WO2008096612A1 - ポリエステル、その組成物およびそのフィルム - Google Patents

ポリエステル、その組成物およびそのフィルム Download PDF

Info

Publication number
WO2008096612A1
WO2008096612A1 PCT/JP2008/051023 JP2008051023W WO2008096612A1 WO 2008096612 A1 WO2008096612 A1 WO 2008096612A1 JP 2008051023 W JP2008051023 W JP 2008051023W WO 2008096612 A1 WO2008096612 A1 WO 2008096612A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
polyester
mol
particles
formula
Prior art date
Application number
PCT/JP2008/051023
Other languages
English (en)
French (fr)
Inventor
Eiji Kinoshita
Tomoyuki Kishino
Kazuteru Kohno
Tatsuya Ogawa
Original Assignee
Teijin Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2007025456A external-priority patent/JP5209218B2/ja
Priority claimed from JP2007025457A external-priority patent/JP5209219B2/ja
Priority claimed from JP2007025455A external-priority patent/JP5199580B2/ja
Priority claimed from JP2007173801A external-priority patent/JP5199611B2/ja
Application filed by Teijin Limited filed Critical Teijin Limited
Priority to EP20080703850 priority Critical patent/EP2116560B1/en
Priority to AT08703850T priority patent/ATE540993T1/de
Priority to CN2008800041907A priority patent/CN101605834B/zh
Priority to US12/524,214 priority patent/US8017715B2/en
Priority to KR1020097015934A priority patent/KR101370218B1/ko
Publication of WO2008096612A1 publication Critical patent/WO2008096612A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/185Acids containing aromatic rings containing two or more aromatic rings
    • C08G63/187Acids containing aromatic rings containing two or more aromatic rings containing condensed aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/66Polyesters containing oxygen in the form of ether groups
    • C08G63/668Polyesters containing oxygen in the form of ether groups derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/672Dicarboxylic acids and dihydroxy compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/022Mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/025Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/027Thermal properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/185Acids containing aromatic rings containing two or more aromatic rings
    • C08G63/187Acids containing aromatic rings containing two or more aromatic rings containing condensed aromatic rings
    • C08G63/189Acids containing aromatic rings containing two or more aromatic rings containing condensed aromatic rings containing a naphthalene ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08L67/025Polyesters derived from dicarboxylic acids and dihydroxy compounds containing polyether sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08L67/03Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the carboxyl- and the hydroxy groups directly linked to aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/739Magnetic recording media substrates
    • G11B5/73923Organic polymer substrates
    • G11B5/73927Polyester substrates, e.g. polyethylene terephthalate
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/739Magnetic recording media substrates
    • G11B5/73923Organic polymer substrates
    • G11B5/73927Polyester substrates, e.g. polyethylene terephthalate
    • G11B5/73929Polyester substrates, e.g. polyethylene terephthalate comprising naphthalene ring compounds, e.g. polyethylene naphthalate substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0393Flexible materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0145Polyester, e.g. polyethylene terephthalate [PET], polyethylene naphthalate [PEN]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31507Of polycarbonate

Definitions

  • the present invention relates to a polyester copolymerized with 6,6 ′-(alkylenedioxy) di-2-naphthoic acid, a composition containing the same, and a film.
  • Aromatic polyesters such as polyethylene terephthalate and polyethylene 2-, 6-naphthalene range carboxyle are widely used in films because they have excellent mechanical properties, dimensional stability and heat resistance.
  • Polyethylene 1,6-naphthalene dicarboxylate in particular, has superior mechanical properties, dimensional stability and heat resistance to polyethylene terephthalate, and these demanding applications such as high density magnetic recording.
  • Used for base films such as media.
  • the demand for dimensional stability in high-density magnetic recording media and the like in recent years has been increasing, and further improvement in characteristics has been demanded.
  • Patent Documents 1 to 4 propose a polyester strength S consisting of an ester unit of a diol component and an acid component mainly composed of 6,6 ′-(ethylenedioxy) di-2-naphthoic acid.
  • the document discloses a crystalline polyester with a melting point of 2 94.
  • polyesters disclosed in these documents have a very high melting point and extremely high crystallinity, and when trying to form into a film or the like, the fluidity in the molten state is poor, and the extrusion becomes uneven. Even when trying to stretch after extrusion, there was a problem that crystallization progressed and breaks when stretched at a high magnification.
  • Patent Document 3 discloses a flexible disk of polyester comprising an ester unit of an acid component mainly composed of 6,6 ′-(ethylenedioxy) di_2_naphthoic acid and a diol component.
  • the flexible disk has the highest temperature Degrees expansion (at) (in X 1 0- 6 Z) 1 0-3 5, the maximum humidity expansion coefficient (ah) is 0 ⁇ 8. 0 (X 1 0- 6 Z% RH), the maximum and minimum The difference in temperature expansion coefficient (at) between 0 and 6.0 (X 1 0—6 6 :), and the difference between maximum and minimum humidity expansion coefficient (ah) is 0 to 4.0 (X 1 0 "V % RH).
  • the maximum temperature expansion coefficient (at) is 1 9 (X 1 0- 6 Zt :), minimum temperature expansion coefficient (at) is 1 6. 5 (X 1 0-) , the maximum humidity A film having an expansion coefficient (ah) of 6 (X 1 0 "V RH) and a minimum humidity expansion coefficient (ah) of 4.5 (X 1 0 to 6 /% RH) is disclosed.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 60-1 3 5428
  • Patent Document 2 Japanese Patent Application Laid-Open No. 60-22 1420
  • Patent Document 3 Japanese Patent Application Laid-Open No. 61-145724
  • Patent Document 4 Japanese Patent Laid-Open No. 6-145323 Disclosure of Invention
  • An object of the present invention is to provide a polyester that is a film having excellent dimensional stability.
  • Another object of the present invention is to provide a polyester film having excellent dimensional stability, particularly dimensional stability against environmental changes such as temperature and humidity.
  • the coefficient of thermal expansion (at) and the coefficient of humidity expansion (ah) are both closely related to the Young's modulus. In general, the higher the Young's modulus, the lower the at and ah. However, the Young's modulus is not increased as much as it can be, but it is naturally limited in terms of film-forming properties and securing the Young's modulus in the orthogonal direction.
  • a polyester obtained by copolymerizing a predetermined amount of AN A with a polyester containing terephthalic acid, naphthenic dicarboxylic acid or the like as a dicarboxylic acid component is excellent in film forming properties, and the appearance and mechanical strength of the copolymerized polyester are excellent. It was found that an excellent film can be obtained. It was also found that the obtained film had a low ah value, which is a characteristic of ANA, and a low value at.
  • the present invention is based on these findings.
  • the present invention is a polyester containing a dicarboxylic acid component and a diol component
  • the dicarboxylic acid component contains a repeating unit represented by the following formula (A) of 5 mol% or more and less than 50 mol% and the following formula (B) of more than 50 mol% and 95 mol% or less,
  • R A is an alkylene group having 2 to 10 carbon atoms
  • R B is a phenylene group or a naphthenic distillyl group, (ii> the repeating unit represented by the following formula (C) in which the diol component is 90 to 100 mol%,
  • R c is an alkylene group having 2 to 10 carbon atoms
  • polyester Moreover, this invention includes the film containing the said polyester. Furthermore, the present invention includes a composition containing the polyester and particles having an average particle diameter of 0.05 to 5 m.
  • FIG. 1 is an XRD measurement chart of copolymer polyethylene 1,2,6-naphthalate of Example 33.
  • FIG. 2 is a DSC measurement chart of copolymer polyethylene 1,2,6-naphthalate of Example 33.
  • FIG. 3 is a DSC measurement chart of copolymer polyethylene 1, 2, 6-naphtholate of Example 34.
  • FIG. 4 is a D S C measurement chain of the copolymerized polyethylene 1, 2, 6-naphtholate of Example 35.
  • the polyester of the present invention contains a dicarboxylic acid component and a diol component.
  • Dicarboxylic acid component Dicarboxylic acid component
  • the dicarboxylic acid component contains from 5 mol% to less than 50 mol% of the following formula (A) and a repeating unit represented by the following formula (B) of more than 50 mol% and not more than 95 mol%. (Formula (A))
  • R A is an alkylene group having 2 to 10 carbon atoms.
  • alkylene group examples include an ethylene group, a propylene group, an isopropylene group, a trimethylene group, a tetramethylene group, a hexamethylene group, and an octamethylene group.
  • the upper limit of the content of the repeating unit represented by the formula (A) is preferably 45 mol%, More preferably, it is 40 mol%, still more preferably 35 mol%, particularly preferably 30 mol%.
  • the lower limit is preferably 5 mol%, more preferably 7 mol%, still more preferably 10 mol%, particularly preferably 15 mol%. Therefore, the content of the repeating unit represented by the formula (A) is preferably 5 to 45 mol%, more preferably 7 to 40 mol%, further preferably 10 to 35 mol%, particularly preferably 15 to 30%. Mol%.
  • the repeating unit represented by the formula (A) is preferably 6,6 ′-(ethylenedioxy) di-2-naphthoic acid, 6, 6 ′-(trimethylenedioxy) di-2-naphthoic acid and 6 , 6 '-(Petylenedioxy) G 2-Naphthoic acid units are preferred. Of these, an even number of carbon atoms of R A in formula (A) is preferred. In particular, units derived from 6, 6 ′-(ethylenedioxy) di-2-naphthoic acid are preferred.
  • the polyester of the present invention is characterized in that the dicarboxylic acid component contains a unit represented by the formula (A) in an amount of 5 mol% or more and less than 50 mol%. If the ratio of the unit represented by the formula (A) is less than the lower limit, the effect of reducing the coefficient of humidity expansion (ah) due to copolymerization is hardly exhibited. Also, there is an advantage that the temperature expansion coefficient (at) is reduced by making it lower than the upper limit. The effect of reducing the humidity expansion coefficient (ah) by the unit represented by the formula (A) is expressed very efficiently even in a small amount. By using the polyester containing the repeating unit represented by the formula (A), it is possible to produce a molded article having a low temperature expansion coefficient (at) and a humidity expansion coefficient (ah), such as a film. .
  • R B is a phenylene group or a naphthenic distillyl group.
  • units derived from terephthalic acid, isofuric acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, or a combination thereof Is mentioned.
  • the diol component contains 90 to 100 mol% of repeating units represented by the following formula (C).
  • the content of the repeating unit represented by the formula (C) is preferably 95 to 100 mol%, more preferably 98 to 100 mol%.
  • R c is an alkylene group having 2 to 10 carbon atoms.
  • alkylene group for R c include an ethylene group, a propylene group, an isopropylene group, a trimethylene group, a tetramethylene group, a hexamethylene group, and an octamethylene group.
  • the units derived from ethylene glycol, trimethylene glycol, tetramethylene glycol, cyclohexane dimethanol and the like are preferred as the diol component represented by the formula (C).
  • the content of units derived from ethylene glycol in the diol component is preferably 90 mol% or more, more preferably 90 to 100 mol%, still more preferably 95 to 100 mol%, most preferably 9 8 to 100 mol%. .
  • the diol component may contain a diol component other than the diol component represented by the formula (C).
  • the content of the other diol component is preferably 0 to 10 mol%, more preferably 0 to 5 mol%, still more preferably 0 to 2 mol%.
  • other diol components include those exemplified for the diol component of the formula (C).
  • the diol component of the formula (C) is a unit derived from ethylene glycol
  • the other diol component is a unit other than a unit derived from ethylene dalycol.
  • the content of the ester unit (one (A) — (C)-) composed of the repeating unit represented by the formula (A) and the repeating unit represented by the formula (C) is preferable for all repeating units. Is 5 mol% or more and less than 50 mol%, more preferably 5 to 45 mol%, and still more preferably 10 to 40 mol%.
  • ester units include polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate and other polyalkylene terephthalate units, polyethylene 1,6-naphthalene dicarboxylate, polytrimethylene 1 , 6—Naph Evene Range Carboxylate, Polybutylene 2, 6 _Naph Evene Preferred are polyalkylene-1,2,6-naphthorangecarboxyl soot units such as range carboxylates.
  • an ethylene terephthalate unit or an ethylene-1,6-naphthalene range carboxylate unit is preferable from the viewpoint of mechanical properties, and an ethylene-1,6-naphthalene range carboxylate unit is particularly preferable.
  • the dicarboxylic acid component is 5 to 45 mol% of the formula (A) and 95 to 55 mol% of the following formula (B-2)
  • the polyester of the present invention has an intrinsic viscosity measured at 35 using a mixed solvent of P-chlorophenol 1,1,2,2-tetrachloroethane (weight ratio 40Z60) of 0.4 to 3, preferably 0. 4 to 1.5 dLZg, more preferably 0.5 to 1.2 d1 g.
  • the melting point of the polyester of the present invention is in the range of 200 to 260, preferably 205.
  • the melting point is DS Measure with C. When the melting point exceeds the upper limit, the flowability is poor when molding by extrusion, and the discharge tends to be non-uniform. On the other hand, if it is less than the lower limit, the film forming property is excellent, but the mechanical properties of the polyester tend to be impaired.
  • copolymers have a lower melting point than homopolymers and tend to decrease mechanical strength.
  • the polyester of the present invention is a copolymer containing the unit of the formula (A) and the unit of the formula (B), and has a lower melting point than the homopolymer having the unit of the formula (A).
  • the mechanical strength has the excellent characteristic that it is the same level.
  • the glass transition temperature (hereinafter sometimes referred to as Tg) of the polyester of the present invention measured by DSC is preferably 80 to 120, more preferably 82 to 118, and still more preferably 85 to 118. Is in range. When Tg is in this range, a film having excellent heat resistance and dimensional stability can be obtained.
  • the melting point and glass transition temperature can be adjusted by controlling the type and amount of copolymerization component, and by-product dialkylene glycol.
  • the content of the repeating unit represented by the following formula (E) is preferably 5 mol% or less, more preferably 3 mol% or less, more preferably, based on the number of moles of all diol components. 2 mol% or less.
  • the repeating unit represented by the formula (E) is contained in the polymer backbone, the rigidity of the main chain is lost, which causes a decrease in mechanical properties and heat resistance.
  • the repeating unit represented by the formula (E) is generated by a reaction between glycol components or a reaction between hydroxy ends of polymer ends.
  • the content of the repeating unit represented by the formula (E) can be measured by a nuclear magnetic resonance apparatus.
  • the terminal carboxy group concentration of the polyester of the present invention is preferably 200 e qZt on or less, more preferably 0.1 :! to 150 eq Zt on, and still more preferably 0.1: I 00 e Q / t o ⁇ .
  • the polyester of the present invention preferably has an alkali metal content of 300 ppm or less.
  • polyester of the present invention is known per se as long as the effects of the present invention are not impaired.
  • Other copolymerization components may be copolymerized, or polyetherimide or liquid crystalline resin may be blended.
  • the polyester of the present invention can be produced by the following method.
  • ANA 6,6 '-(alkylenedioxy) di-2-naphthoic acid
  • a polyester precursor is produced by reacting with a diol component such as ethylene glycol. Then, the obtained polyester precursor can be produced by polymerizing in the presence of a polymerization catalyst. Thereafter, solid phase polymerization or the like may be performed as necessary.
  • the aromatic polyester of the present invention comprises (i) a first step in which a dicarboxylic acid component and a diol component are reacted to obtain a polyester precursor, and (ii) a second step in which the polyester precursor is polymerized in the presence of a polymerization catalyst. Can be manufactured.
  • the first step is a step of obtaining a polyester precursor by reacting a dicarboxylic acid component and a diol component.
  • the dicarboxylic acid component has the following formula (a)
  • R A is an alkylene group having 2 to 10 carbon atoms.
  • alkylene group examples include an ethylene group, an isopropylene group, a trimethylene group, a tetramethylene group, a hexamethylene group, and an octamethylene group.
  • the content of the compound represented by the formula (a) in the dicarboxylic acid component is 5 mol% or more and less than 50 mol%, preferably 5 to 45 mol%, more preferably 10 to 40 mol%.
  • the compound represented by the formula (a) contains an alkali metal as an impurity because an alkali metal is used in the production.
  • the aromatic polyester contains an alkali metal, its hue deteriorates, so it is preferable to reduce the amount of the alkali metal of the compound represented by the formula (a) of the raw material.
  • the amount of alkali metal can be reduced by the following method.
  • the compound represented by the formula (a) can be converted to an amine salt or an ammonium salt, and then the salt is decomposed by acid precipitation or heating to reduce the amount of alkali metal.
  • the amount of alkali metal can be reduced by acid praying the compound represented by formula (a) in the presence of a water-soluble organic solvent such as ethanol.
  • the amount of the Al metal can be reduced by repeating the acid precipitation after suspending the compound represented by the formula (a) in water and reacting at 80 to 300.
  • the alkali metal content of the compound represented by the formula (a) of the raw material is preferably 5 to 200 ppm, more preferably 5 to: I 00 ⁇ pm, and further preferably 5 to 50 ppm.
  • the dicarboxylic acid component contains a compound represented by the following formula (b).
  • the content of the compound represented by formula (b) is more than 50 mol% and not more than 95 mol%.
  • R B is a phenylene group or a naphthenic distillyl group.
