WO2008096894A1 - セルロース誘導体およびその製造方法 - Google Patents

セルロース誘導体およびその製造方法 Download PDF

Info

Publication number
WO2008096894A1
WO2008096894A1 PCT/JP2008/052382 JP2008052382W WO2008096894A1 WO 2008096894 A1 WO2008096894 A1 WO 2008096894A1 JP 2008052382 W JP2008052382 W JP 2008052382W WO 2008096894 A1 WO2008096894 A1 WO 2008096894A1
Authority
WO
WIPO (PCT)
Prior art keywords
cellulose derivative
cellulose
water
adhesion
gel
Prior art date
Application number
PCT/JP2008/052382
Other languages
English (en)
French (fr)
Inventor
Masaya Ito
Hiroaki Kaneko
Yukako Fukuhira
Nobuyuki Endo
Original Assignee
Teijin Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Limited filed Critical Teijin Limited
Priority to EP08711228.0A priority Critical patent/EP2112170A4/en
Priority to KR1020097018338A priority patent/KR20090109120A/ko
Priority to CN2008800042878A priority patent/CN101605817B/zh
Priority to CA2676300A priority patent/CA2676300C/en
Priority to AU2008213323A priority patent/AU2008213323B2/en
Priority to JP2008557189A priority patent/JP5059787B2/ja
Priority to US12/525,464 priority patent/US8455001B2/en
Publication of WO2008096894A1 publication Critical patent/WO2008096894A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B11/00Preparation of cellulose ethers
    • C08B11/02Alkyl or cycloalkyl ethers
    • C08B11/04Alkyl or cycloalkyl ethers with substituted hydrocarbon radicals
    • C08B11/14Alkyl or cycloalkyl ethers with substituted hydrocarbon radicals with nitrogen-containing groups
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/715Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • A61K31/716Glucans
    • A61K31/717Celluloses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P41/00Drugs used in surgical methods, e.g. surgery adjuvants for preventing adhesion or for vitreum substitution
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B11/00Preparation of cellulose ethers
    • C08B11/02Alkyl or cycloalkyl ethers
    • C08B11/04Alkyl or cycloalkyl ethers with substituted hydrocarbon radicals
    • C08B11/10Alkyl or cycloalkyl ethers with substituted hydrocarbon radicals substituted with acid radicals
    • C08B11/12Alkyl or cycloalkyl ethers with substituted hydrocarbon radicals substituted with acid radicals substituted with carboxylic radicals, e.g. carboxymethylcellulose [CMC]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B11/00Preparation of cellulose ethers
    • C08B11/02Alkyl or cycloalkyl ethers
    • C08B11/04Alkyl or cycloalkyl ethers with substituted hydrocarbon radicals
    • C08B11/14Alkyl or cycloalkyl ethers with substituted hydrocarbon radicals with nitrogen-containing groups
    • C08B11/145Alkyl or cycloalkyl ethers with substituted hydrocarbon radicals with nitrogen-containing groups with basic nitrogen, e.g. aminoalkyl ethers

