WO2008109628A1 - Tethered supported transition metal complex - Google Patents

Tethered supported transition metal complex Download PDF

Info

Publication number
WO2008109628A1
WO2008109628A1 PCT/US2008/055843 US2008055843W WO2008109628A1 WO 2008109628 A1 WO2008109628 A1 WO 2008109628A1 US 2008055843 W US2008055843 W US 2008055843W WO 2008109628 A1 WO2008109628 A1 WO 2008109628A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal complex
supported
functionalized
supported metal
ethylenically
Prior art date
Application number
PCT/US2008/055843
Other languages
English (en)
French (fr)
Inventor
Edmund Carnahan
Original Assignee
Dow Global Technologies Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Global Technologies Inc. filed Critical Dow Global Technologies Inc.
Priority to CN2008800145018A priority Critical patent/CN101711258B/zh
Priority to EP08731387A priority patent/EP2121776B1/en
Priority to BRPI0808314-2A priority patent/BRPI0808314B1/pt
Priority to CA002680181A priority patent/CA2680181A1/en
Priority to US12/529,966 priority patent/US8362163B2/en
Priority to JP2009552845A priority patent/JP5507263B2/ja
Publication of WO2008109628A1 publication Critical patent/WO2008109628A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/38Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of titanium, zirconium or hafnium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/06Metallic compounds other than hydrides and other than metallo-organic compounds; Boron halide or aluminium halide complexes with organic compounds containing oxygen
    • C08F4/16Metallic compounds other than hydrides and other than metallo-organic compounds; Boron halide or aluminium halide complexes with organic compounds containing oxygen of silicon, germanium, tin, lead, titanium, zirconium or hafnium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond

