WO2009000820A2 - Korrosionsschützender zusatz für flüssigkeiten - Google Patents

Korrosionsschützender zusatz für flüssigkeiten Download PDF

Info

Publication number
WO2009000820A2
WO2009000820A2 PCT/EP2008/057988 EP2008057988W WO2009000820A2 WO 2009000820 A2 WO2009000820 A2 WO 2009000820A2 EP 2008057988 W EP2008057988 W EP 2008057988W WO 2009000820 A2 WO2009000820 A2 WO 2009000820A2
Authority
WO
WIPO (PCT)
Prior art keywords
additive
group
groups
substituted
unsubstituted
Prior art date
Application number
PCT/EP2008/057988
Other languages
English (en)
French (fr)
Other versions
WO2009000820A3 (de
Inventor
Günter Schmid
Hendrik Lüdtke
Joachim Wecker
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102007029837A external-priority patent/DE102007029837A1/de
Priority claimed from DE102007029836A external-priority patent/DE102007029836A1/de
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2009000820A2 publication Critical patent/WO2009000820A2/de
Publication of WO2009000820A3 publication Critical patent/WO2009000820A3/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • C23F11/167Phosphorus-containing compounds
    • C23F11/1676Phosphonic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/16Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
    • A61L2/18Liquid substances or solutions comprising solids or dissolved gases
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • C11D3/0073Anticorrosion compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/162Organic compounds containing Si
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/26Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/34Organic compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/36Organic compounds containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/02Non-contaminated water, e.g. for industrial water supply
    • C02F2103/023Water in cooling circuits
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/08Corrosion inhibition