Definitions

  • the present invention relates to a cellulose derivative having a specific structure, a composition comprising a cellulose derivative having a specific structure and a phospholipid, an Sjg method thereof, and an adhesion-preventing material comprising the derivative or compound.
  • anti-adhesion materials using water of carboxymethylcellulose ⁇ m J S ur g., 1 69, 1 5 4-1 5 9 (1 9 9 5).
  • this anti-adhesion material has low retention in the body and cannot fully exert the anti-adhesion effect. For this reason, attempts have been made to modify polysaccharides by various methods and insolubilize 7K ⁇ ).
  • an anti-adhesion material in which hyaluronic acid and carboxymethyl cellulose are modified with calpositimide has been proposed (International Publication WO 9 2/0 0 0 1 0 5 Panflate, International Publication WO 9 2Z 0 2 0 3 4 9 Pamphlet )
  • an anti-adhesion material having as a main component a cellulose derivative in which a hydrogen atom of cellulose is substituted with a specific converting group has been proposed (Japanese Patent Laid-Open No. Hei 1 30 16 2 4).
  • an anti-adhesion material comprising a hyaluronic acid compound modified with phosphatidylethanolamine has been proposed (Japanese Patent Laid-Open No. 2000-0629 No. 6).
  • U.S. Patent No. 5 0 6 4 8 1 7 Pat is a carboxymethylcellulose and the phosphatidyl ethanolate one Ruamin reacted in an aqueous solvent to obtain a phospholipase A 2 inhibitor compositions reactions are described. However, as shown in the key ratio 5, it is known that the target compound is not formed under this reaction condition.
  • Panfurez is a water-insoluble organism comprising reacting a polyanionic polysaccharide with an active agent in an aqueous solution containing a water-compatible organic solvent. Suitable gels are described, and carboxymethyl cellulose is listed as a polyanionic polysaccharide.
  • Japanese Patent Application Laid-Open No. 9-296005 discloses that when a modifying group comprising a hydrophobic group is introduced into a polysaccharide, the viscosity is increased and the in vivo stability is improved without gelling the polysaccharide. It is described that it can be achieved. However, there is no description or suggestion of a cellulose derivative useful for obtaining the adhesion preventing effect of the present invention and a fiber comprising the same. Disclosure of the invention
  • An object of the present invention is to provide a cellulose derivative useful as a medical material or a composition comprising the same.
  • a cellulose derivative useful as a medical material or a composition comprising the same when it is made into a hide-mouthed gel, it has an appropriate elastic modulus and viscoelasticity, and provides a cellulose derivative useful as an adhesion-preventing material or a composition comprising the same, particularly excellent in retention in the body.
  • the object is to provide a gel-like adhesion-preventing material.
  • an object of the present invention is to provide a method for producing the cellulose derivative or a composition comprising the cellulose derivative.
  • the present inventors modify cellulose with a material having excellent safety, increase viscoelasticity, improve retention in vivo, have high viscoelasticity, and improve adhesion prevention effect. I studied about it.
  • the present inventors replaced the side chain with phosphatidylethanolamine, which is a biological agent, for the hydrogen atom of Carpoxymethylcellulose, which has moderate viscoelasticity, is useful as an anti-adhesion material, and is a syringe. It has been found that a new leululose derivative 3 ⁇ 4 # can be obtained which can form a hyde mouth gel that can be injected through. The present inventors have further found that a cellulose derivative having an appropriate viscoelasticity and useful as an adhesion preventing material can be obtained by allowing a specific amount of phospholipid to coexist with the cellulose derivative. That is, the present invention is a cellulose incentive consisting of a repeating unit represented by the following formula. In the formula, RR 2 and R 3 are each independently selected from the following formulas (a), (c), and (d):
  • X is an alkali metal or alkaline earth metal
  • R 4 and R 5 are each independently an alkyl group or alkenyl group having 9 to 27 carbon atoms
  • the total degree of substitution of (b) and (c) is 0.3 to 2.0
  • the position of (d) is 0 ⁇ 001 ⁇ 0.05.
  • the present invention also includes a phospholipid represented by the following formula, and the ratio of the molar equivalent of the cell mouth-reducing unit to the molar equivalent of the phospholipid is from 1: 0.05 to: I: A cellulose derivative composition which is 1.
  • R 6 and R 7 are each independently an alkyl group or alkenyl group having 9 to 27 carbon atoms, and R 8 is one NH 3 + or one N (CH 3 ) 3 +.
  • the present invention comprises a repeating unit represented by the following formula, and an amount of carboxymethylcellulose of 5 ⁇ 10 3 to 5 ⁇ 10 6,
  • a phosphatidylethanolamine represented by the following formula:
  • It consists of water and organics compatible with water at a ratio of phosphatidylethanolamine 0.1 to 10 equivalents to 100 equivalents of carboxyl groups of carboxymethylcellulose. It is a method for producing a cellulose derivative of the present invention, which comprises a step of dissolving in 0% by volume of mixed soot and reacting under a condensing agent.
  • R 1, R 2 , and R 3 are each independently selected from the following formulas (a), (b), and (c): -H (a)
  • X is an alkali metal or an alkaline earth metal
  • R 4 and R 5 are each independently an alkyl group or alkenyl group having 9 to 27 carbon atoms.
  • the cellulose derivative obtained by the above-described method (g) and a phospholipid represented by the following formula are mixed using water and a mixed solvent containing water and an organic compound compatible with water, and then the solvent is added. It is a manufacturing method of an above-mentioned cellulose derivative composition which comprises the process to remove.
  • R 6 and R 7 are each independently an alkyl group or alkenyl group having 9 to 27 carbon atoms, and R 8 is one NH 3 + or one N (CH 3 ) 3 +.
  • the present invention is an adhesion preventing material containing the above-described cellulose derivative or cellulose derivative composition.
  • the present invention is an axable hide-mouthed gel containing 0.1 to 1.5 parts by weight of the above cellulose derivative with respect to 100 parts by weight of water.
  • the cellulose derivative composition described above is added to 100 parts by weight of water. ⁇ 5.0 parts by weight, & ⁇ -capable hyde mouth gel.
  • the cellulose derivative of the present invention forms a hydrogel having an appropriate elastic modulus and viscoelasticity, is colorless and transparent, has sufficient viscoelasticity to form a gel even at a low concentration, and has a capillary such as a syringe. It is possible to inject using a device. According to the Sit method of the present invention, powerful cellulose attraction #: can be made efficient.
  • the cellulose derivative composition of the present invention also forms a hydrogel having an appropriate elastic modulus and viscoelasticity when dissolved in water, and can be used as a medical injection burgundy preventing material.
  • the cellulose derivative composition of the present invention is safe because it contains phosphatidylethanolamines or phosphatidylcholines as biological substances.
  • the cellulose derivative composition of the present invention has an appropriate elastic modulus and viscosity by applying free H phosphatidylethanolamines or phosphatidylcholines to the cellulose derivative # substituted with phosphatidylethanolamine.
  • An elastic hydrogel can be formed According to the production method of the present invention, such a cellulose derivative composition can be produced efficiently.
  • the anti-adhesion material of the present invention is excellent in retention in the body and excellent in the anti-adhesion effect.
  • the gel-like anti-adhesion material of the present invention has sufficient flexibility and viscoelasticity, is easy to handle, can be applied to complicated ⁇ K sites, and is also applicable to surgery using an endoscope. Is possible.
  • FIG. 1 is a schematic diagram showing the coating of fibronectin across the body.
  • the present invention is a cellulose derivative composed of a repeating unit represented by the following formula.
  • RR 2 and R 3 are each independently represented by the following formulas (a), (b), (c), and
  • X is an alkaline pan or alkaline earth ⁇
  • R 4 and R 5 are each independently an alkyl group or alkenyl group having 9 to 27 carbon atoms
  • the total substitution degree of (b) and (c) is 0.3 to 2.0
  • alkali metal of carb X sodium, potassium, lithium and the like are preferable, and as the alkaline earth metal, magnesium, calcium and the like are preferable.
  • R 4 and R 5 are each preferably an alkenyl group having 9 to 19 carbon atoms. Of these, R 4 CO—and / or R 5 CO—power oil bases are preferred, especially R 4 CO— and R 5 CO—power oil bases.
  • the sum of (b) and (c) is 0.3 to 2.0, preferably 0.5 to 1.8, and more preferably 0.6 to 1.5.
  • the ratio of (b) and (c) is not particularly limited, but from the viewpoint of solubility in water, (c) more than force (b) is preferable.
  • the degree of substitution of (d) is 0.001 to 0.05, preferably 0.005 to 0.03.
  • the position m3 ⁇ 4 of (d) is obtained by quantitative analysis of phosphorus by elemental analysis.
  • cellulose derivatives should be After hydrolysis with a basic aqueous solution, the analysis of mrn ⁇ Ipc, etc. can be used by coloring the phosphorous ions such as the phosphorus-molybdenum method.
  • preferred weight average liver weight of the cellulose ⁇ of the present invention is 5 X 1 0 3 ⁇ 5 X 1 0 6, more preferably 5 X 1 0 4 ⁇ 5 X 1 0 6, more preferably 5 X 1 0 4 to 1 X 1 0 6 .
  • Weight average of cellulose derivative; ⁇ amount increases by the introduction of the group represented by the formula (d), so that a cellulose derivative having a target molecular weight can be obtained by appropriately selecting the molecular weight of carboxymethyl cellulose as a raw material. Can do.
  • the present invention includes the cellulose derivative described above and a phospholipid represented by the following formula, wherein the ratio of the molar equivalent of the repeating unit of the cellulose derivative to the molar equivalent of the phospholipid is from 1: 0.05 to 1: 1.
  • a cellulose derivative composition
  • R 6 and R 7 are each independently an alkyl group or alkenyl group having 9 to 27 carbon atoms, and R 8 is one NH 3 + or one N (CH 3 ) 3 +.
  • cellulose derivative as a constituent component of the cellulose derivative composition of the present invention, those described above as preferred for the cell ⁇ -derivative of the present invention are used appropriately.
  • R 4 and R 5 in formula (d) are preferably all alkenyl groups having 9 to 19 carbon atoms, and in particular, those in which R 4 CO— and Z or R 5 CO— are oleoyl groups. Particularly preferred are those in which R 4 CO— and R 5 C 0— are oleoyl groups.
  • R 6 and R 7 in the phospholipid represented by the above formula both are preferably alkenyl groups having 9 to carbon atoms: I 9, particularly R 6 CO— and Z or R 7 CO— Les Oil bases are preferred, especially R 6 C 0— and R 7 CO—strength oil bases.
  • R 8 is one NH 3 +
  • R 4 , R 5 , R 6 , and R 7 are all the same, and among them, R 4 C 0 1, R 5 CO—, R 6 Both CO— and R 7 CO— are preferably oleoyl groups, and at the same time, R 8 is —NH 3 + .
  • the cellulose derivative of the present invention described above consists of a repeating unit represented by the following formula, and has a liver capacity of 5 ⁇ 10 3 to 5 ⁇ 10 6 carboxymethylcellulose,
  • a phosphatidylethanolamine represented by the following formula:
  • Carboxymethylcellulose carboxyl group (ie, total of (b) + (c) substituents) 100 equivalents of phosphatidylethanolamine 0.1 to 100 equivalents of water and organic phase compatible with water It can be obtained by a method comprising a step of dissolving in a mixture containing 20 to 70% by volume of water and reacting in the presence of a condensing agent.
  • R ′, R 2 , and R 3 are each independently selected from the following formulas (a), (b), and (c): -H (a)
  • X is an alkaline pot or alkaline earth pot
  • R 4 and R 5 are each independently an alkyl group or alkenyl group having 9 to 27 carbon atoms.
  • Cal port carboxymethyl cellulose as such a raw material is preferably a molecular weight of 5 X 10 3 ⁇ 5 X 10 6 , more preferably 5X 10 4 ⁇ 5X 10 6, even more preferably 5X 10 4 ⁇ 1X10 6.
  • Carboxymethyl cellulose as such a raw material can be migrated by, for example, dissolving pulp with sodium hydroxide solution, etherifying with monochloroacetic acid or its sodium salt, and purifying.
  • alkali metal of X in the above formula (c) sodium, potassium, lithium and the like are preferable, and as the alkaline earth, magnesium, calcium and the like are preferable.
  • the total degree of substitution of (b) and (c) is 0.3 to 2.0, preferably 0.5 to 1.8, more preferably 0.6 to 1.5.
  • the ratio of (b) and (c) is limited, but from the viewpoint of solubility in water, (c) force (b) is much more vigorous than T (b).
  • the specific structural formula of recarboxymethyl cellulose preferred as a raw material is as shown in the following formula.
  • the substitution position of the carboxymethyl group in the cellulose skeleton should be at the C-6 position.
  • R 4 and R 5 are each independently an alkyl group having 9 to 27 carbon atoms. Or an alkenyl group.
  • R 4 and R 5 are each preferably an alkenyl group having 9 to 27 carbon atoms, more preferably an R 4 CO— and / or R 5 CO-force oleoylile group, particularly R 4 CO— and R 5 CO—Power 3 ⁇ 4 What is the Leoyl group?
  • phosphatidylethanolamine can be used either extracted from animal fiber or synthesized and migrated.
  • the phosphatidylethanolamine include dilauroyl phosphatidylethanolamine, dimyristoyl phosphatidylethanolamine, dipalmitoyl phosphatidylethanolamine, distearoylphosphatidylethanolamine, diarachidoylphosphatidylethanolamine, dibeheno Ilphosphatidylethanolamine, Dilignocelloylphosphatidylethanolamine, Diserotoylphosphatidylethanolamine, Dimontoylphosphatidylethanolamine, Laurooleoylphosphatidylethanolamine, Myristoleoylphosphatidylethanolamine , Palmitoleylphosphatidylethanolamine, dioleoylphosphatidylethanolamine, Ponoylphosphatidylethanolamine, dilinoleoylphosphatidylethanolamine,
  • Phosphatidylethanolamine is a safe substance derived from living organisms.
  • the cell mouth induction of the present invention It is thought that a Hyde mouth gel is formed by the action.
  • Carboxymethylcellulose and phosphatidylethanolamine which are raw materials for the cellulose derivative of the present invention, have 0.1 to 100 equivalents of phosphatidylethanolamine, preferably 0.1 to 0.1 equivalents of carboxyl groups of carboxymethylcellulose. ⁇ React at a rate of 2 to 50 equivalents, more preferably 0.3 to 40 equivalents. 0.1.
  • the generated cell mouthpiece # does not form a hyde mouth gel.
  • the amount is more than 100 equivalents, the resulting cellulose derivative becomes less hydrophobic and insoluble matter tends to be generated, which is not preferable.
  • the condensation reaction between carboxymethylcellulose and phosphatidylethanolamine is the reaction of the catalyst used for the condensation. Depending on the properties and reaction conditions, the reaction efficiency may deteriorate. Therefore, phosphatidylethanolamine should be used i 3 ⁇ 4 more than the calculated value of target S.
  • Carboxymethylcellulose and phosphatidylethanolamine are dissolved in water and an organic solvent (A) that is compatible with water, and dissolved in a mixed solvent containing 20 to 70% by volume of water. If the water content is less than 20% by volume, the carboxymethyl cellulose is difficult to dissolve, and if it is more than 70% by volume, the phosphatidylethanolamine solution is difficult to dissolve and the reaction does not proceed.
  • the water content is preferably 30 to 60% by volume.
  • organic solvent (A) that is compatible with water examples include organic solvents having a cyclic ether bond such as tetrahydrofuran, 1,4-dioxane, 1,3-dioxane, 1,3-dioxolan, and morpholine.
  • organic solvents having an amide bond such as dimethylacetamide, dimethylformamide and N-methyl-2-pyrrolidone, amines such as pyridine, piperidine and pyrazine, and sulfoxides such as dimethyl sulfoxide.
  • cyclic ethers or sulfoxides are preferable, and tetrahydrofuran, dioxane, and dimethyl sulfoxide are more preferable.
  • a carboxyl activator or condensing agent is preferred.
  • Carboxyl activators include N-hydroxysuccinimide, p-nitrophenol, N-hydroxybenzotriazol, N-hydroxypiperidine, N-hydroxysuccinamide, 2,4,5-triclonal phenol, N, N-dimethylaminopyridine and the like can be raised.
  • the condensing agent m 1-ethyl-3- (dimethylaminopropyl) monocarbodiimide and its hydrochloride, diisopropylcarpoimide, dicyclohexylcarpoimide, N-hydroxy-5-norbornene-2,3-dicarboximide, etc.
  • N-hydroxybenzotriazole as the carboxyl activator and 1-edyl 3- (dimethylaminopropyl) monocarbodiimide hydrochloride as the condensing agent (in a narrow sense).
  • the reaction temperature is preferably 0 to 60. In order to suppress the production of by-products, it is more preferable to carry out the reaction at 0 to 10.
  • the reaction environment is energetic. More preferably, the pH is 6-7.
  • carboxymethylcellulose is not substantially dissolved means that the hydroxymethylcellulose sodium salt or carboxymethylcellulose (COOH type) that can be obtained in a powdered or lyophilized state is not hydrolyzed.
  • carboxymethylcellulose sodium salt or carboxymethylcellulose (COOH type) that can be obtained in a powdered or lyophilized state is not hydrolyzed.
  • solubility of carboxymethylcellulose in an organic solvent it means an organic solvent that hardly dissolves. Specifically, the solubility is 3% or less.
  • alcohols such as methanol, ethanol, ⁇ -propyl alcohol, isopropyl alcohol, ⁇ -butyl alcohol, t-butyl alcohol, ethylene glycol, 1,2-propylene glycol, 1,3-propylene
  • examples include alcohols such as glycol and glycerin, ketones such as acetone, and aromatic alcohols such as phenol, etc.
  • those having a boiling point of less than 100 are preferable, and more preferable.
  • the boiling point is 7 3.8 and is as follows:
  • methanol, ethanol, and isopropyl alcohol can be used well, but ethanol is preferred when it is used in vivo.
  • the organic solvent (B) is added to the cellulose derivative ⁇ : in a mixture of water and organic solvent ( ⁇ ) to form Cellulose invitations may be used.
  • a method of adding an organic solvent (B) to a molded body such as a precipitate obtained as described above, a powder in a dry prison state, or a sponge obtained by freeze-drying and washing may be used.
  • the catalysts such as the condensing agent and force lpoxyl activator used in the reaction and unreacted phospholipids remaining in the system without reacting.
  • methods such as centrifugation and filtration are used. Soxhlet extraction can also be used for cleaning with organic soot (B).