Definitions

  • This invention relates to supported transition metal complexes formed from vinyl- or poly(vinyl)- functionalized supports that are useful as addition polymerization catalysts, especially as catalysts for polymerization of olefins. More particularly, the invention relates to readily formable supported catalysts comprising a metal complex that is chemically bound or tethered to the support through a non-fugitive ligand group. The invention also relates to the preparation of such supported compositions, to their use in an olefin polymerization process, and to certain functionalized supports particularly adapted to this use.
  • WO-91/09882 described a supported catalyst prepared by combining i) a bis(cyclopentadienyl) metal compound containing at least one ligand capable of reacting with a proton, ii) an activator component comprising a cation capable of donating a proton and a bulky, labile anion capable of stabilizing the metal cation formed as a result of reaction between the metal compound and the activator component, and iii) a catalyst support material.
  • WO- 94/03506 described a supported ionic catalyst prepared by combining i) a monocyclopentadienyl metal compound, ii) a cationic activator component, and iii) a catalyst support material.
  • the supported ionic catalyst could be prepolymerized with an olefinic monomer.
  • the support material could also be treated with a hydrolyzable organoadditive, preferably a Group 13 alkyl compound such as triethylaluminum.
  • Such supported catalysts do not provide for chemically attaching any of the catalyst components to the support material, and accordingly, are unsuited for use in slurry polymerizations or other reactions where solvents or diluents are present which can remove catalysts from the support.
  • certain catalyst supports comprising polyanionic moieties constituted of noncoordinating anionic groups chemically bonded to crosslinked polymeric core components were disclosed. It is also well known to attach or bind alumoxanes to inert supports. Disadvantageously, binding of the cocatalyst to the support results in catalyst compositions having low productivity, likely due to inferior activation ability or activity of immobilized cocatalysts.
  • Supported metallocene catalysts wherein one or more delocalized moieties of the metallocene are chemically attached to polymeric organic or particulated inorganic materials, including silica, are known from US-A-5,399,636, US-A-5,587,439, US-A-6,040,261, WO98/09913 and WO98/03521.
  • preparing and using solid functionalized reagents for synthesis of metallocenes and similar organometal compounds using organometallic synthetic processes is prohibitively expensive and unsuited for use on an industrial scale.
  • such processes utilizing condensation reactions to tether a catalyst component also generate one or more by-products that can interfere with subsequent polymerizations.
  • tether is a single bond to the metal catalyst center
  • displacement of the solid phase ligand by an olefin during polymerization can destroy the tether, resulting in leaching of the catalyst and/or loss of catalyst activity in the presence of liquids, especially slurry diluents.
  • a supported olefin polymerization catalyst and a polymerization process using the same that is capable of producing olefin polymers at good catalyst efficiencies in which the metal complex is covalently bound to the support, especially a particulated inorganic material. It would further be desirable to provide such a supported catalyst composition that is devoid of Lewis base groups adjacent to or attached to the metal center and that is adapted for use in a slurry and/or gas phase polymerization process while being relatively unaffected by the presence of condensed monomer and/or diluents.
  • a supported metal complex comprising the reaction product of: (A) a transition metal complex of a polyvalent heteroaryl donor ligand containing at least one ortho-metallated aromatic ligand group, and
  • the transition metal complex readily inserts into one or more of the ethylenic unsaturations of the particulated solid, thereby creating a covalently bonded bridging group, especially an ethandiyl group, in place of the ortho-metal linkage.
  • the foregoing process does not result in concomitant formation of byproducts that would interfere with the active catalyst species, as may occur during a condensation process, nor does it interfere with the active catalyst species because formation of the tether involves insertion of the ethylenic unsaturation into the metal-aryl group bond, creating a linkage to both the metal and the polyvalent ligand structure surrounding the metal.
  • the transition metal complex may be in the form of a cationic complex or other active species (preactivated) prior to tethering to the solid support.
  • a supported catalyst composition useful for the addition polymerization of addition polymerizable monomers comprising a transition metal complex of a polyvalent heteroaryl donor ligand, and a functionalized particulated organic or inorganic solid, wherein the transition metal complex is covalently bound to the particulated solid by means of addition of ethylenic functional groups of the solid to one or more ortho-metal-aryl bonds of the transition metal complex.
  • the metal complex is activated for polymerization by contact with an activator prior to combination with the ethylenically or poly(ethylenically) functionalized particulated solid support. More specifically, it is believed that the metal complex comprises a cation, ideally formed by combination of the metal complex with an activating cocatalyst prior to reaction with the ethylenically or poly(ethylenically) functionalized particulated solid support. Accordingly, in a desirable embodiment, the metal complex in its activated or cationic form retains at least one ortho-metal ligand bond capable of inserting an ethylene group of the functionalized particulated solid support.
  • the invention provides a process for preparing an inorganic oxide support comprising pendant ethylenically unsaturated, preferably vinyl functional groups suitable for the preparation of supported metal complexes such as the foregoing, said process comprising combining an inorganic oxide material comprising Lewis acid functionalized surface hydroxyl groups with a protonated Lewis base substituted ethylenically unsaturated, preferably vinyl aliphatic compound.
  • the resulting supports bearing vinyl substituted aliphatic functionality are especially effective in formation of tethered metal complexes having high and sustained catalytic activity.
  • the residual Lewis base functionality resulting from formation of the foregoing tethering groups is at least 2, preferably at least 4 and most preferably at least 6 carbons removed from the ethylenic unsaturation or pendant vinyl functionality.
  • the invention provides an addition polymerization process wherein one or more addition polymerizable monomers are contacted under addition polymerization conditions with a supported catalyst composition according to the present invention or preparable according to the present invented process.
  • catalyst compositions according to the invention demonstrate improved performance as measured by catalyst activity and/or product bulk density, compared to previously known supported catalyst compositions, especially under slurry polymerization conditions. This is believed to be a result of the ability to tether the metal complex to the surface of the inorganic oxide without generation of byproducts that can interfere with catalyst performance and without formation of donor electron containing functionality in close proximity to the transition metal.
  • compositions claimed herein through use of the term “comprising” may include any additional additive, adjuvant, or compound whether polymeric or otherwise, unless stated to the contrary.
  • heteroatom refers to the smallest constituent of an element regardless of ionic state, that is, whether or not the same bears a charge or partial charge or is bonded to another atom.
  • heteroatom refers to an atom other than carbon or hydrogen. Preferred heteroatoms include: F, Cl, Br, N, O, P, B, S, Si, Sb, Al, Sn, As, Se and Ge.
  • hydrocarbyl refers to univalent substituents containing only hydrogen and carbon atoms, including branched or unbranched, saturated or unsaturated, cyclic, polycyclic or noncyclic species. Examples include alkyl-, cycloalkyl-, alkenyl-, alkadienyl-, cycloalkenyl-, cycloalkadienyl-, aryl-, and alkynyl- groups. “Substituted hydrocarbyl” refers to a hydrocarbyl group that is substituted with one or more nonhydrocarbyl substituent groups.
  • heterocarbyl refers to groups containing one or more carbon atoms and one or more heteroatoms and no hydrogen atoms.
  • the bond between the carbon atom and any heteroatom as well as the bonds between any two heteroatoms, may be a single or multiple covalent bond or a coordinating or other donative bond. Examples include trichloromethyl-, perfluorophenyl-, cyano- and isocyanato- groups.
  • heteroatom containing hydrocarbyl or “heterohydrocarbyl” refer to univalent groups in which at least one atom other than hydrogen or carbon is present along with one or more carbon atom and one or more hydrogen atoms.
  • an alkyl group substituted with a halo-, heterocycloalkyl-, aryl- substituted heterocycloalkyl-, heteroaryl-, alkyl- substituted heteroaryl-, alkoxy-, aryloxy-, dihydrocarbylboryl-, dihydrocarbylphosphino-, dihydrocarbylamino-, trihydrocarbylsilyl-, hydrocarbylthio-, or hydrocarbylseleno- group is within the scope of the term heterohydrocarbyl.
  • heteroalkyl groups examples include chloromethyl-, 2-cyanoethyl-, hydroxymethyl-, benzoylmethyl-, (2-pyridyl)methyl-, chlorobenzyl-, and trifluoromethyl- groups.
  • aromatic refers to a polyatomic, cyclic, conjugated ring system containing (4 ⁇ +2) ⁇ -electrons, wherein ⁇ is an integer greater than or equal to 1.
  • fused as used herein with respect to a ring system containing two or more polyatomic, cyclic rings means that with respect to at least two rings thereof, at least one pair of adjacent atoms is included in both rings.
  • aryl refers to a monovalent aromatic substituent which may be a single aromatic ring or multiple aromatic rings which are fused together, linked covalently, or linked to a common group such as a methylene or ethylene moiety.
  • aromatic ring(s) include phenyl, naphthyl, anthracenyl, and biphenyl, among others.
  • Substituted aryl refers to an aryl group in which one or more hydrogen atoms bound to any carbon is replaced by one or more functional groups such as alkyl, alkenyl, substituted alkyl, substituted alkenyl, cycloalkyl, substituted cycloalkyl, heterocycloalkyl, substituted heterocycloalkyl, halo, haloalkyl (for example, CF 3 ), hydroxy, amino, phosphido, alkoxy, amino, thio, nitro, and both saturated and unsaturated hydrocarbylene groups, including those which are fused to the aromatic ring(s), linked covalently or linked to a common group such as a methylene or ethylene moiety.
  • the common linking group may also be carbonyl as in benzophenone-, oxygen as in diphenylether- or nitrogen as in diphenylamine- groups.
  • dependent refers to groups or substituents attached to secondary or tertiary substituted carbons of the polymer.
  • terminal refers to groups or substituents attached to a primary carbon of the polymer. Terminal ethylenic unsaturation is referred to interchangeably herein as "vinyl" unsaturation.
  • polymer refers to a macromolecular compound comprising multiple repeating units and a molecular weight of at least 100, preferably at least 1000. Preferably, at least one repeating unit occurs, consecutively or non-consecutively, 6 or more times, more preferably 20 or more times, on average. Molecules containing less than 6 such repeating units on average are referred to herein as oligomers.