Definitions

  • the present invention relates to a corrosion-protective additive.
  • the present invention further relates to a method for corrosion protection.
  • Nuclear power plants the energy transfer from the respective energy source such as coal, gas or nuclear fuel to the power generator is usually carried out by hot, high pressure water vapor.
  • the respective energy source such as coal, gas or nuclear fuel
  • the power generator is usually carried out by hot, high pressure water vapor.
  • stainless steels but also other metallic materials come into contact with this water.
  • this problem occurs because the water, inter alia with the pressure vessel, which usually consists of stainless steel pipes, consisting of uranium, plutonium and their decay products
  • Facilities are radioactively polluted in nuclear power plants, so that high disposal costs are also incurred.
  • household appliances are exposed to corrosive media during operation. These include, for example, washing machines and dishwashers.
  • the stainless steel surfaces in such household appliances are exposed to highly corrosive media, in particular the wash liquors. This can be done in
  • the problem particularly relates to surgical instruments, which are usually made of stainless steel or special materials such as titanium. After use, they must be cleaned very carefully to meet the strict requirements for cleanliness and hygiene in the field of surgery.
  • a particular problem here are fat and protein-containing residues that are difficult to remove. Therefore, the cleaning of surgical instruments aggressive cleaning media are used, which are able to replace the fat and protein-containing residues.
  • the surfaces of the surgical instruments, whether made of stainless steel or special materials can be subject to corrosion, which is extremely undesirable in the field of surgery.
  • the object of the present invention is therefore to provide an additive for corrosion protection, which is applicable to a variety of fields.
  • the solution is to provide an additive which is in the form of at least one compound formed as a linear molecule having a molecular chain and an anchor group which binds to the surface of metallic components and forms a corrosion-protective monomolecular layer.
  • the additive according to the invention is therefore in the form of at least one compound which forms a monomolecular layer on metallic surfaces.
  • These layers are known per se and are referred to in the literature as “self-assembling monolayers” or self-assembling monolayers SAMs (Halik M.
  • the additive according to the invention is a surface-active molecule which, when in contact with a In the case of such a molecule, two functional regions can be distinguished, namely a surface-active anchor group and a molecular chain, which in turn at its free end have one or more arbitrary functional groups, the so-called head groups
  • the anchor group must be such that it has a metallic surface emic bond, that is a covalent, ionic or polar bond is received.
  • the metallic surface is thus covered with a layer in
  • Modified form of a self-assembling monolayer This layer covers the metallic surface and causes an electrochemical passivation of the surface against corrosive substances.
  • the metallic surface is reliably isolated from a particular aqueous medium.
  • This insulating effect in addition to the covering effect and the electrochemical corrosion is greatly slowed down.
  • the layer formed is monomolecular, the layer thickness is in the range of one molecule length. The layer thickness can be chosen freely by controlling the length of the molecular chain.
  • This layer is extremely resistant both chemically and thermally, so that the protective effect reliably stops even at higher temperatures.
  • the surfaces are reliably isolated by the cooling water acting as an aqueous electrolyte. From the metallic substrate or metal ion-releasing or radiation-decomposed molecules are repeatedly by a stetes
  • the surface of surgical instruments is also reliably isolated from a particularly aqueous medium, for example a cleaning solution for surgical instruments acting as an aqueous electrolyte.
  • a particularly aqueous medium for example a cleaning solution for surgical instruments acting as an aqueous electrolyte.
  • the self-assembling monolayer thus reliably protects the surface of coated instruments from corrosion and, moreover, reduces wetting for aqueous media.
  • the protective effect is maintained even after sterilization of surgical instruments at temperatures up to 200 0 C.
  • the layer thickness of the monomolecular layer can be chosen freely by controlling the length of the molecular chain and is preferably 0.5 to 5.0 nm.
  • the anchor group is selected depending on the chemical and physical properties of the surface to be coated.
  • Preferred anchor groups are substituted or unsubstituted silane groups, substituted or unsubstituted carbonyl groups, substituted or unsubstituted phosphine oxide groups and substituted or unsubstituted sulfone groups.
  • Even more complex anchor systems such as the hydroxamic acid, oxime, isonitrile and phosphine based anchor groups described in the literature, are well suited (Xia Y., Whitesides G.M.
  • the molecular chain can be chosen freely.
  • the choice of the molecular chain is characterized by the fact that the
  • the molecular chain determines the electrical properties of the resulting self-assembling monolayer. This effect is known from studies on the use of such layers as a dielectric (DE 103 28 811 A1, DE 103 28 810 A1, DE 10 2004 025 423 A1, DE 10 2004 022 603 A1, US 2005/0189536 A1).
  • the molecular chain can consist, for example, of alkyl chains or fluorinated alkyl chains having 2 to 20, preferably 10 to 18, carbon atoms in the chain.
  • the molecular chain may also consist of a polyethylene glycol chain or a polyethylene diamine chain.
  • the free end of the molecular chain carries a head group.
  • head groups Preferred are substituted or unsubstituted, cyclic or heterocyclic groups as head groups.
  • Aryl groups are well suited because they have an advantageous effect on the stability of the self-assembling monolayer on the surface due to the formation of ⁇ - ⁇ interactions.
  • the head groups may be substituted or unsubstituted.
  • Particularly suitable substituents are saturated and unsaturated alkyl groups which may also contain halogens, sulfur, nitrogen and / or phosphorus. Examples of well-suited head groups are furans,
  • alkyl methyl, ethyl, n-propyl, i-propyl, n-butyl, sec- Butyl, tert-butyl and their branched and unbranched higher homologues.
  • alkyl methyl, ethyl, n-propyl, i-propyl, n-butyl, sec- Butyl, tert-butyl and their branched and unbranched higher homologues.
  • R 1, R 2, R 3 is not H.
  • Ri, R2, R3 have the same meaning as in (1).
  • Ri, R2, R3 have the same meaning as in (1).
  • R 1 R 2 R 3 R 1, R 2, R 3 are only alkyl or H.
  • R 6 H, Cl, Br, I, OH, O-alkyl
  • alkyl methyl, ethyl, n-propyl, i-propyl, n-butyl, sec-butyl , tert-butyl and their branched and unbranched higher homologues.
  • alkyl methyl, ethyl, n-propyl, i-propyl, n-butyl, sec-butyl , tert-butyl and their branched and unbranched higher homologues.
