조 방법
EP3445738B1 (en) * 2016-04-21 2022-02-16 Rohm and Haas Company Methods for using macroporous inert materials in monomer production

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06263689A (ja) * 1993-03-12 1994-09-20 Nippon Shokubai Co Ltd 固体有機物の除去方法
JPH11130722A (ja) * 1997-10-27 1999-05-18 Nippon Shokubai Co Ltd アクリル酸の製造方法
JP2001129384A (ja) * 1999-11-05 2001-05-15 Nippon Shokubai Co Ltd 接触気相酸化用反応器
JP2001137688A (ja) * 1999-08-31 2001-05-22 Nippon Shokubai Co Ltd 多管式反応器
JP2001137689A (ja) * 1999-08-31 2001-05-22 Nippon Shokubai Co Ltd 接触気相酸化反応器
JP2003001094A (ja) * 2001-06-26 2003-01-07 Nippon Shokubai Co Ltd 固体粒子充填反応器およびその反応器を用いた接触気相酸化方法
JP2006298797A (ja) * 2005-04-18 2006-11-02 Nippon Shokubai Co Ltd 気相接触酸化用の固定床反応器およびアクロレインまたはアクリル酸の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55102536A (en) * 1979-01-30 1980-08-05 Mitsubishi Petrochem Co Ltd Preparation of acrylic acid
JPS5673041A (en) * 1979-11-19 1981-06-17 Mitsubishi Petrochem Co Ltd Preparation of acrylic acid
DE60035746T2 (de) * 1999-08-31 2008-04-30 Nippon Shokubai Co., Ltd. Reaktor zur katalytischen Gasphasenoxidation
DE10351269A1 (de) * 2003-10-31 2005-06-02 Basf Ag Verfahren zum Langzeitbetrieb einer heterogen katalysierten Gasphasenpartialoxidation von Propen zu Acrylsäure

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06263689A (ja) * 1993-03-12 1994-09-20 Nippon Shokubai Co Ltd 固体有機物の除去方法
JPH11130722A (ja) * 1997-10-27 1999-05-18 Nippon Shokubai Co Ltd アクリル酸の製造方法
JP2001137688A (ja) * 1999-08-31 2001-05-22 Nippon Shokubai Co Ltd 多管式反応器
JP2001137689A (ja) * 1999-08-31 2001-05-22 Nippon Shokubai Co Ltd 接触気相酸化反応器
JP2001129384A (ja) * 1999-11-05 2001-05-15 Nippon Shokubai Co Ltd 接触気相酸化用反応器
JP2003001094A (ja) * 2001-06-26 2003-01-07 Nippon Shokubai Co Ltd 固体粒子充填反応器およびその反応器を用いた接触気相酸化方法
JP2006298797A (ja) * 2005-04-18 2006-11-02 Nippon Shokubai Co Ltd 気相接触酸化用の固定床反応器およびアクロレインまたはアクリル酸の製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011102249A (ja) * 2009-11-10 2011-05-26 Nippon Shokubai Co Ltd アクリル酸の製造方法
JP2012077074A (ja) * 2010-09-07 2012-04-19 Mitsubishi Chemicals Corp 共役ジエンの製造方法
JP2014076952A (ja) * 2012-10-09 2014-05-01 Nippon Shokubai Co Ltd (メタ)アクリル酸の製造方法
JP2014181203A (ja) * 2013-03-19 2014-09-29 Sumitomo Chemical Co Ltd メタクリル酸の製造方法
JP2015098455A (ja) * 2013-11-19 2015-05-28 旭化成ケミカルズ株式会社 不飽和ニトリルの製造方法

Also Published As

Publication number Publication date
CN101754944A (zh) 2010-06-23
JPWO2009017074A1 (ja) 2010-10-21
EP2177500A1 (en) 2010-04-21
US20100130777A1 (en) 2010-05-27

Similar Documents

Publication Publication Date Title
WO2009017074A1 (ja) 二段接触気相酸化によるアクリル酸の製造方法
JP3793317B2 (ja) 触媒及び不飽和アルデヒドおよび不飽和酸の製造方法
JP5537811B2 (ja) 有機出発化合物の不均一系接触部分気相酸化の長期運転法
JP4092090B2 (ja) 固体粒子充填反応器およびその反応器を用いた接触気相酸化方法
JP5845337B2 (ja) 固定床多管式反応器を用いてのアクリル酸の製造方法
JP5559692B2 (ja) 固定床反応器、およびそれを用いたアクリル酸の製造方法
TWI378916B (en) Process for heterogeneously catalyzed partial gas phase oxidation of propylene to acrylic acid
JP5940045B2 (ja) アクリル酸を形成するためのプロピレンの不均一触媒部分気相酸化の方法
JP4947917B2 (ja) 気相接触酸化用の固定床反応器およびアクロレインまたはアクリル酸の製造方法
JP5889313B2 (ja) プロペンからアクロレインへの不均一系接触部分気相酸化の長期運転法
JPH0222242A (ja) メタクリル酸の製造方法
JP5450591B2 (ja) 酸化有機化合物の製造方法
KR101265357B1 (ko) 불균질 촉매적 가스상 부분 산화반응에 의해서 적어도하나의 유기 표적 화합물을 제조하는 방법
JP4045693B2 (ja) メタクリル酸の製造方法
JP5232584B2 (ja) アクリル酸の製造方法
JP5501221B2 (ja) アクロレインおよび/またはアクリル酸の製造方法
JP2008504310A (ja) プロピレンの不均一触媒部分気相酸化によるアクロレイン、アクリル酸、またはその混合物の製造方法
WO2005100293A1 (ja) (メタ)アクリル酸または(メタ)アクロレインの製造方法
WO2005115951A1 (ja) (メタ)アクリル酸または(メタ)アクロレインの製造方法
JP5314983B2 (ja) メタクリル酸の製造方法
JP5171031B2 (ja) 接触気相酸化用反応器およびそれを用いたアクリル酸の製造方法
CN108884006B (zh) 重新启动方法
JP5448331B2 (ja) アクリル酸製造用触媒および該触媒を用いたアクリル酸の製造方法
JPH01165543A (ja) アクリル酸の製造方法
JP2008024644A (ja) 固定床反応装置およびその使用方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880025466.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08778352

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009525383

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12452876

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008778352

Country of ref document: EP