  • the term includes homopolymers, copolymers, terpolymers, interpolymers, and so on.
  • interpolymer is used herein interchangeably with the term copolymer to refer to polymers incorporating in polymerized form at least two differentiated repeating units, usually obtained from separate copolymerizable monomers.
  • the least prevalent monomer in the resulting copolymer or interpolymer is generally referred to by the term "comonomer”.
  • fugitive refers to ligands of a metal complex that are subject to loss under conditions of activation or polymerization.
  • fugitive ligands are leaving groups, that form an active catalyst species, especially a cation, through reaction with a Lewis acid.
  • the activated transition metal catalysts can be employed to produce olefin polymers at extremely high catalyst efficiencies.
  • the catalysts attain efficiencies of at least IxIO 5 g polymer/ g transition metal, more preferably at least IxIO 6 g polymer/ g transition metal.
  • these supported catalysts are highly immune to leaching under typical process conditions employed in gas phase or, especially, slurry polymerizations, and the tethering ligand formed by insertion of ethylenic unsaturation into the ortho-metallated ligand, is not fugitive.
  • Suitable particulated supports for use in the present invention include inorganic oxide supports, especially highly porous silicas, aluminas, aluminosilicates, aluminophosphates, clays, titanias, and mixtures thereof.
  • Suitable organic solids include natural and synthetic resins, including polyethylene, polypropylene, polyesters, polyvinylalcohols, and polyvinylaromatic polymers.
  • Preferred particulated supports are inorganic oxides especially alumina and silica. The most preferred support material is silica. The support material may be in granular, agglomerated, pelletized, or any other physical form.
  • Preferred supports have a surface area as determined by nitrogen porosimetry using the B.E.T.
  • the method from 10 to 1000 m 2 /g, and preferably from 100 to 600 m 2 /g.
  • the pore volume of the support advantageously is between 0.1 and 3 cm 3 /g, preferably from 0.2 to 2 cm 3 /g.
  • the average particle size is not critical but typically is from 0.5 to 500 ⁇ m, preferably from 1 to 150 ⁇ m.
  • Inorganic oxides, especially silica, alumina and aluminosilicates are known to inherently possess small quantities of hydroxyl functionality attached to the atomic matrix.
  • these materials are preferably first subjected to a heat treatment followed by treatment with a Lewis acid to reduce the surface hydroxyl content thereof to less than 10 mmol/g, more preferably less than 1.0 mmol/g, most preferably, less than 0.8 mmol/g.
  • Typical heat treatments are carried out at a temperature from 150 to 900 0 C, preferably 200 to 850 0 C for a duration of 10 minutes to 50 hours.
  • Lewis acid treatments include contacting with Lewis acid alkylating agents such as trihydrocarbyl aluminum compounds, trihydrocarbylchlorosilane compounds, trihydrocarbylalkoxysilane compounds, or similar agents.
  • Suitable functionalizing agents are compounds that react with available surface hydroxyl groups of the inorganic oxide or react with the metal or metalloid atoms of the inorganic oxide matrix.
  • suitable functionalizing agents include phenylsilane, diphenylsilane, methylphenylsilane, dimethylsilane, diethylsilane, diethoxy silane, and chlorodimethylsilane, etc. Techniques for forming such functionalized inorganic oxide compounds were previously disclosed in US-A-3,687,920 and US-A-3,879,368.
  • the functionalized support, supported metal complex, or the supported catalyst composition may also be treated with an aluminum component selected from an alumoxane or a trialkylaluminum modified alumoxane, according to techniques known in the art in order to remove or scavenge catalyst poisons.
  • the aluminum component is selected from the group consisting of aluminoxanes and tri(Ci_ 4 hydrocarbyl)aluminum modified alumoxane compounds. Most preferred aluminum components are methalumoxane, triisobutylaluminum modified methalumoxane, and mixtures thereof.
  • the scavenger may also be added to the polymerization mixture in a reactor in which the present supported catalyst composition is employed.
  • the alumoxane may serve as some or all of the activating cocatalyst in the resulting supported activated catalyst composition.
  • Alumoxanes are oligomeric or polymeric aluminum oxy compounds containing chains of alternating aluminum and oxygen atoms, whereby the aluminum carries a substituent, preferably an alkyl group.
  • the structure of alumoxane is believed to be represented by the following general formulae (-A1(R)-O) m , for a cyclic alumoxane, and R 2 A1-O(- A1(R)-O) m -A1R 2 , for a linear compound, wherein R is Ci -4 alkyl, and m is an integer ranging from 1 to 50, preferably at least 4.
  • Alumoxanes are typically the reaction products of water and an aluminum alkyl, which in addition to an alkyl group may contain halide or alkoxide groups. Reacting several different aluminum alkyl compounds, such as for example trimethyl aluminum and tri-isobutyl aluminum, with water yields so-called modified or mixed alumoxanes.
  • Preferred alumoxanes are methylalumoxane and methylalumoxane modified with minor amounts of C 2 - 4 alkyl groups, especially isobutyl groups.
  • Alumoxanes generally contain minor to substantial amounts of starting aluminum alkyl compound.
  • alumoxane type compounds by contacting an aluminum alkyl compound with an inorganic salt containing water of crystallization are disclosed in US-A- 4,542,119.
  • an aluminum alkyl compound is contacted with a regeneratable water-containing substance such as hydrated alumina, silica or other substance.
  • a regeneratable water-containing substance such as hydrated alumina, silica or other substance.
  • Conversion of surface hydroxyl groups of the particulated support is accomplished by reaction of Lewis acid functionality, especially alkylaluminum functionality, with an ethylenically unsaturated compound containing protonated Lewis base functionality, especially a hydroxyl, thiol, hydrocarbylamine, di(hydrocarbyl)amine, hydrocarbylphosphine, or di(hydrocarbyl)-phosphine functionalized compound containing vinyl functionality.
  • Lewis acid functionality especially alkylaluminum functionality
  • an ethylenically unsaturated compound containing protonated Lewis base functionality especially a hydroxyl, thiol, hydrocarbylamine, di(hydrocarbyl)amine, hydrocarbylphosphine, or di(hydrocarbyl)-phosphine functionalized compound containing vinyl functionality.
  • reagents are ethylenically or polyethylenically unsaturated primary aliphatic alcohols, thiols, hydrocarbylamines, di(hydrocarbyl)amines, hydrocarbylphosphines, or di(hydrocarbyl)-phosphines containing from 3 to 20 carbons, especially those containing terminal ethylenic unsaturation.
  • T 1 is a divalent bridging group of from 1 to 41 atoms other than hydrogen, preferably 1 to 20 atoms other than hydrogen, and most preferably a mono- or di- Ci_ 2 o hydrocarbyl substituted methylene or silane group;
  • R 12 is a substituted heteroaryl group containing Lewis base functionality of up to 20 atoms, not counting hydrogen, and comprising a aryl or heteroaryl group or a divalent derivative thereof, especially a substituted pyridinyl- or substituted imidazolyl- group, or a divalent derivative thereof;
  • M 1 is a Group 4 metal, preferably zirconium or hafnium, most preferably hafnium;
  • X is an anionic, neutral or dianionic ligand group;
  • x' is a number from 0 to 5 indicating the number of such X 1 groups; and bonds and electron donative interactions are represented by lines and arrows respectively, and ortho-metal bonds between R 12 and M 1 , and optionally between R 11 and M 1 , are indicated by dotted lines.
  • M 1 , X 1 , x', R 11 and T 1 are as previously defined,
  • R 13 , R 14 , and R 15 are hydrogen, halo, or an alkyl, cycloalkyl, heteroalkyl, heterocycloalkyl, aryl, or silyl group of up to 20 atoms not counting hydrogen, or adjacent R 13 , R 14 , or R 15 groups may be joined together thereby forming fused ring derivatives,
  • R 13 , R 14 , and R 15 are as previously defined, preferably R 13 , R 14 , and R 15 are hydrogen, or Ci -4 alkyl, and
  • R 16 is C 6 - 2 o aryl, most preferably 2-naphthalenyl, also bonded to M 1 via an ortho-metal bond;
  • R a independently each occurrence is Ci -4 alkyl, and a is 1-5, most preferably R a in two ortho- positions to the nitrogen is isopropyl or t-butyl;
  • R 17 and R 18 independently each occurrence are hydrogen, halogen, or a Ci_ 2 o alkyl or aryl group, most preferably one of R 17 and R 18 is hydrogen and the other is a C ⁇ - 2 o aryl group, especially 2-isopropyl, phenyl or a fused polycyclic aryl group, most preferably an anthracenyl group, and bonds and electron pair donative interactions are represented by lines and arrows respectively, and ortho-metal ligand interactions are indicated by dotted lines.
  • X 1 each occurrence is halide, N,N-dimethylamido, Ci_ 4 alkyl, or C 6 _io aralkyl, and preferably each occurrence X 1 is methyl;
  • R c , R f and R g independently each occurrence are halogen, Ci_ 2 o alkyl, or C 6 _ 2 o aryl, or two adjacent R c , R f or R g groups are joined together thereby forming a ring, c is and integer from 1 to 4, and f and g, independently are integers from 1-5;
  • R h independently each occurrence is hydrogen or Ci_ 6 alkyl; bonds and electron pair donative interactions are represented by lines and arrows respectively and ortho-metal ligand interactions are indicated by dotted lines.
  • R d is hydrogen or Ci_ 6 alkyl, most preferably ethyl
  • R 1 is methyl or isopropyl
  • R J is hydrogen, Ci_ 6 alkyl or cycloalkyl, or two adjacent R 6 groups together form a fused aromatic ring, preferably two R 6 groups together on the 5-membered ring form a benzo- substituent;
  • R x is Ci_ 4 alkyl or cycloalkyl, preferably methyl, isopropyl, t-butyl or cyclohexyl;
  • X 1 each occurrence is halide, N,N-dimethylamido, or Ci_ 4 alkyl, preferably methyl, bonds and electron pair donative interactions are represented by lines and arrows respectively and ortho-metal ligand interactions are indicated by dotted lines.
  • ortho-metallated complexes examples include: [N-[2,6-bis(l-methylethyl)phenyl]- ⁇ -[2-(l-methylethyl)phenyl]-6-(l,2-naphthalendiyl- ⁇ - C 2 )-2-pyridinemethanaminato (2-)- ⁇ N ⁇ ⁇ N 2 ]hafnium dimethyl,
  • the supported metal complexes according to the invention may be activated in various ways to yield catalyst compounds having a vacant coordination site that will coordinate, insert, and polymerize addition polymerizable monomers, especially olefin(s). Both activated and unactivated or neutral metal complexes are included in the present invention.
  • the term "activator” or "cocatalyst” is defined to be any compound or component or method which can convert any of the catalyst compounds of the invention into addition polymerization catalysts.
  • suitable activators include Lewis acids, non-coordinating ionic activators, ionizing activators, organometal compounds, and combinations of the foregoing substances that can convert a neutral catalyst compound to a catalytically active species.
  • catalyst activation may involve formation of a cationic, partially cationic, or zwitterionic species, by means of proton transfer, oxidation, or other suitable activation process. It is to be understood that the present invention is operable and fully enabled regardless of whether or not such an identifiable cationic, partially cationic, or zwitterionic species actually results during the activation process, also interchangeably referred to herein as an "ionization” process or "ionic activation process".