  • Examples of the compound represented by the formula (b) include terephthalic acid, isofuric acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, and mixtures thereof.
  • the diol component contains a compound represented by the following formula (c).
  • the content of the compound represented by the formula (c) is 90 to 100 mol%, preferably 95 to 100 mol%, more preferably 98 to 100 mol%.
  • R c is an alkylene group having 2 to 10 carbon atoms.
  • Rc alkylene Examples of the group include an ethylene group, a propylene group, an isopropylene group, a trimethylene group, a tetramethylene group, a hexamethylene group, and an octamethylene group.
  • repeating unit represented by (C) examples include units derived from ethylene glycol, trimethylene glycol, tetramethylene glycol, cyclohexane dimethanol and the like. '
  • the content of units derived from ethylene glycol in the diol component is preferably 90 mol% or more, more preferably 90 to 100 mol%, and still more preferably 95 to 100 mol%.
  • the diol component may contain other diol components other than the compound represented by the formula (c).
  • the content of the other diol component is preferably 0 to 10 mol%, more preferably 0 to 5 mol%, still more preferably 0 to 2 mol%.
  • Examples of the other diol component include those exemplified for the diol component of the formula (C).
  • the diol component of the formula (C) is ethylene glycol
  • the other diol component is a diol component other than ethylene glycol.
  • copolymerization components include, for example, glycolic acid, p-hydroxybenzoic acid, hydroxycarboxylic acid such as p-jS-hydroxyethoxybenzoic acid, alkoxycarboxylic acid, stearyl alcohol, benzyl alcohol, stearic acid, behen.
  • Monofunctional components such as acid, benzoic acid, tert-butylbenzoic acid, benzoylbenzoic acid, tripotassium valeric acid, trimellitic acid, trimesic acid, pyromellitic acid, naphthenate carboxylic acid, gallic acid, trimethylol ester
  • Monofunctional components such as acid, benzoic acid, tert-butylbenzoic acid, benzoylbenzoic acid, tripotassium valeric acid, trimellitic acid, trimesic acid, pyromellitic acid, naphthenate carboxylic acid, gallic acid, trimethylol ester
  • trifunctional or more polyfunctional components such as tan, trimethylolpropane, glycerol, pen erythritol I ⁇ l, and sugar ester.
  • the first step is an esterification of an aromatic dicarboxylic acid to obtain a polyester precursor.
  • the reaction is preferably carried out at or above the boiling point of the glycol component. Accordingly, the reaction temperature is preferably 1550 to 2500, more preferably 1990 to 25O: and further preferably 180 to 230. Esterification reaction at lower than 1 5 0 Does not proceed sufficiently and is higher than 2500, it is not preferable because glycol such as diethylene glycol as a side reaction product is generated.
  • the reaction may be carried out under normal pressure, but if the reaction is carried out under pressure, the esterification reaction is more likely to proceed. Therefore, it is preferable to carry out the esterification reaction under high temperature and pressure.
  • the reaction pressure is an absolute pressure, and is preferably from 10 to 20 kPa, more preferably from 20 to 150 kPa.
  • the reaction time is preferably 10 minutes to 10 hours, more preferably 30 minutes to 7 hours.
  • the end point of the esterification reaction is when the esterification rate is preferably 85% or more, more preferably 90% or more. If the esterification reaction is stopped at a stage where the esterification rate is lower than 85% and proceed to the next polycondensation reaction, it may not be possible to obtain a polyester having a desired degree of polymerization and terminal carboxy concentration.
  • the esterification rate (%) is a value calculated by the following formula.
  • the esterification rate can be quantified by nuclear magnetic resonance spectroscopy. ⁇ -" ⁇ . c Number of carboxy groups esterified, ha ha
  • Escalation ratio The number of lpoxy groups as a whole before esterification xl ° °
  • the amount of the diol component is preferably 1.1 to 6 mol, more preferably 2 to 5 mol, more preferably 1 mol to 1 mol of the dicarboxylic acid component Is 3-5 moles.
  • the compound represented by the formula (a) has low solubility in ethylene glycol, and it is preferable to adjust the amount of the Daricol component in consideration of solubility.
  • a known esterification or transesterification catalyst may be used.
  • examples include alkali metal compounds, alkaline earth metal compounds, titanium compounds, and the like.
  • Preferred examples of the catalyst include tetra-n-butyl thiolate, tetraisopyrutite, and organic titanium compounds such as hydrolysis thereof.
  • a polyester precursor is obtained.
  • examples of the polyester precursor include a compound represented by the following formula (a-1). Where R A is the same as formula (a)
  • R B is the same as formula (b).
  • aromatics with a low content of the ethylene glycol component represented by the formula (E) as a reaction by-product and a low content of the terminal carboxy group are obtained.
  • Polyester can be obtained.
  • an aromatic polyester having a low alkali metal content can be obtained. As a result, an aromatic polyester excellent in heat resistance and hue can be obtained.
  • the 6,6 ′-(alkylenedioxy) di-1-2-naphthoic acid ester (ANA-ester) and the alkylene glycol are subjected to an ester exchange reaction to produce a dialkylene glycol component.
  • ANA and a diol are subjected to an esterification reaction in order to suppress a decrease in physical properties due to by-products and to make the amount of ethylene glycol as described above within the above range.
  • the compound represented by the formula (a) is mainly esterified, and the compound represented by the formula (b-1) can be added to the resulting polyester precursor. .
  • the second step is a step of polycondensing the polyester precursor obtained in the first step in the presence of a polymerization catalyst.
  • Examples of the polycondensation catalyst include metal compounds containing at least one metal element.
  • the polycondensation catalyst can also be used in the esterification reaction.
  • Examples of the metal element include titanium, germanium, antimony, aluminum, nickel, zinc, tin, cobalt, rhodium, iridium, zirconium, hafnium, lithium, calcium, and magnesium. More preferred metals are titanium, germanium, antimony, aluminum, tin, etc. Among them, titanium compounds are particularly preferred because they exhibit high activity in both the esterification reaction and the polycondensation reaction.
  • titanium compounds suitable as a polycondensation catalyst include, for example, tetra-n-propyl titanate, tetra-isopropyl titanate, tetra-n-butyl titanate, tetra-isobutyl titanate, tetra-tert-butyl titanate, Tetracyclohexyl titanate, tetraphenyl titanate, tetrabenzil titanate, lithium oxalate titanate, potassium oxalate titanate, ammonium oxalate titanate, titanium oxide, ortho or condensed ortho ester of titanium, ortho ester of titanium or Reaction product consisting of condensed orthoester and hydroxycarboxylic acid, reaction product consisting of orthoester of titanium or condensed orthoester, hydroxycarboxylic acid and phosphorus compound, orthoester of titanium or condensed o Polyhydric alcohols having Bok ester and at least two hydroxyl groups, 2-hydroxycarboxylic acid or
  • antimony compounds include antimony trioxide, antimony pentoxide, antimony acetate, and antimony glycoloxide.
  • germanium compounds include germanium dioxide, germanium tetroxide, germanium hydroxide, germanium oxalate, germanium tetraethoxide, germanium tetra-n-butoxide, and the like.
  • aluminum compounds include aluminum formate, aluminum acetate, basic aluminum acetate, aluminum propionate, aluminum oxalate, and aluminum.
  • Aluminum carboxylates such as aluminum laurate, aluminum laurate, aluminum stearate, aluminum benzoate, aluminum trichloroacetate, aluminum lactate, aluminum tartrate, aluminum citrate, aluminum salicylate, aluminum chloride, aluminum hydroxide, hydroxide Inorganic acid salts such as aluminum chloride, aluminum carbonate, aluminum phosphate, and aluminum phosphonate, aluminum methoxide, aluminum ethoxide, aluminum-n-propoxide, aluminum isopropoxide, aluminum n-butoxide, aluminum one tert —Butoxide and other aluminum alkoxides, aluminum acetyl cetate, aluminum acetyl acetate, aluminum Mue chill ⁇ Seto acetate, aluminum chelate compounds such as aluminum E Chill ⁇ Seto acetate di isoprene Ropokisaido, trimethyl aluminum, organoalum
  • carboxylate, inorganic acid salt or chelate compound is preferable, and among these, basic aluminum acetate, aluminum lactate, aluminum chloride, aluminum hydroxide, aluminum hydroxide chloride or aluminum As cetylacetonate, particularly preferred basic aluminum acetate, those stabilized with an additive such as boric acid may be used.
  • the amount of the catalyst is preferably from 0.001 to 0.5 mol%, more preferably from 0.05 to 0.2 mol%, based on the number of moles of the repeating unit of the polyester.
  • the preferred polycondensation temperature is in the range of a temperature above the melting point of the resulting polymer and below 2 80, more preferably above 5 and above the melting point.
  • the polycondensation reaction is usually preferably performed under a reduced pressure of 30 Pa or less. If it is higher than 30 Pa, the time required for the polycondensation reaction becomes long and it becomes difficult to obtain a polyester having a high degree of polymerization.
  • the resulting polyester is further solid-phase polymerized to produce a highly polymerized aromatic polymer.
  • Reesters can be obtained.
  • the polyester containing the repeating unit represented by the formula (A) of the present invention has a higher melt viscosity than polyethylene terephthalate, polyethylene naphthate, polybutylene terephthalate, polytriethylene terephthalate, etc. .
  • Increasing the polymerization temperature to lower the melt viscosity tends to cause thermal degradation of the polymer chain.
  • the melt viscosity is high, the diffusion rate of the by-product produced by the reaction becomes slow, so that the degree of polymerization needs to be increased for a long time.
  • the degree of polymerization can be efficiently increased. In terms of suppressing the generation of powder as much as possible, a chip is preferable.
  • Solid phase polymerization is preferably performed under reduced pressure and / or an inert gas stream such as nitrogen, carbon dioxide, and argon.
  • the intrinsic viscosity of the prepolymer is preferably 0.4 to 1.5 dlZg, more preferably 0.5 to 1.3 dlZg, and still more preferably 0.6 to 1. Od lZg.
  • Prepolymers of less than 0. 4d lZg are not preferred because they generate powder due to chip contact or impact. Moreover, it is necessary to carry out solid phase polymerization for a long time. On the other hand, if the intrinsic viscosity exceeds 1.5 dlZg, a special reactor is required at the time of melt polymerization, and a large stirring energy is required, which is not preferable.
  • the prepolymer particles may be crystallized by heating the prepolymer particles in an inert gas atmosphere, a steam gas atmosphere, or a steam-containing inert gas atmosphere. It is preferable to apply. Subsequent to this crystallization treatment, solid state polymerization can be performed at a higher temperature by heat treatment at a higher temperature. Solid phase polymerization is preferably carried out so that the intrinsic viscosity of the resulting polyester is 0.7-3 dlZ g. If the intrinsic viscosity is less than 0.7, the significance of solid-phase polymerization is diminished. On the other hand, if the intrinsic viscosity is too large, the melt viscosity becomes too high and the moldability decreases. Therefore, solid phase polycondensation is preferably performed so that the intrinsic viscosity of the obtained polyester is 1.0 to 2.531, particularly 1.3 to 1.8 d 1 / g. Good.
  • polyesters of the present invention are preferred.
  • Polyester (N) is excellent in stretchability and dimensional stability.
  • the present invention combines a unit represented by the formula (A), which has excellent dimensional stability but has a high melting point and crystallinity and poor fluidity, and a unit represented by the non-liquid crystalline formula (B-2).
  • A a unit represented by the formula (A)
  • B-2 a unit represented by the non-liquid crystalline formula
  • Polyester (N) is a polyester containing a dicarboxylic acid component and a diol component
  • R A is as described above.
  • the intrinsic viscosity measured at 35 using a mixed solvent of P-black mouth phenol 1, 1, 2, 2-tetrachloro mouthwater (weight ratio 40/60) is 0.4-3. It is.
  • the proportion of the repeating unit represented by the formula (A) in the dicarboxylic acid component is preferably 45 mol% or less, more preferably 40 mol% or less, and still more preferably 35 mol% or less.
  • the proportion of the repeating unit represented by the formula (B-2) in the dicarboxylic acid component is preferably 55 mol% or more, more preferably 60 mol% or more, and even more preferably 65 mol% or more. .
  • Polyester (N) does not inhibit the effects of the present invention as a dicarboxylic acid component.
  • other aromatic dicarboxylic acid residues such as terephthalic acid residues, fuuric acid residues, isofuranic acid residues, 1,4 monophenoxydicarboxylic acid residues, 1, 3— Phenylylene diacetic acid residue, 4, 4, — Diphenyl dicarboxylic acid residue, 4, 4, — Diphenyl ether dicarboxylic acid residue, 4, 4, Diphenyl ketone dicarboxylic acid residue, 4, It may have a 4′-diphenyloxydicarboxylic acid residue, a 4,4′-diphenylsulfonedicarboxylic acid residue, or a 2,7-naphthylenedicarboxylic acid residue.
  • the proportion of the ethylene glycol residue is preferably in the range of 90 to 100 mol%, more preferably 95 to 100 mol%. Even if it contains isopropylene glycol residue, trimethylene glycol residue, tetramethylene glycol residue, hexamethylene glycol residue, octamethylene glycol residue, diethylene glycol residue, etc. as glycol components other than ethylene glycol Good.
  • Polyester (N) preferably has a melting point measured by DSC in the range of 195 to 2600, more preferably 2200 to 2600 from the viewpoint of film forming properties. If the melting point exceeds the above upper limit, when melt extrusion is performed, the fluidity is inferior, and the discharge tends to be non-uniform. On the other hand, if it is less than the above lower limit, although the film forming property is excellent, the mechanical properties of polyethylene 1,6-naphthalenedicarboxylate are likely to be impaired.
  • Polyester (N) may not be picked up in the range of 20 ° to 10 ° in the XRD measurement of an amorphous material obtained by melting once at 3 40 and then quenching in an ice bath. preferable.
  • Polyester (N) has an endothermic peak in the range of 120 t: to 2 2 when DSC measurement is performed at a heating rate of 20 / min until 3 20 and then cooled at 10 at min. It is preferable that 0 to 1 point is observed. That is, it is preferable that no endothermic peak is observed or only one endothermic peak is observed.
  • Polyester (N) has a glass transition temperature (T g) of DSC measurement of preferably 10 5 to: I 2 0, more preferably 1 10 to 1 20.
  • T g glass transition temperature
  • Polyethylene 1 2, 6 Tg of homopolymer of mononaphthalenedicarboxylate is about 1 1 8 and copolymerized to less than 50 mol% by introducing the unit represented by the formula (A) as a copolymerization component. Even with a Tg of 10 5 or more.
  • the dialkylene glycol component as a reaction by-product is preferably less than 10 m o 1%. If dialkylene glycol remains in the polymer or if an ether component such as dialkylene glycol is contained in the polymer skeleton, the rigidity of the main chain will be lost, leading to a decrease in mechanical properties and heat resistance. .
  • Such dialkylene glycol components are known to be generated by reaction between glycol components or by reaction between the hydroxy ends of one end of the polymer. When the Daricol component is ethylene Daricol, diethylene Daricol is generated. The Therefore, it is desirable to keep such dialkylene glycol below 1 O m o 1%. Preferably, it is 7 m o 1% or less.
  • the content of dialkylene glycol can be measured by a nuclear magnetic resonance apparatus.
  • Polyester (N) has a terminal carboxyl group concentration measured by NMR of preferably 200 equivalent Z tons or less, more preferably 100 equivalent Z tons or less. Increasing the carboxy end concentration causes an increase in hydrolyzability due to increased water absorption and acid catalysis by carboxy groups. Polyester (N) having a low terminal carboxy concentration can be obtained, for example, by directly reacting 6,6 ′-(ethylenedioxy) di-2-naphthoic acid with glycol without passing through the ester compound.
  • the film of the present invention contains the polyester described above.
  • the film of the present invention can be obtained by melt-forming the polyester described above and extruding it into a sheet.
  • the above-mentioned polyester is excellent in the fluidity at the time of melting, the subsequent crystallinity, and the film-forming property, and becomes a film having a uniform thickness.
  • the film of the present invention has excellent mechanical properties of an aromatic polyester containing an aromatic dicarboxylic acid other than 6, 6 '-(alkylenedioxy) di-2-naphthoic acid.
  • the surface direction of the film is the direction of the surface orthogonal to the thickness of the film. is there.
  • the direction of film production (longitudinal direction) is called Machine Direction (MD).
  • MD Machine Direction
  • TD Transverse Direction
  • At least one direction of the temperature expansion coefficient in the film plane direction (at) is preferably 14X 10- 6 Z: less, more preferably less than 10 X 10 one 6, more preferably 7X 10 one 6 or less, particularly preferably in the range of 5 X 10 one 6 below.
  • the temperature expansion coefficient (at) is in this range, when the film of the present invention is used for, for example, a magnetic recording tape, excellent dimensional stability can be exhibited against dimensional changes due to changes in the temperature and humidity of the atmosphere.
  • the lower limit of the at least one direction of the temperature expansion coefficient in the plane direction of the film of the present invention is preferably - 15 X 1 0- 6, more preferably one 10 X 1 0- 6 Z:, more preferably one particularly 7 X 10- 6 Zt :, preferably one 5 X 10- 6.
