WO2008122213A1 - Dispositif et procédé de commande de moteurs - Google Patents

Dispositif et procédé de commande de moteurs Download PDF

Info

Publication number
WO2008122213A1
WO2008122213A1 PCT/CN2008/000721 CN2008000721W WO2008122213A1 WO 2008122213 A1 WO2008122213 A1 WO 2008122213A1 CN 2008000721 W CN2008000721 W CN 2008000721W WO 2008122213 A1 WO2008122213 A1 WO 2008122213A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
parameter
pulse
engine
dynamic
Prior art date
Application number
PCT/CN2008/000721
Other languages
English (en)
French (fr)
Inventor
Hua Zhao
Xiaoqun Gao
Chunyong Gong
Original Assignee
Hua Zhao
Xiaoqun Gao
Chunyong Gong
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CNU2007203110507U external-priority patent/CN201125793Y/zh
Application filed by Hua Zhao, Xiaoqun Gao, Chunyong Gong filed Critical Hua Zhao
Priority to US12/594,754 priority Critical patent/US8452522B2/en
Priority to EP08748388A priority patent/EP2148256A4/en
Priority to JP2010502407A priority patent/JP2010523886A/ja
Publication of WO2008122213A1 publication Critical patent/WO2008122213A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2409Addressing techniques specially adapted therefor
    • F02D41/2422Selective use of one or more tables
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2477Methods of calibrating or learning characterised by the method used for learning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0205Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric not using a model or a simulator of the controlled system
    • G05B13/024Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric not using a model or a simulator of the controlled system in which a parameter or coefficient is automatically adjusted to optimise the performance
    • G05B13/0245Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric not using a model or a simulator of the controlled system in which a parameter or coefficient is automatically adjusted to optimise the performance not using a perturbation signal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2432Methods of calibration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2454Learning of the air-fuel ratio control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/26Pc applications
    • G05B2219/2623Combustion motor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the invention relates to a control method and a control device for an engine, and belongs to the technical field of gasoline engine control. Background technique
  • the control of the gasoline engine for vehicles is mainly divided into ignition control and injector control.
  • control unit checks the control pulse spectrum parameters according to the basic control conditions, and corrects and outputs the control pulse spectrum parameters according to the engine state conditions reflected by each sensor, and controls each actuator to control the target.
  • the control is divided into open loop control and closed loop control.
  • the open-loop control of the ignition timing of the engine is mainly based on the engine load signal and the engine speed signal and the crankshaft position signal determined by the intake flow signal and the throttle signal; the closed-loop control uses the signal feedback of the knock sensor to adjust the ignition system.
  • the control of the injector is mainly to detect the intake air flow, and the injection time is determined by the intake flow signal and other sensor signals according to different working conditions to determine the fuel injection amount; the control of the fuel injection amount is actually controlling the air-fuel ratio.
  • the closed-loop control detects the oxygen content in the exhaust gas through the oxygen sensor, thereby measuring the lean air-fuel ratio in the combustion chamber of the engine, and feeding back the signal to the central controller ECU for comparison with the set target air-fuel ratio.
  • the error signal is obtained, and the fuel injection pulse width is determined to keep the air-fuel ratio near the set target value.
  • the current air-fuel ratio closed-loop control mostly controls the air-fuel ratio within a narrow range around the theoretical air-fuel ratio of 14.7; this is because the three-way catalytic device is used to meet the emission requirements at the expense of part of economy and power. of.
  • the closed-loop control is released and the open-loop control (such as engine starting, downtime, idle speed, heavy load, acceleration and deceleration) is entered.
  • engine controls include idle speed control, EGR control (exhaust gas recirculation system), intake control, etc.
  • the intake control is divided into VTEC control (variable valve timing system), turbocharged control, variable intake manifold length and Variable intake manifold length control, resonant cavity intake inertia control, etc.
  • Engine idle speed control is closed loop control of intake air volume
  • exhaust gas recirculation system EGR control is open loop control, the amount of participation control is engine water temperature, intake air temperature, speed and throttle opening
  • VTEC control in intake control system is mechanical The control system, which functions to change the fixed valve stroke to a variable stroke that changes as the engine speed changes
  • the turbocharger control is a variable section control for the intake
  • Control and cavity intake inertia control The air wave inertia boost control using the intake pressure wave characteristics.
  • the technical problem to be solved by the present invention is: to provide a strategy for adaptively generating dynamic pulse spectrum parameters according to changes in engine related characteristics and changes in engine use conditions in the course of current problems in the control mode of a gasoline engine, Further, a method and apparatus for controlling an engine using combined pulse parameters combined with original fundamental pulse parameters are provided.
  • an embodiment of the present invention provides an engine control method, including the following steps:
  • the control unit determines a current working condition according to basic operating conditions and characteristic signal values of each sensor, and generates a current working condition according to the basic pulse parameter.
  • the desired target value of the different engines of the lower engine is controlled according to the correction strategy to control different targets of the engine; during the engine control process, the control unit also performs the following steps:
  • Step S1 adaptively learning the actual target value fed back by different targets of the engine, and performing optimization comparison between the adaptive learning parameter and the basic pulse parameter under the same working condition and the same condition according to the dynamic pulse generation strategy.
  • the basic pulse parameter is maintained if the condition is not satisfied; if the condition is met, the dynamic pulse parameter is generated;
  • Step S2 The basic pulse spectrum parameter and the generated dynamic pulse spectrum parameter are combined to form a pulse spectrum parameter according to a dynamic pulse spectrum combination strategy, and the basic pulse spectrum parameter is replaced by the combined pulse spectrum parameter.
  • Working conditions include medium and small load conditions, heavy load conditions, starting conditions, acceleration and deceleration conditions, and idle conditions.
  • Combined pulse parameters include engine ignition combined pulse parameters, engine fuel injection combination pulse parameters, engine intake The combined pulse parameter, the engine idle speed combined pulse parameter, the EGR rate combined pulse parameter, and the engine ignition closed angle combined pulse parameter.
  • the basic pulse parameters include the pulse spectrum parameters calibrated by the gantry and the pulse spectrum parameters optimized by the gantry and road parameters.
  • the step of correcting the basic pulse parameter according to the correction strategy comprises: correcting the basic pulse parameter by using characteristic signal values from respective sensors reflecting engine operating conditions; using a new characteristic signal processing method of each relevant sensor
  • the direct measurement quantity is inferred and inferred by the soft measurement method to obtain the soft measurement characteristic signal value to correct the basic pulse parameter; and the adaptive learning is performed by performing weight matching in the process of correcting the deviation between the desired target value and the actual target value.
  • the characteristic signal values of the respective sensors are corrected for the basic pulse parameter; wherein the characteristic signals of the relevant sensors, including the sensor signals on the engine and the characteristic signals inferred by the soft measurement method, include: the crankshaft of the engine Position and speed signals, top dead center signal, torque signal, fuel injection pulse width signal, throttle position signal, oxygen sensor signal, fuel temperature signal, oil temperature signal, ambient pressure signal, power supply loop voltage signal, water temperature sensor signal, Exhaust gas temperature Number, the intake pressure signal, the signal-fuel ratio, the knock signal, conduction angle of the flame signal and the knock signal in several cycles probability distribution of selected frequencies, flame conduction angle signal exceeds a time threshold probability.
  • Step S1 includes: learning and generating a series of adaptive parameters according to changes in operating conditions and usage conditions and changes in engine self-factors, and accumulating the adaptive parameters according to working conditions and conditions, and performing empirical clustering;
  • the dynamic spectrum generation strategy is used to compare the same working conditions, the basic spectral parameters under the same conditions and the temporary adaptive learning parameters according to the optimal conditions.
  • the adaptive learning of temporary storage When the parameter conforms to the dynamic pulse generation strategy, the dynamic pulse spectrum parameters under the condition of the working condition are formed, and the learning is continuously learned in the subsequent control, and the above process is repeated and refreshed continuously.
  • the step of generating a dynamic pulse spectrum parameter according to the dynamic pulse generation strategy includes: - a, determining a dynamic pulse spectrum generation region: a basic pulse parameter of a certain control target under the same working condition, the same condition, and a worker characterizing the moment
  • the characteristic signal values related to the condition and condition are data nodes, and the basic correction pulse parameter y of the node is taken as the central value, and the deviation between the desired control target value and the actual control target value is taken as the basic reference radius, and the dynamic pulse generation region is found. (y-Ay, y+ Ay) ;
  • the dynamic spectrum generation region after approximation, so Complex, constantly approaching, until the smallest region min(y—Ay, y+ Ay) appears, the region is the optimization region; c.
  • Refreshing the dynamic spectrum During the control process, the control target is also changed due to the change of the engine's own characteristics and the use environment.
  • the data nodes formed by the data nodes are determined when they are in the process of ad.
  • a new dynamic pulse spectrum parameter is newly generated, and is determined by empirical clustering, and the original data node address unit is refreshed;
  • Step S2 includes:
  • the dynamic pulse spectrum parameters are all or partially set to the engine combination pulse parameter according to the rate of change of the relevant characteristic signal values, and Shielding corresponding basic pulse parameter; wherein, the step of setting the dynamic pulse parameter in whole or in part according to a rate of change of the relevant characteristic signal values to the engine combined pulse parameter comprises: when determined to use the dynamic pulse parameter When controlling the target, when the rate of change of the relevant characteristic signal values cannot be stabilized within the allowable range, the dynamic pulse spectrum parameter is discarded, and the basic pulse parameter under the working condition and the condition is set as the engine combined pulse parameter and is re-established. Generating dynamic pulse parameters;
  • the change rate of the different characteristic signal values is calculated according to the previous cycle value and the current cycle value, and the change rate is compared, and the small arbitration is determined, and the combination is determined.
  • the pulse spectrum parameter, the combined pulse parameter includes all or part of the dynamic pulse parameter.
  • a control device for an engine includes a microprocessor and a power detection and voltage stabilization circuit respectively connected to the microprocessor, a communication interface CAN, LIN, and an external diagnosis circuit,
  • the high-power drive circuit, the switch drive circuit and the drive circuit, and the analog signal from each sensor are connected to the microprocessor through the input conditioning circuit, the analog signal channel, and the other part through the input conditioning buffer circuit,
  • the digital signal channel is connected to the microprocessor, and the digital signal from each sensor is connected to the microprocessor through the input conditioning buffer circuit and the digital signal channel; wherein the microprocessor determines the current working condition according to the basic operating conditions and the analog signal and the digital signal.
  • a cranial joint controller CMAC and a ferroelectric memory The ferroelectric memory is interconnected with the cerebellar joint controller CMAC, and the cerebellar joint controller CMAC is interconnected with the microprocessor.
  • the cranial joint controller CMAC is used for adaptive learning of the actual target value of the engine different target feedback during the control process, and is used.
  • Optimizing the adaptive learning parameter and the basic pulse parameter according to a dynamic pulse generation strategy generating a new dynamic pulse parameter and storing it in the ferroelectric memory if the condition is satisfied, and the micro
  • the processor performs the basic according to a dynamic pulse combination strategy
  • the pulse parameters and the dynamic pulse parameters stored in the ferroelectric memory constitute a combined pulse parameter and the basic pulse parameters are replaced with the combined pulse parameters.
  • the analog signal includes an intake pressure or intake flow signal, a throttle position signal, an atmospheric pressure signal, an intake air temperature signal, a cooling water temperature signal, an oxygen sensor signal, an ambient temperature signal, an accelerator pedal signal, and a system voltage change signal;
  • the digital signals include a crankshaft position signal, an injection pulse width signal, a vehicle speed signal, a knock signal, an air conditioning request signal, a direction assist request signal, a neutral signal, and a headlight switch signal.
  • the control system determines the change of the working condition according to the characteristic signal change rate of each sensor related to the engine, and gives a predetermined expected value predictive control to the control target with excessive deviation of the partial delay.
  • the predicted control target value is the data node, and the cerebellar joint controller CMAC is used. Adaptive adjustment and learning capabilities reduce or eliminate errors caused by signal lags in all aspects.
  • the method for combining the pulse spectrum to the engine control of the present invention has the beneficial effects that: the controlled system parameters are changed and unknown due to the combined pulse parameter parameter control method synthesized by the adaptive learning method.
  • the effect of the change on the engine has been corrected to improve the accuracy and speed of the control. It also utilizes the planning and generation of dynamic pulse spectrum parameters to improve the control system's inability to respond when the engine's own conditions change.
  • the strategy predictive control that generates dynamic pulse spectrum parameters through adaptive learning control, the most likely correction of various time-delay effect bands The resulting control lag improves the real-time control.
  • FIG. 1 is a circuit block schematic diagram of a control device for an engine provided by the present invention
  • FIG. 2 is a schematic diagram of a circuit block based on the circuit shown in FIG. Schematic diagram of the principle of adapting to learning
  • FIG. 3A Control flow chart of CMAC of cerebellar joint controller
  • 3B is a general flow chart of an engine control method provided by the present invention.
  • FIG. 4 is a schematic diagram showing an embodiment of applying the fuel injection combination pulse parameter to the engine fuel injection pulse width control in the method shown in FIG. 3;
  • FIG. 5 is a schematic diagram showing an embodiment of the engine ignition timing control using the ignition combination pulse parameter in the method shown in FIG. 3;
  • FIG. 6 is an embodiment of an embodiment of the method shown in FIG. 3, in which intake manifold combined pulse parameters are used for engine intake control;
  • FIG. 7 is a schematic diagram of an embodiment of applying the idle speed control combined pulse spectrum parameter to the engine idle speed control in the method shown in FIG. 3;
  • FIG. 8 is a schematic diagram of an embodiment of the engine EGR rate control using the EGR rate combined pulse parameter in the method shown in FIG. 3;
  • Fig. 9 is a circuit diagram of an embodiment relating to a sensor in an engine control device according to the present invention
  • Fig. 10 is a circuit diagram of an embodiment relating to driving in an engine control device provided by the present invention.
  • the reference numerals are as follows:
  • the method and device for controlling an engine by combining pulse spectrum proposed by the present invention realizes control function of an engine according to a control strategy by a conventional controller (central controller ECU) and a cranial joint controller CMAC; wherein the control strategy includes a correction strategy and a dynamic Pulse generation strategy and dynamic pulse combination strategy, control functions include fuel injection control, ignition control (ignition advance angle and ignition closing angle), intake control, idle speed control, emission control (canister evaporation, exhaust gas recirculation system EGR) And auxiliary control (electrical load, direction assist, oil pump, air conditioning, etc.).
  • a conventional controller central controller ECU
  • CMAC central controller
  • control strategy includes a correction strategy and a dynamic Pulse generation strategy and dynamic pulse combination strategy
  • control functions include fuel injection control, ignition control (ignition advance angle and ignition closing angle), intake control, idle speed control, emission control (canister evaporation, exhaust gas recirculation system EGR) And auxiliary control (electrical load, direction assist, oil pump, air conditioning, etc.).
  • the engine control method comprises the following steps: The control unit determines the current working condition according to the basic operating conditions and the characteristic signal values of the sensors, and generates a target target value of the different targets of the engine under the current working condition according to the basic pulse parameter, according to After the correction strategy is corrected, the different targets of the engine are controlled; wherein, during the engine control process, the control unit also performs the following steps:
  • Step S1 adaptively learning the actual target value of the engine different target feedback, according to the dynamic pulse spectrum generation strategy, the optimal learning condition and the basic pulse parameter under the same condition are compared and optimized, if not satisfied The condition maintains the basic pulse parameter; if the condition is met, the dynamic pulse parameter is generated;
  • Step S2 The basic pulse spectrum parameter and the generated dynamic pulse spectrum parameter are combined to form a pulse spectrum parameter according to a dynamic pulse spectrum combination strategy, and the basic pulse spectrum parameter is replaced by the combined pulse spectrum parameter.
  • the working conditions include medium and small load conditions, heavy load conditions, starting conditions, acceleration and deceleration conditions, and idle conditions.
  • the combined pulse spectrum parameters include engine ignition combination pulse parameter, engine fuel injection combination pulse parameter, engine intake combined pulse parameter, engine idle speed combined pulse parameter, EGR rate combined pulse parameter, and engine ignition closed angle combination pulse. Spectral parameters.
  • the basic pulse parameters include the pulse spectrum parameters calibrated by the gantry and the pulse spectrum parameters optimized by the gantry and road parameters.
  • the control device of the engine comprises: a microprocessor and a power detection and voltage stabilization circuit respectively connected to the microprocessor, a communication interface CAN, a LIN and an external diagnosis circuit, a high power drive circuit, and a switch drive circuit. And drive The moving circuit, 'and the analog signal from each sensor is connected to the microprocessor through the input conditioning circuit and the analog signal channel. The other part of the analog signal is connected to the microprocessor through the input conditioning buffer circuit and the digital signal channel.
  • the digital signal is connected to the microprocessor through the input conditioning buffer circuit and the digital signal channel; wherein, the microprocessor determines the current working condition according to the basic operating conditions and the analog signal and the digital signal, and generates different engines according to the basic pulse parameter under the current working condition.
  • the target value of the target is controlled according to the revised strategy to control different targets of the engine.
  • cerebellar joint controller CMAC and ferroelectric memory