  • the corresponding cationic derivatives of the foregoing illustrative metal complexes bear a positive charge localized on the transition metal, one less X 1 group bound to the transition metal, and an associated, preferably non-coordinating, anion, derived from the activator by abstraction of an X 1 group, oxidation of the transition metal, or disassociation of the activator.
  • alumoxane also referred to as alkylaluminoxane.
  • Alumoxanes are well known Lewis acid activators for use with metallocene type catalyst compounds to prepare addition polymerization catalysts. There are a variety of methods for preparing alumoxanes and modified alumoxanes, non-limiting examples of which are described in U.S.
  • Preferred alumoxanes are tri(C 3 - 6 )alkylaluminum modified methylalumoxane, especially tri(isobutyl)aluminum modified methalumoxane, available commercially as MMA0-3A or tri(n- oc tyl) aluminum modified methalumoxane, available commercially as MMAO-12, from Akzo Nobel, Inc. It is within the scope of this invention to use alumoxane(s) or modified alumoxane(s) as an activator or as a tertiary component in the invented process.
  • the compound may be used alone or in combination with other activators, neutral or ionic, such as tri(alkyl)ammonium tetrakis(pentafluorophenyl)borate compounds, trisperfluoroaryl compounds, polyhalogenated heteroborane anions (WO 98/43983), and combinations thereof.
  • activators neutral or ionic, such as tri(alkyl)ammonium tetrakis(pentafluorophenyl)borate compounds, trisperfluoroaryl compounds, polyhalogenated heteroborane anions (WO 98/43983), and combinations thereof.
  • neutral or ionic such as tri(alkyl)ammonium tetrakis(pentafluorophenyl)borate compounds, trisperfluoroaryl compounds, polyhalogenated heteroborane anions (WO 98/43983), and combinations thereof.
  • the amount of alumoxane employed is generally less than that necessary to effectively activate the metal complex when employed alone
  • Ionizing cocatalysts may contain an active proton, or some other cation associated with, but not coordinated to or only loosely coordinated to, an anion of the ionizing compound.
  • Such compounds are described in European publications EP-A-570982, EP-A-520732, EP-A-495375, EP- A-500944, EP-A-277 003 and EP-A-277004, and U.S. Patents: 5,153,157, 5,198,401, 5,066,741, 5,206,197, 5,241,025, 5,384,299 and 5,502,124.
  • the protonated ammonium cation derived from the commercially available long-chain amine comprising a mixture of two Ci 4 , or Ci 8 alkyl groups and one methyl group.
  • Such amines are available from Chemtura Corp., under the trade name KemamineTM T9701, and from Akzo-Nobel under the trade name ArmeenTM M2HT.
  • a most preferred ammonium salt activator is methyldi(Ci 4 _ 2 oalkyl)ammonium tetrakis(pentafluorophenyl)borate.
  • Activation methods using ionizing ionic compounds not containing an active proton but capable of forming active catalyst compositions by oxidative or other process, especially, ferrocenium salts of the foregoing non-coordinating anions are also contemplated for use herein, and are described in EP-A-426637, EP-A-573403 and US-A-5,387,568.
  • a class of cocatalysts comprising non-coordinating anions generically referred to as expanded anions, further disclosed in US-A-6,395,671, may be suitably employed to activate the metal complexes of the present invention for olefin polymerization.
  • these cocatalysts (illustrated by those having imidazolide, substituted imidazolide, imidazolinide, substituted imidazolinide, benzimidazolide, or substituted benzimidazolide anions) may be depicted as follows:
  • R 4 independently each occurrence, is hydrogen or a halo, hydrocarbyl, halocarbyl, halohydrocarbyl, silylhydrocarbyl, or silyl, (including mono-, di- and tri(hydrocarbyl)silyl) group of up to 30 atoms not counting hydrogen, preferably Ci_ 2 o alkyl, and
  • catalyst activators include trihydrocarbylammonium- salts, especially, methyldi(Ci 4 - 2 oalkyl)ammonium- salts of: bis(tris(pentafluorophenyl)borane)imidazolide, bis(tris(pentafluorophenyl)borane)-2-undecylimidazolide, bis(tris(pentafluorophenyl)borane)-2-heptadecylimidazolide, bis(tris(pentafluorophenyl)borane)- 4,5-bis(undecyl)imidazolide, bis(tris(pentafluorophenyl)borane)-4,5-bis(heptadecyl)imidazolide, bis(tris(pentafluorophenyl)borane)imidazolinide, bis(tris(pentafluorophenyl)borane)
  • activators include those described in PCT publication WO 98/07515 such as tris (2, 2', 2"-nonafluorobiphenyl) fluoroaluminate.
  • Combinations of activators are also contemplated by the invention, for example, alumoxanes and ionizing activators in combinations, see for example, EP-A-O 573120, PCT publications WO 94/07928 and WO 95/14044 and US Patents 5,153,157 and 5,453,410.
  • WO 98/09996 describes activating catalyst compounds with perchlorates, periodates and iodates, including their hydrates.
  • WO 99/18135 describes the use of organoboroaluminum activators.
  • EP-A-781299 describes using a silylium salt in combination with a non-coordinating compatible anion.
  • Other activators or methods for activating a catalyst compound are described in for example, U. S. Patents 5,849,852, 5,859, 653, 5,869,723, EP-A-615981, and PCT publication WO 98/32775.
  • the above described supported metal complex compositions can be combined with more than one of the activators or activation methods described above.
  • the mole ratio of the activator component(s) to the metal complex in the catalyst compositions of the invention suitably is in the range of between 0.3:1 to 2000: 1 , preferably 1 : 1 to 800:1, and most preferably 1:1 to 500:1.
  • the activator is an ionizing activator such as those based on the anion tetrakis(pentafluorophenyl)boron or the strong Lewis acid trispentafluorophenylboron
  • the mole ratio of the metal or metalloid of the activator component to the metal complex is preferably in the range of between 0.3:1 to 3:1.
  • tertiary components or mixtures thereof may be incorporated in the supported catalyst composition or in the polymerization mixture in order to obtain improved catalyst performance or other benefit.
  • tertiary components include scavengers designed to react with contaminants in the reaction mixture to prevent catalyst deactivation.
  • Suitable tertiary components may also activate or assist in activation of one or more of the metal complexes employed in the catalyst composition or act as chain transfer agents.
  • such tertiary component may also be one component of the supported tethered metal complex composition.
  • Lewis acids such as trialkylaluminum compounds, dialkylzinc compounds, dialkylaluminumalkoxides, dialkylaluminumaryloxides, dialkylaluminum N,N- dialkylamides, di(trialkylsilyl)aluminum N,N-dialkylamides, dialkylaluminum N,N- di(trialkylsilyl)amides, alkylaluminumdialkoxides, alkylaluminum di(N,N-dialkylamides), tri(alkyl)silylaluminum N,N-dialkylamides, alkylaluminum N,N-di(trialkylsilyl)amides, alkylaluminum diaryloxides, alkylaluminum ⁇ -bridged bis(amides) such as bis(ethylaluminum)-l- phenylene-2-(phenyl)amido ⁇ -bis(diphenylamide), and/or aluminum
  • Highly preferred tertiary components are alumoxanes, modified alumoxanes, or compounds corresponding to the formula R e 2 Al(OR f ) or R e 2 Al(NR g 2 ) wherein R e is Ci -20 alkyl, R f independently each occurrence is C 6 - 2 o aryl, preferably phenyl or 2,6-di-t-butyl-4-methylphenyl, and R g is Ci_ 4 alkyl or tri(Ci_ 4 alkyl)silyl, preferably trimethylsilyl.
  • tertiary components include methylalumoxane, tri(isobutylaluminum)- modified methylalumoxane, di(n-octyl)aluminum 2,6-di-t-butyl-4- methylphenoxide, and di(2-methylpropyl) aluminum N,N-bis(trimethylsilyl)amide.
  • a suitable tertiary component is a hydroxycarboxylate metal salt, by which is meant any hydroxy-substituted, mono-, di- or tri-carboxylic acid salt wherein the metal portion is a cationic derivative of a metal from Groups 1-13 of the Periodic Table of Elements.
  • This compound may be used to improve polymer morphology especially in a gas phase polymerization.
  • Non- limiting examples include saturated, unsaturated, aliphatic, aromatic or saturated cyclic, substituted carboxylic acid salts where the carboxylate ligand has from one to three hydroxy substituents and from 1 to 24 carbon atoms.
  • Non- limiting examples of the metal portion includes a metal selected from the group consisting of Al, Mg, Ca, Sr, Sn, Ti, V, Ba, Zn, Cd, Hg, Mn, Fe, Co, Ni, Pd, Li and Na.
  • Preferred metal salts are zinc salts.
  • the hydroxycarboxylate metal salt is represented by the following general formula:
  • M is a metal from Groups 1 to 16 and the Lanthanide and Actinide series, preferably from Groups 1 to 7 and 12 to 16, more preferably from Groups 3 to 7 and 12 to 14, even more preferably Group 12, and most preferably Zn;
  • Q is halogen, hydrogen, hydroxide, or an alkyl, alkoxy, aryloxy, siloxy, silane, sulfonate or siloxane group of up to 20 atoms not counting hydrogen;
  • R is a hydrocarbyl radical having from 1 to 50 carbon atoms, preferably 1 to 20 carbon atoms, and optionally substituted with one or more hydroxy, alkoxy, N,N-dihydrocarbylamino, or halo groups, with the proviso that in one occurrence R is substituted with a hydroxy- or N,N- dihydrocarbylamino- group, preferably a hydroxy- group that is coordinated to the metal, M by means of unshared electrons thereof; x is an integer from 0 to 3; y is an integer from 1 to 4.
  • M is Zn
  • x is 0
  • y is 2.
  • hydroxycarboxylate metal salts include compounds of the formulas:
  • R A and R B independently each occurrence are hydrogen, halogen, or Ci_ 6 alkyl.
  • additives may be incorporated into the catalyst compositions or employed simultaneously in the polymerization reaction for one or more beneficial purposes.
  • additives that are known in the art include metal salts of fatty acids, such as aluminum, zinc, calcium, titanium or magnesium mono, di- and tri- stearates, octoates, oleates and cyclohexylbutyrates.
  • metal salts of fatty acids such as aluminum, zinc, calcium, titanium or magnesium mono, di- and tri- stearates, octoates, oleates and cyclohexylbutyrates.
  • examples of such additives include Aluminum Stearate #18, Aluminum Stearate #22, Aluminum Stearate #132 and Aluminum Stearate EA Food Grade, all of which are available from Chemtura Corp.
  • the use of such additives in a catalyst composition is disclosed in UA-A-6,306,984.
  • antistatic agents such as fatty amines, for example, AS 990 ethoxylated stearyl amine, AS 990/2 zinc additive, a blend of ethoxylated stearyl amine and zinc stearate, or AS 990/3, a blend of ethoxylated stearyl amine, zinc stearate, and octadecyl-3,5-di- tert-butyl-4-hydroxyhydrocinnamate, also available from Chemtura Corp.
  • antistatic agents such as fatty amines, for example, AS 990 ethoxylated stearyl amine, AS 990/2 zinc additive, a blend of ethoxylated stearyl amine and zinc stearate, or AS 990/3, a blend of ethoxylated stearyl amine, zinc stearate, and octadecyl-3,5-di- tert-butyl-4-hydroxyhydrocinnam
  • tertiary compounds may be combined with the support, if desired, or added to the reaction mixture as separate components.
  • the tertiary component or components are present in a supported form, for example deposited on, contacted with, or incorporated within the present supported tethered catalyst compositions.
  • the support of the present invention can be stored or shipped under inert conditions as such or slurried in an inert diluent, such as alkane or aromatic hydrocarbons. If not already in cationic form, it may be used to generate the active supported catalyst by contacting with a suitable cocatalyst or activator compound optionally in the presence of a liquid diluent.
  • a suitable cocatalyst or activator compound optionally in the presence of a liquid diluent.
  • the ratio of moles of activator compound to moles of transition metal compound in the supported catalyst is from 0.5:1 to 1000:1, preferably from 0.8:1 to 500:1 and most preferably from 1:1 to 100:1.