  • the cellulose derivative composition of the present invention is prepared by mixing the cellulose derivative obtained by the above-described method and the phospholipid represented by the following formula using water and a mixed ⁇ containing organic soot compatible with water, It can then be done by a method comprising a step of removing soot.
  • R 6 and R 7 are each independently an alkyl group or alkenyl group having 9 to 27 carbon atoms
  • R 8 is one NH 3 + or one N (CH 3 ) 3 +.
  • the phospholipid used in this step is sphatidylethanolamines or phosphatidylcholines.
  • R 6 and R 7 are each independently an alkyl group or alkenyl group having 9 to 27 carbon atoms, and R 6 and R 7 are both alkenyl groups having 9 to 19 carbon atoms.
  • R 6 CO—and / or R 7 CO—power oleolic groups are particularly preferred, especially R 6 CO— and R 7 CO—power oleoyl groups.
  • phospholipids can be used either extracted from animal fibers or synthesized and migrated.
  • phosphatidylethanolamines include dilauroyl phosphatidylethanolamine, dimyristoyl phosphatidylethanolamine, dipalmitoylphosphatidylethanolamine, distearoylphosphatidylethanolamine, and diarachidoylphosphatidylethanolamine.
  • Dibenoylphosphatidylethanolamine Dilignocelloylphosphatidylethanolamine, Diserotoylphosphatidylethanolamine, Dimontoylphosphatidylethanolamine, Laurooleoylphosphatidylethanolamine, Myristole Oil phosphatidylethanolamis palmito oleoyl phosphatidylethanolamine, dioleoylphosphatidylethanolamine, jinel Nylphosphatidylethanolamine, dilinoleol phosphatidylethanolamine, dilinolenoylphosphatidylethanolamine, dihilagonoylphosphatidylethanolamine, diaradonolphosphatidylethanolamine, didocosahexaenoyl It is possible to mention Ruphosphatidylethanolamine.
  • phosphatidylcholines examples include dilauroyl phosphatidylcholine, dimyristoyl phosphatidylcholine, dipalmitoyl phosphatidylcholine, distearoylphosphine.
  • oleoylphosphatidylethanolamine oleoylphosphatidyl / corinka are preferred.
  • Such cellulose attraction and phospholipid are mixed in a mixed solvent of water and an organic solvent (A) that is compatible with water.
  • a mixed solvent having a water content of 20 to 70% by volume preferably a mixed solvent having a content of ⁇ of 30 to 60% by volume.
  • organic rice cake ( ⁇ ) it can be used for the organic difficulty mentioned above.
  • cyclic ethers or sulfoxides are preferred, and tetrahydrofuran, dioxane, and dimethyl sulfoxide are more preferred.
  • the mixing ratio of the cell mouth derivative and the phospholipid is such that the molar equivalent ratio of the cellulose-induced repeating unit and the molar equivalent ratio of the phospholipid is 1: 0.0 5-1: 1, 1: Q.;! To 1: 0.8, more preferably 1: 0.1 to 5: 1: 0.6. If the phospholipid mole St is lower than 0.05, the effect of improving viscoelasticity will not be obtained, and if it exceeds 1, the phospholipid will be reversed, and the effect of improving viscoelasticity will be difficult. .
  • the temperature may be 0 to 30 and preferably 10 to 25 t. Further, the contents of the polymer and phospholipid in the solvent are not particularly limited, but the total is preferably 3% by weight or less.
  • the organic solvent (A) is removed to obtain the desired sincerity.
  • the dialysis membrane is not particularly limited, but a commercially available Visking tube (regenerated cellulose membrane) can be preferably used.
  • the anti-adhesion material of the present invention is a hide-mouthed gel containing the cellulose derivative of the present invention, and the cellulose attraction of the present invention is 0.:! To 5.0 parts by weight, preferably 100 parts by weight of water. Hyde mouth gel containing 0.2 to 2.0 parts by weight, more preferably 0.3 to 1.0 parts by weight.
  • the preferred complex elastic modulus of the gel and gel is as follows: when measured at an angular velocity of 10 rad / sec using a dynamic viscoelasticity measuring device under the conditions that the polymer concentration in water is 1% by weight and the temperature is 37. Those having 5 0 to 90 O NZm 2 are preferred, and those having 1 0 0 to 70 0 N / m 2 are more preferred. This is because it is the easiest to handle as this range force type gel.
  • the hide-mouthed gel of the present invention is colorless and transparent, and it is possible to detect foreign matters such as dust in the manufacturing process, which is advantageous for industrial production.
  • Hyde Mouth Gel Water contained in Hyde Mouth Gel!
  • Other components of ⁇ include condensing agents used as catalysts, by-products such as urea produced when the condensing agent undergoes a predetermined chemical reaction, carboxyl activators, and unreacted phosphatidylethanolamines.
  • Foreign substances that may be mixed in each stage of the reaction, ions used for pH adjustment, etc. are included, but these components can be purified or washed with the above organic solvent (B). It is recommended that all compounds be kept at a low level and not recognized as a foreign body reaction when placed in vivo.
  • the cellulose derivative composition of the present invention can form an id mouth gel.
  • a hyde mouth gel having appropriate viscoelasticity can be obtained.
  • Hyde Mouth Gels are viscoelastic enough that they will not flow down even if the container containing Hyde Mouth Gel is tilted, and can be easily deformed when touched with an S spatula such as a spatula. It is easy to apply to the affected area. It is also possible to inject with a small tube such as a syringe.
  • a preferable complex elastic modulus of such a gel is 50 0 when measured at an angle of 3 ⁇ 4 S 10 rad / sec using a dynamic viscoelasticity measuring device under conditions of a polymer concentration in water of 1% by weight and a temperature of 37.
  • Those with ⁇ 90 0 ON / m 2 are preferred, and those with 100 0 70 0 N / m 2 are more preferred. This is because this range force is most easily handled as a ⁇ type gel.
  • the water, cellulose attraction and phospholipid components contained in the Hyde Mouth Gel include condensing agents used as a catalyst, by-products such as urea produced by the condensing agent via a predetermined chemical reaction, carboxyl Examples include activators, foreign substances that may be introduced at each stage of the reaction, and ions used to adjust ⁇ . Any compound is preferably ⁇ which is suppressed to a low level so that it is not recognized as a foreign body reaction when placed in a living body.
  • Cellulose derivatives, cellulose derivative compositions, and hide-mouth gels of the present invention can be used for medical applications including medical materials, daily necessities such as hair care products and skin moisturizers, and cosmetic applications. Is possible. Since this gel can be injected through a syringe, it is particularly powerful for use in minimally invasive medical applications, and it retains and gradually maintains humoral factors such as cell carriers and growth factors for regenerative medicine. It can be preferably used as a carrier to be released, a carrier to hold a compound that can be used as a medicine, a carrier to be slowly released, a medical material such as an adhesion preventive material, and particularly an injection-type adhesion preventive material.
  • an adhesion preventive material such as an adhesion preventive material
  • injection-type adhesion preventive material such as an adhesion preventive material
  • CMCNa Carboxymethylcellulose sodium (Japan »Chemical Co., substitution degree 0.69),
  • HOB t ⁇ H 2 0 1-Hyd roxybenzo tri azo le, mo nohyd ra te (Synthetic Organic Organisation ⁇ ff ⁇ M),
  • the proportion of phospholipid in the cellulose derivative was determined by analyzing the total phosphorus content by the vanadmolybdate M3 ⁇ 4S method. '(3) Measurement of complex elastic modulus of Hyde mouth gel
  • the complex elastic modulus of the Hyde mouth gel was measured at 37 and at an angle of 3 ⁇ 43 ⁇ 410 radZsec using Rheometer RFIII (TAInstrument), a dynamic viscoelasticity measuring device.
  • the complex elastic modulus is a constant representing the ratio of stress and strain of an elastic body.
  • CMCNa 20 Omg with an average liver mass of 2.3 million was dissolved in 40 ml of water, and tetrahydrofuran 4 Oml was further added.
  • L ⁇ ⁇ -dioleoylphosphatidylethanolamine 169.7 mg (0.000228mo 1) (100 equivalents of the carboxyl group of CMCN a, 40 tons, EDC48 mg (0.00025 lmo 1), HOB t ⁇ ⁇ 2 038. 4 mg (0. 00025 lmo 1) was dissolved in 10 ml 1 of tetrahydrofuran / water 1/1 and added to the reaction system, followed by overnight dripping.
  • a hydrogel having a concentration of 1% by weight was prepared by dissolving 1 Omg of the cellulose-dried composition after drying in 99 Omg of ion-exchanged water.
  • the complex elastic modulus of the obtained hydrogel was measured and found to be 188.3 N / m 2 .
  • the ratio of the molar equivalent of repeating units in the cellulose derivative to the molar equivalent of L- ⁇ -dilauroylphosphatidylcholine is 1: 0.27.
  • L- ⁇ -dilauroylphosphatidylcholine 22.5 mg (0.036 mmo 1 ) was applied in the same manner as in Example 6 except that a cellulose derivative was obtained, and then a hide-mouthed gel was prepared. As a result of measuring the complex elastic modulus of the resulting hide-mouthed gel, it was 249. lN / m 2 .
  • Example 8 The ratio of the molar equivalent of repeating units in the cellulose derivative to the molar equivalent of L- ⁇ -dilauroylphosphatidylcholine is 1: 0.27.
  • L- ⁇ -dilauroylphosphatidylcholine 22.5 mg (0.036 mmo 1 ) was applied in the same manner as in Example 6 except that a cellulose derivative was obtained, and then a hide-mouthed
  • L- ⁇ -distearoylphosphatidylcholine 28.8 mg (0.27) so that the ratio of the molar equivalents of repeating units in the cellulose derivative to the molar equivalent of L- ⁇ -distearoylphosphatidylcholine is 1: 0.27.
  • the same operation as in Example 6 was performed except that 036 mmo 1) was applied Pf. After obtaining the cellulose repellent, a hide-mouthed gel was prepared. As a result of measuring the complex elastic modulus of the resulting hide-mouthed gel, it was 261.2 NZm 2 . Difficult example 11]
  • the ratio of the molar equivalents of repeating units in the cellulose derivative to the molar equivalents of L- ⁇ -dilauroylphosphatidyltanolamine is 1: 0.2.
  • L- ⁇ -Dilauroylphosphatidylethanolamine 20 After adding 9 mg (0. 036 mmo 1) to P "T, the same operation as in Example 6 was carried out to obtain a cellulose-triggered product, and then a hide-mouthed gel was prepared. Complexity of the obtained hydrogel As a result of measuring the elastic modulus, it was 212.7 N / m 2 Example 12]
  • the cellulose derivative composition hide-mouth gel of Example 1 was dropped on a Petri dish coated with nitrocellulose, and then air-dried for 6 hours. Next, 30 / gZ After coating 3 ml ⁇ fibronectin Petri dish, the Petri dish was washed with PBS ( Figure 1). Finally, the murine NIHZ3T3i1 ⁇ 2 blasts suspension 5ml of 0. 4X10 5 cells Zml were plated on the entire petri dish (2X10 5 cells / Petri dish). Using a phase-contrast microscope, cell adhesion to the gel mouth was observed for 7 days. As a result, cell adhesion and scum were not observed on the cellulose-derivatized eight-sided gel.
  • Example 12 Using the hydrated gel of Example 2 in place of the cellulose derivative composition hydrated gel of ⁇ , the same operation as in Example 12 was carried out to evaluate cell adhesion to the hydrated gel and U sleep. The result was almost the same as Example 12.
  • Example 3 Use the hydrogel of Example 3 in place of the cellulose derivative composition hydrogel of Example 1. J3 ⁇ 4 ⁇ Perform the same operation as in Example 12 to evaluate the cell adhesion and moisture to the Hyde mouth gel. did. The result was almost the same as Example 12. Ordinance 15]
  • Example 12 Using the hydrogel of Example 5 in place of the cellulose derivative composition hydrogel of Example 1, the same procedure as in Example 12 was performed to evaluate the cell density and the moisture on the hide-mouthed gel. The result was almost the same as Example 12.
  • Example 16 Cell adhesion to fibronectin and t / S moisture were evaluated in the same manner as in Example 12 except that 30 g / m1 fibronectin was used instead of the hydose mouth gel of the cellulose derivative composition of Example 1. .
  • the cells were observed to spread throughout fibronectin.
  • mouse NIHZ3T3 bud cells were adhered and infiltrated in Comparative Example 1 compared to mouse NIHZ3T3 bud cells in Examples 12, 13, 14, and 15. Almost no adhesion or infiltration to the hydrogel of the invention was observed, and the cells selectively adhered to the fibronectin regions that were not coated with hydrogen. From the above, it was confirmed that the Hyde Mouth Gels in Examples 12, 13, 14, and 15 had an effect of suppressing cell moisture.
  • Example 16 Example 16
  • Example 1 Thereafter, the cellulose derivative octahydrogel (1 ml) of Example 1 was applied to the defect site of the abdominal wall, the muscle layers of the incision were joined together, and the skin was sutured with 4 to 5 needles. Kura ijf recruitment department was disinfected with isodine disinfectant and then returned to the cage. After 4 weeks of model preparation, the animals were laparotomized under pentobarbi anesthesia under Lunatrium anesthesia, and the degree of intraperitoneal adhesion was observed macroscopically and scored according to the criteria shown below. A control to which no cellulose derivative eight-gel was applied was used as a control.
  • Score 1 A state of weak adhesion that can be broken by mild traction
  • Example 17 Using 9 rats, the same procedure as in Example 17 was performed, except that the Hyde Mouth Gel of Example 2 was used in place of the Cellulose Derivative Composition Eight Mouth Gel of Example 1. The degree and the effect on the intensity hurt. As a result, the adhesion score and strength were 0.2 soil 0.7 and 50 ⁇ 149 grams (average soil standard deviation), respectively.
  • Example 17 As a control, the same operation as in Example 17 was performed without applying zo and id mouth gel, and the degree of adhesion and strength were evaluated. As a result, the adhesion score and strength were 2.0 ⁇ 1.3 and 3 97 ⁇ 313 grams (mean soil standard deviation), respectively.
  • the cellulose attractant hydrogel of the present invention obtained in Examples 2, 3, and 5 has an effect of strongly suppressing adhesion in vivo, and the effect of adhesion after surgery is effective. It was shown that it can be prevented.
  • Example 2 Using the cellulose-derived hydrogel of Example 1 with different separation and application amounts, the same operation as in Examples 16 and 17 was performed, and the effect on the degree of adhesion and strength of the throat gel was evaluated. Nine rats in each group were used. The results are shown in Table 2. Table 2
  • CMCNa a cellulose derivative prepared by the same procedure as in Example 1 except that a molecular weight of 970,000 was used as CMCNa (separated 0.001; expressed as “CMC-PE”) was dissolved in a sodium chloride aqueous solution and gelled. Viscosity (E ta (P), value at 1 Orad / sec) was measured. The results are shown in Table 3. The concentration of the polymer is 1% by weight, “CMC—Na” represents carboxymethyl cellulose sodium salt having a molecular weight of 970,000 used as a raw material, and PBS represents phosphate buffered saline (0.9% NaC 1). Table 3
  • the cellulose derivative eight-sided gel of the present invention surprisingly increases its viscosity rapidly when coexisting with a small amount of sodium chloride.
  • the injection is facilitated by reducing the viscosity without adding sodium chloride. Touching to increase the concentration of sodium chloride will increase the viscosity, making it easier to perform the desired functions such as anti-adhesion agents.
  • the present inventors have developed a cellulose derivative according to the present invention: Hachidrogeli cellulose derivative ## Composition Hydrate Gel, and other polysaccharides are modified with a group having an amino group! (We examined the effect of increasing viscoelasticity due to TT. For example, hyaluronic acid with leucine methyl ester, tyrosine ethyl ester, phenylalanine methyl ester, vitamin ⁇ 5, carbachol (carbamylcholine chloride), edylamine, and nicotinamide.
  • the present inventors have found that by modifying carboxymethylcellulose with alkylamine, specifically, oleylamine, a highly viscoelastic cellulose-induced octahydrogel can be obtained.
  • alkylamine specifically, oleylamine
  • a highly viscoelastic cellulose-induced octahydrogel can be obtained.
  • the effect of suppressing the cell adhesion and infiltration of the CMC-alkylamine hydrogel was low. It has been found that the high viscoelasticity of the hydrogel necessarily leads to a good anti-adhesion effect.
  • CMCN a (Nippon Seika Chemical Co., Ltd., F 15 MHC, substitution degree 0.77) was used, and phospholipids were dilauroyl phosphatidylethanolamine (COAT SOME ME—20 20 20 »Fat Co., Ltd. was used.
  • the other reagents were the same as those described in Example 1.
  • CMCNa 1 g was dissolved in 50 ml of water, and 20 mg of dilauroyl phosphatidylethanolamine was added to this solution, followed by stirring at room temperature for 1 hour. £ 500 was added to this «and won overnight at room temperature.
  • the resulting fibers were dialyzed against deionized water and dried.
  • the obtained lyophilized product was mixed with water so that the polymer concentration was 1% by weight, and viscoelasticity was measured.
  • the complex elastic modulus of CMCN a before the reaction was 0.4 N / m 2
  • the complex elastic modulus of the obtained lyophilized product was 0.4 N / m 2.
  • the obtained mixture of cellulose derivative and water remained as a fluid that flowed down when the container was tilted, and showed no gel properties.
  • the cellulose derivative composition of the present invention is useful as a medical hyde mouth gel, particularly as an injectable anti-adhesive material.
  • the anti-adhesion material can be used in a course on the spine, joints, tendons, and columns in order to prevent adhesion of damaged biological surfaces. More specifically, in spinal surgery, adhesion can be prevented by applying, for example, the adhesion preventing material of the present invention to isolate the dura mater from the nerve root periphery. When adhesion occurs, it is necessary to perform adhesion peeling for the purpose of securing a movable area.
  • the anti-healing material of the present invention it is possible to prevent adhesion, avoid re-generation, improve medical economy, and improve the quality of life of patients.
  • Adhesion can be prevented by applying the anti-adhesion material of the present invention to the aftergrown granule I ⁇ site.
  • the anti-adhesion material of the present invention has excellent retention in the body and is useful as an anti-adhesion material.
  • the anti-adhesion material is a gel, it can be applied to a part having a complicated shape, and can be easily applied using an endoscope.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Biochemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Surgery (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Materials For Medical Uses (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

