WO2009012277A1 - Method for modulating gpr119 g protein-coupled receptor and selected compounds - Google Patents

Method for modulating gpr119 g protein-coupled receptor and selected compounds Download PDF

Info

Publication number
WO2009012277A1
WO2009012277A1 PCT/US2008/070103 US2008070103W WO2009012277A1 WO 2009012277 A1 WO2009012277 A1 WO 2009012277A1 US 2008070103 W US2008070103 W US 2008070103W WO 2009012277 A1 WO2009012277 A1 WO 2009012277A1
Authority
WO
WIPO (PCT)
Prior art keywords
nri
cycloalkyl
alkyl
aryl
heteroaryl
Prior art date
Application number
PCT/US2008/070103
Other languages
English (en)
French (fr)
Inventor
Dean A. Wacker
Karen A. Rossi
Ying Wang
Original Assignee
Bristol-Myers Squibb Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to AU2008276057A priority Critical patent/AU2008276057B2/en
Priority to CA2693444A priority patent/CA2693444A1/en
Application filed by Bristol-Myers Squibb Company filed Critical Bristol-Myers Squibb Company
Priority to SI200830592T priority patent/SI2173737T1/sl
Priority to ES08781868T priority patent/ES2378914T3/es
Priority to EP08781868A priority patent/EP2173737B1/en
Priority to BRPI0814428-1A2A priority patent/BRPI0814428A2/pt
Priority to AT08781868T priority patent/ATE540945T1/de
Priority to EA201000211A priority patent/EA016595B1/ru
Priority to CN2008801081672A priority patent/CN101801956B/zh
Priority to NZ582661A priority patent/NZ582661A/en
Priority to DK08781868.8T priority patent/DK2173737T3/da
Priority to PL08781868T priority patent/PL2173737T3/pl
Priority to JP2010517123A priority patent/JP5301539B2/ja
Publication of WO2009012277A1 publication Critical patent/WO2009012277A1/en
Priority to ZA2010/00326A priority patent/ZA201000326B/en
Priority to HK10103702.1A priority patent/HK1136298A1/xx
Priority to HR20120221T priority patent/HRP20120221T1/hr
Priority to IL228120A priority patent/IL228120A0/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/18Drugs for disorders of the alimentary tract or the digestive system for pancreatic disorders, e.g. pancreatic enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/02Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/18Antipsychotics, i.e. neuroleptics; Drugs for mania or schizophrenia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • A61P27/04Artificial tears; Irrigation solutions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • A61P27/06Antiglaucoma agents or miotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/48Drugs for disorders of the endocrine system of the pancreatic hormones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/48Drugs for disorders of the endocrine system of the pancreatic hormones
    • A61P5/50Drugs for disorders of the endocrine system of the pancreatic hormones for increasing or potentiating the activity of insulin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings

Definitions

  • Diabetes mellitus is a serious disease afflicting over 100 million people worldwide. In the United States, there are more than 12 million diabetics, with
  • Diabetes mellitus is a diagnostic term for a group of disorders characterized by abnormal glucose homeostasis resulting in elevated blood sugar.
  • Type 1 also referred to as insulin-dependent diabetes mellitus or IDDM
  • Type 2 also referred to as non-insulin-dependent diabetes mellitus or NIDDM
  • IDDM insulin-dependent diabetes mellitus
  • NIDDM non-insulin-dependent diabetes mellitus
  • Diabetes is a syndrome with interrelated metabolic, vascular, and neuropathic components.
  • the metabolic syndrome generally characterized by hyperglycemia, comprises alterations in carbohydrate, fat and protein metabolism caused by absent or markedly reduced insulin secretion and/or ineffective insulin action.
  • the vascular syndrome consists of abnormalities in the blood vessels leading to cardiovascular, retinal and renal complications. Abnormalities in the peripheral and autonomic nervous systems are also part of the diabetic syndrome.
  • Diabetes has also been implicated in the development of kidney disease, eye diseases and nervous-system problems. Kidney disease, also called nephropathy, occurs when the kidney's "filter mechanism" is damaged and protein leaks into urine in excessive amounts and eventually the kidney fails.
  • Diabetes is also a leading cause of damage to the retina at the back of the eye and increases risk of cataracts and glaucoma.
  • diabetes is associated with nerve damage, especially in the legs and feet, which interferes with the ability to sense pain and contributes to serious infections.
  • diabetes complications are one of the nation's leading causes of death.
  • Many people with NIDDM have sedentary lifestyles and are obese; they weigh approximately 20% more than the recommended weight for their height and build. Furthermore, obesity is characterized by hyperinsulinemia and insulin resistance, a feature shared with NIDDM, hypertension and atherosclerosis.
  • Obesity which is the result of an imbalance between caloric intake and energy expenditure, is highly correlated with insulin resistance and diabetes in experimental animals and human.
  • Type 2 diabetes results from the progressive loss of pancreatic ⁇ -cell function in the presence of insulin resistance, leading to an overall reduction in insulin output (Prentki, M. et al., "Islet failure in type 2 diabetes", J. Clin. Invest., 116: 1802-1812 (2006)).
  • ⁇ -cells are the cell type that store and release insulin in response to an elevation in plasma glucose or in response to hormonal signals from the gut following the ingestion of food.
  • Evidence suggests that in type 2 diabetics the rate of ⁇ -cell cell death (apoptosis) exceeds that of new ⁇ -cell development, yielding an overall loss in ⁇ -cell number (Butler, A.E.
  • ⁇ -cell deficit and increased ⁇ - cell apoptosis in humans with type 2 diabetes may arise from persistent elevations in plasma glucose levels (glucotoxicity) and/or plasma lipid levels (lipotoxicity).
  • G-protein coupled receptors expressed on ⁇ -cells are known to modulate the release of insulin in response to changes in plasma glucose levels (Ahren, B., "Autonomic regulation of islet hormone secretion - Implications for health and disease", Diabetologia. 43:393-410 (2003)). Those GPCRs specifically coupled to the elevation of cAMP via the G 5 alpha subunit of G-protein, have been shown to enhance glucose-stimulated insulin release from ⁇ -cells. Cyclic AMP- stimulating GPCRs on ⁇ -cells include the GLP-I, GIP, ⁇ 2-adrenergic receptors and GPRl 19.
  • GPRl 19 (e.g., human GPRl 19, GenBank® Accession No. AAP72125 and alleles thereof; e.g., mouse GPRl 19, GenBank® Accession No. AY288423 and alleles thereof) is a GPCR located at chromosome position Xp26.1 (Fredricksson, R. et al, "Seven evolutionarily conserved human rhodopsin G protein-coupled receptors lacking close relatives", FEBS Lett.. 554:381-388 (2003)). The receptor is coupled to Gs, and when stimulated, produces an elevation in cAMP in a variety of cell types including ⁇ -cell-derived insulinomas (Soga, T.
  • GPRl 19 Activation of GPRl 19, with agonist ligands such as lysophosphatidylcholine, produce a glucose dependent increase in insulin secretion from primary mouse islets and various insulinoma cell lines such as NIT- 1 and HIT-T 15 (Soga, T. et al., "Lysophosphatidylcholine enhances glucose-dependent insulin secretion via an orphan G-protein-coupled receptor", Biochem. Biophys. Res. Comm.. 326:744-751 (2005); Chu, ZX. et al., "A role for ⁇ -cell-expressed GPRl 19 in glycemic control by enhancing glucose-dependent insulin release", Endocrinology. doi: 10.1210/ en.2006-1608 (2007)).
  • agonist ligands such as lysophosphatidylcholine
  • a method for modulating the GPRl 19 G protein-coupled receptor is described as applied to the compounds of Formula I and IA.
  • a selected group of compounds are also disclosed for the same utility.
  • the method described herein is focused on the use of compounds of Formula I and IA to modulate the GPR 119 receptor, for example agonists of the GPRl 19 receptor. Consequently, the compounds of the present invention may be used in the treatment of multiple diseases or disorders associated with GPRl 19, such as diabetes and related conditions, microvascular complications associated with diabetes, the macrovascular complications associated with diabetes, cardiovascular diseases, Metabolic Syndrome and its component conditions, obesity and other maladies.
  • diseases or disorders associated with the modulation of the GPRl 19 G protein-coupled receptor that can be prevented, modulated, or treated according to the present invention include, but are not limited to, diabetes, hyperglycemia, impaired glucose tolerance, insulin resistance, hyperinsulinemia, retinopathy, neuropathy, nephropathy, delayed wound healing, atherosclerosis and its sequelae, abnormal heart function, myocardial ischemia, stroke, Metabolic Syndrome, hypertension, obesity, dislipidemia, dyslipidemia, hyperlipidemia, hypertriglyceridemia, hypercholesterolemia, low HDL, high LDL, non-cardiac ischemia, infection, cancer, vascular restenosis, pancreatitis, neurodegenerative disease, lipid disorders, cognitive impairment and dementia, bone disease, HIV protease associated lipodystrophy and glaucoma.
  • the present invention relates to methods of modulating the activity of the GPRl 19 G protein-coupled receptor comprising administering to a mammalian patient, for example, a human patient, in need thereof a therapeutically effective amount of a compound of the present invention, alone, or optionally, in combination with another compound of the present invention and/or at least one other type of therapeutic agent.
  • the present invention relates to a method for preventing, modulating, or treating the progression or onset of diseases or disorders associated with the activity of the GPRl 19 G protein-coupled receptor comprising administering to a mammalian patient, for example, a human patient, in need of prevention, modulation, or treatment a therapeutically effective amount of a compound of the present invention, alone, or, optionally, in combination with another compound of the present invention and/or at least one other type of therapeutic agent.
  • Examples of diseases or disorders associated with the activity of the GPRl 19 G protein-coupled receptor that can be prevented, modulated, or treated according to the present invention include, but are not limited to, diabetes, hyperglycemia, impaired glucose tolerance, insulin resistance, hyperinsulinemia, retinopathy, neuropathy, nephropathy, delayed wound healing, atherosclerosis and its sequelae, abnormal heart function, myocardial ischemia, stroke, Metabolic Syndrome, hypertension, obesity, dislipidemia, dyslipidemia, hyperlipidemia, hypertriglyceridemia, hypercholesterolemia, low HDL, high LDL, non-cardiac ischemia, infection, cancer, vascular restenosis, pancreatitis, neurodegenerative disease, lipid disorders, cognitive impairment and dementia, bone disease, HIV protease associated lipodystrophy and glaucoma.
  • the present invention relates to a method for preventing, modulating, or treating the progression or onset of diabetes, hyperglycemia, obesity, dyslipidemia, hypertension and cognitive impairment comprising administering to a mammalian patient, for example, a human patient, in need of prevention, modulation, or treatment a therapeutically effective amount of a compound of the present invention, alone, or, optionally, in combination with another compound of the present invention and/or at least one other type of therapeutic agent.
  • the present invention relates to a method for preventing, modulating, or treating the progression or onset of diabetes, comprising administering to a mammalian patient, for example, a human patient, in need of prevention, modulation, or treatment a therapeutically effective amount of a compound of the present invention, alone, or, optionally, in combination with another compound of the present invention and/or at least one other type of therapeutic agent.
  • the present invention relates to a method for preventing, modulating, or treating the progression or onset of hyperglycemia comprising administering to a mammalian patient, for example, a human patient, in need of prevention, modulation, or treatment a therapeutically effective amount of a compound of the present invention, alone, or, optionally, in combination with another compound of the present invention and/or at least one other type of therapeutic agent.
  • the present invention relates to a method for preventing, modulating, or treating the progression or onset of obesity comprising administering to a mammalian patient, for example, a human patient, in need of prevention, modulation, or treatment a therapeutically effective amount of a compound of the present invention, alone, or, optionally, in combination with another compound of the present invention and/or at least one other type of therapeutic agent.
  • the present invention relates to a method for preventing, modulating, or treating the progression or onset of dyslipidemia comprising administering to a mammalian patient, for example, a human patient, in need of prevention, modulation, or treatment a therapeutically effective amount of a compound of the present invention, alone, or, optionally, in combination with another compound of the present invention and/or at least one other type of therapeutic agent.
  • the present invention relates to a method for preventing, modulating, or treating the progression or onset of hypertension comprising administering to a mammalian patient, for example, a human patient, in need of prevention, modulation, or treatment a therapeutically effective amount of a compound of the present invention, alone, or, optionally, in combination with another compound of the present invention and/or at least one other type of therapeutic agent.
  • the present invention relates to the use of a formulated product wherein the selected formulation is made by combining (a) a compound of Formula I and/or IA (using any of the compound embodiments listed herein) and (b) a dipeptidyl peptidase-IV (DPP4) inhibitor.
  • the compounds of Formula I and IA can be administered for any of the uses described herein by any suitable means, for example, orally, such as in the form of tablets, capsules, granules or powders; sublingually; bucally; parenterally, such as by subcutaneous, intravenous, intramuscular, or intrasternal injection, or infusion techniques (e.g., as sterile injectable aqueous or non-aqueous solutions or suspensions); nasally, including administration to the nasal membranes, such as by inhalation spray; topically, such as in the form of a cream or ointment; or rectally such as in the form of suppositories; in dosage unit formulations containing non-toxic, pharmaceutically acceptable vehicles or diluents.
  • suitable means for example, orally, such as in the form of tablets, capsules, granules or powders; sublingually; bucally; parenterally, such as by subcutaneous, intravenous, intramuscular, or intrasternal injection, or infusion
  • a pharmaceutical composition will be employed containing the compounds of formula I, with or without other antidiabetic agent(s) and/or antihyperlipidemic agent(s) and/or other type therapeutic agents in association with a pharmaceutical vehicle or diluent.
  • the pharmaceutical composition can be formulated employing conventional solid or liquid vehicles or diluents and pharmaceutical additives of a type appropriate to the mode of desired administration, such as pharmaceutically acceptable carriers, excipients, binders, and the like.
  • the compounds can be administered to a mammalian patient, including humans, monkeys, dogs, etc. by an oral route, for example, in the form of tablets, capsules, beads, granules or powders.
  • a typical capsule for oral administration contains one or more compounds of Formula I or Formula IA (250 mg), lactose (75 mg), and magnesium stearate (15 mg). The mixture is passed through a 60 mesh sieve and packed into a No. 1 gelatin capsule.
  • a typical injectable preparation is produced by aseptically placing 250 mg of one or more compounds of Formula I or Formula IA into a vial and then aseptically freeze-drying and sealing. For use, the contents of the vial are mixed with 2 mL of physiological saline to produce an injectable preparation.
  • the method of this invention comprises the administration of a compound of Formula I or Formula IA or mixtures thereof:
  • Formula I Formula IA wherein n 1 , n 2 , n 3 , G, Q, X, R 1 , R 2 , R 20 and R 21 are defined below.
  • Compounds used in the method of the present invention modulate the activity of G protein-coupled receptors.
  • compounds of the present invention modulate the activity of the GPRl 19 G protein-coupled receptor
  • GPRl 19 the compounds of the present invention may be used in the treatment of multiple diseases or disorders associated with GPRl 19, such as diabetes and related conditions, microvascular complications associated with diabetes, the macrovascular complications associated with diabetes, cardiovascular diseases, Metabolic Syndrome and its component conditions, obesity and other maladies.
  • diseases or disorders associated with the modulation of the GPRl 19 G protein-coupled receptor that can be prevented, modulated, or treated according to the present invention include, but are not limited to, diabetes, hyperglycemia, impaired glucose tolerance, insulin resistance, hyperinsulinemia, retinopathy, neuropathy, nephropathy, delayed wound healing, atherosclerosis and its sequelae, abnormal heart function, myocardial ischemia, stroke, Metabolic Syndrome, hypertension, obesity, dislipidemia, dyslipidemia, hyperlipidemia, hypertriglyceridemia, hypercholesterolemia, low HDL, high LDL, non-cardiac ischemia, infection, cancer, vascular restenosis, pancreatitis, neurodegenerative disease, lipid disorders, cognitive impairment and dementia, bone disease, HIV protease associated lipodystrophy and glaucoma.
  • the present invention relates to a formulated product wherein the selected formulation is made by using a compound of Formula I and/ or IA as the only active ingredient or by combining (a) a compound of Formula I and/ or IA (using any of the compound embodiments listed herein) and (b) an additional active ingredient, for example, dipeptidyl peptidase-IV (DPP4) inhibitor (for example, a member selected from saxagliptin, sitagliptin, vildagliptin and alogliptin).
  • DPP4 dipeptidyl peptidase-IV
  • the present invention provides for compounds of Formula I and IA, pharmaceutical compositions employing such compounds, and for methods of using such compounds.
  • the present invention provides a pharmaceutical composition comprising a therapeutically effective amount of a compound of Formula I and/or IA, alone or in combination with a pharmaceutically acceptable carrier.
  • a method is provided for preventing, modulating, or treating the progression or onset of diseases or disorders associated with the activity of the GPRl 19 G protein-coupled receptor, such as defined above and hereinafter, wherein a therapeutically effective amount of a compound of formula I is administered to a mammalian, i.e., human, patient in need of treatment.
  • the compounds of the invention can be used alone, in combination with other compounds of the present invention, or in combination with one or more other agent(s).
  • the present invention provides a method for preventing, modulating, or treating the diseases as defined above and hereinafter, wherein a therapeutically effective amount of a combination of a compound of Formula I and/ or IA and another compound of Formula I or IA and/or at least one other type of therapeutic agent, is administered to a mammalian, i.e., human, patient in need of treatment.
  • a method of modulating the activity of the GPRl 19 G protein-coupled receptor comprising administering to a mammalian patient in need thereof a therapeutically effective amount of at least one compound of Formula I or Formula IA and, optionally, an additional therapeutic agent wherein the compound of Formula
  • I or Formula IA is selected from:
  • Formula I and Formula IA including enantiomers, diastereomers, solvates and salts thereof (particularly enantiomers, diastereomers and pharmaceutically acceptable salts thereof) having ring A and ring B, wherein: ring A is optionally substituted with one or more R's shown as R 2 0 and R 21 ; G is CH or N; Q is C or N;
  • Ri is a 6-membered monocyclic aryl, a 5-membered monocyclic heteroaryl or a 6-membered monocyclic heteroaryl, each of which may be optionally substituted with one or more members selected from R 1a , R 1b , R 1c , R 1d and R 1e ; Ria, Rib, Ric, Rid and Ri e are each independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, aryl, heteroaryl, heterocyclyl, halo, -NH 2 , -CN, -NO 2 , -C(O)OH, -C(O)OR 10 , -OCF 3 , -ORi 0 , -OH, -SH, -SRio, -S(O) 3 H, -P(O) 3 H 2 , -C(K))NR 9 R 9 , -NR 9 R 9 , -S
  • R 2 is cycloalkyl, aryl, heteroaryl, heterocyclyl, -S(O) 2 R 5 , -C(O)NR 3 R 5 , -C(O)R 5 or -C(O)OR 5 , wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl may each be optionally substituted with one or more Re's;
  • R 3 is hydrogen, alkyl, alkoxy, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl or heterocyclylalkyl, wherein the heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl may each contain 1-4 heteroatoms selected from N, O and S;
  • R 5 is alkyl, alkenyl, aryl, cycloalkyl, heteroaryl or heterocyclyl, each of which may be optionally substituted with one or more Re's;
  • Re at each occurrence, is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, halo, -NH 2 , -CN, -NO 2 , -C(O)OH, -C(O)ORi 0 , - OCF 3 , -ORi 0 , -OH, -SH, -SRi 0 , -S(O) 3 H, -P(O) 3 H 2 , -C(O)NR 9 R 9 , -NR 9 R 9 , -S(O) 2 NR 9 R 9 ,
  • R 8a is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, halo, -NH 2 , -CN, -NO 2 , -C(O)OH, -C(O)OR 14 , - OCF 3 , -ORi 4 ,
  • Rg at each occurrence, is independently selected from hydrogen, alkyl, alkoxy, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl, wherein the alkyl, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl may each be optionally substituted with 0-5 Rg a , and the heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl each contain 1-4 heteroatoms selected from N, O and S;
  • R 9a is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, halo, -NH 2 , -CN, -NO 2 , -C(O)OH, -C(O)OR 14 , - OCF 3 , -ORi 4 ,
  • Rio at each occurrence, is independently selected from alkyl, alkenyl, alkynyl, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl, wherein the cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl may each be optionally substituted with 0-3 R 1 Oa, and the heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl each contain 1-4 heteroatoms selected from N, O and S;
  • RiOa at each occurrence, is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, halo, -NH 2 , -CN, -NO 2 , -C(O)OH, -C(O)OR 14 , - OCF 3 , -OR 14 ,
  • Ri 4 is independently selected from hydrogen, alkyl, cycloalkyl and aryl;
  • Forma I and “Formula IA” and all embodiments thereof shall include enantiomers, diastereomers, solvates and salts thereof (particularly enantiomers, diastereomers and pharmaceutically acceptable salts thereof).
  • a method of modulating the activity of the GPRl 19 G protein-coupled receptor wherein for the compound of Formula I or Formula IA: ring A is optionally substituted with one or more R's shown as R 2 o and R 21 ;
  • X is CH or N, provided that Q and X are not both N;
  • Y is CH 2 , N(R 3 ), C(O), O, OCR 9 R 9 , S, S(O) or S(O) 2 ;
  • ni is 0-2;
  • n 2 is 0-2;
  • n 3 is 1-2;
  • Ri is a 6-membered monocyclic aryl or a 6-membered monocyclic heteroaryl, each of which may be optionally substituted with one or more members selected from Ria, Rib, Ric, Rid and Ri e ;
  • R 2 is cycloalkyl, aryl, heteroaryl, heterocyclyl, -S(O) 2 R 5 , -C(O)NR 3 R 5 , -C(O)R 5 or -C(O)OR 5 , wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl may each be optionally substituted with one or more Re's;
  • R 3 is hydrogen, alkyl, alkoxy, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl or heterocyclylalkyl;
  • R 5 is alkyl, alkenyl, aryl, cycloalkyl, heteroaryl or heterocyclyl, each of which may be optionally substituted with one or more Re's;
  • R 6 is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, halo, -NH 2 , -CN, -NO 2 , -C(O)OH, -C(O)ORi 0 , - OCF 3 , -ORi 0 , -OH, -SH, -SRi 0 , -S(O) 3 H, -P(O) 3 H 2 , -C(O)NR 9 R 9 , -NR 9 R 9 , -S(O) 2 NR 9 R 9 , ,
  • R 8a is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, halo, -NH 2 , -CN, -NO 2 , -C(O)OH, -C(O)OR 14 , - OCF 3 , -ORi 4 ,
  • Rg at each occurrence, is independently selected from hydrogen, alkyl, alkoxy, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl, wherein the alkyl, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl may each be optionally substituted with 0-5 Rg a ;
  • R 9a is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, halo, -NH 2 , -CN, -NO 2 , -C(O)OH, -C(O)OR 14 , - OCF 3 , -ORi 4 ,
  • Rio at each occurrence, is independently selected from alkyl, alkenyl, alkynyl, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl, wherein the cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl may each be optionally substituted with 0-3 Rio a ;
  • a method of modulating the activity of the GPRl 19 G protein-coupled receptor wherein for the compound of Formula I or Formula IA: ring A is optionally substituted with one or more R's shown as R 2 o and R 21 ;
  • G is CH or N
  • Q is C or N
  • X is CH or N, provided that Q and X are not both N;
  • Y is CH 2 , N(R 3 ), C(O), O, OCR 9 R 9 , S, S(O) or S(O) 2 ; ni is 0-2; n 2 is 0-2; n 3 is 1-2;
  • Ri is phenyl, pyridinyl, pyrazinyl or pyrimindinyl, each of which may be optionally substituted with one or more members selected from R 1 a , R 11 ,, R 1 c , Rid and Ri 6 ;
  • R3 is hydrogen, alkyl, alkoxy, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl or heterocyclylalkyl;
  • R 5 is alkyl, alkenyl, aryl, cycloalkyl, heteroaryl or heterocyclyl, each of which may be optionally substituted with one or more Re's;
  • R 8 at each occurrence, is independently selected from the group consisting of alkyl, aryl, cycloalkyl, heteroaryl and heterocyclyl, each of which may be optionally substituted with one or more R 8a 's;
  • R 8a at each occurrence, is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, halo, -NH 2 , -CN, -NO 2 , -C(O)OH, -C(O)OR 14 , - OCF 3 , -ORi 4 , -OH, -SH, -SRi 4 , -S(O) 3 H, -P(O) 3 H 2 , -C(O)NR 14 R 14 , -NRi 4 Ri 4 , -S(
  • R 9 is independently selected from hydrogen, alkyl, alkoxy, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl, wherein the alkyl, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl may each be optionally substituted with 0-5 R 9a ;
  • R 9a is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, halo, -NH 2 , -CN, -NO 2 , -C(O)OH, -C(O)OR 14 , - OCF 3 , -ORi 4 ,
  • Rio at each occurrence, is independently selected from alkyl, alkenyl, alkynyl, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl, wherein the cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl may each be optionally substituted with 0-3 Rio a ;
  • RiOa at each occurrence, is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, halo, -NH 2 , -CN, -NO 2 , -C(O)OH, -C(O)OR 14 , - OCF 3 ,
  • a method of modulating the activity of the GPRl 19 G protein-coupled receptor wherein for the compound of Formula I or Formula IA: ring A is optionally substituted with one or more R's shown as R 2 0 and R 21 ;
  • G is CH or N
  • Q is C or N;
  • X is CH or N, provided that Q and X are not both N;
  • ni is 0-2;
  • n 2 is 0-2;
  • n 3 is 1-2;
  • Ri is phenyl or pyridinyl, each of which may be optionally substituted with one or more members selected from Ri a , Rn,, Ri c , Rid and Ri e ;
  • R 2 is cycloalkyl, aryl, heteroaryl, heterocyclyl, -S(O) 2 R 5 , -C(O)NR 3 R 5 , -C(O)R 5 or -C(O)OR 5 , wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl may each be optionally substituted with one or more Re's;
  • R 3 is hydrogen, alkyl, alkoxy, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl or heterocyclylalkyl;
  • Rs is alkyl, alkenyl, aryl, cycloalkyl, heteroaryl or heterocyclyl, each of which may be optionally substituted with one or more Re's;
  • R 6 at each occurrence, is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, halo, -NH 2 , -CN, -NO 2 , -C(O)OH, -C(O)OR 10 , - OCF 3 , -OR 10 ,
  • R 8 at each occurrence, is independently selected from the group consisting of alkyl, aryl, cycloalkyl, heteroaryl and heterocyclyl, each of which may be optionally substituted with one or more R 8a 's;
  • R 8a is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, halo, -NH 2 , -CN, -NO 2 , -C(O)OH, -C(O)ORi 4 , - OCF 3 , -ORi 4 ,
  • R 9 is independently selected from hydrogen, alkyl, alkoxy, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl, wherein the alkyl, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl may each be optionally substituted with 0-5 R 9a ;
  • Rio at each occurrence, is independently selected from alkyl, alkenyl, alkynyl, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl, wherein the cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl may each be optionally substituted with 0-3 Rio a ;
  • RiOa at each occurrence, is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, halo, -NH 2 , -CN, -NO 2 , -C(O)OH, -C(O)OR 14 , - OCF 3 , -ORi 4 ,
  • Ri 4 is independently selected from hydrogen, alkyl, cycloalkyl and aryl;
  • a method of modulating the activity of the GPRl 19 G protein-coupled receptor wherein for the compound of Formula I or Formula IA: ring A is optionally substituted with one or more R's shown as R 2 o and R 21 ;
  • X is CH or N, provided that Q and X are not both N;
  • Y is CH 2 , N(R 3 ), C(O), O, OCR 9 R 9 , S, S(O) or S(O) 2 ; ni is 0-2; n 2 is 0-2; n 3 is 1-2;
  • R 1 is t or s eac h of which may be optionally substituted with one or more members selected from the group consisting of R la , Rib, R 1 c , Rid and Ri 6 ;
  • R 1 a , Rib, Ric, Rid and R 1 e are each independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, aryl, heteroaryl, heterocyclyl, halo, -NH 2 , -CN, -NO 2 , -C(O)OH, -C(O)OR 10 , -OCF 3 , -ORi 0 , -OH, -SH, -SRio, -S(O) 3 H, -P(O) 3 H 2 , -C(K))NR 9 R 9 , -NR 9 R 9 , -S(O) 2 NR 9 R 9 ,
  • R 2 is cycloalkyl, aryl, heteroaryl, heterocyclyl, -S(O) 2 R 5 , -C(O)NR 3 R 5 , -C(O)R 5 or -C(O)OR 5 , wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl may each be optionally substituted with one or more Re's;
  • R 3 is hydrogen, alkyl, alkoxy, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl or heterocyclylalkyl, wherein the heteroaryl;
  • R 5 is alkyl, alkenyl, aryl, cycloalkyl, heteroaryl or heterocyclyl, each of which may be optionally substituted with one or more Re's;
  • R ⁇ at each occurrence, is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, halo, -NH 2 , -CN, -NO 2 , -C(O)OH, -C(O)ORi 0 , - OCF 3 , -ORi 0 ,
  • R 8a is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, halo, -NH 2 , -CN, -NO 2 , -C(O)OH, -C(O)OR 14 , - OCF 3 , -ORi 4 ,
  • R 9 is independently selected from hydrogen, alkyl, alkoxy, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl, wherein the alkyl, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl may each be optionally substituted with 0-5 R 9a ;
  • R 9a is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, halo, -NH 2 , -CN, -NO 2 , -C(O)OH, -C(O)OR 14 , - OCF 3 , -ORi 4 ,
  • Ri 0 is independently selected from alkyl, alkenyl, alkynyl, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl, wherein the cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl may each be optionally substituted with 0-3 Rio a ; RiOa, at each occurrence, is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, halo, -NH 2 , -CN, -NO 2 , -C(O)OH, -C(O)OR 14 , - OCF 3
  • Ri 4 is independently selected from hydrogen, alkyl, cycloalkyl and aryl;
  • a method of modulating the activity of the GPRl 19 G protein-coupled receptor wherein for the compound of Formula I or Formula IA: ring A is optionally substituted with one or more R's shown as R 2 o and R 21 ; G is CH or N;
  • Q is C or N
  • X is CH or N, provided that Q and X are not both N; Y is CH 2 , N(R 3 ), C(O), O, OCR 9 R 9 , S, S(O) or S(O) 2 ; ni is 0-2; n 2 is 0-2; n 3 is 1-2;
  • R 2 is cycloalkyl, aryl, heteroaryl, heterocyclyl, -S(O) 2 R 5 , -C(O)NR 3 R 5 , -C(O)R 5 or -C(O)OR 5 , wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl may each be optionally substituted with one or more Re's;
  • R 3 is hydrogen, alkyl, alkoxy, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl or heterocyclylalkyl;
  • R 5 is alkyl, alkenyl, aryl, cycloalkyl, heteroaryl or heterocyclyl, each of which may be optionally substituted with one or more Re's;
  • R ⁇ at each occurrence, is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, halo, -NH 2 , -CN, -NO 2 , -C(O)OH, -C(O)ORi 0 , - OCF 3 , -ORi 0 ,
  • R 8 is independently selected from the group consisting of alkyl, aryl, cycloalkyl, heteroaryl and heterocyclyl, each of which may be optionally substituted with one or more R 8a 's;
  • Rio at each occurrence, is independently selected from alkyl, alkenyl, alkynyl, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl, wherein the cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl may each be optionally substituted with 0-3 Rio a ;
  • RiOa at each occurrence, is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, halo, -NH 2 , -CN, -NO 2 , -C(O)OH, -C(O)OR 14 , - OCF 3 ,
  • Ri 4 is independently selected from hydrogen, alkyl, cycloalkyl and aryl;
  • ring A is optionally substituted with one or more R's shown as R 2 o and R 21 ;
  • G is CH or N
  • Q is C or N
  • X is CH or N, provided that Q and X are not both N;
  • Y is CH 2 , N(R 3 ), C(O), O, OCR 9 R 9 , S, S(O) or S(O) 2 ; ni is 0-2; n 2 is 0-2; n 3 is 1-2;
  • R 3 is hydrogen, alkyl, alkoxy, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl or heterocyclylalkyl;
  • R 5 is alkyl, alkenyl, aryl, cycloalkyl, heteroaryl or heterocyclyl, each of which may be optionally substituted with one or more Re's;
  • Re at each occurrence, is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, halo, -NH 2 , -CN, -NO 2 , -C(O)OH, -C(O)OR 10 , - OCF 3 , -OR 10 ,
  • R 8 at each occurrence, is independently selected from the group consisting of alkyl, aryl, cycloalkyl, heteroaryl and heterocyclyl, each of which may be optionally substituted with one or more R 8a 's;
  • R 8a is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, halo, -NH 2 , -CN, -NO 2 , -C(O)OH, -C(O)ORi 4 , - OCF 3 , -ORi 4 ,
  • Ri 4 is independently selected from hydrogen, alkyl, cycloalkyl and aryl; and R 2 o and R 21 are each independently selected from the group consisting of hydrogen, alkyl, haloalkyl, cycloalkyl, halo, -CN, -C(O)OH, -C(O)OR 10 , -OCF 3 , -ORio, -OH, -C(O)NR 9 R 9 , -C(O)Ri 0 and -OC(O)R 10 .
  • a method of modulating the activity of the GPRl 19 G protein-coupled receptor wherein for the compound of Formula I or Formula IA: ring A is optionally substituted with one or more R's shown as R 2 0 and R 21 ; G is CH or N;
  • Q is C or N
  • X is CH or N, provided that Q and X are not both N;
  • ni is 0-2;
  • n 2 is 0-2;
  • n 3 is 1-2;
  • R 3 is hydrogen, alkyl, alkoxy, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl or heterocyclylalkyl;
  • R 5 is alkyl, alkenyl, aryl, cycloalkyl, heteroaryl or heterocyclyl, each of which may be optionally substituted with one or more Re's;
  • Rs at each occurrence, is independently selected from the group consisting of alkyl, aryl, cycloalkyl, heteroaryl and heterocyclyl, each of which may be optionally substituted with one or more Rs a 's;
  • R 9 is independently selected from hydrogen, alkyl, alkoxy, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl, wherein the alkyl, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl may each be optionally substituted with 0-5 R 9a ;
  • Rio at each occurrence, is independently selected from alkyl, alkenyl, alkynyl, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl, wherein the cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl may each be optionally substituted with 0-3 Rio a ; Rioa, at each occurrence, is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, halo, -NH 2 , -CN, -NO 2 , -C(O)OH, -C(O)OR 14 , - OCF 3 , -OR
  • Ri 4 is independently selected from hydrogen, alkyl, cycloalkyl and aryl;
  • a ninth embodiment a method of modulating the activity of the GPRl 19 G protein-coupled receptor wherein for the compound of Formula I or Formula IA: ring A is optionally substituted with one or more R's shown as R 2 o and R 21 ;
  • G is CH or N
  • Q is C or N
  • X is CH or N, provided that Q and X are not both N; Y is CH 2 , N(R 3 ), C(O), O, OCR 9 R 9 , S, S(O) or S(O) 2 ; ni is 0-2; n 2 is 0-2; n3 is 1-2;
  • Ri is a 6-membered monocyclic aryl, a 5-membered monocyclic heteroaryl or a 6-membered monocyclic heteroaryl, each of which may be optionally substituted with one or more members selected from Ri a , Rib, Ric, Rid and Ri e ; Ria, Rib, Ric, Rid and Ri e are each independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, aryl, heteroaryl, heterocyclyl, halo, -NH 2 , -CN, -NO 2 , -C(O)OH, -C(O)OR 10 , -OCF 3 , -ORi 0 , -OH, -SH, -SRio, -S(O) 3 H, -P(O) 3 H 2 , -C(K))NR 9 R 9 , -NR 9 R 9 , -S(O) 2
  • alkyl alkenyl, alkynyl, cycloalkyl, aryl, heteroaryl and heterocyclyl may each be optionally substituted with one or more Re's; provided that at least one of R la , Rib, Ric, Rid and R le is heteroaryl; R 2 is aryl, heteroaryl, or -C(O)ORs, wherein the aryl and heteroaryl may each be optionally substituted with one or more Re's;