  • the ferroelectric memory is interconnected with the cerebellar joint controller CMAC
  • the cerebellar joint controller CMAC is interconnected with the microprocessor
  • the cerebellar joint controller CMAC is used in the control process Adaptive learning of actual target values fed back by different targets of the engine, and optimizing the adaptive learning parameters and basic pulse parameters according to a dynamic pulse generation strategy, and generating a new dynamic spectrum when the conditions are met
  • the parameter is stored in the ferroelectric memory
  • the microprocessor combines the basic pulse parameter and the dynamic pulse parameter stored in the ferroelectric memory into a combined pulse parameter according to a dynamic pulse combination strategy and adopts the combination
  • the pulse spectrum parameter replaces the basic pulse parameter.
  • the analog signal of the external sensor is input to the microprocessor through the input conditioning circuit; the processing of the analog signal by the input conditioning circuit is divided into two parts: part of the signal is modulated by the input conditioning circuit into a digital signal and input into the microprocessor via the digital signal channel. Another part of the input conditioning circuit inputs the signal directly into the microprocessor's internal AID port via the analog channel.
  • the analog signals mainly include: intake pressure or intake flow signal, throttle position signal, atmospheric pressure signal, intake air temperature signal, cooling water temperature signal, oxygen sensor signal, ambient temperature signal, accelerator pedal signal, system voltage change signal, etc.
  • the digital signal of the external sensor is converted into an input signal that the microprocessor can receive through the input conditioning buffer circuit; the function of the input conditioning buffer circuit is to process the amplitude, waveform and interference of the digital signal of the sensor, that is, the filtering process.
  • the digital signals mainly include: crankshaft position signal, fuel injection pulse width signal, vehicle speed signal, knock signal, air conditioning request signal, direction assist request signal, neutral signal, headlight switch signal, and the like.
  • the voltage signal is processed by the power supply detection and voltage stabilization circuit and then connected to the microprocessor.
  • the main functions of the power detection and regulation circuit are: providing regulated power to the system, providing operating power to the sensor, and providing power to the RAM.
  • the power supply detection and voltage stabilization circuit consists of a DC/DC converter, an overcurrent and overvoltage protector, a voltage change signal transmitter, and an anti-jamming circuit.
  • the communication interface circuit includes a fault diagnosis interface and an in-vehicle network interface.
  • the vehicle network interface includes a communication bus CAN-BUS and a communication bus LIN-BUS, and a general fault diagnosis standard OBD-II/iso-9141K line, and these buses are respectively connected to the instrument and the body control system. Etc; the signals of these systems are respectively passed through the network bus and its bus driver and microprocessor Keep information exchange.
  • the microprocessor consists of a 32-bit CPU core with built-in conventional controller control strategies and algorithms, various types of spectrum and other related control target data and communication bus processors.
  • the cranial joint controller CMAC is composed of another 32-bit microprocessor as the core and external circuit. It has built-in adaptive learning algorithm and control strategy. It forms the core of the control system together with the main microprocessor, accepts external signal changes, and adapts. Learn to cluster refresh dynamic spectrum parameters.
  • the ferroelectric memory backs up the basic pulse parameters of the system. After the adaptive learning is controlled, the part of the dynamic spectrum parameters that are determined to make the system work as required will be stored as empirical data.
  • the microprocessor determines that the basic pulse parameters are automatically written from the ferroelectric memory to the microprocessor when the system is out of control.
  • the high-power drive circuit uses a dedicated control driver chip and peripheral circuits to drive the injector, the ignition module, the servo motor of the intake system, and the electromagnetic width.
  • the switch drive circuit drives the idle valve, the intake resonant ejector switch, the fuel pump switch, the carbon canister electromagnetic wide switch,
  • ERG solenoid valve switch fault indication alarm switch, air conditioning power switch, high and low speed fan switch.
  • the drive circuit gives four alternate power control drives.
  • PID control strategies are defined to be performed in a conventional controller, which is part of the control device, and another part of the control device is called the cerebellar joint controller CMAC.
  • control method of the engine provided by the present invention can be implemented as shown in FIG. 2:
  • the microprocessor controls the different targets in accordance with the revised strategy.
  • the ignition timing control uses the combination of "2", ..., the nth
  • the control uses the "n” combination, etc., and each basic pulse parameter will give different target values corresponding to different working conditions.
  • the target value is due to various usage environments, conditions, transmission time lag, mechanism transmission time lag, characteristic difference, etc.
  • Deviation from the actual target signal feedback to the actual target, due to the characteristics of the sensor, the time lag of the signal transmission, the time lag of the signal processing process, etc.; also includes sudden changes in device characteristics caused by interference and interference; The existence of factors, etc., affects the real-time and accuracy of the control, and the pedestal calibration of the basic spectrum parameters that cannot be adjusted according to the local system makes the control system unable to accurately determine the control target.
  • the new optimized dynamic pulse spectrum parameters are continuously adaptively generated, so work one
  • the engine's basic pulse parameters have changed more or less in the period of time, that is, the engine is put into use at the same time and after the same working time, and the basic pulse parameters of the control target are also changed differently; this is This is caused by manufacturing variations in the device, the process of mounting, and the characteristics of the device itself, the different operating environments of the engine, the different operating conditions, and the differences in handling methods.
  • the engine control method provided by the present invention combines the traditional PID control adaptive control strategy to control from two aspects: on the one hand, the control target deviation is adaptively controlled according to the correction strategy, that is, the system is stable and adaptive.
  • Self-tuning adaptive control on-line identification system
  • adaptive learning control for rate-of-change tracking of relevant sensor signals of control targets, ie, trend determination of change rate of feedback of feedback sensors Clustering approximation with system stability, and real-time control of predictive time-delay of self-learning after stable target.
  • the step of modifying the basic pulse parameter according to the conventional correction strategy may include: correcting the basic pulse parameter by using characteristic signal values from respective sensors reflecting engine operating conditions; adopting a new characteristic signal of each relevant sensor
  • the processing method performs soft sensor measurement inference and inference on the unmeasurable quantity, and obtains the soft measurement characteristic signal value to correct the basic pulse parameter; and performs weight matching in the process of correcting the deviation between the desired target value and the actual target value.
  • the characteristic signal values of the sensors related to the adaptive learning correct the basic pulse parameter;
  • the characteristic signals of the relevant sensors include: an engine Crankshaft position and speed signal, top dead center signal, torque signal, fuel injection pulse width signal, throttle position signal, oxygen sensor signal, fuel temperature signal, oil temperature signal, environmental pressure signal, power supply loop voltage signal, water temperature sensor Signal, The exhaust temperature signal, the intake pressure signal, the air-fuel ratio signal, the knock signal, the flame conduction angle signal, and the probability distribution of the knock signal at selected frequencies of several cycles, and the probability that the flame conduction angle signal exceeds the time threshold.
  • adaptive learning control for rate-of-change tracking of the relevant sensor signals of the control target includes:
  • the cerebellar joint controller CMAC in the control system is based on the sensor signals of the previous cycle and the sensors associated therewith.
  • the prediction target and the actual target deviation range and the deviation change rate range determine the pulse parameter tracking correction space [ e, ] X _ g, force], such as the stepping motor adjustment stroke is 1 to 1.6, and the rate of change is 0 to 1, then
  • the output of the cranial joint controller CMAC is defined on the hypergeometry centered on the active node.
  • the linear combination of functions, ie, S» , where:
  • is the control target change rate or the sensor signal change rate; ⁇ the first cycle time; the control target average change amount of the i-th cycle.
  • the design control law logic determines that the controlled output is changed from: to:, after, the engine is measured
  • the rate of change of the characteristic signal of the relevant sensor approaches zero, and the value ⁇ approaching zero is regarded as the optimal condition, and the target value y under this condition is optimally selected as the new control target, and the corresponding table lookup condition change.
  • the control target space area is obtained, and the constant step size interpolation in the area is forced to control the minimum space area; the engine parameters represented at this time are the engine optimal condition parameters, under the condition
  • the target value is the control target that is optimized for selection;
  • n is determined by the stability of robustness
  • is a multi-factor related small quantity constant.
  • the corrected basic pulse spectrum parameters and the signal values of the relevant sensors when the correction parameters are applied are optimally stored by the cerebellar joint controller CMAC cluster; the principle of optimization is divided into two aspects, one is constantly The basic operating conditions and the operating conditions of the memory are used to continuously approximate the dynamic pulse spectrum parameter values according to the trend, and determine the data nodes when the optimal condition ⁇ appears, thus reducing the space occupancy rate and shortening the dynamic pulse.
  • the generation cycle of the spectral parameters; the second is to adopt a compact address space storage strategy to avoid redundant unit reassignment of addresses, that is, to use the unified address remainder operation to obtain the space for training storage weights to meet the hardware implementation requirements.
  • the specific clustering optimization implementation includes: First, measuring the target positioning of the actuator in the previous cycle through the measurement of each position state signal, and the control system inputs the deviation between the actual target value and the output corrected target value and the deviation change rate into the cerebellar joint control.
  • the CMAC performs adaptive weight correction.
  • the second is to obtain the controlled target model through feedforward training and tracking.
  • the system state is represented by x(k).
  • u(k) represents the control vector
  • Third, the control system determines the change rate of the semaphore by calculating the change rate of the semaphore in the specified cycle period by the sensor signal associated with the control target.
  • Trend to determine the direction of control, use the trend forecast to give the desired output target through control strategy, and to deviate from the measured target And the rate of change of the deviation is calculated, the rate of change of each relevant sensor signal is calculated, the weight is continuously corrected, and the stability trend is approached to zero according to the rate of change, and the control target is approached.
  • CMAC is used as a controller in the pre-storage period of the dynamic pulse spectrum parameter, that is, the control strategy is executed by the CMAC controller at this stage, and the approximation control is optimized, and the crank angle acceleration is performed.
  • the rate of change approaches a constant close to zero, the dynamic spectrum parameters are generated and control is transferred to the microprocessor, as follows:
  • the dynamic spectrum generation area the basic spectrum of a certain control target under the same working condition, the same condition, and the characteristic signal values representing the working conditions and conditions at the moment are data nodes, and the basic parameters of the node are Correcting the pulse parameter y as the center value, and finding the dynamic pulse generation region (y_Ay, y+Ay) by using the desired control target and the actual control target deviation as the basic reference radius;
  • the optimization region of the dynamic spectrum generation determining the trend of the dynamic spectrum generation by using the rate of change of the characteristic signal values of the relevant feature in the data node in the same-dimensional space region, thereby determining a smaller region At (y-Ay) or at (y+ Ay)-side, after determining the new node with the median value of the (y-Ay) or (y+Ay) region as the target, and determining the new one based on the target After the approximation of the dynamic spectrum generation region, it is repeated and continuously approached until the smallest region min(y_Ay, y+Ay) appears, the region is the optimization region; c, the dynamic spectrum is generated: when characterizing the condition When the correlation characteristic signal values approach a constant ⁇ close to zero, and the probability distribution of the correlation characteristic signal subjected to the probability and statistical processing is within the allowable range, the median point in min(y-Ay, y+Ay) is determined.
  • the point is the generated dynamic pulse parameter value is sent to the register for the output of the control target, repeating the foregoing process, continuously calculating the correlation change rate of the previous cycle, in the current cycle Control and learning, Predicting the next cycle output.
  • learning and control alternate, and control is also performed by the cerebellar joint controller CMAC.
  • Refreshing the dynamic spectrum During the control process, the control target is also changed due to the change of the engine's own characteristics and the use environment.
  • the data nodes formed by the data node are in the process of ad.
  • the change rate ⁇ of the relevant characteristic signal values is changed and the probability distribution of the correlation characteristic signal is not within the allowable variation range, the new dynamic pulse spectrum parameters are regenerated and determined, and the original data node address unit is refreshed by empirical clustering.
  • the cerebellar joint controller CMAC performs the adaptive parameter sub-working conditions, the conditional experience clustering and the operation process of controlling the dynamic pulse spectrum generation as shown in Fig. 3 ⁇ .
  • the control of the engine is alternated between the microprocessor and the cerebellar joint controller CMAC, realizing the refresh and combined control of the dynamic pulse spectrum parameters, as shown in Fig. 3:
  • Engine When entering the work, the control system determines the current working condition category of the engine according to different operating conditions and the status signals of the respective sensors, that is, the basic operating conditions and the current state of the relevant sensors constitute the current basic working conditions of the selected operating conditions of the control system, and the control The system determines the current working condition according to the above conditions, and calculates the basic pulse spectrum parameters under the operating condition. If there is a dynamic pulse spectrum parameter generated by adaptive learning in this process, the control system is optimized by the stability criterion.
  • the dynamic pulse spectrum parameter is better than the basic pulse spectrum parameter, the dynamic pulse spectrum parameter is output.
  • the basic pulse parameters and the generated dynamic pulse parameters are combined to form a pulse parameter, and the basic pulse parameters are replaced by the combined pulse parameters to control the engine, including: a. The same basic condition, the same condition or the same working condition, the basic pulse parameter and the generated dynamic pulse parameter under very similar conditions; b.
  • the dynamic pulse spectrum parameter is set to the engine combination pulse parameter in whole or in part according to the rate of change of the relevant characteristic signal values, and the corresponding basic pulse parameter is shielded; wherein, according to the rate of change of the relevant characteristic signal values,
  • the step of setting the dynamic pulse spectrum parameter in whole or in part as the engine combination pulse spectrum parameter comprises: when the determined dynamic pulse spectrum parameter is controlled to the target, the rate of change of the relevant characteristic signal values cannot be stabilized within the allowable range
  • the dynamic pulse spectrum parameter is discarded, the working condition and the basic pulse parameter setting under the condition are set.
  • the engine combines the pulse spectrum parameters and regenerates the dynamic pulse spectrum parameters; c.
  • the different characteristic signal values are respectively calculated according to the previous cycle value and the current cycle value. Rate, compare the rate of change, take a small arbitration, determine a combined pulse parameter, and the combined pulse parameter includes all or part of the dynamic pulse parameter.
  • the combined pulse spectrum parameter is corrected by the feedback signal of the sensor as a new basic pulse parameter, and the corrected combined pulse parameter is respectively controlled for each actuator, such as controlling the injector to determine the injection pulse width to change the air-fuel ratio.
  • Control the ignition module to determine the ignition timing; control the idle valve to determine the idle speed; control the intake system to adjust the intake charge coefficient and air-fuel ratio; control the EGR valve to improve emissions and other controls.
  • an embodiment of the engine fuel injection pulse width control for applying the fuel injection combination pulse parameter The control system controls the fuel injection pulse width according to the speed signal, the intake pressure signal, and the throttle position signal reflecting the operating state.
  • the strategy gives the basic fuel injection pulse parameters.
  • the control strategy of the basic fuel injection pulse parameters is also adjusted by the feedback of the oxygen sensor signal in the closed-loop control state of the system; and it is matched by the combined control strategy.
  • the system will control the conventional controller to correct the basic fuel injection pulse parameters according to the working condition parameters according to the requirements of different working conditions.
  • the basic fuel injection pulse parameters are provided to the cerebellar joint controller CMAC and the injector; the cerebellar joint controller CMAC adaptively learns and tracks the modified injector control target (pulse parameter), and according to the engine related work
  • the rate of change of the parameter, the rate of change of the oxygen sensor signal, the deviation of the injection pulse width and the rate of change of the deviation are generated according to the methods given in Fig. 2 and Fig. 3, and the dynamic pulse spectrum parameters of the injection pulse width are generated.
  • the fuel injection pulse width control strategy determines the application of the combined pulse parameter strategy
  • the fuel pulse width dynamic pulse parameter is under the action of the combined control strategy
  • the basic fuel injection pulse The spectral parameter synthesis combines the pulse spectrum parameters to control the injection pulse width of the engine injector.
  • control system will determine the single target optimization direction according to the above operating condition parameters, that is, the power target, the economic target and the normal target. Once the optimization target is selected, the control system will give the air-fuel ratio target (That is, the predicted closed-loop control is performed by giving a fuel injection pulse width or a two-factor joint adjustment of the fuel injection pulse width and the intake air amount by soft-measurement ratio.
  • the prediction closed-loop control and the determination of the predictive control are given by the control system to determine the trend of the change rate of the oxygen sensor signal according to the direction of change, so that the maximum capacity has the effect of delay, and the disturbance caused by the cranial joint controller CMAC is performed.
  • Deviation and anti-interference processing the purpose is to control the expected (predicted) air-fuel ratio according to the desired dynamic characteristics of the air-fuel ratio target, so that the system achieves stable and precise control.
  • an embodiment of the engine ignition timing control for applying the ignition combination pulse parameter the control system according to the crankshaft position signal reflecting the rotational speed and the top dead center position, the intake pressure signal reflecting the magnitude of the load, and the air-fuel ratio are reflected.