 下記式で表される繰り返し単位からなるセルロース誘導体、該セルロース誘導体とリン脂質とを含んでなる組成物、それらの製造方法、ならびに該誘導体もしくは該組成物を含んでなる癒着防止材。 R1、R2、R3は−H、−CH2−COOH、−CH2−COOX、または−CH2CO−ホスファチジルエタノールアミンであり、Xはアルカリ金属またはアルカリ土類金属、−CH2−COOHと−CH2−COOXの置換度の合計が0.3~2.0であり、−CH2CO−ホスファチジルエタノールアミンの置換度が0.001~0.05である。

Description

セルロース誘導体およびその^ i方法 技術分野
本発明は、 特定構造のセルロース誘導体、 特定構造のセルロース誘導体とリン脂質とを含 んでなる組成物、 およびそれらの Sjg方法、 ならびに該誘導体もしくは言舰成物を含んでな る癒着防止材に関する。 背景技術
生体 の癒着は、 損傷を受けた β表面が再生する際に他の ffi^と結合することにより 発生する。 そのため、 手術後の癒着を防止するため生体適合性の材料であるセルロースなど の多糖類を使用した種々の癒着防止材が ϋ¾されている。
例えば、 カルポキシメチルセルロースの水^ ¾を用いた癒着防止材カ されている (Α m J S u r g. 、 1 6 9、 1 5 4— 1 5 9 ( 1 9 9 5) ) 。 しかし、 この癒着防止材は 体内での滞留性が低く、 癒着防止効果を十分に発揮させることができない。 そのため、 多糖 類を種々の方法で修飾したり、 7K不溶化させたりする試みがなされてい^)。
例えば、 ヒアルロン酸とカルボキシメチルセルロースとをカルポジイミドで修飾した癒着 防止材が提案されている (国際公開 WO 9 2/ 0 0 0 1 0 5号パンフレツト、 国際公開 WO 9 2Z 0 2 0 3 4 9号パンフレット) 。 また、 セルロースの水素原子を特定の啬換基で置換 したセルロース誘導体を主成分とする癒着防止材が提案されている (特開平 1一 3 0 1 6 2 4号公 ¾) 。 さらに、 ホスファチジルエタノールアミ で修飾したヒアルロン酸化合物から なる癒着防止材カ是案されている (特開 2 0 0 6— 2 9 6 9 1 6号公 #) 。
また、 米国特許第 5 0 6 4 8 1 7号明細書には、 のカルボキシメチルセルロース とホスファチジルエタノ一ルァミンとを水溶媒で反応させてホスホリパーゼ A 2阻害剤組成 物を得る反応が記載されている。 もっとも、 鍵する比 5に示すとおり、 この反応条件 では目的とする化合物は生成していないこと力わかっている。
国際公開 WO 2 0 0 1 / 0 4 6 2 6 5号パンフレツ卜には水相溶性有機溶媒を含む水溶液 中において、 ポリァニオン性多糖類を活性剤と反応させることを含んでなる水不溶性の生物 適^ ゲルが記載され、 ポリア二オン性多糖類としてカルボキシメチルセルロースが挙げら れている。
しカゝし、 いずれの提案も癒着防止効果、 取扱い性、 安^ ftについてさらなる検討の余地が ある。 上記したように、 リン脂質のセルロースへの導入は示唆されているものの、 癒着防止 効果があり、 取扱いのしゃすいハイド口ゲルについては何ら検討されていない。
また、 特開平 9— 2 9 6 0 0 5号公報には、 疎水性基からなる修飾基を多糖類に導入する と、 多糖類をゲル化させることなく粘度の増大および生体内安定性の向上を図ることができ ることが記載されている。 しカゝし、 本発明の癒着防止効果を得るのに有用なセルロース誘導 体やそれを含んでなる繊物については、 記載も示唆もされていない。 発明の開示
本発明の目的は、 医用材料として有用なセルロース誘 もしくはそれを含んでなる組成 物を提供することにある。 特に、 ハイド口ゲルにした場合、 適度な弾性率および粘弾性を有 し、 癒着防止材として有用なセルロース誘 もしくはそれを含んでなる組成物を提供する こと、 特に体内での滞留性に優れたゲル状の癒着防止材を提供することにある。 さらに、 本 発明の目的は、 該セルロース誘導体もしくはそれを含んでなる組成物の製造方法を提供する ことにある。 本発明者らは、 安全性に優れた材料でセルロースを修飾し、 粘弾性を増大させ, 生体内で の滞留性を向上させ、 «な粘弾性を有し、 癒着防止効果を向上させる糸诚について 意研 究した。 その結果、 本発明者らは、 カルポシキメチルセルロースの水素原子を生体由 質 であるホスファチジルエタノールァミンで 側鎖を置換すると、 適度な粘弾性を有し、 癒 着防止材として有用で、 なおかつ注射器を通して注入可能なハイド口ゲルを形成しうる新し レ feルロース誘 ¾#:が得られることを見出した。 本発明者らはさらに、 該セルロース誘導体 に特定量のリン脂質を共存させることによつても適度な粘弾性を有し、 癒着防止材として有 用なセルロース誘 物が得られることを見出した。 すなわち、 本発明は下記式で表される繰り返し単位からなるセルロース誘難である。
Figure imgf000005_0001
式中、 R R2、 および R 3はそれぞれ独立に下記式 (a) 、 (c) 、 および (d) 力 なる群より選ばれるものであり、
-H (a)
-CH2-COOH (b)
一 CH2— COOX (c)
Figure imgf000005_0002
(d)
式 (c) 中、 Xはアルカリ金属またはアルカリ土類金属であり、
式 (d) 中、 R4および R 5はそれぞれ独立に炭素数 9〜27のアルキル基またはアルケニ ル基であり、
(b) と (c) の置換度の合計が 0. 3〜2. 0であり、
(d) の置 が 0· 001~0. 05である。
ここで、 本明細書における置 «とは、 (a) 、 (b) 、 (c) 、 および (d) の当量の 合計を 3とした場合の、 それぞれの置換基の数をいう。 また、 本発明は上記したセルロース誘 と、 下記式で表されるリン脂質を含み、 セル口 —ス誘 の繰り返し単位のモル当量とリン脂質のモル当量との比が 1 : 0. 05〜: I : 1 であるセルロース誘導体組成物である。
Figure imgf000006_0001
式中、 R6および R7はそれぞれ独立に炭素数 9 ~ 2 7のアルキル基またはアルケニル基 であり、 R8は一 NH3 +または一 N (CH3) 3+である。 また、 本発明は下記式で表される繰り返し単位からなり、 量が 5 X 1 0 3〜 5 X 1 0 6のカルボキシメチルセルロースと、
Figure imgf000006_0002
下記式で表されるホスファチジルエタノ一ルァミンとを、
Figure imgf000006_0003
カルポキシメチルセルロースのカルボキシル基 1 0 0当量に対し、 ホスファチジルェタノ一 ルァミン 0. 1〜; 1 0 0当量の割合にて、 水および水と相溶する有機 とからなり、 水が 2 0〜7 0容量%含まれる混合謹に溶解し、 縮合剤の被下で反応させる工程を含む、 本 発明のセルロース誘導体の製造方法である。
ここで、 R 1. R2、 および R 3はそれぞれ独立に、 下記式 (a) 、 (b) 、 および (c ) 力、ら選ばれるものであり、 -H (a)
- CH2 - COOH (b)
一 CH2— COOX ( c )
式(c ) 中、 Xはアルカリ金属またはアルカリ土類金属であり、
式 (b) と (c ) の置 »の合計が 0. 3〜2 :、 0であり、
R4および R 5はそれぞれ独立に、 炭素数 9〜2 7のアルキル基またはアルケニル基である。 また、 本発明は上記した ®g方法により得られたセルロース誘 と、 下記式で表される リン脂質とを、 水および水と相^る有機 を含む混合溶媒を用いて混合し、 次いで溶媒 を除く工程を含んでなる、 上記したセルロース誘導体組成物の製造方法である。
Figure imgf000007_0001
式中、 R 6および R 7はそれぞれ独立に炭素数 9〜2 7のアルキル基またはアルケニル基 であり、 R8は一 NH3 +または一 N (CH3) 3+である。 さらに、 本発明は上記したセルロース誘導体またはセルロース誘導体組成物を含有する癒 着防止材である。 さらに、 本発明は水 1 0 0重量部に対し、 上記したセルロース誘導体を 0. 1 ~ 1 . 5重 量部含む、 ax可能なハイド口ゲルである。 さらに、 本発明は水 1 0 0重量部に対し、 上記したセルロース誘導体組成物を 0. :!〜 5. 0重量部含む、 &λ可能なハイド口ゲルである。 本発明のセルロース誘導体は、 適度な弾性率および粘弾性を有するハイドロゲルを形成し、 無色透明で、 低濃度でもゲルを形成するのに十分な粘弾性を有し、 注射器などの細管を有す る器具を用いて注入することが可能である。 本発明の Sit方法によれば、 力 るセルロース 誘 #:を効率的に することができる。
本発明のセルロース誘導体組成物も、 水に溶解させると適度な弾性率および粘弾性を有す るハイドロゲルを形成し、 医療用のインジェク夕ブルゲ ! ^癒着防止材として用いることが できる。 本発明のセルロース誘導体組成物は、 生体由来物質のホスファチジルエタノールァ ミン類またホスファチジルコリン類を含有するので安全である。 本発明のセルロース誘導体 組成物は、 ホスファチジルエタノールァミンで置換したセルロース誘 ¾#:に、 遊離のホスフ ァチジルエタノールアミン類またはホスファチジルコリン類を添力 H "ることで、 適度な弾性 率および粘弾性を有するハイドロゲルを形成することが きる。 本発明の製造方法によれば、 かかるセルロース誘導体組成物を効率的に製造することができる。
本発明の癒着防止材は、 体内での滞留性に優れ、 癒着防止効果に優れる。 また、 本発明の ゲル状の癒着防止材は、 十分な柔軟性と粘弾性を有し、 取扱い性に優れ、 複雑な^ Kの部位 にも適用でき、 内視鏡を用いた手術にも適用可能である。 図面の簡単な説明 体にわたるフィブロネクチンの被覆を示す概略図である。 発明を実施するための最良の形態
くセルロース誘 .
本発明は、 下記式で表される繰り返し単位からなるセルロース誘導体である。
Figure imgf000008_0001
式中、 R R2、 および R 3はそれぞれ独立に下記式 (a) , (b) 、 (c) 、 および
(d) 力 なる群より選ばれるものであり、
一 H (a)
一 CH2 - COOH (b)
一 CH2— COOX (c)
CH2OCO
R4COOC一 H
O
CH20— P ~ OCH2CH2NH ~ CO— CHつ——
(d)
( (d) 中の不斉炭素に関するの立体異性については特に限定されない。 ) .
式 (c) 中、 Xはアルカリ鍋またはアルカリ土類^ であり、
式 (d) 中、 R 4および R5はそれぞれ独立に炭素数 9〜27のアルキル基またはアルケニ ル基であり、
(b) と (c) の置換度の合計が 0. 3~2. 0であり、
' (d) の置 ¾gが 0. 001〜0. 05である。
力、かる Xのアルカリ金属としては、 ナトリウム、 カリウム、 リチウムなど力 ましく、 ァ ルカリ土類金属としては、 マグネシウム、 カルシウムなどが好ましい。
式 (d) 中の R4および R5は、 いずれも炭素数 9〜19のアルケニル基であること力好 ましい。 なかでも R 4 C O—および/または R 5 C O—力ォレオイル基であるもの力 まし く、 特に R4CO—および R5CO—力ォレオイル基であるもの力軒ましい。
(b) ど(c) の置離の合計は、 0. 3〜2. 0、 好ましくは 0. 5〜: 1. 8、 より好 ましくは 0. 6〜: 1. 5である。 (b) と (c) の割合は特に限定されないが、 水に対する 溶解性の点から、 (c) 力 (b) よりも多く存¾ "るほう力好ましい。
(d) の置換度は、 0. 001〜0. 05、 好ましくは 0. 005〜0. 03である。 (d) の置 をこの範囲に制御することにより、 適度な粘弾性を有し、 注射器などの細管 を有する器具を用いて注入可能なゲルを得ることができる。 (d)の置 m¾は元素分析によ るリンの定量分析によって求められる。 リンの元素分析には、 セルロース誘導体を適切な酸 性の水溶液により加水分解後、 するリンイオンをリンーモリブデン法などの発色による mrn^ I p cなどの発 析が利用できる。
また、 本発明のセルロース誘難の好ましい重量平均肝量は 5 X 1 0 3〜5 X 1 0 6で あり、 より好ましくは 5 X 1 0 4~ 5 X 1 0 6、 さらに好ましくは 5 X 1 04〜1 X 1 0 6で ある。 セルロース誘導体の重量平均;^量は、 式(d) で表される基の導入により増大する から、 原料となるカルボキシメチルセルロースの分子量を適切に選択することによって目的 の分子量を有するセルロース誘導体を得ることができる。
<セルロース誘導体組成物 >
本発明は上記したセルロース誘導体と、 下記式で表されるリン脂質を含み、 セルロース誘 導体の繰り返し単位のモル当量とリン脂質のモル当量との比が 1 : 0. 0 5〜1 : 1である セルロース誘導体組成物である。
Figure imgf000010_0001
式中、 R 6および R 7はそれぞれ独立に炭素数 9〜2 7のアルキル基またはアルケニル基 であり、 R8は一 NH3 +または一 N (CH3) 3+である。
力、かる本発明のセルロース誘導体組成物の構成成分たるセルロース誘導体についても、 上 記した本発明のセル□—ス誘導体について好ましいと述べたもの力 f適に用いられる。
すなわち、 Xのアルカリ金属としては、 チトリウム、 カリウム、 リチウムなど力 ましく、 アルカリ土類金属としては、 マグネシウム、 カルシウムなど力軒ましい。 式 (d) 中の R4 および R5は、 いずれも炭素数 9〜1 9のアルケニル基であること力好ましく、 なかでも R 4 C O—および Zまたは R 5 C O—がォレオイル基であるものが好ましく、 特に R 4 C O—お よび R 5 C 0—がォレオイル基であるもの力好ましい。
上記式で表されるリン脂質における R 6および R 7としても、 いずれも炭素数 9〜: I 9の アルケニル基であること力好ましく、 なかでも R6 CO—および Zまたは R 7 CO—力ォレ オイル基であるもの力好ましく、 特に R 6 C 0—および R 7 C O—力ォレオイル基であるも, の力 ましい。
また、 R8としては一 NH3+カ ましい。
また、 本発明のセルロース誘稱繊物としては、 R4、 R5、 R6、 および R 7がすべて 同一であるもの力 ましく、 その中でも R4C〇一、 R5CO—、 R6CO—、 および R7C O—がいずれもォレオイル基であるもの力 子ましく、 同時に R8が— NH3 +であるもの力最 も好ましい。
<セルロース誘 の ¾i方法 >
上記した本発明のセルロース誘 は、 下記式で表される繰り返し単位からなり、 肝量 力 5X 103~5X 106のカルボキシメチルセルロースと、
Figure imgf000011_0001
下記式で表されるホスファチジルエタノ一ルァミンとを、
Figure imgf000011_0002
カルボキシメチルセルロースのカルボキシル基 (すなわち (b) + (c) の置換基の合計) 100当量に対し、 ホスファチジルエタノールァミン 0. 1〜 100当量の割合にて、 水お よび水と相^ fる有機 とからなり、 水が 20〜70容量%含まれる混合 «に溶解し、 縮合剤の存在下で反応させる工程を含む方法により $¾ することができる。
ここで、 R'、 R2、 および R 3はそれぞれ独立に、 下記式 (a) 、 (b) 、 および(c) 力 選ばれるものであり、 -H (a)
-CH2-COOH (b)
— CH2— COOX (c)