  • groups such as benzyl or unsaturated alkenyl groups.
  • alkyl methyl, ethyl, n-propyl, i-propyl, n-butyl, sec-butyl, tert-butyl and their branched and unbranched higher homologs.
  • alkyl methyl, ethyl, n-propyl, i-propyl, n-butyl, sec-butyl, tert-butyl and their branched and unbranched higher homologs.
  • alkyl methyl, ethyl, n-propyl, i-propyl, n-butyl, sec-butyl, tert-butyl and their
  • the additive according to the invention is preferably introduced from a dilute solution of the at least one compound (0, 001-30 wt .-% based on the solution) in the cooling water circuit, eg. By injection during the run-in phase of the power plant. The better the chemical and physical properties of the anchor group and the to be coated
  • the at least one compound is dissolved for introduction into the cooling water circuit, preferably in a concentration of 0.1 to 1000 mmol in a solvent.
  • a solvent for this purpose, water-miscible solvents are particularly well suited. Examples are alcohols such as methanol, n-propanol, i-propanol, butanol, pentanol, hexanol, heptanol, octanol, etc., cyclic ethers such as tetrahydrofuran and dioxane and dimethylformamide, dimethyl sulfoxide, N-methylpyrrolidinone or cyclohexanone.
  • the additive according to the invention is continuously replenished during operation of the power plant.
  • the at least one compound which forms the monomolecular layer is preferably present in low concentrations of at least 0.05 ppm.
  • this is at least one compound, preferably in low concentrations of lppm to lmmol contained.
  • FIG. 1 shows a schematic representation of the contact angle of a water droplet on a surface treated according to the invention
  • FIG. 2 shows a graph with a compilation of contact angle measurements from the exemplary embodiments
  • FIG. 3 a graph of the cyclic voltammetry spectra of untreated and inventively treated surfaces
  • FIG. 4 is a graph of the anticorrosion effect of surfaces treated according to the invention
  • FIG. 5 a graph with contact angle measurements of surfaces treated according to the invention.
  • a 15 mm x 25 mm (0.5 mm thick) stainless steel sheet (type 1.4571) was degreased by rinsing with N-methylpyrrolidone, then rinsing with acetone and finally rinsing with isopropanol.
  • the native oxide films were electrochemically removed at a current of 150 mA (8 to 10 V) by switching the stainless steel sheet as a cathode.
  • the sheet was immersed for 30 min in a solution of 100 mg Octadecylphosphonklad in 100 ml of isopropanol.
  • the surface of the stainless steel sheet was sealed with a monolayer of octadecylphosphonic acid.
  • FIG. 1 schematically shows a water droplet 10 on a surface 11 of a stainless steel sheet 12 treated in this way.
  • the contact angle ⁇ is in the region of 120 ° and thus demonstrates the strong hydrophobization of the surface of the stainless steel sheet.
  • a stainless steel sheet of type 1.4571 instead of a stainless steel sheet of type 1.4571, a stainless steel sheet of type 1.4301 was treated as in example 1. Other types of stainless steel sheet can be treated in this way.
  • Example 4 instead of a stainless steel sheet, metallic articles of aluminum, copper and titanium were treated as in Example 1. Also objects made of other metals and alloys can be treated like this. Example 4
  • FIG. 2 shows a graph in which the contact angles measured on a stainless steel surface are combined.
  • the molecular length (6 to 18 C atoms, hexyl, decyl, octadecyl), the anchor group (phosphonic acid, trichlorosilyl) and the medium for measuring the contact angle (water, hexadecane, ethylene glycol, dimethyl sulfoxide) were varied. It turns out that molecules with phosphonic acid anchors form the densest self-assembling monolayers.
  • octadecyltrichlorosilane i. the longest molecule in the test, only slightly worse contact angles than the molecules with the phosphonic acid anchors. This suggests that octadecylphosphonic acid is one of the most preferred materials.
  • the electrochemical properties were determined in a cyclic voltammetry experiment.
  • a treated according to Example 1 stainless steel sheet and an untreated stainless steel sheet formed the electrodes.
  • a platinum sheet served as a counter electrode, a silver / silver chloride electrode as a reference electrode.
  • the electrolyte an IN served Na2SÜ4- solution, the IMM K 3 [Fe (CN) 6] was added as a redox indicator. It was measured at a potential feed of 50 mV / s.
  • Figure 3 clearly shows the reduction or oxidation of the redox indicator with an untreated sheet as an electrode.
  • treated stainless steel sheet redox activity is almost completely suppressed.
  • Phosphonic acids is better than silanes. Longer chains give better results than shorter chains. Overall, however, all results are very good.
  • FIG. 5 shows the results of contact angle measurements obtained with stainless steel sheets treated according to Example 1.
  • the immersion time of the stainless steel sheets was varied from 2 seconds to 20 hours. It was found that the coating takes place spontaneously and the contact angles in fact do not change in the context of statistical fluctuations with prolonged coating time.
  • the primary cooling water cycle of a power plant was 0.1 to 1 ppm octadecylphosphonic acid or its ammonium salt added. This can be done via an alcoholic solution and liquid phase. During operation, the corrosion protection was continuously replenished. For this purpose, the conductivity of the cooling water can be used with "protected" stainless steel electrodes as a measured variable.
  • Example 14 instead of the solvents from Examples 12 and 13, 100 mg of octadecylphosphonic acid were dissolved in 100 ml of a standard disinfectant.
  • Examples 10 to 14 were carried out with salts of octadecylphosphonic acid (ammonium, sodium and potassium salts). Other salts of octadecylphosphonic acid may also be used.
  • salts of octadecylphosphonic acid ammonium, sodium and potassium salts.
  • Other salts of octadecylphosphonic acid may also be used.
  • a care tab for dishwashers and washing machines was prepared as follows: In 3 g of sodium carbonate as filler 100 mg of octadecylphosphonic acid were stirred and pressed. The care tab was applied in short rinses of the dishwasher or washing machine.
  • Octadecylphosphonic acid added. The application takes place during the normal washing and rinsing process.
  • a protective tab for cleaning surgical instruments was prepared as follows: In 3 g of sodium carbonate as a filler, 100 mg of octadecylphosphonic acid were stirred and pressed.
  • Standard cleaning tabs for surgical instruments Add 10 mg of octadecylphosphonic acid. The application takes place during the normal cleaning process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

Die Erfindung betrifft einen Zusatz für Flüssigkeiten. Erfindungsgemäß ist vorgesehen, dass der Zusatz in Form mindestens einer Verbindung vorliegt, die als lineares Molekül ausgebildet ist, welches eine Molekülkette und eine Ankergruppe aufweist, die an eine metallische Oberfläche bindet und eine korrosionsschützende monomolekulare Schicht bildet.