  • the fuel injection pulse width signal of the condition, the throttle position signal reflecting the intention of the steering, and the multi-factor correlation of these signals, the basic ignition timing profile parameters are given according to the ignition timing control strategy.
  • the operating condition parameters related to ignition timing control are a multi-factor related process in the control system, ignition timing and engine speed, load, air-fuel ratio, cooling water temperature, compression ratio, intake pressure, fuel saturation, The degree of turbulence of the mixture, the EGR rate, and the shape of the combustion chamber are all related; when the control is implemented, the control system collects the engine operating condition parameters related to the ignition timing, and the knocking signal during the closed-loop control, if necessary,
  • the flame signal angle (flame ionization sensor signal) is also subjected to probabilistic processing, which will have a better effect. This is because the sensor can characterize the combustion process, ie, determine the peak arrival time of the flame, use turbulence, statistical theory of combustion, and cerebellum.
  • the soft measurement processing function of the joint controller CMAC estimating the laminar flame propagation speed, thereby deriving the combustion duration angle and adaptively correcting the ignition timing pulse parameters; in particular, the basic ignition timing pulse parameters will be related above
  • the factors are basic conditions.
  • the ignition control strategy is divided into economic, dynamic, emission and comprehensive basic ignition timing parameters according to working conditions and conditions, and adaptive selection in the control process.
  • the conventional controller corrects the basic ignition timing parameter by collecting the operating condition parameters related to the ignition timing, and the correction is affected by the relevant selected switch, and the relevant selected switch is set for the fuel imaginary value and the compression ratio. Because the octane number is different, the burning speed is different, the compression ratio is different, the flame propagation distance and the propagation time are different; wherein the octane number is selected according to the probability density or flame conduction angle signal of the knock signal per unit time The crankshaft position signal acceleration is determined; the compression ratio is selected according to the compression ratio of different engines, and an influence constant is determined by the bench test. Specifically, the effect of the combined pulse parameter control strategy on the ignition timing parameters of the input conventional controller is determined.
  • the engine is determined according to the control.
  • the dynamic pulse spectrum parameters determined at the most stable conditions may replace all or part of the basic ignition timing parameters of the original gantry when all the conditions are met.
  • the ignition timing control strategy is directly controlled by the combined control strategy.
  • the working condition in the ferroelectric memory and the dynamic pulse spectrum parameter under the condition are sent to a conventional controller, and the ignition timing parameter is corrected by the conventional controller correction processing, and the dynamic pulse spectrum parameter drives the ignition control module (device) Control spark plug ignition.
  • the cerebellar joint controller CMAC adaptively learns and tracks the modified ignition module control target (pulse parameter), and according to the rate of change of the engine-related operating parameters, the probability density distribution of the knock sensor signal, the change rate of the intake pressure, The variation of the injection pulse width, the throttle position change rate, the crank angle acceleration, the ignition delay angle and the combustion duration angle deviation and the deviation change rate are generated according to the methods given in Fig. 2 and Fig. 3, and the ignition timing dynamic pulse spectrum parameters are generated.
  • the dynamic pulse spectrum parameter is written into the ferroelectric memory after the optimization condition is determined; when the ignition timing control strategy determines the application of the combined pulse parameter parameter strategy, the ignition timing dynamic pulse parameter is under the action of the combined control strategy,
  • the basic fuel injection pulse parameter synthesis combined pulse spectrum parameter performs ignition timing adaptive control on the engine ignition control module (device).
  • the effect of the flame conduction angle signal is integrated (including the threshold value probability detection and fusion processing with the knock sensor signal), for example, the knock sensor signal is pressed by the frequency selective detector
  • the probability of occurrence of n cycles of knocking is within 2% -5 % as the optimal ignition adjustment target threshold.
  • the probability of knocking exceeding this threshold will delay the firing angle; in this range, the signal of the relevant sensor is determined by clustering.
  • the optimal condition for the dynamic ignition pulse parameter is determined. When some conditions are changed, the cranial joint controller CMAC will continuously learn and control with the threshold as the desired target, thus replacing the traditional knock safety angular distance.
  • an embodiment of engine intake control for applying intake air combination pulse parameters engine intake through intake pipe 1 and air cleaner 2, surge tank 4, through intake flow detector 5 and The electronic throttle controller 6 and the ejector chamber 13 enter the engine 14 via the intake manifold; when the air-fuel ratio target is forcibly adjusted, the intake air passing through the intake pipe 1 and the air cleaner 2 to the surge tank 4 is further
  • the auxiliary surge tank 12 is accessed through the bypass pipe 7 and the bypass intake solenoid valve 8, and the pilot chamber 13 and the intake air passage are passed through the speed control electronically controlled compressor 9, the proportional solenoid valve 21 or the ejector air injection port 11, The tube enters the engine 14.
  • the controller 10 is based on the intake air temperature sensor 3 signal, the accelerator pedal position signal 18, the position signal of the electronic throttle controller 6, the fuel injection pulse width signal of the injector 15, the oxygen sensor 17 signal, and the engine 14
  • Other intake-related status signals 22 such as speed signal, intake pressure signal, water temperature signal, flame signal transmission angle, etc.
  • control intake system actuators such as bypass intake solenoid valve 8, speed control electronically controlled compressor 9.
  • the proportional solenoid valve 21 performs intake control on the engine 14.
  • the control mechanism is: In the first aspect, due to the action of the gas path of the bypass pipe 7, a part of the intake air bypasses the intake air flow detector 5 and the electronic throttle controller 6, and a certain amount of air is compressed at the speed control electronic control.
  • the machine 9, the proportional solenoid valve 21, the ejector air injection port 11, and the ejector chamber 13 flow through the passage, forcibly adjusting the air-fuel ratio, so that the intake air is compensated;
  • the second aspect is due to the use of the voltage regulator
  • the box 4 and the auxiliary voltage regulator box 12 are used in different degrees under different working conditions. Since the surge tank has the effect of a Helm hertz resonator, the intake air passes through the surge tank 4 to act as a pressure wave in the intake pipe.
  • the third aspect is that the electronic control by the speed control
  • the action of the compressor 9, the ejector air injection port 11 and the ejector chamber 13, and the proportional solenoid valve 21 adjusts the eddy current intensity of the airflow entering the intake manifold, and plays a beneficial role in the atomization and combustion of the fuel injection:
  • the controller 10 outputs the bypass intake electromagnetic wide 8 control signal, the electronic throttle controller 6 control pulse spectrum, the speed control electronic control compressor 9 to control the pulse spectrum, and the ratio according to the above related control signal and the throttle actuation signal 20.
  • the solenoid valve 21 controls the pulse spectrum, and the above control amount passes through the position sensor signal of the electronic throttle controller 6, the fuel injection pulse width signal of the injector 15, the oxygen sensor 17 signal, and other signals such as intake pressure, temperature, and water temperature.
  • the output signal and the output pulse are corrected output by the conventional controller of the controller 10.
  • the output process is adaptively tracked by the CMAC of the cranial joint controller of the controller 10 and is based on the crankshaft position acceleration, the injection pulse width change rate, and the oxygen sensor.
  • the signal change rate, the intake pressure, and the intake flow rate change rate are subjected to the control and learning processes of FIGS. 1 to 3; when the dynamic control map is generated, the controller 10 outputs the combined pulse pair according to the built-in control strategy and the combined control strategy.
  • the above actuators are controlled.
  • An embodiment of engine idle speed control using idle speed control combined pulse parameters is shown in FIG.
  • the electronic throttle is closed-loop controlled by a combined pulse parameter control method to stabilize the opening of the throttle at a relatively fixed idle speed position.
  • the control system is controlled according to the engine idle condition status signal, that is, the throttle position signal, the intake flow signal, the rotational speed signal, the cooling water temperature signal, the fuel injection pulse width signal, and other related signals, such as atmospheric pressure, intake air temperature, etc.
  • the strategy is to check the basic pulse spectrum parameters of the throttle torque motor calibrated by the gantry, and correct the output of the basic pulse parameters by the conventional controller to control the movement of the throttle torque motor.
  • the conventional controller has built-in idle PID fuzzy control strategy, which utilizes various state parameters of the engine under idle conditions, such as cooling water temperature and atmospheric pressure, and utilizes the rate of change and deviation of relevant state parameters of the previous working cycle, such as crank angle acceleration and The deviation of the speed and the state of each auxiliary electrical switch, such as the air conditioner switch, correct the output of the basic pulse parameters.
  • the cerebellar joint controller CMAC adaptively learns and tracks the output basic pulse parameters of the control throttle torque motor, and generates corresponding dynamic pulse parameter temporary storage cluster according to the control strategy.
  • the dynamic pulse spectrum parameters participate in the control through the combined control strategy.
  • Target control repeated verification, comparison and continuous participation in several cycles of modification, clustering and association, when the engine appears in the most stable working conditions of idle speed conditions, determine the dynamic pulse spectrum parameters and stability conditions;
  • the dynamic pulse parameters are stored in the ferroelectric memory, which replaces the basic idle pulse parameters to control the target.
  • the control system When the device characteristics and usage environment change, repeat the above process for control.
  • the control system fully considers the transmission time lag effect of each state signal of the engine, predicts and controls the target according to the associative memory learning experience of clustering, and judges the trend of the rate of change of the working condition signal within several working cycles.
  • the clustering temporary storage is performed by adaptively learning the state as soon as possible, and adaptive tracking adjustment and correction are performed when a similar situation occurs continuously, and dynamic pulse spectrum parameters are generated.
  • the clustering memory When a similar situation occurs randomly, the clustering memory generates dynamic pulse parameters and operating conditions when the mutation occurs, and predictive control occurs when it occurs again.
  • Figure 8 shows an example of engine EGR rate control using the EGR rate combined pulse parameters.
  • the control requirements are: EGR rate under partial load, full load and throttle opening less than 20% Under the working condition, the EGR rate is taken as zero. The EGR rate is controlled from 5% to 25%.
  • the control system detects the EGR rate basic pulse parameter according to the throttle position signal and the speed signal measured by the crank position sensor according to the EGR rate control strategy, and the conventional controller according to the throttle position signal, the speed signal, and the The gas pressure signal and the cooling water temperature signal determine the current working condition.
  • the EGR rate pulse parameter is adjusted and corrected according to the signal of the relevant sensor under the working condition.
  • the EGR rate corrects the pulse spectrum parameter, and the EGR rate correction pulse parameter controls the EGR rate proportional solenoid valve operation.
  • the cerebellar joint controller CMAC adaptively tracks and learns the EGR rate correction pulse parameters of the EGR rate proportional solenoid valve.
  • the cerebellar joint controller CMAC uses the throttle position deviation and the crank angle acceleration to the EGR rate.
  • the control correction is estimated by the soft measurement method, and the EGR rate is adaptively optimally matched in the range of 5% to 25%.
  • Another function of the cerebellar joint controller CMAC is to generate dynamic pulse parameters according to the adaptive control strategy and the dynamic pulse parameter generation strategy described above by adaptive learning, which is suitable for the target. During the control, the above process will be repeated in accordance with the combined pulse parameter control strategy to replace the EGR rate basic pulse parameters in whole and in part.
  • the engine control apparatus provided by the present invention can be implemented by the specific circuits shown in Figs. 9 and 10.
  • FIG. 9 is a circuit of an embodiment related to a sensor in the engine control device provided by the present invention: 31 and 32 pins of the microprocessor U1 are respectively connected to pins 29 and 24 of the memory U16, and 40 pins are connected to the VCC through the resistor R1. High level, grounded through capacitor C1, grounded through switch S1; crystal oscillator Y1 is connected between pins 73 and 74 of microprocessor U1, and grounded through capacitors C2 and C3;
  • the intake pressure and atmospheric pressure sensor signals enter the phase-locked loop U3 through the buffer U2 for V/F conversion processing, and then input to the A/D ports P50 and P51 of the microprocessor U1 through the photocoupler OP1 for micro processing.
  • U1 collects and performs analytical calculation processing.
  • the oxygen sensor signal is amplified 10 times by the operational amplifier U4 and input to the logarithmic amplifier U5. After being amplified by the logarithmic amplifier U5, it is output from the 10th pin of the logarithmic amplifier U5, and then IV converted to 5-0V by the operational amplifier U6.
  • the voltage signal is input to the A/D port P52 of the microprocessor U1 for the microprocessor U1 to analyze and determine the air-fuel ratio.
  • the cooling water temperature signal, the intake air temperature signal and the ambient temperature signal are converted into analog voltage signals by the serial voltage dividing resistor for comparison by the comparator U7, and the comparator U7 sequentially outputs the digital signal to the A/D port of the microprocessor U1.
  • P54, P55, P56 feet, for the microprocessor Ul to analyze and judge the engine operating conditions.
  • crankshaft position sensor signal is input to the magnetic transducer U8 for conversion processing, and then input to the A/D port P57 of the microprocessor U1 for analysis and calculation by the microprocessor U1.
  • the throttle position signal and the accelerator pedal signal are stepped down to the operational amplifier U9 for amplification, and then input to the A/D port P46 and P47 of the microprocessor U1 for analysis and calculation by the microprocessor U1.
  • the signal of knocking is amplified by a signal frequency selective amplifying circuit composed of an operational amplifier U10 and its peripheral circuits, and then input to a detecting circuit composed of an operational amplifier U10E, and the output signal of the detector passes through a After the non-gate buffer, input the P16 pin of the microprocessor U1 for the microprocessor U1 to perform analysis and calculation processing.
  • the inverter U11 and the gate circuit U12 constitute an injection signal pulse width-compensation circuit; the injection signal is input to the INTP0 port P01 of the microprocessor U1 for analysis and calculation processing by the microprocessor U1.
  • the receiving node unit of the CAN communication module is composed of the CAN communication receiver U13.
  • the system is written by the asynchronous serial communication processor U14, the communication port DB9 and the electronic switch U15.
  • the system fault code display circuit is composed of the register U16 and the 8-segment digital tube DS to judge the system fault information.
  • the potential of the sensor signal is controlled to a constant value, and the sensor signal is processed and input to the micro-processing.
  • the P27 pin of U1 is used by the microprocessor U1 for analysis and calculation.
  • the voltage signal is processed by the power supply detection circuit composed of the phase-locked loop U19, and is input to the P26 pin of the microprocessor U1 through the optocoupler OP3 to detect the voltage of the battery in real time, thereby providing a reliable regulated DC power supply for the system.
  • the headlight switch signal, the neutral position signal, the direction assist signal, and the air conditioning request signal are converted into analog voltage signals by the series voltage dividing resistor for shaping the Schmitt trigger U20, and then the digital signals are sequentially input to the P21 of the microprocessor U1. , P22, P23, P24 feet, give the microprocessor Ul to judge and analyze the engine operating conditions.
  • the speed signal After the speed signal is conditioned by the time base circuit U21, it is input to the P20 pin of the microprocessor U1 through the optocoupler OP4 for analysis and calculation by the microprocessor U1.
  • the microprocessor U24, the latch U22, and the dynamic memory U23 constitute a cranial joint controller CMAC. Under the control of the microprocessor U1, adaptive learning is performed according to the built-in control strategy, and the air-fuel ratio target value is adjusted and approximated;
  • the storage U23 is a flash memory, which refreshes and stores the clustering adjustment parameters, and participates in the controller control under the new working condition under the control of the microprocessor U24.
  • FIG. 10 is a circuit diagram of an embodiment related to driving in an engine control apparatus provided by the present invention:
  • the microprocessor U1 uses its I/O ports P70-P77 to collect and feed back fuel injection signals through the switching drivers U37, U38. After the analysis and comparison processing, the fuel injection of the engine is controlled in real time by the power drive tubes Q11-Q14.
  • the microprocessor U1 uses its I/O port P120-P127 output control signal to be isolated by the anti-interference circuit composed of the optocoupler OP31-OP24, and then the signal is collected and feedback analyzed by the switching driver U35, U36.
  • the drive circuit composed of the power drive tube BT12-BT15 drives the fault indication control of the fault indication alarm switch, the intake resonance ejector switch, the EGR electromagnetic wide switch and the canister solenoid valve switch.
  • the microprocessor U1 uses its I/O ports P30-P37 to pass the ignition signals to the ignition drivers U33, U34. After the acquisition and feedback analysis are compared, the ignition of the engine is controlled in real time by the power drive tube BT8 - BT11.
  • the microprocessor U1 uses its I/O port P110-P11 1 to output the driving signals of the stepping motor and the solenoid valve, and after being isolated by the anti-interference circuit composed of the optocouplers OP22 and OP23, respectively drives the triode and the H-bridge circuit and the power driver.
  • the QE1 circuit drives the stepper motor MG1 action and the solenoid valve DJ1 to perform intake air flow control.
  • the microprocessor U1 uses its I/O port P100-P107 output control signal to be isolated by the anti-interference circuit composed of the optocoupler OP14-OP21, and then the signal is collected and feedback analyzed by the switching driver U30, U31.
  • the switching amount is controlled by a driving circuit composed of a power driving tube BT5-Bt7 and a high-power driving tube U32.
  • the microprocessor U1 driving control signal is isolated by the optocoupler OP13, and then amplified by the transistor Q2 to drive the power tube Q3 to control the high and low potentials of the driving electronic throttle; and processed by the current monitoring circuit composed of the signal amplifier U29, input To the A/D port P46 of the microprocessor U1, the current is monitored in real time and used for position feedback processing.
  • the microprocessor U1 uses its I/O port P150-P157 output control signal to be isolated by the anti-interference circuit composed of the optocoupler OP5-OP12, and then drives the standby switch control through the drive circuit composed of the power drive tubes BT1-BT4.
  • the PWM1 and PWM2 control signals are respectively output from the P130 and P131 pins of the microprocessor U1, and the H-bridge drive circuit composed of the power driver Q15-Q18 is driven to control the throttle motor through the rectification isolation circuit composed of the stabilized rectifier diodes D11-D14. MG2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