式 (c) 中、 Xはアルカリ鍋またはアルカリ土類鍋であり、
式 (b) と (c) の置^ gの合計が 0: 3〜2. 0であり、
R 4および R 5はそれぞれ独立に、 炭素数 9~27のアルキル基またはアルケニル基である。 かかる原料としてのカルポキシメチルセルロースは、 分子量が 5 X 103〜5 X 106で あるものが好ましく、 より好ましくは 5X 104〜5X 106、 さらに好ましくは 5X 104 〜1X106である。
かかる原料としてのカルボキシメチルセルロースは、 例えばパルプを水酸化ナトリゥム溶 液で溶解し、 モノクロ口酢酸またはそのナトリウム塩でエーテル化し、 精製することにより Migすることができる。
上記式(c) における Xのアルカリ金属としては、 ナトリウム、 カリウム、 リチウムなど 力好ましく、 アルカリ土類 としては、 マグネシウム、 カルシウムなどが好ましい。
(b) と (c) の置換度の合計は、 0. 3〜2. 0、 好ましくは 0. 5〜1. 8、 より好 ましくは 0. 6〜: 1. 5である。 (b) と (c) の割合は特に限定さ ょいが、 水に対する 溶解性の点から、 (c) 力 (b) より ΐ)多く存& Tるほう力 子ましい。
原料として好ましレカルボキシメチルセルロースの具体的な構造式は下記式で示す通りで ある。 セルロース骨格におけるカルボキシメチル基の置換位置は、 C一 6位にあることカ^!子 ましい。
Figure imgf000012_0001
本発明のセルロース誘導体の製造方法で用いられる上記式で表されるホスファチジルェ夕 ノールァミンにおいて、 R 4および R 5はそれぞれ独立に、 炭素数 9〜27のアルキル基ま たはアルケニル基である。 R4および R5としては、 いずれも炭素数 9 ~ 2 7のアルケニル 基であること力好ましく、 なかでも R 4 C O—および/または R 5 CO-力ォレオイリレ基で あるものが好ましく、 特に R 4 C O—および R 5 C O—力 ¾ レオイル基であるもの力 子まし い。
力、かる原料としてのホスファチジルエタノールアミンは、 動物繊から抽出したもの、 ま たは合成して Migしたものどちらでも使用できる。 ホスファチジルエタノールァミンとして は、 例えばジラウロイルホスファチジルエタノールァミン、 ジミリストイルホスファチジル エタノールァミン、 ジパルミトイルホスファチジルエタノールァミン、 ジステアロイルホス ファチジルエタノールァミン、 ジァラキドイルホスファチジルエタノールァミン、 ジベへノ ィルホスファチジルエタノールァミン、 ジリグノセロイルホスファチジルエタノールアミン、 ジセロトイルホスファチジルエタノールァミン、 ジモン夕ノィルホスファチジルエタノール ァミン、 ラウロォレオイルホスファチジルエタノールァミン、 ミリストォレオイルホスファ チジルエタノールァミン、 パルミトォレオイルホスファチジルエタノールァミン、 ジォレオ ィルホスファチジルエタノールアミン、 ジネルポノィルホスファチジルエタノ一ルァミン、 ジリノレオイルホスファチジルエタノールアミン、 ジリノレノィルホスファチジルエタノ一 ルァミン、 ジヒラゴノイルホスファチジルエタノールァミン、 ジァラキドノィルホスファチ ジルエタノールアミン、 ジドコサへキサエノィルホスファチジルエタノールアミンを挙げる ことができる。 その中でも、 合成する際に使用する有機溶媒への溶解性の面からジォレオイ ルホスファチジルエタノ一ルァミン力 子ましい。
ホスファチジルエタノ一ルァミンは生体由来の安全な物質であり、 本発明のセルロース誘 導体において、 セルロース誘導体分子間の疎水性相互作用を高める結果、 本発明のセル口一 ス誘 は、 これらの疎水性相互作用によりハイド口ゲルを形成するものと考えられる。 本発明のセルロース誘導体の原料たるカルボキシメチルセルロースとホスファチジルェ夕 ノールアミンは、 カルポキシメチルセルロースのカルボキシル基 1 0 0当量に対し、 ホスフ ァチジルエタノールアミンを 0. 1〜1 0 0当量、 好ましくは 0. · 2〜5 0当量、 より好ま しくは 0. 3〜4 0当量の割合で反応させる。 0. 1当量よりも'少ないと生成されるセル口 —ス誘 ¾#:がハイド口ゲルを形成しない。 また、 1 0 0当量より多いと生成されるセルロー ス誘導体の疎水性が¾くなり、 不溶物が発生しやすくなつて好ましくない。 カルポキシメチ ルセルロースとホスファチジルエタノールァミンとの縮合反応は、 縮合に用いる触媒の反応 性や反応条件によっては反応効率力悪くなることがあるため、 ホスファチジルエタノールァ ミンは、 目的とする置^ Sの計算値よりも i ¾に用いること力 子ましい。
カルボキシメチルセルロースとホスファチジルエタノールアミンとは、 水および水と相溶 する有機溶媒 (A) とカゝらなり、 水が 2 0〜7 0容量%である混合溶媒に溶解させる。 水の 含有量が 2 0容量%よりも少ないとカルボキシルメチルセルロース力溶解しにくくなり、 ま た 7 0容量%よりも多いとホスファチジルエタノールアミンカ溶解しにくくなるため反応が 進まない。 水の含有量は、 好ましくは 3 0〜6 0容量%である。
水と相溶する有機溶媒 (A) としては、 具体的にはテトラヒドロフラン、 1 , 4—ジォキ サン、 1 , 3—ジォキサン、 1, 3—ジォキソラン、 モルフォリンなどの環状エーテル結合 を る有機溶媒、 ジメチルァセトアミド、 ジメチルホルムアミド、 N—メチルー 2—ピロ リドンなどのアミド結合を有する有機溶媒、 ピリジン、 ピぺリジン、 ピ ラジンなどのアミ ン類、 ジメチルスルホキシドなどのスルホキシド類を挙げることができる。 これらの中でも 環状エーテル類あるいはスルホキシド類力 ましく、 なかでもテトラヒドロフラン、 ジォキ サン、 ジメチルスルホキシドがより好ましい。
反応に用いる縮合剤としては、 カルボキシル活性化剤や縮合剤 m 力好ましい。 カル ポキシル活性化剤としては、 N—ヒドロキシスクシンイミド、 p—ニトロフエノール、 N— ヒドロキシベンゾトリアゾ一ル、 N—ヒドロキシピペリジン、 N—ヒドロキシスクシンアミ ド、 2, 4 , 5—トリクロ口フエノール、 N、 N—ジメチルァミノピリジンなどカ げられ る。 縮合剤 m としては 1一ェチル—3— (ジメチルァミノプロピル) 一カルポジイミ ドやその塩酸塩、 ジイソプロピルカルポジイミド、 ジシクロへキシルカルポジイミドゃ N— ヒドロキシー 5—ノルポルネンー 2, 3—ジカルポキシイミドなど力挙げられる。 これらの 中でも、 カルボキシル活性化剤として N—ヒドロキシベンゾトリァゾール、 縮合剤 (狭義) として 1—エヂルー 3— (ジメ ルアミノプロピル) 一カルポジイミド塩酸塩を用いるのが 好ましい。
反応温度は、 好ましくは 0〜 6 0でである。 .副生成物の産生を抑制するためには、 反応を 0〜1 0でで行うことがより好ましい。 反応環境は 性下カ籽ましい。 さらに好ましくは pH 6〜7である。 くセルロース誘導体の精製方法〉 本発明のセルロース誘難の 方法においては、 得られたセルロース誘 を、 実質的 にカルボキシメチルセルロースを溶解しないが水と相溶する有機 » (B) を用いてセル口 ース誘導体を精製する工程を加えてもよい。
ここで、 実質的にカルボキシメチルセルロースを溶解しないとは、 粉末状あるいは凍結乾 燥状態で入手可能なカルポキシメチルセルロースナトリゥム塩あるいはカルボキシメチルセ ルロース (COOH型) に関して、 水力^^ ίϊしない条件下でカルボキシメチルセルロースの 有機溶媒に対する溶解性を調べたとき、 ほとんど力溶解しない有機溶媒をいう。 具体的には 溶解度が 3 %以下のものである。例えば、 メタノール、 エタノ^"ル、 η—プロピルアルコ一 ル、 イソプロピルアルコール、 η—ブチルアルコール、 t一ブチルアルコールなどのアルコ ール類、 エチレングリコール、 1, 2—プロピレングリコール、 1 , 3—プロピレングリコ —ル、 グリセリンなどの雜アルコール類、 アセトンなどのケトン類、 フエノールなどの芳 香族アルコール類を挙げることができる。 これらの中でも沸点 1 0 0で未満のもの力好まし く、.より好ましくは沸点 7 3. 8で以下のものである。 例えばメタノール、 エタノール、 ィ ソプロピルアルコール力寧げられるが、 生体内で 用することを考慮するとエタノールが好 ましい。
これらの群からなる有機 β (Β) を用いて精製する場合、 セルロース誘^:が水や有機 溶媒 (Α) の混合液中に存 ffiTる状態で有機溶媒 (B) を加えて を形成し、 セルロース 誘難を取り出 法を用いてもよい。 また、 上記により得られた沈殿、 あるいは乾獄態 にある粉末、 あるいは凍結乾燥により得られたスポンジなどの成型体に、 有機溶媒 (B) を 添加し、 洗浄する方法を用いてもよい。 これらの精製方法により、 反応に用いた縮合剤や力 ルポキシル活性化剤などの触媒類、 反応せずに系中に残った未反応のリン脂質などを取り除 くことができる。有機 (B) 中に懸濁している目的物を得るには、 遠心分離、 ろ過など の方法が利用される。 また、 .ソックスレー抽出も、 有機赚 (B) による洗浄を行うために 利用することができる。 くセルロース誘 #:組成物の SiS方法〉
本発明のセルロース誘導体組成物は、 上記した 方法により得られたセルロース誘導体 と、 下記式で表されるリン脂質とを、 水および水と相溶する有機薩を含む混合 βを用い て混合し、 次いで赚を除く工程を含んでなる方法により すること力できる。
Figure imgf000016_0001
式中、 R 6および R 7はそれぞれ独立に炭素数 9 ~ 2 7のアルキル基またはアルケニル基 であり、 R8は一 NH3 +または一 N (CH3) 3+である。
すなわち、 この工程で用いられるリン脂質は、 スファチジルエタノールアミン類または ホスファチジルコリン類である。 式中、 R 6および R 7はそれぞれ独立に、 炭素数 9〜2 7 のアルキル基またはアルケニル基である、 R6および R 7は、 いずれも炭素数 9〜: 1 9のァ ルケニル基であること力 ましく、 なかでも R 6 C O—および/または R 7 C O—力ォレオ ィル基であるもの力軒ましく、 特に R6 CO—および R7 CO—力ォレオイル基であるもの 力好ましい。
かかるリン脂質は、 動物繊から抽出したもの、 または合成して Migしたものどちらでも 使用できる。 ホスファチジルエタノールァミンとしては、 例えばジラウロイルホスファチジ ルエタノールァミン、 ジミリストイルホスファチジルエタノールァミン、 ジパルミトイルホ スファチジルエタノールァミン、 ジステアロイルホスファチジルェタノ一ルァミン、 ジァラ キドイルホスファチジルエタノールァミン、 ジベへノィルホスファチジルエタノールァミン、 ジリグノセロイルホスファチジルエタノールァミン、 ジセロトイルホスファチジルェタノ一 ルァミン、 ジモン夕ノィルホスファチジルエタノールァミン、 ラウロォレオイルホスファチ ジルエタノールァミン、 ミリストォレオイルホスファチジルエタノールァミス パルミトォ レオイルホスファチジルェタノ一ルァミン、 ジォレオイルホスファチジルェ夕ノールァミン、 ジネルポノィルホスファチジルエタノールアミン、 ジリノレオィルホスファチジルエタノ一 ルァミン、 ジリノレノィルホスファチジルエタノールァミン、 ジヒラゴノイルホスファチジ ルエタノールァミン、 ジァラキドノィルホスファチジルエタノールァミン、 ジドコサへキサ エノィルホスファチジルエタノ一ルァミンを挙げること力できる。
ホスファチジルコリンとしては、 例えばジラウロイルホスファチジルコリン、 ジミリスト ィルホスファチジルコリン、 ジパルミトイルホスファチジルコリン、 ジステアロイルホスフ ァチジルコリン、 ジァラキドイルホスファチジルコリン、 ジベへノィルホスファチジルコリ ン、 ジリグノセロイルホスファチジルコリン、 ジセロトィルホスファチジルコリン、 ジモン タノィルホスファチジルコリン、 ラウロォレオイルホスファチジルコリン、 ミリストォレオ ィルホスファチジルコリン、 パルミトォレオイルホスファチジルコリン、 ジォレオイルホス ファチジルコリン、 ジネルボノィルホスファチジルコリン、 ジリノレオイルホスファチジル コリン、 ジリノレノィルホスファチジルコリン、 ジヒラゴノイルホスファチジルコリン、 ジ ァラキドノィルホスファチジルコリン、 ジドコサへキサエノィルホスファチジルコリンを挙 げることができる。
これらの中でも特に、 ジォレオイルホスファチジルエタノールァミン、 ジォレオイルホス ファチジ^/コリンカ ましい。
かかるセルロース誘難とリン脂質との混合は、 水および水と相溶する有機溶媒 (A) の 混合溶媒中で混合する。 このとき、 水の含有量 2 0〜 7 0容量%である混合溶媒、 好まし く «τ の含有量が 3 0〜 6 0容量%である混合赚カ佣いられる。
有機瞧 (Α) として、 具体的には前述した有機難カ琍用できる。 それらの中で好まし くは環状エーテル類あるいはスルホキシド類であり、 なかでもテトラヒドロフラン、 ジォキ サン、 ジメチルスルホ'キシドがより好ましい。
本発明のセルロース誘導体組成物においては、 セルロース誘導体にリン脂質を混合するこ とにより、 得られる組成物の粘弾性、 および水を加えて得られるそのハイド口ゲルの粘弾性 を高めることができる。 このとき、 セル口一ス誘導体とリン脂質との混合比は、 セルロース 誘 の繰り返し単位モル当量と、 リン脂質のモル当量比が 1 : 0. 0 5 - 1 : 1であるが、 好ましくは、 1 : Q . ;!〜 1 : 0. 8、 より好ましくは、 1 : 0. 1 5〜1 : 0. 6である。 リン脂質のモル当 Stが 0. 0 5よりも低いと粘弾性の改善効果力 られず、 また 1を超え てもリン脂質が翻に? ¾するだけで、 粘弾性の改善効果は «されにくい。
セルロース誘導体にリン脂質を混合する際の条件として、 温度は 0〜3 0でがよく、 好ま しくは 1 0〜2 5tである。 また、 溶媒中のポリマ一およびリン脂質の含量は特に制限され ないが、 合計で 3重量%以下が好ましい。
セルロース誘導体にリン脂質を混合した後、 有機溶媒 (A) を除去する工程を経て、 目的 とする誠物を得る。 有機薩 (A) を取り除く方法としては特に制限はなぐ 纖、 凍結乾燥、 水中での透析により有機溶媒を除く方法、 噴霧乾燥、 エレクトロスプレーデポジ シヨン、 風乾、 溶解性の低い溶媒を添加して.目的物を沈殿させる方法など力利用できるが、 これらの中では水中での透析により有機 «を除く方法力 子ましく、 得られた透析物を凍結 乾燥により乾燥する方法が好ましい。 透析膜には特に制限はないが、 市販のヴィスキングチ ュ一ブ (再生セルロース膜) が好ましく利用できる。
<セルロース誘^:のハイドロゲル〉
本発明の癒着防止材は、 本発明のセルロース誘導体を含有するハイド口ゲルであり、 水 1 0 0重量部に対し、 本発明のセルロース誘 を 0. :!〜 5. 0重量部、 好ましくは 0. 2 〜2. 0重量部、 さらに好ましくは 0. 3〜: 1 . 0重量部含むハイド口ゲルである。
これらの八イド口ゲルは、 ゲルの入った容器を傾けても流れ落ちない程度の粘弾性を有す るもの力 fましく、 スパテルなどの金属へらで1 ると容易に変形すること力何能で、 患部に 塗布することが容易な状態であり、 また注射器など細管を有する器具で注入することが 能 である。
力、かるゲルの好ましい複素弾性率としては、 水中におけるポリマ一濃度が 1重量%、 温度 3 7での条件で、 動的粘弾性測定装置を用い、 角速度 1 0 r a d/ s e cで測定したときに 5 0〜9 0 O NZm2であるものが好ま-しく、 1 0 0〜7 0 0 N/m2であるものがさらに 好ましい。 この範囲力 型のゲルとして最も取扱いやすいからである。