Description

Beschreibung
Korrosionsschützender Zusatz für Flüssigkeiten
Die vorliegende Erfindung betrifft einen korrosionsschützenden Zusatz. Die vorliegende Erfindung betrifft ferner ein Verfahren zum Korrosionsschutz.
Bei metallischen Oberflächen besteht insbesondere dann die Gefahr von Korrosion, wenn sie mit elektrolythaltigen Flüssigkeiten in Kontakt stehen, bspw. mit Wasser oder wässrigen Lösungen. Einige ausgewählte Problemfelder seien im Folgenden exemplarisch beschrieben.
Sowohl in konventionellen Kraftwerken als auch in
Atomkraftwerken erfolgt der Energieübertrag von der jeweiligen Energiequelle wie bspw. Kohle, Gas oder Kernbrennstoffe zum Stromgenerator in der Regel durch heißen, unter hohem Druck stehenden Wasserdampf. Insbesondere Edelstahle, aber auch andere metallische Materialien kommen mit diesem Wasser in Berührung. Insbesondere in Primärkreisläufen von Kernkraftwerken tritt dieses Problem auf, da das Wasser unter anderem mit dem Druckbehälter, den in der Regel aus Edelstahlen bestehenden Leitungen, den aus Uran, Plutonium und deren Zerfallsprodukten bestehenden
Brennstäben sowie mit Bauteilen aus Zirkonium oder Zirkalloy in Kontakt kommt. Daher finden sich in Kühlwasserkreisläufen Metallionen verschiedenster Art, die unterschiedliche Normalpotentiale aufweisen. Dies führt zu einer elektrochemisch verstärkten Korrosion. Eine Möglichkeit, dieses Problem zu bewältigen, besteht darin, die im Wasser gelösten Metallionen permanent aus dem Kühlwasserkreislauf zu entfernen. Dies erfordert einen hohen Wartungsaufwand, da die hierfür notwendigen Einrichtungen, insbesondere Ionentauscher, ständig erneuert werden müssen. Diese
Einrichtungen werden in Kernkraftwerken radioaktiv belastet, so dass auch hohe Entsorgungskosten entstehen. Auch Haushaltsgeräte sind im Betrieb korrosiven Medien ausgesetzt. Dazu zählen bspw. Waschmaschinen und Geschirrspüler. Die Edelstahloberflächen in derartigen Haushaltsgeräten werden stark korrosiven Medien, wie insbesondere den Waschlaugen, ausgesetzt. Dies kann in
Verbindung mit Luftsauerstoff zur Korrosion der Oberflächen führen. Zusätzlich kann die Ablagerung edlerer metallischer Bestandteile bspw. aus Kleidungsstücken oder Geschirr (wie bspw. Kupferknöpfe oder Silberbesteck) in Verbindung mit der Waschlauge zu Elektrokorrosion führen. Insbesondere bei längerem Nichtgebrauch kann dieser Effekt die Qualität des Haushaltsgeräts und das äußere Erscheinungsbild negativ beeinflussen .
Auf dem Gebiet der Chirurgie betrifft das Problem insbesondere chirurgische Instrumente, die in der Regel aus Edelstahl oder aus Spezialmaterialien, wie beispielsweise Titan, gefertigt sind. Nach Gebrauch müssen sie sehr sorgfältig gereinigt werden, um den strengen Anforderungen an Sauberkeit und Hygiene auf dem Gebiet der Chirurgie zu genügen. Ein besonderes Problem stellen hierbei fett- und eiweißhaltige Rückstände dar, die schwierig zu entfernen sind. Daher werden zur Reinigung von chirurgischen Instrumenten aggressive Reinigungsmedien verwendet, die in der Lage sind, die fett- und eiweißhaltigen Rückstände abzulösen. In diesem Zusammenhang treten zwei wesentliche Probleme auf. Die Oberflächen der chirurgischen Instrumente, seien sie aus Edelstahl oder Spezialmaterialien gefertigt, können einer Korrosion unterliegen, was auf dem Gebiet der Chirurgie äußerst unerwünscht ist. Außerdem sind die
Oberflächen in der Regel gut mit wässrigen Medien benetzbar, was die Reinigung erschwert.
Die Aufgabe der vorliegenden Erfindung besteht somit darin, einen Zusatz zum Korrosionsschutz bereitzustellen, der auf den unterschiedlichsten Gebieten anwendbar ist. Die Lösung besteht darin, einen Zusatz bereitzustellen, der in Form mindestens einer Verbindung vorliegt, die als lineares Molekül ausgebildet ist, welches eine Molekülkette und eine Ankergruppe aufweist, die an die Oberfläche metallischer Bauteile bindet und eine korrosionsschützende monomolekulare Schicht bildet.
Der erfindungsgemäße Zusatz liegt also in Form mindestens einer Verbindung vor, die auf metallischen Oberflächen eine monomolekulare Schicht ausbildet. Diese Schichten sind an sich bekannt und werden in der Literatur als „selbstorganisierende Monolagen" oder selbstaggregierende Monolagen (self-assembling monolayers) SAMs bezeichnet (Halik M. et al . , „Low-voltage organic transistors with an amorphous molecular gate dielectric", Nature 431 (2004), 963-966; Xia Y., Whitesides G. M., „Softlithography", Angew. Chem. 110 (1998), 568-594). Bei dem erfindungsgemäßen Zusatz handelt es sich um ein oberflächenaktives Molekül das beim Kontakt mit einer metallischen Oberfläche spontan ein molekulares Aggregat in Form einer selbstorganisierenden Monolage bildet. Bei einem derartigen Molekül lassen sich zwei funktionelle Bereiche unterscheiden, nämlich eine oberflächenaktive Ankergruppe und eine Molekülkette, die ihrerseits an ihrem freien Ende wiederum ein oder mehrere beliebige funktionelle Gruppen, die so genannten Kopfgruppen, tragen kann. Die Ankergruppe muss so beschaffen sein, dass sie mit der metallischen Oberfläche eine chemische Bindung, das heißt eine kovalente, ionische oder polare Bindung eingeht.
Die metallische Oberfläche wird somit mit einer Schicht in
Form einer selbstorganisierenden Monolage modifiziert. Diese Schicht deckt die metallische Oberfläche ab und bewirkt eine elektrochemische Passivierung der Oberfläche gegenüber korrosiv wirkenden Substanzen. Damit wird die metallische Oberfläche zuverlässig gegenüber einem insbesondere wässrigen Medium isoliert. Durch diese Isolationswirkung wird neben der abdeckenden Wirkung auch die elektrochemische Korrosion stark verlangsamt . Da die ausgebildete Schicht monomolekular ist, liegt die Schichtdicke im Bereich einer Moleküllänge. Die Schichtdicke kann über die Kontrolle der Länge der Molekülkette frei gewählt werden.
Diese Schicht ist sowohl chemisch als auch thermisch äußerst widerstandsfähig, so dass die schützende Wirkung auch bei höheren Temperaturen zuverlässig anhält.
In Kühlwasserkreisläufen von Kraftwerken werden die Oberflächen von dem als wässrigem Elektrolyten wirkenden Kühlwasser zuverlässig isoliert. Sich vom metallischen Substrat bzw. Metallion ablösende oder durch Strahlung zersetzte Moleküle werden immer wieder durch ein stetes
Vorkommen im Kühlwasser ersetzt. Die elektrische Isolierung und damit die elektrochemische Passivierung der metallischen Oberflächen in den Kühlwasserkreisläufen von Kraftwerken gegenüber dem als Elektrolyt wirkenden Kühlwasser reduziert die Korrosionsgefahr erheblich, ohne dass ein zusätzlicher apparativer Aufwand notwendig ist.
Gleiches gilt für die metallischen Oberflächen von Haushaltsgeräten, die gegenüber Elektrolyten wie bspw. Waschlaugen für Waschmaschinen oder Spülmaschinen isoliert werden. Die beschriebenen Wirkungen bleiben auch bei den jeweiligen Betriebstemperaturen der Haushaltsgeräte erhalten,