  • the temperature expansion coefficient in the width direction of the film plane direction (at) is preferably not more than 14X 10- 6 / a, more preferably 10 X 10- 6 / or less, more preferably 7 X 10- 6 Zt: less, particularly preferably in the range of the following 5 X 10- 6.
  • the lower limit of the temperature expansion coefficient (at) in the width direction in the plane direction of the film of the present invention is preferably 1 15 X 1 0 1 6 Z, more preferably —10 0 X 1 0—6, and more preferably 1 7 X 10 one 6 Z:, particularly preferably an 5X 10- 6.
  • the film of the present invention By combining the direction having the predetermined temperature expansion coefficient (at) of the film of the present invention with the direction in which dimensional stability is required, the film has excellent dimensional stability against environmental changes.
  • Patent Document 3 it is expected that the temperature expansion coefficient (at) of a polyester film copolymerized with polyalkylene-1,6'1 (alkylenedioxy) di1-2-naphthate will increase.
  • the temperature expansion coefficient (at) is reduced by employing a polyester having a specific copolymerization ratio and stretching. can do.
  • At least one direction of the humidity expansion coefficient (ah) is in the range of 1 ⁇ 7 X 1 0- 6 Z% RH in the film surface direction.
  • the upper limit of the humidity expansion coefficient (ah) in at least one direction in the plane direction is preferably 7 ⁇ 10 ⁇ 6 /% RH, and more preferably 6 ⁇ 10 ⁇ 1 / 6 /% RH. If the ah force is within this range, the dimensional stability of the magnetic recording tape will be good.
  • the one-way preferably a temperature expansion coefficient (at) countercurrent towards 1 4 X 1 0- 6 below.
  • the lower limit is not particularly limited, a 1 X 1 0_ 6 Z% about RH from the viewpoint of film forming properties.
  • the direction satisfying ah is the width direction of the biaxially oriented polyester film, because when the magnetic recording tape is used, track deviation and the like can be extremely suppressed.
  • the film of the present invention has a Young's modulus (Y) in at least one direction in the film surface direction of preferably 4.5 GPa or more, more preferably 6 GPa or more.
  • the upper limit of the Young's modulus (Y) in at least one direction in the plane direction of the film of the present invention is preferably about 12 GPa.
  • the range of Young's modulus in at least one direction in the plane direction of the film of the present invention is preferably in the range of 5 to: ll GPa, more preferably 6 to: LO GPa, and still more preferably in the range of 7 to 1 OGPa. is there. Outside this range, it may be difficult to achieve the above-mentioned at and ah, and the mechanical properties may be insufficient.
  • the Young's modulus can be adjusted by the copolymerization composition and stretching described above.
  • the one-way, preferably temperature expansion coefficient (at) refers to a direction or less at 14 X 1 0- 6.
  • the thermal expansion coefficient (at) is 1 4 X 1 0- 6 following direction, the at least one direction, preferably as described above, but it is sufficient to satisfy the width direction, the dimensional stability direction you orthogonal thereto From this point, it is preferable to satisfy the same temperature expansion coefficient (at), humidity expansion coefficient (ah), Young's modulus, and the like. That is, the film of the present invention preferably has a Young's modulus (Y) in two directions perpendicular to each other in the film surface direction of 5 GPa or more.
  • the Young's modulus (Y) and the humidity expansion coefficient (ah) in at least one direction in the film surface direction preferably satisfy the following formula (1).
  • the unit of 3 ⁇ 411 is 10-6 / % 13 ⁇ 411, the unit of GP is GPa
  • One direction is preferably the following direction when the coefficient of thermal expansion (at) is 14X10 16 If the polyester film does not satisfy the relationship of the above formula (1), it will only have an ah for a bang rate equivalent to that of a film made of conventional polyethylene terephthalate or polyethylene 1,6-naphthalene carboxylate. The effect of reducing humidity expansion due to the copolymerization of polyalkylene-1,6 ′-(alkylenedioxy) di-2-naphthoate is not sufficiently exhibited.
  • the coefficient “-1.2” in the above equation (1) is based on the relationship between the ah and the yang ratio of polyethylene 1,6-naphthalene dicarboxylate film described in Comparative Examples 1 to 3 of this specification. It has been derived.
  • 6, 6 '— (alkylene dioxy) di 2-naphthoic acid copolymerized aromatic polyester is made of polyethylene 1, 2, _ naphthenic diol carboxylate because it has a higher yang ratio. Childish.
  • the relationship between the coefficient of humidity expansion (ah) and the Young's modulus (Y) is more preferably the following formula (1 ′), more preferably the following formula (1 ′′).
  • the lower limit of ah is not particularly limited, but is usually expressed by the following formula (1 '' ').
  • the Young's modulus, at, and ah as described above depend on the composition of the copolymer and the stretching described below. Can be adjusted.
  • the film of the present invention is used for a base film of a magnetic recording medium.
  • the film of the present invention is used for high-density magnetic recording tapes in which the magnetic recording medium is a linear recording system. That is, the polyester film of the present invention can be used as a base film in a magnetic recording tape having a base film, a nonmagnetic layer and a magnetic layer formed on one surface thereof, and a backcoat layer formed on the other surface.
  • the film of the present invention is stretched in the film forming direction (MD) and the width direction (TD) to enhance the molecular orientation in each direction.
  • the film of the present invention is preferably produced, for example, by the following method because it is easy to reduce at and ah while maintaining film forming properties. That is, the film of the present invention can be produced by melt-extruding the polyester of the present invention, cooling, and stretching.
  • the polyester of the present invention After drying the polyester of the present invention, it is supplied to an extruder heated to a temperature of the melting point (Tm :) or (Tm + 50) of the polyester and melted, for example, from a die such as a T die. It is a process of extruding into a sheet shape.
  • Tm melting point
  • Tm + 50 melting point
  • the extruded sheet is rapidly cooled and solidified by a rotating cooling drum or the like to form an unstretched film.
  • Biaxial stretching may be sequential biaxial stretching or simultaneous biaxial stretching.
  • sequential biaxial stretching, longitudinal stretching, lateral stretching A manufacturing method in which stretching and heat treatment are performed in this order will be described as an example.
  • the first longitudinal stretch is the glass transition temperature (Tg:) or (Tg +
  • the film is stretched to 8 times and heat-set at a temperature below the melting point of the polymer and at a temperature of (Tg + 50) to (Tg + 150) for 1 to 20 seconds, and further for 1 to 15 seconds. .
  • the polyester film of the present invention is extremely stretchable due to the copolymerization of 6,6 '-(alkylenedioxy) zi 2 mononaphthoic acid component, but the Young's modulus tends to be low at the same stretch ratio. In order to obtain the desired Young's modulus, it is necessary to draw at a higher draw ratio. Normally, when the stretching ratio is increased, the film-forming stability is impaired, but in the present invention, the 6,6 '-(alkylenedioxy) di-2-naphthoic acid component is copolymerized, It is very expensive and there is no such problem.
  • the polyester film of the present invention can be produced by simultaneous biaxial stretching in which longitudinal stretching and lateral stretching are simultaneously performed.
  • the conditions may be referred to the above-described stretching ratio, stretching temperature, and the like.
  • the polyester film of the present invention is a laminated film, two or more types of molten polyester can be laminated in a die and then extruded into a film shape. It is also possible to laminate two or more types of molten polyester after extruding them from a die, and rapidly solidify them to form a laminated unstretched film.
  • the extrusion temperature is preferably a temperature of the melting point (Tm :) to (Tm + 70) of each polyester.
  • biaxial stretching and heat treatment may be performed in the same manner as in the case of the single-layer film described above.
  • a coating layer is provided, a desired coating solution is applied to one or both sides of an unstretched film or a uniaxially stretched film, and then biaxial stretching and heat treatment are performed in the same manner as in the case of the single-layer film described above. Is preferred.
  • a magnetic recording tape can be produced by using the polyester film of the present invention as a base film, forming a nonmagnetic layer and a magnetic layer in this order on one side, and forming a backcoat layer on the other side.
  • the present invention includes a composition containing a polyester containing a predetermined amount of the acid component represented by the above formula (A) and particles having an average particle diameter of 0.05 to 5 xm.
  • the composition of the present invention has a low stress at the time of stretching, and a film having a small void can be obtained even when stretched at a higher magnification. Moreover, the obtained film can reduce the humidity expansion coefficient (ah) without increasing the temperature expansion coefficient (at).
  • the polyester is as described above.
  • the average particle size of the particles is 0.05 m or more, preferably 0.07 m or more, more preferably 0.1 lmz or more, and further preferably 0.15 / m or more. If the average particle size is less than the lower limit, the particles are very small and are less likely to be affected by voids. Also, when the film is made into a film or the like, it is difficult to fully exhibit the effect of improving runnability and wrinkle. On the other hand, the average particle size is 5 / m or less, preferably 3 / m or less. Particularly when used as a magnetic recording medium, the upper limit of the average particle diameter is preferably 1 zzm. By making the average particle size of the particles within this range, the handleability of the molded product obtained can be improved.
  • the average particle size of the particles is preferably 0.05 to 5 zm, more preferably 0.07 to 5 zm, and still more preferably 0.1 to 3 jm.
  • the average particle diameter is an average value of the equivalent circle diameter (d) of 1000 particles observed with a scanning electron microscope.
  • the composition of the present invention preferably contains the above-mentioned particles based on the weight of the resin composition, preferably 0.01% by weight or more, more preferably 0.05% by weight or more, and still more preferably 0.1% by weight or more. .
  • the content is less than the lower limit, the number of particles is small and the influence of voids hardly occurs, and the effect of improving the running property and winding property when made into a film is hardly exhibited.
  • the upper limit of the content is 50% by weight or less, preferably 10% by weight or less. In particular, when it is used as a film for a magnetic recording medium, it is preferably 1% by weight or less. By making the content of particles within this range, the handleability of the molded product obtained can be improved.
  • the content of the particles is preferably 0.01 to 50% by weight, more preferably 0.05 to 10% by weight, based on the weight of the composition.
  • the volume shape factor (f) of the particles is preferably 0.4 to ⁇ 6, more preferably 0.5 to ⁇ 6.
  • the volume shape factor (f) is equal to or more than the lower limit, the shape of the formed protrusions can be easily aligned even when the particles are arranged differently.
  • the obtained protrusions are uniform, for example, when a film having the same coefficient of friction is used, a film having a smaller surface roughness can be obtained, and the flatness and the layer structure can be highly compatible with each other.
  • the volume shape factor (f) increases, the shape of the particle approaches a sphere, and the interface between the polymer and the particle decreases, and usually a void is likely to occur.
  • the stretching stress is small. Since a polymer is used, even when such particles close to a sphere are used, the protrusions can be made uniform while suppressing voids.
  • the composition of the present invention contains particles having the specific volume shape factor (f) described above, the composition is excellent in transportability and surface flatness when formed into a film.
  • the volume shape factor (f) is obtained by the following method. In other words, 100 particles are observed with a scanning electron microscope, and the projection surface maximum diameter (D) and area circle equivalent diameter (d) are obtained. Using the area equivalent circle diameter (d) of each particle, the volume (V) when the particle shape is converted as a sphere is calculated, and the volume shape factor of each particle is calculated by the following formula. The average value was taken as the volume shape factor (f).
  • the volume shape factor (f) indicates the shape of the particle, and the shape of the particle of 7t Z 6 is a sphere (true sphere). That is, those having a volume shape factor (f) of 0.4 to ⁇ 6 substantially include spheres or true spheres and elliptic spheres such as rugby poles.
  • the particles include organic polymer particles, metal oxides, metal carbonates, metal sulfates, carbon, and clay minerals.
  • organic polymer particles include silicone resin, crosslinked polystyrene, crosslinked acrylic resin, melamine-formaldehyde resin, aromatic polyamide resin, polyimide resin, polyamideimide resin, and crosslinked polyester.
  • metal oxide include aluminum oxide, titanium dioxide, silicon dioxide (silica), magnesium oxide, zinc oxide, and zirconium oxide.
  • metal carbonates include magnesium carbonate and calcium carbonate.
  • metal sulfate, calcium sulfate examples include barium sulfate.
  • carbon include carbon black, graphite, and diamond.
  • clay minerals include kaolin, clay, and bentonite.
  • the volume shape factor (f) described above is at least one particle selected from the group consisting of organic polymer particles such as silicone resin, cross-linked acrylic resin, cross-linked polyester, and cross-linked polystyrene, and silica. From the point of view, etc. In particular, at least one kind of particle selected from the group consisting of silicone resin, crosslinked polystyrene and silica is preferred. Of course, these may be used in combination of two or more.
  • the particles are at least one kind of particles selected from the group consisting of sili-force particles and organic polymer particles.
  • the particles are preferably at least one selected from the group consisting of silicone resin particles and crosslinked polystyrene particles.
  • the composition of the present invention only needs to contain particles as described above, and the particles are not limited to a single component system, and may be a multi-component system using two or more kinds in combination.
  • the particles are preferably monodisperse particles. If the contained particles are agglomerated particles or porous particles, voids tend to be suppressed, but the particle diameter in the polymer tends to vary. That is, since the composition of the present invention has an excellent void suppressing effect, the transportability and the surface when formed into a film or the like can be obtained in the same manner as the volume shape factor (f) described above without worrying about the void problem. From the standpoint of achieving both flatness and single dispersion type particles, it is possible to suitably use them.
  • the single-dispersed particles referred to here are particles in which most primary particles, preferably 60% or more of the primary particles, are dispersed in the polymer as primary particles. Means.
  • the method for adding the particles to the polyester is not particularly limited, and a known addition method can be employed.
  • a method of adding particles in the state of glycol slurry in the polymerization reaction stage, or kneading and kneading the particles with the obtained polyester with a kneading extruder The method etc. are mentioned.
  • a particle master polymer of a polyester composition containing particles at a high concentration is prepared by adding particles in the state of glycol slurry in the polymerization reaction stage, and the particle master polymer contains particles. No Dilution with polyester is preferred.
  • the composition of the present invention includes other thermoplastic polymers, stabilizers such as UV absorbers, antioxidants, plasticizers, lubricants, flame retardants, mold release agents, facials, as long as the effects of the present invention are not impaired.
  • a material, a nucleating agent, a filler, glass fiber, carbon fiber, layered silicate, etc. may be blended as necessary.
  • Other ⁇ Thermoplastic polymers include aliphatic polyester resins, polyamide resins, polycarbonate, ABS resin, polymethyl methacrylate, polyamide elastomers, polyester elastomers, polyether imides, polyimides, etc. .
  • the intrinsic viscosity of the obtained polyester was obtained by dissolving the polymer in a mixed solvent of P-chlorophenol / tetrachloroethane (40-60 weight ratio) and measuring at 35.
  • the glass transition point and melting point were measured at a heating rate of 20 m in by DSC (manufactured by TA Instruments, Inc., trade name: Thermal An aly st 2100).
  • the obtained film is cut out with a sample width of 1 Omm and length of 15 cm, and a universal tensile testing device (manufactured by Toyo Pole-Dwin Co., Ltd.) under conditions of 10 Och between chucks, 10 mm pulling speed, min OmmZ, and chart speed 500 mmZ Name: Tensilon)
  • the Young's modulus was calculated from the tangent of the rising portion of the obtained load elongation curve.
  • the measurement direction was the longitudinal direction of the sample that was cut out, measured five times, and the average value was used.
  • L 4G in the above equation is the sample length (mm) at 40
  • L 6 () is the sample length (mm) at 60
  • 0.5 is the temperature expansion coefficient of quartz glass (at) (X 10- 6 / in).
  • the obtained film was cut into 15 mm length and 5 mm width so that the width direction of the film would be the measurement direction, set in TMA3000 manufactured by Vacuum Riko Co., Ltd., under a nitrogen atmosphere of 3 O: humidity 30% RH
  • the length of each sample at a humidity of 70% RH was measured, and the humidity expansion coefficient (ah) was calculated using the following formula.
  • the polyester composition was put into an extruder and extruded from a die in a molten state at 300 to obtain an unstretched sheet having a thickness of 1 mm. This was fixed as a sample on a sample stage for a scanning electron microscope, and ion etching treatment was performed on the sample surface under the following conditions using a sputtering device manufactured by JEOL Ltd. (JFC-1100 type ion etching device). gave. Conditions, a sample is placed in a bell jar, raising the degree of vacuum to a vacuum state of about 1 0- 3 To rr (0. 1 3 3 P a), the voltage 0. 2 5 kV, at a current 1 2. 5 mA Ion etching was performed for about 10 minutes.
  • the surface of the sample was subjected to gold spattering, observed with a scanning electron microscope at a magnification of 5,000 to 10,000 times, and 1 000 pieces with a Luzex 500 manufactured by Japan Regulator Co., Ltd.
  • the maximum projected surface diameter (D) () and area circle equivalent diameter (d) were determined for the particles.
  • the average value of the equivalent area circle diameter (d) of 100 particles was taken as the average particle diameter.
  • the volume (V) (mm 3 ) when the particle shape is converted as a sphere is calculated, and the volume shape of each particle is calculated by the following formula: The coefficients were calculated, and the average value of these was taken as the volume shape factor (f).
  • the particles are single-dispersed or not is determined as single-dispersed when the number of primary particles dispersed as primary particles is 600 or more out of 1,000 particles.
  • the average particle diameter of the particles before being added to the polyester composition was measured in the same manner as the particles without performing ion etching.