また本発明のハイド口ゲルは無色透明であり、 製造の過程でごみなどの異物が混入した場 合、 これを検知することが可能であり、 工業生産する上でのメリットを る。
またハイド口ゲル中に含まれる水!^の他の成分としては、 触媒として用いた縮合剤類、 縮合剤が所定の化学反応を経由することで生成するゥレアなどの副産物類、 カルボキシル活 性化剤、 未反応のホスファチジルエタノ一ルァミン類、 反応の各段階で混入する可能性のあ る異物、 p Hの調整に用いたイオン類などカ铐えられるが、 これらの成分は、 上記の有機溶 媒 (B) を用いた精製あるいは洗浄によって取り除力^!ており、 いずれの化合物も、 生体内. に入れたときに異物反応として認識されなレ 度の低レ、レベルに抑えてあること力 ましい。 くセルロース誘導体組成物のハイド口ゲル >
本発明のセルロース誘導体組成物 イド口ゲルを形成することができる。 このとき、 水 1 0 0重量部に対し、 セルロース誘 :糸誠物を 0. 1〜5. 0重量部、 好ましくは 0. 2 〜2. 0重量部、 さらに好ましくは 0. 3〜1 . 0重量部含むことにより、 適度な粘弾性を 有するハイド口ゲルを得ることができる。 ,
これらのハイド口ゲルは、 ハイド口ゲルの入った容器を傾けても流れ落ちない程度の粘弾 性を有するもの力 fましく、 スパテルなどの Sへらで触ると容易に変形することが可能で、 患部に塗布することが容易な状態である。 また注射器など細管を る で注入すること が可能である。
かかるゲルの好ましい複素弾性率としては、 水中におけるポリマー濃度が 1重量%、 温度 3 7での条件で、 動的粘弾性測定装置を用い、 角 ¾S 1 0 r a d/ s e cで測定したときに 5 0 ~ 9 0 O N/m2であるものが好ましく、 1 0 0〜7 0 0 N/m2であるものがさらに 好ましい。 この範囲力 ¾ΪΛ型のゲルとして最も取扱いやすいからである。
ハイド口ゲルに含まれる水、 セルロース誘難、 およびリン脂質 の成分としては、 触 媒として用いた縮合剤類、 縮合剤が所定の化学反応を経由することで生成するゥレアなどの 副産物類、 カルボキシル活性化剤、 反応の各段階で混入する可能性のある異物、 ρΗの調整 に用いたイオン類などカ えられる。 いずれの化合物も、 生体内に入れたときに異物反応と ' して認識されない程度の低いレベルに抑えてある ζとが好ましい。 く用途〉
本発明のセルロース誘導体、 セルロース誘導体組成物、 およびそれらのハイド口ゲルの用 途としては、 医用材料を含めた医療用途、 ヘアケア製品や肌の保湿剤などの日用品用途、 化 粧品用途などへの使用が可能である。 本ゲルは注射器を通して注入可能であることから、 そ の中でも特に低侵襲医療用途に用いること力河能であり、 再生医療のための細胞の担体、 成 長因子などの液性因子を保持 ·徐放する担体、 医薬品として利用できる 化合物を保 持'徐放する担体、 癒着防止材ゃシ一ラントなどの医用材料として、 特に注入型の癒着防止 材として好ましく利用できる。 実施例
以下の実施例により本発明の詳細をより具体的に説明する。 しカゝし、 本発明はこれら実施 例に限定されるものではない。
( 1 ) 実施例に使用した材料は以下の通りである。 (i) CMCNa:カルボキシメチルセルロースナトリウム (日本 »ケミカル(株) 製、 置 換度 0. 69) 、
(ii) テ卜ラヒドロフラン (和 «薬工業 (株) S) 、
(iii) 0. 1M HC 1 (和 «薬工業 (株) Μ) 、
(iv) 0. 1M NaOH (和«薬工業 (株) M) 、
(v) EDC: 1—E t hy 1— 3— [3— (d i me t h y 1 am i n o) propy l] 一 c arbod i— imi de 'HC l ( (株) 大阪合成有歡 额製) 、
(vi) HOB t · H20 : 1-Hyd roxybenzo t r i azo l e, mo n o h y d ra t e ( (株) 合成有機化^ ff额 M) 、
(vii) L一 α—ジォレオイルホスファチジルエタノールァミン (COATSOME ME—
8181、 日本油脂 (m ,
(viii) L— α—ジラウロイルホスファチジルェタノ一ルァミン (COATSOME ME 一 2020、 曰棚旨 (株) 製) 、
(ix) L一 α—ジォレオイルホスファチジルコリン (COATSOME MC— 8181、 日棚脂 (株) 瓤 、
(x) L一 α—ジラウロイルホスファチジルコリン (COATSOME MC— 2020、 日 本油脂 (株) @ 、
(xi) L一 α—ジミリストイルホスファチジルコリン (COATSOME MC— 4040、 日相脂 (株) fi) 、
(xii) L— α—ジパルミトイルホスファチジルコリン (COATSOME MC— 6060、 日棚旨 (株) m、
(xiii) L一 α—ジステアリルホスファチジルコリン (COATSOME MC— 8080、 日棚旨 (株) M) 、
(xiv) フイブロネクチン (日本べクトン'ディッキンソン (株)
(xv) ニトロセルロース (Sch l'e i che r&Schue l 1社 、
(xvi) マウス N I HZ 3 T 3雖芽細胞 (Ame r i c an Type Cu l tu re C d 1 1 e c t i onより分 ¾) 、 、
(xvii) PBS (I n v i t r o g e nftfi) 、
(xviii) DMEM ( I n v i t r o g e n社 、 (xix) Ant i b i o t i c s An t i my co t i c s (I nv i t roge n社 ®) 、
(xx) FBS (HYCLONE社 、 '
(xxi) トリプシン— EDTA : 0. 25%トリプシン、 ImM EDTA · 4Na (I n v i t r o g e n社 、
(xxii) メタノール (和 «薬工業 (株) M) 。
(xxiii) 消毒用エタノール(和 薬工業 (株) M) 、
(xxiv) ペントバルビタールナトリウム (ネンブタール注射液、 大日本 ί抜製薬 M) 、 (χχν) イソジン消 Si夜 湖治製菓 (株) 製) 、
(xxvi) 注射用蒸留水 (大塚製薬 (株) 製) 。
(2) セルロース誘導体中のリン脂質含量の測定
セルロース誘導体中のリン脂質の割合は、 バナドモリブデン酸 M¾S法による全リン含 量の分析により求めた。 ' (3) ハイド口ゲルの複素弾性率の測定
ハイド口ゲルの複素弾性率は、 動的粘弾性測定装置である R heome t e r RFIII (TA I n s t r ume n t) を使用し、 37で、 角 ¾¾10 r adZs e cで測定した。 複素弾性率とは弾性体の応力とひずみの比を表す定数のことである。
[錯例 1 ]
くセルロース誘 :〉
平均肝量 230万の CMCNa 20 Omgを水 40mlに溶解し、 さらにテトラヒドロ フラン 4 Omlを加えた。 この^に L— α—ジォレオイルホスファチジルエタノールアミ ン 169. 7mg (0. 000228mo 1) (CMCN aのカルボキシル基 100当量 ίこ 対し 40当 ® 、 EDC48mg (0. 00025 lmo 1) 、 HOB t ·Η2038. 4 mg (0. 00025 lmo 1 ) を 10m 1のテトラヒドロフラン/水 = 1 / 1に溶解して 反応系に添加した後、 終夜辦を行った。 勝後、 テトラヒドロフランを除去し、 水をある 程度蒸発させたところで、 エタノール中に加え、 沈殿させた。 ろ過により、 エタノールを除 き、 再度、 エタノールにて洗浄し、 ろ物を真空乾燥することでセルロース誘難を得、 その リン脂質含量を測定した。 反応前のカルボキシメチルセルロースナトリゥムの置換度は 0. 69であり、 すべての力ルポキシメチル基はナトリウム化されていると仮定し、 リン脂質含 量を用いて計算により、 式 (d) の置換度を求めた。 式 (d) の置換度は 0. 007であつ た。 - <セルロース誘^組成物〉
上記で得られたセルロース誘 ¾#:10 Omg (0. 45mmo 1) を 2 Omlのテトラヒ ドロフラン Z水 = 1 / 1に溶解し、 セルロース誘導体中の繰り返し単位のモル当量と L一 a —ジォレオイルホスファチジルエタノールァミンのモル当量の比が、 1 : 0. 062になる ように L— α—ジォレオイルホスファチジルエタノールァミン 20. 6mg (0. 028m mo 1) を添加し、 20時間攪捽した。 j«f¾、 透析により精製を行い、 さらに繊吉乾燥し てセルロース誘導体組成物を得た。 くセルロース誘 ハイド口ゲル〉
凍結乾燥したセル口一ス誘導体 10 m gをィォン交換水 99 Omgに溶解し、 jt¾ 1重 量%のハイド口ゲルを調製した。 得られたハイド口ゲルは無 β¾明で、 容器を傾けても流動 することはなく、 スパテルなどの金属へらを簡単に挿入することができ、 25 Gの注射針を 通して容易に押し出せることが可能であった。 また、 得られたハイド口ゲルの複素弾性率を 測定したところ、 188. 2NZm2であった。
<セルロース誘導体組成物ハイドロゲル >
吉乾燥したセルロース誘 組成物 1 Omgをイオン交換水 99 Omgに溶解し、 濃度 1重量%のハイドロゲルを調製した。 得られたハイドロゲルの複素弾性率を測定したところ 188. 3N/m2であった。 醜例 2]
セルロース誘導体中の繰り返し単位のモル当量と L一 α—ジォレオイルホスファチジルェ タノ一ルァミンのモル当量の比力 1 : 0. 13になるように L— α—ジォレオイルホスフ ァチジルエタノールァミン 4' 3. 8mg (0. 059mmo 1) を添力 PTる は実施例 1 と同様の操作を行い、 セルロース誘„ 物を得た後、 ハイド口ゲルを調製した。 得られ たハイド口ゲルの複素弾性率を測定した結果、 287. 3 N/m2であった。 闘例 3]
セルロース誘導体中の繰り返し単位のモル当量と L— α—ジォレオイルホスファチジルェ 夕ノールァミンのモル当量の比が、 1 : 0. 26になるように L— α—ジォレオイルホスフ ァチジルエタノールァミン 89. 6mg (0. 12mmo 1) を添加する 例 1と 同様の操作を行い、 セルロース誘 組成物を得た後、 ノ、イド口ゲルを調製した。 得られた ハイド口ゲルの複素弾性率を測定した結果、 291. 9NZm2であった。
[難例 4]
セルロース誘導体中の繰り返し単位のモル当量と L一 α—ジォレオイルホスファチジルェ タノ一ルァミンのモル当量の比力 1 : 0. 40になるように L— α—ジォレオイルホスフ ァチジルエタノールァミン 135. 6mg (0. 18mmo 1) を添加する^は実施例 1 と同様の操作を行い、 セルロース誘 繊物を得た後、 ハイド口ゲルを調製した。 得られ たハイド口ゲルの複素弾性率を測定した結果、 308. 9N/m2であった。 瞧例 5]
セルロース誘導体中の繰り返し単位のモル当量と L— α—ジォレオイルホスファチジルェ タノ一ルァミンのモル当量の比力 1 : 0. 69になるように L— α—ジォレオイルホスフ ァチジルエタノールァミン 23 lmg (0. 3 lmmo 1) を添力 [ΤΤる ¾^は実施例 1と同 様の操作を行い、 セルロース誘 物を得た後、 ハイド口ゲルを調製した。 得られたハ イド口ゲルの複素弾性率を測定した結果、 294. 2NZm2であった。
難例 6]
セルロース誘導体中の繰り返し単位のモル当量と L一 α—ジォレオイルホスファチジルコ リンのモル当量の比力 1 : 0. 26になるように実施例 1で使用したセルロース誘 3 Omg (0. 14mmo 1 ) に L一 α—ジォレオイルホスファチジルコリン 28. 6mg (0. 036mmo 1 ) を添加する以外は実施例 1と同様の操作を行い、 セルロース誘導体 組成物を得た後、 ハイド口ゲルを調製した。 得られたハイド口ゲルの複素弾性率を測定した 結果、 174. 9N/m^であった。 施例 7] '
セルロース誘導体中の繰り返し単位のモル当量と L一 α—ジラウロイルホスファチジルコ リンのモル当量の比が、 1 : 0. 27になるように L一 α—ジラウロイルホスファチジルコ リン 22. 5mg (0. 036mmo 1) を添力 ΙΓする以外は実施例 6と同様の操作を行い、 セルロース誘導体誠物を得た後、 ハイド口ゲルを調製した。 得られたハイド口ゲルの複素 弾性率を測定した結果、 249. lN/m2であった。 醜例 8] .
セルロース誘導体中の繰り返し単位のモル当量と L一 α—ジミリストイルホスゥァチジル コリンのモル当量の比が、 1 : 0. 27になるように L— α—ジミリストイルホスファチジ ルコリン 24. 6mg (0. 036mmo 1) を添力 PTる以外は実施例 6と同様の操作を行 い、 セルロース誘 ^物を得た後、 ハイド口ゲルを調製した。 得られたハイド口ゲルの 複素弾性率を測定した結果、 398. 4N/m2であった。 難例 9]
セルロース誘導体中の繰り返し単位のモル当量と L一 α—ジパルミトイルホスファチジル コリンのモル当量の比力 1 : 0. 27になるように L— α—ジパルミトイルホスファチジ ルコリン 26. 7mg (0. 036mmo 1) を添力 tlTる以外は 例 6と同様の操作を行 レ、 セルロース誘 繊物を得た後、 ハイド口ゲルを調製した。 得られたハイド口ゲルの 複素弾性率を測定した結果、 244. 8NZm2であった。 - 醜例 10]
セルロース誘導体中の繰り返し単位のモル当量と L一 α—ジステアロイルホスファチジル コリンのモル当量の比が、 1 : 0. 27になるように L— α—ジステアロイルホスファチジ ルコリン 28. 8mg (0. 036mmo 1) を添力 Pfる以外は実施例 6と同様の操作を行 レ セルロース言t難糸滅物を得た後、 ハイド口ゲルを調製した。 得られたハイド口ゲルの 複素弾性率を測定した結果、 261. 2NZm2であった。 難例 11]
セルロース誘 中の繰り返し単位のモル当量と L一 α—ジラウロイルホスファチジルェ タノ一ルァミンのモル当量の比カ 1 : 0. 27になるように L一 α—ジラウロイルホスフ ァチジルエタノールァミン 20. 9mg (0. 036mmo 1) を添力 P"Tる は実施例 6 と同様の操作を行い、 セルロース誘 糸滅物を得た後、 ハイド口ゲルを調製した。 得られ たハイドロゲルの複素弾性率を測定した結果、 212. 7N/m2であった。 随例 12]
<マウス N IH/3T 3雌芽細胞の調 M>
マウス N I HZ 3 T 3赚芽細胞を 10%?83ぉょび1 An t i b i o t i c s A n t imyco t i c sを含む DMEM中にて 5 %C〇2存在下で培養した。 インビトロに おけるハイド口ゲルへの細胞接着およ 潤の では、 0. 05 %トリプシン— E D T A でマウス N IH/ 3 T 3纖芽細胞を組 ¾養用のペトリ皿から分離し、 900 r pm、 室 温で 5分間遠心分離を行った。 上清を除去し、 10%FBSおよび 1 %An t i b i o t i c s An t imy c o t i c sを含む DMEMに懸濁し、 り. 4 X 105個 Zm 1の細胞 懸濁液を調製した。
<セルロース誘 ¾Μ成物ハイド口ゲルへの細胞接着および浸潤の IWffi〉 .