Auch die Oberfläche chirurgischer Instrumente wird zuverlässig gegenüber einem insbesondere wässrigen Medium, bspw. einer als wässriger Elektrolyt wirkenden Reinigungslösung für chirurgische Instrumente, isoliert. Die selbstorganisierende Monolage schützt die Oberfläche der damit beschichteten Instrumente somit zuverlässig vor Korrosion und bewirkt darüber hinaus, dass die Benetzung für wässrige Medien verringert wird. Die schützende Wirkung bleibt auch nach einer Sterilisation chirurgischer Instrumente bei Temperaturen bis zu 2000C erhalten. Vorteilhafte Weiterbildungen ergeben sich aus den Unteransprüchen .
Die Schichtdicke der monomolekularen Schicht kann über die Kontrolle der Länge der Molekülkette frei gewählt werden und beträgt bevorzugt 0,5 bis 5,0 nm.
Die Ankergruppe wird abhängig von den chemischen und physikalischen Eigenschaften der zu beschichtenden Oberfläche ausgewählt. Bevorzugte Ankergruppen sind substituierte oder unsubstituierte Silangruppen, substituierte oder unsubstituierte Carbonylgruppen, substituierte oder unsubstituierte Phosphanoxidgruppen und substituierte oder unsubstituierte SuIfongruppen . Auch komplexere Ankersysteme wie die in der Literatur beschriebenen auf Hydroxamsäure, Oximen, Isonitrilen und Phosphinen basierenden Ankergruppen sind gut geeignet (Xia Y., Whitesides G. M.,
„Softlithography", Angew. Chem. 110 (1998), 568-594; Folkers J. P. et al . , „Self-assembled Monolayers of Long-Chain
Hydroxamic Acids on the Native Oxide of Metals", Langmiur 11 (1995) 813-824) .
Die Molekülkette kann frei gewählt werden. Die Auswahl der Molekülkette wird dadurch charakterisiert, dass die
Molekülkette die elektrischen Eigenschaften der entstehenden selbstorganisierenden Monolage bestimmt. Dieser Effekt ist aus Untersuchungen zum Einsatz derartiger Schichten als Dielektrikum bekannt (DE 103 28 811 Al, DE 103 28 810 Al, DE 10 2004 025 423 Al, DE 10 2004 022 603 Al, US 2005/0189536 Al) . Die Molekülkette kann beispielsweise aus Alkylketten oder fluorierten Alkylketten mit 2 bis 20, bevorzugt 10 bis 18, Kohlenstoffatomen in der Kette bestehen. Die Molekülkette kann auch aus einer Polyethylenglycolkette oder einer Polyethylendiaminkette bestehen.
In einer bevorzugten Weiterbildung der vorliegenden Erfindung trägt das freie Ende der Molekülkette eine Kopfgruppe. Bevorzugt sind substituierte oder unsubstituierte, cyclische oder heterocyclische Gruppen als Kopfgruppen. Arylgruppen sind gut geeignet, da sie sich aufgrund der Ausbildung von π- π-Wechselwirkungen vorteilhaft auf die Stabilität der selbstorganisierenden Monolage auf der Oberfläche auswirken. Die Kopfgruppen können substituiert oder unsubstituiert sein. Als Substituenten kommen insbesondere gesättigte und ungesättigte Alkylgruppen in Frage, die auch Halogene, Schwefel, Stickstoff und/oder Phosphor enthalten können. Beispiele für gut geeignete Kopfgruppen sind Furane,
Thiophene, Pyrrole, Oxazole, Thiazole, Imidazole, Isoxazole, Isothiazole, Pyrazole, Benzo [b] furane, Benzo [b] thiophene, Indole, 2H-Isoindole, Benzothiazole, Pyridine, Pyrazine, Pyrimidine, Pyryliumreste, α-Pyrone, γ-Pyrone, Chinoline, Isochinoline sowie Bipyridine und ihre Derivate () . Besonders bevorzugt ist die Phenoxygruppe . Die Kopfgruppe kann entweder direkt oder über einen der Reste O, N, P, C=C, C≡C mit der Molekülkette verknüpft sein.
Beispiele für derartige erfindungsgemäß verwendete
Verbindungen sind Verbindungen der allgemeinen Formeln (1) bis (4), wie in Figur 6 gezeigt.
Hierbei sind in (1) unabhängig voneinander Ri, R2, R3 = H, Cl, Br, J, OH, O-Alkyl sind, wobei Alkyl = Methyl, Ethyl, n- Propyl, i-Propyl, n-Butyl, sec-Butyl, tert-Butyl sowie deren verzweigte und unverzweigte höheren Homologen. Im Sinne der Erfindung sind aus Gruppen wie Benzyl oder ungesättigte Alkenylgruppen . Vorzugsweise ist wenigstens ein Ri, R2, R3 nicht H.
Hierbei ist in (2) R4 = H, Cl, Br, J, OH, O-Si R1R2R3, 0- Alkyl, wobei Alkyl = Methyl, Ethyl, n-Propyl, i-Propyl, n- Butyl, sec-Butyl, tert-Butyl sowie deren verzweigte und unverzweigte höheren Homologen, wobei Ri, R2, R3 dieselbe Bedeutung wie in (1) haben. Im Sinne der Erfindung sind aus Gruppen wie Benzyl oder ungesättigte Alkenylgruppen. Vorzugsweise sind im Rest O-Si R1R2R3 Ri, R2, R3 nur Alkyl oder H.
Hierbei sind in (3) unabhängig voneinander R5, R6 = H, Cl, Br, J, OH, O-Alkyl, wobei Alkyl = Methyl, Ethyl, n-Propyl, i- Propyl, n-Butyl, sec-Butyl, tert-Butyl sowie deren verzweigte und unverzweigte höheren Homologen. Im Sinne der Erfindung sind aus Gruppen wie Benzyl oder ungesättigte Alkenylgruppen.
Hierbei ist in (4) R7 = Cl, Br, J, OH, O-Alkyl, wobei Alkyl = Methyl, Ethyl, n-Propyl, i-Propyl, n-Butyl, sec-Butyl, tert- Butyl sowie deren verzweigte und unverzweigte höheren Homologen. Im Sinne der Erfindung sind aus Gruppen wie Benzyl oder ungesättigte Alkenylgruppen.
Der erfindungsgemäße Zusatz wird bevorzugt aus einer verdünnten Lösung der mindestens einen Verbindung (0, 001-30 Gew.-% bezogen auf die Lösung) in den Kühlwasserkreislauf eingebracht, bspw. durch Injektion während der Einfahrphase des Kraftwerks. Je besser die chemischen und physikalischen Eigenschaften der Ankergruppe und der zu beschichtenden
Oberfläche aufeinander abgestimmt sind, desto geringer kann die Konzentration der sich spontan abscheidenden mindestens einen Verbindung gewählt werden. Die mindestens eine Verbindung wird zur Einbringung in den Kühlwasserkreislauf bevorzugt in einer Konzentration von 0,1 bis 1000 mMol in einem Lösemittel gelöst. Hierfür sind mit Wasser mischbare Lösemittel besonders gut geeignet. Beispiele sind Alkohole wie Methanol, n-Propanol, i-Propanol, Butanol, Pentanol, Hexanol, Heptanol, Octanol etc., cyclische Ether wie Tetrahydrofuran und Dioxan sowie Dimethylformamid, Dimethylsulfoxid, N-Methylpyrrolidinon oder Cyclohexanon . Zweckmäßigerweise wird der erfindungsgemäße Zusatz während des Betriebs des Kraftwerks kontinuierlich nachdosiert.
Im Kühlwasser von Kraftwerken ist die mindestens eine Verbindung, welche die monomolekulare Schicht bildet, bevorzugt in geringen Konzentrationen von mindestens 0,05 ppm enthalten. In Reinigungs- und/oder Pflegemitteln für Haushaltsgeräte sowie in Lösungen zur Behandlung chirurgischer Instrumente ist diese mindestens eine Verbindung, bevorzugt in geringen Konzentrationen von lppm bis lOmmol enthalten.
Ausführungsbeispiele der vorliegenden Erfindung werden anhand der beigefügten Zeichnungen näher erläutert. Es zeigen:
Figur 1: eine schematische Darstellung des Kontaktwinkels eines Wassertropfens auf einer erfindungsgemäß behandelten Oberfläche;
Figur 2: eine Graphik mit einer Zusammenstellung von Kontaktwinkelmessungen aus den Ausführungsbeispielen;
Figur 3: eine Graphik der Cyclovoltametriespektren unbehandelter und erfindungsgemäß behandelter Oberflächen;
Figur 4: eine Graphik zur korrosionsschützenden Wirkung erfindungsgemäß behandelter Oberflächen; Figur 5: eine Graphik mit Kontaktwinkelmessungen erfindungsgemäß behandelter Oberflächen.