发动机的控制方法和控制装置 技术领域
本发明涉及发动机的控制方法和控制装置, 属于汽油发动机控制技术领域。 背景技术
车用汽油发动机的控制主要分为点火控制和喷油器控制。
在控制过程中, 控制单元根据基本控制条件査控制脉谱参数, 并且根据各传感器反映 的发动机状态条件对控制脉谱参数进行修正输出, 控制各执行器对目标进行控制。 控制分 为开环控制和闭环控制。
对发动机点火正时的开环控制主要依据进气流量信号和节气门信号确定的发动机负 荷信号、发动机转速信号和曲轴位置信号; 闭环控制是利用爆震传感器的信号反馈对点火 系统进行调节。
对喷油器控制主要是检测进气流量,通过进气流量信号和其它传感器信号按不同的工 况, 计算喷油时间来决定喷油量; 对喷油量的控制实际上就是控制空燃比。 闭环控制是通 过氧传感器检测排气中的氧含量, 由此而测出发动机燃烧室内混合气空燃比的稀浓, 将其 信号反馈到中央控制器 ECU中与设定的目标空燃比进行比较后得出误差信号, 确定喷油 脉宽, 使空燃比保持在设定目标值附近。现用的空燃比闭环控制大多是把空燃比控制在理 论空燃比 14.7附近的一个很窄范围内;这种原因是为满足排放要求而使用三元催化装置以 牺牲部分经济性和动力性为代价的。而在大多数工况下都要解除闭环控制而进入开环控制 (如发动机起动、 暧机、 怠速、 大负荷、 加减速) 。
发动机的其它控制有怠速控制、 EGR控制(废气再循环系统)、进气控制等, 进气控 制分为 VTEC控制(可变气门正时系统) 、 涡轮增压控制、 可变进气管长度与可变进气歧 管长度控制、 谐振腔进气惯量控制等。
发动机怠速控制是进气量闭环控制; 废气再循环系统 EGR控制是开环控制, 参与控 制的量是发动机水温、进气温度、 转速和节气门开度; 进气控制系统中的 VTEC控制是机 械控制系统, 其作用是将固定的气门行程改成随发动机转速改变而改变的可变行程; 涡轮 增压控制是对进气可变截面控制;可变进气管长度与可变进气歧管长度控制以及谐振腔进 气惯量控制利用进气压力波特性的气波惯量增压控制。 上述控制方法在汽油发动机上得到很好的应用,但现有的脉谱参数控制策略对下列问 题无能为力:
( 1 ) 各传感器及执行器件的制造偏差及使用一段时间的磨损及老化引起的工作特性 改变, 更换配件引起的匹配偏差等, 从而使控制精度变差;
(2)环境、 季节的改变, 各种工作介质的变化 (如机械油的粘度改变等)、 各种电器及 辅助动力的接入改装、 对发动机的操控等引起的负荷变化;
( 3 ) 在台架对控制单元优化时测量仪器及处理手段引起的测量偏差以及未曾考虑在 内的其它未知因素等;
(4) 各传感器的信号传递时滞、 控制单元的运算过程时滞、 执行器件的运动时滞等 带来的控制实时性偏差等。
以上这些因素的影响只应用台架优化的基本点火脉谱参数与基本喷油脉谱参数以及其它 控制脉谱参数显然偏离控制目标; 以各传感器反馈的各种状态信号由于各种时滞效应只能 对控制数据修正局部的偏差, 而不能完全控制目标偏差, 使发动机未能达到合理的使用。 发明内容
本发明要解决的技术问题是: 针对目前汽油发动机的控制方式所存在的问题, 提供一 种能在工作过程中根据发动机相关特性改变和发动机使用条件改变而自适应生成动态脉 谱参数的策略,进而提供一种利用与原有基本脉谱参数组合的组合脉谱参数控制发动机的 方法和装置。
为实现上述目的, 本发明的实施例提供了一发动机的控制方法, 包括以下步骤: 控制 单元根据基本操作条件和各传感器的特征信号值确定当前工况,并根据基本脉谱参数产生 当前工况下发动机不同目标的期望目标值,按照修正策略修正后对发动机的不同目标进行 控制; 在发动机控制过程中, 控制单元还执行以下步骤:
步骤 Sl、 对发动机不同目标反馈的实际目标值进行自适应学习, 按照动态脉谱生成 策略对所述同工况、 同条件下的自适应学习参数与基本脉谱参数进行寻优比判, 如果不满 足条件则保持所述基本脉谱参数; 如果满足条件, 则生成动态脉谱参数;
步骤 S2、 按照动态脉谱组合策略将所述基本脉谱参数和生成的动态脉谱参数构成组 合脉谱参数, 采用所述组合脉谱参数替换基本脉谱参数。
工况包括中小负荷工况、 大负荷工况、 起动工况、 加减速工况以及怠速工况。 组合脉谱参数包括发动机点火组合脉谱参数、 发动机喷油组合脉谱参数、 发动机进气 组合脉谱参数、发动机怠速控制组合脉谱参数、 EGR率组合脉谱参数和发动机点火闭合角 组合脉谱参数。
基本脉谱参数包括经过台架标定的脉谱参数和经过台架及道路参数优化标定的脉谱 参数。
该按照修正策略修正基本脉谱参数的步骤包括:采用来自反映发动机工况的相关各传 感器的特征信号值对所述基本脉谱参数进行修正;采用新的相关各传感器的特征信号处理 方式对不可直接测得量进行软测量方法推断以及推断而得到软测量特征信号值对所述基 本脉谱参数进行修正; 以及利用通过期望目标值与实际目标值进行纠偏过程中进行权值匹 配而自适应学习的相关各传感器的特征信号值对所述基本脉谱参数进行修正; 其中, 相关 各传感器的特征信号,包括发动机上的各传感器信号以及采用软测量方式推断出的特征信 号, 包括: 发动机的曲轴位置及转速信号、 上止点信号、 转矩信号、 喷油脉宽信号、 节气 门位置信号、 氧传感器信号、 燃油温度信号、 机油温度信号、 环境压力信号、 供电回路电 压信号、 水温传感器信号、 排气温度信号、 进气压力信号, 空燃比信号、 爆震信号、 火焰 传导角信号, 以及爆震信号在几个循环的选频频率的概率分布、 火焰传导角信号超过时间 阈值的概率。
步骤 S1包括: 根据工况条件和使用条件的变化以及发动机自身因素变化学习生成的 一系列自适应参数, 并将所述自适应参数分工况、 分条件进行经验聚类暂存; 在对发动机 的不同目标进行控制的过程中不断按动态脉谱生成策略对同工况、同条件下的基本脉谱参 数和暂存的自适应学习参数按寻优条件进行比判,暂存的自适应学习参数符合动态脉谱生 成策略时, 形成该工况该条件下的动态脉谱参数, 并且在以后的控制中不断学习, 反复进 行以上过程并不断刷新。
其中, 按动态脉谱生成策略生成动态脉谱参数的步骤包括- a、 确定动态脉谱生成区域: 以同一工况、 同一条件下的某一控制目标的基本脉 谱参数, 以及表征此刻的工况与条件的相关各特征信号值为数据节点, 以该节点的基 本修正脉谱参数 y为中心值,以期望控制目标值和实际控制目标值偏差为基本参考半 径, 找出动态脉谱生成区域 (y— Ay, y+ Ay);
b、 确定动态脉谱生成的寻优区域: 在同维空间区域利用该数据节点中表征该工 况的相关各特征信号值的变化率大小进行动态脉谱生成趋势判定,从而判定更小的区 域在 (y— Ay)还是在 (y+ Ay)—边, 确定后以 (y— Ay)或 (y+ Ay)区域的中值为目标逼 近后的新节点, 并且以该目标为中心, 确定新的逼近后的动态脉谱生成区域, 如此反 复, 不断逼近, 直到最小的区域 min(y— Ay, y+ Ay)出现, 该区域为寻优区域; c、 生成动态脉谱: 当表征该工况的相关各特征信号值趋近于一个近似于零的常 数 ε 时, 以及进行概率统计处理的相关特征信号的概率分布在允许的范围内, 确定 min(y- Ay, y+ Ay)中的中值点 ym, 该点即为生成的动态脉谱参数;
d、 确定动态脉谱: 重复以上过程 a-c, 进行经验聚类, 当相关各特征信号值的变 化率 ε以及相关特征信号的概率分布稳定在一个允许的变化范围内时,确定该动态脉 谱参数, 存入铁电存储器, 此时, 确定的动态脉谱参数和所对应的相关各特征信号值 为一组数据节点, 该节点即为动态脉谱参数;
e、 刷新动态脉谱: 生成的动态脉谱在控制过程中, 由于发动机自身特性及使用 环境改变使其控制目标也有所变化, 其所组成的数据节点在进行 a-d的过程时, 当确 定其相关各特征信号值变化率 ε 改变以及相关特征信号的概率分布不在允许的变化 范围时, 重新生成新的动态脉谱参数, 经经验聚类确定, 对原来数据节点地址单元刷 新;
步骤 S2包括:
a、 比较同工况、 同条件或者同工况、 具有非常相近的条件下的基本脉谱参数和 生成的动态脉谱参数;
b、 当组成数据节点的元素中, 相关各特征信号值相同而目标参数不同时, 根据 相关各特征信号值的变化率将该动态脉谱参数全部或部分地设置为发动机组合脉谱 参数, 并屏蔽相应基本脉谱参数; 其中, 根据相关各特征信号值的变化率将所述动态 脉谱参数全部或部分地设置为发动机组合脉谱参数的步骤包括:当被确定使用的动态 脉谱参数在对目标控制时, 相关各特征信号值的变化率无法稳定在允许范围内时, 放 弃该动态脉谱参数,将该工况、该条件下的基本脉谱参数设置为发动机组合脉谱参数 并重新生成动态脉谱参数;
c、 当相关各特征信号值不完全相同但目标参数相同时, 对该不相同特征信号值分别 按前一循环值与当次循环值计算变化率, 比较该变化率, 取小判优, 确定组合脉谱参数, 所述组合脉谱参数包括全部或部分的动态脉谱参数。
本发明实施例根据上述发动机的控制方法, 还提供了一种发动机的控制装置, 包括微 处理器以及分别与微处理器连接的电源检测及稳压电路、通信接口 CAN、 LIN和外部诊断 电路、 大功率驱动电路、 开关量驱动电路和驱动电路, 以及, 来自各传感器的模拟信号一 部分通过输入调理电路、模拟信号通道与微处理器相连,另一部分通过输入调理缓冲电路、 数字信号通道与微处理器相连, 来自各传感器的数字信号通过输入调理缓冲电路、 数字信 号通道与微处理器相连; 其中, 微处理器根据基本操作条件和模拟信号、 数字信号确定当 前工况, 并根据基本脉谱参数产生当前工况下发动机不同目标的期望目标值, 按照修正策 略修正后对发动机的不同目标进行控制; 其特征在于, 还包括小脑关节控制器 CMAC和 铁电存储器, 所述铁电存储器与小脑关节控制器 CMAC互联, 小脑关节控制器 CMAC与 微处理器互联, 其中, 小脑关节控制器 CMAC用于在控制过程中进行发动机不同目标反 馈的实际目标值的自适应学习,并用于按照动态脉谱生成策略将所述自适应学习参数与基 本脉谱参数进行寻优比判,在满足条件的情况下生成新的动态脉谱参数并存储在铁电存储 器中, 以及, 该微处理器按照动态脉谱组合策略将所述基本脉谱参数和存储在铁电存储器 中的动态脉谱参数构成组合脉谱参数并采用所述组合脉谱参数替换基本脉谱参数。
该模拟信号包括进气压力或进气流量信号、 节气门位置信号、 大气压力信号、 进气温 度信号、 冷却水温度信号、 氧传感器信号、 环境温度信号、 油门踏板信号、 系统电压变化 信号; 该数字信号包括曲轴位置信号、 喷油脉宽信号、 车速信号、 爆震信号、 空调请求信 号、 方向助力请求信号、 空挡信号、 大灯开关信号。
控制系统根据发动机相关各传感器的特征信号变化率判定工况变化趋势对部分时滞 偏差过大的控制目标进行给定期望值预测控制, 同时以预测控制目标值为数据节点, 利用 小脑关节控制器 CMAC的自适应调整和学习能力, 降低或消除各方面信号滞后带来的误 差。
与现有技术相比, 本发明组合脉谱对发动机控制的方法, 所具有的有益效果是: 由于 采用了以自适应学习方法合成的组合脉谱参数控制方式,使得被控系统发生改变和未知变 化对发动机的影响得到了修正, 从而提高了控制的精度和速度。 也利用动态脉谱参数的规 划和生成, 改善了发动机自身条件变化时控制系统无法响应, 通过自适应学习控制产生动 态脉谱参数的策略提前预测控制, 最大可能的修正了各种时滞效应带来的控制滞后, 提高 了控制的实时性。
通过以下参照附图对优选实施例的说明, 本发明的上述以及其它目的、特征和优点将 更加明显。 附图说明 图 1为本发明所提供发动机的控制装置的电路方框原理图;
图 2为基于图 1所示电路方框原理图,本发明所提供的发动机控制方法中进行自 适应学习的原理示意图;
图 3A小脑关节控制器 CMAC的控制流程图;
图 3B为本发明所提供的发动机控制方法的总体流程图;
图 4为图 3所示方法中,应用喷油组合脉谱参数进行发动机喷油脉宽控制的实施 例示意图;
图 5为图 3所示方法中,应用点火组合脉谱参数进行发动机点火正时控制的实施 例示意图;
图 6为图 3所示方法中,应用进气组合脉谱参数进行发动机进气控制的实施例示 意图;
图 7为图 3所示方法中,应用怠速控制组合脉谱参数进行发动机怠速控制的实施 例示意图;
图 8为图 3所示方法中,应用 EGR率组合脉谱参数进行发动机 EGR率控制的实 施例示意图;
图 9为本发明提供的发动机控制装置中, 与传感器相关的实施例的电路图; 图 10为本发明提供的发动机控制装置中, 与驱动相关的实施例的电路图。 其中, 附图标记如下:
1进气管、 2空气滤清器、 3进气温度传感器、 4稳压箱、 5进气流量检测仪、 6电子 节气门控制器、 7旁通管、 8旁通进气电磁阀、 9调速电控压气机、 10控制器、 11引射空 气喷射口、 12辅助稳压箱、 13引射腔、 14发动机、 15喷油器、 16排气管、 17氧传感器、 18油门踏板位置信号、 19节气门力矩电机驱动信号、 20油门操纵信号、 21比例电磁阀、 22其他传感器信号;
U1微处理器、 U2缓存器、 U3锁相环、 U4、 U6 运算放大器、 U5对数放大器、 U7比较器、 U8磁变换器、 U9运算放大器、 U10运算放大器、 U1 1反相器、 U12门 电路、 U13 CAN通信接收器、 U14异步串行通讯处理器、 U15电子开关、 U16寄存 器、 U17、 U18微功耗运算放大器、 U19锁相环、 U20斯密特触发器、 U21时基电路、 U22锁存器、 U23动态储存器、 U24微处理器、 U25存储器、 U26扩展口、 U27、 U28 开关量驱动器、 U29 信号放大器、 U30、 U31 幵关量驱动器、 U32 大功率驱动管、 U33-U38 开关量驱动器、 DS 8段数码管、 DB9通讯口、 OP1--OP31 光电耦合器、 M1-M4喷油器、 T1-T4升压器、 MG1步进电机、 MG2 节气门电机、 DJ1 电磁阀、 BT1-BT5功率驱动管、 DE3-DE6稳压管、 Q3、 Q10、 Q11-Q18功率驱动器、 QE1功 率驱动器、 R1— R140电阻 、 VR1-VR2可调电阻、 C2-C62电容、 D1-D12 稳压整流 二极管、 Ql- Q2、 Q4-Q9三极管、 L1-L2电感、 Y1-Y2晶振、 DE1-DE2稳压管。 ' 具体实施方式
下面将详细描述本发明的具体实施例。应当注意,这里描述的实施例只用于举例说明, 并不用于限制本发明。
本发明提出的通过组合脉谱控制发动机的方法和装置,通过常规控制器(中央控 制器 ECU)和小脑关节控制器 CMAC根据控制策略实现对发动机的控制功能;其中, 控制策略包括修正策略、动态脉谱生成策略和动态脉谱组合策略,控制功能包括喷油 控制、 点火控制 (点火提前角和点火闭合角)、 进气控制、 怠速控制、 排放控制 (碳罐蒸 发、 废气再循环系统 EGR)和辅助控制 (电气负荷、 方向助力、 油泵、 空调等)。 以下 对实施过程分别说明。
其中, 发动机的控制方法, 包括以下步骤: 控制单元根据基本操作条件和各传感器的 特征信号值确定当前工况,并根据基本脉谱参数产生当前工况下发动机不同目标的斯望目 标值, 按照修正策略修正后对发动机的不同目标进行控制; 其中, 在发动机控制过程中, 控制单元还执行以下步骤:
步骤 Sl、 对发动机不同目标反馈的实际目标值进行自适应学习, 按照动态脉谱生成 策略对同工况、 同条件下的自适应学习参数与基本脉谱参数进行寻优比判, 如果不满足条 件则保持该基本脉谱参数; 如果满足条件, 则生成动态脉谱参数;
步骤 S2、 按照动态脉谱组合策略将该基本脉谱参数和生成的动态脉谱参数构成组合 脉谱参数, 采用该组合脉谱参数替换基本脉谱参数。
该工况包括中小负荷工况、 大负荷工况、 起动工况、 加减速工况以及怠速工况。 该组合脉谱参数包括发动机点火组合脉谱参数、发动机喷油组合脉谱参数、 发动机进 气组合脉谱参数、发动机怠速控制组合脉谱参数、 EGR率组合脉谱参数和发动机点火闭合 角组合脉谱参数。
基本脉谱参数包括经过台架标定的脉谱参数和经过台架及道路参数优化标定的脉谱 参数。
进一步的, 结合图 1所示的发动机的控制装置, 对上述发动机的控制方法进行描述。 在图 1中, 该发动机的控制装置包括: 微处理器以及分别与该微处理器连接的电源检测及 稳压电路、 通信接口 CAN、 LIN和外部诊断电路、大功率驱动电路、 开关量驱动电路和驱 动电路,'以及, 来自各传感器的模拟信号一部分通过输入调理电路、 模拟信号通道与微处 理器相连, 模拟信号另一部分通过输入调理缓冲电路、 数字信号通道与微处理器相连, 来 自各传感器的数字信号通过输入调理缓冲电路、 数字信号通道与微处理器相连; 其中, 微 处理器根据基本操作条件和模拟信号、数字信号确定当前工况, 并根据基本脉谱参数产生 当前工况下发动机不同目标的期望目标值,按照修正策略修正后对发动机的不同目标进行 控制。
还包括: 小脑关节控制器 CMAC 和铁电存储器, 该铁电存储器与小脑关节控制器 CMAC互联, 小脑关节控制器 CMAC与微处理器互联, 其中, 小脑关节控制器 CMAC用 于在控制过程中进行发动机不同目标反馈的实际目标值的自适应学习,并按照动态脉谱生 成策略将所述自适应学习参数与基本脉谱参数进行寻优比判,在满足条件的情况下生成新 的动态脉谱参数并存储在铁电存储器中, 以及, 该微处理器按照动态脉谱组合策略将所述 基本脉谱参数和存储在铁电存储器中的动态脉谱参数构成组合脉谱参数并采用所述组合 脉谱参数替换基本脉谱参数。