  • R 3 is hydrogen, alkyl, alkoxy, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl or heterocyclylalkyl;
  • R 5 is alkyl, alkenyl, aryl, cycloalkyl, heteroaryl or heterocyclyl, each of which may be optionally substituted with one or more Re's;
  • R 6 is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, halo, -NH 2 , -CN, -NO 2 , -C(O)OH, -C(O)ORi 0 , - OCF 3 , -ORi 0 , -OH, -SH, -SRi 0 , -S(O) 3 H, -P(O) 3 H 2 , -C(O)NR 9 R 9 , -NR 9 R 9 , -S(O) 2 NR 9 R 9 , ,
  • R 8a is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, halo, -NH 2 , -CN, -NO 2 , -C(O)OH, -C(O)OR 14 , - OCF 3 , -ORi 4 ,
  • Rg at each occurrence, is independently selected from hydrogen, alkyl, alkoxy, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl, wherein the alkyl, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl may each be optionally substituted with 0-5 Rg a ;
  • R 9a is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, halo, -NH 2 , -CN, -NO 2 , -C(O)OH, -C(O)OR 14 , - OCF 3 , -ORi 4 ,
  • Rio at each occurrence, is independently selected from alkyl, alkenyl, alkynyl, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl, wherein the cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl may each be optionally substituted with 0-3 Rio a ;
  • a method of modulating the activity of the GPRl 19 G protein-coupled receptor wherein for the compound of Formula I or Formula IA: ring A is optionally substituted with one or more R's shown as R 2 o and R 21 ;
  • G is CH or N
  • Q is C or N
  • X is CH or N, provided that Q and X are not both N; Y is CH 2 , N(R 3 ), C(O), O, OCR 9 R 9 , S, S(O) or S(O) 2 ; ni is 0-2; n 2 is 0-2; n 3 is 1-2;
  • Ri is a 6-membered monocyclic aryl, a 5-membered monocyclic heteroaryl or a 6-membered monocyclic heteroaryl, each of which may be optionally substituted with one or more members selected from R la , Rn,, R 1 c , Rid and R le ;
  • R 1 a , Rib, Ric, Rid and R 1 e are each independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, aryl, heteroaryl, heterocyclyl, halo, -NH 2 , -CN, -NO 2 , -C(O)OH, -C(O)OR 10 , -OCF 3 , -ORi 0 , -OH, -SH, -SRio, -S(O) 3 H, -P(O) 3 H 2 , -C(O)NR 9 R 9 , -NR 9 R 9 , -S(O) 2 NR 9 R 9 ,
  • R3 is hydrogen, alkyl, alkoxy, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl or heterocyclylalkyl;
  • R 5 is alkyl, alkenyl, aryl, cycloalkyl, heteroaryl or heterocyclyl, each of which may be optionally substituted with one or more Re's;
  • R ⁇ is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, halo, -NH 2 , -CN, -NO 2 , -C(O)OH, -C(O)OR 10 , - OCF 3 , -ORi 0 , -OH, -SH, -SRi 0 , -S(O) 3 H, -P(O) 3 H 2 , -C(O)NR 9 R 9 , -NR 9 R 9 , -S(O) 2 NR 9 R 9 , ,
  • R 8 at each occurrence, is independently selected from the group consisting of alkyl, aryl, cycloalkyl, heteroaryl and heterocyclyl, each of which may be optionally substituted with one or more R 8a 's;
  • R 8a at each occurrence, is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, halo, -NH 2 , -CN, -NO 2 , -C(O)OH, -C(O)OR 14 , - OCF 3 , -ORi 4 , -OH, -SH, -SRi 4 , -S(O) 3 H, -P(O) 3 H 2 , -C(O)NRi 4 Ri 4 , -NRi 4 Ri 4 , -S
  • R 9 is independently selected from hydrogen, alkyl, alkoxy, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl, wherein the alkyl, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl may each be optionally substituted with 0-5 R 9a ;
  • R 9a is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, halo, -NH 2 , -CN, -NO 2 , -C(O)OH, -C(O)OR 14 , - OCF 3 , -ORi 4 ,
  • Rio at each occurrence, is independently selected from alkyl, alkenyl, alkynyl, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl, wherein the cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl may each be optionally substituted with 0-3 Rio a ;
  • RiOa at each occurrence, is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, halo, -NH 2 , -CN, -NO 2 , -C(O)OH, -C(O)OR 14 , - OCF 3 ,
  • a method of modulating the activity of the GPRl 19 G protein-coupled receptor wherein for the compound of Formula I or Formula IA: ring A is optionally substituted with one or more R's shown as R 2 0 and R 21 ;
  • G is CH or N
  • Q is C or N;
  • X is CH or N, provided that Q and X are not both N;
  • ni is 0-2;
  • n 2 is 0-2;
  • n 3 is 1-2;
  • Ri is a 6-membered monocyclic aryl, a 5-membered monocyclic heteroaryl or a 6-membered monocyclic heteroaryl, each of which may be optionally substituted with one or more members selected from Ri a , Rn,, Ri c , Rid and Ri e ;
  • R 2 is heteroaryl which may be optionally substituted with one or more Re's;
  • R 3 is hydrogen, alkyl, alkoxy, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl or heterocyclylalkyl;
  • alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl may each be optionally substituted with 0-5 R 9a ;
  • Rs, at each occurrence, is independently selected from the group consisting of alkyl, aryl, cycloalkyl, heteroaryl and heterocyclyl, each of which may be optionally substituted with one or more Rs a 's;
  • R 9 is independently selected from hydrogen, alkyl, alkoxy, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl, wherein the alkyl, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl may each be optionally substituted with 0-5 R 9a ;
  • R 9a is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, halo, -NH 2 , -CN, -NO 2 , -C(O)OH, -C(O)OR 14 , - OCF 3 , -ORi 4 ,
  • Rio at each occurrence, is independently selected from alkyl, alkenyl, alkynyl, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl, wherein the cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl may each be optionally substituted with 0-3 Rio a ;
  • RiOa at each occurrence, is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, halo, -NH 2 , -CN, -NO 2 , -C(O)OH, -C(O)OR 14 , - OCF 3 , -ORi 4 ,
  • Ri 4 is independently selected from hydrogen, alkyl, cycloalkyl and aryl;
  • ring A is optionally substituted with one or more R's shown as R 2 o and R 21 ;
  • G is CH or N
  • Q is C or N
  • X is CH or N, provided that Q and X are not both N;
  • Y is CH 2 , N(R 3 ), C(O), O, OCR 9 R 9 , S, S(O) or S(O) 2 ;
  • ni is 0-2;
  • n 2 is 0-2;
  • n 3 is 1-2;
  • Ri is a 6-membered monocyclic aryl, a 5-membered monocyclic heteroaryl or a 6-membered monocyclic heteroaryl, each of which may be optionally substituted with one or more members selected from Ri a , Rn,, Ri c , Rid and Ri e ;
  • R 2 is oxadiazolyl, benzoxazolyl, pyridinyl or pyrimidinyl, each of which may be optionally substituted with one or more Re's;
  • R 3 is hydrogen, alkyl, alkoxy, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl or heterocyclylalkyl;
  • R 8 is independently selected from the group consisting of alkyl, aryl, cycloalkyl, heteroaryl and heterocyclyl, each of which may be optionally substituted with one or more R 8a 's;
  • Rio at each occurrence, is independently selected from alkyl, alkenyl, alkynyl, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl, wherein the cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl may each be optionally substituted with 0-3 Rio a ;
  • RiOa at each occurrence, is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, halo, -NH 2 , -CN, -NO 2 , -C(O)OH, -C(O)OR 14 , - OCF 3 ,
  • ring A is optionally substituted with one or more R's shown as R 2 o and R 21 ;
  • X is CH or N, provided that Q and X are not both N;
  • Y is CH 2 , N(R 3 ), C(O), O, OCR 9 R 9 , S, S(O) or S(O) 2 ; ni is 0-2; n 2 is 0-2; n 3 is 1-2;
  • Ri is a 6-membered monocyclic aryl, a 5-membered monocyclic heteroaryl or a 6-membered monocyclic heteroaryl, each of which may be optionally substituted with one or more members selected from R la , Rn,, R 1 c , Rid and R le ;
  • R 2 is pyrimidinyl which may be optionally substituted with one or more Re's;
  • R3 is hydrogen, alkyl, alkoxy, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl or heterocyclylalkyl;
  • Rs at each occurrence, is independently selected from the group consisting of alkyl, aryl, cycloalkyl, heteroaryl and heterocyclyl, each of which may be optionally substituted with one or more Rs a 's;
  • R 9 is independently selected from hydrogen, alkyl, alkoxy, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl, wherein the alkyl, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl may each be optionally substituted with 0-5 R 9a ;
  • R 9a is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, halo, -NH 2 , -CN, -NO 2 , -C(O)OH, -C(O)OR 14 , -
  • Rio at each occurrence, is independently selected from alkyl, alkenyl, alkynyl, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl, wherein the cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl may each be optionally substituted with 0-3 Rio a ;
  • RiOa at each occurrence, is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, halo, -NH 2 , -CN, -NO 2 , -C(O)OH, -C(O)OR 14 , -
  • Ri 4 at each occurrence, is independently selected from hydrogen, alkyl, cycloalkyl and aryl;
  • R 2 o and R 21 are each independently selected from the group consisting of hydrogen, alkyl, haloalkyl, cycloalkyl, halo, -CN, -C(O)OH, -C(O)OR 10 , -OCF 3 ,
  • ring A is optionally substituted with one or more R's shown as R20 and R21;
  • G is CH or N
  • Q is C or N
  • Ri is a 6-membered monocyclic aryl, a 5-membered monocyclic heteroaryl or a 6-membered monocyclic heteroaryl, each of which may be optionally substituted with one or more members selected from Ri a , Rn,, Ri c , Rid and Ri e ;
  • R 3 is hydrogen, alkyl, alkoxy, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl or heterocyclylalkyl;
  • R 5 is alkyl, alkenyl, aryl, cycloalkyl, heteroaryl or heterocyclyl, each of which may be optionally substituted with one or more Re's;
  • Rs at each occurrence, is independently selected from the group consisting of alkyl, aryl, cycloalkyl, heteroaryl and heterocyclyl, each of which may be optionally substituted with one or more Rs a 's;
  • R 8a is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, halo, -NH 2 , -CN, -NO 2 , -C(O)OH, -C(O)OR 14 , - OCF 3 , -ORi 4 ,
  • R 9 is independently selected from hydrogen, alkyl, alkoxy, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl, wherein the alkyl, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl may each be optionally substituted with 0-5 R 9a ;
  • R 9a is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, halo, -NH 2 , -CN, -NO 2 , -C(O)OH, -C(O)OR 14 , - OCF 3 , -ORi 4 ,
  • Ri 4 is independently selected from hydrogen, alkyl, cycloalkyl and aryl;
  • a method of modulating the activity of the GPRl 19 G protein-coupled receptor wherein for the compound of Formula I or Formula IA: ring A is optionally substituted with one or more R's shown as R 2 o and R 21 ;
  • G is CH or N
  • Q is C or N;
  • X is CH or N, provided that Q and X are not both N;
  • Y is CH 2 , N(R 3 ), C(O), O, OCR 9 R 9 , S, S(O) or S(O) 2 ;
  • ni is 0-2;
  • n 2 is 0-2;
  • n 3 is 1-2;
  • Ri is a 6-membered monocyclic aryl, a 5-membered monocyclic heteroaryl or a 6-membered monocyclic heteroaryl, each of which may be optionally substituted with one or more members selected from R la , Rn,, R 1 c , Rid and R le ;
  • Ria, Rib, Ric, Rid and Ri e are each independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, aryl, heteroaryl, heterocyclyl, halo, -NH 2 , -CN, -NO 2 , -C(O)OH, -C(O)OR 10 , -OC
  • R 2 is -C(O)OR 5 ;
  • R 3 is hydrogen, alkyl, alkoxy, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl or heterocyclylalkyl;
  • R 5 is alkyl, alkenyl, aryl, cycloalkyl, heteroaryl or heterocyclyl, each of which may be optionally substituted with one or more Re's;
  • R 6 is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, halo, -CN, -C(O)ORi 0 , -OCF 3 , -ORi 0 , -OH, -SH, - SRi 0 , -C(O)NR 9 R 9 , -NR 9 R 9 , -S(O) 2 NR 9 R 9 , -NR 9 S(O) 2 CF 3 , -C(O)R 10 , -NR 9 C(O)H, -NR 9 C(O)Ri 0 , -OC(O)Ri 0 , -S(O)Ri 0 , -S(O) 2 Ri 0 , O, -NR
  • Rio at each occurrence, is independently selected from alkyl, alkenyl, alkynyl, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl, wherein the cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl may each be optionally substituted with 0-3 Rio a ;
  • RiOa at each occurrence, is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, halo, -NH 2 , -CN, -NO 2 , -C(O)OH, -C(O)OR 14 , - OCF 3 ,
  • a method of modulating the activity of the GPRl 19 G protein-coupled receptor wherein for the compound of Formula I or Formula IA: ring A is optionally substituted with one or more R's shown as R 2 0 and R 21 ; G is CH or N;
  • Q is C or N
  • X is CH or N, provided that Q and X are not both N;
  • Y is CH 2 , N(R 3 ), C(O), O, OCR 9 R 9 , S, S(O) or S(O) 2 ; ni is 0-2; n 2 is 0-2; n 3 is 1-2;
  • Ri is a 6-membered monocyclic aryl, a 5-membered monocyclic heteroaryl or a 6-membered monocyclic heteroaryl, each of which may be optionally substituted with one or more members selected from R la , Rn,, R 1 c , Rid and R le ;
  • Ria, Rib, Ric, Rid and R 1 e are each independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, aryl, heteroaryl, heterocyclyl, halo, -NH 2 , -CN, -NO 2 , -C(O)OH, -C(O)OR 10 , -OCF 3 , -ORi 0 , -OH, -SH, -SR 1 0, -S(O) 3 H, -P(O) 3 H 2 , -C(K))NR 9 R 9 , -NR 9 R 9 , -S(
  • R 3 is hydrogen, alkyl, alkoxy, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl or heterocyclylalkyl;
  • R 5 is alkyl, alkenyl, aryl, cycloalkyl, heteroaryl or heterocyclyl, each of which may be optionally substituted with one or more Re's;
  • alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl may each be optionally substituted with 0-5 R 9a ;
  • R 8 at each occurrence, is independently selected from the group consisting of alkyl, aryl, cycloalkyl, heteroaryl and heterocyclyl, each of which may be optionally substituted with one or more R 8a 's;
  • R 8a is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, halo, -NH 2 , -CN, -NO 2 , -C(O)OH, -C(O)ORi 4 , -
  • R 9 is independently selected from hydrogen, alkyl, alkoxy, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl, wherein the alkyl, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl may each be optionally substituted with 0-5 R 9a ;
  • Ri 4 at each occurrence, is independently selected from hydrogen, alkyl, cycloalkyl and aryl; R 2 o is hydrogen; and
  • R 2I is selected from the group consisting of hydrogen, alkyl, haloalkyl, cycloalkyl, halo, -CN, -C(O)OH, -C(O)OR 10 , -OCF 3 , -ORi 0 , -OH, -C(O)NR 9 R 9 , -C(O)Ri 0 and -OC(O)Ri 0 .
  • a method of modulating the activity of the GPRl 19 G protein-coupled receptor wherein for the compound of Formula I or Formula IA: ring A is optionally substituted with one or more R's shown as R 2 o and R 21 ; G is CH or N;
  • Q is C or N
  • X is CH
  • ni is 0-2;
  • n 2 is 0-2;
  • n 3 is 1-2;
  • Ri is a 6-membered monocyclic aryl, a 5-membered monocyclic heteroaryl or a 6-membered monocyclic heteroaryl, each of which may be optionally substituted with one or more members selected from Ri a , Rib, Ric, Rid and Ri e ;
  • R 3 is hydrogen, alkyl, alkoxy, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl or heterocyclylalkyl;
  • R 5 is alkyl, alkenyl, aryl, cycloalkyl, heteroaryl or heterocyclyl, each of which may be optionally substituted with one or more Re's;
  • R 8a at each occurrence, is independently selected from the group consisting of alkyl, aryl, cycloalkyl, heteroaryl and heterocyclyl, each of which may be optionally substituted with one or more R 8a 's;
  • R 8a at each occurrence, is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, halo, -NH 2 , -CN, -NO 2 , -C(O)OH, -C(O)OR 14 , - OCF 3 , -ORi 4 , -OH, -SH, -SRi 4 , -S(O) 3 H, -P(O) 3 H 2 , -C(O)NR 14 R 14 , -NRi 4 Ri 4 , -S(
  • R 9 is independently selected from hydrogen, alkyl, alkoxy, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl, wherein the alkyl, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl may each be optionally substituted with 0-5 R 9a ;
  • R 9a is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, halo, -NH 2 , -CN, -NO 2 , -C(O)OH, -C(O)OR 14 , - OCF 3 , -ORi 4 ,
  • Ri 4 is independently selected from hydrogen, alkyl, cycloalkyl and aryl;
  • R 2 o is hydrogen
  • a method of modulating the activity of the GPRl 19 G protein-coupled receptor wherein for the compound of Formula I or Formula IA: ring A is optionally substituted with one or more R's shown as R 2 o and R 21 ;
  • G is CH or N; Q is C;
  • X is CH
  • Y is CH 2 , N(R 3 ), C(O), O, OCR 9 R 9 , S, S(O) or S(O) 2 ;
  • ni is 0-2;
  • n 2 is 0-2;
  • n 3 is 1-2;
  • Ri is a 6-membered monocyclic aryl, a 5-membered monocyclic heteroaryl or a 6-membered monocyclic heteroaryl, each of which may be optionally substituted with one or more members selected from Ri a , Rn,, Ri c , Rid and Ri e ;
  • R 3 is hydrogen, alkyl, alkoxy, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl or heterocyclylalkyl;
  • R 5 is alkyl, alkenyl, aryl, cycloalkyl, heteroaryl or heterocyclyl, each of which may be optionally substituted with one or more Re's;
  • R 8a is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, halo, -NH 2 , -CN, -NO 2 , -C(O)OH, -C(O)OR 14 , - OCF 3 , -ORi 4 ,
  • Rg at each occurrence, is independently selected from hydrogen, alkyl, alkoxy, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl, wherein the alkyl, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl may each be optionally substituted with 0-5 Rg a ;
  • R 9a is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, halo, -NH 2 , -CN, -NO 2 , -C(O)OH, -C(O)OR 14 , - OCF 3 , -ORi 4 ,
  • Rio at each occurrence, is independently selected from alkyl, alkenyl, alkynyl, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl, wherein the cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl may each be optionally substituted with 0-3 Rio a ;
  • Ri 4 at each occurrence, is independently selected from hydrogen, alkyl, cycloalkyl and aryl; R 2 o is hydrogen; and
  • a method of modulating the activity of the GPRl 19 G protein-coupled receptor wherein for the compound of Formula IA: ring A is optionally substituted with one or more R's shown as R 2 o and R 21 ;
  • G is CH or N
  • Ri is a 6-membered monocyclic aryl, a 5-membered monocyclic heteroaryl or a 6-membered monocyclic heteroaryl, each of which may be optionally substituted with one or more members selected from R la , Rn,, R 1 c , Rid and R le ;
  • R3 is hydrogen, alkyl, alkoxy, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl or heterocyclylalkyl;
  • R 5 is alkyl, alkenyl, aryl, cycloalkyl, heteroaryl or heterocyclyl, each of which may be optionally substituted with one or more Re's;
  • R 8 at each occurrence, is independently selected from the group consisting of alkyl, aryl, cycloalkyl, heteroaryl and heterocyclyl, each of which may be optionally substituted with one or more R 8a 's;
  • R 8a at each occurrence, is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, halo, -NH 2 , -CN, -NO 2 , -C(O)OH, -C(O)OR 14 , - OCF 3 , -ORi 4 , -OH, -SH, -SRi 4 , -S(O) 3 H, -P(O) 3 H 2 , -C(O)NR 14 R 14 , -NRi 4 Ri 4 , -S(
  • R 9 is independently selected from hydrogen, alkyl, alkoxy, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl, wherein the alkyl, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl may each be optionally substituted with 0-5 R 9a ;
  • R 9a is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, halo, -NH 2 , -CN, -NO 2 , -C(O)OH, -C(O)OR 14 , - OCF 3 , -ORi 4 ,
  • Rio at each occurrence, is independently selected from alkyl, alkenyl, alkynyl, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl, wherein the cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl may each be optionally substituted with 0-3 Rio a ;
  • RiOa at each occurrence, is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, halo, -NH 2 , -CN, -NO 2 , -C(O)OH, -C(O)OR 14 , - OCF 3 ,
  • a method of modulating the activity of the GPRl 19 G protein-coupled receptor wherein for the compound of Formula I: ring A is optionally substituted with one or more R's shown as R 20 and R 21 ;
  • G is CH or N
  • Ri is a 6-membered monocyclic aryl, a 5-membered monocyclic heteroaryl or a 6-membered monocyclic heteroaryl, each of which may be optionally substituted with one or more members selected from Ri a , Rn,, Ri c , Rid and Ri e ;
  • Ria, Rib, Ric, Rid and Ri e are each independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, aryl, heteroaryl, heterocyclyl, halo, -NH 2 , -CN, -NO 2 , -C(O)OH, -C(O)ORi 0 , -OCF 3 , -ORi 0 , -OH, -SH, -SRi 0 , -S(O) 3 H, -P(O) 3 H 2 , -C(O)NR 9 R 9 , -NR 9 R 9 , -S(O) 2 NR 9 R 9 ,
  • R 2 is cycloalkyl, aryl, heteroaryl, heterocyclyl, -S(O) 2 R 5 , -C(O)NR 3 R 5 , -C(O)R 5 or -C(O)OR 5 , wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl may each be optionally substituted with one or more Re's;
  • R 3 is hydrogen, alkyl, alkoxy, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl or heterocyclylalkyl;
  • Rs is alkyl, alkenyl, aryl, cycloalkyl, heteroaryl or heterocyclyl, each of which may be optionally substituted with one or more Re's;
  • R 6 at each occurrence, is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, halo, -NH 2 , -CN, -NO 2 , -C(O)OH, -C(O)OR 10 , - OCF 3 , -OR 10 ,
  • R 8 at each occurrence, is independently selected from the group consisting of alkyl, aryl, cycloalkyl, heteroaryl and heterocyclyl, each of which may be optionally substituted with one or more R 8a 's;
  • R 8a is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, halo, -NH 2 , -CN, -NO 2 , -C(O)OH, -C(O)ORi 4 , - OCF 3 , -ORi 4 ,
  • R 9 is independently selected from hydrogen, alkyl, alkoxy, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl, wherein the alkyl, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl may each be optionally substituted with 0-5 R 9a ;
  • Rio at each occurrence, is independently selected from alkyl, alkenyl, alkynyl, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl, wherein the cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl may each be optionally substituted with 0-3 Rio a ;
  • RiOa at each occurrence, is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, halo, -NH 2 , -CN, -NO 2 , -C(O)OH, -C(O)OR 14 , - OCF 3 , -ORi 4 ,
  • Ri 4 is independently selected from hydrogen, alkyl, cycloalkyl and aryl;
  • R 2 o is hydrogen
  • a method of modulating the activity of the GPRl 19 G protein-coupled receptor wherein for the compound of Formula IA: ring A is optionally substituted with one or more R's shown as R 20 and R 21 ; G is CH or N;
  • Ri is a 6-membered monocyclic aryl, a 5-membered monocyclic heteroaryl or a 6-membered monocyclic heteroaryl, each of which may be optionally substituted with one or more members selected from Ri a , Rn,, Ri c , Rid and Ri e ;
  • Ria, Rib, Ric, Rid and Ri e are each independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, aryl, heteroaryl, heterocyclyl, halo, -NH 2 , -CN, -NO 2 , -C(O)OH, -C(O)OR 10 , -OCF 3 , -ORi 0 , -OH, -SH, -SRio, -S(O) 3 H, -P(O) 3 H 2 , -C(K))NR 9 R 9 , -NR 9 R 9 , -S(O) 2 NR 9 R 9 ,
  • R 2 is cycloalkyl, aryl, heteroaryl, heterocyclyl, -S(O) 2 R 5 , -C(O)NR 3 R 5 , -C(O)R 5 or -C(O)OR 5 , wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl may each be optionally substituted with one or more Re's;
  • R 3 is hydrogen, alkyl, alkoxy, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl or heterocyclylalkyl;
  • R 5 is alkyl, alkenyl, aryl, cycloalkyl, heteroaryl or heterocyclyl, each of which may be optionally substituted with one or more Re's;
  • R ⁇ at each occurrence, is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, halo, -NH 2 , -CN, -NO 2 , -C(O)OH, -C(O)ORi 0 , - OCF 3 , -ORi 0 ,
  • alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl may each be optionally substituted with 0-5 Rg a ;
  • R 8a is independently selected from the group consisting of alkyl, aryl, cycloalkyl, heteroaryl and heterocyclyl, each of which may be optionally substituted with one or more R 8a 's;
  • R 2 o is hydrogen
  • a method of modulating the activity of the GPRl 19 G protein-coupled receptor wherein for the compound of Formula I: ring A is optionally substituted with one or more R's shown as R 2 o and R 21 ;
  • G is CH or N; Q is C;
  • X is CH
  • Y is CH 2 , N(R 3 ), C(O), O, OCR 9 R 9 , S, S(O) or S(O) 2 ;
  • ni is 1; n 2 is 1 ; n 3 is 2;
  • Ri is a 6-membered monocyclic aryl, a 5-membered monocyclic heteroaryl or a 6-membered monocyclic heteroaryl, each of which may be optionally substituted with one or more members selected from R la , Rn,, R 1 c , Rid and R le ;
  • alkyl alkenyl, alkynyl, cycloalkyl, aryl, heteroaryl and heterocyclyl may each be optionally substituted with one or more
  • R 3 is hydrogen, alkyl, alkoxy, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl or heterocyclylalkyl;
  • R 5 is alkyl, alkenyl, aryl, cycloalkyl, heteroaryl or heterocyclyl, each of which may be optionally substituted with one or more Re's;
  • R 6 is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, halo, -NH 2 , -CN, -NO 2 , -C(O)OH, -C(O)OR 10 , -
  • alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl may each be optionally substituted with 0-5 R 9a ;
  • R 8 at each occurrence, is independently selected from the group consisting of alkyl, aryl, cycloalkyl, heteroaryl and heterocyclyl, each of which may be optionally substituted with one or more R 8a 's;
  • R 8a is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, halo, -NH 2 , -CN, -NO 2 , -C(O)OH, -C(O)OR 14 , -
  • Rio at each occurrence, is independently selected from alkyl, alkenyl, alkynyl, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl, wherein the cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl may each be optionally substituted with 0-3 Rio a ;
  • RiOa at each occurrence, is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, halo, -NH 2 , -CN, -NO 2 , -C(O)OH, -C(O)OR 14 , - OCF 3 ,
  • R 2 0 is hydrogen
  • a method of modulating the activity of the GPRl 19 G protein-coupled receptor wherein for the compound of Formula IA: ring A is optionally substituted with one or more R's shown as R 2 0 and R 21 ; G is CH or N;
  • X is CH
  • Y is CH 2 , N(R 3 ), C(O), O, OCR 9 R 9 , S, S(O) or S(O) 2 ; ni is 1; n 2 is 1;
  • Ri is a 6-membered monocyclic aryl, a 5-membered monocyclic heteroaryl or a 6-membered monocyclic heteroaryl, each of which may be optionally substituted with one or more members selected from R la , Rn,, R 1 c , Rid and R le ;
  • R 3 is hydrogen, alkyl, alkoxy, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl or heterocyclylalkyl;
  • R 5 is alkyl, alkenyl, aryl, cycloalkyl, heteroaryl or heterocyclyl, each of which may be optionally substituted with one or more Re's;
  • R 8 at each occurrence, is independently selected from the group consisting of alkyl, aryl, cycloalkyl, heteroaryl and heterocyclyl, each of which may be optionally substituted with one or more R 8a 's;
  • R 8a at each occurrence, is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, halo, -NH 2 , -CN, -C(O)OH, -C(O)ORi 4 , -OCF 3 ,
  • R 9 is independently selected from hydrogen, alkyl, alkoxy, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl, wherein the alkyl, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl may each be optionally substituted with 0-5 R 9a ;
  • R 9a is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, halo, -NH 2 , -CN, -C(O)OH, -C(O)ORi 4 , -OCF 3 ,
  • Rio at each occurrence, is independently selected from alkyl, alkenyl, alkynyl, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl, wherein the cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl may each be optionally substituted with 0-3 Rio a ;
  • R 14 at each occurrence, is independently selected from hydrogen, alkyl, cycloalkyl and aryl;
  • a method of modulating the activity of the GPRl 19 G protein-coupled receptor wherein for the compound of Formula I: ring A is optionally substituted with one or more R's shown as R 2 o and R 21 ;
  • G is CH or N
  • X is CH
  • Y is CH 2 , N(R 3 ), C(O), O, OCR 9 R 9 , S, S(O) or S(O) 2 ;
  • ni is 1; n 2 is 1 ; n 3 is 2;
  • Ri is a 6-membered monocyclic aryl, a 5-membered monocyclic heteroaryl or a 6-membered monocyclic heteroaryl, each of which may be optionally substituted with one or more members selected from R la , Rn,, R 1 c , Rid and R le ;
  • R 2 is cycloalkyl, aryl, heteroaryl, heterocyclyl, -S(O) 2 R 5 , -C(O)NR 3 R 5 , -C(O)R 5 or -C(O)OR 5 , wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl may each be optionally substituted with one or more Re's;
  • R 3 is hydrogen, alkyl, alkoxy, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl or heterocyclylalkyl;
  • R 5 is alkyl, alkenyl, aryl, cycloalkyl, heteroaryl or heterocyclyl, each of which may be optionally substituted with one or more Re's;
  • R 6 is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, halo, -NH 2 , -CN, -NO 2 , -C(O)OH, -C(O)ORi 0 , - OCF 3 , -ORi 0 , -OH, -SH, -SRi 0 , -S(O) 3 H, -P(O) 3 H 2 , -C(O)NR 9 R 9 , -NR 9 R 9 , -S(O) 2 NR 9 R 9 , ,
  • R 8 at each occurrence, is independently selected from the group consisting of alkyl, aryl, cycloalkyl, heteroaryl and heterocyclyl, each of which may be optionally substituted with one or more R 8a 's;
  • R 9 is independently selected from hydrogen, alkyl, alkoxy, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl, wherein the alkyl, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl may each be optionally substituted with 0-5 R 9a ;
  • Rio at each occurrence, is independently selected from alkyl, alkenyl, alkynyl, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl, wherein the cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl may each be optionally substituted with 0-3 Rio a ;
  • Ri 4 is independently selected from hydrogen, alkyl, cycloalkyl and aryl;
  • a method of modulating the activity of the GPRl 19 G protein-coupled receptor wherein for the compound of Formula IA: ring A is optionally substituted with one or more R's shown as R 20 and R 21 ;
  • G is CH or N
  • Q is C; X is CH;
  • Y is O, OCR 9 R 9 , or S,; ni is 1; n2 is 1 ; Ri is a 6-membered monocyclic aryl, a 5-membered monocyclic heteroaryl or a 6-membered monocyclic heteroaryl, each of which may be optionally substituted with one or more members selected from Ri a , Rib, Ric, Rid and Ri e ;
  • R 2 is cycloalkyl, aryl, heteroaryl, heterocyclyl, -S(O) 2 R 5 , -C(O)NR 3 R 5 , -C(O)R 5 or -C(O)OR 5 , wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl may each be optionally substituted with one or more Re's;
  • R 3 is hydrogen, alkyl, alkoxy, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl or heterocyclylalkyl;
  • R 5 is alkyl, alkenyl, aryl, cycloalkyl, heteroaryl or heterocyclyl, each of which may be optionally substituted with one or more Re's;
  • R ⁇ at each occurrence, is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, halo, -NH 2 , -CN, -NO 2 , -C(O)OH, -C(O)ORi 0 , - OCF 3 , -ORi 0 ,
  • R 8a is independently selected from the group consisting of alkyl, aryl, cycloalkyl, heteroaryl and heterocyclyl, each of which may be optionally substituted with one or more R 8a 's;
  • Rg at each occurrence, is independently selected from hydrogen, alkyl, alkoxy, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl, wherein the alkyl, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl may each be optionally substituted with 0-5 Rg a ;
  • Rio at each occurrence, is independently selected from alkyl, alkenyl, alkynyl, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl, wherein the cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl may each be optionally substituted with 0-3 Rio a ;
  • Ri 4 at each occurrence, is independently selected from hydrogen, alkyl, cycloalkyl and aryl; R20 is hydrogen; and
  • ring A is optionally substituted with one or more R's shown as R 2 0 and R 21 ;
  • G is CH or N
  • Q is C; X is CH;
  • R 3 is hydrogen, alkyl, alkoxy, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl or heterocyclylalkyl;
  • Rs is alkyl, alkenyl, aryl, cycloalkyl, heteroaryl or heterocyclyl, each of which may be optionally substituted with one or more Re's;
  • R 6 at each occurrence, is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, halo, -NH 2 , -CN, -NO 2 , -C(O)OH, -C(O)OR 10 , - OCF 3 , -OR 10 ,
  • R 8 at each occurrence, is independently selected from the group consisting of alkyl, aryl, cycloalkyl, heteroaryl and heterocyclyl, each of which may be optionally substituted with one or more R 8a 's;
  • R 8a is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, halo, -NH 2 , -CN, -C(O)OH, -C(O)ORi 4 , -OCF 3 , -ORi 4 , -OH, -C(O)NR 14 R 14 , -NRi 4 Ri 4 , -S(O) 2 NRi 4 Ri 4 , -NRi 4 S(O) 2 CF 3 , -C(O)Ri 4 , -NR 14 C(O)H, -NR 14 C(O)R 14 , -0C(O)R 14 ,-S(O)R 14 , -S(O) 2 Ri 4 , O, -NR 14 C(O)OR 14 and -NRi 4 S(O 2 )Ri 4 ;
  • R 9 is independently selected from hydrogen, alkyl, alkoxy, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl, wherein the alkyl, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl may each be optionally substituted with 0-5 R 9a ;
  • R 9a is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, halo, -NH 2 , -CN, -C(O)OH, -C(O)ORi 4 , -OCF 3 , -ORi 4 , -OH, -C(O)NR 14 R 14 , -NRi 4 Ri 4 , -S(O) 2 NRi 4 Ri 4 , -NRi 4 S(O) 2 CF 3 , -C(O)Ri 4 , -NR M C(O)H,-NRi 4 C(O)Ri 4 , -OC(O)Ri 4 , -S(O)Ri 4 , -S(O) 2 Ri 4 , -NR 14 C(O)OR 8 , -NRi 4 S(O 2 )R 8 , O; Rio, at each occurrence, is independently selected from alkyl,
  • R 2 o is hydrogen
  • a method of modulating the activity of the GPRl 19 G protein-coupled receptor wherein for the compound of Formula IA: ring A is optionally substituted with one or more R's shown as R 2 o and R 21 ;
  • G is CH or N; Q is C;
  • X is CH
  • R 5 is alkyl, alkenyl, aryl, cycloalkyl, heteroaryl or heterocyclyl, each of which may be optionally substituted with one or more Re's;
  • R 8 at each occurrence, is independently selected from the group consisting of alkyl, aryl, cycloalkyl, heteroaryl and heterocyclyl, each of which may be optionally substituted with one or more R 8a 's;
  • R 8a is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, halo, -NH 2 , -CN, -C(O)OH, -C(O)OR 14 , -OCF 3 ,
  • R 9 is independently selected from hydrogen, alkyl, alkoxy, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl, wherein the alkyl, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl may each be optionally substituted with 0-5 R 9a ;
  • Rio at each occurrence, is independently selected from alkyl, alkenyl, alkynyl, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl, wherein the cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl may each be optionally substituted with 0-3 Rio a ;
  • Ri 4 is independently selected from hydrogen, alkyl, cycloalkyl and aryl;
  • a method of modulating the activity of the GPRl 19 G protein-coupled receptor wherein for the compound of Formula I: ring A is optionally substituted with one or more R's shown as R 2 o and R 21 ;
  • G is CH or N
  • X is CH