«後の癒着は、 損傷を受けた 面が再生する際に、 他の組織と結合することにより 発生するため、 その防止方法の 1つとして損傷 m ^への細胞浸潤を抑制することが考えられ る。 そこで、 Snowらの方法に一部改変を加えた方法を用いて、 セルロース誘導体組成物 ハイド口ゲルへの細胞接着およ OS潤を fffffiした [SnowDH e腿 onV, Carrino DA Caplan AL Silver J. : Εχίλ Neurol; 109(1): 111-30. 1990] 。 すなわち、 メタノール 6m 1に 5 cm2の ニトロセルロースを溶解させ、 この «0. 5mlで 養用の直径 60mmのペトリ皿 を被覆したのち、 2時間風乾した。 実施例 1のセルロース誘導体組成物ハイド口ゲルをニト ロセルロースで被覆したペトリ皿にドロップしたのち、 6時間風乾した。 次に、 30/ gZ mlフイブロネクチン 3ml ^ペトリ皿を被覆したのち、 PBSでペトリ皿を洗浄した (図 1) 。 最後に、 0. 4X105個 Zmlのマウス NIHZ3T3i½芽細胞懸濁液 5mlを ペトリ皿全体に播種した (2X105個/ベトリ皿) 。位相差顕微鏡を用いて、 7日間ハイ ド口ゲルド口ップへの細胞接着おょ搬潤を観察した。 その結果、 ド口ップしたセルロース 誘導体 物八イド口ゲルへの細胞接着および寖潤は認められなかった。
[雄例 13]
ιのセルロース誘導体組成物ハイド口ゲルの代わりに実施例 2のハイド口ゲルを用 いること 、 例 12と同様の操作を行い、 ハイド口ゲルへの細胞接着およ U寝潤を評 価した。 その結果は実施例 12と概ね同一であつた。
[実施例 14]
実施例 1のセルロース誘導体組成物ハイドロゲルの代わりに実施例 3のハイドロゲルを用 いること J¾^、 実施例 12と同様の操作を行い、 ハイド口ゲルへの細胞接着およ «潤を評 価した。 その結果は実施例 12と概ね同一であった。 議例 15]
例 1のセルロース誘導体組成物ハイドロゲルの代わりに実施例 5のハイドロゲルを用 いること 、 錢例 12と同様の操作を行い、 ハイド口ゲルへの細胞據およ 潤を評 価した。 その結果は実施例 12と概ね同一であった。
[比較例 1 ] ' ―
実施例 1のセルロース誘導体組成物ハイド口ゲルの代わりに 30 g/m 1フイブロネク チンを用いること以外、 実施例 12と同様の操作を行い、 フイブロネクチンへの細胞接着お よ t/S潤を評価した。 細胞はフィブロネクチン全体に広がっていることが観察された。 その結果、 7日目まで、 比較例 1ではマウス N IH/3T3 «芽細胞が接着および浸潤 していたのに比べ、 実施例 12、 13、 14、 および 15ではマウス NIHZ3T3雜雜芽 細胞の本発明のハイドロゲルへの接着および浸潤はほとんど観察されず、 細胞はハイドロゲ ルが被覆されていないフイブロネクチンの領域に選択的に接着していた。 以上より、 実施例 12、 13、 14、 および 15で したハイド口ゲルには細胞據ぉ よ 潤を抑制する効果があることカ雕認された。 瞧例 16]
く赚内癒着試験〉
Sprague-Dawl ey (SD) 系ラット (日本チヤ一ルスリノ一) 10匹 (7週 齢、 雄) を使用し、 Bucke腿 ier CC 3rdらの方法に従って腹腔内癒着モデルを作製した
[Buckenmaier CC 3rd, Pusateri AE. Harris RA, Hetz SP: Am Surg. 65 (3) :274-82, 1999] 。 すなわち、 ラットをベントバルビ夕一ルナトリウムの腹腔内投与 «下で者位に固定し、 腹 部を剃毛した後、 消毒用エタノールで消毒した。 さらにイソジン消毒液で手■域を消毒し た後、 腹部正中線に沿って 3〜4 cm切開して盲腸を露出させた。 露出させた盲腸の一定の 面積 (l〜2cm2) について、 滅菌ガーゼを用いて点状出血が生じるまで擦過した。 盲腸 を元に戻し、 さらに相対する腹壁に欠損 (8mmx 1. 6mm) を作製した。 その後、 腹壁 の欠損部位に実施例 1のセルロース誘導体八ィドロゲル (1ml) を塗布し、 切開部の筋層 は連纖合した後、 皮膚は 4~ 5針縫合した。 倉 ijf募部をイソジン消毒液で消毒した後、 ケ一 ジに戻した。 モデル作製 4週間後に動物をペントバルビ夕一ルナトリゥム麻酔下で開腹し、 腹腔内癒着の程度を肉眼的に観察し、 以下に示す基準に従ってスコア化した。 セルロース誘 導体八ィドロゲルを塗布しないものをコントロールとした。
(スコア分
スコア 0:癒着が認められない状態
スコア 1 :軽度の牽引で切れる程度の弱い癒着がある状態
スコア 2:軽度の牽引に耐えられる中程度の癒着がある状態
スコア 3:かなりしつかりとした癒着が多る状態
有意差については、 Wi 1 c oxonの方法で検定した。
その結果、 コントロールでは 4週間後において腹壁と盲腸間に強固な癒着形成が認められ た。 一方、 実施例 1のハイド口ゲルを塗布した群では、 4週間後において腹壁と盲腸間の癒 着の程度はコントロールと比較して有意に低かった。 具体的には、 コントロールが 2. 3土 1. 2 (平均値士標準偏差) であるのに対し、 雄例 1の八イド口ゲルを塗布した群では、 0. 8± 1. 2 (平均値士標準偏差) で、 統計学的に有意な差が認められた (尸く 0. 0 1 4, W i 1 c o X o n sテス卜リ 。
さらに、 癒着が認められた場合、 盲腸にゼムクリップを縫合糸にて縫い付け、 それを Me t r i e Gauge s (EW— 93953— 05、 Co 1 e— P a rme r社 ¾) で引つ 張り、 盲腸カ壞壁からは力 るの最大強度 (グラム) を測定し、 その値を癒着の搬として 瞧した。 癒着がない場合、 0グラムとして扱った。 意差については、 We 1 c h' s t を用いた。 こうして 例 1のセルロース誘 ハイド口ゲルが癒着の程度や に 及ぼす効果を評価した。 その結果、 コントロールが 338. 7±278. 4グラム (平均値 ±標«差) であるのに対し、 実施例 1のセルロース誘 八イド口ゲルを塗布した群では、 108. 1 ± 188. 7グラム (平均値土標 差) で、 統計学的に有意な差が認められた (P<0. 044, S t ude n t ' s tテスト)
以上より、 実施例 1のセルロース誘導体八イド口ゲルは、 癒着を防止できることを確認し た。
[実施例 1 7]
ラットを 8匹用い、 実施例 1のセルロース誘導体八ィド口ゲルの代わりに実施例 1のセル ロース誘 組成物八イド口ゲルを用いること 、 実施例 16と同様の操作を行い、 それ が癒着の程度ゃ に及ぼす効果を«した。 その結果、 癒着のスコア、 強度はそれぞれ、 0. 1 ± 0. 4 , 18 ± 52グラム (平均値 ±標«差) であつた。
[実施例 18]
ラットを 9匹用い、 実施例 1のセルロース誘導体組成物八ィド口ゲルの代わりに実施例 2 のハイド口ゲルを用いること以外、 実施例 17と同様の操作を行い、 ハイド口ゲルの癒着の 程度、 強度に対する効果を痛した。 その結果、 癒着のスコア、 強度はそれぞれ、 0. 2土 0. 7、 50 ± 149グラム (平均値土標準偏差) であった。
[雄例 19] .
ラットを 8匹用い、 «例 1のセルロース誘導体糸誠物ハイドロゲルの代わりに実施例 3 のハイドロゲルを用いること以外、 m mi 7と同様の操作を行い、 ハイドロゲルの癒着の 程度、 艇に対する効果を痛した。 その結果、 癒着のスコア、 艇はそれぞれ、 0. 0士 0. 0、 0±0グラム (平均値 ±標«差) であり、 完全に癒着が抑えられていた。
[実施例 20]
ラットを 9匹用い、 例 1のセルロース誘導体 «物ハイド口ゲルの代わりに実施例 5 のハイド口ゲルを用いること 、 例 17と同様の操作を行い、 ハイド口ゲルの癒着の 程度、 搬に対する効果を痛した。その結果、 癒着のスコア、 體はそれぞれ、 0. 6土 1. 1、 89 ± 180グラム (平均値士標準偏差) であった。 [比較例 2]
コントロールとして、 ゾ、イド口ゲルを塗布せずに、 実施例 17と同様の操作を行い、 癒着 の程度、 強度を評価した。 その結果、 癒着のスコア、 強度はそれぞれ: 2. 0±1. 3、 3 97 ± 313グラム (平均値土標準偏差) であった。
以上、 4週間後において、 比細 2で強固な癒着が発生していたのと比較して、 実施例 1 7、 18、 19、 および 20では癒着の程度、 ¾gカ审意に抑制されていた。
以上より、 実施例 2、 3、 および 5で得られた本発明のセルロース誘 物ハイ ドロゲルには、 生体内において癒着を強力に抑制する効¾ ^あることカ 認され、 手術後の 癒着を効果的に防止することができることが示された。
以下表 1に実施例 17-20および比較例 2の'結果をまとめる。 表 1
群 癒着スコア 比較例 2との 癒着強度 (グラム) 比較例 2との 平均値 ±標«差 有意差縦 ,平均値 ±標«差 有意差縦
(Wilcoxon) (Welch) 比較例 2 2. 0±1. '3 ― 397±313 一 実施例 17 0. 1±0. 4 P = 0. 007 18±52 P = 0. 011 実施例 18 0. 2±0. 7 P = 0. 006 50± 149 P = 0. 017 実施例 19 0. 0±0. 0 P = 0. 003 0±0 P = 0. 009 実施例 20 0. 6±1. 1 P = 0. 034 89± 180 P = 0. 033 [実施例 21]
実施例 1のセルロース誘 ハイドロゲルの離および塗布量を変えて用いること は、 実施例 16、 17と同様の操作を行い、 ノ、イド口ゲルの癒着の程度、 強度に対する効果を評 価した。 各群 9例のラットを用いた。 結果を表 2に示す。 表 2
Figure imgf000030_0001
塗布量を一定 (lml) にした場合、 癒着の程度、 強度は、 0. 5重量%以上で対照群と 比較して有意に低かった。 また、 濃度を一定(1重量%) にした場合、 0. 25mlでも対 照群と比較して癒着の程度、 強度は有意に低かった。 したがって、 これらの塗布量、 濃度で あれば、 生体内で所期の効果を発現することが 認された。 難例 22]
CMCNaに分子量 97万のものを用いた以外は実施例 1と同様に調製したセルロース誘 導体 (置離 0. 001、 「CMC— PE」 と表記) を塩化ナトリウム水溶液に溶解させて ゲル化したものの粘度 (E t a (P) 、 1 O r ad/s e cでの値) を測定した。 結果を表 3に示す。 ポリマーの濃度は 1重量%であり、 「CMC— Na」 は原料に用いた分子量 97 万のカルボキシメチルセルロースナトリウム塩を表し、 PBSはリン酸緩衝生理食塩水 (0. 9%NaC 1) を表す。 表 3
Figure imgf000031_0001
このように、 本発明のセルロース誘導体八イド口ゲルは、 少量の塩化ナトリウムを共存さ せることで、 驚くべきことにその粘度力急激に増大すること力わかった。 この特性を利用す ることにより、 例えば本発明のハイド口ゲルを注射する際には塩化ナトリウムを加えずに粘 度の低い状態とすることで注射を容易にするが、 投与した局所では生体 «に触れて塩化ナ トリゥム濃度が上昇することにより粘度が増大し、 例えば癒着防止剤などの所期の機能を発 揮しやすくする、 といった使用法力河能になる。 [比較例 3]
本発明者らは、 本発明のセルロース誘^:八ィドロゲリ^セルロース誘 ##組成物ハイド 口ゲルに限らず、 他の多糖類を のアミノ基を有する 基により修! (TTることによる粘 弾性の増大効果を検討した。 例えば、 ヒアルロン酸をロイシンメチルエステル、 チロシンェ チルエステル、 フエ二ルァラニンメチルエステル、 ビタミン Κ 5、 カルバコール (塩化カル バミルコリン) 、 エヂルァミン、 ニコチンアミドを用いて多糖類のカルボキシル基を修飾し て作成したハイドロゲルでは粘弾性の向上はほとんど認めら よかったのに対し、 ェチルゥ レアで修飾したものには明らかな粘弾性の向上が認めら lこ。 したがって、 多糖類を «基 で修飾することにより、 そのハイド口ゲルの粘弾性の向上が認められる場合はあるが、 具体 的にどのような組み合わせのときに粘弾性の向上力認められるかについて予測することは困 難であることがわかる。
[比較例 4]
さらに、 多糖類を疎水基で修 PTることで得られる八ィド口ゲルの粘弾性と、 それを用い たときの癒着防止効果との関連も検討した。 平均分子量 2 3 0万の CMCN aを用い、 ホス ファチジルエタノールァミンの^りにォレイルァミンを CMC N aのカルボキシル基 1 0 0当量に対し 4 0当 Mfflいた以外は実施例 1に記載の方法で CMC—ォレイルァミン誘導体 を調製した。 この誘導体の複素弾性率は、 8 7. 4 N/m2であった。
本発明者らは、 カルボキシメチルセルロースをアルキルァミン、 具体的にはォレイルアミ ンで修 ΙΤΤることによつても、 高粘弾性のセルロース誘 の八ィドロゲルが得られること を見出している。 し力、し、 それを実施例 1 2に記載のハイド口ゲルへの細胞接着およ 0¾潤 の評価を行ったところ、 CMC—アルキルアミンハイドロゲルの細胞接着および浸潤を抑制 する効果は低ぐ ハイドロゲルの高い粘弾性が必ずしも良好な癒着防止効果に結びつ力ぬい ことがわかった。 [比較例 5 ]
CMCN a (日本麵ケミカル (株) 製、 F 1 5 MHC、 置換度 0. 7 7 ) を用い、 リン 脂質には、 ジラウルロイルホスファチジルエタノールァミン (COAT S OME ME— 2 0 2 0、 日»脂 (株) 製) を用いた。 その他の試薬は、 実施例 1に記載のものと同じもの を用いた。
1 gの CMCN aを 5 0 m lの水に溶解し、 この溶液に、 ジラウルロイルホスファチジル エタノールァミン 2 0 Omgを添加し、 室温で 1時間攪拌した。 この«に£ 0〇を5 0 0 mg添加し、 一晩、 室温で勝した。 得られた繊を脱イオン水で透析し、 ί ^乾燥した。 得られた凍結乾燥体を、 ポリマー濃度が 1重量%となるよう水と混合し、 粘弾性を測定した。 その結果、 反応前の CMCN aの複素弾性率が 0. 4 N/m2であったのに対し、 得られ た凍結乾燥品の複素弾性率が 0. 4 N/m2であり、 反応の前後でポリマ一溶液の物性に変 化は見られなかった。 得られたセルロース誘導体と水との混合物は、 容器を傾けると流れ落 ちる流体のままであり、 ゲルの性状は示さなかった。 産業上の利用可纖
本発明のセルロース誘 ¾ ^組成物は、 医療用ハイド口ゲル、 とりわけインジェクタブルな 癒着防止材として有用である。 癒着防止材は、 脊椎、 関節、 腱、 欄などに対する手講に、 損傷を受けた生体 «表面が癒着するのを防止するために用いることができる。 さらに具体 的には、 脊椎手術の場合、 例えば本発明の癒着防止材を硬膜と神経根周囲を隔離するために 塗布することで癒着を防止することができる。 癒着が起きた場合、 瞧、 可動領域の確保を目的として癒着剥離を行う必要がある。 本発 明の癒 防止材を塗布することにより、 癒着を防止することができ、 再 «を回避し、 医療 経済性の向上、 さらには患者の生活の質を高めることが可能となる。
また、 婦人科 では、 開腹術又は腹腔鏡による子宮筋腫摘出麟などに用いることがで きる。 精後の倉 I縢部位に本発明の癒着防止材を塗布することにより、 癒着を防止すること がでさる。
本発明の癒着防止材は体^での優れた滞留性を有し、 癒着防止材として有用である。 とく に癒着防止材がゲルの場合は、 複雑な形状の部位にも適用でき、 内視鏡を用いた に容易 に適用可能である。