  • a small piece of sample film is fixed to a sample stage for a scanning electron microscope, and ion etching is performed on the film surface under the following conditions using a sputtering device (JFC-1100 type ion etching device) manufactured by JEOL Ltd. Was given. Conditions, a sample is placed in a bell jar, raising the degree of vacuum to a vacuum state of about 10- 3 To rr (0. 133 P a), the voltage 0. 25 kV, for about 10 minutes ion etching at a current 12. 5 mA Carried out. In addition, using the same apparatus, the surface of the film was subjected to gold spattering and observed with a scanning electron microscope at a magnification of 20,000 times. Analytical processing was performed, and those that could be confirmed by voids around the particles were extracted. The particle area and void area were determined for each particle, and the void ratio was calculated according to the following definition.
  • Void ratio (particle area + void area) Z particle area
  • This measurement was performed on 100 particles, and the average value was taken as the void ratio.
  • the esterification rate was measured by 600 MHz 1 H-NMR (JEOL LA-600, manufactured by JEOL Ltd.).
  • TA is terephthalic acid component
  • NA is 2, 6-naphthalenedicarboxylic acid component
  • ENA is 6, 6 '-(ethylenedioxy) di-2-naphthoic acid component
  • EG is ethylene glycol component
  • D EG Represents a diethylene glycol component.
  • Dimethyl terephthalate, 6,6 '-(ethylenedioxy) di-2-naphthoic acid and ethylene glycol are subjected to esterification and transesterification in the presence of titanium tetrabutoxide, followed by polycondensation to produce polyester. Obtained.
  • the resulting polyester has an intrinsic viscosity of 0.73 dlZg, 65 mol% of the acid component is terephthalic acid component, 35 mol% of the acid component is 6,6 '-(ethylenedioxy) di-2-naphthoic acid component, glycol component Of which 98.5 mol% is ethylene glycol Min, 1: 5 mol% was the diethylene glycol component.
  • the polyester contained silica particles having an average particle diameter of 0.5 / zm so as to be 0.2% by weight based on the weight of the resin composition to be obtained.
  • the melting point of this polyester was 233 t: and the glass transition temperature was 91.
  • the polyester thus obtained was supplied to an extruder, and at 290, it was extruded in a sheet form onto a cooling drum having a temperature of 40 rotating from a die to a molten state to obtain an unstretched film. Then, between the two sets of rollers with different rotation speeds along the film forming direction, the film surface temperature is 110 from above and the film surface temperature is set to 110 to stretch in the film forming direction (MD). A uniaxially stretched film was obtained at a stretch ratio of 4.0.
  • this uniaxially stretched film is led to stainless steel, stretched at 1201: in the width direction (TD) at a stretch ratio of 4.5 times, and then heat-set at 210 for 3 seconds, with a thickness of 10 zm
  • Table 1 shows the characteristics of the obtained biaxially oriented polyester film.
  • Polyester is obtained by subjecting dimethyl terephthalate, 6, 6 '— (ethylenedioxy) di-2-naphthoic acid, and ethylene glycol to esterification and transesterification in the presence of titanium tetrabutoxide, followed by polycondensation. It was.
  • the resulting polyester has an intrinsic viscosity of 0.68 dl / g, 80 mol% of the acid component is terephthalic acid component, and 20 mol% of the acid component is 6,6 '-(ethylenedioxy) di-2-naphthoic acid component.
  • the glycol component 98 mol% was ethylene glycol component, and 2 mol% was jetylene glycol component.
  • the polyester contained silica particles having an average particle diameter of 0.5 / zm so as to be 0.2% by weight based on the weight of the resin composition to be obtained.
  • This aromatic polyester had a melting point of 230 t: and a glass transition temperature of 85.
  • the obtained polyester was supplied to an extruder and extruded from a die at 2 90 to a cooling drum having a temperature of 30 which is rotating in a molten state to form an unstretched film. Then, between two pairs of rollers with different rotational speeds along the film forming direction (MD), the film surface temperature is heated from above with an IR heater so that the film surface temperature becomes 10 5. Stretching was performed at a stretch ratio of 5.0 times to obtain a uniaxially stretched film. Then, this uniaxially stretched film was introduced into the stainless steel, stretched in the width direction (TD) at 1 15 at a stretch ratio of 5.0, and then heat-fixed at 2 10 for 3 seconds to obtain a thickness. A 10 m biaxially stretched film was obtained. Table 1 shows the properties of the obtained biaxially oriented polyester film.
  • the obtained polyester has an intrinsic viscosity of 0.78 dl Z g, 73 mol% of the acid component, force 2,6-naphthalenedicarboxylic acid component, and 27 mol% of the acid component is 6, 6 '-( Ethylene dioxy) G 2-Naphthoic acid component, 98.5 mol% of the glycol component was the ethylene glycol component, and 1.5 mol% was the diethylene glycol component.
  • the polyester Prior to the polycondensation reaction, contained silica particles having an average particle size of 0.5 m so that the amount was 0.2% by weight based on the weight of the resulting resin composition. The melting point of this polyester was 24 ° and the glass transition temperature was 1 1 2. (Film formation)
  • the obtained polyester was supplied to an extruder and extruded from a die at 300.degree. C. onto a cooling drum having a temperature of 45 while rotating in a molten state to form an unstretched film. Then, between two sets of rollers with different rotation speeds along the film forming direction (MD), the film surface temperature is heated from above by IR heating so that the film surface temperature becomes 130, and the film forming direction (MD ) Was performed at a draw ratio of 4.0 times to obtain a uniaxially stretched film.
  • MD film forming direction
  • this uniaxially stretched film is guided to stainless steel, stretched at 140 in the width direction (TD) at a stretch ratio of 6.0 times, and then heat-set at 200 for 10 seconds to form a biaxial film with a thickness of 7 zm.
  • a stretched film was obtained.
  • Table 1 shows the properties of the obtained biaxially oriented polyester film.
  • Dimethyl 2,6_naphthylene dicarboxylate, 6, 6 '— (ethylenedioxy) di-2_naphthoic acid, and ethylene glycol were subjected to esterification and transesterification in the presence of titanium tetrabutoxide, followed by Polyester was obtained by polycondensation reaction.
  • the resulting polyester has an intrinsic viscosity of 0.81 dl Zg, 94 mol% of the acid component is 2,6-naphthalenedicarboxylic acid component, 6 mol% of the acid component is 6,6,1 (ethylenedioxy) di- 99 mol% of 2-naphthoic acid component and glycol component were ethylene glycol components and 1 mol% was diethylene glycol component.
  • the polyester contained silica particles having an average particle diameter of 0.5 / xm so as to be 0.2% by weight based on the weight of the resin composition to be obtained.
  • This polyester had a melting point of 255 and a glass transition temperature of 117.
  • the obtained polyester was supplied to an extruder and extruded from a die at 300 to a cooling drum at a temperature of 55 in a molten state and rotated to form an unstretched film. And between the two sets of rollers with different rotation speeds along the film forming direction,
  • the film surface temperature was set to 135 at IR and the film was formed in the film forming direction (MD) and stretched at a draw ratio of 3.0 times to obtain a uniaxially stretched film. Then, this uniaxially stretched film was introduced into the stainless steel, stretched at 135 in the width direction (TD) at 135 at a stretch ratio of 5.0, and then heat-set at 200 for 10 seconds to a thickness of 10 X m A biaxially stretched film was obtained.
  • the characteristics of the obtained biaxially oriented polyester film are shown in Table 1.
  • Example 5 In Example 4, the stretching temperature in the film forming direction was 140, the stretching ratio in the film forming direction was 5.0 times, the stretching temperature in the width direction was 140, and the stretching ratio in the width direction was 4.2 times.
  • a biaxially stretched film having a thickness of 10 m was obtained by repeating the same operation except changing the heat setting treatment temperature to 210.
  • the characteristics of the obtained biaxially oriented polyester film are shown in Table 1.
  • the obtained film had a very low Young's modulus in the width direction, had a large dimensional change in the width direction when used as a magnetic recording medium, and was very easily stretched when tension was applied in the width direction.
  • the resulting polyester has an intrinsic viscosity of 0.78 dl / g, 57 mol% of the acid component is 2, 6 _ naphthenic dicarboxylic acid component, 43 mol% of the acid component is 6, 6 '— (ethylene dioxy) 98.5 mol% of the di-2-naphthoic acid component and glycol component were ethylene glycol components and 1.5 mol% were diethylene glycol components.
  • the polyester contained silica particles having an average particle size of 0.2 so as to be 0.2% by weight based on the weight of the obtained resin composition.
  • the polyester had a melting point of 253 and a glass transition temperature of 116.
  • the obtained polyester was fed to an extruder and extruded from a die onto a cooling drum at a temperature of 45 rotating in a molten state at 300 to form an unstretched film. Then, between the two sets of rollers with different rotation speeds along the film forming direction (MD), the film surface temperature is heated to 140 at the IR heat from above, and the film forming direction (MD) Stretching was performed at a stretch ratio of 4.5 times to obtain a uniaxially stretched film. Then, this uniaxially stretched film was introduced into the stainless steel, stretched in the width direction (TD) at 140 at a stretch ratio of 5.2, and then heat-set at 200 for 5 seconds. A biaxially stretched film of 0 m was obtained. Table 1 shows the characteristics of the obtained biaxially oriented polyester film.
  • 2,6-Naphthel range dimethyl ruponate and ethylene glycol were subjected to esterification and transesterification in the presence of titanium tetrabutoxide, followed by polycondensation to obtain a polyester.
  • the obtained polyester had an intrinsic viscosity of 0.62 dlZg, and 1.5 mol% of the glycol component was the polyethylene glycol component.
  • the polyester contained silica particles having an average particle diameter of 0.5 z ⁇ m to 0.2% by weight based on the weight of the resin composition obtained before the polycondensation reaction. .
  • This polyester had a melting point of 2700 t: and a glass transition temperature of 120.
  • the obtained polyester was supplied to an extruder and extruded from a die at 30 ° C. into a molten state on a cooling drum at a temperature of 60 which is rotating in a molten state to form an unstretched film. And between the two sets of rollers with different rotation speeds along the film forming direction,
  • the film was heated in an IR heater so that the film surface temperature was 140, and stretched in the film forming direction (MD) at a draw ratio of 3.0 to obtain a uniaxially stretched film. Then, this uniaxially stretched film was introduced into the stainless steel, stretched in the width direction (TD) at 140, and stretched at a stretch ratio of 4.3, and then heat-fixed for 10 seconds at 200, A biaxially stretched film having a thickness of 10 m was obtained.
  • the characteristics of the obtained biaxially oriented polyester film are shown in Table 1.
  • Comparative Example 1 the stretching temperature in the film forming direction was 1400, the stretching ratio in the film forming direction was 4.0 times, the stretching temperature in the width direction was 140, and the stretching ratio in the width direction was 4.0.
  • a biaxially stretched film was obtained by repeating the same operation except that the heat setting temperature was changed to 200.
  • the characteristics of the obtained biaxially oriented polyester film are shown in Table 1.
  • Comparative Example 3 In Comparative Example 1, the stretching temperature in the film forming direction was 140, the stretching ratio in the film forming direction was 4.5 times, the stretching temperature in the width direction was 140, and the stretching ratio in the width direction was 3 A biaxially stretched film was obtained by repeating the same operation except that the heat setting temperature was changed to 200. The characteristics of the obtained biaxially oriented polyester film are shown in Table 1.
  • Dimethyl 2,6-naphthalenedicarboxylate, 6,6 '-(ethylenedioxy) di-2-naphthoic acid, and ethylene glycol were esterified and transesterified in the presence of titanium tetrabutoxide, and then A polycondensation reaction was performed to obtain a polyester.
  • the resulting polyester has an intrinsic viscosity of 0.66 dlZg, 73 mol% of the acid component is 2,6-naphthalenedicarboxylic acid component, 27 mol% of the acid component is 6, 6 '(ethylene dioxy) GE 2 -98% by mole of the naphthoic acid component and glycol component was the ethylene glycol component, and 2% by mole was the diethylene glycol component.
  • the polyester contained silica particles having an average particle size of 0.5 zm so as to be 0.2% by weight based on the weight of the obtained resin composition before the polycondensation reaction. This polyester had a melting point of 240 t: and a glass transition temperature of 117.
  • the obtained polyester was supplied to an extruder and extruded from a die at 29 Ot: onto a cooling drum at a temperature of 50 which is rotating in a molten state to form an unstretched film. Then, between two pairs of rollers with different rotation speeds along the film forming direction, the film surface temperature is 135 from above using IR heat to stretch in the film forming direction (MD). The stretching ratio was 6.2, and a uniaxially stretched film was obtained. Then, this uniaxially stretched film is guided to a stenter, stretched in the width direction (TD) at 140 at a stretch ratio of 6.3, and then heat-set at 200 for 10 seconds. An axially stretched film was obtained. Table 2 shows the characteristics of the obtained biaxially oriented polyester film.
  • Example 7 the stretching temperature in the film forming direction was 135, the stretching ratio in the film forming direction was 5.3 times, the stretching temperature in the width direction was 135, and the stretching ratio in the width direction was 5.8 times.
  • a biaxially stretched film was obtained by repeating the same operation except changing the heat setting temperature to 210. Table 2 shows the characteristics of the obtained biaxially oriented polyester film.
  • Dimethyl 2,6-naphthalenedicarboxylate, 6,6 '-(ethylenedioxy) di-2-naphthoic acid, and ethylene glycol are subjected to esterification and transesterification in the presence of titanium tetrabutoxide, and then A polycondensation reaction was performed to obtain a polyester.
  • the resulting polyester has an intrinsic viscosity of 0.72 dl Z g, 94 mol% of the acid component is 2,6-naphthalenedicarboxylic acid component, 6 mol% of the acid component is 6,6 '-(ethylenedioxy ) 99 mol% of the di-2-naphthoic acid component and glycol component were ethylene glycol components and 1 mol% was diethylene glycol component.
  • the polyester contained silica particles having an average particle size of 0.4 im so as to be 0.2% by weight based on the weight of the resin composition to be obtained.
  • the melting point of this polyester was 2 5 5, and the glass transition temperature was 1 1 9. ⁇
  • the obtained polyester was fed to an extruder and extruded from a die at a temperature of 2900 onto a cooling drum having a temperature of 601, which was rotating in a molten state, to form an unstretched fillet. Then, between two pairs of rollers with different rotation speeds along the film forming direction, the film surface temperature is heated to 140 ° C. from above with IR heat to stretch in the film forming direction (MD). A uniaxially stretched film was obtained at a stretch ratio of 5.3 times.
  • this uniaxially stretched film was introduced into the stainless steel, stretched in the width direction (TD) at 140, and stretched at a stretch ratio of 4.0, and then heat-fixed for 10 seconds at 200, A biaxially stretched film having a thickness of 8 m was obtained.
  • Table 2 shows the characteristics of the obtained biaxially oriented polyester film.
  • Example 9 the stretching temperature in the film forming direction was 1 35, the stretching ratio in the film forming direction was 3.0 times, the stretching temperature in the width direction was 13 5 and the stretching ratio in the width direction was 5
  • Table 2 shows the characteristics of the obtained biaxially oriented polyester film.
  • Dimethyl 2,6-naphthalenedicarboxylate, 6, 6 '_ (ethylenedioxy) di-2-naphthoic acid, and ethylene glycol are esterified and transesterified in the presence of titanium tetrabutoxide, followed by heavy polymerization.
  • a polyester was obtained by condensation reaction.
  • the resulting polyester has an inherent viscosity of 0.77 dlZg, 80 mol% of the acid component is 2,6-naphthalenedicarboxylic acid component, and 20 mol% of the acid component is 6,6,-(ethylene dioxy) G2 -99 mol% of the naphthoic acid component and glycol component were ethylenic alcohol components, and 1 mol% was: ethylene glycol component.
  • the polyester contained silica particles with an average particle size of 0.4 // m before the polycondensation reaction so that the amount was 0.1% by weight based on the weight of the resin composition obtained. .
  • This polyester had a melting point of 252 and a glass transition temperature of 116.
  • the obtained polyester was supplied to an extruder, and at 290, it was extruded from a die onto a cooling drum at a temperature of 50 in a molten state and rotated to form an unstretched film. Then, between two sets of rollers with different rotation speeds along the film forming direction, the film surface temperature is 135t: from above using IR heat to stretch in the film forming direction (MD). A stretching ratio of 5.5 was performed to obtain a uniaxially stretched film. Then, this uniaxially stretched film was introduced into the stainless steel, stretched in the width direction (TD) at 140 at a stretch ratio of 4.3, and then heat-set at 210 for 10 seconds to obtain a biaxially stretched film having a thickness. Got. Table 2 shows the characteristics of the obtained biaxially oriented polyester film.
  • Dimethyl 2,6-naphthalenedicarboxylate, 6, 6 '— (ethylenedioxy) di-2-naphthoic acid, and ethylene glycol were esterified and transesterified in the presence of titanium tetrabutoxide, followed by Polycondensation Reaction was performed to obtain polyester.
  • the resulting polyester has an intrinsic viscosity of 0.77 dl Z g, 65 mol% of the acid component is 2,6-naphthalenedicarboxylic acid component, and 35 mol% of the acid component is 6,6 '— ( Ethylene dioxy) G 2-Naphthoic acid component, 98 mol% of the glycol component was ethylethylene glycol component, and 2 mol% was diethylene glycol component.