  • Y is O, OCR 9 R 9 or S; ni is 1; n 2 is 1 ; n 3 is 2; Ri is phenyl or a 6-membered monocyclic heteroaryl, each of which may be optionally substituted with one or more members selected from Ri a , Rn,, Ri c , Rid and Ri e, '
  • R 5 is alkyl, alkenyl, aryl, cycloalkyl, heteroaryl or heterocyclyl, each of which may be optionally substituted with one or more Re's;
  • R 8 at each occurrence, is independently selected from the group consisting of alkyl, aryl, cycloalkyl, heteroaryl and heterocyclyl, each of which may be optionally substituted with one or more R 8a 's;
  • Rg at each occurrence, is independently selected from hydrogen, alkyl, alkoxy, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl, wherein the alkyl, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl may each be optionally substituted with 0-5 R 9a ;
  • Rio at each occurrence, is independently selected from alkyl, alkenyl, alkynyl, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl, wherein the cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl may each be optionally substituted with 0-3 Rio a ; Rioa, at each occurrence, is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, halo, -NH 2 , -CN, -C(O)OR 14 , -OCF 3 , -OR 14 , -OH, -C(O)NR 14 R 14 , -NRi 4 Ri 4 , -S(O) 2 NRi 4 Ri 4 , -NRi 4 S(O) 2 CF
  • R 2 o is hydrogen
  • a method of modulating the activity of the GPRl 19 G protein-coupled receptor wherein for the compound of Formula IA: ring A is optionally substituted with one or more R's shown as R20 and R21;
  • G is CH or N
  • X is CH; Y is O, OCR 9 R 9 , or S; ni is 1; n2 is 1 ;
  • Ri is phenyl or a 6-membered monocyclic heteroaryl, each of which may be optionally substituted with one or more members selected from Ri a , Rn,, Ri c , Rid and Ri 6 ;
  • Ri c is a 5-6 membered monocyclic heteroaryl which may be optionally substituted with one or more Re's;
  • R 2 is heteroaryl or -C(O)ORs, wherein the heteroaryl may be optionally substituted with one or more Re's;
  • R 5 is alkyl, alkenyl, aryl, cycloalkyl, heteroaryl or heterocyclyl, each of which may be optionally substituted with one or more Re's;
  • R ⁇ at each occurrence, is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, halo, -CN, -C(O)ORi 0 , -OCF 3 , -ORi 0 , -OH, -SH, - SRi 0 ,
  • R 9 is independently selected from hydrogen, alkyl, alkoxy, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl, wherein the alkyl, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl may each be optionally substituted with 0-5 Rg a ;
  • Rio at each occurrence, is independently selected from alkyl, alkenyl, alkynyl, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl, wherein the cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl may each be optionally substituted with 0-3 Rio a ;
  • a method of modulating the activity of the GPRl 19 G protein-coupled receptor wherein for the compound of Formula I: ring A is optionally substituted with one or more R's shown as R 20 and R 21 ; G is CH or N; Q is C; X is CH; Y is O, OCR 9 R 9 , or S; ni is 1; n 2 is 1 ; n 3 is 2;
  • Ri is phenyl or a 6-membered monocyclic heteroaryl, each of which may be optionally substituted with one or more members selected from Ri a , Rn,, Ri c , Rid and
  • Ria, Rib, Rid and Ri e are each independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, halo, -CN, -OCF 3 , -ORi 0, -OH, -C(O)NR 9 R 9 , -NR 9 R 9 , -S(O) 2 NR 9 R 9 , -NR 9 S(O) 2 CF 3 , -C(O)R 10 , -NR 9 C(O)H, -NR 9 C(O)Ri 0 , -OC(O)R 10 , -OC(O)NR 9 R 9 , -S(O)R 10 , -S(O) 2 Ri 0 , -NR 9 C(O)OR 8 and -NR 9 S(O 2 )R 8 , wherein the alkyl, alkenyl, alkynyl and cycloalkyl may each be optionally substituted with one
  • R lc is a 5-6 membered monocyclic heteroaryl which may be optionally substituted with one or more Re's;
  • R 2 is heteroaryl or -C(O)ORs, wherein the heteroaryl may be optionally substituted with one or more Re's;
  • R 5 is alkyl, alkenyl, aryl, cycloalkyl, heteroaryl or heterocyclyl, each of which may be optionally substituted with one or more Re's;
  • R 8a is independently selected from the group consisting of alkyl, aryl, cycloalkyl, heteroaryl and heterocyclyl, each of which may be optionally substituted with one or more R 8a 's;
  • R 8a is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, halo, -NH 2 , -CN, -C(O)OH, -C(O)OR 14 , -OCF 3 ,
  • R 9 is independently selected from hydrogen, alkyl, alkoxy, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl, wherein the alkyl, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl may each be optionally substituted with 0-5 R 9a ;
  • R 9a is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, halo, -NH 2 , -CN, -C(O)OH, -C(O)OR 14 , -OCF 3 ,
  • Ri 0 is independently selected from alkyl, alkenyl, alkynyl, cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl, wherein the cycloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl may each be optionally substituted with 0-3 Ri Oa ;
  • R 1 Oa is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, halo, -NH 2 , -CN, -C(O)OR 14 , -OCF 3 , -OR 14 , -OH, -C(O)NR 14 R 14 , -NRi 4 Ri 4 , -S(O) 2 NRi 4 Ri 4 , -NRi 4 S(O) 2 CF 3 , -C(O)R 14 , -NR 14 C(O)H,
  • R 14 at each occurrence, is independently selected from hydrogen, alkyl, cycloalkyl and aryl;
  • R 2 0 is hydrogen
  • a method of modulating the activity of the GPRl 19 G protein-coupled receptor wherein for the compound of Formula IA: ring A is optionally substituted with one or more R's shown as R 2 0 and R 21 ; G is CH or N;
  • X is CH
  • Y is O, OCR 9 R 9 or S; ni is 1; n 2 is 1;
  • Ri is phenyl or a 6-membered monocyclic heteroaryl, each of which may be optionally substituted with one or more members selected from R 1 a , R 11 ,, R 1 c , Rid and Ri e, '
  • R 2 is heteroaryl or -C(O)ORs, wherein the heteroaryl may be optionally substituted with one or more Re's;
  • R 5 is alkyl, alkenyl, aryl, cycloalkyl, heteroaryl or heterocyclyl, each of which may be optionally substituted with one or more Re's;
  • Rs at each occurrence, is independently selected from the group consisting of alkyl and cycloalkyl, each of which may be optionally substituted with one or more Rsa's;
  • R 9 is independently selected from hydrogen, alkyl, cycloalkyl, and aryl, wherein the alkyl, cycloalkyl, and aryl may each be optionally substituted with 0-5 R 9a ;
  • R 9a is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, halo, -NH 2 , -CN, -C(O)OH, -C(O)OR 14 , -OCF 3 ,
  • Ri 0 is independently selected from alkyl, cycloalkyl, and aryl, which may each be optionally substituted with 0-3 Ri Oa ;
  • Ri 4 at each occurrence, is independently selected from hydrogen, alkyl, cycloalkyl and aryl; R20 is hydrogen; and
  • ring A is optionally substituted with one or more R's shown as R 2 0 and R 21 ;
  • G is CH or N
  • Q is C; X is CH;
  • Ri c is a 5-6 membered monocyclic heteroaryl which may be optionally substituted with one or more Re's;
  • R 2 is heteroaryl or -C(O)ORs, wherein the heteroaryl may be optionally substituted with one or more Re's;
  • R 5 is alkyl, alkenyl, aryl, cycloalkyl, heteroaryl or heterocyclyl, each of which may be optionally substituted with one or more Re's;
  • Re at each occurrence, is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, halo, -CN, -C(O)OR 10 , -OCF 3 , -ORi 0 , -OH, -SH, - SRio,
  • alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl may each be optionally substituted with 0-5 R 9a ;
  • Rs at each occurrence, is independently selected from the group consisting of alkyl and cycloalkyl, each of which may be optionally substituted with one or more
  • R 8a 's; R 8a at each occurrence, is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, halo, -NH 2 , -CN, -C(O)OH, -C(O)OR 14 , -OCF 3 ,
  • R 9 at each occurrence, is independently selected from hydrogen, alkyl, cycloalkyl and aryl, wherein the alkyl, cycloalkyl and aryl may each be optionally substituted with 0-5 R 9a ;
  • R 9a is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, halo, -NH 2 , -CN, -C(O)OH, -C(O)OR 14 , -OCF 3 , -0R M , -OH, -C(O)NR 14 R 14 , -NRi 4 Ri 4 , -S(O) 2 NRi 4 Ri 4 , -NRi 4 S(O) 2 CF 3 , -C(O)R 14 ,
  • Ri 0 is independently selected from alkyl, cycloalkyl and aryl, which may each be optionally substituted with 0-3 Ri Oa ;
  • R 1 Oa is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, halo, -NH 2 , -CN, -C(O)OR 14 , -OCF 3 , -OR 14 , -OH, -C(O)NR 14 R 14 ,
  • Ri 4 at each occurrence, is independently selected from hydrogen, alkyl, cycloalkyl and aryl;
  • a method of modulating the activity of the GPRl 19 G protein-coupled receptor wherein for the compound of Formula IA: ring A is optionally substituted with one or more R's shown as R 20 and R 21 ;
  • G is N
  • X is CH; Y is O, OCR 9 R 9 or S; ni is 1; n 2 is 1
  • Ri is phenyl or a 6-membered monocyclic heteroaryl, each of which may be optionally substituted with one or more members selected from Ri a , Rib, Ric, Rid and Ri 6 ;
  • Ria, Rib, Rid and Ri e are each independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, halo, -CN, -OCF 3 , -ORi 0, -OH, -C(O)NR 9 R 9 , -NR 9 R 9 , -S(O) 2 NR 9 R 9 , -NR 9 S(O) 2 CF 3 , -C(O)R 10 , -NR 9 C(O)H, -NR 9 C(O)Ri 0 , -OC(O)Ri 0 , -OC(O)NR 9 R 9 , -S(O)Ri 0 , -S(O) 2 Ri 0 , -NR 9 C(O)OR 8 and -NR 9 S(O 2 )R 8 , wherein the alkyl, alkenyl, alkynyl and cycloalkyl may each be optionally
  • R lc is a 5-6 membered monocyclic heteroaryl which may be optionally substituted with one or more Re's;
  • R 2 is heteroaryl or -C(O)ORs, wherein the heteroaryl may be optionally substituted with one or more Re's;
  • R 5 is alkyl, alkenyl, aryl, cycloalkyl, heteroaryl or heterocyclyl, each of which may be optionally substituted with one or more Re's;
  • R 9 is independently selected from hydrogen, alkyl, cycloalkyl and aryl, wherein the alkyl, cycloalkyl and aryl may each be optionally substituted with 0-5 R 9a ;
  • Ri 0 is independently selected from alkyl, cycloalkyl, and aryl, which may each be optionally substituted with 0-3 Ri Oa ;
  • R 1 Oa is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, halo, -NH 2 , -CN, -C(O)OR 14 , -OCF 3 , -ORi 4 , -OH, -C(O)NR 14 R 14 , -NRi 4 Ri 4 , -S(O) 2 NRi 4 Ri 4 , -NRi 4 S(O) 2 CF 3 , -C(O)R 14 , -NR 14 C(O)H,
  • Ri 4 is independently selected from hydrogen, alkyl, cycloalkyl and aryl;
  • R 20 is hydrogen; and
  • a method of modulating the activity of the GPRl 19 G protein-coupled receptor wherein for the compound of Formula I: ring A is optionally substituted with one or more R's shown as R 20 and R 21 ; G is N; Q is C; X is CH; Y is O, OCR 9 R 9 or S; ni is 1; n 2 is 1 ; n 3 is 2;
  • Ri is phenyl or a 6-membered monocyclic heteroaryl, each of which may be optionally substituted with one or more members selected from Ri a , Rn,, Ri c , Rid and
  • Ria, Rib, Rid and Ri e are each independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, halo, -CN, -OCF 3 , -ORi 0, -OH, -C(O)NR 9 R 9 , -NR 9 R 9 , -S(O) 2 NR 9 R 9 , -NR 9 S(O) 2 CF 3 , -C(O)R 10 , -NR 9 C(O)H, -NR 9 C(O)Ri 0 , -OC(O)R 10 , -OC(O)NR 9 R 9 , -S(O)R 10 , -S(O) 2 Ri 0 , -NR 9 C(O)OR 8 and -NR 9 S(O 2 )R 8 , wherein the alkyl, alkenyl, alkynyl and cycloalkyl may each be optionally substituted with one
  • R lc is a 5-6 membered monocyclic heteroaryl which may be optionally substituted with one or more Re's;
  • R 2 is heteroaryl or -C(O)ORs, wherein the heteroaryl may be optionally substituted with one or more Re's;
  • R 5 is alkyl, alkenyl, aryl, cycloalkyl, heteroaryl or heterocyclyl, each of which may be optionally substituted with one or more Re's;
  • R 8a is independently selected from the group consisting of alkyl and cycloalkyl, each of which may be optionally substituted with one or more R 8a 's;
  • R 8a is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, halo, -NH 2 , -CN, -C(O)OH, -C(O)OR 14 , -OCF 3 ,
  • R 9 is independently selected from hydrogen, alkyl, cycloalkyl and aryl, wherein the alkyl, cycloalkyl and aryl may each be optionally substituted with 0-5 R 9a ;
  • Ri 0 is independently selected from alkyl, cycloalkyl, and aryl, which may each be optionally substituted with 0-3 Ri Oa ;
  • Ri 4 is independently selected from hydrogen, alkyl, cycloalkyl and aryl;
  • a method of modulating the activity of the GPRl 19 G protein-coupled receptor wherein for the compound of Formula IA: ring A is optionally substituted with one or more R's shown as R 20 and R 21 ;
  • G is N
  • X is CH; Y is O; ni is 1; n 2 is 1 ;
  • Ri is phenyl or a 6-membered monocyclic heteroaryl, each of which may be optionally substituted with one or more members selected from Ri a , Rib, Ric, Rid and Ri 6 ;
  • Ria, Rib, Rid and Ri e are each independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, halo, -CN, -OCF 3 , -ORi 0, -OH, -C(O)NR 9 R 9 , -NR 9 R 9 , -S(O) 2 NR 9 R 9 , -NR 9 S(O) 2 CF 3 , -C(O)R 10 , -NR 9 C(O)H, -NR 9 C(O)Ri 0 , -OC(O)Ri 0 , -OC(O)NR 9 R 9 , -S(O)Ri 0 , -S(O) 2 Ri 0 , -NR 9 C(O)OR 8 and -NR 9 S(O 2 )R 8 , wherein the alkyl, alkenyl, alkynyl and cycloalkyl may each be optionally
  • R lc is a 5-6 membered monocyclic heteroaryl which may be optionally substituted with one or more Re's;
  • R 2 is heteroaryl or -C(O)ORs, wherein the heteroaryl may be optionally substituted with one or more Re's;
  • R 5 is alkyl, alkenyl, aryl, cycloalkyl, heteroaryl or heterocyclyl, each of which may be optionally substituted with one or more Re's;
  • R 9 is independently selected from hydrogen, alkyl, cycloalkyl and aryl, wherein the alkyl, cycloalkyl and aryl may each be optionally substituted with 0-5 R 9a ;
  • Ri 0 is independently selected from alkyl, cycloalkyl, and aryl, which may each be optionally substituted with 0-3 Ri Oa ;
  • R 1 Oa is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, halo, -NH 2 , -CN, -C(O)OR 14 , -OCF 3 , -ORi 4 , -OH, -C(O)NR 14 R 14 , -NRi 4 Ri 4 , -S(O) 2 NRi 4 Ri 4 , -NRi 4 S(O) 2 CF 3 , -C(O)R 14 , -NR 14 C(O)H,
  • Ri 4 is independently selected from hydrogen, alkyl, cycloalkyl and aryl;
  • R 20 is hydrogen; and
  • a method of modulating the activity of the GPRl 19 G protein-coupled receptor wherein for the compound of Formula I: ring A is optionally substituted with one or more R's shown as R 20 and R 21 ; G is N; Q is C; X is CH; Y is O; ni is 1; n 2 is 1 ; n 3 is 2;
  • Ri is phenyl or a 6-membered monocyclic heteroaryl, each of which may be optionally substituted with one or more members selected from Ri a , Rn,, Ri c , Rid and
  • Ria, Rib, Rid and Ri e are each independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, halo, -CN, -OCF 3 , -ORi 0, -OH, -C(O)NR 9 R 9 , -NR 9 R 9 , -S(O) 2 NR 9 R 9 , -NR 9 S(O) 2 CF 3 , -C(O)R 10 , -NR 9 C(O)H, -NR 9 C(O)Ri 0 , -OC(O)R 10 , -OC(O)NR 9 R 9 , -S(O)R 10 , -S(O) 2 Ri 0 , -NR 9 C(O)OR 8 and -NR 9 S(O 2 )R 8 , wherein the alkyl, alkenyl, alkynyl and cycloalkyl may each be optionally substituted with one
  • R lc is a 5-6 membered monocyclic heteroaryl which may be optionally substituted with one or more Re's;
  • R 2 is heteroaryl or -C(O)ORs, wherein the heteroaryl may be optionally substituted with one or more Re's;
  • R 5 is alkyl, alkenyl, aryl, cycloalkyl, heteroaryl or heterocyclyl, each of which may be optionally substituted with one or more Re's;
  • R 8a is independently selected from the group consisting of alkyl and cycloalkyl, each of which may be optionally substituted with one or more R 8a 's;
  • R 8a is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, halo, -NH 2 , -CN, -C(O)OH, -C(O)OR 14 , -OCF 3 ,
  • R 9 is independently selected from hydrogen, alkyl, cycloalkyl and aryl, which may each be optionally substituted with 0-5 R 9a ;
  • Ri 0 is independently selected from alkyl, cycloalkyl and aryl, which may each be optionally substituted with 0-3 Ri Oa ;
  • R 1 Oa is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, halo, -NH 2 , -CN, -C(O)OR 14 , -OCF 3 , -OR 14 , -OH, -C(O)NR 14 R 14 , -NRi 4 Ri 4 , -S(O) 2 NRi 4 Ri 4 , -NRi 4 S(O) 2 CF 3 , -C(O)R 14 , -NR 14 C(O)H,
  • Ri 4 is independently selected from hydrogen, alkyl, cycloalkyl and aryl;
  • R 20 is hydrogen; and
  • a method of modulating the activity of the GPRl 19 G protein-coupled receptor wherein for the compound of Formula IA: ring A is optionally substituted with one or more R's shown as R 20 and R 21 ;
  • G is N
  • X is CH; Y is O; ni is 1; n 2 is 1 ;
  • Ri is phenyl or a 6-membered monocyclic heteroaryl, each of which may be optionally substituted with one or more members selected from Ri a , Rib, Ric, Rid and Ri 6 ;
  • Ria, Rib, Rid and Ri e are each independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, halo, -CN, -OCF 3 , -ORi 0, -OH, -C(O)NR 9 R 9 , -NR 9 R 9 , -S(O) 2 NR 9 R 9 , -NR 9 S(O) 2 CF 3 , -C(O)R 10 , -NR 9 C(O)H, -NR 9 C(O)Ri 0 , -OC(O)Ri 0 , -OC(O)NR 9 R 9 , -S(O)Ri 0 , -S(O) 2 Ri 0 , -NR 9 C(O)OR 8 and -NR 9 S(O 2 )R 8 , wherein the alkyl, alkenyl, alkynyl and cycloalkyl may each be optionally
  • R lc is a 5-6 membered monocyclic heteroaryl which may be optionally substituted with one or more Re's;
  • R 2 is heteroaryl or -C(O)ORs, wherein the heteroaryl may be optionally substituted with one or more Re's;
  • R 5 is alkyl, alkenyl, aryl, cycloalkyl, heteroaryl or heterocyclyl, each of which may be optionally substituted with one or more Re's;
  • R 9 is independently selected from hydrogen, alkyl, cycloalkyl and aryl, wherein the alkyl, cycloalkyl and aryl may each be optionally substituted with 0-5 R 9a ;
  • Ri 0 is independently selected from alkyl, cycloalkyl and aryl, which may each be optionally substituted with 0-3 Ri Oa ;
  • R 1 Oa is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, halo, -NH 2 , -CN, -C(O)OR 14 , -OCF 3 , -ORi 4 , -OH, -C(O)NR 14 R 14 , -NRi 4 Ri 4 , -S(O) 2 NRi 4 Ri 4 , -NRi 4 S(O) 2 CF 3 , -C(O)R 14 , -NR 14 C(O)H,
  • Ri 4 at each occurrence, is independently selected from hydrogen, alkyl, cycloalkyl and aryl; R 20 is hydrogen; and
  • R 2I is selected from the group consisting of hydrogen, alkyl, haloalkyl, halo and -CN.
  • a method of modulating the activity of the GPRl 19 G protein-coupled receptor wherein for the compound of Formula I: ring A is optionally substituted with one or more R's shown as R 2 0 and R 21 ;
  • X is CH
  • Y is O; ni is 1; n 2 is 1 ; n 3 is 2;
  • Ri is phenyl or a 6-membered monocyclic heteroaryl, each of which may be optionally substituted with one or more members selected from Ri a , Rn,, Ri c , Rid and Ri e, '
  • R 5 is alkyl, alkenyl, aryl, cycloalkyl, heteroaryl or heterocyclyl, each of which may be optionally substituted with one or more Re's;
  • R 8a is independently selected from the group consisting of alkyl and cycloalkyl, each of which may be optionally substituted with one or more R 8a 's;
  • Rg at each occurrence, is independently selected from hydrogen, alkyl, cycloalkyl and aryl, wherein the alkyl, cycloalkyl and aryl may each be optionally substituted with 0-5 Rg a ;
  • Rio at each occurrence, is independently selected from alkyl, cycloalkyl and aryl, which may each be optionally substituted with 0-3 Rio a ;
  • Ri 4 is independently selected from hydrogen, alkyl, cycloalkyl and aryl;
  • R 2 o is hydrogen
  • R 2I is selected from the group consisting of hydrogen, alkyl, haloalkyl, halo and -CN.
  • a method of modulating the activity of the GPRl 19 G protein-coupled receptor wherein for the compound of Formula IA: ring A is optionally substituted with one or more R's shown as R20 and R21;
  • G is N
  • X is CH
  • R 2 is heteroaryl or -C(O)ORs, wherein the heteroaryl may be optionally substituted with one or more Re's;
  • R 5 is alkyl, alkenyl, aryl, cycloalkyl, heteroaryl or heterocyclyl, each of which may be optionally substituted with one or more Re's;
  • R ⁇ is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, halo, -CN, -C(O)ORi 0 , -OCF 3 , -ORi 0 , -OH, -SH, - SRi 0 , -C(O)NR 9 R 9 , -NR 9 R 9 , -S(O) 2 NR 9 R 9 , -NR 9 S(O) 2 CF 3 , -C(O)R 10 , -NR 9 C(O)H, -NR 9 C(O)Ri 0 , -OC(O)Ri 0 , -S(O)Ri 0 , -S(O) 2 Ri 0 , O, -NR 9
  • R 8a is independently selected from the group consisting of alkyl and cycloalkyl, each of which may be optionally substituted with one or more R 8a 's;
  • Rg at each occurrence, is independently selected from hydrogen, alkyl, cycloalkyl and aryl, wherein the alkyl, cycloalkyl and aryl may each be optionally substituted with 0-5 Rg a ;
  • Rio at each occurrence, is independently selected from alkyl, cycloalkyl and aryl, which may each be optionally substituted with 0-3 Rio a ;
  • Ri 4 is independently selected from hydrogen, alkyl, cycloalkyl and aryl;
  • R 2 o is hydrogen
  • R 2I is selected from the group consisting of hydrogen, alkyl, haloalkyl, halo and -CN.
  • a method of modulating the activity of the GPRl 19 G protein-coupled receptor wherein for the compound of Formula I: ring A is optionally substituted with one or more R's shown as R20 and R21;
  • G is N
  • X is CH
  • R lc is a 5-6 membered monocyclic heteroaryl which may be optionally substituted with one or more Re's;
  • R 2 is heteroaryl or -C(O)ORs, wherein the heteroaryl may be optionally substituted with one or more Re's;
  • R 5 is alkyl, alkenyl, aryl, cycloalkyl, heteroaryl or heterocyclyl, each of which may be optionally substituted with one or more Re's;
  • R ⁇ at each occurrence, is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, halo, -CN, -C(O)ORi 0 , -OCF 3 , -ORi 0 , -OH, -SH, - SRi 0 ,
  • R 8a is independently selected from the group consisting of alkyl and cycloalkyl, each of which may be optionally substituted with one or more R 8a 's;
  • Rg at each occurrence, is independently selected from hydrogen, alkyl, cycloalkyl and aryl, wherein the alkyl, cycloalkyl and aryl may each be optionally substituted with 0-5 Rg a ;
  • Rio at each occurrence, is independently selected from alkyl, cycloalkyl and aryl, which may each be optionally substituted with 0-3 Rio a ;
  • Ri 4 is independently selected from hydrogen, alkyl, cycloalkyl and aryl;
  • R 2 o is hydrogen
  • R 2I is selected from the group consisting of hydrogen, alkyl, haloalkyl, halo and -CN.
  • a method of modulating the activity of the GPRl 19 G protein-coupled receptor wherein for the compound of Formula IA: ring A is optionally substituted with one or more R's shown as R20 and R21;
  • G is N
  • X is CH
  • R 2 is pyridinyl, pyrimidinyl or -C(O)ORs, wherein the pyridinyl and pyrimidinyl may each be optionally substituted with one or more Re's;
  • R 5 is alkyl, aryl or cycloalkyl, each of which may be optionally substituted with one or more Re's;
  • R ⁇ is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, halo, -CN, -C(O)ORi 0 , -OCF 3 , -ORi 0 , -OH, -SH, - SRi 0 , -C(O)NR 9 R 9 , -NR 9 R 9 , -S(O) 2 NR 9 R 9 , -NR 9 S(O) 2 CF 3 , -C(O)R 10 , -NR 9 C(O)H, -NR 9 C(O)Ri 0 , -OC(O)Ri 0 , -S(O)Ri 0 , -S(O) 2 Ri 0 , O, -NR 9
  • R 8a is independently selected from the group consisting of alkyl and cycloalkyl, each of which may be optionally substituted with one or more R 8a 's;
  • Rg at each occurrence, is independently selected from hydrogen, alkyl, cycloalkyl and aryl, wherein the alkyl, cycloalkyl and aryl may each be optionally substituted with 0-5 Rg a ;
  • Rio at each occurrence, is independently selected from alkyl, cycloalkyl and aryl, which may each be optionally substituted with 0-3 Rio a ;
  • Ri 4 is independently selected from hydrogen, alkyl, cycloalkyl and aryl;
  • R 2 o is hydrogen
  • R 2I is selected from the group consisting of hydrogen, alkyl, haloalkyl, halo and -CN.
  • a method of modulating the activity of the GPRl 19 G protein-coupled receptor wherein for the compound of Formula I: ring A is optionally substituted with one or more R's shown as R20 and R21;
  • G is N
  • X is CH
  • R lc is a 5-6 membered monocyclic heteroaryl which may be optionally substituted with one or more Re's;
  • R 2 is pyridinyl, pyrimidinyl or -C(O)ORs, wherein the pyridinyl and pyrimidinyl may each be optionally substituted with one or more Re's;
  • R 5 is alkyl, aryl or cycloalkyl, each of which may be optionally substituted with one or more Re's;
  • R ⁇ at each occurrence, is independently selected from alkyl, haloalkyl, aryl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, heterocyclylalkyl, halo, -CN, -C(O)ORi 0 , -OCF 3 , -ORi 0 , -OH, -SH, - SRi 0 ,
  • heteroarylalkyl may each be optionally substituted with 0-5 Rg a ;
  • R 8a is independently selected from the group consisting of alkyl and cycloalkyl, each of which may be optionally substituted with one or more R 8a 's;
  • Rg at each occurrence, is independently selected from hydrogen, alkyl, cycloalkyl and aryl, wherein the alkyl, cycloalkyl and aryl may each be optionally substituted with 0-5 Rg a ;
  • Rio at each occurrence, is independently selected from alkyl, cycloalkyl and aryl, which may each be optionally substituted with 0-3 Rio a ;
  • Ri 4 is independently selected from hydrogen, alkyl, cycloalkyl and aryl;
  • R 2 o is hydrogen
  • R 2I is selected from the group consisting of hydrogen, alkyl, haloalkyl, halo and -CN.
  • ring A is optionally substituted with one or more R's shown as R20 and R21;
  • G is N
  • X is CH
  • Ria, Rib, Rid and Ri e are each independently selected from the group consisting of hydrogen, halo, CN and C 1-3 alkyl;
  • Ric is imidazolyl, oxazolyl or triazolyl
  • R 5 is Ci_3 alkyl
  • R 2 0 is hydrogen
  • R 21 is hydrogen, halo or CN.
  • the heteroaryl, heteroarylalkyl, heterocyclyl and heterocyclylalkyl used in each occurrence may each contain 1-4 heteroatoms selected from N, O and S.
  • R5 may be selected from the group consisting of Ci-6 straight and branched chain alkyl, C 3 _ 6 cycloalkyl and phenyl wherein: i) the alkyl, phenyl, and cycloalkyl, may each be optionally substituted with 0-2 R 6 ; ii) R 6 is selected from Ci_ 6 straight and branched chain alkyl; C3_ 6 cycloalkyl; C 2 - 6 alkenyl; C 2 - 6 alkynyl; OH; phenyl; halo; Ci_ 6 haloalkyl; 5-6 membered heteroaryl having carbon atoms and 1 -2 heteroatoms selected from O, S and N; 5-6 membered heterocycle having carbon atoms and 1-2 heteroatoms selected from O and N; OCF3; OR 1 0 where Rio is Ci_3 alkyl or C3_ 6 cycloalkyl; and SR 1 0 where Rio is Ci_3 alkyl or
  • R 6 may be selected from Ci_ 6 straight and branched chain alkyl; C3_ 6 cycloalkyl; C 2 - 6 alkenyl; C 2 - 6 alkynyl; OH; phenyl; halo; Ci_ 6 haloalkyl; 5-6 membered heteroaryl having carbon atoms and 1-2 heteroatoms selected from O, S and N; 5-6 membered heterocycle having carbon atoms and 1-2 heteroatoms selected from O and N; OCF 3 ; OR 1 0 where Rio is C 1-3 alkyl or C3- 6 cycloalkyl; and SR 1 0 where Rio is Ci_ 3 alkyl or C 3 _ 6 cycloalkyl; and further wherein the alkyl, alkenyl, alkynyl, phenyl, cycloalkyl, heteroaryl and heterocyclyl values of R 6 may each be optionally substituted with 0-3 R9 a , where R9 a is selected from
  • Rs is selected from the group consisting of C 1 ⁇ straight and branched chain alkyl and C 3 _ 6 cycloalkyl each of which may be optionally substituted with one or more Rs a 's where Rs a is selected from halo, C 1-3 haloalkyl, C 3 -6 cycloalkyl, OH, C 1-
  • Rsa is selected from halo, C 1-3 haloalkyl, C 3 _6 cycloalkyl, OH, C 1-3 alkoxy,
  • Rg is selected from H, C 1-3 straight and branched chain alkyl and C 3 _6 cycloalkyl.
  • R 9a is selected from halo, C 1-3 haloalkyl, C 3 _6 cycloalkyl, OH, C 1-3 alkoxy,
  • Rio is selected from Ci_ 3 straight and branched chain alkyl and C 3 _6 cycloalkyl.
  • Rioa is selected from halo, C 1-3 haloalkyl, C 3 _6 cycloalkyl, OH, C 1-3 alkoxy,
  • Ri 4 is H.
  • R 20 is H.
  • R 2I is selected from H, Ci_ 3 alkyl, C 3 _ 6 cycloalkyl, halo and CN.
  • compounds of the present invention are selected from the group of compounds exemplified in the Examples.
  • the present invention relates to the use of pharmaceutical compositions comprised of a therapeutically effective amount of a compound of Formula I or IA, alone or, optionally, in combination with a pharmaceutically acceptable carrier and/or one or more other agent(s), for example, a glucagon-like peptide- 1 receptor agonist or fragment thereof.
  • the present invention relates to methods of modulating the activity of the GPRl 19 G protein-coupled receptor comprising administering to a mammalian patient, for example, a human patient, in need thereof a therapeutically effective amount of a compound of the present invention, alone, or optionally, in combination with another compound of the present invention and/or at least one other type of therapeutic agent.
  • the present invention relates to a method for preventing, modulating, or treating the progression or onset of diseases or disorders associated with the activity of the GPRl 19 G protein-coupled receptor comprising administering to a mammalian patient, for example, a human patient, in need of prevention, modulation, or treatment a therapeutically effective amount of a compound of the present invention, alone, or, optionally, in combination with another compound of the present invention and/or at least one other type of therapeutic agent.
  • Examples of diseases or disorders associated with the activity of the GPRl 19 G protein-coupled receptor that can be prevented, modulated, or treated according to the present invention include, but are not limited to, diabetes, hyperglycemia, impaired glucose tolerance, insulin resistance, hyperinsulinemia, retinopathy, neuropathy, nephropathy, delayed wound healing, atherosclerosis and its sequelae, abnormal heart function, myocardial ischemia, stroke, Metabolic Syndrome, hypertension, obesity, dislipidemia, dyslipidemia, hyperlipidemia, hypertriglyceridemia, hypercholesterolemia, low HDL, high LDL, non-cardiac ischemia, infection, cancer, vascular restenosis, pancreatitis, neurodegenerative disease, lipid disorders, cognitive impairment and dementia, bone disease, HIV protease associated lipodystrophy and glaucoma.
  • the present invention relates to a method for preventing, modulating, or treating the progression or onset of diabetes, hyperglycemia, obesity, dyslipidemia, hypertension and cognitive impairment comprising administering to a mammalian patient, for example, a human patient, in need of prevention, modulation, or treatment a therapeutically effective amount of a compound of the present invention, alone, or, optionally, in combination with another compound of the present invention and/or at least one other type of therapeutic agent.
  • the present invention relates to a method for preventing, modulating, or treating the progression or onset of diabetes, comprising administering to a mammalian patient, for example, a human patient, in need of prevention, modulation, or treatment a therapeutically effective amount of a compound of the present invention, alone, or, optionally, in combination with another compound of the present invention and/or at least one other type of therapeutic agent.
  • the present invention relates to a method for preventing, modulating, or treating the progression or onset of hyperglycemia comprising administering to a mammalian patient, for example, a human patient, in need of prevention, modulation, or treatment a therapeutically effective amount of a compound of the present invention, alone, or, optionally, in combination with another compound of the present invention and/or at least one other type of therapeutic agent.
  • the present invention relates to a method for preventing, modulating, or treating the progression or onset of obesity comprising administering to a mammalian patient, for example, a human patient, in need of prevention, modulation, or treatment a therapeutically effective amount of a compound of the present invention, alone, or, optionally, in combination with another compound of the present invention and/or at least one other type of therapeutic agent.
  • the present invention relates to a method for preventing, modulating, or treating the progression or onset of dyslipidemia comprising administering to a mammalian patient, for example, a human patient, in need of prevention, modulation, or treatment a therapeutically effective amount of a compound of the present invention, alone, or, optionally, in combination with another compound of the present invention and/or at least one other type of therapeutic agent.
  • the present invention relates to a method for preventing, modulating, or treating the progression or onset of hypertension comprising administering to a mammalian patient, for example, a human patient, in need of prevention, modulation, or treatment a therapeutically effective amount of a compound of the present invention, alone, or, optionally, in combination with another compound of the present invention and/or at least one other type of therapeutic agent.
  • the present invention relates to the use of a formulated product wherein the selected formulation is made by combining (a) a compound of Formula I and /or IA.
  • the compounds herein described may have asymmetric centers.
  • One enantiomer of a compound of Formula I and/or IA may display superior activity compared with the other. Thus, all of the stereochemistries are considered to be a part of the present invention. When required, separation of the racemic material can be achieved by high performance liquid chromatography (HPLC) using a chiral column or by a resolution using a resolving agent such as camphonic chloride as in Young, S. D. et al, Antimicrobial Agents and Chemotherapy. 2602-2605 (1995). [00111] To the extent that compounds of Formula I and/or IA and salts thereof, may exist in their tautomeric form, all such tautomeric forms are contemplated herein as part of the present invention.
  • substituted means that any one or more hydrogens on the designated atom or ring is replaced with a selection from the indicated group, provided that the designated atom's or ring atom's normal valency is not exceeded, and that the substitution results in a stable compound.
  • 2 hydrogens on the atom are replaced.
  • any variable e.g., R 4
  • its definition at each occurrence is independent of its definition at every other occurrence.
  • alkyl is intended to include both branched and straight- chain saturated aliphatic hydrocarbon groups containing 1 to 20 carbons, preferably 1 to 10 carbons, more preferably 1 to 8 carbons, in the normal chain, such as methyl, ethyl, propyl, isopropyl, butyl, ?-butyl, isobutyl, pentyl, hexyl, isohexyl, heptyl, 4,4- dimethylpentyl, octyl, 2,2,4-trimethyl-pentyl, nonyl, decyl, undecyl, dodecyl, the various branched chain isomers thereof, and the like as well as such groups may optionally include 1 to 4 substituents such as halo, for example F, Br, Cl, or I, or CF 3 , alkyl,
  • alkenyl refers to straight or branched chain radicals of 2 to 20 carbons, preferably 2 to 12 carbons, and more preferably 2 to 8 carbons in the normal chain, which include one to six double bonds in the normal chain, such as vinyl, 2- propenyl, 3-butenyl, 2-butenyl, 4-pentenyl, 3-pentenyl, 2-hexenyl, 3-hexenyl, 2- heptenyl, 3-heptenyl, 4-heptenyl, 3-octenyl, 3-nonenyl, 4-decenyl, 3-undecenyl, 4- dodecenyl, 4,8,12-tetradecatrienyl, and the like, and which may be optionally substituted with 1 to 4 substituents, namely, halogen, haloalkyl, alkyl, alkoxy, alkenyl, alkynyl, ary