其中, 外部传感器的模拟信号通过输入调理电路将信号输入到微处理器; 输入调理电 路对模拟信号的处理分两部分:一部分由输入调理电路将信号调理为数字信号经数字信号 通道输入微处理器; 另一部分输入调理电路将信号直接经模拟通道输入微处理内部的 A I D 端口。 模拟信号主要包括: 进气压力或进气流量信号、 节气门位置信号、 大气压力信 号、 进气温度信号、 冷却水温度信号、 氧传感器信号、 环境温度信号、 油门踏板信号、 系 统电压变化信号等。
外部传感器的数字信号通过输入调理缓冲电路转换为微处理器能接收的输入信号;输 入调理缓冲电路的作用是对传感器数字信号的幅度、 波形及干扰进行处理, 即滤波处理。 数字信号主要有: 曲轴位置信号、 喷油脉宽信号、 车速信号、 爆震信号、 空调请求信号、 方向助力请求信号、 空挡信号、 大灯开关信号等。
电压信号通过电源检测及稳压电路处理后接入微处理器。电源检测及稳压电路的主要 功能是: 给系统提供稳压电源、 给传感器提供工作电源和给 RAM提供电源保持。 电源检 测及稳压电路由 DC/DC转换器、 过流过压保护器、 电压变化信号变送器及抗干扰电路组 成。
通信接口电路包括故障诊断接口和车载网络接口, 车载网络接口包括通讯总线 CAN-BUS和通讯总线 LIN-BUS, 通用故障诊断标准 OBD-II/iso-9141K线, 这些总线分别 连接仪表及车身控制系统等;这些系统的信号分别通过网络总线及其总线驱动器与微处理 器保持信息的交流。
微处理器由 32位的 CPU内核, 内置常规控制器控制策略和算法、 各类脉谱及其它相 关控制目标数据及通信总线处理器等。
小脑关节控制器 CMAC由另一片 32位微处理器为内核, 与外部电路构成; 其内置自 适应学习算法及控制策略, 与主微处理器共同组成控制系统核心, 接受外部信号变化, 进 行自适应学习聚类刷新动态脉谱参数。
铁电存储器对系统基本脉谱参数进行备份, 经自适应学习的参与工况控制后被判定为 使系统按要求稳定工作的那部分动态脉谱参数也会作为经验数据存入其中。微处理器判定 系统失控时会自动将基本脉谱参数从铁电存储器写入微处理器中。
大功率驱动电路采用专用控制驱动芯片和外围电路, 驱动喷油器、 点火模块、 进气系 统的伺服电机与电磁阔等。
开关量驱动电路驱动怠速阀、 进气谐振引射器开关、 燃油泵开关、 碳罐电磁阔开关、
ERG电磁阀开关、 故障指示报警开关、 空调功率开关、 高低速风扇开关。
驱动电路给出 4路备用中功率控制驱动。
在这里特别说明的是, 为便于区别新的控制方法, 本发明将传统处理方式和方法, 如
PID控制策略的使用等,均定义在常规控制器中执行,常规控制器作为控制装置的一部分, 控制装置的另一部分称之为小脑关节控制器 CMAC。
基于上述的发动机的控制装置, 本发明所提供的发动机的控制方法可按如图 2 所示方式实现:
首先, 微处理器按照修正策略对不同的目标实施控制。
一般情况下,由于微处理器应用不同的基本脉谱参数,如循环喷油量控制使用" 1" 的组合, 点火正时控制使用" 2"的组合, ......, 第 n个控制使用" n"组合等, 各基本脉 谱参数对应于不同的工况将给出不同的目标值, 该目标值由于各种使用环境、 条件、 传递时滞、 机构传动时滞、 特性差异等, 与实际目标产生偏差; 对实际目标的信号反 馈, 由于传感器的特性、 信号的传递时滞、 信号运算处理过程的时滞等; 还包括随机 产生的干扰和干扰引起的器件特性突变等; 以上等等因素的存在, 影响到控制的实时 性和准确性, 加上无法"因地制易"调整的台架标定基本脉谱参数, 使控制系统无法准 确确定控制目标。
又由于一旦投入使用的发动机,除开始是通过经台架试验优化的基本脉谱参数工 作外, 由于自适应策略的作用, 不断自适应产生新的优化动态脉谱参数, 因而工作一 段时间的发动机,其基本脉谱参数已或多或少发生改变, 即是同时投入使用和经过相 同工作时间后的发动机,其同控制目标的基本脉谱参数也改变的不再相同; 这是因为 器件的制造偏差、 安装的工艺以及器件本身特性的差异, 发动机使用环境的不同, 使 用条件的不同, 操纵方法的差异等造成的。
为了克服上述缺陷,本发明所提供的发动机控制方法结合传统 PID控制的自适应 控制策略从两方面实施控制:一方面针对控制目标的偏差按照修正策略进行自适应控 制, 即确保系统稳定的自适应控制和保证控制目标性能最优的自校正自适应控制 (在 线辨识系统); 另一方面是对控制目标的相关传感器信号进行变化率跟踪的自适应学 习控制, 即采集传感器反馈量变化率趋势判定与系统稳定性聚类逼近, 以及稳定目标 后的自学习调整时滞性的预测实时控制。
一方面, 按照常规修正策略修正基本脉谱参数的步骤可以包括: 采用来自反映发 动机工况的相关各传感器的特征信号值对所述基本脉谱参数进行修正;采用新的相关 各传感器的特征信号处理方式对不可直接测得量进行软测量方法推断以及推断而得 到软测量特征信号值对所述基本脉谱参数进行修正;以及利用通过期望目标值与实际 目标值进行纠偏过程中进行权值匹配而自适应学习的相关各传感器的特征信号值对 所述基本脉谱参数进行修正; 相关各传感器的特征信号, 包括发动机上的各传感器信 号以及采用软测量方式推断出的特征信号, 包括: 发动机的曲轴位置及转速信号、 上 止点信号、 转矩信号、 喷油脉宽信号、 节气门位置信号、 氧传感器信号、 燃油温度信 号、 机油温度信号、 环境压力信号、 供电回路电压信号、 水温传感器信号、 排气温度 信号、 进气压力信号, 空燃比信号、 爆震信号、 火焰传导角信号, 以及爆震信号在几 个循环的选频频率的概率分布、 火焰传导角信号超过时间阈值的概率。
另一方面, 对控制目标的相关传感器信号进行变化率跟踪的自适应学习控制包 括: 在当前学习与控制阶段, 控制系统中小脑关节控制器 CMAC根据前一循环的传 感器信号以及与之相关的传感器信号变化率确定下一循环的预测输出。因而首先以前 一循环的脉谱参数为中心, 根据与之相关传感器信号变化范围 (如转速)及信号的变化 率范围确定工况条件输入空间 Ug = a, ό ] X [ c, d ] , 根据预测目标和实际目 标偏差范围及偏差变化率范围确定脉谱参数跟踪修正空间 [ e, ] X _ g, 力] , 如步进电机调整行程在 1到 1.6, 其变化率在 0到 1, 则标准乘积空间为 Ug = U, 1. 6 ^ X 1 0, 1 ; 并选取合适的量化级数, 给出初始权系数矩阵, 以当前与之相 关传感器信号变化及信号的变化率和当前执行器位置信号及信号变化率为节点,选取 合适的参数和空间几何体半径,根据给定的样本找出包含该点的空间超几何体, 确定 选择矩阵 S, 此时小脑关节控制器 CMAC的输出定义在以激活节点为中心的超几何 体 上 的 基 函 数 线 性 组 合 , 即 , =S» , 其 中 :
= diag^ (¾),-,έΜ (Xt)],q = [qi,q2, ' f是权系数向量, s =「s , 为权系数 选择向量, 这样对于每个样本, 只需局部调整权系数即可。 这样经不断学习与控制, 不断重复以上过程, 学习与控制交替进行, 生成符合要求的动态脉谱参数, 对下一循 环中传感器信号进行预测控制, 经过一段时间 (多个循环过程)的学习聚类, 通过多次 逼近达到了实际目标值, 最大能力的消除了时滞带来的控制偏差, 从而达到对发动机 的精确控制。 具体的, 如图 2所示, 本发明所提供的发动机控制方法过程如下:
(1) 设被控制输出量 (=7, 2, 3...), 即基本脉谱参数的期望控制目标值; 在 应用该期望控制目标值的条件下连续测量发动机 "个工作循环的时间 t,和转速信号、 节气门位置信号、 喷油脉宽信号、 进气压力信号、 氧传感器信号、 爆震信号、 大气压 力信号、 水温信号、 燃油温度信号、 机油温度与机油压力信号、 VNT截面开度 (有涡 轮增压器时)和 EGR阀开度信号、 蓄电池电压信号以及以上各信号的变化率, 并特别 处理氧传感器和爆震传感器信号,如根据氧传感器反馈量变化率的变化趋势进行软测 量方式的目标空燃比控制;根据爆震传感器信号经选频检波器作用后按 n个循环爆震 发生的概率在 2%-5%以内为最佳点火调整阈值, 而取代传统的爆震安全角距离。 其 中, n值在台架试验中标定。
以上信号经控制系统并以以下公式
N N N N N
/=1 /=1 =1 /=1 进行拟合计算处理, 得到基本控制目标:^
公式中, 。为基本脉谱参数值或传感器信号值, ^为控制目标变化率或传感器 信号变化率; ^第1个循环时间; 第 i个循环的控制目标平均变化量。
(2) 通过拟合的数据再利用关系 =/|^1,^, …,^拟合, 式中, dl/dt, dt dt J
d2/dt, ..., dn/dt, 分别为相关测值变化率; 将被控制输出量改变为 = w+ ly, (i=l, 2, 3...);
(3) 设计控制律逻辑确定被控制输出量由: 改为:,·之后, 发动机各被测量即 相关传感器的特征信号的变化率趋近于零, 该趋近于零的值 ε被视为最佳条件, 该条 件下的目标值 y被优化选出成为新的控制目标, 以及对应的査表条件改变。
yj - yj-i 〉0时, 有 6厂 bj.j 〉ε, 则 +/ = yj+Ay (Ay>0)。
yj-yj-i <0时 ,'·有 bj-bj—i <ε, 则 +/ = ;〉^。
yj-yj.i 〉0时, 有 bj- bj—i <ε, 则^ + = . - iy 〉φ。
yj-yj.i <0时, 有 <ε, 则^ w= .-^^
(4) 以上是以发动机各相关传感器测量值及其变化矢量为反馈参数的对;进行 自适应控制的过程。 该过程在《次工作循环中若使发动机平稳工作 (各条件参数变化 不大, 即有趋近于零的 ε, 概率分布在允许的范围内), 则控制目标: 被定义在
几何体区域内, 得出控制目标空间区域, 并对区域内不断定步长插值逼进极小 空间区域而进行控制; 此时表现出的发动机各参数即为发动机最优条件参数, 该条件 下的目标值即被优化选出的控制目标;
(5) 当变化趋势在 n次循环中稳定或最佳条件出现时, 控制策略对微处理器及 发动机的各时滞效应将按学习的模式进行预测消除, 相同事件再次发生时联想控制; 工况变化或同工况下条件变化时再按上述原则, 如此反复;
(6) 以上过程中, n以稳定的鲁棒性为界而确定, ε值为一多因素相关微小量常 数。 这两个参数在台架数据时反复验证并予以确认。
在上述发动机的控制过程中,修正的基本脉谱参数和应用该修正参数时的各相关 传感器的信号值被小脑关节控制器 CMAC聚类优化存储; 优化的原则分两个方面, 一是不断对基本工况条件和记忆的操作条件对动态脉谱参数值按趋势找出寻优区域 不断逼近控制, 确定最优条件 ε出现时的数据节点, 这样减少了空间占用率, 同时也 缩短了动态脉谱参数的生成周期; 二是采用紧凑型地址空间存储策略,避免多余单元 重新分配地址, 即采用统一地址求余运算得到训练存放权值的空间, 以满足硬件实现 要求。具体的聚类优化实现方案包括: 一是通过各位置状态信号测量反馈上一循环的 执行机构目标定位情况,控制系统将实际目标值与输出的修正目标值计算偏差及偏差 变化率输入小脑关节控制器 CMAC进行自适应权值修正, 二是通过前馈方式训练和 跟踪获得被控目标模型, 用 x(k)表示系统状态, u(k)表示控制向量时, 对执行机构的 控制描述为 x(k+l)=g[x(k), x(k)]; 三是控制系统通过对与控制目标相关的传感器信 号在规定循环周期内算出其信号量的变化率,通过变化率确定变化趋势, 以确定控制 方向,通过控制策略利用该变化趋势预测给出期望输出目标, 通过与实测目标的偏差 和偏差变化率计算, 各相关传感器信号的变化率计算, 不断修正权值, 按各变化率趋 近于零的稳定性趋势, 逼近控制目标。
在上述自适应学习参数聚类暂存的基础上, CMAC 在动态脉谱参数的预存期内 作为控制器使用, 即此阶段控制策略由 CMAC控制器执行, 通过逼近控制寻优, 在 曲轴转角加速度的变化率趋近于一个接近于零的常数时生成动态脉谱参数并将控制 权转移给微处理器, 具体如下:
a、 确定动态脉谱生成区域: 以同一工况、 同一条件下的某一控制目标的基本脉 谱, 以及表征此刻的工况与条件的相关各特征信号值为数据节点, 以该节点的基本修 正脉谱参数 y为中心值, 以期望控制目标和实际控制目标偏差为基本参考半径, 找出 动态脉谱生成区域 (y_ Ay, y+ Ay);
b、 确定动态脉谱生成的寻优区域: 在同维空间区域利用该数据节点中表征该工 况的相关各特征信号值的变化率大小进行动态脉谱生成趋势判定,从而判定更小的区 域在 (y— Ay)还是在 (y+ Ay)—边, 确定后以 (y— Ay)或 (y+ Ay)区域的中值为目标逼 近后的新节点, 并且以该目标为中心, 确定新的逼近后的动态脉谱生成区域, 如此反 复, 不断逼近, 直到最小的区域 min(y— Ay, y+ Ay)出现, 该区域为寻优区域; c、 生成动态脉谱: 当表征该工况的相关各特征信号值趋近于一个近似于零的常 数 ε 时, 以及进行概率统计处理的相关特征信号的概率分布在允许的范围内, 确定 min(y- Ay, y+ Ay)中的中值点 ym, 该点即为作为生成的动态脉谱参数值被送于暂 存器中用于对控制目标的输出,重复前述的过程,不断计算前一循环的各相关变化率, 在当前循环中控制和学习,在下一循环中预测输出。在此阶段,学习与控制交替进行, 控制也是由小脑关节控制器 CMAC完成的。
d、 确定动态脉谱: 重复以上过程 a-c, 进行经验聚类, 当相关各特征信号值的变 化率 ε以及相关特征信号的概率分布稳定在一个允许的变化范围内时,即当稳定性阈 值出现时, 该预测控制目标的动态脉谱参数值即确定的动态脉谱参数,被存入铁电存 储器中, 稳定性阈值出现时的各传感器信号值为一组数据节点, 被确定为决定该动态 脉谱参数输出的工况条件信号, 而与被控目标共同构成数据节点; 至此, 小脑关节控 制器 CMAC重新回到自适应学习状态, 由微处理器根据控制策略进行对发动机不同 目标的控制。
e、 刷新动态脉谱: 生成的动态脉谱在控制过程中, 由于发动机自身特性及使用 环境改变使其控制目标也有所变化, 其所组成的数据节点在进行 a-d的过程时, 当确 定其相关各特征信号值变化率 ε 改变以及相关特征信号的概率分布不在允许的变化 范围时, 重新生成并确定新的动态脉谱参数, 经经验聚类确定, 对原来数据节点地址 单元刷新。
上述过程中, 小脑关节控制器 CMAC进行自适应参数分工况、 分条件的经验聚 类暂存并控制动态脉谱生成的操作流程如图 3Α所示。
同时可以看出,在发动机的控制过程中, 对发动机的控制权不断在微处理器和小 脑关节控制器 CMAC之间交替,实现动态脉谱参数的刷新和组合控制,如图 3Β所示: 发动机进入工作时,控制系统根据不同的操作条件和各传感器的状态信号判定发动机 当前的工况类别,即基本操作条件与当前相关传感器的状态构成控制系统选定工况的 当前基本工况条件, 控制系统根据上述条件确定当前工况, 计算输出该工况下的基本 脉谱参数。如果此过程有经过自适应学习生成的动态脉谱参数存在, 控制系统经稳定 性优化判比, 若该动态脉谱参数更优于基本脉谱参数, 则输出的是该动态脉谱参数。 换句话说,就是按照动态脉谱组合策略将基本脉谱参数和生成的动态脉谱参数构成组 合脉谱参数, 采用组合脉谱参数替换基本脉谱参数, 进行发动机的控制, 包括: a、 比较同工况、 同条件或者同工况、具有非常相近的条件下的基本脉谱参数和生成的动 态脉谱参数; b、 当组成数据节点的元素中, 相关各特征信号值相同而目标参数不同 时,根据相关各特征信号值的变化率将所述动态脉谱参数全部或部分地设置为发动机 组合脉谱参数, 并屏蔽相应基本脉谱参数; 其中, 根据相关各特征信号值的变化率将 所述动态脉谱参数全部或部分地设置为发动机组合脉谱参数的步骤包括:当被确定使 用的动态脉谱参数在对目标控制时,相关各特征信号值的变化率无法稳定在允许范围 内时, 放弃该动态脉谱参数, 将该工况、 该条件下的基本脉谱参数设置为发动机组合 脉谱参数并重新生成动态脉谱参数; c、 当相关各特征信号值不完全相同但目标参数 相同时,对该不相同特征信号值分别按前一循环值与当次循环值计算变化率, 比较该 变化率, 取小判优, 确定组合脉谱参数, 所述组合脉谱参数包括全部或部分的动态脉 谱参数。
该组合脉谱参数作为新的基本脉谱参数被传感器的反馈信号进行修正,修正后的 组合脉谱参数分别对各执行器控制, 如控制喷油器以决定喷油脉宽, 以改变空燃比; 控制点火模块以决定点火正时; 控制怠速阀以决定怠速转速; 控制进气系统, 以调整 进气充量系数和空燃比; 控制 EGR阀以改善排放等控制。
下面分别以不同的组合脉谱参数为例,对本发明提供的发动机控制方法进行具体 说明。
如图 4所示, 为应用喷油组合脉谱参数进行发动机喷油脉宽控制的实施例: 控制 系统根据转速信号、进气压力信号和反映操纵状态的节气门位置信号按喷油脉宽控制 策略给出基本喷油脉谱参数,该基本喷油脉谱参数在系统闭环控制状态时其控制策略 还受氧传感器信号的反馈调节; 而且受组合控制策略匹配。