Beispiel 1
Ein Edelstahlblech (Typ 1.4571) der Größe 15 mm x 25 mm (0,5 mm dick) wurde durch Spülen mit N-Methylpyrrolidon, dann durch Spülen mit Aceton und final durch Spülen mit Isopropanol entfettet. In einer wässrigen Lösung von Natriumhydrogencarbonat wurde die nativen Oxidschichten bei einem Strom von 150 mA (8 bis 10 V) durch Schalten des Edelstahlblechs als Kathode elektrochemisch entfernt. Anschließend wurde das Blech für 30 min in eine Lösung von 100 mg Octadecylphosphonsäure in 100 ml Isopropanol getaucht. Nach gründlichem Spülen mit Isopropanol und anschließendem Trocknen im Stickstoffström war die Oberfläche des Edelstahlblechs mit einer Monolage von Octadecylphosphonsäure versiegelt .
Figur 1 zeigt schematisch einen Wassertropfen 10 auf einer derart behandelten Oberfläche 11 eines Edelstahlblechs 12. Der Kontaktwinkel θ liegt im Bereich von 120° und demonstriert damit die starke Hydrophobisierung der Oberfläche des Edelstahlblechs.
Beispiel 2
Anstelle eines Edelstahlblechs vom Typ 1.4571 wurde ein Edelstahlblech vom Typ 1.4301 wie in Beispiel 1 behandelt. Auch andere Typen von Edelstahlblech können derart behandelt werden .
Beispiel 3
Anstelle eines Edelstahlblechs wurden metallische Gegenstände aus Aluminium, Kupfer und Titan wie in Beispiel 1 behandelt. Auch Gegenstände aus anderen Metallen sowie aus Legierungen können derart behandelt werden. Beispiel 4
Anstelle von Octadecylphosphonsäure wurden Hexylphosphonsäure und Decylphosphonsäure wie in den Beispielen 1 bis 3 beschrieben verwendet.
Beispiel 5
Anstelle von Phosphonsäuren wurden Trichlorosilylverbindungen wie in den Beispielen 1 bis 3 beschrieben verwendet. In diesen Fällen wurde wasserfreies Toluol als Lösemittel verwendet und in einer Inertatmosphäre, in diesem Fall unter Stickstoff oder Argon, gearbeitet.
Figur 2 zeigt eine Graphik, in der die auf einer Edelstahloberfläche gemessenen Kontaktwinkel zusammengestellt sind. Dabei wurden die Moleküllänge (6 bis 18 C-Atome; Hexyl- , Decyl-, Octadecylreste) , die Ankergruppe (Phosphonsäure, Trichlorosilylrest) sowie das Medium zur Messung des Kontaktwinkels (Wasser, Hexadecan, Ethylenglycol, Dimethylsulfoxid) variiert. Es zeigt sich, dass Moleküle mit Phosphonsäureanker die dichtesten selbstorganisierenden Monolagen bilden. Im Fall des Trichlorosilylankers liefert Octadecyltrichlorosilan, d.h. das längste Molekül im Test, nur wenig schlechtere Kontaktwinkel als die Moleküle mit den Phosphonsäureankern . Dies lässt den Schluss zu, dass Octadecylphosphonsäure eines der besonders bevorzugten Materialien darstellt.
Beispiel 6
Um die isolierenden Eigenschaften der Monolage zu evaluieren, wurden in einem Cyclovoltametrieexperiment die elektrochemischen Eigenschaften bestimmt. Ein gemäß Beispiel 1 behandeltes Edelstahlblech sowie ein unbehandeltes Edelstahlblech bildeten die Elektroden. Ein Platinblech diente als Gegenelektrode, eine Silber/Silberchloridelektrode als Referenzelektrode. Als Elektrolyt diente eine IM Na2SÜ4- Lösung, der ImM K3[Fe(CN)6] als Redoxindikator zugesetzt wurde. Es wurde bei einem Potentialvorschub von 50 mV/s gemessen .
Figur 3 zeigt klar erkennbar die Reduktion bzw. Oxidation des Redoxindikators mit einem unbehandelten Blech als Elektrode. Beim behandelten Edelstahlblech ist die Redoxaktivität fast vollständig unterbunden. Im Elektrolyten befindet sich keine Octadecylphosphonsäure, so dass eventuell auftretende Defekte nicht ausheilen können.
Beispiel 7
In einem weiteren Cyclovoltametrieexperiment wurden gemäß Beispiel 1, 4 und 5 mit Hexylphosphonsäure, Octadecylphosphonsäure, Hexyltrichlorosilan sowie Octadecyltrichlorosilan behandelte Edelstahlbleche wie für Beispiel 7 beschrieben untersucht. Figur 4 zeigt, dass die isolierende und damit korrosionsschützende Wirkung von
Phosphonsäuren besser ist als von Silanen. Längere Ketten liefern bessere Ergebnisse als kürzere Ketten. Insgesamt betrachtet, sind jedoch alle Ergebnisse sehr gut.
Beispiel 8
Figur 5 zeigt die Ergebnisse von Kontaktwinkelmessungen, die mit gemäß Beispiel 1 behandelten Edelstahlblechen erhalten wurden. Dabei wurde die Eintauchzeit der Edelstahlbleche von 2 Sekunden bis 20 Stunden variiert. Es zeigte sich, dass die Beschichtung spontan erfolgt und sich die Kontaktwinkel im Rahmen statistischer Schwankungen bei verlängerter Beschichtungszeit faktisch nicht ändern.
Beispiel 9
Dem Primärkühlwasserkreislauf eines Kraftwerks wurde 0,1 bis 1 ppm Octadecylphosphonsäure bzw. sein Ammoniumsalz zudosiert. Dies kann über eine alkoholische Lösung auch aus flüssiger Phase erfolgen. Während des Betriebs wurde der Korrosionsschutz kontinuierlich nachdosiert. Dazu kann die Leitfähigkeit des Kühlwassers mit „geschützten" Edelstahlelektroden als Messgröße verwendet werden.
Beispiel 10
100 mg Octadecylphosphonsäure wurden in 100 ml Ethanol gelöst. Dieser Lösung wurden noch Duftstoff und für den optischen Eindruck 1 mg Methylenblau zugesetzt. Das Produkt wurde in eine Sprühflasche gefüllt und war damit fertig zur Anwendung. Hierbei sprüht man die Oberfläche chirurgischer Instrumente ein und lässt das Lösemittel verdunsten. Optional kann die Oberfläche mit Wasser abgespült und mit einem weichen Tuch poliert werden.
Beispiel 11
Anstelle von Ethanol in Beispiel 10 wurde aus Kostengründen preisgünstigeres Isopropanol verwendet.
Beispiel 12
Um die Brennbarkeit der Produkte aus den Beispielen 10 und 11 herabzusetzen, wurden 100 mg Octadecylphosphonsäure in 30 ml Alkohol (Ethanol oder Isopropanol) gelöst und anschließend 70 ml Wasser zugesetzt.
Beispiel 13
Zur Herabsetzung der Kosten wurden 50 mg
Octadecylphosphonsäure in 100 ml eines der in den Beispielen 10 bis 12 genannten Lösemittels gelöst.
Beispiel 14 Anstelle der Lösemittel aus den Beispielen 12 und 13 wurden 100 mg Octadecylphosphonsäure in 100ml eines Standarddesinfektionsmittels gelöst .
Beispiel 15
Die Beispiele 10 bis 14 wurden mit Salzen der Octadecylphosphonsäure (Ammonium-, Natrium- und Kaliumsalze) durchgeführt. Es können auch andere Salze der Octadecylphosphonsäure verwendet werden.
Beispiel 15
Ein Pflege-Tab für Spülmaschinen und Waschmaschinen wurde wie folgt hergestellt: In 3 g Natriumcarbonat als Füllmaterial wurden 100 mg Octadecylphosphonsäure verrührt und verpresst. Das Pflege-Tab wurde in Kurzspülgängen der Spülmaschine bzw. Waschmaschine appliziert.
Beispiel 16
Standard-Spülmaschinen-Tabs wurden 10 mg
Octadecylphosphonsäure zugesetzt. Die Applikation erfolgt während des normalen Wasch- und Spülvorgangs.
Beispiel 17
Ein Schutz-Tab zur Reinigung chirurgischer Instrumente wurde wie folgt hergestellt: In 3 g Natriumcarbonat als Füllmaterial wurden 100 mg Octadecylphosphonsäure verrührt und verpresst.
Beispiel 18
Zur Herstellung einer erfindungsgemäßen Lösung wurden
Standard-Reinigungs-Tabs für chirurgische Instrumnete 10 mg Octadecylphosphonsäure zugesetzt. Die Applikation erfolgt während des normalen Reinigungsvorgangs.