  • the polyester contained silica particles having an average particle size of 0.4 / m so as to be 0.1% by weight based on the weight of the obtained resin composition.
  • the melting point of this polyester was 2 4 7 and the glass transition temperature was 1 1 6.
  • the obtained polyester was supplied to an extruder and extruded from a die at a melt temperature of 290 onto a cooling drum having a temperature of 50 and rotating into a sheet shape to obtain an unstretched film. Then, between the two nozzles with different rotation speeds along the film forming direction, the film surface temperature is heated from above by IR heating so that the film surface temperature becomes 140.degree. Was stretched at a draw ratio of 5.5 to obtain a uniaxially stretched film. Then, this uniaxially stretched film is guided to a stainless steel, stretched at 140 in the width direction (TD) at a stretching ratio of 6.0, and then heat-fixed at 2 10 for 10 seconds. A biaxially stretched film having a thickness of 7 m was obtained. The properties of the obtained biaxially oriented polyester film are shown in Table 2.
  • Example 7 the stretching temperature in the film forming direction is 1 35, the stretching ratio in the film forming direction is 4.8 times, the stretching temperature in the width direction is 1 35, and the stretching ratio in the width direction is 6.
  • a biaxially stretched film was obtained by repeating the same operation except that the heat setting treatment temperature was changed to 1900 by 7 times.
  • Table 2 shows the characteristics of the obtained biaxially oriented polyester film. Table 2
  • Dimethyl 2,6-naphthalenedicarboxylate, 6, 6 '-(ethylenedioxy) di-2-naphthoic acid, and ethylene glycol were subjected to esterification and transesterification in the presence of titanium tetrabutoxide, followed by A polycondensation reaction was performed to obtain a polyester.
  • the resulting polyester has an intrinsic viscosity of 0.66 dlZg, 73 mol% of the acid component is 2,6-naphthalenedicarboxylic acid component, 27 mol% of the acid component is 6,6 '-(ethylene dioxy) di- 98 mol% of the 2-naphthoic acid component and glycol component were the ethylene glycol component, and 2 mol% was the diethylene glycol component.
  • the polyester is a resin in which the content of silica particles having a volume shape factor (f) of 0.51 and an average particle size of 0.28 m in the state of ethylene glycol slurry is obtained before the polycondensation reaction. Based on the weight of the composition, 0.1% by weight was added. The melting point of this polyester was 240, the glass transition temperature was 117, and the silica particles in the polymer were single dispersed particles in which 60% or more of the particles were dispersed as primary particles.
  • f volume shape factor
  • the obtained polyester was supplied to an extruder and extruded from a die onto a cooling drum at a temperature of 50 in a molten state and rotated at 290 to form an unstretched film. Then, between the two sets of rollers with different rotation speeds along the film forming direction, the film surface temperature is set to 135 by IR heating from above to stretch in the film forming direction (MD). A uniaxially stretched film was obtained at a magnification of 4. 8 times. Then, this uniaxially stretched film was introduced into the stainless steel, stretched at 140 in the width direction (TD) at a stretching ratio of 7.7 times, and then heat-set at 200 for 10 seconds. An axially stretched film was obtained. Table 3 shows the properties of the obtained polyester composition and biaxially oriented polyester film.
  • Example 14 instead of silica particles, the volume shape factor (f) is 0.50, The same operation was repeated except that silicone particles having an average particle diameter of 0.5 m were added and the addition amount was changed to 0.07% by weight.
  • the silicone particles in the polymer were single dispersed particles in which 60% or more of the particles were dispersed as primary particles. Table 3 shows the properties of the obtained polyester composition and biaxially oriented polyester film.
  • Example 14 instead of silica particles, cross-linked polystyrene particles having a volume shape factor (f) of 0.48 and an average particle size of 0.7 m were added, and the addition amount was changed to 0.05% by weight. Repeated the same operation.
  • the crosslinked polystyrene particles in the polymer were single dispersed particles in which 60% or more of the particles were dispersed as primary particles.
  • the properties of the obtained polyester composition and biaxially oriented polyester film are shown in Table 3.
  • Example 14 The same operation was performed except that the silica particles of Example 14 were changed to silica particles having a volume shape factor (f) of 0.51 and an average particle size of 0.12 m, and the addition amount was changed to 0.5% by weight.
  • Silica particles in the polymer were single dispersed particles in which 60% or more of the particles were dispersed as primary particles. Table 3 shows the properties of the obtained polyester composition and biaxially oriented polyester film.
  • Dimethyl 2,6-naphthalenedicarboxylate, 6, 6 '— (Ethylenedioxy) di-2-naphthoic acid, and ethylene glycol were subjected to esterification and transesterification in the presence of titanium tetrabutoxide, followed by heavy polymerization.
  • a polyester was obtained by condensation reaction.
  • the resulting polyester has an intrinsic viscosity of 0.72 d lZg, 94 mol% of the acid component, 2,6-naphthalenedicarboxylic acid component, and 6 mol% of the acid component is 6,6 '-(ethylenoxy) 2-Naphthoic acid component, 99% by mole of glycol component was ethylene glycol component, and 1% by mole was jetylene glycol component.
  • the polyester has a content of silica particles having a volume shape factor (f) of 0.51 and an average particle size of 0.28 im in an ethylene glycol slurry before the polycondensation reaction. Based on the weight of the resin composition, 0.1% by weight was added. The melting point of this polyester was 255, the glass transition temperature was 119, and the silica particles in the polymer were single-dispersed particles in which 60% or more of the particles were dispersed as primary particles.
  • the polyester thus obtained was supplied to an extruder, and at 290, it was extruded in a sheet form onto a cooling drum at a temperature of 60 which is rotating in a molten state from a die to obtain an unstretched film. Then, between two sets of rollers with different rotation speeds along the film forming direction, the film surface temperature is heated to 140 by IR heating from above, and stretching in the film forming direction (MD) A stretching ratio of 5.3 was performed to obtain a uniaxially stretched film. Then, this uniaxially stretched film is introduced into the stainless steel, stretched in the width direction (TD) at 140 at a stretch ratio of 4.0, and then heat-set at 200 for 10 seconds, and biaxially stretched at a thickness of 8 zxm. A film was obtained. Table 3 shows the properties of the obtained polyester composition and biaxially oriented polyester film.
  • the resulting polyester has an intrinsic viscosity of 0.77 dlZg, 80 mol% of the acid component, force 2,6-naphthalenedicarboxylic acid component, and 20 mol% of the acid component is 6, 6 '— (ethylene dioxy) di — 2-Naphthoic acid component, 99 mol% of glycol component was ethylendacol component and 1 mol% was diethylenedaricol component.
  • the polyester Before the polycondensation reaction, the polyester had silica particles with a volume shape factor (f) of 0.51 and an average particle size of 0.28 m in an ethylene glycol slurry state. The content was added so as to be 0.1% by weight based on the weight of the resin composition to be obtained. The melting point of this polyester was 252 and the glass transition temperature was 116, and the silica particles in the polymer were single-dispersed particles in which 60% or more of the particles were dispersed as primary particles.
  • f volume shape factor
  • the obtained polyester was supplied to an extruder and extruded from a die onto a cooling drum at a temperature of 50 in a molten state and rotated at 290 to form an unstretched film. Then, between two sets of rollers with different rotation speeds along the film forming direction, the film surface temperature is set to 135 with an IR heater from above to stretch in the film forming direction (MD). A uniaxially stretched film was obtained at 5 times. Then, this uniaxially stretched film was introduced into the stainless steel, stretched in the width direction (TD) at 140 at a stretch ratio of 4.3, and then heat-set at 210 for 10 seconds, with a thickness of 6 m. A biaxially stretched film was obtained. Table 3 shows the properties of the resulting polyester composition and biaxially oriented polyester film.
  • Dimethyl 2,6-naphthalenedicarboxylate, 6,6 '-(ethylenedioxy) di-2-naphthoic acid, and ethylene glycol are subjected to esterification and transesterification in the presence of titanium tetrabutoxide, followed by heavy polymerization. A condensation reaction was performed to obtain a polyester.
  • the resulting polyester has an intrinsic viscosity of 0.77 d 1 / g, 65 mol% of the acid component, strength 2,6-naphthalenedicarboxylic acid component, and 35 mol% of the acid component is 6,6 '-(ethylenedioxy ) Di_2_naphthoic acid component, 98 mol% of glycol component was ethylene glycol component, and 2 mol% was diethylenedaricol component.
  • the polyester has a volume shape factor (f) force of SO. 51 and an average particle size of 0.28 m of silica particles in an ethylene glycol slurry state before the polycondensation reaction. Based on the weight of the composition, 0.1% by weight was added. This polyester has a melting point of 247 and a glass transition temperature of 116.
  • the silica particles in the polymer were single-dispersed particles in which 60% or more of the particles were dispersed as primary particles.
  • the obtained polyester was supplied to an extruder, and at 290, it was extruded from a die into a molten state on a cooling drum at a temperature of 50 while rotating in a molten state to form an unstretched film. Then, between two sets of rollers with different rotation speeds along the film forming direction, the film surface temperature is 140 from the top with IR heat to stretch in the film forming direction (MD), A stretching ratio of 5.5 was performed to obtain a uniaxially stretched film.
  • this uniaxially stretched film was introduced into the stainless steel, stretched at 140 in the width direction (TD) at 140 at a stretch ratio of 6.0, and then heat-set at 210 for 10 seconds, with a thickness of 7 m.
  • a biaxially stretched film was obtained.
  • Table 3 shows the properties of the resulting polyester composition and biaxially oriented polyester film.
  • Dimethyl terephthalate, 6, 6 '— (ethylenedioxy) di-2-naphthoic acid, and ethylene glycol are subjected to esterification and transesterification in the presence of titanium tetrabutoxide, followed by polycondensation. I got polyester.
  • the resulting polyester has an intrinsic viscosity of 0. y S d lZg, 65 mol% of the acid component is terephthalic acid component, and 35 mol% of the acid component is 6,6 '-(ethylenedioxy) di-2-naphthoic acid component Of the glycol component, 98.5 mol% was an ethylene glycol component, and 1.5 mol% was a diethylene glycol component.
  • the polyester is a resin in which the content of silica particles having a volume shape factor (f) of 0.51 and an average particle size of 0.28 im is obtained in an ethylene glycol slurry before the polycondensation reaction. Based on the weight of the composition, 0.1% by weight was added. The melting point of this polyester was 233, the glass transition temperature was 9 It, and the silica particles in the polymer were monodisperse particles in which 60% or more of the particles were dispersed as primary particles.
  • f volume shape factor
  • the obtained polyester was supplied to an extruder and extruded from a die at 2 90 to a cooling drum at a temperature 40 which was rotating in a molten state to form an unstretched film. Then, between two pairs of rollers with different rotational speeds along the film forming direction, the film surface temperature is heated to 110 ° C. with IR heat from above, and the film forming direction (MD) Stretching was performed at a stretch ratio of 4.0 times to obtain a uniaxially stretched film. Then, this uniaxially stretched film was introduced into the stainless steel, stretched at 120 in the width direction (TD) at a stretch ratio of 4.5, and then heat-fixed at 2 10 for 3 seconds to obtain a thickness. A biaxially stretched film of 1 was obtained. Table 3 shows the properties of the obtained polyester composition and biaxially oriented polyester film.
  • Polyester is obtained by subjecting dimethyl terephthalate, 6, 6 '-(ethylenedioxy) di-2-naphthoic acid, and ethylene glycol to esterification and transesterification in the presence of titanium tetrabutoxide, followed by polycondensation. It was.
  • the resulting polyester has an intrinsic viscosity of 0.68 dl Zg, 80 mol% of the acid component is terephthalic acid component, and 20 mol% of the acid component is 6,6 '-(ethylenedioxy) di-1-2-naphtho.
  • 80 mol% of the acid component is terephthalic acid component
  • 20 mol% of the acid component is 6,6 '-(ethylenedioxy) di-1-2-naphtho.
  • oxalic acid component and glycol component 98 mol% was ethylene glycol component and 2 mol% was jetylene glycol component.
  • the polyester has a volume shape factor (f) of 0.51 and an average particle size of 0.28 / m in the state of ethylene glycol slurry before the polycondensation reaction. Based on the weight of the resulting resin composition, 0.1% by weight was added. The melting point of this polyester was 230, the glass transition temperature was 85, and the silica particles in the polymer were monodisperse particles in which 60% or more of the particles were dispersed as primary particles.
  • the obtained polyester is fed to an extruder and extruded from a die at 29 0 C in the form of a melt onto a cooling drum having a temperature of 30 and rotating into a sheet to form an unstretched film. It was.
  • the film is then stretched in the film forming direction (MD) between two pairs of rollers with different rotational speeds along the film forming direction by heating from above with an IR heat so that the film surface temperature becomes 105.
  • a uniaxially stretched film was obtained at a draw ratio of 5.0.
  • this uniaxially stretched film was introduced into the stainless steel, stretched in the width direction (TD) at 1 15 at a stretch ratio of 5.0, and then heat-fixed at 2 10 for 3 seconds to obtain a thickness.
  • a biaxially stretched film having a thickness of 10 m was obtained.
  • Table 3 shows the properties of the obtained polyester composition and biaxially oriented polyester film.
  • 2,6-Naphthel range dimethyl ruponate and ethylene glycol were subjected to esterification and transesterification in the presence of titanium tetrabutoxide, followed by polycondensation to obtain a polyester.
  • the obtained polyester had an intrinsic viscosity of 0.62 dl / g, and 1.5 mol% of the glycol component was the polyethylene glycol component.
  • the polyester had a volume shape factor (f) of 0.51 and an average particle size of 0.28 / m in the state of ethylene glycol slurry before the polycondensation reaction. Based on the weight of the resulting resin composition, 0.1% by weight was added. The melting point of this polyester was 270, the glass transition temperature was 120, and the silica particles in the polymer were single dispersed particles in which 60% or more of the particles were dispersed as primary particles.
  • the obtained polyester was supplied to an extruder and extruded at 30 ° C. from a die on a cooling drum at a temperature 60 ° which was rotating in a molten state to form an unstretched film.
  • the film is stretched in the film forming direction (MD) by heating between two pairs of rollers with different rotational speeds along the film forming direction so that the film surface temperature is 140 ° C. from above.
  • this uniaxially stretched film was introduced into the stainless steel, stretched in the width direction (TD) at 140, and stretched at a stretch ratio of 4.3, and then heat-fixed for 10 seconds at 200, 1 0 m biaxially stretched film was obtained.
  • Table 3 shows the properties of the resulting polyester composition and biaxially oriented polyester film.
  • the stretching temperature in the film forming direction was 140
  • the stretching ratio in the film forming direction was 4.5 times
  • the stretching temperature in the width direction was 140
  • the stretching ratio in the width direction was 3.4.
  • a biaxially stretched film was obtained by repeating the same operation except that the heat setting temperature was changed to 200.
  • Table 3 shows the properties of the obtained polyester composition and biaxially oriented polyester film.
  • Dimethyl 2,6-naphthalenedicarboxylate, 6,6 '-(ethylenedioxy) di 2-Naphthoic acid and ethylene glycol were subjected to esterification and transesterification in the presence of titanium teraboxide, followed by After the polycondensation reaction, the intrinsic viscosity was 0.66 d 1 / g, 73 mol% of the acid component was 2, 6-naphthalenedicarboxylic acid component, 27 mol% of the acid component was 6,6, -(Ethylene dioxy) G 2 -Naphthoic acid component, An aromatic polyester in which 98 mol% of the glycol component was an ethylene glycol component and 2 mol% was a diethylene glycol component was obtained.
  • the aromatic polyester contained silica force particles having an average particle size of 0.2 before the polycondensation reaction so that the amount was 0.2% by weight based on the weight of the resin composition obtained.
  • This aromatic polyester had a melting point of 2440 and a glass transition temperature of 11.7.
  • the aromatic polyester thus obtained was fed into an extruder and extruded from a die at 29 0 C in a molten state on a cooling drum at a temperature of 50 0 during rotation to form an unstretched film. . Then, between the two sets of rollers with different rotational speeds along the film forming direction, the film surface temperature is heated from the top to 1 30 with IR heat to stretch in the longitudinal direction (film forming direction). Was performed at a draw ratio of 4.5 to obtain a uniaxially stretched film. Then, this uniaxially stretched film was introduced into the stainless steel, stretched in the transverse direction (width direction) at 13 0 at a draw ratio of 7.5 times, and then heat-fixed at 18 0 for 10 seconds to obtain a thickness. A 5 im biaxially stretched film was obtained. Table 4 shows the characteristics of the obtained biaxially oriented polyester film.
  • Example 23 stretching in the machine direction (film forming direction) was performed at a stretching ratio of 5.7 times, stretching in the transverse direction (width direction) was performed at a stretching ratio of 7.7 times, and heat setting was performed at 190. The same operation was repeated except that the thickness was changed to 10 seconds and the thickness of the unstretched film was changed so that the resulting film thickness was 5 m.
  • Table 4 shows the properties of the obtained biaxially oriented polyester film.