由于发动机相关工况参数 (如冷却水温度、 燃油温度、 进气温度等)的反馈, 系统 将按不同工况的要求控制常规控制器依据工况参数对基本喷油脉谱参数进行修正,修 正后的基本喷油脉谱参数提供给小脑关节控制器 CMAC和喷油器; 小脑关节控制器 CMAC对修正的喷油器控制目标 (脉谱参数)进行自适应学习和跟踪,并根据发动机相 关工况参数的变化率、 氧传感器信号的变化率、 喷油脉宽的偏差及偏差变化率按图 2 和图 3给出的方法, 生成喷油脉宽动态脉谱参数, 该动态脉谱参数经寻优条件确定后 写入铁电存储器; 当喷油脉宽控制策略判比确定应用组合脉谱参数策略时, 喷油脉宽 动态脉谱参数在组合控制策略的作用下,与基本喷油脉谱参数合成组合脉谱参数对发 动机喷油器进行喷油脉宽自适应控制。
另外,控制系统将根据上述工况参数对发动机当前工况模糊判定出单目标寻优方 向, 即功率目标、 经济目标和正常目标, 该优化目标一经选定, 控制系统将给定空燃 比目标 (即给定喷油脉宽或对喷油脉宽和进气量进行软测量定混合比的双因素联调给 定空燃比)进行预测闭环控制。
预测闭环控制以及预测控制的确定由控制系统对氧传感器信号的变化率按变化 方向判别趋势给出,这样最大能力的将时滞影响降到最小, 其带来的扰动被小脑关节 控制器 CMAC进行消偏差和抗干扰处理, 目的是被控的空燃比目标按期望的动态特 性跟踪期望 (预测)空燃比, 使系统达到稳定的精确控制。
如图 5所示, 为应用点火组合脉谱参数进行发动机点火正时控制的实施例: 控制 系统根据反映转速和上止点位置的曲轴位置信号、反映负荷大小的进气压力信号、反 映空燃比状况的喷油脉宽信号、反映操纵意图的节气门位置信号和这些信号的多因素 相关性, 按点火正时控制策略给出基本点火正时脉谱参数。
由于针对点火正时控制相关的工况参数在控制系统中是一个多因素相关过程,点 火正时与发动机转速、 负荷、 空燃比、 冷却水温度、 压缩比、 进气压力、 燃油辛垸值、 混合气湍流程度、 EGR 率以及燃烧室的形状均有关系; 实施控制时, 控制系统采集 与点火正时相关的发动机工况参数, 以及闭环控制时的爆震信号, 如果有必要时, 对 火焰信号角 (火焰电离传感器信号)也进行概率统计处理, 将有更好的效果, 这是因为 该传感器可表征燃烧过程, 即测定火焰前峰到达时刻, 利用湍流、 燃烧学的统计理论 和小脑关节控制器 CMAC的软测量处理功能, 推算出层流火焰传播速度, 从而推算 出燃烧持续角而自适应修正点火正时脉谱参数;特别说明的是基本点火正时脉谱参数 将以以上相关因素为基本条件, 通过点火控制策略分为按工况以及条件区分的经济 性、 动力性、 排放性和综合性基本点火正时脉谱参数, 在控制过程中自适应选择。
常规控制器通过采集与点火正时相关的工况参数对基本点火正时脉谱参数进行 修正输出, 其修正由相关选定开关影响, 相关选定开关是针对燃油辛垸值和压缩比设 置的, 因为辛烷值不同, 燃烧速度也不同, 压缩比不同, 火焰传播距离和传播时间不 同; 其中, 辛烷值的选定是根据爆震信号在单位时间内的概率密度或火焰传导角信号 和曲轴位置信号加速度来确定; 压缩比选定是按不同发动机的压缩比不同,通过台架 试验确定一个影响常数。特别说明的是组合脉谱参数控制策略对输入常规控制器的点 火正时脉谱参数的作用, 在组合控制策略的作用下, 当有合适动态脉谱参数时, 根据 控制的判别, 当使发动机最稳定条件时所确定的动态脉谱参数, 将在该所有条件具备 时, 可能全部或部分取代原台架标定的基本点火正时脉谱参数, 此时点火正时控制策 略通过组合控制策略直接将铁电存储器中该工况、该条件下的动态脉谱参数送入常规 控制器, 经常规控制器修正处理输出点火正时修正脉谱参数, 该动态脉谱参数驱动点 火控制模块 (器)控制火花塞点火。
小脑关节控制器 CMAC 对修正的点火模块控制目标 (脉谱参数)进行自适应学习 和跟踪, 并根据发动机相关工况参数的变化率、 爆震传感器信号的概率密度分布、 进 气压力变化率、 喷油脉宽变化率、 节气门位置变化率、 曲轴转角加速度、 着火延迟角 和燃烧持续角的偏差及偏差变化率按图 2和图 3给出的方法,生成点火正时动态脉谱 参数, 该动态脉谱参数经寻优条件确定后写入铁电存储器; 当点火正时控制策略判比 确定应用组合脉谱参数策略时, 点火正时动态脉谱参数在组合控制策略的作用下, 与 基本喷油脉谱参数合成组合脉谱参数对发动机点火控制模块 (器)进行点火正时自适 应控制。
对于点火正时的自适应控制, 综合了火焰传导角信号的作用(包括进行门限值概 率检测, 并与爆震传感器信号进行融合处理) , 例如爆震传感器信号经选频检波器作 用后按 n个循环爆震发生的概率在 2% -5 %以内为最佳点火调整目标阈值, 爆震发生 的概率超过这个阈值将延迟点火角;在这个范围内相关传感器的信号经聚类判别被确 定为该动态点火脉谱参数的最佳条件, 当部分条件改变时, 小脑关节控制器 CMAC 将以该阈值为期望目标不断学习与控制, 从而取代传统的爆震安全角距离。
如图 6所示, 为应用进气组合脉谱参数进行发动机进气控制的实施例: 发动机进气通 过进气管 1和空气滤清器 2、 稳压箱 4, 通过进气流量检测仪 5和电子节气门控制器 6和 引射腔 13, 经进气歧管进入发动机 14; 当对空燃比目标强制调整时, 经过进气管 1和空 气滤清器 2到达稳压箱 4的进气还要通过旁通管 7和旁通进气电磁阀 8进入辅助稳压箱 12, 通过调速电控压气机 9、 比例电磁阀 21或引射空气喷射口 11, 经引射腔 13和进气歧管进 入发动机 14。
实施过程中, 控制器 10根据进气温度传感器 3信号、 油门踏板位置信号 18、 电 子节气门控制器 6的位置信号、喷油器 15的喷油脉宽信号、氧传感器 17信号以及来 自发动机 14 的其它进气相关状态信号 22(如转速信号、 进气压力信号、 水温信号、 火焰信号传导角等),控制进气系统执行器,如旁通进气电磁阀 8、调速电控压气机 9、 比例电磁阀 21对发动机 14进行进气控制。
控制机理是: 第一个方面, 由于旁通管 7气路的作用, 使一部分进气绕过了进气流量 检测仪 5和电子节气门控制器 6, 一定量的空气在调速电控压气机 9、 比例电磁阀 21、 引 射空气喷射口 11、 和引射腔 13的作用下流过该通道, 强制调整了空燃比, 使进气得到了 补偿控制;第二个方面是由于使用稳压箱 4和辅助稳压箱 12,并且在不同的工况条件下不 同程度的并联使用, 由于稳压箱具有亥姆赫兹谐振器的效应, 进气通过稳压箱 4起到进气 管内压力波的幅值和相位调整作用, 由此改变了惯性气波增压效果; 而且也降低了调速电 控压气机 9和进气系统带来的噪音; 第三个方面是, 通过调速电控压气机 9、 引射空气喷 射口 11和引射腔 13、 比例电磁阀 21的作用对进入进气歧管的气流进行了涡流强度调整, 并且对喷油雾化和燃烧起到了有益的作用:。
控制过程中,控制器 10根据以上相关控制信号和油门操纵信号 20输出旁通进气电磁 阔 8控制信号、 电子节气门控制器 6控制脉谱、 调速电控压气机 9控制脉谱、 比例电磁阀 21控制脉谱, 以上控制量经电子节气门控制器 6的位置传感器信号、 喷油器 15的喷油脉 宽信号、 氧传感器 17信号, 以及其它如进气压力、 温度和水温等信号通过控制器 10的常 规控制器对输出信号和输出脉谱进行修正输出, 输出过程由控制器 10的小脑关节控制器 CMAC自适应跟踪学习并根据曲轴位置加速度、 喷油脉宽变化率、 氧传感器 17信号变化 率、进气压力和进气流量变化率进行图 1到图 3的控制和学习过程; 当产生动态控制脉谱 时,控制器 10根据内置控制策略以及组合控制策略输出组合脉谱对以上执行器进行控制。 如图 7 所示为应用怠速控制组合脉谱参数进行发动机怠速控制的实施例。 本例 中, 通过组合脉谱参数控制方法对电子节气门实施闭环控制, 使节气门的开度稳定在 一个相对固定的怠速位置。
控制系统根据发动机怠速工况状态信号, 即节气门位置信号、进气流量信号、 转 速信号、 冷却水温度信号、 喷油脉宽信号以及其它相关信号, 如大气压力、 进气温度 等, 按控制策略, 査取经台架标定的节气门力矩电机的基本脉谱参数, 通过常规控制 器对基本脉谱参数进行修正输出控制节气门力矩电机运动。
常规控制器内置怠速的 PID模糊控制策略,利用怠速工况发动机各状态参数, 如 冷却水温度和大气压力等, 并利用上一工作循环的相关状态参数的变化率和偏差, 如 曲轴转角加速度和转速偏差, 以及各辅助电器开关状态, 如空调开关, 对基本脉谱参 数进行修正输出。
小脑关节控制器 CMAC对控制节气门力矩电机的输出基本脉谱参数进行自适应 学习跟踪, 并根据控制策略生成相应的动态脉谱参数暂存聚类, 该动态脉谱参数通过 组合控制策略参与控制目标控制, 在几个循环的反复验证、 判比和不断参与修改、 聚 类和联想, 当发动机在怠速工况最稳定的工况条件出现时,确定该动态脉谱参数以及 稳定条件; 确定的动态脉谱参数被存入铁电存储器, 取代基本怠速脉谱参数对目标进 行控制。
当器件特性和使用环境发生改变时, 重复以上过程进行控制。 当负荷突变时, 控 制系统充分考虑发动机各状态信号的传递时滞效应,依据聚类的联想记忆学习经验对 目标进行预测控制, 并在几个工作循环内对工况信号变化率进行趋势判定, 以尽快自 适应学习该状态进行聚类暂存,类似情况连续发生时进行自适应跟踪调整修正, 生成 动态脉谱参数。类似情况随机发生时, 聚类记忆生成突变时的动态脉谱参数和工况条 件, 再次发生时进行预测控制。
如图 8所示为应用 EGR率组合脉谱参数进行发动机 EGR率控制的实施例;在图 8中, 控制要求是: 在部分负荷下采用 EGR率, 全负荷及节气门开度低于 20%的工 况下, EGR率取零。 EGR率的控制范围为 5 % --25 %。
控制过程中, 控制系统根据节气门位置信号和由曲轴位传感器测出的转速信号, 按 EGR率控制策略, 查出 EGR率基本脉谱参数, 常规控制器根据节气门位置信号、 转速信号、 进气压力信号、 冷却水温度信号确定当前所在工况, 对符合 EGR率控制 要求的工况, 按该工况下相关传感器的信号对 EGR率脉谱参数进行调整修正后输出 EGR率修正脉谱参数, 该 EGR率修正脉谱参数控制 EGR率比例电磁阀工作。
小脑关节控制器 CMAC对控制 EGR率比例电磁阀的 EGR率修正脉谱参数进行 自适应跟踪并学习, 这里特别指出的是小脑关节控制器 CMAC利用节气门位置偏差 和曲轴转角加速度的变化对 EGR率的控制修正进行了软测量方式推定,使 EGR率在 5 % -25 %的范围内进行了自适应最佳配比。 小脑关节控制器 CMAC 的另一个作用是 通过自适应学习,依据本发明前面叙述的自适应控制策略和动态脉谱参数生成策略生 成动态脉谱参数,该动态脉谱参数经判比适合于对目标控制时将按照组合脉谱参数控 制策略全部和部分取代 EGR率基本脉谱参数重复上述过程。
相应的, 本发明提供的发动机控制装置可以图 9和图 10所示的具体电路加以实 施。
其中, 图 9为本发明提供的发动机控制装置中, 与传感器相关的实施例的电路: 微处理器 U1的 31、 32脚分别与存储器 U16的 29、 24脚相连, 40脚通过电阻 R1 接 VCC高电平, 通过电容 C1接地, 通过开关 S1接地; 微处理器 U1的 73、 74 脚之间接有晶振 Yl, 并且通过电容 C2、 C3接地;
进气压力、 大气压力传感器的信号经过缓存器 U2进入锁相环 U3进行 V/F转换 处理后, 通过光电耦合器 OP1输入到微处理器 U1的 A/D 口 P50、 P51脚, 供微处理 器 U1采集和进行分析计算处理。
氧传感器信号经运算放大器 U4对其进行 10倍放大后输入对数放大器 U5, 经对数放 大器 U5 的放大后由对数放大器 U5 的 10脚输出后, 经运算放大器 U6进行 I-V变换为 5-0V电压信号输入到微处理器 U1的 A/D 口 P52脚, 供微处理器 U1对空燃比进行分析 判定。
将冷却水温度信号、进气温度信号、环境温度信号通过串接分压电阻转换为模拟 电压信号供比较器 U7比判,比较器 U7依次输出数字信号输入到微处理器 U1的 A/D 口 P54、 P55、 P56脚,供微处理器 Ul来分析判断发动机工况。
曲轴位置传感器信号输入到磁变换器 U8 进行转换处理后, 输入到微处理器 U1 的 A/D 口 P57脚, 供微处理器 U1进行分析计算处理。
节气门位置信号、 油门踏板信号经降压后输入到运算放大器 U9放大处理后, 输 入到微处理器 U1的 A/D 口 P46、 P47脚, 供微处理器 U1进行分析计算处理。
爆震的信号通过由运算放大器 U10及其外围电路组成的信号选频放大电路进行 放大处理后, 输入到由运算放大器 U10E组成的检波电路, 检波器的输出信号经过一 个非门缓冲后输入微处理器 U1的 P16脚, 供微处理器 U1进行分析计算处理。
反相器 U11和门电路 U12组成喷油信号脉冲鉴宽电路; 喷油信号输入到微处理 器 U1的 INTP0 口 P01脚, 供微处理器 U1进行分析计算处理。
由 CAN通信接收器 U13组成 CAN通讯模块的接收节点单元。
由异步串行通讯处理器 U14、 通讯口 DB9和电子开关 U15等组成系统写入程序 通讯电路。 由寄存器 U16和 8段数码管 DS组成系统故障代码显示电路, 以判比系统 故障信息。
电离传感器信号通过由微功耗运算放大器 U18、 U17及其外围电路组成的恒电位 仪电路和电流检测电路处理后,传感器信号的电位被控制在一个定值, 传感器信号经 处理后输入到微处理器 U1的 P27脚, 供微处理器 U1进行分析计算处理。
电压信号通过由锁相环 U19组成的电源检测电路处理后, 通过光电耦合器 OP3输入 微处理器 U1的 P26脚, 实时检测电瓶电压量, 为系统提供可靠性稳压直流电源。
大灯开关信号、 空档位置信号、 方向助力信号、 空调请求信号通过串接分压电阻 转换为模拟电压信号供斯密特触发器 U20整形后, 依次输出数字信号输入到微处理 器 U1的 P21、 P22、 P23、 P24脚, 给微处理器 Ul来判断分析发动机工况。
转速信号经过时基电路 U21 调理后, 通过光电耦合器 OP4输入到微处理器 U1 的 P20脚, 供微处理器 U1进行分析计算处理。
微处理器 U24、 锁存器 U22、 动态储存器 U23构成小脑关节控制器 CMAC, 在 微处理器 U1的控制下, 依据内置控制策略自适应学习, 并对受空燃比目标值进行调 节逼近; 动态储存器 U23 是闪存存储器, 其对类聚调节参数进行刷新存储, 在微处 理器 U24的控制下参与新工况下的控制器控制。
由扩展口 U26和存储器 U25构成预备扩展闪存器, 存储系统脉谱 MAP数据。 图 10为本发明提供的发动机控制装置中, 与驱动相关的实施例的电路: 微处理 器 U1利用其 I/O端口 P70-P77, 通过开关量驱动器 U37、 U38对喷油信号进行采集 与反馈分析判比处理后, 通过功率驱动管 Q11-Q14对发动机的喷油进行实时控制。
微处理器 U1 利用其 I/O 端口 P120-P127 输出控制信号经过光电耦合器 OP31-OP24组成的抗干扰电路隔离后, 通过开关量驱动器 U35、 U36对信号进行采集 与反馈分析判比处理后, 通过功率驱动管 BT12-BT15组成的驱动电路, 驱动故障指 示报警开关、 进气谐振引射开关、 EGR电磁阔开关及炭罐电磁阀开关的幵关量控制。
微处理器 U1利用其 I/O端口 P30-P37, 通过开关量驱动器 U33、 U34对点火信 号进行采集与反馈分析判比处理后, 通过功率驱动管 BT8 -BT11对发动机的点火进 行实时控制。
微处理器 U1利用其 I/O端口 P110-P11 1输出步进电机及电磁阀的驱动信号, 经 过光电耦合器 OP22、 OP23 组成的抗干扰电路隔离后, 分别驱动三极管和 H桥电路 及功率驱动器 QE1 电路, 驱动步进电机 MG1动作和电磁阀 DJ1动作, 进行进气流 量控制。
微处理器 U1 利用其 I/O 端口 P100-P107 输出控制信号经过光电耦合器 OP14-OP21组成的抗干扰电路隔离后,通过开关量驱动器 U30、 U31对信号进行采集 与反馈分析判比处理后, 通过功率驱动管 BT5-Bt7、大功率驱动管 U32组成的驱动电 路, 进行开关量的控制。
微处理器 U1驱动控制信号经光电耦合器 OP13隔离处理后, 通过三极管 Q2放 大后驱动功率管 Q3, 控制驱动电子节气门的高低电位; 并且通过由信号放大器 U29 组成的电流监控电路处理后, 输入到微处理器 U1的 A/D口 P46脚, 实时对电流进行 监控, 并用于位置反馈处理。
微处理器 U1利用其 I/O端口 P150-P157输出控制信号经过光电耦合器 OP5-OP12 组成的抗干扰电路隔离后, 通过功率驱动管 BT1-BT4组成的驱动电路, 驱动备用的 开关量控制。
由微处理器 U1的 P130、 P131脚分别输出 PWM1、 PWM2控制信号, 通过功率驱动 器 Q15-Q18组成的 H桥驱动电路, 经过稳压整流二极管 D11-D14组成的整流隔离电路来 驱动控制节气门电机 MG2。
虽然已参照几个典型实施例描述了本发明,但应当理解,所用的术语是说明和示例性、 而非限制性的术语。 由于本发明能够以多种形式具体实施而不脱离发明的精神或实质, 所 以应当理解, 上述实施例不限于任何前述的细节, 而应在随附权利要求所限定的精神和范 围内广泛地解释,因此落入权利要求或其等效范围内的全部变化和改型都应为随附权利要 求所涵盖。