  • Certain cation forming initiators containing non-coordinating anions may be employed at much lower levels, specifically 0.5:1 to 100:1, preferably from 0.8:1 to 10:1 and most preferably from 1:1 to 2:1, based on metal complex. At too low ratios the supported catalyst will not be very active, whereas at too high ratios the catalyst cost becomes excessive due to the relatively large quantities of activator compound utilized.
  • the supported metal complex and or catalyst of the present invention can be prepared by combining the particulated solid support, transition metal complex, and optional activator compound in any order.
  • the supported, unactivated, transition metal complex is treated with a solution of the activator compound by combining the two components in a suitable liquid diluent, such as an aliphatic or aromatic hydrocarbon to form a slurry.
  • the activator solution may be added to a fluidized or agitated bed comprising particles of supported, unactivated, metal complex in a quantity less than an amount to cause slurry formation, desirably in an amount approximately equal to total pore volume of the support.
  • the metal complex is activated first by contact with the activator compound to form a solution and the solution is added to the functionalized support using any quantity of solution.
  • the temperature, pressure, and contact time for this treatment are not critical, but generally can vary from -20 0 C to 150 0 C, from 1 Pa to 10,000 MPa, more preferably at atmospheric pressure (100 kPa), for 5 minutes to 48 hours.
  • excess diluent or solvent, if any may be removed to obtain a free flowing powder. This is preferably done by applying a technique which only removes the liquid and leaves the resulting solid, such as by applying heat, reduced pressure drying, evaporation, or a combination thereof.
  • a suspension or dispersion of the supported catalyst in a nonsolvent such as mineral oil, hydrogenated diesel fuel, kerosene, or other hydrocarbon liquid may also be prepared, especially for use in a slurry polymerization. All steps in the present process should be conducted in the absence of oxygen and moisture.
  • the resulting supported catalyst may be stored or shipped under inert conditions or employed substantially simultaneously with its manufacture.
  • the supported, activated, metal complexes of the present invention may be used in addition polymerization processes wherein one or more addition polymerizable monomers are contacted with the supported catalyst of the invention under addition polymerization conditions.
  • Either gas phase slurry polymerization conditions may be employed, or combination of such conditions in multiple reactors.
  • Suitable addition polymerizable monomers include ethylenically unsaturated monomers, acetylenic compounds, conjugated or non-conjugated dienes, and polyenes.
  • Preferred monomers include olefins and diolefins, for examples alpha-olefins having from 2 to 20,000, preferably from 2 to 20, more preferably from 2 to 8 carbon atoms, combinations of two or more of such alpha- olefins, and further combinations with one or more conjugated or nonconjugated C 4 . 2 o dienes.
  • the alpha- olefins are ethylene, propene, 1-butene, 4-methyl-pentene-l, 1-hexene, 1-octene, and combinations of ethylene and/or propene with one or more of such other alpha-olefins.
  • Other preferred monomers include styrene, halo- or alkyl substituted styrenes, tetrafluoroethylene, vinylcyclobutene, 1,4-hexadiene, dicyclopentadiene, ethylidene norbornene, and 1,7-octadiene. Mixtures of the above-mentioned monomers may also be employed.
  • the supported catalyst compositions can be formed in situ in the polymerization mixture by introducing into said mixture an unactivated supported metal complex of the present invention and a suitable cocatalyst, preferably a cation forming activating cocatalyst, along with other components of the polymerization, including olefin reagents, solvents or diluents.
  • the metal complex containing one or more ortho-metal bound ligands and an activating cocatalyst are first combined in a suitable solvent or diluent, followed by combination with the solid particulated, ethylenically- or polyethylenically- functionalized support, and the resulting supported catalyst composition is added to the polymerization mixture, with or without intermediate recovery of the supported catalyst composition.
  • the supported catalyst composition can be advantageously employed in a high pressure, solution, slurry or gas phase polymerization process.
  • a high pressure process is usually carried out at temperatures from 100 to 400 0 C and at pressures above 50.0 MPa.
  • a slurry process typically uses an inert hydrocarbon diluent and temperatures of from 0 0 C up to a temperature just below the temperature at which the resulting polymer becomes substantially soluble in the inert polymerization medium. Preferred temperatures are from 40 0 C to 115°C.
  • the solution process is carried out at temperatures from the temperature at which the resulting polymer is soluble in an inert solvent up to 275°C, preferably at temperatures of from 130 0 C to 260 0 C, more preferably from 150 0 C to 240 0 C.
  • Preferred inert solvents are Ci_ 2 o hydrocarbons and preferably C5. 10 aliphatic hydrocarbons, including mixtures thereof.
  • the solution and slurry processes are usually carried out at pressures between 100 kPa to 10 MPa. Typical operating conditions for gas phase polymerizations are from 20 to 100 0 C, more preferably from 40 to 8O 0 C. In gas phase processes the pressure is typically from 10 kPa to 10 MPa. Condensed monomer or diluent may be injected into the reactor to assist in heat removal by means of latent heat of vaporization.
  • the support has a median particle diameter from 20 to 200 ⁇ m, more preferably from 30 ⁇ m to 150 ⁇ m, and most preferably from 50 ⁇ m to 100 ⁇ m.
  • the support has a median particle diameter from 1 to 200 ⁇ m, more preferably from 5 ⁇ m to 100 ⁇ m, and most preferably from 20 ⁇ m to 80 ⁇ m.
  • the support has a median particle diameter from 1 to 40 ⁇ m, more preferably from 1 ⁇ m to 30 ⁇ m, and most preferably from 1 ⁇ m to 20 ⁇ m.
  • the particulated solid is silica modified by reaction with a trialkylaluminum compound and further functionalized by reaction with an ethylenically unsaturated compound containing protonated Lewis base functionality.
  • a supported metal complex according to embodiment 2 wherein the ethylenically unsaturated compound containing protonated Lewis base functionality is an ethylenically or polyethylenically unsaturated primary aliphatic alcohol, amine, thiol or phosphine containing from 3 to 20 carbons.
  • a supported metal complex according to embodiment 1 wherein the metal complex is a Group 4 metal complex.
  • a supported metal complex useful for the addition polymerization of addition polymerizable monomers comprising a transition metal complex of a polyvalent heteroaryl donor ligand, and a functionalized particulated organic or inorganic solid, wherein the transition metal complex is covalently bound to the particulated solid by means of addition of ethylenic functional groups of the solid to one or more ortho-metal-aryl bonds of the transition metal complex.
  • the particulated solid is silica modified by reaction with a trialkylaluminum compound and further functionalized by reaction with an ethylenically unsaturated compound containing protonated Lewis base functionality.
  • the ethylenically unsaturated compound containing protonated Lewis base functionality is a hydroxyl, thiol, amine or phosphine functionalized compound containing vinyl functionality.
  • a supported metal complex according to embodiment 9 wherein the ethylenically unsaturated compound containing protonated Lewis base functionality is an ethylenically or polyethylenically unsaturated primary aliphatic alcohol, amine, thiol or phosphine containing from 3 to 20 carbons.
  • a supported metal complex according to embodiment 8 wherein the metal complex is a cationic complex or is activated for polymerization of olefins by combination with a cocatalyst.
  • a supported metal complex according to embodiment 12 wherein the metal complex is Group 4 metal complex.
  • a supported metal complex according to embodiment 12 wherein the metal complex is [[2,6-bis(l-methylethyl)phenyl]- ⁇ -[2-(l-methylethyl)phenyl]-6-(l,2- naphthalendiyl- ⁇ -C 2 )-2-pyridinemethanaminato (2-)- ⁇ N ⁇ ⁇ N 2 ]methyl hafnium] "1" [tris(pentafluorophenyl)methyl borate] " .
  • a process for preparing a support comprising pendant ethylenically unsaturated groups comprising combining an inorganic oxide material comprising Lewis acid functionalized surface hydroxyl groups with a protonated Lewis base functionalized, ethylenically unsaturated aliphatic compound.
  • a process for preparing a support comprising pendant vinyl functional groups comprising combining an inorganic oxide material comprising Lewis acid functionalized surface hydroxyl groups with a hydroxyl-, thiol-, alkylamino-, di(alkyl)amino-, alkylphosphino-, or di(alkyl)phosphino- substituted vinyl aliphatic compound.
  • a process according to embodiment 15 wherein the vinyl aliphatic compound is a vinyl substituted primary aliphatic alcohol having from 6 to 20 carbons.
  • An addition polymerization process comprising contacting one or more addition polymerizable monomers under addition polymerization conditions with a supported catalyst composition according to any one of embodiments 1-14 or preparable according to any one of embodiments 15-17.
  • Tri(ethyl)aluminum modified silica ((C 2 Hs) 2 Al-O-SiIiCa) Support A
  • silica having number average particle size of 25 ⁇ m (ES-757TM available from Ineos Corporation) which has been calcined in air at 200 0 C for 12 hours is added to a 100 ml glass flask and slurried in 30 ml of toluene.
  • ES-757TM available from Ineos Corporation
  • To the agitating slurry is added, dropwise, 12.0 rnL of a 1 M solution of triethylaluminum in hexanes.
  • the mixture is agitated on a mechanical shaker for 4 hours.
  • the resulting solids are collected on a fritted funnel, washed twice with 30 rnL toluene, and dried under reduced pressure for 16 hours.
  • Example 1 In an inert atmosphere glove box, 1.00 g of support B (Example 1) is added to a 20 ml glass flask and slurried in 5 ml of toluene. To the agitating slurry is added, dropwise, 7.5 mL of a 0.04 M solution of tris(pentafluorophenyl)boron in toluene.
  • the lack of polymerization activity for the comparative catalyst demonstrates that effective tethering of the metal complex to the silica surface is accomplished according to the invention due, it is believed, to insertion of the silica bound unsaturated vinyl functionality into the available ortho-metallated functionality of the metal complex, without loss of active catalyst species (believed to be a cationic complex) or leaching of the activated metal complex from the silica under slurry polymerization conditions.
PCT/US2008/055843 2007-03-07 2008-03-05 Tethered supported transition metal complex WO2008109628A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN2008800145018A CN101711258B (zh) 2007-03-07 2008-03-05 系连负载型过渡金属络合物
EP08731387A EP2121776B1 (en) 2007-03-07 2008-03-05 Tethered supported transition metal complex
BRPI0808314-2A BRPI0808314B1 (pt) 2007-03-07 2008-03-05 Complexo metálico suportado e processo de polimerização por adição.
CA002680181A CA2680181A1 (en) 2007-03-07 2008-03-05 Tethered supported transition metal complex
US12/529,966 US8362163B2 (en) 2007-03-07 2008-03-05 Tethered supported transition metal complex
JP2009552845A JP5507263B2 (ja) 2007-03-07 2008-03-05 固定化されている担持された遷移金属錯体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US90555707P 2007-03-07 2007-03-07
US60/905.557 2007-03-07