  • alkynyl refers to straight or branched chain radicals of 2 to 20 carbons, preferably 2 to 12 carbons and more preferably 2 to 8 carbons in the normal chain, which include one triple bond in the normal chain, such as 2-propynyl, 3- butynyl, 2-butynyl, 4-pentynyl, 3-pentynyl, 2-hexynyl, 3-hexynyl, 2-heptynyl, 3- heptynyl, 4-heptynyl, 3-octynyl, 3-nonynyl, 4-decynyl,3-undecynyl, 4-dodecynyl, and the like, and which may be optionally substituted with 1 to 4 substituents, namely, halogen, haloalkyl, alkyl, alkoxy, alkenyl, alkyny
  • cycloalkyl as employed herein alone or as part of another group includes saturated or partially unsaturated (containing 1 or 2 double bonds) cyclic hydrocarbon groups containing 1 to 10 rings, preferably 1 to 3 rings, including monocyclic alkyl, bicyclic alkyl (or bicycloalkyl) and tricyclic alkyl, containing a total of 3 to 20 carbons forming the ring, preferably 3 to 15 carbons, more preferably 3 to 10 carbons, forming the ring and which may be fused to 1 or 2 aromatic rings as described for aryl, which includes cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclodecyl, cyclododecyl, cyclohexenyl,
  • any of which groups may be optionally substituted with 1 to 4 substituents such as halogen, alkyl, alkoxy, hydroxy, aryl, aryloxy, arylalkyl, cycloalkyl, alkylamido, alkanoylamino, oxo, acyl, arylcarbonylamino, amino, nitro, cyano, thiol, and/or alkylthio, and/or any of the substituents for alkyl.
  • substituents such as halogen, alkyl, alkoxy, hydroxy, aryl, aryloxy, arylalkyl, cycloalkyl, alkylamido, alkanoylamino, oxo, acyl, arylcarbonylamino, amino, nitro, cyano, thiol, and/or alkylthio, and/or any of the substituents for alkyl.
  • alkenyl groups as defined above and alkynyl groups as defined above, respectively, have single bonds for attachment at two different carbon atoms, they are termed “alkenylene groups” and “alkynylene groups”, respectively, and may optionally be substituted as defined above for “alkenyl” and “alkynyl”.
  • aryl refers to monocyclic and bicyclic aromatic groups containing 6 to 10 carbons in the ring portion (such as phenyl or naphthyl, including 1-naphthyl and 2-naphthyl) and may optionally include 1 to 3 additional rings fused to a carbocyclic ring or a heterocyclic ring (such as aryl, cycloalkyl, heteroaryl, or cycloheteroalkyl rings for example
  • substituents for example, hydrogen, halo, haloalkyl, alkyl, haloalkyl, alkoxy, haloalkoxy, alkenyl, trifluoromethyl, trifluoromethoxy, alkynyl, cycloalkyl-alkyl, cycloheteroalkyl, cycloheteroalkylalkyl, aryl, heteroaryl, arylalkyl, aryloxy, aryloxyalkyl, arylalkoxy, arylthio, arylazo, heteroarylalkyl, heteroarylalkenyl, heteroarylheteroaryl, heteroaryloxy, hydroxy, nitro, cyano, amino, substituted amino wherein the amino includes 1 or 2 substituents (which are alkyl, aryl, or any of the other aryl compounds mentioned in the definitions), thiol, alkylthio
  • lower alkoxy as employed herein alone or as part of another group includes any of the above alkyl, aralkyl, or aryl groups linked to an oxygen atom.
  • amino refers to amino that may be substituted with one or two substituents, which may be the same or different, such as alkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, cycloheteroalkyl, cycloheteroalkylalkyl, cycloalkyl, cycloalkylalkyl, haloalkyl, hydroxyalkyl, alkoxyalkyl, or thioalkyl.
  • amino substituents may be taken together with the nitrogen atom to which they are attached to form 1-pyrrolidinyl, 1-piperidinyl, 1-azepinyl, 4-morpholinyl, 4-thiamorpholinyl, 1-piperazinyl, 4-alkyl-l-piperazinyl, 4-arylalkyl-l-piperazinyl, 4-diarylalkyl- 1 -piperazinyl, 1-pyrrolidinyl, 1-piperidinyl, or 1-azepinyl, optionally substituted with alkyl, alkoxy, alkylthio, halo, trifluoromethyl, or hydroxy.
  • lower alkylthio as employed herein alone or as part of another group includes any of the above alkyl, aralkyl, or aryl groups linked to a sulfur atom.
  • lower alkylamino as employed herein alone or as part of another group includes any of the above alkyl, aryl, or arylalkyl groups linked to a nitrogen atom.
  • heterocyclyl or “heterocyclic system” is intended to mean a stable 4- to 14-membered monocyclic, bicyclic or tricyclic heterocyclic ring which is saturated or partially unsaturated and which consists of carbon atoms and 1, 2, 3, or 4 heteroatoms independently selected from the group consisting of N, NH, O and S and including any bicyclic group in which any of the above-defined heterocyclic rings is fused to a benzene ring.
  • the nitrogen and sulfur heteroatoms may optionally be oxidized.
  • the heterocyclic ring may be attached to its pendant group at any heteroatom or carbon atom, which results in a stable structure.
  • heterocyclic rings described herein may be substituted on carbon or on a nitrogen atom if the resulting compound is stable. If specifically noted, a nitrogen in the heterocycle may optionally be quaternized. It is preferred that when the total number of S and O atoms in the heterocycle exceeds 1, then these heteroatoms are not adjacent to one another.
  • heterocycles include, but are not limited to, pyrrolidonyl, 4-piperidonyl, chromanyl, decahydroquinolinyl, dihydrofuro[2,3- ⁇ ]tetrahydrofuran, indolinyl, isochromanyl, isoindolinyloctahydroisoquinolinyl, piperazinyl, piperidinyl, piperidonyl, 4-piperidonyl, tetrahydrofuranyl, tetrahydroisoquinolinyl, tetrahydroquinolinyl, morpholinyl, dihydrofuranyl, tetrahydrothiophenyl, pyranyl, dihydropyranyl, 1,4-dioxanyl and 1,3-dioxanyl. Also included are fused ring and spiro compounds containing, for example, the above heterocycles.
  • aromatic heterocyclic system or “heteroaryl” is intended to mean a stable 5- to 7- membered monocyclic or bicyclic or 7- to 10- membered bicyclic heterocyclic aromatic ring which consists of carbon atoms and from 1 to 4 heteroatoms independently selected from the group consisting of N, O and S and is aromatic in nature.
  • heteroaryls are lH-indazole, 2H,6H-l,5,2-dithiazinyl, indolyl, 4aH-carbazole, 4H-quinolizinyl, 6H-l,2,5-thiadiazinyl, acridinyl, azocinyl, benzimidazolyl, benzofuranyl, benzothiofuranyl, benzothiophenyl, benzoxazolyl, benzthiazolyl, benztriazolyl, benztetrazolyl, benzisoxazolyl, benzisothiazolyl, benzimidazalonyl, carbazolyl, 4aH-carbazolyl, ⁇ -carbolinyl, chromanyl, chromenyl, cinnolinyl, decahydroquinolinyl, 2H,6H-l,5,2-dithiazinyl, dihydrofuro[
  • heteroaryls are indolyl, benzimidazolyl, benzofuranyl, benzothiofuranyl, benzoxazolyl, benzthiazolyl, benztriazolyl, benztetrazolyl, benzisoxazolyl, benzisothiazolyl, benzimidazalonyl, cinnolinyl, furanyl, imidazolyl, indazolyl, indolyl, isoquinolinyl isothiazolyl, isoxazolyl, oxazolyl, pyrazinyl, pyrazolyl, pyrazolotriazinyl, pyridazinyl, pyridyl, pyridinyl, pyrimidinyl, pyrrolyl, quinazolinyl, quinolinyl, thiazolyl, thienyl, and tetrazolyl.
  • heterocyclylalkyl refers to heterocyclyl groups as defined above linked through a C atom or heteroatom to an alkyl chain.
  • heteroarylalkyl or “heteroarylalkenyl” as used herein alone or as part of another group refers to a heteroaryl group as defined above linked through a C atom or heteroatom to an alkyl chain, alkylene, or alkenylene as defined above.
  • cyano refers to a -CN group.
  • nitro refers to an -NO 2 group.
  • hydroxy refers to an OH group.
  • pharmaceutically acceptable is employed herein to refer to those compounds, materials, compositions, and/or dosage forms which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of human beings and animals without excessive toxicity, irritation, allergic response, or other problem or complication, commensurate with a reasonable benefit/risk ratio.
  • pharmaceutically acceptable salts refer to derivatives of the disclosed compounds wherein the parent compound is modified by making acid or base salts thereof.
  • Examples of pharmaceutically acceptable salts include, but are not limited to, mineral or organic acid salts of basic residues such as amines; alkali or organic salts of acidic residues such as carboxylic acids; and the like.
  • the pharmaceutically acceptable salts include the conventional non-toxic salts or the quaternary ammonium salts of the parent compound formed, for example, from nontoxic inorganic or organic acids.
  • such conventional non-toxic salts include those derived from inorganic acids such as hydrochloric, hydrobromic, sulfuric, sulfamic, phosphoric, nitric and the like; and the salts prepared from organic acids such as acetic, propionic, succinic, glycolic, stearic, lactic, malic, tartaric, citric, ascorbic, pamoic, maleic, hydroxymaleic, phenylacetic, glutamic, benzoic, salicylic, sulfanilic, 2-acetoxybenzoic, fumaric, toluenesulfonic, methanesulfonic, ethane disulfonic, oxalic, isethionic, and the like.
  • inorganic acids such as hydrochloric, hydrobromic, sulfuric, sulfamic, phosphoric, nitric and the like
  • organic acids such as acetic, propionic, succinic, glycolic, stearic, lactic,
  • the pharmaceutically acceptable salts of the present invention can be synthesized from the parent compound which contains a basic or acidic moiety by conventional chemical methods.
  • such salts can be prepared by reacting the free acid or base forms of these compounds with a stoichiometric amount of the appropriate base or acid in water or in an organic solvent, or in a mixture of the two; generally, nonaqueous media like ether, ethyl acetate, ethanol, isopropanol, or acetonitrile are preferred.
  • Lists of suitable salts are found in Remington's Pharmaceutical Sciences. 17th ed., Mack Publishing Company, Easton, PA, p. 1418 (1985), the disclosure of which is hereby incorporated by reference.
  • prodrug any compound that can be converted in vivo to provide the bioactive agent (i.e., a compound of Formula I and/or IA) is a prodrug within the scope and spirit of the invention.
  • prodrugs as employed herein includes esters and carbonates formed by reacting one or more hydroxyls of compounds of Formula I and/or IA with alkyl, alkoxy, or aryl substituted acylating agents employing procedures known to those skilled in the art to generate acetates, pivalates, methylcarbonates, benzoates, and the like.
  • Various forms of prodrugs are well known in the art and are described in: a) The Practice of Medicinal Chemistry, Camille G. Wermuth et al, Ch.
  • compounds of the Formula I and/or IA are, subsequent to their preparation, preferably isolated and purified to obtain a composition containing an amount by weight equal to or greater than 99% Formula I and/or IA compound ("substantially pure” compound I), which is then used or formulated as described herein. Such "substantially pure" compounds of the Formula I and/or IA are also contemplated herein as part of the present invention.
  • All stereoisomers of the compounds of the instant invention are contemplated, either in admixture or in pure or substantially pure form.
  • the compounds of the present invention can have asymmetric centers at any of the carbon atoms including any one of the R substituents and/or exhibit polymorphism.
  • compounds of Formula I and/or IA can exist in enantiomeric, or diastereomeric forms, or in mixtures thereof.
  • the processes for preparation can utilize racemates, enantiomers, or diastereomers as starting materials.
  • diastereomeric or enantiomeric products are prepared, they can be separated by conventional methods for example, chromatographic or fractional crystallization.
  • Stable compound and stable structure are meant to indicate a compound that is sufficiently robust to survive isolation to a useful degree of purity from a reaction mixture, and formulation into an efficacious therapeutic agent.
  • the present invention is intended to embody stable compounds.
  • “Therapeutically effective amount” is intended to include an amount of a compound of the present invention alone or an amount of the combination of compounds claimed or an amount of a compound of the present invention in combination with other active ingredients effective to modulate GPRl 19 or effective to treat or prevent various disorders.
  • treating cover the treatment of a disease- state in a mammal, particularly in a human, and include: (a) preventing the disease- state from occurring in a mammal, in particular, when such mammal is predisposed to the disease-state but has not yet been diagnosed as having it; (b) modulating the disease-state, i.e., arresting it development; and/or (c) relieving the disease-state, i.e., causing regression of the disease state.
  • this invention also includes selected compounds as described in the Examples and their utility for the same purposes as recited for the method invention. These compounds are selected from compounds of Formula IA and enantiomers, diastereomers and pharmaceutically acceptable salts thereof, wherein: ring A is optionally substituted with one or more R's shown as R 2 0 and R 21 ;
  • X is CH
  • Ria, Rib, Rid and Ri e are each independently selected from the group consisting of hydrogen, halo, CN and C 1-3 alkyl;
  • Ric is imidazolyl, oxazolyl or triazolyl
  • R 5 is C 1-3 alkyl
  • R 2 0 is hydrogen
  • R 21 is hydrogen, halo or CN.
  • the compounds used in the methods of the present invention and the selected compounds recited in the Examples can be prepared in a number of ways well known to one skilled in the art of organic synthesis.
  • the compounds of the present invention can be synthesized using the methods described below, together with synthetic methods known in the art of synthetic organic chemistry, or variations thereon as appreciated by those skilled in the art. Preferred methods include, but are not limited to, those described below. All references cited herein are hereby incorporated in their entirety by reference.
  • the novel compounds of Formula I and/or IA may be prepared using the reactions and techniques described in this section. The reactions are performed in solvents appropriate to the reagents and materials employed and are suitable for the transformations being effected.
  • reaction conditions including solvent, reaction atmosphere, reaction temperature, duration of the experiment and workup procedures, are chosen to be the conditions standard for that reaction, which should be readily recognized by one skilled in the art.
  • One skilled in the art of organic synthesis understands that the functionality present on various portions of the edict molecule must be compatible with the reagents and reactions proposed. Not all compounds of Formula I and/or IA falling into a given class may be compatible with some of the reaction conditions required in some of the methods described. Such restrictions to the substituents, which are compatible with the reaction conditions, will be readily apparent to one skilled in the art and alternate methods must be used.
  • Intermediate 3 can then be alkylated with intermediate 4, which can be prepared by reaction of the corresponding alcohols with methanesulfonyl chloride, in the presence of a base such as K 2 CO3 at an elevated temperature.
  • a base such as K 2 CO3
  • the above alcohols are commercially available or can be prepared by many methods well known to one skilled in the art (typical examples may be found in Sandler, S. et al, Organic Functional Group Preparations, Vol. I (Academic Press, Inc., 1983)). Removal of the protecting group of intermediate 5 can be carried out with appropriate reagents well known to those skilled in the art (for specific details see Greene et al., Protecting Groups in Organic Synthesis (John Wiley & Sons Inc., 1991)).
  • the deprotected product can then be treated with R 2 X (where R 2 is defined as in Formula I and/or IA and X is a leaving group such as halide, mesylate, triflate, etc.), which are commercially available or can be prepared by many methods known in the art, at a number of conditions that are routine for those skilled in the art of organic synthesis to afford compounds of Formula I and/or IA.
  • R 2 X where R 2 is defined as in Formula I and/or IA and X is a leaving group such as halide, mesylate, triflate, etc.
  • the intermediate 6 can also be reacted with isocyates or isothiocyanates in the presence of a base such as EtsN to provide the compounds of Formula I and/or IA.
  • intermediate 9 Oxidation of intermediate 9 with an oxidant such as mCPBA in a suitable solvent such as CH2CI2 affords intermediate 10 and intermediate 11.
  • Intermediate 9, intermediate 10 or intermediate 11 can be carried forward to compounds of Formula I and/or IA following the procedures described above in Scheme 1 substituting intermediate 9, 10 or 11 for intermediate 5.
  • compounds of Formula I and/or IA may also be prepared by the procedures similar to those provided in Scheme 3.
  • compounds of Formula I and/or IA can be synthesized by procedures outlined in Scheme 4.
  • Intermediate 14, obtained from commercial sources, can be reacted with intermediate 15, which are commercially available or can be generated by many methods readily recognized by one skilled in the art (typical examples may be found in Sandler, S. et al., Organic Functional Group Preparations, Vol. I (Academic Press, Inc., 1983)), in the presence of a base such as NaH to yield intermediate 16.
  • Hydrolysis of intermediate 16 can be achieved by treatment with DABCO in the presence of a base such as K 2 CO 3 in dioxane/water at an elevated temperature.
  • Intermediate 17 can then be reacted with RiX (where Ri is defined with respect to Formula I and/or IA and X is a halide) in the presence of a ligand such as 8-hydroxyquinoline, CuI (I) and a base such as K 2 CO 3 in a suitable solvent such as DMF, DMSO etc. at an elevated temperature to yield intermediate 18.
  • a ligand such as 8-hydroxyquinoline, CuI (I) and a base such as K 2 CO 3 in a suitable solvent such as DMF, DMSO etc.
  • a suitable solvent such as DMF, DMSO etc.
  • intermediate 21 obtained from commercial sources, can be reacted with intermediate 4 prepared as described in Scheme I to give intermediate 22.
  • Hydrolysis of intermediate 22 can be achieved by treatment with DABCO in the presence of a base such as K2CO3 in dioxane/water at an elevated temperature.
  • Intermediate 23 can be treated with RiX (where Ri is defined with respect to Formula I and/or IA and X is a halide) in the presence of a ligand such as 8-hydroxyquinoline, CuI (I) and a base such as K2CO3 in a suitable solvent such as DMF, DMSO etc at an elevated temperature to yield intermediate 24.
  • the intermediate 24 can be carried forward to compounds of Formula I and/or IA following the procedures described above in Scheme 1 substituting intermediate 24 for intermediate 5.
  • Intermediate 26 can be reacted with dimethyl malonate to yield intermediate 27 using literature procedures (J. Med. Chem., 45:3639 (2002)).
  • the intermediate 27 can then be carried forward to compounds of Formula I and/or IA following the procedures described above in Scheme 1 substituting intermediate 28 for intermediate 3.
  • HCl hydrochloric acid
  • CS 2 CO3 cesium carbonate
  • Pd 2 (dba) 3 tris(dibenzylideneacetone)dipalladium (0)
  • Step A Preparation of l-(5-propylpyrimidin-2-yl)piperidin-4-ol [00161] To a stirring solution of piperidin-4-ol (2.33 g, 23.0 mmol, Aldrich) and potassium carbonate (6.36 g, 46.0 mmol, EMD) in DMF (15 mL) at room temperature was added 2-chloro-5-propylpyrimidine (4.33 g, 27.6 mmol, Wako). The reaction mixture was heated at 100 0 C for 3 h then diluted with H2O. The resulting mixture was extracted with EtOAc (2x). The organic layers were combined, dried over Na 2 SO 4 and concentrated in vacuo to a brown oil. The oil was purified by flash chromatography (SiO 2 , 0 to 100% EtOAc in CH 2 Cl 2 ) to yield 5.01 g of desired product as a white solid. MS (ESI) 222 (M+H).
  • Step B Preparation of l-(5-propylpyrimidin-2-yl)piperidin-4-yl methanesulfonate
  • Step D Preparation of l-(4-bromophenyl)-lH-l,2,4-triazole
  • Step E Preparation of l-(4-(lH-l,2,4-triazol-l-yl)phenyl)-4-(l-(5- propylpyrimidin-2-yl)piperidin-4-yloxy)pyridin-2(lH)-one
  • Example B was prepared according to procedures described in Example 1 substituting l-(4-bromophenyl)-lH-imidazole (Oakwood) for l-(4-bromophenyl)- lH-l,2,4-triazole in Step E except that the crude solid was purified by flash chromatography (SiO 2 , 0 to 15% MeOH in CH 2 CI 2 ). The product was then converted to the hydrochloride salt by addition of 1 equivalent of HCl (IN HCl in Et 2 O) to the compound stirring in CH 2 Cl 2 for 5 min followed by concentration in vacuo to the desired product.
  • 1 H NMR 400 MHz, CDCl 3
  • Example C was prepared according to procedures described in Example 1, Step A to E, substituting 2-(4-bromophenyl)oxazole (JW-Pharmlab) for l-(4- bromophenyl)-lH-l,2,4-triazole in Step E.
  • Step A Preparation of isopropyl 4-hydroxypiperidine-l-carboxylate [00169] To a stirring solution of piperidin-4-ol (5.22 g, 51.6 mmol, Aldrich), Et 3 N (13.2 mL, 95 mmol, Aldrich) in CH 2 Cl 2 (50 mL) at 0 0 C was added a solution of Isopropyl chloroformate (1 Molar in Toluene, 43.0 mL, 43.0 mmol, Aldrich) dropwise. The reaction mixture was stirred at room temperature for 1 h and washed with IN HCl in H 2 O. The H 2 O layer was extracted with DCM (2X). The organic layers were combined and concentrated in vacuo to yield 5.71 g of the desired product as a light brown oil. MS (ESI) 188 (M+H).
  • Example 4 was prepared according to procedures described in Example 1, Step A to E substituting isopropyl 4-hydroxypiperidine-l-carboxylate for l-(5- propylpyrimidin-2-yl)piperidin-4-ol in Step B.
  • ADDITIONAL EXAMPLES [00171] The following Examples are selected compounds that are believed to be particularly active for modulating the GPRl 19 receptor and are a subset of the compounds which may be prepared using the Schemes and methods described above, together with synthetic methods known in the art of synthetic organic chemistry, or variations thereon as appreciated by those skilled in the art. [00172] The compounds may be selected from any combinations of Ri a , Rib, Ric, Rid, Rie, R21 and R2 shown in Table 1, Table 2 and Table 3 to the extent that such compounds can be made stable as will be appreciated by those skilled in the art.
  • a HIT-T 15 hamster insulinoma cell line was purchased from ATCC and grown in the medium recommended by ATCC (i.e., Growth Medium: F12K Medium (Invitrogen 21127-022; 10 % D-horse Serum; and 2.5 % FBS).
  • Growth Medium F12K Medium (Invitrogen 21127-022; 10 % D-horse Serum; and 2.5 % FBS).
  • F12K Medium Invitrogen 21127-022; 10 % D-horse Serum; and 2.5 % FBS.
  • cAMP assay To conduct the cAMP assay, cells expressing a GPRl 19 receptor are plated on 96 well plates (e.g., BD Falcon: REF 353948, black side ,clear bottom, TC surface ) at a density of about 4.5 X 10 4 cells per well in growth medium and incubated overnight.
  • the growth medium is removed from the wells followed by a single rinse with the assay buffer from the Hit Hunter cAMP kit (lOO ⁇ l/well). Following the rinse, 20 ⁇ l of assay buffer is added to each well followed by addition of lO ⁇ l of a 3X concentration of compound working solution. The solution is then mixed well. The final concentration range of compound is from about 10 "5 M to about 10 "11 M. The reaction is incubated at 37°C, in a 5% CO 2 for 1 hour. Following incubation, the cAMP concentration is determined using the Hit Hunter cAMP kit according to the manufacturer's protocol.
  • Cell lines expressing GPRl 19 are generated using the FIp-In-T-REx 293 tetracycline inducible gene expression system are cultured in culture medium comprising the following components: DMEM#11965, 10%FBS, 2mM L-glutamine, 200ug/ml Hygromycin B, and 15ug/ml blasticidin.
  • cAMP assays cells are plated on 96 well plates (e.g., BD Falcon: REF 353948, black side ,clear bottom, TC surface ) at a density of about 4.5 X 10 4 cells per well in growth medium containing 1.0ug/ml tetracycline (l.Omg/ml stock). The cells are then incubated for 48 hours at 37 0 C. [00178] Following the incubation, the growth medium is removed from the wells and the wells rinsed (once) with the assay buffer included in the Hit Hunter cAMP kit (lOO ⁇ l/well).
  • HEK 293 cells may be plated on poly-D-lysine treated 96-well BD black side/clear bottom plates at a density of about 3xlO 4 cells/well in growth medium.
  • the growth medium may comprise the following: D-MEM (Cat # 12430) with high glucose and 10% fetal bovine serum.
  • Cells may be transfected with vectors comprising native or non-native
  • GPRl 19 sequences using commercially available vectors (e.g., Stratagene) and transfection reagents. The standard manufacturer's protocols may be followed to transfect the cells. Following transfection, the transfection medium may be removed and assay medium added to the wells of the assay plates.
  • compound dilution plates may be made. To do so, make a first compound dilution plate using 1OmM of the compound of interest diluted to about ImM in DMSO. Then make 12 point half-log dilutions of the compounds (in DMSO) using an automated liquid handler. Next, make a second dilution plate by diluting the wells in the first plate ten fold (10X) using assay medium. Once the plates are complete, the highest dose is about lO ⁇ M and the lowest dose is about 0.03nM.
  • the dilution plates are complete, one can add about lO ⁇ l of the 1OX compound dilution to the assay plate containing the assay medium transiently transfected cells. Tap the plate to mix the reagents and incubate the plate overnight at 37°C, 95% O 2 , and 5% CO 2 in an incubator.
  • a luciferase assay system may be used (e.g., Stead- GIo Luciferase Assay System from Promega) according to the manufacturer's instructions. Following completion of the reaction, immediately measure the readout of the assay using a top count luminometer.
  • a luciferase assay system e.g., Stead- GIo Luciferase Assay System from Promega
  • mice 24 male C57BL/6J mice (8-10 weeks old, average weight 28 g) were randomized into 4 groups (1 mouse/cage) of 6 mice per group based on fed plasma glucose and body weight. Prior to initiating the study, mice were fasted overnight and the next morning they were weighed and placed in the experimental lab. After 30 min in the environment, the mice were bled via tail tip at -30 min and immediately given their first oral administration of vehicle (0.5% Methocel, 0.1% Tween 80 in water) or compound solutions (5 ml/kg). At time 0 the mice were bled and given 50% glucose (2 g/kg) to initiate the oral glucose tolerance test (oGTT). The mice were bled 30, 60 and 120 min after the glucose load.
  • vehicle 0.5% Methocel, 0.1% Tween 80 in water
  • compound solutions 5 ml/kg
  • Plasma samples were drawn into potassium EDTA, placed on ice during the study and subsequently centrifuged for 10 min at 3000 rpm at 4°C. Plasma samples were diluted 11 -fold for glucose analysis in the Cobas Mira System (Roche Diagnostics). Area under the curve was calculated from the plasma glucose time course data using the trapezoid rule with fasting plasma glucose as the baseline (GraphPad Prism Software). The statistical significance of the changes in the glucose AUCs resulting from the different treatments was determined by one-way ANOVA followed by Dunnett's test using the vehicle group as the control (JMP software, release 5.1.2).
  • the methods and compounds of the present invention possess activity as agonists of the GPRl 19 receptor, and, therefore, may be used in the treatment of diseases associated with GPRl 19 receptor activity. Via the activation of GPRl 19 receptor, the compounds of the present invention may preferably be employed to increase insulin production or increase GLP-I secretion or both.
  • the compounds of the present invention can be administered to mammals, preferably humans, for the treatment of a variety of conditions and disorders, including, but not limited to, treating, preventing, or slowing the progression of diabetes and related conditions, microvascular complications associated with diabetes, macrovascular complications associated with diabetes, cardiovascular diseases, Metabolic Syndrome and its component conditions, inflammatory diseases and other maladies.
  • the compounds of the present invention may be used in preventing, inhibiting, or treating diabetes, hyperglycemia, impaired glucose tolerance, insulin resistance, hyperinsulinemia, retinopathy, neuropathy, nephropathy, wound healing, atherosclerosis and its sequelae (acute coronary syndrome, myocardial infarction, angina pectoris, peripheral vascular disease, intermittent claudication, myocardial ischemia, stroke, heart failure), Metabolic Syndrome, hypertension, obesity, dyslipidemia, hyperlipidemia, hypertriglyceridemia, hypercholesterolemia, low HDL, high LDL, vascular restenosis, peripheral arterial disease, lipid disorders, bone disease (including osteoporosis), PCOS, HIV protease associated lipodystrophy, glaucoma and inflammatory diseases, such as, psoriasis, rheumatoid arthritis and osteoarthritis, and treatment of side-effects related to diabetes, lipodystrophy and osteoporosis from cor
  • the present invention includes within its scope the use of pharmaceutical compositions comprising, as an active ingredient, a therapeutically effective amount of at least one of the compounds of Formula I and/or IA, alone or in combination with a pharmaceutical carrier or diluent.
  • the present invention also includes within its scope the use of pharmaceutical compositions comprising, as an active ingredient, a therapeutically effective amount of at least one of the compounds of Formula I and/or IA, alone or in combination with a pharmaceutical carrier or diluent.
  • compounds of the present invention can be used alone, in combination with other compounds of the invention, or in combination with one or more other therapeutic agent(s), e.g., an antidiabetic agent or other pharmaceutically active material.
  • the methods of treatment using compounds of Formula I and/or IA of the present invention may be employed in combination with other GPRl 19 receptor agonists or one or more other suitable therapeutic agents useful in the treatment of the aforementioned disorders including: anti-diabetic agents, anti-hyperglycemic agents, anti-hyperinsulinemic agents, anti-retinopathic agents, anti-neuropathic agents, anti- nephropathic agents, anti-atherosclerotic agents, anti-ischemic agents, antihypertensive agents, anti-obesity agents, anti-dyslipidemic agents, anti-dyslipidemic agents, anti-hyperlipidemic agents, anti-hypertriglyceridemic agents, anti- hypercholesterolemic agents, anti-restenotic agents, anti-pancreatic agents, lipid lowering agents, appetite suppressants, treatments for heart failure, treatments for peripheral arterial disease and anti-inflammatory agents.
  • anti-diabetic agents anti-hyperglycemic agents, anti-hyperinsuline
  • Suitable anti-diabetic agents for use in combination with the compounds of the present invention include insulin and insulin analogs (e.g., LysPro insulin, inhaled formulations comprising insulin); glucagon-like peptides; sulfonylureas and analogs (e.g., chlorpropamide, glibenclamide, tolbutamide, tolazamide, acetohexamide, glypizide, glyburide, glimepiride, repaglinide, meglitinide); biguanides (e.g., metformin, phenformin, buformin); alpha2 -antagonists and imidazolines (e.g., midaglizole, isaglidole, deriglidole, idazoxan, efaroxan, fluparoxan); other insulin secretagogues (e.g., linogliride, insulinotropin, exendin-4, N,N-
  • PPAR alpha/gamma dual agonists e.g., muraglitazar, peliglitazar
  • SGLT2 inhibitors e. g., 3 -(benzo[b]furan-5 -yl)-2 ' ,6 ' -dihydroxy-4' -methylpropiophenone-2 ' -O-(6-O- methoxycarbonyl)- ⁇ -d-glucopyranoside (T- 1095 Tanabe Seiyaku), phlorizin, TS-033 (Taisho), dapagliflozin (BMS), sergiflozin (Kissei), AVE 2268 (Sanofi-Aventis)); 11- beta-hydroxysteriod dehydrogenase type I inhibitors (e.g., AMG221, INCB13739); dipeptidyl peptidase-IV (DPP4) inhibitors (e.g., saxagliptin, sitagliptin
  • LG100268 fatty acid oxidation inhibitors
  • fatty acid oxidation inhibitors e.g., clomoxir, etomoxir; ⁇ -glucosidase inhibitors: precose, acarbose, miglitol, emiglitate, voglibose, 2,6-dideoxy-2,6-imino- 7-O- ⁇ -D-glucopyranosyl-D-glycero-L-gulo-heptitol (MDL-25,637), camiglibose); beta-agonists (e.g., methyl ester [4-[(2R)-2-[[(2R)-2-(3-chlorophenyl)-2- hydroxyethyl]amino]propyl]phenoxy] -acetic acid (BRL 35135), 2-[4-[(2S)-2-[[(2S)- 2-(3-chlorophenyl)-2-hydroxy
  • bile acid sequestrants e.g., WELCHOL®, COLESTID®, LOCHOLEST® and QUESTRAN®; and fibric acid derivatives, such as ATROMID®, LOPID® and TRICOT®
  • fibric acid derivatives such as ATROMID®, LOPID® and TRICOT®
  • cholesterol ester transfer protein inhibitors e.g., torcetrapib and (2R)-3- ⁇ [3-(4-chloro-3-ethyl- phenoxy)-phenyl]-[[3-(l,l,2,2-tetrafluoroethoxy)phenyl]methyl]amino ⁇ - 1,1,1- trifluoro-2-propanol
  • nicotinic acid and derivatives thereof e.g., niacin, acipimox
  • PCSK9 inhibitors e.g., those disclosed in U.S.
  • lipoxygenase inhibitors e.g., such as benzimidazole derivatives, as disclosed in WO 97/12615, 15- LO inhibitors, as disclosed in WO 97/12613, isothiazolones, as disclosed in WO 96/38144, and 15-LO inhibitors, as disclosed by Sendobry et al, "Attenuation of diet- induced atherosclerosis in rabbits with a highly selective 15 -lipoxygenase inhibitor lacking significant antioxidant properties", Brit. J. Pharmacology.
  • Preferred hypolipidemic agents are pravastatin, lovastatin, simvastatin, atorvastatin, fluvastatin, cerivastatin, atavastatin, and rosuvastatin.
  • Suitable anti-hypertensive agents for use in combination with the compounds of the present invention include beta adrenergic blockers, calcium channel blockers (L-type and T-type; e.g., diltiazem, verapamil, nifedipine, amlodipine and mybefradil), diuretics (e.g., chlorothiazide, hydrochlorothiazide, flumethiazide, hydroflumethiazide, bendroflumethiazide, methylchlorothiazide, trichloromethiazide, polythiazide, benzthiazide, ethacrynic acid tricrynafen, chlorthalidone, furosemide, musolimine, bumetanide, triamtrenene, amiloride, spironolactone), renin inhibitors (e.g., aliskiren), ACE inhibitors (e.g., capto
  • Dual ET/AII antagonist e.g., compounds disclosed in WO 00/01389
  • neutral endopeptidase (NEP) inhibitors e.g., neutral endopeptidase (NEP) inhibitors
  • vasopeptidase inhibitors dual NEP-ACE inhibitors
  • nitrates e.g., central alpha agonists (e.g., clonidine)
  • alphal blockers e.g., prazosine
  • arterial vasodilators e.g., minoxidil
  • sympatolytics e.g., resperine
  • renin inhibitors e.g., Aliskiren (Novartis)
PCT/US2008/070103 2007-07-17 2008-07-16 Method for modulating gpr119 g protein-coupled receptor and selected compounds WO2009012277A1 (en)