Claims

权利要求
1、 一种发动机的控制方法, 包括以下步骤:
控制单元根据基本操作条件和各传感器的特征信号值确定当前工况,并根据基本脉谱 参数产生当前工况下发动机不同目标的期望目标值,按照修正策略修正后对发动机的不同 目标进行控制;
其特征在于, 在发动机控制过程中, 控制单元还执行以下步骤:
步骤 Sl、 对发动机不同目标反馈的实际目标值进行自适应学习, 按照动态脉谱生成 策略对所述同工况、同条件下的自适应学习参数与基本脉谱参数进行寻优比判,如果不满 足条件则保持所述基本脉谱参数; 如果满足条件, 则生成动态脉谱参数;
步骤 S2、 按照动态脉谱组合策略将所述基本脉谱参数和生成的动态脉谱参数构成组 合脉谱参数, 采用所述组合脉谱参数替换基本脉谱参数。
2、 根据权利要求 1所述的发动机的控制方法, 其特征在于: 所述工况包括中小负荷 工况、 大负荷工况、 起动工况、 加减速工况以及怠速工况。
3、 根据权利要求 1所述的发动机的控制方法, 其特征在于: 所述组合脉谱参数包括 发动机点火组合脉谱参数、发动机喷油组合脉谱参数、发动机进气组合脉谱参数、发动机 怠速控制组合脉谱参数、 EGR率组合脉谱参数和发动机点火闭合角组合脉谱参数。
4、 根据权利要求 1所述的发动机的控制方法, 其特征在于: 所述基本脉谱参数包括 经过台架标定的脉谱参数和经过台架及道路参数优化标定的脉谱参数。
5、 根据权利要求 1-4任一所述的发动机的控制方法, 其特征在于: 所述按照修正策 略修正基本脉谱参数的步骤包括:
采用来自反映发动机工况的相关各传感器的特征信号值对所述基本脉谱参数进行修 正;
采用新的相关各传感器的特征信号处理方式对不可直接测得量进行软测量方法推断 以及推断而得到软测量特征信号值对所述基本脉谱参数进行修正; 以及
利用通过期望目标值与实际目标值进行纠偏过程中进行权值匹配而自适应学习的相 关各传感器的特征信号值对所述基本脉谱参数进行修正;
其中,相关各传感器的特征信号,包括发动机上的各传感器信号以及采用软测量方式 推断出的特征信号, 包括: 发动机的曲轴位置及转速信号、 上止点信号、 转矩信号、 喷油 脉宽信号、 节气门位置信号、 氧传感器信号、 燃油温度信号、 机油温度信号、 环境压力信 号、 供电回路电压信号、 水温传感器信号、 排气温度信号、 进气压力信号, 空燃比信号、 爆震信号、火焰传导角信号, 以及爆震信号在几个循环的选频频率的概率分布、火焰传导 角信号超过时间阈值的概率。
6、根据权利要求 1-4任一所述的发动机的控制方法,其特征在于:所述步骤 S1包括: 根据工况条件和使用条件的变化以及发动机自身因素变化学习生成的一系列自 适应参数, 并将所述自适应参数分工况、 分条件进行经验聚类暂存;
在对发动机的不同目标进行控制的过程中不断按动态脉谱生成策略对同工况、 同条件下的基本脉谱参数和暂存的自适应学习参数按寻优条件进行比判, 暂存的自 适应学习参数符合动态脉谱生成策略时, 形成该工况该条件下的动态脉谱参数, 并 且在以后的控制中不断学习, 反复进行以上过程并不断刷新。
7、 根据权利要求 6所述的发动机的控制方法, 其特征在于: 所述按动态脉谱生 成策略生成动态脉谱参数的步骤包括:
a、 确定动态脉谱生成区域: 以同一工况、 同一条件下的某一控制目标的基本脉 谱参数, 以及表征此刻的工况与条件的相关各特征信号值为数据节点, 以该节点的 基本修正脉谱参数 y为中心值, 以期望控制目标值和实际控制目标值偏差为基本参 考半径, 找出动态脉谱生成区域 (y— Ay, y+ Ay);
b、 确定动态脉谱生成的寻优区域: 在同维空间区域利用该数据节点中表征该工 况的相关各特征信号值的变化率大小进行动态脉谱生成趋势判定, 从而判定更小的 区域在 (y— Ay)还是在 (y+ Ay)—边, 确定后以 (y— Ay)或 (y+ Ay)区域的中值为目标 逼近后的新节点, 并且以该目标为中心, 确定新的逼近后的动态脉谱生成区域, 如 此反复, 不断逼近, 直到最小的区域 min(y— Ay, y+ Ay)出现, 该区域为寻优区域; c、 生成动态脉谱: 当表征该工况的相关各特征信号值趋近于一个近似于零的常 数 ε 时, 以及进行概率统计处理的相关特征信号的概率分布在允许的范围内, 确定 min(y- Ay, y+ Ay)中的中值点 ym, 该点即为生成的动态脉谱参数;
d、 确定动态脉谱: 重复以上过程 a-c, 进行经验聚类, 当相关各特征信号值的 变化率 ε 以及相关特征信号的概率分布稳定在一个允许的变化范围内时, 确定该动 态脉谱参数, 存入铁电存储器, 此时, 确定的动态脉谱参数和所对应的相关各特征 信号值为一组数据节点, 该节点即为动态脉谱参数;
e、 刷新动态脉谱: 生成的动态脉谱在控制过程中, 由于发动机自身特性及使用 环境改变使其控制目标也有所变化, 其所组成的数据节点在进行 a-d的过程时, 当确 定其相关各特征信号值变化率 ε 改变以及相关特征信号的概率分布不在允许的变化 范围时, 重新生成新的动态脉谱参数, 经经验聚类确定, 对原来数据节点地址单元 刷新。
8、根据权利要求 1-4任一所述的发动机的控制方法,其特征在于:所述步骤 S2包括: a、 比较同工况、 同条件或者同工况、 具有非常相近的条件下的基本脉谱参数和 生成的动态脉谱参数;
b、 当组成数据节点的元素中, 相关各特征信号值相同而目标参数不同时, 根据 相关各特征信号值的变化率将所述动态脉谱参数全部或部分地设置为发动机组合脉 谱参数, 并屏蔽相应基本脉谱参数; 其中, 根据相关各特征信号值的变化率将所述 动态脉谱参数全部或部分地设置为发动机组合脉谱参数的步骤包括: 当被确定使用 的动态脉谱参数在对目标控制时, 相关各特征信号值的变化率无法稳定在允许范围 内时, 放弃该动态脉谱参数, 将该工况、 该条件下的基本脉谱参数设置为发动机组 合脉谱参数并重新生成动态脉谱参数;
c、 当相关各特征信号值不完全相同但目标参数相同时, 对该不相同特征信号值 分别按前一循环值与当次循环值计算变化率, 比较该变化率, 取小判优, 确定组合 脉谱参数, 所述组合脉谱参数包括全部或部分的动态脉谱参数。
9、 一种根据权利要求 1-8任一所述方法的发动机的控制装置, 其包括微处理器 以及分别与所述微处理器连接的电源检测及稳压电路、 通信接口 CAN、 LIN和外部 诊断电路、 大功率驱动电路、 开关量驱动电路和驱动电路, 以及, 来自各传感器的 模拟信号一部分通过输入调理电路、 模拟信号通道与微处理器相连, 另一部分通过 输入调理缓冲电路、 数字信号通道与微处理器相连, 来自各传感器的数字信号通过 输入调理缓冲电路、 数字信号通道与微处理器相连; 其中, 所述微处理器根据基本 操作条件和模拟信号、 数字信号确定当前工况, 并根据基本脉谱参数产生当前工况 下发动机不同目标的期望目标值, 按照修正策略修正后对发动机的不同目标进行控 制; 其特征在于, 还包括小脑关节控制器 CMAC和铁电存储器, 所述铁电存储器与 小脑关节控制器 CMAC互联, 小脑关节控制器 CMAC与微处理器互联, 其中, 小脑 关节控制器 CMAC用于在控制过程中进行发动机不同目标反馈的实际目标值的自适 应学习, 并按照动态脉谱生成策略将所述自适应学习参数与基本脉谱参数进行寻优 比判, 在满足条件的情况下生成新的动态脉谱参数并存储在铁电存储器中, 以及, 所述微处理器按照动态脉谱组合策略将所述基本脉谱参数和存储在铁电存储器中的 动态脉谱参数构成组合脉谱参数并采用所述组合脉谱参数替换基本脉谱参数。
10、 根据权利要求 9所述的发动机的控制装置, 其特征在于:
所述模拟信号包括进气压力或进气流量信号、节气门位置信号、大气压力信号、进气 温度信号、 冷却水温度信号、 氧传感器信号、环境温度信号、 油门踏板信号、 系统电压变 化信号;
所述数字信号包括曲轴位置信号、 喷油脉宽信号、 车速信号、 爆震信号、 空调 请求信号、 方向助力请求信号、 空挡信号、 大灯开关信号。
PCT/CN2008/000721 2007-04-09 2008-04-09 Dispositif et procédé de commande de moteurs WO2008122213A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/594,754 US8452522B2 (en) 2007-04-09 2008-04-09 Control method and device for engine
EP08748388A EP2148256A4 (en) 2007-04-09 2008-04-09 DEVICE AND METHOD FOR CONTROLLING MOTORS
JP2010502407A JP2010523886A (ja) 2007-04-09 2008-04-09 エンジンの制御方法および制御装置

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN200710013975.8 2007-04-09
CN200710013975 2007-04-09
CNU2007203110507U CN201125793Y (zh) 2007-04-09 2007-12-20 应用组合脉谱的发动机控制系统
CN200710302024.2 2007-12-20
CN200720311050.7 2007-12-20
CN2007103020242A CN101285431B (zh) 2007-04-09 2007-12-20 组合脉谱对发动机控制的方法

Publications (1)

Publication Number Publication Date
WO2008122213A1 true WO2008122213A1 (fr) 2008-10-16

Family

ID=40057799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/000721 WO2008122213A1 (fr) 2007-04-09 2008-04-09 Dispositif et procédé de commande de moteurs

Country Status (6)

Country Link
US (1) US8452522B2 (zh)
EP (1) EP2148256A4 (zh)
JP (1) JP2010523886A (zh)
KR (1) KR20100005212A (zh)
CN (2) CN101285431B (zh)
WO (1) WO2008122213A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109738195A (zh) * 2018-12-28 2019-05-10 成都国营锦江机器厂 Safir辅助动力装置起动试验模拟器及控制方法
CN112253321A (zh) * 2020-10-13 2021-01-22 东风汽车集团有限公司 多缸发动机基于氧传感器的单缸空燃比闭环控制方法
CN112780420A (zh) * 2019-11-07 2021-05-11 丰田自动车株式会社 发动机控制装置、发动机控制方法以及存储介质
CN113557355A (zh) * 2019-03-13 2021-10-26 纬湃科技有限责任公司 用于识别内燃机的改变功率的操纵的方法和装置
CN114279714A (zh) * 2021-12-27 2022-04-05 北京航空航天大学 高空低雷诺数下航空发动机涡轮试验台、模拟方法及应用
CN114858110A (zh) * 2022-05-09 2022-08-05 潍柴动力股份有限公司 离合器位置传感器的检测方法、装置及车辆
CN115126619A (zh) * 2022-08-04 2022-09-30 潍柴动力股份有限公司 一种传感器测量值处理方法和装置