  • Example 2 5 In Example 23, stretching in the machine direction (film forming direction) was performed at a stretching ratio of 6.0 times, stretching in the transverse direction (width direction) was performed at a stretching ratio of 8.5 times, and heat setting was performed at 19.5. The same operation was repeated except that the thickness of the unstretched film was changed so that the resulting film thickness was 4.5. Table 4 shows the properties of the resulting biaxially oriented polyester film.
  • Dimethyl 2,6-naphthalenedicarboxylate, 6,6 '-(ethylenedioxy) di-2-naphthoic acid and ethylene glycol are subjected to esterification and transesterification in the presence of titanium tetrabutoxide.
  • the aromatic polyester thus obtained was supplied to an extruder, and at 290, it was extruded from a die onto a cooling drum having a temperature of 50 and rotating in a molten state to form an unstretched film. Then, between the two sets of rollers with different rotation speeds along the film forming direction, the film surface temperature is heated from the top to 1 3 O t: Was stretched at a draw ratio of 6.0 times to obtain a uniaxially stretched film. Then, this uniaxially stretched film is guided to a stainless steel, stretched at a stretching ratio of 8.4 times in the transverse direction (width direction) at 13 0, and then heat-fixed at 10 5 for 10 seconds, A biaxially stretched film having a thickness of 4.5 im was obtained.
  • Table 4 shows the properties of the obtained biaxially oriented polyester film.
  • 2, 6-naphthalene dicarboxylic acid dimethyl, 6, 6 '— (ethylenedioxy) Di-2-naphthoic acid and ethylene glycol are subjected to esterification and transesterification in the presence of titanium tetrabutoxide, followed by a polycondensation reaction, with an intrinsic viscosity of 0.66 dl Z g, 82 mol% of the component is 2, 6-naphthalenedicarboxylic acid component, 18 mol% of the acid component is 6, 6 '(ethylene dioxy) GE 2_naphthoic acid component, 98 mol% of the glycol component is An aromatic polyester having an ethylene glycol component and 2 mol% of a ethylene glycol component was obtained.
  • the aromatic polyester contained silica force particles having an average particle size of 0.2 before the polycondensation reaction so that the amount was 0.2% by weight based on the weight of the resin composition obtained.
  • This aromatic polyester had a melting point of 2 4 9 and a glass transition temperature of 1 1 8.
  • the aromatic polyester thus obtained was supplied to an extruder, and at 290, it was extruded from a die onto a cooling drum having a temperature of 50 and rotating in a molten state to form an unstretched film. Then, between two pairs of rollers with different rotation speeds along the film forming direction, the film surface temperature is heated from the top to 1 3 5 with IR heat to increase the vertical direction (film forming direction). Stretching was performed at a stretch ratio of 5.0 times to obtain a uniaxially stretched film.
  • this uniaxially stretched film was introduced into the stainless steel, stretched in the transverse direction (width direction) with 1 35 at a stretching ratio of 8.4 times, and then heat set at 20 3 for 10 seconds, A biaxially stretched film having a thickness of 5 im was obtained.
  • Table 4 shows the characteristics of the obtained biaxially oriented polyester film.
  • Example 27 stretching in the machine direction (film forming direction) was performed at a stretching ratio of 4.9 times, stretching in the transverse direction (width direction) was performed at a stretching ratio of 8.0 times, and heat setting was performed at 203. The same operation was repeated except that the thickness was changed to 10 seconds and the thickness of the unstretched film was changed so that the resulting film thickness was 5 m.
  • Table 4 shows the properties of the obtained biaxially oriented polyester film.
  • Example 27 stretching in the machine direction (film forming direction) was performed at a stretching ratio of 5.0 times, stretching in the transverse direction (width direction) was performed at a stretching ratio of 7.6 times, and heat setting was performed at 203. In 10 seconds The same operation was repeated except that the thickness of the unstretched film was changed so that the thickness of the obtained film was 4.5 zm. Table 4 shows the properties of the resulting biaxially oriented polyester film.
  • Example 27 stretching in the machine direction (film forming direction) was performed at a draw ratio of 5.0 times, stretching in the transverse direction (width direction) was carried out at a draw ratio of 7.9 times, and heat setting at 203 for 10 seconds. The same operation was repeated except that the thickness of the unstretched film was changed so that the thickness of the obtained film was 5.0 xm.
  • Table 4 shows the properties of the obtained biaxially oriented polyester film.
  • Dimethyl 2,6-naphthalenedicarboxylate, 6, 6 '— (Ethylenedioxy) di-2-naphthoic acid and ethylene glycol are subjected to esterification and transesterification in the presence of titanium tetrabutoxide, followed by heavy polymerization.
  • the intrinsic viscosity is 0.66 dl / g
  • 85 mol% of the acid component is 2,6-naphthalenedicarboxylic acid component
  • 15 mol% of the acid component is 6, 6 '(ethylene dioxy)
  • An aromatic polyester was obtained in which 98 mol% of the di-2-naphthoic acid component and glycol component were ethylene glycol components and 2 mol% were diethylene glycol components.
  • the aromatic polyester contains silica force particles having an average particle diameter of 0.5 m before the polycondensation reaction so as to be 0.2% by weight based on the weight of the obtained resin composition. It was.
  • the melting point of this aromatic polyester was 252 and the glass transition temperature was 118.
  • the aromatic polyester thus obtained was supplied to an extruder, and at 290, it was extruded from a die onto a cooling drum having a temperature of 55 in a molten state to form an unstretched film. Then, between the two sets of rollers with different rotation speeds along the film forming direction, the film surface temperature is heated to 135 at the IR heat from above to stretch in the machine direction (film forming direction). A uniaxially stretched film was obtained at a draw ratio of 5.0. Then, this uniaxially stretched film is introduced into the stainless steel, stretched at 140 in the transverse direction (width direction) at a stretch ratio of 8.1, and then heated at 205 for 10 seconds. Fixing treatment was performed to obtain a biaxially stretched film having a thickness of 4.5 // m.
  • Table 4 shows the properties of the obtained biaxially oriented polyester film.
  • Example 31 stretching in the machine direction (film forming direction) was performed at a stretching ratio of 5.3 times, stretching in the transverse direction (width direction) was performed at a stretching ratio of 8.0 times, and heat setting was performed at 205. The same operation was repeated except that the thickness of the unstretched film was changed so that the thickness of the obtained film was 5 tm. Table 4 shows the properties of the obtained biaxially oriented polyester film.
  • the naphthenic dicarboxylic acid component was 87.4 mol%, and 6, 6 ′ _ (ethylenedioxy) di-2-naphtho Copolymerized polyethylene 1,6-naphthalate having an acid component of 12.6 mol% was obtained.
  • the obtained polymer had an intrinsic viscosity of 0.98, a glass transition temperature of 115, and a melting point of 238. Tables 5 and 6 show the physical properties of the obtained polymers.
  • Copolymer polyethylene-2,6-naphthalate with a dicarboxylic acid content of 69.5 mol% and 6,6 '— (ethylenedioxy) di-2-naphthoic acid component of 30.5 mol% was obtained.
  • Tables 5 and 6 show the physical properties of the obtained polymers.
  • the obtained copolymer polyethylene 1,6-naphthalate shows one endothermic peak when the temperature is raised to 320 at a heating rate of 20 t: / min and then cooled to 10 min in DSC measurement. Observed ( Figure 3).
  • 6,6,1 (Ethylenedioxy) di-2-naphthoic acid 100 parts by weight, 2,6-bis (hydroxyethoxycarbonyl) naphthalene was used in the same manner as in Example 33 except that naphthenic dicarboxylic acid was used.
  • a copolymerized polyethylene-2,6-naphthalate was obtained with an acid content of 62.3 mol% and a 6,6,1- (ethylenedioxy) di-2-naphthoic acid component of 37.7 mol%.
  • the physical properties of the obtained polymer are shown in Table 5 and Table 6. With respect to the obtained copolymer polyethylene-2,6-naphthalate, no peak was observed in the range of 20 to 5 to 10 ° in XRD measurement.
  • the obtained copolymer polyethylene-2,6-naphthalate has a main peak as an endothermic peak when the temperature is raised to 320 at a min of 320 at a heating rate of 20 in DSC measurement and then cooled to Zmin at 10. One point and one minute peak were observed (Fig. 4).
  • Table 5
  • a copolymerized polyethylene 1,2,6-naphthalate having a carboxylic acid component of 73 mol% and a 6,6 ′-(ethylenedioxy) di-2-naphthoic acid component of 27 mol% was obtained.
  • the obtained copolymer polyethylene 1,6-naphthalate was supplied to an extruder, and at 290, it was extruded from a die onto a cooling drum at a temperature of 40 in a molten state and turned into a sheet to obtain an unstretched film.
  • the film is stretched in the longitudinal direction (film-forming direction) between two pairs of rollers with different rotational speeds along the film-forming direction and heated from above with an IR heat so that the film surface temperature is 140.
  • the film was stretched in the transverse direction (width direction) at 14 mm, and the maximum draw ratio until breaking was obtained (however, the maximum draw ratio was measured up to 6 times, and no further measurements were made).
  • the film was stretched in the transverse direction (width direction) at a draw ratio smaller than the maximum draw ratio until breaking, to obtain a film having a thickness of 8 zm, and the surface ratio was determined from the actual longitudinal and transverse draw ratio.
  • Table 7 shows the characteristics of the biaxially oriented polyester film that was heat-set at 185 for 10 seconds.
  • the polyester of the present invention is a film having excellent mechanical strength and dimensional stability. Since the polyester of the present invention is excellent in film forming properties, it is a raw material for films having excellent physical properties.
  • the film of the present invention has a low temperature expansion coefficient (C3 ⁇ 4 t) and humidity expansion coefficient (CK h), and is excellent in dimensional stability against environmental changes such as temperature and humidity.
  • the film of the present invention has a high Young's modulus and excellent mechanical strength. Industrial applicability
  • the film of the present invention has excellent dimensional stability, and can be suitably used for applications requiring dimensional stability such as a base film of a high-density magnetic recording medium.
  • the polyester, the polyester composition and the film of the present invention are not limited to the base film of a high-density magnetic recording medium, but are used for applications that require dimensional stability against environmental changes, such as heat ray reflective films, solar cells, and liquid crystals.
  • Optical films such as reflectors in the equipment, polarizing plates and their protective films, flexible displays, films with transparent conductive (semiconductor film) layers, films for circuit boards such as flexible printed boards, fuel cells Since it is excellent in stretchability with a capacitor and an electrical insulating film, it can be suitably used as a film for molding such as in-mold transfer by being bonded to a metal or the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Materials For Medical Uses (AREA)

Abstract

本発明の目的は、温度や湿度に対する寸法安定性に優れたポリエステルフィルムを提供することにある。本発明は、ジカルボン酸成分およびジオール成分を含有するポリエステルであり、(i)ジカルボン酸成分が5モル%以上50モル%未満の下記式(A)および50モル%を超え95モル%以下の下記式(B)で表される繰り返し単位を含有し、(A)式(A)中、RAは炭素数2~10のアルキレン基である、(B)式(B)中、RBはフェニレン基またはナフタレンジイル基である、(ii)ジオール成分が90~100モル%の下記式(C)で表される繰り返し単位を含有する、(C)式(C)中、RCは炭素数2~10のアルキレン基である、ポリエステルおよびそのフィルムである。

Description

明 細 書 ポリエステル、 その組成物およびそのフィルム 技術分野
本発明は 6, 6 ' - (アルキレンジォキシ) ジ— 2—ナフトェ酸を共重合した ポリエステル、 それを含有する組成物およびフィルムに関する。 背景技術
ポリエチレンテレフ夕レートやポリエチレン一 2 , 6—ナフ夕レンジカルポキ シレ一卜に代表される芳香族ポリエステルは、 優れた機械的特性、 寸法安定性お よび耐熱性を有するのでフィルムなどに幅広く使用されている。 特にポリェチレ ン一 2, 6—ナフ夕レンジカルボキシレートは、 ポリエチレンテレフ夕レートよ りも優れた機械的特性、 寸法安定性および耐熱性を有し、 それらの要求の厳しい 用途、 例えば高密度磁気記録媒体などのベースフィルムなどに使用されている。 しかしながら、 近年の高密度磁気記録媒体などでの寸法安定性の要求はますます 高くなつてきており、 さらなる特性の向上が求められている。
一方、 特許文献 1〜4には、 6 , 6 ' — (エチレンジォキシ) ジ一 2—ナフト ェ酸を主とする酸成分と、 ジオール成分とのエステル単位からなるポリエステル 力 S提案されている。 該文献には、 結晶性で、 融点が 2 9 4でのポリエステルが開 示されている。
しかしながら、 これらの文献に開示されたポリエステルは、 融点が非常に高く、 また結晶性も非常に高く、 フィルムなどに成形しょうとすると、 溶融状態での流 動性が乏しく、 押出しが不均一化したり、 押出した後に延伸しょうとしても結晶 化が進んで高倍率で延伸すると破断したりするなどの問題があった。
また、 特許文献 3には、 6 , 6 ' — (エチレンジォキシ) ジ _ 2 _ナフトェ酸 を主とする酸成分と、 ジオール成分とのエステル単位からなるポリエステルのフ レキシブルディスクが開示されている。 そのフレキシブルディスクは、 最大の温 度膨張率 (a t) が 1 0〜3 5 (X 1 0— 6Zで)、 最大の湿度膨張率 (ah) が 0〜8. 0 (X 1 0— 6Z%RH)、 最大と最小の温度膨張率 (a t) の差が 0〜 6. 0 (X 1 0— 6Ζΐ:)、 そして最大と最小の湿度膨張率 (a h) の差が 0〜4. 0 (X 1 0"V%RH) であることが開示されている。
その実施例には、 最大の温度膨張率 (a t) が 1 9 (X 1 0— 6Zt:)、 最小の 温度膨張率 (a t) が 1 6. 5 (X 1 0- ), 最大の湿度膨張率 (ah) が 6 (X 1 0"V RH), そして最小の湿度膨張率 (ah) が 4. 5 (X 1 0一6 /%RH) のフィルムが開示されている。
しかしながら、 近年の磁気記録媒体などにおける記録密度向上への要求は厳し く、 それに伴いベースフィルムに求められる寸法安定性も、 ポリエチレンテレフ 夕レートはもちろん、 ポリエチレン一 2, 6—ナフタレンジカルボキシレートや 特許文献 3に提示されたようなフィルムでも達成できない状況となってきていた。
(特許文献 1) 特開昭 60— 1 3 5428号公報
(特許文献 2) 特開昭 60— 22 1420号公報
(特許文献 3) 特開昭 6 1— 145724号公報
(特許文献 4) 特開平 6— 145323号公報 発明の開示
本発明の目的は、 寸法安定性に優れたフィルムとなるポリエステルを提供する ことにある。
また本発明の目的は、 寸法安定性、 特に温度や湿度などの環境変化に対する寸 法安定性に優れたポリエステルフィルムを提供することにある。
ポリエステルフィルムにおいて、 温度膨張係数 (a t) と湿度膨張係数 (a h) とは、 ともにヤング率と非常に密接な関係にある。 一般的にヤング率が高い ほど a tおよび ahは低くなる。 しかしながら、 ヤング率はいくらでも高められ るというわけではなく、 製膜性や直交する方向のヤング率確保の点から自ずと限 界がある。
6, 6 ' — (アルキレンジォキシ) ジ— 2—ナフトェ酸 (以下、 ANAと略す ことがある) を主たるジカルポン酸成分とするポリエステルからなるフィルムは、 ヤング率に関係なく低い ahを示すが、 ひ t力 S非常に高いという欠点がある。 特 許文献 3の実施例 1に開示されたフィルムは、 a tは最大が 1 9 (X 1 0一6 /° ) で最小が 1 6. 5 (X 1 0— 6 で) であり、 ヤング率に関係なく非常に 高い a tを示す。
そこで本発明者は、 ひ tおよび ahが低いフィルムを提供するために、 鋭意検 討した。 その結果、 テレフタル酸、 ナフ夕レンジカルボン酸などをジカルボン酸 成分とするポリエステルに、 所定量の AN Aを共重合させたポリエステルは、 製 膜性に優れ、 該共重合ポリエステルから外観および機械的強度に優れたフィルム が得られることを見出した。 また、 得られたフィルムは、 ANAの特性である低 い ah値を有し、 かつ a tも低い値を示すことを見出した。 本発明はこれらの知 見に基づく。
即ち、 本発明は、 ジカルボン酸成分およびジオール成分を含有するポリエステ ルであり、
(i) ジカルボン酸成分が 5モル%以上 50モル%未満の下記式 (A) および 50 モル%を超え 9 5モル%以下の下記式 (B) で表される繰り返し単位を含有し、
Figure imgf000005_0001
式 (A) 中、 RAは炭素数 2〜1 0のアルキレン基である、
0 0
C— R。一 C— (B)
式 (B) 中、 RBはフエ二レン基またはナフ夕レンジィル基である、 (ii>ジオール成分が 90〜1 00モル%の下記式 (C) で表される繰り返し単位 を含有する、
— O— Rc— 0— (C)
式 (C) 中、 Rcは炭素数 2〜1 0のアルキレン基である、
ポリエステルである。 また本発明は、 前記ポリエステルを含有するフィルムを包含する。 さらに本発 明は、 前記ポリエステルおよび平均粒径が 0 . 0 5〜 5 mの粒子を含有する組 成物を包含する。 図面の簡単な説明
図 1は、 実施例 3 3の共重合ポリエチレン一 2, 6—ナフ夕レートの X R D測 定チヤ一トである。
図 2は、 実施例 3 3の共重合ポリエチレン一 2, 6—ナフ夕レートの D S C測 定チャートである。
図 3は、 実施例 3 4の共重合ポリエチレン一 2 , 6—ナフ夕レートの D S C測 定チャートである。
図 4は、 実施例 3 5の共重合ポリエチレン一 2, 6—ナフ夕レートの D S C測 定チヤー卜である。 発明を実施するための最良の形態
[ポリエステル].