Claims

請 求 の 範 囲
1. 下記式で表される繰り返し単位からなるセルロース誘 ¾ 。
Figure imgf000034_0001
式中、 R'、 R.2、 および R 3はそれぞれ独立に下記式 (a).、 (b) 、 (c) 、 および (d) 力 なる群より選ばれるものであり、
-H (a)
一 CH2— COOH (b)
-CH,-COOX (c)
Figure imgf000034_0002
CH,0― P一 OCH 2CH2NH ~ CO一 CH2
I
o—
(d)
式 (c) 中、 Xはアルカリ麵またはアルカリ土類麵であり、
式 (d) 中、 R4および R5はそれぞれ独立に炭素数 9〜27のアルキル基またはアルケニ ル基であり、
(b) と (c) の置換度の合計が 0. 3〜2. 0であり、
(d) の置換度が 0. 001-0. 05である。
2. 1重量%水 について動的粘弾性測定装置で角 10 r ad/s e cにて求めら れる複素弾性率が 50-900 NZm2である請求項 1に記載のセルロース誘導体。
3. R4および R5が炭素数 9〜1 9のアルケニル基である請求項 1または 2に記載のセ ルロース誘
4. . R4 CO—および Zまたは R 5 CO—力ォレオイル基である請求項 3に記載のセル口 —ス誘 #ί^。
5. R 4 C Ο—および R 5 C Ο一がォレオイル基である請求項 3に記載のセルロース誘導 体。 -
6. - 請求項 1に記載のセルロース誘難と、 下記式で表されるリン脂質を含み、 セル口一 ス誘導体の繰り返し単位のモル当量とリン脂質のモル当量との比が 1 : 0. 0 5〜1 : 1で あるセルロース誘導体組成物。
Figure imgf000035_0001
式中、 R 6および R 7はそれぞれ独立に炭素数 9 ~ 2 7のアルキル基またはアルケニル基 であり、 R8は— NH3+または一 N (CH3) 3+である。
7. 1重量%水赚について動的粘弾性測定装置で角 1 0 r a d/ s e cにて求めら れる複素弾性率が 5 0 ~ 9 0 0 NZm2である請求項 6に記載のセルロース誘導体組成物。
8. R8が— NH3+である請求項 6に記載のセルロース誘^:繊物。
9. R8がー N (CH3) 3+である請求項 6に記載のセルロース誘導体組成物。
1 0. R4、 R 5、 R6 および R 7がすべて同一である請求項 6から 9のいずれかに記載
I
のセルロース誘導体組成物。
11. R 6および R7が炭素数 9〜: 19のアルケニル基である請求項 6から 9のいずれか に記載のセルロース誘導体組成物。
12. R6CO—および/または R7CO—がォレオイル基である請求項 11に記載のセ ルロース誘 組成物。
13. R6 CO—および R7 CO—がォレオイル基である請求項 11に記載のセルロース 誘 ¾^滅物。
14. R4および R5が炭素数 9~19のアルケニル基である請求項 6から 9のいずれか に記載のセルロース誘灘繊物。 '
15. R4CO—および/または R5CO—がォレオイル基である請求項 14に記載のセ ルロース誘^: 物。
16. R4CO—および R5CO—力ォレオイル基である請求項 14に記載のセルロース 誘!^組成物。
17. R4CO—、 R5CO—、 R6CO—、 および R 7 CO—がいずれもォレオイル基で ある請求項 8に記載のセルロース誘導体組成物。
18. 下記式で表される繰り返し単位からなり、 量が 5X 103〜5X 106のカル ポキシメチルセルロースと、 .
Figure imgf000036_0001
下記式で表されるホスファチジルエタノールァミンとを、
Figure imgf000037_0001
カルボキシメチルセルロースの力ルポキシル基 1 0 0当量に対し、 ホスファチジルェ夕ノー ルァミン 0. 1〜: 1 0 0当量の割合にて、 水および水と相溶する有機 «とからなり、 水が 2 0〜 7 0容量%含まれる混合灘に溶解し、 縮合剤の 下で反応させる工程を含む、 請 求項 1力、ら 5のいずれかに記載のセルロース誘 ¾#:の S i方法。
ここで、 R )、 R2、 および R 3はそれぞれ独立に 下記式 (a) 、 (b) 、 および (c ) から選ばれるものであり、
-H (a)
— CH2 - COOH (b)
一 CH2— COOX (c )
式 (c ) 中、 Xはアルカリ金属またはアルカリ土類金属であり、
式 (b) と (c ) の置換度の合計が 0. 3〜2. 0であり、
R 4および R 5はそれぞれ独立に、 炭素数 9 ~ 2 7のアルキル基またはアルケニル基である。
1 9. 反応工程の後に、 カルポキシメチルセルロールの.溶解度が 3 %未満で、 水と相溶す る沸点 1 0 0で未満の有機赚を用いて精製する工程をさらに含む、 請求項 1 8に記載の製 造方 。
2 0. カルボキシメチルセルロールの溶解度が 3 %未満で、 水と相溶する沸点 1 0 0で未 満の有機溶媒がエタノールである請求項 1 9に記載の Mig方法。
2 1 . 反応工程に用いる水と相溶する有機溶媒が、 テトラヒドロフラン、 ジォキサン、 お よびジメチルスルホキシドからなる群より選ばれる少なくとも 1種である請求項 1 .8カゝら 2 0のいずれかに記載の 方法。
2 2. 請求項 1 8から 2 1のいずれかに記載の i¾i方法により得られたセルロース誘 と、 下記式で表されるリン脂質とを、 水および水と相溶する有機聽を含む混合灘を用い て混合し、 次いで を除く工程を含んでなる、 請求項 6から 9、 1 7のいずれかに記載の セルロース誘 組成物の Mjg方法。
Figure imgf000038_0001
式中 R 6および R 7'はそれぞ'れ独立に炭素数 9〜 2 7のアルキル基またはアルケニル基 であり R8は一 NH3 +または.一 N (CH3) 3+である。
2 3. 溶媒を除く工程が、 水による透析処理である請求項 2 2に記載の製造方法。
2 4. 請求項 1から 5のいずれかに記載のセルロース誘導体を含んでなる癒着防止材。
2 5. 請求項 6から 9、 1 7のいずれかに記載のセルロース誘導体組成物を含んでなる癒 着防止材。
2 6. 水 1 0 0重量部に対し、 請求項 1力、ら 5のいず に記載のセルロース誘導体を 0. 1〜 1 . 5重量部含む、 注入可能なハイド口ゲル。
2 7. 7K 1 0 0重量部に対し、 請求項 6力、ら 9、 1 7のいずれかに記載のセルロース誘導 体 物を 0. 1〜 5. 0重量部含む、 注入可能なハイド口ゲル。
PCT/JP2008/052382 2007-02-06 2008-02-06 セルロース誘導体およびその製造方法 WO2008096894A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP08711228.0A EP2112170A4 (en) 2007-02-06 2008-02-06 CELLULOSE DERIVATIVE AND MANUFACTURING METHOD THEREFOR
KR1020097018338A KR20090109120A (ko) 2007-02-06 2008-02-06 셀룰로오스 유도체 및 그 제조 방법
CN2008800042878A CN101605817B (zh) 2007-02-06 2008-02-06 纤维素衍生物及其制备方法
CA2676300A CA2676300C (en) 2007-02-06 2008-02-06 Cellulose derivative and method for production thereof
AU2008213323A AU2008213323B2 (en) 2007-02-06 2008-02-06 Cellulose derivative and method for production thereof
JP2008557189A JP5059787B2 (ja) 2007-02-06 2008-02-06 セルロース誘導体およびその製造方法
US12/525,464 US8455001B2 (en) 2007-02-06 2008-02-06 Cellulose derivative and method for production thereof

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2007026514 2007-02-06
JP2007-026514 2007-02-06
JP2007-026515 2007-02-06
JP2007026515 2007-02-06
JP2007098447 2007-04-04
JP2007-098447 2007-04-04

Publications (1)

Publication Number Publication Date
WO2008096894A1 true WO2008096894A1 (ja) 2008-08-14

Family

ID=39681787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/052382 WO2008096894A1 (ja) 2007-02-06 2008-02-06 セルロース誘導体およびその製造方法

Country Status (8)

Country Link
US (1) US8455001B2 (ja)
EP (1) EP2112170A4 (ja)
JP (1) JP5059787B2 (ja)
KR (1) KR20090109120A (ja)
CN (1) CN101605817B (ja)
AU (1) AU2008213323B2 (ja)
CA (1) CA2676300C (ja)
WO (1) WO2008096894A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011132800A1 (ja) * 2010-04-22 2011-10-27 帝人株式会社 ハイドロゲル
US20110301121A1 (en) * 2009-02-19 2011-12-08 University Nagoya National University Corporation Hydrogel of polysaccharide derivative
WO2018008700A1 (ja) * 2016-07-07 2018-01-11 日本製紙株式会社 変性セルロースナノファイバーおよびこれを含むゴム組成物

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8668863B2 (en) 2008-02-26 2014-03-11 Board Of Regents, The University Of Texas System Dendritic macroporous hydrogels prepared by crystal templating
US9095558B2 (en) 2010-10-08 2015-08-04 Board Of Regents, The University Of Texas System Anti-adhesive barrier membrane using alginate and hyaluronic acid for biomedical applications
WO2012048283A1 (en) 2010-10-08 2012-04-12 Board Of Regents, The University Of Texas System One-step processing of hydrogels for mechanically robust and chemically desired features
US11565027B2 (en) 2012-12-11 2023-01-31 Board Of Regents, The University Of Texas System Hydrogel membrane for adhesion prevention
US10590257B2 (en) 2016-09-26 2020-03-17 The Board Of Trustees Of The Leland Stanford Junior University Biomimetic, moldable, self-assembled cellulose silica-based trimeric hydrogels and their use as viscosity modifying carriers in industrial applications
EP3577271B1 (en) * 2017-02-01 2024-09-04 Aalto University Foundation SR A method to convert mechanical pulp derived waste material into value added cellulose products
WO2018165327A1 (en) 2017-03-08 2018-09-13 Alafair Biosciences, Inc. Hydrogel medium for the storage and preservation of tissue
US11975123B2 (en) 2018-04-02 2024-05-07 The Board Of Trustees Of The Leland Stanford Junior University Adhesion prevention with shear-thinning polymeric hydrogels
US11969526B2 (en) 2017-04-03 2024-04-30 The Board Of Trustees Of The Leland Stanford Junior University Adhesion prevention with shear-thinning polymeric hydrogels
CN110804104B (zh) * 2019-10-30 2021-12-07 暨南大学 一种细胞膜仿生表面改性细菌纤维素及其制备方法与应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01301624A (ja) 1988-05-31 1989-12-05 Nippon Zeon Co Ltd 癒着防止材
JPH0270703A (ja) * 1987-10-23 1990-03-09 Yissum Res Dev Co Of Hebrew Univ Of Jerusalem ホスホリパーゼa↓2阻害組成物およびその使用
WO1992000105A1 (en) 1990-06-25 1992-01-09 Genzyme Corporation Water insoluble derivatives of hyaluronic acid
WO1992020349A1 (en) 1991-05-20 1992-11-26 Genzyme Corporation Water insoluble derivatives of polyanionic polysaccharides
JPH09296005A (ja) 1996-04-26 1997-11-18 Kuraray Co Ltd 癒着防止材
WO2001046265A1 (en) 1999-12-22 2001-06-28 Genzyme Corporation Water insoluble derivatives of polyanionic polysaccharides
JP2003528026A (ja) * 1998-05-13 2003-09-24 エムエル・ラボラトリーズ・パブリック・リミテッド・カンパニー 外科手術上の癒着を阻止するためのデキストリンを含有する組成物
JP2005508827A (ja) * 2000-01-10 2005-04-07 イッサム・リサーチ・ディベロップメント・カンパニー・オブ・ザ・ヘブルー・ユニバーシティ・オブ・エルサレム 疾患の治療における脂質コンジュゲートの使用
JP2006296916A (ja) 2005-04-25 2006-11-02 Teijin Ltd 癒着防止材
WO2007015579A1 (ja) * 2005-08-04 2007-02-08 Teijin Limited セルロース誘導体

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5366755A (en) * 1989-02-10 1994-11-22 Maritta Timonen Foodstuffs containing novel degraded cellulose derivatives
WO2005000374A1 (ja) 2003-06-30 2005-01-06 Denki Kagaku Kogyo Kabushiki Kaisha 脊椎・脊髄手術用癒着防止材

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0270703A (ja) * 1987-10-23 1990-03-09 Yissum Res Dev Co Of Hebrew Univ Of Jerusalem ホスホリパーゼa↓2阻害組成物およびその使用
US5064817A (en) 1987-10-23 1991-11-12 Yissum Research Development Company Of Hebrew University Of Jerusalem Phospholipase a2 inhibiting compositions and their use
JPH01301624A (ja) 1988-05-31 1989-12-05 Nippon Zeon Co Ltd 癒着防止材
WO1992000105A1 (en) 1990-06-25 1992-01-09 Genzyme Corporation Water insoluble derivatives of hyaluronic acid
WO1992020349A1 (en) 1991-05-20 1992-11-26 Genzyme Corporation Water insoluble derivatives of polyanionic polysaccharides
JPH09296005A (ja) 1996-04-26 1997-11-18 Kuraray Co Ltd 癒着防止材
JP2003528026A (ja) * 1998-05-13 2003-09-24 エムエル・ラボラトリーズ・パブリック・リミテッド・カンパニー 外科手術上の癒着を阻止するためのデキストリンを含有する組成物
WO2001046265A1 (en) 1999-12-22 2001-06-28 Genzyme Corporation Water insoluble derivatives of polyanionic polysaccharides
JP2005508827A (ja) * 2000-01-10 2005-04-07 イッサム・リサーチ・ディベロップメント・カンパニー・オブ・ザ・ヘブルー・ユニバーシティ・オブ・エルサレム 疾患の治療における脂質コンジュゲートの使用
JP2006296916A (ja) 2005-04-25 2006-11-02 Teijin Ltd 癒着防止材
WO2007015579A1 (ja) * 2005-08-04 2007-02-08 Teijin Limited セルロース誘導体

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
AM. J. SURG., vol. 169, 1995, pages 154 - 159
BUCKENMAIER CC 3RD ET AL., AM SURG., vol. 65, no. 3, 1999, pages 274 - 82
See also references of EP2112170A4
SNOW DM ET AL., EXP. NEUROL, vol. 109, no. 1, 1990, pages 111 - 30

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110301121A1 (en) * 2009-02-19 2011-12-08 University Nagoya National University Corporation Hydrogel of polysaccharide derivative
WO2011132800A1 (ja) * 2010-04-22 2011-10-27 帝人株式会社 ハイドロゲル
AU2011243517B2 (en) * 2010-04-22 2014-02-13 Teijin Limited Hydrogel
JP5542200B2 (ja) * 2010-04-22 2014-07-09 帝人株式会社 ハイドロゲル
WO2018008700A1 (ja) * 2016-07-07 2018-01-11 日本製紙株式会社 変性セルロースナノファイバーおよびこれを含むゴム組成物
JP6276489B1 (ja) * 2016-07-07 2018-02-07 日本製紙株式会社 変性セルロースナノファイバーおよびこれを含むゴム組成物
US11261302B2 (en) 2016-07-07 2022-03-01 Nippon Paper Industries Co., Ltd. Modified cellulose nanofiber and rubber composition including the same

Also Published As

Publication number Publication date
JP5059787B2 (ja) 2012-10-31
EP2112170A1 (en) 2009-10-28
JPWO2008096894A1 (ja) 2010-05-27
CN101605817B (zh) 2013-03-27
US8455001B2 (en) 2013-06-04
AU2008213323A1 (en) 2008-08-14
US20100129452A1 (en) 2010-05-27
KR20090109120A (ko) 2009-10-19
AU2008213323B2 (en) 2012-05-24
EP2112170A4 (en) 2013-06-19
CA2676300A1 (en) 2008-08-14
CN101605817A (zh) 2009-12-16
CA2676300C (en) 2014-07-08

Similar Documents

Publication Publication Date Title
WO2008096894A1 (ja) セルロース誘導体およびその製造方法
Jayakumar et al. Novel carboxymethyl derivatives of chitin and chitosan materials and their biomedical applications
JP4993465B2 (ja) 変性された高分子ならびにその製造方法および使用方法
JP4795539B2 (ja) 細胞増殖性疾患を治療するための方法および組成物
Li et al. Cytotoxicity and biocompatibility evaluation of N, O-carboxymethyl chitosan/oxidized alginate hydrogel for drug delivery application
JP3425147B2 (ja) ポリアニオン性多糖の非水溶性誘導体
EP1794192B1 (en) Photoreactive polysaccharide, photocrosslinked polysaccharide products, the method of making them and medical materials made therefrom
JP2004507586A (ja) 過カルボン酸エステル化された多糖類、及びそれらの作製方法
WO2007015579A1 (ja) セルロース誘導体
WO2009078492A1 (ja) セルロース誘導体およびそのハイドロゲル
CN105801870B (zh) 一种聚唾液酸-透明质酸复合凝胶的制备方法及所得产品和应用
JP2010209130A (ja) アルギン酸誘導体およびその製造方法
JP2014528406A (ja) 治療薬を送達するための多層インプラント
Brekke et al. Hyaluronan as a biomaterial
WO2016075977A1 (ja) 自己組織化ペプチド修飾キトサンナノ会合体の合成とプロテインデリバリーへの応用
JP2010035744A (ja) 癒着防止材
Rahaman et al. Chitin and Chitosan and Their Polymers
WO2001012675A1 (fr) Derives de glycosaminoglycane et leur utilisation
RU2455007C1 (ru) Способ получения гелеобразующих фосфатов декстрана

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880004287.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08711228

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2008557189

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2676300

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2008213323

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 12525464

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2008711228

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2009130351

Country of ref document: RU

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2008213323

Country of ref document: AU

Date of ref document: 20080206

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020097018338

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 5185/CHENP/2009

Country of ref document: IN