Publications (1)

Publication Number Publication Date
WO2008109628A1 true WO2008109628A1 (en) 2008-09-12

Family

ID=39738758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2008/055843 WO2008109628A1 (en) 2007-03-07 2008-03-05 Tethered supported transition metal complex

Country Status (9)

Country Link
US (1) US8362163B2 (US20100016527A1-20100121-C00007.png)
EP (1) EP2121776B1 (US20100016527A1-20100121-C00007.png)
JP (1) JP5507263B2 (US20100016527A1-20100121-C00007.png)
KR (1) KR20100015391A (US20100016527A1-20100121-C00007.png)
CN (1) CN101711258B (US20100016527A1-20100121-C00007.png)
AR (1) AR065664A1 (US20100016527A1-20100121-C00007.png)
BR (1) BRPI0808314B1 (US20100016527A1-20100121-C00007.png)
CA (1) CA2680181A1 (US20100016527A1-20100121-C00007.png)
WO (1) WO2008109628A1 (US20100016527A1-20100121-C00007.png)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104334590B (zh) * 2012-02-08 2016-08-31 信实工业公司 用于制备uhmwpe的单中心催化剂在无机氧化物载体上的固定化
US10919995B2 (en) * 2016-03-31 2021-02-16 Dow Global Technologies Llc Olefin polymerization catalyst systems and methods of use thereof
KR102180056B1 (ko) * 2016-09-26 2020-11-17 주식회사 엘지화학 호모 폴리프로필렌의 제조 방법
WO2021242800A1 (en) 2020-05-29 2021-12-02 Dow Global Technologies Llc Attenuated post-metallocene catalysts
CA3180373A1 (en) 2020-05-29 2021-12-02 Bethany M. NEILSON Attenuated hybrid catalysts
CN116829607A (zh) 2021-02-15 2023-09-29 陶氏环球技术有限责任公司 制备具有反向共聚单体分布的聚(乙烯-共-1-烯烃)共聚物的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5192731A (en) * 1988-05-13 1993-03-09 Mitsui Petrochemical Industries, Ltd. Titanium catalyst components, process for preparing same, catalysts containing same for preparing ethylene polymers and process for preparing said ethylene polymers
US6953764B2 (en) * 2003-05-02 2005-10-11 Dow Global Technologies Inc. High activity olefin polymerization catalyst and process
US20060264320A1 (en) * 2004-01-16 2006-11-23 George Rodriguez Hydrophobization and silica for supported catalyst