本発明のポリエステルは、 ジカルボン酸成分およびジオール成分を含有する。 〔ジカルボン酸成分〕
ジカルボン酸成分は、 5モル%以上 5 0モル%未満の下記式 (A) および 5 0 モ J %を超え 9 5モル%以下の下記式 (B) で表される繰り返し単位を含有する。 (式 (A) )
Figure imgf000006_0001
式 (A) 中、 RAは炭素数 2〜1 0のアルキレン基である。 アルキレン基とし てエチレン基、 プロピレン基、 イソプロピレン基、 トリメチレン基、 テトラメチ レン基、 へキサメチレン基、 ォクタメチレン基等が挙げられる。
式 (A) で表される繰り返し単位の含有量の上限は、 好ましくは 4 5モル%、 より好ましくは 40モル%、 さらに好ましくは 35モル%、 特に好ましくは 30 モル%である。 下限は、 好ましくは 5モル%、 より好ましくは 7モル%、 さらに 好ましくは 10モル%、 特に好ましくは 15モル%である。 従って、 式 (A) で 表される繰り返し単位の含有量は、 好ましくは 5〜45モル%、 より好ましくは 7〜40モル%、 さらに好ましくは 10〜35モル%、 特に好ましくは 15〜3 0モル%である。
式 (A) で表される繰り返し単位は、 好ましくは 6, 6' 一 (エチレンジォキ シ) ジ一 2—ナフトェ酸、 6, 6' — (トリメチレンジォキシ) ジー 2—ナフト ェ酸および 6, 6' - (プチレンジォキシ) ジー 2—ナフトェ酸由来の単位が好 ましい。 これらの中でも式 (A) における RAの炭素数が偶数のものが好ましぐ 特に 6, 6' — (エチレンジォキシ) ジ— 2—ナフトェ酸由来の単位が好ましい。 本発明のポリエステルは、 ジカルボン酸成分が 5モル%以上 50モル%未満の 式 (A) で示される単位を含有することを特徴とする。 式 (A) で示される単位 の割合が下限未満では共重合による湿度膨張係数 (ah) の低減効果などが発現 し難い。 また上限よりも少なくすることで温度膨張係数 (a t) を小さくしゃす いという利点もある。 式 (A) で示される単位による湿度膨張係数 (ah) の低 減効果は、 少量で非常に効率的に発現される。 式 (A) で表される繰り返し単位 を含有するポリエステルを用いることで、 温度膨張係数 (a t) と湿度膨張係数 (ah) の両方をともに低い成形品、 例えばフィルムなどを製造することができ る。
(式 (B))
Figure imgf000007_0001
式 (B) 中、 RBはフエ二レン基またはナフ夕レンジィル基である。 式 (B) で表される繰り返し単位として、 テレフタル酸、 イソフ夕ル酸、 2, 6—ナフ夕 レンジカルボン酸、 2, 7—ナフ夕レンジカルボン酸に由来する単位、 またはこ れらの組み合わせが挙げられる。
〔ジオール成分〕 ぱ (C ) )
ジオール成分は、 9 0〜1 0 0モル%の下記式 (C) で表される繰り返し単位 を含有する。 式 (C ) で表される繰り返し単位の含有量は、 好ましくは 9 5〜1 0 0モル%、 より好ましくは 9 8〜: 1 0 0モル%である。
—— 0一 RC— 0— (C)
式 (C ) 中、 R cは炭素数 2〜1 0のアルキレン基である。 R cのアルキレン 基として、 エチレン基、 プロピレン基、 イソプロピレン基、 トリメチレン基、 テ トラメチレン基、 へキサメチレン基、 ォクタメチレン基等が挙げられる。 これら の中でも式 (C) で表されるジオール成分として、 エチレングリコール、 トリメ チレングリコール、 テトラメチレングリコール、 シクロへキサンジメタノール等 に由来する単位が好ましく挙げられる。 ジオール成分のエチレングリコール由来 の単位の含有量は、 好ましくは 9 0モル%以上、 より好ましくは 9 0〜 1 0 0モ ル%、 さらに好ましくは 9 5〜1 0 0モル%、 最も好ましくは 9 8〜 1 0 0モ ル%である。 .
ジオール成分は、 式 (C) で表されるジオール成分以外の他のジオール成分を 含有していてもよい。 他のジオール成分の含有量は、 好ましくは 0〜1 0モル%、 より好ましくは 0〜5モル%、 さらに好ましくは 0〜2モル%である。 他のジォ ール成分として、 式 (C ) のジオール成分で例示されたものが挙げられる。 例え ば、 式 (C) のジオール成分がエチレングリコール由来の単位のとき、 他のジォ —ル成分はエチレンダリコール由来の単位以外の単位である。
式 (A) で表される繰り返し単位と、 式 (C) で表される繰り返し単位で構成 されるエステル単位 (一 (A) — (C) -) の含有量は、 全繰り返し単位の好ま しくは 5モル%以上 5 0モル%未満、 より好ましくは 5〜4 5モル%、 さらに好 ましくは 1 0〜4 0モル%である。
他のエステル単位として、 ポリエチレンテレフ夕レート、 ポリトリメチレンテ レフ夕レート、 ポリブチレンテレフ夕レートなどのポリアルキレンテレフ夕レー 卜単位、 ポリエチレン一 2, 6—ナフ夕レンジカルボキシレート、 ポリトリメチ レン一 2, 6—ナフ夕レンジカルボキシレート、 ポリブチレンー2 , 6 _ナフ夕 レンジカルボキシレートなどのポリアルキレン一 2, 6—ナフ夕レンジカルボキ シレー卜単位が好ましく挙げられる。 これらの中でも機械的特性などの点からェ チレンテレフ夕レート単位やエチレン一 2, 6一ナフ夕レンジカルボキシレー卜 単位が好ましく、 特にエチレン一 2, 6—ナフ夕レンジカルポキシレート単位が 好ましい。
従って、 式 (A) で表される繰り返し単位が下記式 (A— 1)
Figure imgf000009_0001
であるポリエステルが好ましい。
ジカルボン酸成分が 10〜40モル%の式 (A) および 90〜60モル%の下 記式 (B - 1)
Figure imgf000009_0002
で表される繰り返し単位を含有するポリエステルが好ましい。
またジカルボン酸成分が 5〜45モル%の式 (A) および 95〜55モル%の 下記式 (B— 2)
Figure imgf000009_0003
で表される繰り返し単位を含有するポリエステルが好ましい。
本発明のポリエステルは、 P—クロ口フエノール 1, 1, 2, 2—テトラク ロロェ夕ン (重量比 40Z60) の混合溶媒を用いて 35 で測定した固有粘度 が 0. 4〜3、 好ましくは 0. 4〜1. 5 d lZg、 さらに好ましくは 0. 5〜 1. 2 d 1ノ gである。
本発明のポリエステルの融点は、 200〜260での範囲、 好ましくは 205
〜255での範囲、 より好ましくは 210〜 250 の範囲である。 融点は D S Cで測定する。 融点が上限を越えると、 溶融押出して成形する際に、 流動性が劣 り、 吐出などが不均一化しやすくなる。 一方、 下限未満になると、 製膜性は優れ るものの、 ポリエステルの持つ機械的特性などが損なわれやすくなる。
一般的に共重合体は単独重合体に比べ融点が低く、 機械的強度が低下する傾向 にある。 しかし、 本発明のポリエステルは、 式 (A) の単位および式 (B) の単 位を含有する共重合体であり、 式 (A) の単位を有する単独重合体に比べ、 融点 が低いが機械的強度は同じ程度であるという優れた特性を有する。
本発明のポリエステルの DSCで測定したガラス転移温度 (以下、 Tgと称す ることがある。) は、 好ましくは 80〜 120 、 より好ましくは 82〜1 1 8で、 さらに好ましくは 85〜118での範囲にある。 Tgがこの範囲にあると、 耐熱性および寸法安定性に優れたフィルムが得られる。 融点やガラス転移温度は、 共重合成分の種類と共重合量、 そして副生物であるジアルキレングリコールの制 御などによって調整できる。
本発明のポリエステルは、 下記式 (E) で表される繰り返し単位の含有量が、 全ジオール成分のモル数を基準として、 好ましくは 5モル%以下、 より好ましく は 3モル%以下、 さらに好ましくは 2モル%以下である。
—— 0— CH2CH2—— 0—— CH2CH2—— O—— (E)
式 (E) で表される繰り返し単位がポリマー骨格に含まれると、 主鎖の剛直性 が失われ、 機械的特性、 耐熱性低下を引き起こす原因になる。 式 (E) で表され る繰り返し単位は、 グリコール成分同士の反応、 またはポリマー末端のヒドロキ シ末端同士の反応により生成する。 式 (E) で表される繰り返し単位の含有量は 核磁気共鳴装置によって測定することができる。
本発明のポリエステルの末端カルボキシ基濃度は、 好ましくは 200 e qZt on以下、 より好ましくは 0. :!〜 150 eqZt on、 さらに好ましくは 0. 1〜: I 00 e Q/ t o ηである。
本発明のポリエステルは、 アルカリ金属含有量が 300 p pm以下であること が好ましい。
本発明のポリエステルは、 本発明の効果を阻害しない範囲で、 それ自体公知の 他の共重合成分を共重合しても良いし、 また、 ポリエーテルイミドゃ液晶性樹脂 などをブレンドしてもよい。
[ポリエステルの製造方法]
本発明のポリエステルは、 以下の方法で製造することができる。 例えば、 6, 6 ' - (アルキレンジォキシ) ジー 2—ナフトェ酸 (以下、 ANAと略すことが ある) およびナフ夕レンジカルボン酸、 テレフタル酸もしくはそのエステル形成 性誘導体を含有するジカルポン酸成分と、 エチレングリコール等のジオール成分 とを反応させポリエステル前駆体を製造する。 そして、 得られたポリエステル前 駆体を重合触媒の存在下で重合して製造できる。 その後、 必要に応じて固相重合 などを施しても良い。
本発明の芳香族ポリエステルは、 ( i ) ジカルボン酸成分とジオール成分とを 反応させポリエステル前駆体を得る第 1工程、 および ( i i ) ポリエステル前駆 体を重合触媒の存在下で重合する第 2工程により製造することができる。
〔第 1工程〕
第 1工程は、 ジカルボン酸成分とジオール成分とを反応させポリエステル前駆 体を得る工程である。
(ジカルボン酸成分)
ジカルボン酸成分は、 下記式 (a )
Figure imgf000011_0001
で表される化合物を含有する。
式中、 RAは炭素数 2〜 1 0のアルキレン基である。 アルキレン基としてェチ レン基、 イソプロピレン基、 トリメチレン基、 テトラメチレン基、 へキサメチレ ン基、 ォクタメチレン基等が挙げられる。
ジカルボン酸成分中の式 (a ) で表される化合物の含有量は、 5モル%以上 5 0モル%未満、 好ましくは 5〜4 5モル%、 より好ましくは 1 0〜4 0モル%で ある。 式 (a) で表される化合物は、 その製造時にアルカリ金属を用いるため、 不純 物としてアルカリ金属を含有する。 芳香族ポリエステルにアルカリ金属が含有す るとその色相が悪化するので、 原料の式 (a) で表される化合物のアルカリ金属 量を低減させることが好ましい。
アルカリ金属量の低減は以下の方法により行なうことができる。 例えば、 式 (a) で表される化合物を、 アミン塩またはアンモニゥム塩とした後、 その塩を 酸析または加熱により分解してアルカリ金属量を低減させることができる。 また 式 (a) で表される化合物をエタノールなどの水溶性有機溶媒の存在下に酸祈す ることによりアルカリ金属量を低減させることができる。 また式 (a) で表され る化合物を、 水に懸濁し 80〜300でで反応させた後、 酸析する操作を繰り返 すことによりアル力リ金属量を低減させることができる。
原料の式 (a) で表される化合物のアルカリ金属含有量は、 好ましくは 5〜 2 00 ppm、 より好ましくは 5〜: I 00 ρ pm、 さらに好ましくは 5〜 50 p p mである。
ジカルボン酸成分は、 下記式 (b) で表される化合物を含有する。 式 (b) で 表される化合物の含有量は 50モル%を超え 95モル%以下である。
0 0
HO— C— R。一 C— OH (b)
式 (b) 中、 RBは、 フエ二レン基またはナフ夕レンジィル基である。 式 (b) で表される化合物として、 テレフタル酸、 イソフ夕ル酸、 2, 6—ナフ夕 レンジカルボン酸、 2, 7—ナフ夕レンジカルボン酸、 これらの混合物等が挙げ られる。
(ジオール成分)
ジオール成分は、 下記式 (c) で表される化合物を含有する。
H— 0—— Rc— 0—— H ( c )
式 (c) で表される化合物の含有量は、 90〜100モル%、 好ましくは 95 〜100モル%、 より好ましくは 98〜: 100モル%である。
式 (c) 中、 Rcは炭素数 2〜10のアルキレン基である。 Rcのアルキレン 基として、 エチレン基、 プロピレン基、 イソプロピレン基、 トリメチレン基、 テ 卜ラメチレン基、 へキサメチレン基、 ォクタメチレン基等が挙げられる。 式
( C ) で表される繰り返し単位としては、 エチレングリコール、 トリメチレング リコール、 テトラメチレングリコール、 シクロへキサンジメタノール等に由来す る単位が挙げられる。 '
ジオール成分のエチレングリコール由来の単位の含有量は、 好ましくは 9 0モ ル%以上、 より好ましくは 9 0〜1 0 0モル%、 さらに好ましくは 9 5〜1 0 0 モル%である。
ジオール成分は、 式 (c ) で表される化合物以外の他のジオール成分を含有し ていてもよい。 他のジオール成分の含有量は、 好ましくは 0〜1 0モル%、 より 好ましくは 0〜5モル%、 さらに好ましくは 0〜 2モル%である。 他のジオール 成分として、 式 (C ) のジオール成分で例示されたものが挙げられる。 例えば、 式 (C) のジオール成分がエチレングリコールのとき、 他のジオール成分はェチ レンダリコール以外のジオール成分である。
芳香族ポリエステルを製造する際には、 ジカルボン酸成分およびグリコール成 分の外に、 さらに他の共重合成分を、 本発明の目的 ·効果を損わない範囲で使用 することができる。 他の共重合成分としては、 例えば、 グリコール酸、 p—ヒド ロキシ安息香酸、 p— jS—ヒドロキシエトキシ安息香酸などのヒドロキシカルボ ン酸や、 アルコキシカルボン酸、 ステアリルアルコール、 ベンジルアルコール、 ステアリン酸、 ベヘン酸、 安息香酸、 t一ブチル安息香酸、 ベンゾィル安息香酸 などの単官能成分、 トリ力ルバリル酸、 トリメリット酸、 トリメシン酸、 ピロメ リット酸、 ナフ夕レンテ卜ラカルボン酸、 没食子酸、 卜リメチロールェタン、 ト リメチロールプロパン、 グリセロール、 ペン夕エリスリ I ^一ル、 シュガーエステ ルなどの三官能以上の多官能成分などが挙げられる。
第 1工程は、 芳香族ジカルボン酸をエステル化しポリエステル前駆体を得るェ 程である。 反応は、 グリコール成分の沸点以上で行うことが好ましい。 従って反 応温度は、 好ましくは 1 5 0〜2 5 0で、 より好ましくは 1 9 0〜2 5 O :、 さ らに好ましくは 1 8 0〜2 3 0 である。 1 5 0でよりも低いとエステル化反応 が十分に進行せず、 2 5 0でよりも高いと副反応物であるジエチレングリコール などのグリコールが生成し好ましくない。
反応は常圧下で行つても良いが、 加圧下で反応を行うとよりエステル化反応が 進行しやすい。 よって高温高圧下でエステル化反応を行うことが好ましい。 反応 圧力は、 絶対圧力で、'好ましくは 1 0〜 2 0 0 k P a、 より好ましくは 2 0〜 1 5 0 k P aである。
反応時間は、 好ましくは 1 0分〜 1 0時間、 より好ましくは 3 0分〜 7時間で ある。 このエステル化反応によってポリエステル前駆体としての反応物が得られ る。
エステル化反応の終了の時点は、 エステル化率が好ましくは 8 5 %以上、 より 好ましくは 9 0 %以上になったときである。 エステル化率が 8 5 %よりも低い段 階でエステル化反応を停止して次の重縮合反応に進行すると所望の重合度、 末端 カルボキシ濃度のポリエステルを得ることができない場合がある。
エステル化率 (%) とは、 下記式によって算出される値である。 エステル化率 は核磁気共鳴分光法によつて定量することができる。 τマ - " ル 。ハ 一エステル化されたカルボキシ基の数 , ハ ハ