Claims

Patentansprüche
1. Zusatz für Flüssigkeiten, dadurch gekennzeichnet, dass der Zusatz in Form mindestens einer Verbindung vorliegt, die als lineares Molekül ausgebildet ist, welches eine Molekülkette und eine Ankergruppe aufweist, die an eine metallische Oberfläche bindet und eine korrosionsschützende monomolekulare Schicht bildet.
2. Zusatz nach Anspruch 1, dadurch gekennzeichnet, dass die mindestens eine Verbindung so aufgebaut ist, dass sie eine monomolekulare Schicht mit einer Schichtdicke von 0,5 bis 5,0 nm bildet.
3. Zusatz nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die mindestens eine Verbindung eine Ankergruppe enthält, die aus der Gruppe umfassend substituierte und unsubstituierte Silangruppen, substituierte und unsubstituierte Carbonylgruppen, substituierte und unsubstituierte Phosphanoxidgruppen, substituierte und unsubstituierte SuIfongruppen, substituierte oder unsubstituierte Hydroxamsäuregruppen und deren Derivate, substituierte oder unsubstituierte Oximgruppen, substituierte oder unsubstituierte Isonitrilgruppen sowie substituierte oder unsubstituierte Phosphine ausgewählt sind.
4. Zusatz nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die mindestens eine Verbindung eine Molekülkette enthält, die aus der Gruppe umfassend Alkylketten oder fluorierte Alkylketten mit 2 bis 20, Kohlenstoffatomen, Polyethylenglycolketten und Polyethylendiaminketten ausgewählt ist.
5. Zusatz nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die mindestens eine Verbindung eine
Molekülkette enthält, die an ihrem freien Ende eine Kopfgruppe trägt.
6. Zusatz nach Anspruch 5, dadurch gekennzeichnet, dass die Kopfgruppe aus der Gruppe umfassend substituierte oder unsubstituierte, cyclische oder heterocyclische Reste ausgewählt ist.
7. Zusatz nach Anspruch 6, dadurch gekennzeichnet, dass die Kopfgruppe mindestens eine Arylgruppe enthält.
8. Zusatz nach Anspruch 6 oder 7, dadurch gekennzeichnet dass die Kopfgruppe mindestens einen Substituenten aufweist, der aus der Gruppe umfassend gesättigte und ungesättigte, ggf. Halogene, Schwefel, Stickstoff und/oder Phosphor enthaltende Alkylgruppen ausgewählt ist.
9. Zusatz nach Anspruch 8, dadurch gekennzeichnet, dass der mindestens eine Substituent aus der Gruppe umfassend Phenoxygruppen, Furane, Thiophene, Pyrrole, Oxazole, Thiazole, Imidazole, Isoxazole, Isothiazole, Pyrazole, Benzo [b] furane, Benzo [b] thiophene, Indole, 2H-Isoindole, Benzothiazole, Pyridine, Pyrazine, Pyrimidine, Pyryliumreste, α-Pyrone, γ-Pyrone, Chinoline, Isochinoline und Bipyridine sowie alle ihre Derivate ausgewählt ist.
10. Zusatz nach einem der Ansprüche 5 bis 9, dadurch gekennzeichnet, dass die Kopfgruppe direkt oder über einen der Reste O, N, P, C=C, C≡C mit der Molekülkette verknüpft ist.
11. Reinigungs- und/oder Pflegemittel zur Verwendung in Haushaltsgeräten, dadurch gekennzeichnet, dass es einen
Zusatz nach einem der Ansprüche 1 bis 10 enthält.
12. Reinigungs- und/oder Pflegemittel nach Anspruch 11, dadurch gekennzeichnet, dass es den Zusatz in gelöster Form enthält.
13. Reinigungs- und/oder Pflegemittel nach Anspruch 12, dadurch gekennzeichnet, dass ein Lösemittel aus der Gruppe umfassend Alkohole, cyclische Ether, Dimethylformamid, Dimethylsulfoxid, N-Methylpyrrolidinon und Cyclohexanon vorhanden ist.
14. Reinigungs- und/oder Pflegemittel nach Anspruch 11, dadurch gekennzeichnet, dass es den Zusatz in fester Form enthält .
15. Reinigungs- und Pflegemittel nach einem der Ansprüche 11 bis 14, dadurch gekennzeichnet, dass es den Zusatz in einer
Konzentration von lppm bis lOmmol enthält.
16. Lösung für die Reinigung und/oder Desinfektion von chirurgischen Instrumenten aus einem metallischen Werkstoff, dadurch gekennzeichnet, dass die Lösung einen Zusatz nach einem der Ansprüche 1 bis 10 enthält.
17. Lösung nach Anspruch 16, dadurch gekennzeichnet, dass der Zusatz in einer Konzentration von lppm bis lOmmol enthalten ist.
18. Lösung nach einem der Ansprüche 16 oder 17, dadurch gekennzeichnet, dass sie mindestens ein Reinigungs- und/oder Desinfektionsmittel enthält.
19. Chirurgisches Instrument aus einem metallischen Werkstoff, auf dessen Oberfläche zumindest teilweise eine monomolekulare Schicht ausgebildet ist.
20. Verfahren zum Korrosionsschutz in Kühlwasserkreisläufen von Kraftwerken, dadurch gekennzeichnet, dass dem Kühlwasserkreislauf ein Zusatz nach einem der Ansprüche 1 bis 10 zugesetzt wird.
21. Verfahren nach Anspruch 20, dadurch gekennzeichnet, dass der Zusatz in einer Konzentration von mindestens 0,05 ppm dem Kühlwasserkreislauf zugesetzt wird.
22. Verfahren nach Anspruch 20 oder 21, dadurch gekennzeichnet, dass der Zusatz während der Einfahrphase des Kraftwerks durch Injektion in den Kühlwasserkreislauf zugesetzt wird.
23. Verfahren nach einem der Ansprüche 20 bis 22, dadurch gekennzeichnet, dass der Zusatz in Form einer verdünnten 0, 001-30%igen Lösung zugesetzt wird.
24. Verfahren nach Anspruch 23, dadurch gekennzeichnet, dass der Zusatz in einem Alkohol, einem cyclische Ether und/oder in Dioxan und/oder in Dimethylformamid und/oder in Dimethylsulfoxid und/oder in N-Methylpyrrolidinon und/oder in Cyclohexanon gelöst wird.
25. Verfahren nach einem der Ansprüche 20 bis 24, dadurch gekennzeichnet, dass der Zusatz während des Betriebs des Kraftwerks kontinuierlich nachdosiert wird.
PCT/EP2008/057988 2007-06-28 2008-06-24 Korrosionsschützender zusatz für flüssigkeiten WO2009000820A2 (de)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
DE102007029837.6 2007-06-28
DE102007029836.8 2007-06-28
DE102007029837A DE102007029837A1 (de) 2007-06-28 2007-06-28 Zusatz für ein Reinigungs- und/oder Pflegemittel zur Verwendung in Haushaltsgeräten sowie derartiges Reinigungs- und/oder Pflegemittel
DE102007029856 2007-06-28
DE102007029836A DE102007029836A1 (de) 2007-06-28 2007-06-28 Zusatz für Kühlwasserkreisläufe in Kraftwerken sowie Verfahren zum Korrisionsschutz in Kühlwasserkreisläufen von Kraftwerken
DE102007029856.2 2007-06-28

Publications (2)

Publication Number Publication Date
WO2009000820A2 true WO2009000820A2 (de) 2008-12-31
WO2009000820A3 WO2009000820A3 (de) 2009-06-18

Family

ID=39730696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/057988 WO2009000820A2 (de) 2007-06-28 2008-06-24 Korrosionsschützender zusatz für flüssigkeiten

Country Status (1)

Country Link
WO (1) WO2009000820A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016046401A1 (fr) * 2014-09-26 2016-03-31 Aperam Traitement de surface de substrats métalliques

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3351558A (en) * 1966-09-06 1967-11-07 Procter & Gamble Detergent composition containing organic phosphonate corrosion inhibitors
US5824630A (en) * 1993-07-16 1998-10-20 The Procter & Gamble Company Machine dishwashing composition containing oxygen bleach and paraffin oil and nitrogen compound silver tarnishing inhibitors
WO2004114371A2 (de) * 2003-06-20 2004-12-29 Infineon Technologies Ag Verbindung zur bildung einer selbstorganisierenden monolage, schichtstruktur, halbleiterbauelement mit einer schichtstruktur und verfahren zur herstellung einer schichtstruktur
WO2006001667A1 (en) * 2004-06-25 2006-01-05 Sk Chemicals Co., Ltd. Multifunctional water treating composition and water-treating method using the same
DE102004057760A1 (de) * 2004-11-30 2006-06-08 Infineon Technologies Ag Methode zur Synthese von langkettigen Phosphonsäurederivaten und Thiolderivaten
WO2006086875A1 (en) * 2005-02-15 2006-08-24 Scican Anti-corrosion detergent compositions and use of same in cleaning dental and medical instruments
EP1709978A1 (de) * 2005-04-06 2006-10-11 Chemische Fabrik Dr. Weigert GmbH & Co. KG. Reinigung und Desinfektion chirurgischer und medizinischer Instrumente und Apparate