Priority Applications (17)

Application Number Priority Date Filing Date Title
JP2010517123A JP5301539B2 (ja) 2007-07-17 2008-07-16 Gpr119gタンパク質共役受容体の調節方法および選択された化合物
EA201000211A EA016595B1 (ru) 2007-07-17 2008-07-16 Способ модулирования рецептора gpr119, сопряженного с g-белком, и используемые при этом соединения
SI200830592T SI2173737T1 (sl) 2007-07-17 2008-07-16 Metoda za modulacijo gpr g proteinsko sklopljenega receptorja in izbrane spojine
ES08781868T ES2378914T3 (es) 2007-07-17 2008-07-16 Procedimientos para modular receptor acoplado a la proteína G GPR119 y compuestos seleccionados
EP08781868A EP2173737B1 (en) 2007-07-17 2008-07-16 Method for modulating gpr119 g protein-coupled receptor and selected compounds
BRPI0814428-1A2A BRPI0814428A2 (pt) 2007-07-17 2008-07-16 Método para modular o receptor acoplado à proteína g gpr119 e compostos selecionados
AT08781868T ATE540945T1 (de) 2007-07-17 2008-07-16 Verfahren zur modulation des gpr119-g- proteingekoppelten rezeptors und ausgewählte verbindungen
AU2008276057A AU2008276057B2 (en) 2007-07-17 2008-07-16 Method for modulating GPR119 G protein-coupled receptor and selected compounds
CN2008801081672A CN101801956B (zh) 2007-07-17 2008-07-16 用于调节gpr119 g蛋白偶联受体的方法及所选化合物
DK08781868.8T DK2173737T3 (da) 2007-07-17 2008-07-16 Fremgangsmåde til modulering af GPR119 G-proteinkoblet receptorer og udvalgte forbindelser
NZ582661A NZ582661A (en) 2007-07-17 2008-07-16 Method for modulating gpr119 g protein-coupled receptor and selected compounds
PL08781868T PL2173737T3 (pl) 2007-07-17 2008-07-16 Sposób modulowania receptora GPR119 sprzężonego z białkiem G i wybrane związki
CA2693444A CA2693444A1 (en) 2007-07-17 2008-07-16 Method for modulating gpr119 g protein-coupled receptor and selected compounds
ZA2010/00326A ZA201000326B (en) 2007-07-17 2010-01-15 Methods for modulating gpr119 g protein-coupled receptor and selected compounds
HK10103702.1A HK1136298A1 (en) 2007-07-17 2010-04-15 Method for modulating gpr119 g protein-coupled receptor and selected compounds
HR20120221T HRP20120221T1 (hr) 2007-07-17 2012-03-07 Postupak modulacije gpr119 protein-vezanog receptora i odabrani spojevi
IL228120A IL228120A0 (en) 2007-07-17 2013-08-26 Protein-coupled receptor modulator compounds - gpr911 g and their uses