Families Citing this family (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050256667A1 (en) * 2004-05-12 2005-11-17 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Federating mote-associated log data
US8161097B2 (en) * 2004-03-31 2012-04-17 The Invention Science Fund I, Llc Aggregating mote-associated index data
US8335814B2 (en) * 2004-03-31 2012-12-18 The Invention Science Fund I, Llc Transmission of aggregated mote-associated index data
US8346846B2 (en) 2004-05-12 2013-01-01 The Invention Science Fund I, Llc Transmission of aggregated mote-associated log data
US20050227686A1 (en) * 2004-03-31 2005-10-13 Jung Edward K Y Federating mote-associated index data
US7457834B2 (en) * 2004-07-30 2008-11-25 Searete, Llc Aggregation and retrieval of network sensor data
US7929914B2 (en) * 2004-03-31 2011-04-19 The Invention Science Fund I, Llc Mote networks using directional antenna techniques
US9261383B2 (en) 2004-07-30 2016-02-16 Triplay, Inc. Discovery of occurrence-data
US20050255841A1 (en) * 2004-05-12 2005-11-17 Searete Llc Transmission of mote-associated log data
US7389295B2 (en) 2004-06-25 2008-06-17 Searete Llc Using federated mote-associated logs
US7941188B2 (en) * 2004-03-31 2011-05-10 The Invention Science Fund I, Llc Occurrence data detection and storage for generalized sensor networks
US9062992B2 (en) * 2004-07-27 2015-06-23 TriPlay Inc. Using mote-associated indexes
US20060064402A1 (en) * 2004-07-27 2006-03-23 Jung Edward K Y Using federated mote-associated indexes
US8200744B2 (en) * 2004-03-31 2012-06-12 The Invention Science Fund I, Llc Mote-associated index creation
US8275824B2 (en) * 2004-03-31 2012-09-25 The Invention Science Fund I, Llc Occurrence data detection and storage for mote networks
JP5007176B2 (ja) * 2007-08-09 2012-08-22 ボッシュ株式会社 データ更新処理方法及び車両動作制御装置
JP4862920B2 (ja) * 2009-06-23 2012-01-25 トヨタ自動車株式会社 内燃機関の制御装置および制御方法
DE102009054905A1 (de) * 2009-12-17 2011-06-22 Robert Bosch GmbH, 70469 Verfahren zum Ermitteln von Funktionsparametern für ein Steuergerät
CN101800079B (zh) * 2010-03-30 2012-08-22 奇瑞汽车股份有限公司 一种实现参数自标定的方法和装置
KR101219956B1 (ko) * 2010-11-29 2013-01-08 현대자동차주식회사 스로틀 밸브 제어 로직을 포함하는 스로틀 밸브 장치 및 그의 제어 방법
ITCO20110028A1 (it) * 2011-07-21 2013-01-22 Nuovo Pignone Spa Sistema e metodo per l'autoregolazione di un sistema di combustione di una turbina a gas
CN103287437B (zh) * 2012-02-22 2015-07-15 厦门金龙联合汽车工业有限公司 一种基于车辆运行工况的发动机自适应系统及节油方法
DE102012211024A1 (de) * 2012-06-27 2014-01-02 Robert Bosch Gmbh Verfahren zum Betreiben eines Fahrzeuges
US20140122757A1 (en) * 2012-10-30 2014-05-01 Cloudcar, Inc. Vehicle data abstraction and communication
EP2917760B1 (en) * 2012-11-09 2018-03-28 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Vehicle spacing control
CN105026909B (zh) * 2012-12-27 2017-03-22 冷王公司 评估原动机的运行性能的系统和方法
US10818107B2 (en) 2013-03-15 2020-10-27 Predictive Fleet Technologies, Inc. Engine analysis and diagnostic system
WO2014144036A1 (en) * 2013-03-15 2014-09-18 Angel Enterprise Systems, Inc. Engine analysis and diagnostic system
JP6037020B2 (ja) * 2013-09-09 2016-11-30 日産自動車株式会社 エンジンの燃料噴射制御装置及びエンジンの燃料噴射制御方法
DE102013218308A1 (de) * 2013-09-12 2015-03-12 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine in einem Leerlaufbetrieb
CN104564395A (zh) * 2013-10-10 2015-04-29 上海汽车集团股份有限公司 一种预防汽车缺氧的方法以及汽车电控单元
JP6088397B2 (ja) * 2013-10-15 2017-03-01 日本特殊陶業株式会社 点火時期制御装置および点火時期制御システム
EP3064747B1 (en) * 2013-10-28 2020-01-01 Yanmar Co., Ltd. Auxiliary-chamber-type gas engine
US9466159B1 (en) 2015-04-10 2016-10-11 J. J. Keller & Associates, Inc. Methods and systems for automatically identifying a data source for an on-board recorder
US9840962B2 (en) * 2015-06-25 2017-12-12 GM Global Technology Operations LLC System and method for controlling inlet coolant temperature of an internal combustion engine
DE102015212988A1 (de) * 2015-07-10 2017-01-12 Robert Bosch Gmbh Fahrzeug, aufweisend eine mit einem Gas betriebene Brennkraftmaschine
DE102015214363A1 (de) * 2015-07-29 2017-02-02 Robert Bosch Gmbh Verfahren zum Bearbeiten von Sensorsignalen
CN105897074B (zh) * 2016-06-14 2019-09-27 上海华铭智能终端设备股份有限公司 一种伺服驱动器
CN106909993A (zh) * 2017-03-03 2017-06-30 吉林大学 基于时空学习的马尔科夫链微行程间隔时长预测方法
CN106968814B (zh) * 2017-05-25 2019-06-18 东南大学 一种电子节气门控制系统的控制方法
CN107370483A (zh) * 2017-08-04 2017-11-21 深圳市嘉昱机电有限公司 脉冲接收电路
DE102017215566A1 (de) * 2017-09-05 2019-03-07 Robert Bosch Gmbh Verfahren zum Betreiben eines Verbrennungsmotors während eines Warmlaufens
FR3074542B1 (fr) * 2017-12-06 2019-12-20 IFP Energies Nouvelles Procede de commande d'un moteur a combustion interne a allumage commande au moyen d'un estimateur de cliquetis
US10568261B2 (en) * 2017-12-28 2020-02-25 Cnh Industrial America Llc Dynamic combine fire risk index and display
JP2019157652A (ja) * 2018-03-07 2019-09-19 トヨタ自動車株式会社 内燃機関の制御装置
WO2019241529A1 (en) * 2018-06-13 2019-12-19 Michaelis Chad Alan Fuel testing data acquisition system calibrator and simulator
CN108682383A (zh) * 2018-06-15 2018-10-19 东莞阿尔泰显示技术有限公司 一种led显示屏的保护电路及其控制方法
CN109187028B (zh) * 2018-09-25 2020-06-09 奇瑞汽车股份有限公司 发动机超级爆震安全余量设计的试验评估方法
JP6699702B2 (ja) * 2018-10-17 2020-05-27 トヨタ自動車株式会社 内燃機関の制御装置及びその制御方法、並びに内燃機関を制御するための学習モデル及びその学習方法
JP7177672B2 (ja) * 2018-11-26 2022-11-24 オークマ株式会社 数値制御装置
IT201900004879A1 (it) * 2019-04-01 2020-10-01 Magneti Marelli Spa Metodo per il controllo della combustione di un motore a combustione interna
GB2583383B (en) 2019-04-26 2021-06-09 Perkins Engines Co Ltd Internal combustion engine controller
GB2583382B (en) * 2019-04-26 2021-10-27 Perkins Engines Co Ltd Internal combustion engine controller
GB2585178B (en) * 2019-04-26 2022-04-06 Perkins Engines Co Ltd Engine control system
US11366697B2 (en) * 2019-05-01 2022-06-21 EMC IP Holding Company LLC Adaptive controller for online adaptation of resource allocation policies for iterative workloads using reinforcement learning
CN111980818B (zh) * 2019-05-24 2022-06-24 北京车和家信息技术有限公司 发动机怠速自学习方法、车辆及计算机可读存储介质
US11586474B2 (en) 2019-06-28 2023-02-21 EMC IP Holding Company LLC Adaptation of resource allocation for multiple workloads using interference effect of resource allocation of additional workloads on performance
CN110488691B (zh) * 2019-08-06 2022-06-28 淮安信息职业技术学院 钻头测试自动测控电路
JP2021032115A (ja) * 2019-08-22 2021-03-01 トヨタ自動車株式会社 車両用学習制御システム、車両用制御装置、および車両用学習装置
JP2021032114A (ja) * 2019-08-22 2021-03-01 トヨタ自動車株式会社 車両用学習制御システム、車両用制御装置、および車両用学習装置
US11327801B2 (en) 2019-08-29 2022-05-10 EMC IP Holding Company LLC Initialization of resource allocation for a workload characterized using a regression model
JP6708292B1 (ja) * 2019-08-30 2020-06-10 トヨタ自動車株式会社 内燃機関の状態判定装置、内燃機関の状態判定システム、データ解析装置、および内燃機関の制御装置
DE102019126244A1 (de) * 2019-09-30 2021-04-01 Dr. Ing. H.C. F. Porsche Aktiengesellschaft System und Verfahren zur Kalibrierung einer Steuereinheit eines Elektromotors zur Bestimmung von Kenngrößen des Elektromotors
US11868810B2 (en) 2019-11-15 2024-01-09 EMC IP Holding Company LLC Resource adaptation using nonlinear relationship between system performance metric and resource usage
CN111007715A (zh) * 2019-12-18 2020-04-14 汉腾汽车有限公司 一种基于车辆位置、航向的自主换道方法及系统
JP7302466B2 (ja) * 2019-12-23 2023-07-04 トヨタ自動車株式会社 車両用内燃機関の劣化判定装置
JP7347251B2 (ja) * 2020-02-14 2023-09-20 トヨタ自動車株式会社 写像の学習方法
US11758835B2 (en) 2020-05-07 2023-09-19 Deere & Company Air cart with anti-pulsing roller drivetrain
CN112177811B (zh) * 2020-09-25 2021-08-31 江铃汽车股份有限公司 一种电控柴油机egr系统流量远程在线监控方法
CN112983587B (zh) * 2021-02-06 2021-12-21 无锡职业技术学院 一种具有关闭检测功能的vva电磁阀驱动系统
CN113219952B (zh) * 2021-05-10 2022-07-19 东风电子科技股份有限公司 基于车身控制模块bcm功能实现总体控制的方法、装置、处理器及其计算机可读存储介质
CN113494403B (zh) * 2021-08-11 2023-02-03 上海新动力汽车科技股份有限公司 油轨高压泵流量控制模型输出值修正方法
CN114237080A (zh) * 2021-10-27 2022-03-25 中船九江精达科技股份有限公司 一种用于摇摆环境下的力矩电机旋转定位控制方法
CN114320678A (zh) * 2021-10-29 2022-04-12 东风商用车有限公司 Egr阀卡滞诊断解决装置及其使用方法
CN114095532B (zh) * 2021-11-04 2024-04-16 湖北未知信息技术有限公司 一种基于云计算的模糊控制空调系统
CN114326680A (zh) * 2021-12-31 2022-04-12 深圳市星卡科技有限公司 一种abs系统故障诊断方法、装置、设备和介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4498036A (en) * 1983-08-15 1985-02-05 Pneumo Corporation Adaptive control system
US4697127A (en) * 1986-06-09 1987-09-29 International Business Machines Corporation Adaptive control technique for a dynamic system
US5854744A (en) * 1996-06-25 1998-12-29 Ingersoll-Rand Company Adaptive process control system
CN1230643A (zh) * 1998-04-01 1999-10-06 易通公司 自适应换高档的爪式接合套接合控制
JP2001001768A (ja) * 1999-06-23 2001-01-09 Tokai Rubber Ind Ltd 能動型振動除去システムの制御方法
CN1280926A (zh) * 1999-07-19 2001-01-24 易通公司 自适应自动变速箱换高档控制
US6415273B1 (en) 1998-02-12 2002-07-02 Yamaha Hatsudoki Kabushiki Kaisha Method of feed-forward control using control logic with anticipatory learning control

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2524557B1 (fr) * 1982-03-31 1987-05-29 Mitsubishi Electric Corp Dispositif de controle de cognement pour un moteur a combustion interne
JPS63140843A (ja) * 1986-12-03 1988-06-13 Fuji Heavy Ind Ltd アイドル回転数制御装置
US5749346A (en) * 1995-02-23 1998-05-12 Hirel Holdings, Inc. Electronic control unit for controlling an electronic injector fuel delivery system and method of controlling an electronic injector fuel delivery system
US6092018A (en) * 1996-02-05 2000-07-18 Ford Global Technologies, Inc. Trained neural network engine idle speed control system
JP2002245434A (ja) * 2001-02-20 2002-08-30 Yamaha Motor Co Ltd 進化的手法による最適解探索装置、進化的手法による制御対象の制御装置及び進化的手法による最適解探索プログラム
US6453661B1 (en) * 2001-06-20 2002-09-24 Ford Global Technologies, Inc. System and method for determining target oxygen storage in an automotive catalyst
JP4246431B2 (ja) * 2001-12-26 2009-04-02 株式会社日立製作所 エンジンの燃料制御装置
JP3966096B2 (ja) * 2002-06-20 2007-08-29 株式会社デンソー 内燃機関用噴射量制御装置
US7198038B2 (en) * 2005-08-19 2007-04-03 Gm Global Technology Operations, Inc. Learned EGR valve position control

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4498036A (en) * 1983-08-15 1985-02-05 Pneumo Corporation Adaptive control system
US4697127A (en) * 1986-06-09 1987-09-29 International Business Machines Corporation Adaptive control technique for a dynamic system
US5854744A (en) * 1996-06-25 1998-12-29 Ingersoll-Rand Company Adaptive process control system
US6415273B1 (en) 1998-02-12 2002-07-02 Yamaha Hatsudoki Kabushiki Kaisha Method of feed-forward control using control logic with anticipatory learning control
CN1230643A (zh) * 1998-04-01 1999-10-06 易通公司 自适应换高档的爪式接合套接合控制
JP2001001768A (ja) * 1999-06-23 2001-01-09 Tokai Rubber Ind Ltd 能動型振動除去システムの制御方法
CN1280926A (zh) * 1999-07-19 2001-01-24 易通公司 自适应自动变速箱换高档控制

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2148256A4

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109738195A (zh) * 2018-12-28 2019-05-10 成都国营锦江机器厂 Safir辅助动力装置起动试验模拟器及控制方法
US11821382B2 (en) 2019-03-13 2023-11-21 Vitesco Technologies GmbH Method and device for detecting a power-changing manipulation of an internal combustion engine
CN113557355A (zh) * 2019-03-13 2021-10-26 纬湃科技有限责任公司 用于识别内燃机的改变功率的操纵的方法和装置
CN113557355B (zh) * 2019-03-13 2023-12-08 纬湃科技有限责任公司 用于识别内燃机的改变功率的操纵的方法和装置
CN112780420A (zh) * 2019-11-07 2021-05-11 丰田自动车株式会社 发动机控制装置、发动机控制方法以及存储介质
CN112780420B (zh) * 2019-11-07 2023-01-10 丰田自动车株式会社 发动机控制装置、发动机控制方法以及存储介质
CN112253321A (zh) * 2020-10-13 2021-01-22 东风汽车集团有限公司 多缸发动机基于氧传感器的单缸空燃比闭环控制方法
CN114279714A (zh) * 2021-12-27 2022-04-05 北京航空航天大学 高空低雷诺数下航空发动机涡轮试验台、模拟方法及应用
CN114279714B (zh) * 2021-12-27 2022-10-25 北京航空航天大学 高空低雷诺数下航空发动机涡轮试验台、模拟方法及应用
CN114858110A (zh) * 2022-05-09 2022-08-05 潍柴动力股份有限公司 离合器位置传感器的检测方法、装置及车辆
CN114858110B (zh) * 2022-05-09 2023-12-15 潍柴动力股份有限公司 离合器位置传感器的检测方法、装置及车辆
CN115126619A (zh) * 2022-08-04 2022-09-30 潍柴动力股份有限公司 一种传感器测量值处理方法和装置
CN115126619B (zh) * 2022-08-04 2024-01-12 潍柴动力股份有限公司 一种传感器测量值处理方法和装置

Also Published As

Publication number Publication date
CN101285431B (zh) 2010-04-14
JP2010523886A (ja) 2010-07-15
CN101285426A (zh) 2008-10-15
EP2148256A1 (en) 2010-01-27
CN101285426B (zh) 2010-10-06
US20100168989A1 (en) 2010-07-01
KR20100005212A (ko) 2010-01-14
EP2148256A4 (en) 2011-07-27
US8452522B2 (en) 2013-05-28
CN101285431A (zh) 2008-10-15

Similar Documents

Publication Publication Date Title
WO2008122213A1 (fr) Dispositif et procédé de commande de moteurs
CN101285429B (zh) 组合脉谱对发动机空燃比控制的方法
Isermann Engine modeling and control
Leonhardt et al. Methods for engine supervision and control based on cylinder pressure information
CN110185569B (zh) 内燃机的控制装置及控制方法
US7275426B2 (en) Internal combustion engine control system
US8762307B2 (en) Control system for plant
Yang et al. SI and HCCI combustion mode transition control of an HCCI capable SI engine
CN101285430B (zh) 组合脉谱对发动机喷油器控制的方法
Wang et al. A review of spark-ignition engine air charge estimation methods
JPWO2002081888A1 (ja) 内燃機関の制御装置
US8762078B2 (en) Cylinder intake air amount calculating apparatus for internal combustion engine
US20140026852A1 (en) Combustion control with external exhaust gas recirculation (egr) dilution
WO2021059791A1 (ja) 内燃機関の制御装置
US8818689B2 (en) Cylinder intake air amount calculating apparatus for internal combustion engine
CN117145642A (zh) 基于自适应带宽的增压lp-egr发动机空燃比预测抗扰控制方法
Shutty et al. Air system management to improve a diesel engine
CN201125793Y (zh) 应用组合脉谱的发动机控制系统
Cui Exhaust gas recirculation control in a spark-ignition LPG engine using neural networks
Maass et al. Prediction of NO x emissions of a heavy duty diesel engine with a NLARX model
Yongbo et al. Transient air-fuel ratio control of direct injection gasoline engine based on LADRC algorithm
US11118520B2 (en) Method for cylinder equalization of an internal combustion engine
Yamasaki et al. Control Technologies for Advanced Engines and Powertrains: A Review
TW201943948A (zh) 阿特金森循環引擎控制方法
CN117171499A (zh) 一种缸内残余废气分压计算方法、装置、介质及ecu

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08748388

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12594754

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2010502407

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008748388

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20097023336

Country of ref document: KR

Kind code of ref document: A