Family Cites Families (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3687920A (en) 1971-01-25 1972-08-29 Union Carbide Corp Polymerization of olefins with silane modified catalyst system
CA995396A (en) 1971-03-18 1976-08-17 Robert N. Johnson Catalyst modified with strong reducing agent and silane compounds and use in polymerization of olefins
US4542119A (en) 1984-04-11 1985-09-17 Sun Tech, Inc. Hydroformylation catalyst and process
US4665208A (en) 1985-07-11 1987-05-12 Exxon Chemical Patents Inc. Process for the preparation of alumoxanes
DE3750818T2 (de) 1986-09-24 1995-04-20 Mitsui Petrochemical Ind Verfahren zur Polymerisation von Polyolefinen.
JPH0780933B2 (ja) 1986-11-20 1995-08-30 三井石油化学工業株式会社 オレフインの重合方法
PL276385A1 (en) 1987-01-30 1989-07-24 Exxon Chemical Patents Inc Method for polymerization of olefines,diolefins and acetylene unsaturated compounds
US5384299A (en) 1987-01-30 1995-01-24 Exxon Chemical Patents Inc. Ionic metallocene catalyst compositions
US5153157A (en) 1987-01-30 1992-10-06 Exxon Chemical Patents Inc. Catalyst system of enhanced productivity
US5198401A (en) 1987-01-30 1993-03-30 Exxon Chemical Patents Inc. Ionic metallocene catalyst compositions
US5241025A (en) 1987-01-30 1993-08-31 Exxon Chemical Patents Inc. Catalyst system of enhanced productivity
IL85097A (en) 1987-01-30 1992-02-16 Exxon Chemical Patents Inc Catalysts based on derivatives of a bis(cyclopentadienyl)group ivb metal compound,their preparation and their use in polymerization processes
JPH0742301B2 (ja) 1987-02-14 1995-05-10 三井石油化学工業株式会社 微粒子状アルミノオキサン、その製法およびその用途
JP2538588B2 (ja) 1987-04-03 1996-09-25 三井石油化学工業株式会社 オレフイン重合用固体触媒の製法
US5206199A (en) 1987-04-20 1993-04-27 Mitsui Petrochemical Industries, Ltd. Catalyst for polymerizing an olefin and process for polymerizing an olefin
CA1304746C (en) 1987-08-31 1992-07-07 The Dow Chemical Company Preparation of polyhydrocarbylaluminoxanes
US5091352A (en) 1988-09-14 1992-02-25 Mitsui Petrochemical Industries, Ltd. Olefin polymerization catalyst component, olefin polymerization catalyst and process for the polymerization of olefins
US4908463A (en) 1988-12-05 1990-03-13 Ethyl Corporation Aluminoxane process
US5103031A (en) 1989-02-21 1992-04-07 Ethyl Corporation Falling film aluminoxane process
US4968827A (en) 1989-06-06 1990-11-06 Ethyl Corporation Alkylaluminoxane process
US4924018A (en) 1989-06-26 1990-05-08 Ethyl Corporation Alkylaluminoxane process
US5066741A (en) 1990-03-22 1991-11-19 The Dow Chemical Company Process for preparation of syndiotactic vinyl aromatic polymers
US5763549A (en) 1989-10-10 1998-06-09 Fina Technology, Inc. Cationic metallocene catalysts based on organoaluminum anions
US5387568A (en) 1989-10-30 1995-02-07 Fina Technology, Inc. Preparation of metallocene catalysts for polymerization of olefins
ATE120768T1 (de) 1989-10-30 1995-04-15 Fina Technology Herstellung von metallocenkatalysatoren für olefinpolymerisation.
DE69033368T3 (de) 1990-01-02 2008-07-03 Exxon Chemical Patents, Inc. Ionische Metallocenkatalysatoren auf Träger für Olefinpolymerisation
EP0841349B1 (en) 1990-07-24 2002-06-12 Mitsui Chemicals, Inc. Catalyst for alpha-olefin polymerization and production of poly-alpha-olefin therewith
US5189192A (en) 1991-01-16 1993-02-23 The Dow Chemical Company Process for preparing addition polymerization catalysts via metal center oxidation
US5206197A (en) 1991-03-04 1993-04-27 The Dow Chemical Company Catalyst composition for preparation of syndiotactic vinyl aromatic polymers
US5399636A (en) 1993-06-11 1995-03-21 Phillips Petroleum Company Metallocenes and processes therefor and therewith
US5721185A (en) 1991-06-24 1998-02-24 The Dow Chemical Company Homogeneous olefin polymerization catalyst by abstraction with lewis acids
US5308815A (en) 1991-07-26 1994-05-03 Ethyl Corporation Heterogeneous methylaluminoxane catalyst system
US5157137A (en) 1991-07-26 1992-10-20 Ethyl Corporation Method of making gel free alkylaluminoxane solutions
US5235081A (en) 1992-03-18 1993-08-10 Ethyl Corporation Method of removing gel forming materials from methylaluminoxanes
EP0614468B1 (en) * 1991-11-25 1997-09-17 Exxon Chemical Patents Inc. Polyonic transition metal catalyst composition
WO1993014132A1 (en) 1992-01-06 1993-07-22 The Dow Chemical Company Improved catalyst composition
US5329032A (en) 1992-03-18 1994-07-12 Akzo Chemicals Inc. Polymethylaluminoxane of enhanced solution stability
US5434115A (en) 1992-05-22 1995-07-18 Tosoh Corporation Process for producing olefin polymer
BE1005957A5 (fr) 1992-06-05 1994-04-05 Solvay Procede de preparation d'un systeme catalytique, procede de (co)polymerisation d'olefines et (co)polymeres d'au moins une olefine.
ES2137266T3 (es) 1992-07-01 1999-12-16 Exxon Chemical Patents Inc Catalizadores de polimerizacion de olefinas a base de metales de transicion.
EP1110974B1 (en) 1992-08-05 2007-11-28 ExxonMobil Chemical Patents Inc. Method for preparing a supported activator component
US5248801A (en) 1992-08-27 1993-09-28 Ethyl Corporation Preparation of methylaluminoxanes
ATE194361T1 (de) 1992-09-04 2000-07-15 Bp Chem Int Ltd Katalysatorzusammensetzungen und verfahren zur herstellung von polyolefinen
CA2146012A1 (en) 1992-10-02 1994-04-14 Brian W. S. Kolthammer Supported homogenous catalyst complexes for olefin polymerization
US5939346A (en) 1992-11-02 1999-08-17 Akzo Nobel N.V. Catalyst system comprising an aryloxyaluminoxane containing an electron withdrawing group
US5391793A (en) 1992-11-02 1995-02-21 Akzo Nobel N.V. Aryloxyaluminoxanes
US5391529A (en) 1993-02-01 1995-02-21 Albemarle Corporation Siloxy-aluminoxane compositions, and catalysts which include such compositions with a metallocene
TW298593B (US20100016527A1-20100121-C00007.png) 1993-02-12 1997-02-21 Hoechst Ag
BE1007148A3 (fr) 1993-05-17 1995-04-11 Solvay Support pour catalyseurs, procede pour la fabrication d'un gel precurseur d'un support pour catalyseurs, procede de preparation d'un support pour catalyseurs, catalyseur pour la polymerisation d'olefines et procede pour la polymerisation d'olefines au moyen de ce catalyseur.
ES2140557T3 (es) 1993-11-19 2000-03-01 Exxon Chemical Patents Inc Sistemas cataliticos de polimerizacion, su produccion y uso.
JPH07144455A (ja) * 1993-11-25 1995-06-06 Canon Inc インクジェット記録装置
US5498581A (en) 1994-06-01 1996-03-12 Phillips Petroleum Company Method for making and using a supported metallocene catalyst system
JP3910651B2 (ja) * 1994-08-09 2007-04-25 三井化学株式会社 有機アルミニウムオキシ組成物の製造方法
US5625087A (en) 1994-09-12 1997-04-29 The Dow Chemical Company Silylium cationic polymerization activators for metallocene complexes
US5763543A (en) 1994-09-14 1998-06-09 Exxon Chemical Patents Inc. Olefin polymerization process with little or no scavenger present
US5587439A (en) 1995-05-12 1996-12-24 Quantum Chemical Corporation Polymer supported catalyst for olefin polymerization
US5869723A (en) 1995-06-08 1999-02-09 Showa Denko K.K. Ionic compound and olefin polymerization catalyst containing the same
US5731253A (en) 1995-07-27 1998-03-24 Albemarle Corporation Hydrocarbylsilloxy - aluminoxane compositions
US5693838A (en) 1995-11-13 1997-12-02 Albemarle Corporation Aluminoxane process and product
CN1202909A (zh) * 1995-11-27 1998-12-23 陶氏化学公司 含有束缚阳离子生成活化剂的负载型催化剂
DE19606510A1 (de) 1996-02-22 1997-08-28 Hoechst Ag Hochmolekulares Polypropylen mit breiter Molmassenverteilung
US5731451A (en) 1996-07-12 1998-03-24 Akzo Nobel Nv Modified polyalkylauminoxane composition formed using reagent containing aluminum trialkyl siloxide
JPH11514012A (ja) 1996-07-23 1999-11-30 サイミックス・テクノロジーズ 有機金属化合物及び触媒の組み合わせ合成並びに分析
US5854166A (en) 1996-08-19 1998-12-29 Northwestern University Synthesis and use of (perfluoroaryl) fluoro-aluminate anion
WO1998009913A1 (en) 1996-09-06 1998-03-12 University Of Massachusetts Reversible covalent attachment of fullerenes to insoluble supports
AU4137597A (en) 1996-09-06 1998-03-26 Hyundai Petrochemical Co., Ltd. Catalyst system for (co)polymerization of olefins and process for the preparation of olefin (co)polymers using the catalyst system
US5744656A (en) 1996-10-25 1998-04-28 Boulder Scientific Company Conversion of hexafluorobenzene to bromopentafluorobenzene
FI970349A (fi) 1997-01-28 1998-07-29 Borealis As Uudet metalloseeniyhdisteiden aktivaattorisysteemit
WO1998043983A1 (en) 1997-04-03 1998-10-08 Colorado State University Research Foundation Polyhalogenated monoheteroborane anion compositions
TWI246520B (en) 1997-04-25 2006-01-01 Mitsui Chemicals Inc Processes for olefin polymerization
US6103657A (en) 1997-07-02 2000-08-15 Union Carbide Chemicals & Plastics Technology Corporation Catalyst for the production of olefin polymers
DE19744102A1 (de) 1997-10-06 1999-04-15 Targor Gmbh Katalysatorsystem
JPH11184960A (ja) * 1997-10-16 1999-07-09 Tohoku Ricoh Co Ltd バーコード読取装置
ATE243700T1 (de) 1998-02-20 2003-07-15 Dow Global Technologies Inc Expandierte anionen enthaltende katalysatoraktivatoren
US6521793B1 (en) 1998-10-08 2003-02-18 Symyx Technologies, Inc. Catalyst ligands, catalytic metal complexes and processes using same
US6852811B1 (en) * 1998-12-30 2005-02-08 The Dow Chemical Company Process for preparing a supported polymerization catalyst using reduced amounts of solvent and polymerization process
US6194343B1 (en) * 1999-03-11 2001-02-27 University Of Waterloo Bridged “tethered” metallocenes
US6197715B1 (en) * 1999-03-23 2001-03-06 Cryovac, Inc. Supported catalysts and olefin polymerization processes utilizing same
US6040261A (en) 1999-04-15 2000-03-21 Equistar Chemicals, Lp Supported single-site catalyst and olefin polymerization process
BR0015241B1 (pt) 1999-10-22 2010-10-05 processo para polimerização de olefina(s) na presença de uma sistema catalisador, sistemas catalisadores e uso de um composto catalisador.
US20020098973A1 (en) 1999-12-21 2002-07-25 Campbell Richard E. Bridged gallium or indium containing group 4 metal complexes
TW548283B (en) * 2000-01-11 2003-08-21 Dow Chemical Co Chemically-modified supports and supported catalyst systems prepared therefrom
US6458738B1 (en) 2000-09-22 2002-10-01 Union Carbide Chemicals & Plastics Technology Corporation Spray-drying compositions and methods of spray-drying
AU2002225662A1 (en) 2000-11-07 2002-05-21 Symyx Technologies, Inc. Substituted pyridyl amine ligands, complexes and catalysts therefrom; processes for producing polyolefins therewith
US6653417B2 (en) 2001-10-12 2003-11-25 Univation Technologies, Llc Catalyst precursor and olefin polymerization processes
WO2003037937A1 (en) 2001-10-18 2003-05-08 The Dow Chemical Company Diene functionalized catalyst supports and supported catalyst compositions
CN1415633A (zh) * 2001-11-02 2003-05-07 中国科学院化学研究所 一种聚乙烯载体催化剂及其制备方法和用途
US6927256B2 (en) 2001-11-06 2005-08-09 Dow Global Technologies Inc. Crystallization of polypropylene using a semi-crystalline, branched or coupled nucleating agent
US6906160B2 (en) 2001-11-06 2005-06-14 Dow Global Technologies Inc. Isotactic propylene copolymer fibers, their preparation and use
JP2005508415A (ja) 2001-11-06 2005-03-31 ダウ グローバル テクノロジーズ インコーポレイティド アイソタクチックプロピレンコポリマー類、その製法および用途
US6960635B2 (en) 2001-11-06 2005-11-01 Dow Global Technologies Inc. Isotactic propylene copolymers, their preparation and use
JP3914502B2 (ja) * 2002-04-08 2007-05-16 東ソー・ファインケム株式会社 オレフィン重合用助触媒およびオレフィン重合触媒用修飾メチルアルミノキサンの製造方法
JP4371305B2 (ja) 2002-04-24 2009-11-25 シミックス・ソルーションズ・インコーポレーテッド 架橋ビス芳香族リガンド、錯体、触媒、または、重合方法およびそれにより得られるポリマー
US6884749B2 (en) * 2002-10-17 2005-04-26 Equistar Chemicals L.P. Supported catalysts which reduce sheeting in olefin polymerization, process for the preparation and the use thereof
KR20060002837A (ko) 2003-03-21 2006-01-09 다우 글로벌 테크놀로지스 인크. 형태 제어된 올레핀 중합 방법
JP4476657B2 (ja) * 2004-03-22 2010-06-09 東ソー・ファインケム株式会社 ポリメチルアルミノキサン調製物、その製造方法、重合触媒およびオレフィン類の重合方法
ATE504349T1 (de) 2004-06-16 2011-04-15 Dow Global Technologies Inc Verfahren zur auswahl von polymerisationsmodifikatoren
US20080051537A1 (en) 2004-08-09 2008-02-28 Carnahan Edmund M Supported Bis(Hydroxylarylaryloxy) Catalysts For Manufacture Of Polymers
WO2006036748A2 (en) 2004-09-22 2006-04-06 Symyx Technologies, Inc. Heterocycle-amine ligands, compositions, complexes, and catalysts, and methods of making and using the same
CN1243029C (zh) * 2004-10-27 2006-02-22 浙江大学 聚苯乙烯负载的固态均相茂金属催化剂的制备方法
EP1731537A1 (en) * 2005-06-09 2006-12-13 Innovene Manufacturing France SAS Supported polymerisation catalysts