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US95016207P 2007-07-17 2007-07-17
US60/950,162 2007-07-17

Publications (1)

Publication Number Publication Date
WO2009012277A1 true WO2009012277A1 (en) 2009-01-22

Family

ID=39864683

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/US2008/070103 WO2009012277A1 (en) 2007-07-17 2008-07-16 Method for modulating gpr119 g protein-coupled receptor and selected compounds
PCT/US2008/070101 WO2009012275A1 (en) 2007-07-17 2008-07-16 Pyridone gpr119 g protein-coupled receptor agonists

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/US2008/070101 WO2009012275A1 (en) 2007-07-17 2008-07-16 Pyridone gpr119 g protein-coupled receptor agonists

Country Status (27)

Country Link
US (6) US7928230B2 (US07928230-20110419-C00114.png)
EP (2) EP2173737B1 (US07928230-20110419-C00114.png)
JP (3) JP5318867B2 (US07928230-20110419-C00114.png)
KR (2) KR20100045471A (US07928230-20110419-C00114.png)
CN (3) CN101801957A (US07928230-20110419-C00114.png)
AR (2) AR067569A1 (US07928230-20110419-C00114.png)
AT (2) ATE540945T1 (US07928230-20110419-C00114.png)
AU (2) AU2008276055B2 (US07928230-20110419-C00114.png)
BR (2) BRPI0814428A2 (US07928230-20110419-C00114.png)
CA (2) CA2693439A1 (US07928230-20110419-C00114.png)
CL (2) CL2008002111A1 (US07928230-20110419-C00114.png)
CO (1) CO6160315A2 (US07928230-20110419-C00114.png)
CY (2) CY1112151T1 (US07928230-20110419-C00114.png)
DK (2) DK2170864T3 (US07928230-20110419-C00114.png)
EA (2) EA018709B1 (US07928230-20110419-C00114.png)
ES (2) ES2378914T3 (US07928230-20110419-C00114.png)
HK (2) HK1136298A1 (US07928230-20110419-C00114.png)
HR (2) HRP20110806T1 (US07928230-20110419-C00114.png)
IL (1) IL228120A0 (US07928230-20110419-C00114.png)
NZ (2) NZ582664A (US07928230-20110419-C00114.png)
PE (2) PE20090888A1 (US07928230-20110419-C00114.png)
PL (2) PL2173737T3 (US07928230-20110419-C00114.png)
PT (2) PT2173737E (US07928230-20110419-C00114.png)
SI (2) SI2173737T1 (US07928230-20110419-C00114.png)
TW (2) TW200904440A (US07928230-20110419-C00114.png)
WO (2) WO2009012277A1 (US07928230-20110419-C00114.png)
ZA (2) ZA201000151B (US07928230-20110419-C00114.png)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010009183A1 (en) * 2008-07-16 2010-01-21 Bristol-Myers Squibb Company Pyridone and pyridazone analogues as gpr119 modulators
WO2011107494A1 (de) 2010-03-03 2011-09-09 Sanofi Neue aromatische glykosidderivate, diese verbindungen enthaltende arzneimittel und deren verwendung
WO2011113947A1 (en) 2010-03-18 2011-09-22 Boehringer Ingelheim International Gmbh Combination of a gpr119 agonist and the dpp-iv inhibitor linagliptin for use in the treatment of diabetes and related conditions
WO2011127106A1 (en) 2010-04-08 2011-10-13 Bristol-Myers Squibb Company Pyrimidinylpiperidinyloxypyridinone analogues as gpr119 modulators
WO2011140161A1 (en) 2010-05-06 2011-11-10 Bristol-Myers Squibb Company Benzofuranyl analogues as gpr119 modulators
WO2011140160A1 (en) 2010-05-06 2011-11-10 Bristol-Myers Squibb Company Bicyclic heteroaryl compounds as gpr119 modulators
WO2011161030A1 (de) 2010-06-21 2011-12-29 Sanofi Heterocyclisch substituierte methoxyphenylderivate mit oxogruppe, verfahren zu ihrer herstellung und ihre verwendung als gpr40 rezeptor modulatoren
WO2012004270A1 (de) 2010-07-05 2012-01-12 Sanofi Spirocyclisch substituierte 1,3-propandioxidderivate, verfahren zu ihrer herstellung und ihre verwendung als arzneimittel
WO2012004269A1 (de) 2010-07-05 2012-01-12 Sanofi ( 2 -aryloxy -acetylamino) - phenyl - propionsäurederivate, verfahren zu ihrer herstellung und ihre verwendung als arzneimittel
WO2012010413A1 (de) 2010-07-05 2012-01-26 Sanofi Aryloxy-alkylen-substituierte hydroxy-phenyl-hexinsäuren, verfahren zu ihrer herstellung und ihre verwendung als arzneimittel
US8293729B2 (en) 2009-06-24 2012-10-23 Boehringer Ingelheim International Gmbh Compounds, pharmaceutical composition and methods relating thereto
WO2012170867A1 (en) 2011-06-09 2012-12-13 Rhizen Pharmaceuticals Sa Novel compounds as modulators of gpr-119
WO2013037390A1 (en) 2011-09-12 2013-03-21 Sanofi 6-(4-hydroxy-phenyl)-3-styryl-1h-pyrazolo[3,4-b]pyridine-4-carboxylic acid amide derivatives as kinase inhibitors
WO2013045413A1 (en) 2011-09-27 2013-04-04 Sanofi 6-(4-hydroxy-phenyl)-3-alkyl-1h-pyrazolo[3,4-b]pyridine-4-carboxylic acid amide derivatives as kinase inhibitors
US8481731B2 (en) 2009-06-24 2013-07-09 Boehringer Ingelheim International Gmbh Compounds, pharmaceutical composition and methods relating thereto
WO2014011926A1 (en) 2012-07-11 2014-01-16 Elcelyx Therapeutics, Inc. Compositions comprising statins, biguanides and further agents for reducing cardiometabolic risk
JP2014509600A (ja) * 2011-03-14 2014-04-21 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Gpr119モジュレーターとしてのn−シクロプロピル−n−ピペリジニルベンズアミド
US9115089B2 (en) 2013-06-07 2015-08-25 Confluence Life Sciences, Inc. Methyl/fluoro-pyridinyl-methoxy substituted pyridinone-pyridinyl compounds and fluoro-pyrimidinyl-methoxy substituted pyridinone-pyridinyl compounds
US9174965B2 (en) 2012-05-16 2015-11-03 Bristol-Myers Squibb Company Pyrimidinylpiperidinyloxypyridone analogues as GPR119 modulators
US9359300B2 (en) 2010-12-06 2016-06-07 Confluence Life Sciences, Inc. Methyl/difluorophenyl-methoxy substituted pyridinone-pyridinyl compounds, methyl-pyridinyl-methoxy substituted pyridinone-pyridinyl compounds, and methyl-pyrimidinyl-methoxy substituted pyridinone-pyridinyl compounds
US9365546B2 (en) 2010-12-06 2016-06-14 Confluence Life Sciences Inc. Substituted pyridinone-pyridinyl compounds
US9611277B2 (en) 2013-03-13 2017-04-04 Janssen Pharmaceutica Nv Substituted 2-azabicycles and their use as orexin receptor modulators
US9611251B2 (en) 2013-03-13 2017-04-04 Janssen Pharmaceutica Nv Substituted piperidine compounds and their use as orexin receptor modulators
US9611262B2 (en) 2014-09-11 2017-04-04 Janssen Pharmaceutica Nv Substituted 2-azabicycles and their use as orexin receptor modulators
US9637496B2 (en) 2013-03-13 2017-05-02 Janssen Pharmaceutica Nv Substituted 7-azabicycles and their use as orexin receptor modulators
US10865194B2 (en) 2017-11-03 2020-12-15 Fondazione Istituto Italiano Di Tecnologia Therapeutically active bicyclic-sulphonamides and pharmaceutical compositions
US11844801B2 (en) 2020-03-27 2023-12-19 Aclaris Therapeutics, Inc. Oral compositions of MK2 pathway inhibitor for treatment of immune conditions