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3351558A (en) * 1966-09-06 1967-11-07 Procter & Gamble Detergent composition containing organic phosphonate corrosion inhibitors
US5824630A (en) * 1993-07-16 1998-10-20 The Procter & Gamble Company Machine dishwashing composition containing oxygen bleach and paraffin oil and nitrogen compound silver tarnishing inhibitors
WO2004114371A2 (de) * 2003-06-20 2004-12-29 Infineon Technologies Ag Verbindung zur bildung einer selbstorganisierenden monolage, schichtstruktur, halbleiterbauelement mit einer schichtstruktur und verfahren zur herstellung einer schichtstruktur
WO2006001667A1 (en) * 2004-06-25 2006-01-05 Sk Chemicals Co., Ltd. Multifunctional water treating composition and water-treating method using the same
DE102004057760A1 (de) * 2004-11-30 2006-06-08 Infineon Technologies Ag Methode zur Synthese von langkettigen Phosphonsäurederivaten und Thiolderivaten
WO2006086875A1 (en) * 2005-02-15 2006-08-24 Scican Anti-corrosion detergent compositions and use of same in cleaning dental and medical instruments
EP1709978A1 (de) * 2005-04-06 2006-10-11 Chemische Fabrik Dr. Weigert GmbH & Co. KG. Reinigung und Desinfektion chirurgischer und medizinischer Instrumente und Apparate

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
LIU X ET AL: "Protection of iron corrosion by stearic acid and stearic imidazoline self-assembled monolayers" APPLIED SURFACE SCIENCE 20061115 ELSEVIER NL, Bd. 253, Nr. 2, 15. November 2006 (2006-11-15), Seiten 814-820, XP002496039 *
OBRECHT M F ET AL: "Alkyl amines as film formers in condensing steam systems" INDUS ENG CHEM -- PRODUCT RESEARCH DEVELOPMENT; INDUSTRIAL AND ENGINEERING CHEMISTRY -- PRODUCT RESEARCH AND DEVELOPMENT JUNE 1963 EASTON, PA, UNITED STATES, Bd. 2, Nr. 2, Juni 1963 (1963-06), Seiten 167-172, XP002520062 *
RAMACHANDRAN, SUNDER ET AL: "Self-Assembled Monolayer Mechanism for Corrosion Inhibition of Iron by Imidazolines" LANGMUIR , 12(26), 6419-6428 CODEN: LANGD5; ISSN: 0743-7463, 1996, XP002496040 *
XIA Y ET AL: "SOFT LITHOGRAPHY" ANGEWANDTE CHEMIE. INTERNATIONAL EDITION, WILEY VCH VERLAG, WEINHEIM, Bd. 37, 1. Januar 1998 (1998-01-01), Seiten 551-575, XP000985399 ISSN: 1433-7851 in der Anmeldung erwähnt *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016046401A1 (fr) * 2014-09-26 2016-03-31 Aperam Traitement de surface de substrats métalliques
FR3026412A1 (fr) * 2014-09-26 2016-04-01 Aperam Traitement de surface de substrats metalliques
CN107109657A (zh) * 2014-09-26 2017-08-29 艾普伦 金属基材的表面处理
US10196744B2 (en) 2014-09-26 2019-02-05 Aperam Surface treatment of metal substrates
CN107109657B (zh) * 2014-09-26 2019-08-30 艾普伦 金属基材的表面处理

Also Published As

Publication number Publication date
WO2009000820A3 (de) 2009-06-18

Similar Documents

Publication Publication Date Title
DE69805697T3 (de) Desinfizierende und fungizide Zusammensetzung auf der Basis von Peressigsäure und einem Aminoxid
Swaroop et al. Azadirachta indica leaves extract as inhibitor for microbial corrosion of copper by Arthrobacter sulfureus in neutral pH conditions—a remedy to blue green water problem
DE602004006156T2 (de) Verfahren zur ausbildung eines polymerfilms auf einer elektrisch leitenden oder halbleitenden fläche durch elektropfropfen, erhaltene flächen und anwendungen davon
EP0656025B1 (de) Lösung zur beschichtung von nichtleitern mit leitfähigen polymeren und verfahren zu deren metallisierung
WO1995000678A1 (de) Verfahren zur herstellung korrosionsgeschützter metallischer werkstoffe und damit erhältliche werkstoffe
DE1815148C3 (de) Verfahren zum Verbinden einer wenigstens 50 Gewichtsprozent Kupfer enthaltenden Oberfläche mit einem organischen Material
DE60124153T2 (de) Oberflächenmodifiziertes metallisches Material, Verfahren zur Herstellung und Verwendung des Materials
EP0482328B1 (de) Flüssige 1,2-Benzisothiazolin-3-on-Zubereitung
DE102011002837A1 (de) Mehrstufige Vorbehandlung von Weißblech vor einer Lackierung
WO2009000820A2 (de) Korrosionsschützender zusatz für flüssigkeiten
EP3850072A1 (de) Silberschutzmittel
EP0492487B1 (de) Mittel zum zeitweiligen Schutz von blanken Silber- und Kupferoberflächen gegen Anlaufen und Verfahren zu seiner Anwendung
WO1994005766A1 (de) Reinigungsmittel zum reinigen von gedruckten schaltungen und elektronischen bauteilen, verfahren zu seiner herstellung und seine verwendung
JP2009143842A (ja) 有機スルホン酸のアルカリ金属塩の処理方法、金属イオン濃度を低減した有機スルホン酸及び有機スルホン酸アンモニウム塩型界面活性剤
EP2598436B1 (de) Verwendung von hydroxypyridonen oder deren salzen zur stabilisierung von wasserstoffperoxid oder wasserstoffperoxid freisetzenden substanzen
DE102007029836A1 (de) Zusatz für Kühlwasserkreisläufe in Kraftwerken sowie Verfahren zum Korrisionsschutz in Kühlwasserkreisläufen von Kraftwerken
EP0395902A2 (de) Flüssiges Desinfektionsmittelkonzentrat
DE102019219615A1 (de) Herstellungsverfahren für Edelmetall-Elektroden
DE102007029837A1 (de) Zusatz für ein Reinigungs- und/oder Pflegemittel zur Verwendung in Haushaltsgeräten sowie derartiges Reinigungs- und/oder Pflegemittel
DE2611789B2 (de) Homogene Phosphatierungslösung und Verfahren zur Bildung eines wasserunlöslichen Phosphatüberzugs auf Metallgegenständen >
EP0994178A1 (de) Reinigungsmittel und deren Verwendung
DE1694736B2 (de) Verfahren zum antistatischen ausruesten von kunststoff-formteilen
EP1969157A1 (de) Passivierungs- und schmiermittel für gold-, silber- und kupferoberflächen und verfahren zu seiner anwendung
DE102014203412A1 (de) Verfahren und Formulierung zur gleichzeitigen Entschichtung und Passivierung von Edelstahloberflächen
DE2527701A1 (de) Jodophor-loesung (b)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08761315

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08761315

Country of ref document: EP

Kind code of ref document: A2