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5192731A (en) * 1988-05-13 1993-03-09 Mitsui Petrochemical Industries, Ltd. Titanium catalyst components, process for preparing same, catalysts containing same for preparing ethylene polymers and process for preparing said ethylene polymers
US6953764B2 (en) * 2003-05-02 2005-10-11 Dow Global Technologies Inc. High activity olefin polymerization catalyst and process
US20060264320A1 (en) * 2004-01-16 2006-11-23 George Rodriguez Hydrophobization and silica for supported catalyst

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2121776A4 *

Also Published As

Publication number Publication date
JP5507263B2 (ja) 2014-05-28
EP2121776A4 (en) 2011-11-02
BRPI0808314B1 (pt) 2019-04-09
AR065664A1 (es) 2009-06-24
EP2121776B1 (en) 2012-12-12
CN101711258A (zh) 2010-05-19
BRPI0808314A2 (pt) 2014-07-01
EP2121776A1 (en) 2009-11-25
CN101711258B (zh) 2012-07-04
JP2010522694A (ja) 2010-07-08
US8362163B2 (en) 2013-01-29
CA2680181A1 (en) 2008-09-12
US20100016527A1 (en) 2010-01-21
BRPI0808314A8 (pt) 2019-01-15
KR20100015391A (ko) 2010-02-12

Similar Documents

Publication Publication Date Title
KR101195320B1 (ko) 중합체를 제조하기 위한 지지된비스(하이드록시아릴아릴옥시) 촉매
JP2005506404A (ja) 金属錯体組成物、及び金属錯体組成物のポリジエン製造用触媒としての使用法
US20100248947A1 (en) Process for homo - or copolymerization of conjugated olefins
EP2121776B1 (en) Tethered supported transition metal complex
CN101189270A (zh) 烯烃聚合方法
JP2004532320A (ja) 金属錯体触媒の使用により製造されたランダムまたはブロック共重合体または三元重合体
US7012121B2 (en) Delayed activity supported olefin polymerization catalyst compositions and method for making and using the same
WO2004044018A2 (en) Process for homo- or copolymerization of conjugated dienes and in situ formation of polymer blends and products made thereby
EP1392706B1 (en) Olefin polymerization catalysts containing a pyrrole bisimine ligand
AU2002340992A1 (en) Olefin polymerization catalysts containing a pyrrole bisimine ligand
WO2003037937A1 (en) Diene functionalized catalyst supports and supported catalyst compositions
KR20210064660A (ko) 메탈로센 화합물 및 이를 포함하는 폴리올레핀 중합용 촉매
JP2004530664A (ja) アセチレン系配位子含有金属錯体、重合触媒及び付加重合方法
WO2003029256A1 (en) Bulky amido group substituted group 4 metal compounds and polymerization process

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880014501.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08731387

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2680181

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 12529966

Country of ref document: US

Ref document number: 2008731387

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009552845

Country of ref document: JP

Ref document number: 5260/CHENP/2009

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: PI20093717

Country of ref document: MY

ENP Entry into the national phase

Ref document number: 20097020824

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: PI0808314

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20090908