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006059778A1 (ja) * 2004-12-01 2006-06-08 Banyu Pharmaceutical Co., Ltd. 置換ピリドン誘導体
JP2010526145A (ja) 2007-05-04 2010-07-29 ブリストル−マイヤーズ スクイブ カンパニー [6,6]および[6,7]−二環式gpr119gタンパク質結合受容体アゴニスト
PL2173737T3 (pl) * 2007-07-17 2012-06-29 Bristol Myers Squibb Co Sposób modulowania receptora GPR119 sprzężonego z białkiem G i wybrane związki
EP2146210A1 (en) 2008-04-07 2010-01-20 Arena Pharmaceuticals, Inc. Methods of using A G protein-coupled receptor to identify peptide YY (PYY) secretagogues and compounds useful in the treatment of conditions modulated by PYY
US8304413B2 (en) 2008-06-03 2012-11-06 Intermune, Inc. Compounds and methods for treating inflammatory and fibrotic disorders
EP2324036B1 (en) 2008-07-16 2014-12-03 Merck Sharp & Dohme Corp. Bicyclic heterocycle derivatives and methods of use thereof
CA2730593A1 (en) * 2008-07-16 2010-01-21 Schering Corporation Bicyclic heterocycle derivatives and use thereof as gpr119 modulators
GB0904287D0 (en) 2009-03-12 2009-04-22 Prosidion Ltd Compounds for the treatment of metabolic disorders
JP2012520868A (ja) * 2009-03-20 2012-09-10 ファイザー・インク 3−オキサ−7−アザビシクロ[3.3.1]ノナン
DK2625177T3 (en) 2010-10-08 2015-10-12 Cadila Healthcare Ltd New GPR 119 agonists
AR092742A1 (es) 2012-10-02 2015-04-29 Intermune Inc Piridinonas antifibroticas
US9695148B2 (en) * 2012-11-13 2017-07-04 Nissan Chemical Industries, Ltd. 2-pyridone compound
CN102993088A (zh) * 2012-12-31 2013-03-27 东华大学 一种4-羟基-2-吡啶酮的制备方法
JP2016526538A (ja) 2013-06-20 2016-09-05 バイエル・クロップサイエンス・アクチェンゲゼルシャフト 殺ダニ剤及び殺虫剤としてのアリールスルフィド誘導体及びアリールスルホキシド誘導体
JP2016526539A (ja) 2013-06-20 2016-09-05 バイエル・クロップサイエンス・アクチェンゲゼルシャフト 殺ダニ剤及び殺虫剤としてのアリールスルフィド誘導体及びアリールスルホキシド誘導体
JP6423873B2 (ja) 2013-07-08 2018-11-14 バイエル・クロップサイエンス・アクチェンゲゼルシャフト 有害生物防除剤としての6員c−n−結合アリールスルフィド誘導体及びアリールスルホキシド誘導体
MX2016012808A (es) 2014-04-02 2017-01-05 Intermune Inc Piridinonas anti-fibroticas.
EP2929883A1 (en) 2014-04-08 2015-10-14 Institut Pasteur Pyrazole derivatives as dihydroorotate dehydrogenase (DHODH) inhibitors
WO2016130652A1 (en) 2015-02-10 2016-08-18 Vanderbilt University Negative allosteric modulators of metabotropic glutamate receptor 3
JP6578116B2 (ja) * 2015-03-25 2019-09-18 公益財団法人相模中央化学研究所 一置換(フルオロアルキル)エチレン類及びその製造方法
MX2022014505A (es) 2020-05-19 2022-12-13 Kallyope Inc Activadores de la ampk.
CA3183575A1 (en) 2020-06-26 2021-12-30 Iyassu Sebhat Ampk activators
WO2022081573A1 (en) * 2020-10-12 2022-04-21 University Of Tennessee Research Foundation Transient receptor potential canonical 3 inhibitors and methods of use thereof
CN115504927A (zh) * 2022-08-15 2022-12-23 广西中医药大学 4-甲基-2-对甲苯基-6-羰基吡啶-3-甲酸及其制备方法和用途

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005007647A1 (en) * 2003-07-11 2005-01-27 Arena Pharmaceuticals, Inc. Trisubstituted aryl and heteroaryl derivatives as modulators of metabolism and the prophylaxis and treatment of disorders related thereto
WO2005007658A2 (en) * 2003-07-14 2005-01-27 Arena Pharmaceuticals, Inc. Fused-aryl and heteroaryl derivatives as modulators of metabolism and the prophylaxis and treatment of disorders related thereto

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3826643A (en) * 1967-08-07 1974-07-30 American Cyanamid Co Method of controlling undesirable plant species using 3-nitropyridines
US5776983A (en) * 1993-12-21 1998-07-07 Bristol-Myers Squibb Company Catecholamine surrogates useful as β3 agonists
US5488064A (en) * 1994-05-02 1996-01-30 Bristol-Myers Squibb Company Benzo 1,3 dioxole derivatives
US5612359A (en) * 1994-08-26 1997-03-18 Bristol-Myers Squibb Company Substituted biphenyl isoxazole sulfonamides
US5491134A (en) * 1994-09-16 1996-02-13 Bristol-Myers Squibb Company Sulfonic, phosphonic or phosphiniic acid β3 agonist derivatives
US5541204A (en) * 1994-12-02 1996-07-30 Bristol-Myers Squibb Company Aryloxypropanolamine β 3 adrenergic agonists
US5620997A (en) 1995-05-31 1997-04-15 Warner-Lambert Company Isothiazolones
AU6966696A (en) 1995-10-05 1997-04-28 Warner-Lambert Company Method for treating and preventing inflammation and atherosclerosis
US5770615A (en) * 1996-04-04 1998-06-23 Bristol-Myers Squibb Company Catecholamine surrogates useful as β3 agonists
US6566384B1 (en) * 1996-08-07 2003-05-20 Darwin Discovery Ltd. Hydroxamic and carboxylic acid derivatives having MMP and TNF inhibitory activity
TW536540B (en) * 1997-01-30 2003-06-11 Bristol Myers Squibb Co Endothelin antagonists: N-[[2'-[[(4,5-dimethyl-3-isoxazolyl)amino]sulfonyl]-4-(2-oxazolyl)[1,1'-biphenyl]-2-yl]methyl]-N,3,3-trimethylbutanamide and N-(4,5-dimethyl-3-isoxazolyl)-2'-[(3,3-dimethyl-2-oxo-1-pyrrolidinyl)methyl]-4'-(2-oxazolyl)[1,1'-biphe
UA57811C2 (uk) 1997-11-21 2003-07-15 Пфайзер Продактс Інк. Фармацевтична композиція, що містить інгібітор альдозоредуктази та інгібітор глікогенфосфорилази (варіанти), комплект, який її включає, та способи лікування ссавців зі станом інсулінорезистентності
PL203771B1 (pl) 1998-07-06 2009-11-30 Bristol Myers Squibb Co Pochodna bifenylosulfonamidu jako dualny antagonista receptorów angiotensyny i endoteliny, sposób jej wytwarzania i jej zastosowanie oraz pochodna bifenylu i pochodna benzenu
CA2348740A1 (en) 1998-12-23 2000-07-06 Ruth R. Wexler Thrombin or factor xa inhibitors
CA2413241A1 (en) 2000-06-29 2002-01-10 Bristol-Myers Squibb Pharma Company Thrombin or factor xa inhibitors
JP3438186B2 (ja) 2000-12-01 2003-08-18 山之内製薬株式会社 糖尿病治療剤スクリーニング方法
WO2003059884A1 (en) * 2001-12-21 2003-07-24 X-Ceptor Therapeutics, Inc. Modulators of lxr
US7482366B2 (en) * 2001-12-21 2009-01-27 X-Ceptor Therapeutics, Inc. Modulators of LXR
PL218749B1 (pl) * 2002-02-14 2015-01-30 Pharmacia Corp Pochodna pirydynonu oraz jej zastosowanie do wytwarzania leku
GEP20084540B (en) 2003-01-14 2008-11-25 Arena Pharm Inc 1,2,3-trisubstituted aryl and heteroaryl derivatives as modulators of metabolism and the prpphylaxis and treatment of disorders related thereto such as diabetes and hyperglycemia
WO2004076413A2 (en) 2003-02-24 2004-09-10 Arena Pharmaceuticals, Inc. Phenyl- and pyridylpiperidine-derivatives as modulators of glucose metabolism
SE0301010D0 (sv) 2003-04-07 2003-04-07 Astrazeneca Ab Novel compounds
US7003597B2 (en) * 2003-07-09 2006-02-21 International Business Machines Corporation Dynamic reallocation of data stored in buffers based on packet size
CN100509798C (zh) * 2003-07-11 2009-07-08 艾尼纳制药公司 作为新陈代谢调节剂的三取代芳基和杂芳基衍生物以及预防和治疗与其相关之病症
US20070088163A1 (en) 2003-09-12 2007-04-19 Kemia, Inc. Modulators of calcitonin and amylin activity
US7732456B2 (en) * 2004-03-05 2010-06-08 Banyu Pharmaceutical Co., Ltd. Pyridone derivative
ATE519495T1 (de) 2004-03-17 2011-08-15 7Tm Pharma As Y4-selektiver rezeptoragonist pp2-36 für therapeutische eingriffe
NZ550447A (en) * 2004-05-03 2010-06-25 Hoffmann La Roche Hexafluoro-indolyl derivatives as liver-x-receptor modulators
MXPA06014129A (es) 2004-06-04 2007-03-07 Arena Pharm Inc Derivados de arilo y heteroarilo sustituidos como moduladores del metabolismo y profilaxis y tratamiento de trastornos relacionados con los mismos.
US8193359B2 (en) 2004-12-24 2012-06-05 Prosidion Limited G-protein coupled receptor agonists
MY148521A (en) * 2005-01-10 2013-04-30 Arena Pharm Inc Substituted pyridinyl and pyrimidinyl derivatives as modulators of metabolism and the treatment of disorders related thereto
RU2376282C2 (ru) * 2005-06-23 2009-12-20 Эмори Юниверсити Стереоселективный синтез аминокислот для получения изображения опухоли
US20090325924A1 (en) * 2005-06-30 2009-12-31 Stuart Edward GPCR Agonists
US20090221644A1 (en) 2005-06-30 2009-09-03 Stuart Edward Bradley Gpcr Agonists
EP2152707B1 (en) 2007-05-04 2012-06-20 Bristol-Myers Squibb Company [6,5]-bicyclic gpr119 g protein-coupled receptor agonists
JP2010526145A (ja) 2007-05-04 2010-07-29 ブリストル−マイヤーズ スクイブ カンパニー [6,6]および[6,7]−二環式gpr119gタンパク質結合受容体アゴニスト
PL2173737T3 (pl) 2007-07-17 2012-06-29 Bristol Myers Squibb Co Sposób modulowania receptora GPR119 sprzężonego z białkiem G i wybrane związki

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005007647A1 (en) * 2003-07-11 2005-01-27 Arena Pharmaceuticals, Inc. Trisubstituted aryl and heteroaryl derivatives as modulators of metabolism and the prophylaxis and treatment of disorders related thereto
WO2005007658A2 (en) * 2003-07-14 2005-01-27 Arena Pharmaceuticals, Inc. Fused-aryl and heteroaryl derivatives as modulators of metabolism and the prophylaxis and treatment of disorders related thereto

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8372837B2 (en) 2008-07-16 2013-02-12 Bristol-Myers Squibb Company Pyridone and pyridazone analogues as GPR119 modulators
CN102159566A (zh) * 2008-07-16 2011-08-17 百时美施贵宝公司 作为gpr119调节剂的吡啶酮和哒嗪酮类似物
WO2010009183A1 (en) * 2008-07-16 2010-01-21 Bristol-Myers Squibb Company Pyridone and pyridazone analogues as gpr119 modulators
EA018268B1 (ru) * 2008-07-16 2013-06-28 Бристол-Маерс Сквибб Компани Аналоги пиридона и пиридазона как модуляторы gpr119
US8481731B2 (en) 2009-06-24 2013-07-09 Boehringer Ingelheim International Gmbh Compounds, pharmaceutical composition and methods relating thereto
US8293729B2 (en) 2009-06-24 2012-10-23 Boehringer Ingelheim International Gmbh Compounds, pharmaceutical composition and methods relating thereto
WO2011107494A1 (de) 2010-03-03 2011-09-09 Sanofi Neue aromatische glykosidderivate, diese verbindungen enthaltende arzneimittel und deren verwendung
WO2011113947A1 (en) 2010-03-18 2011-09-22 Boehringer Ingelheim International Gmbh Combination of a gpr119 agonist and the dpp-iv inhibitor linagliptin for use in the treatment of diabetes and related conditions
WO2011127106A1 (en) 2010-04-08 2011-10-13 Bristol-Myers Squibb Company Pyrimidinylpiperidinyloxypyridinone analogues as gpr119 modulators
WO2011140161A1 (en) 2010-05-06 2011-11-10 Bristol-Myers Squibb Company Benzofuranyl analogues as gpr119 modulators
WO2011140160A1 (en) 2010-05-06 2011-11-10 Bristol-Myers Squibb Company Bicyclic heteroaryl compounds as gpr119 modulators
WO2011161030A1 (de) 2010-06-21 2011-12-29 Sanofi Heterocyclisch substituierte methoxyphenylderivate mit oxogruppe, verfahren zu ihrer herstellung und ihre verwendung als gpr40 rezeptor modulatoren
WO2012004270A1 (de) 2010-07-05 2012-01-12 Sanofi Spirocyclisch substituierte 1,3-propandioxidderivate, verfahren zu ihrer herstellung und ihre verwendung als arzneimittel
WO2012010413A1 (de) 2010-07-05 2012-01-26 Sanofi Aryloxy-alkylen-substituierte hydroxy-phenyl-hexinsäuren, verfahren zu ihrer herstellung und ihre verwendung als arzneimittel
WO2012004269A1 (de) 2010-07-05 2012-01-12 Sanofi ( 2 -aryloxy -acetylamino) - phenyl - propionsäurederivate, verfahren zu ihrer herstellung und ihre verwendung als arzneimittel
US9365546B2 (en) 2010-12-06 2016-06-14 Confluence Life Sciences Inc. Substituted pyridinone-pyridinyl compounds
US9365547B2 (en) 2010-12-06 2016-06-14 Confluence Life Sciences Inc. Substituted pyridinone-pyridinyl compounds
US9359300B2 (en) 2010-12-06 2016-06-07 Confluence Life Sciences, Inc. Methyl/difluorophenyl-methoxy substituted pyridinone-pyridinyl compounds, methyl-pyridinyl-methoxy substituted pyridinone-pyridinyl compounds, and methyl-pyrimidinyl-methoxy substituted pyridinone-pyridinyl compounds
JP2014509600A (ja) * 2011-03-14 2014-04-21 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Gpr119モジュレーターとしてのn−シクロプロピル−n−ピペリジニルベンズアミド
WO2012170867A1 (en) 2011-06-09 2012-12-13 Rhizen Pharmaceuticals Sa Novel compounds as modulators of gpr-119
WO2013037390A1 (en) 2011-09-12 2013-03-21 Sanofi 6-(4-hydroxy-phenyl)-3-styryl-1h-pyrazolo[3,4-b]pyridine-4-carboxylic acid amide derivatives as kinase inhibitors
WO2013045413A1 (en) 2011-09-27 2013-04-04 Sanofi 6-(4-hydroxy-phenyl)-3-alkyl-1h-pyrazolo[3,4-b]pyridine-4-carboxylic acid amide derivatives as kinase inhibitors
US9174965B2 (en) 2012-05-16 2015-11-03 Bristol-Myers Squibb Company Pyrimidinylpiperidinyloxypyridone analogues as GPR119 modulators
WO2014011926A1 (en) 2012-07-11 2014-01-16 Elcelyx Therapeutics, Inc. Compositions comprising statins, biguanides and further agents for reducing cardiometabolic risk
US9611277B2 (en) 2013-03-13 2017-04-04 Janssen Pharmaceutica Nv Substituted 2-azabicycles and their use as orexin receptor modulators
US9611251B2 (en) 2013-03-13 2017-04-04 Janssen Pharmaceutica Nv Substituted piperidine compounds and their use as orexin receptor modulators
US9637496B2 (en) 2013-03-13 2017-05-02 Janssen Pharmaceutica Nv Substituted 7-azabicycles and their use as orexin receptor modulators
US9695183B2 (en) 2013-03-13 2017-07-04 Janssen Pharmaceutica Nv Substituted 7-azabicycles and their use as orexin receptor modulators
US9845333B2 (en) 2013-03-13 2017-12-19 Janssen Pharmaceutica Nv Substituted 2-azabicycles and their use as orexin receptor modulators
US10183953B2 (en) 2013-03-13 2019-01-22 Janssen Pharmaceutica Nv Substituted 2-azabicycles and their use as orexin receptor modulators
US9115089B2 (en) 2013-06-07 2015-08-25 Confluence Life Sciences, Inc. Methyl/fluoro-pyridinyl-methoxy substituted pyridinone-pyridinyl compounds and fluoro-pyrimidinyl-methoxy substituted pyridinone-pyridinyl compounds
US9636333B2 (en) 2013-06-07 2017-05-02 Confluence Life Sciences, Inc. Methyl/fluoro-pyridinyl-methoxy substituted pyridinone-pyridinyl compounds and fluoro-pyrimidinyl-methoxy substituted pyridinone-pyridinyl compounds
US9611262B2 (en) 2014-09-11 2017-04-04 Janssen Pharmaceutica Nv Substituted 2-azabicycles and their use as orexin receptor modulators
US10865194B2 (en) 2017-11-03 2020-12-15 Fondazione Istituto Italiano Di Tecnologia Therapeutically active bicyclic-sulphonamides and pharmaceutical compositions
US11844801B2 (en) 2020-03-27 2023-12-19 Aclaris Therapeutics, Inc. Oral compositions of MK2 pathway inhibitor for treatment of immune conditions

Also Published As

Publication number Publication date
BRPI0815097A2 (pt) 2018-07-24
US7928230B2 (en) 2011-04-19
JP5318867B2 (ja) 2013-10-16
CL2008002110A1 (es) 2008-10-24
PE20090449A1 (es) 2009-04-18
HK1136298A1 (en) 2010-06-25
US20120258959A1 (en) 2012-10-11
PE20090888A1 (es) 2009-07-15
US8232404B2 (en) 2012-07-31
NZ582664A (en) 2012-03-30
PL2170864T3 (pl) 2012-02-29
US8178561B2 (en) 2012-05-15
CY1112751T1 (el) 2016-02-10
US20090042919A1 (en) 2009-02-12
CO6160315A2 (es) 2010-05-20
US20110245227A1 (en) 2011-10-06
HRP20110806T1 (hr) 2011-11-30
HK1143136A1 (en) 2010-12-24
AU2008276055B2 (en) 2013-01-31
EA016595B1 (ru) 2012-06-29
JP5301539B2 (ja) 2013-09-25
ATE524460T1 (de) 2011-09-15
CY1112151T1 (el) 2015-12-09
JP2010533726A (ja) 2010-10-28
WO2009012275A1 (en) 2009-01-22
AR067569A1 (es) 2009-10-14
CA2693439A1 (en) 2009-01-22
ZA201000151B (en) 2011-03-30
CL2008002111A1 (es) 2008-10-24
SI2170864T1 (sl) 2012-04-30
CN101801957A (zh) 2010-08-11
US20110190327A1 (en) 2011-08-04
AU2008276057A1 (en) 2009-01-22
CN101801956B (zh) 2013-11-20
HRP20120221T1 (hr) 2012-04-30
AU2008276057B2 (en) 2013-01-31
EP2170864A1 (en) 2010-04-07
JP2010533727A (ja) 2010-10-28
SI2173737T1 (sl) 2012-05-31
TW200904439A (en) 2009-02-01
US8003796B2 (en) 2011-08-23
US20090023702A1 (en) 2009-01-22
AR067568A1 (es) 2009-10-14
ZA201000326B (en) 2011-03-30
EP2173737B1 (en) 2012-01-11
DK2170864T3 (da) 2012-01-16
EP2173737A1 (en) 2010-04-14
KR20100045471A (ko) 2010-05-03
PT2170864E (pt) 2011-11-25
ATE540945T1 (de) 2012-01-15
ES2378914T3 (es) 2012-04-19
EA201000210A1 (ru) 2010-06-30
CN101801956A (zh) 2010-08-11
AU2008276055A1 (en) 2009-01-22
EA018709B1 (ru) 2013-10-30
BRPI0814428A2 (pt) 2015-01-06
KR20100051814A (ko) 2010-05-18
IL228120A0 (en) 2013-09-30
EP2170864B1 (en) 2011-09-14
DK2173737T3 (da) 2012-05-07
US8513424B2 (en) 2013-08-20
JP2013237680A (ja) 2013-11-28
CN103550218A (zh) 2014-02-05
TW200904440A (en) 2009-02-01
NZ582661A (en) 2012-03-30
EA201000211A1 (ru) 2010-06-30
CA2693444A1 (en) 2009-01-22
PL2173737T3 (pl) 2012-06-29
PT2173737E (pt) 2012-03-19
US20120232048A1 (en) 2012-09-13
ES2371515T3 (es) 2012-01-04
WO2009012275A9 (en) 2010-03-11

Similar Documents

Publication Publication Date Title
EP2173737B1 (en) Method for modulating gpr119 g protein-coupled receptor and selected compounds
EP2313395B1 (en) Pyridone and pyridazone analogues as gpr119 modulators
US8093257B2 (en) [6,5]-bicyclic GPR119 G protein-coupled receptor agonists
EP2566860B1 (en) Bicyclic heteroaryl compounds as gpr119 modulators
EP2566862B1 (en) Benzofuranyl analogues as gpr119 modulators

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880108167.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08781868

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2010/000540

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2693444

Country of ref document: CA

Ref document number: 582661

Country of ref document: NZ

Ref document number: 2008276057

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 203352

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 2010517123

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008781868

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2008276057

Country of ref document: AU

Date of ref document: 20080716

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 201000211

Country of ref document: EA

ENP Entry into the national phase

Ref document number: 20107003333

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: PI0814428

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20100118