エスアル化率 ) —エステル化前の全力ルポキシ基の数 x l ° ° ジオール成分の量は、 ジカルボン酸成分 1モルに対し、 好ましくは 1 . 1〜 6 モル、 より好ましくは 2 〜 5モル、 さらに好ましくは 3 〜 5モルである。 式 ( a ) で表される化合物は、 エチレングリコールへの溶解性が低く、 溶解性を考 慮してダリコール成分の量を調節すること力好ましい。
触媒は、 公知のエステル化もしくはエステル交換反応触媒を用いてもよい。 例 えばアルカリ金属化合物、 アルカリ土類金属化合物、 チタン化合物などが挙げら れる。 好ましい触媒の例としてはテトラー n—プチルチ夕ネー ト、 テ卜ライソプ 口ピルチタネ ト、 それらの加水分解等の有機チタン化合物が挙げられる。 第 1工程では、 ポリエステル前駆体が得られる。 ポリエステル前駆体として、 下記式 (a— 1 ) で表される化合物が挙げられる。 式中、 RAは式 ( a ) と同じ
Figure imgf000015_0001
ジカルボン酸として、 式 (b ) で表される化合物を用い、 ジオールとしてェチ レングリコールを用いた場合には、 ポリエステル前駆体中には、 下記式 (b—
1 ) で表される化合物が含まれる。 式中、 RBは、 式 (b ) と同じである。
0 0
HOH2CH2CO— C— R。一 C— OCH2CH2OH ( b— 1 ) 第 1工程では、 式 (a ) で表される 6 , 6 ' - (アルキレンジォキシ) ジ— 2 一ナフトェ酸を含有するジカルボン酸成分をジオール成分と反応させ、 ポリエス テル前駆体とすることにより、 反応副生物である例えば式 (E ) で表されるジェ チレングリコール成分の含有量の少なく、 末端カルボキシ基の含有量の少ない芳 香族ポリエステルを得ることができる。 またアルカリ金属含有量の少ない芳香族 ポリエステルを得ることができる。 その結果、 耐熱性、 色相に優れた芳香族ポリ エステルが得られる。
特許文献 1〜4に示されるような 6 , 6 ' 一 (アルキレンジォキシ) ジ一 2— ナフトェ酸のエステル (ANA—エステル) とアルキレングリコールとをエステ ル交換反応させる方法ではジアルキレングリコール成分などが大量に副生物とし て発生しやすい。 そのため、 副生物による物性の低下を抑制し、 前述のようなェ チレングリコ一ル量を上記範囲とするには、 A N Aとジオールとをエステル化反 応させる方法を採用することが好ましい。 AN Aをそのエステル化合物を経由せ ずジオールと直接反応させることにより、 反応副生物であるジエチレングリコー ルなどの副生物の含有量を低減するができる。
本発明の態様として、 第 1工程では、 主として式 (a ) で表される化合物をェ ステル化させ、 得られるポリエステル前駆体に式 (b— 1 ) で表される化合物を 添加することもできる。
〔第 2工程〕 第 2工程は、 第 1工程で得られたポリエステル前駆体を重合触媒の存在下で重 縮合する工程である。
重縮合触媒としては、 少なくとも一種の金属元素を含む金属化合物が挙げられ る。 なお、 重縮合触媒はエステル化反応においても使用することができる。 金属 元素としては、 チタン、 ゲルマニウム、 アンチモン、 アルミニウム、 ニッケル、 亜鉛、 スズ、 コバルト、 ロジウム、 イリジウム、 ジルコニウム、 ハフニウム、 リ チウム、 カルシウム、 マグネシウムなどが挙げられる。 より好ましい金属として は、 チタン、 ゲルマニウム、 アンチモン、 アルミニウム、 スズなどであり、 中で も、 チタン化合物はエステル化反応と重縮合反応との双方の反応で、 高い活性を 発揮するので特に好ましい。
重縮合触媒として好適なチタン化合物の具体例としては、 例えば、 テトラー n —プロピルチタネー卜、 テトライソプロピルチ夕ネ一卜、 テトラ— n—プチルチ 夕ネート、 テトライソブチルチタネート、 テトラー t e r t —ブチルチタネート、 テトラシクロへキシルチタネート、 テトラフエ二ルチ夕ネート、 テトラべンジル チタネート、 蓚酸チタン酸リチウム、 蓚酸チタン酸カリウム、 蓚酸チタン酸アン モニゥム、 酸化チタン、 チタンのオルトエステルまたは縮合オルトエステル、 チ タンのオルトエステルまたは縮合オルトエステルとヒドロキシカルボン酸からな る反応生成物、 チタンのオルトエステルまたは縮合オルトエステルとヒドロキシ カルボン酸とリン化合物からなる反応生成物、 チタンのオルトエステルまたは縮 合オル卜エステルと少なくとも 2個のヒドロキシル基を有する多価アルコール、 2—ヒドロキシカルボン酸、 または塩基からなる反応生成物などが挙げられる。 アンチモン化合物の例としては、 例えば三酸化アンチモン、 五酸化アンチモン、 酢酸アンチモン、 アンチモングリコキサイドなどが挙げられる。 ゲルマニウム化 合物の例としては、 例えば二酸化ゲルマニウム、 四酸化ゲルマニウム、 水酸化ゲ ルマニウム、 蓚酸ゲルマニウム、 ゲルマニウムテトラエトキシド、 ゲルマニウム テトラー n—ブトキシド等が挙げられる。
アルミニウム化合物としては、 例えば、 ギ酸アルミニウム、 酢酸アルミニウム、 塩基性酢酸アルミニウム、 プロピオン酸アルミニウム、 蓚酸アルミニウム、 ァク リル酸アルミニウム、 ラウリン酸アルミニウム、 ステアリン酸アルミニウム、 安 息香酸アルミニウム、 トリクロ口酢酸アルミニウム、 乳酸アルミニウム、 酒石酸 アルミニウム、 クェン酸アルミニウム、 サリチル酸アルミニウムなどのカルボン 酸塩、 塩化アルミニウム、 水酸化アルミニウム、 水酸化塩化アルミニウム、 炭酸 アルミニウム、 リン酸アルミニウム、 ホスホン酸アルミニウムなどの無機酸塩、 アルミニウムメトキサイド、 アルミニウムェトキサイド、 アルミニウム—n—プ ロポキサイド、 アルミニウムイソプロポキサイド、 アルミニウム一 n—ブトキサ ィド、 アルミニウム一 t e r t—ブトキサイドなどアルミニウムアルコキサイド、 アルミニウムァセチルァセトネート、 アルミニウムァセチルアセテート、 アルミ ニゥムェチルァセトアセテート、 アルミニウムェチルァセトアセテートジイソプ ロポキサイドなどのアルミニウムキレート化合物、 トリメチルアルミニウム、 ト リエチルアルミニウムなどの有機アルミニウム化合物またはこれらの部分加水分 解物、 酸化アルミニウムなどが挙げられる。
これらのアルムニゥム化合物のうち、 カルボン酸塩、 無機酸塩またはキレート 化合物が好ましく、 これらの中でもさらに塩基性酢酸アルミニウム、 乳酸アルミ 二ゥム、 塩化アルミニウム、 水酸化アルミニウム、 水酸化塩化アルミニウムまた はアルミニウムァセチルァセトネー卜力特に好ましレ^ 塩基性酢酸アルミニウム はホウ酸等の添加剤で安定化されたものを用いてもよい。
これらの触媒は単独でも、 あるいは併用してもよい。 かかる触媒量はポリエス テルの繰り返し単位のモル数に対して、 好ましくは 0 . 0 0 1〜0. 5モル%、 さらに好ましくは 0 . 0 0 5〜0 . 2モル%である。
好ましい重縮合温度は得られるポリマーの融点以上でかつ 2 8 0で以下、 より 好ましくは融点より 5で以上高い温度から融点より 3 0 高い温度の範囲である。 重縮合反応では通常 3 0 P a以下の減圧下で行うのが好ましい。 3 0 P aより高 いと重縮合反応に要する時間が長くなり且つ重合度の高いポリエステルを得るこ とが困難になる。
〔固相重合〕
得られたポリエステルをさらに固相重合することにより、 高重合度の芳香族ポ リエステルを得ることができる。 本発明の式 (A) で表される繰り返し単位を含 有するポリエステルは、 ポリエチレンテレフ夕レート、 ポリエチレンナフ夕レー ト、 ポリブチレンテレフ夕レート、 ポリトリエチレンテレフ夕レート等に比べ、 溶融粘度が高い。 溶融粘度を低下させるため重合温度を上昇させるとポリマー鎖 が熱劣化を起こしやすい。 また、 溶融粘度が高いと反応で生成する副生成物の拡 散速度が遅くなるため重合度の上昇も長時間要する。 このように溶融重合だけで は重合度をさらに上昇させることが不利な場合がある。 よって、 固相重合により 所望の重合度まで上昇させることが好ましい。
溶融重合法によって得たプレボリマ一を、 粉粒化またはチップ化し、 融点より 低い温度に加熱して固相重合すれば、 効率的に所望の重合度まで上昇させること ができる。 粉の発生を極力抑制するという点ではチップ化することが好ましい。 固相重合は、 減圧下およびまたは窒素、 二酸化炭素、 アルゴン等の不活性ガス気 流下で行うことが好ましい。
プレボリマーの固有粘度は、 好ましくは 0. 4〜1. 5d lZg、 より好まし くは 0. 5〜1. 3d lZg、 さらに好ましくは 0. 6〜1. O d lZgである。 0. 4d lZg未満のプレボリマーではチップ同士の接触、 または衝撃により粉 が発生し好ましくない。 また長時間にわたって固相重合する必要がある。 一方、 固有粘度が 1. 5d lZgを超えると、 溶融重合時に特殊な反応装置を必要とし、 大きな攪拌エネルギーが必要となり好ましくない。
なお必要に応じて固相重縮合に先立って、 不活性ガス雰囲気下、 水蒸気ガス雰 囲気下または水蒸気含有不活性ガス雰囲気下で、 プレボリマー粒子を加熱するこ とにより、 プレボリマー粒子に結晶化処理を施すのが好ましい。 この結晶化処理 に引続き、 さらに高温で熱処理しておくことにより、 固相重合をより高温で行う ことができる。 固相重合は得られるポリエステルの固有粘度が 0. 7〜3 d lZ gとなるように行うのが好ましい。 固有粘度が 0. 7より小さいと固相重合を行 う意義が薄れる。 逆に固有粘度が大きすぎると溶融粘度が高くなりすぎ成形性が 低下する。 よって好ましくは固相重縮合は、 得られるポリエステルの固有粘度が 1. 0〜2. 531/ 特に1. 3〜1. 8 d 1 /gとなるように行うのが好 ましい。
[ポリエステル (N) ]
本発明のポリエステルの内、 以下のポリエステル (N) が好ましい。 ポリエス テル (N) は、 延伸性、 寸法安定性に優れる。 本発明は、 寸法安定性に優れるが 融点および結晶性が高く流動性に乏しい式 (A) で表される単位と、 非液晶性の 式 (B— 2 ) で表される単位とを組み合わせることにより、 寸法安定性および成 形性に優れたポリエステルを見出したことを特徴とする。
ポリエステル (N) は、 ジカルボン酸成分およびジオール成分を含有するポリ エステルであり、
(i) ジカルボン酸成分が、 5モル%以上 5 0モル%未満の下記式 (A) および 5 0モル%を超え 9 5モル%以下の下記式 (B— 2 ) で表される繰り返し単位を含 有し、
Figure imgf000019_0001
式 (A) 中、 RAは前述の通りである。
Figure imgf000019_0002
(i i) ジオール成分の 9 0モル%以上がエチレングリコール残基であり、
(i i i) P—クロ口フエノール 1, 1, 2 , 2—テトラクロ口ェ夕ン (重量比 4 0 / 6 0 ) の混合溶媒を用いて 3 5でで測定した固有粘度が 0 . 4〜3である。 ジカルボン酸成分中の式 (A) で表される繰り返し単位の割合は、 好ましくは 4 5モル%以下、 より好ましくは 4 0モル%以下、 さらに好ましくは 3 5モル% 以下である。 ジカルボン酸成分中の式 (B— 2 ) で表される繰り返し単位の割合 は、 好ましくは 5 5モル%以上、 より好ましくは 6 0モル%以上、 さらに好まし くは 6 5モル%以上である。
ポリエステル (N) は、 ジカルボン酸成分として、 本発明の効果を阻害しない 範囲で、 他の芳香族ジカルボン酸残基、 例えばテレフタル酸残基、 フ夕ル酸残基、 イソフ夕ル酸残基、 1, 4一フエ二レンジォキシジカルボン酸残基、 1 , 3—フ ェニレンジォキシジ酢酸残基、 4, 4, —ジフエニルジカルボン酸残基、 4, 4, —ジフエニルエーテルジカルボン酸残基、 4, 4, ージフエ二ルケトンジカ ルボン酸残基、 4, 4 ' —ジフエノキシェ夕ンジカルボン酸残基、 4, 4 ' —ジ フエニルスルホンジカルボン酸残基または 2, 7—ナフ夕レンジカルボン酸残基 などを舍有していてもよい。
好ましいエチレングリコール残基の割合は 9 0〜1 0 0モル%、 さらに好まし くは 9 5〜1 0 0モル%の範囲である。 エチレングリコール以外のグリコール成 分として、 イソプロピレングリコール残基、 トリメチレングリコール残基、 テト ラメチレングリコール残基、 へキサメチレングリコール残基、 ォクタメチレング リコール残基、 ジエチレングリコール残基などを含有していてもよい。
ポリエステル (N) は、 D S Cで測定した融点が、 好ましくは 1 9 5〜2 6 0 、 より好ましくは 2 0 0〜2 6 0 の範囲にあることが製膜性の点から好ま しい。 融点が上記上限を越えると、 溶融押し出しして成形する際に、 流動性が劣 り、 吐出などが不均一化しやすくなる。 一方、 上記下限未満になると、 製膜性は 優れるものの、 ポリエチレン一 2, 6—ナフ夕レンジカルボキシレートの有する 機械的特性などが損なわれやすくなる。
ポリエステル (N) は、 3 4 0 で一旦溶融させその後氷浴で急冷することに よって得た非晶体についての X R D測定において 2 0の 5〜1 0 ° の範囲にピ 一クカ^ 察されないことが好ましい。
ポリエステル (N) は、 D S C測定において昇温速度 2 0 / m i nで 3 2 0でまで昇温した後、 1 0で m i nで冷却したときの吸熱ピークが 1 2 0 t:〜 2 2 の範囲に 0〜1点観測されることが好ましい。 すなわち吸熱ピークが観 察されないか、 1点だけ吸熱ピークが観察されることが好ましい。
ポリエステル (N) は、 D S C測定におけるガラス転移温度 (T g ) が、 好ま しくは 1 0 5〜: I 2 0で、 より好ましくは 1 1 0〜1 2 0 の範囲にある。 T g がこの範囲にあると、 耐熱性、 寸法安定性が良好となる。 ポリエチレン一 2 , 6 一ナフ夕レンジカルボキシレートの単独重合体の T gは 1 1 8で程度であり、 共 重合成分として式 (A) で表される単位を導入することにより、 5 0モル%未満 まで共重合したとしても、 1 0 5で以上の T gを有する。
ポリエステル (N) は、 反応副生物であるジアルキレングリコール成分が 1 0 m o 1 %未満であることが好ましい。 ジアルキレングリコールがポリマー中に残 存したり、 ジアルキレングリコールのようなエーテル成分がポリマー骨格に含ま れると、 主鎖の剛直性が失われ、 機械的特性、 耐熱性低下を引き起こす原因にな る。 このようなジアルキレングリコール成分はグリコール成分同士の反応、 また はポリマ一末端のヒドロキシ末端同士の反応により生成することが知られており、 ダリコール成分がエチレンダリコールの場合にはジエチレンダリコールが生成す る。 よってこのようなジアルキレングリコールは 1 O m o 1 %未満に抑えること が望ましい。 好ましくは 7 m o 1 %以下である。 ジアルキレングリコールの含有 量は核磁気共鳴装置によって測定することができる。
ポリエステル (N) は、 NMRによって測定された末端カルボキシル基濃度が、 好ましくは 2 0 0当量 Zトン以下、 より好ましくは 1 0 0当量 Zトン以下である。 カルポキシ末端濃度の増加は、 吸水率の増加とカルボキシ基による酸触媒作用に より加水分解性の増加を引き起す。 末端カルボキシ濃度の低いポリエステル (N) は、 例えば 6, 6 ' 一 (エチレンジォキシ) ジー 2—ナフトェ酸を、 その エステル化合物を経由せずグリコールと直接反応させることにより得ることがで さる。
[フィルム]
本発明のフィルムは、 前述のポリエステルを含有する。 本発明のフィルムは、 前述のポリエステルを溶融製膜して、 シート状に押出すことで得られる。 そして、 前述のポリエステルは、 溶融時の流動性、 その後の結晶性、 製膜性に優れ、 厚み 斑の均一なフィルムとなる。 さらに本発明のフィルムは、 6、 6 ' — (アルキレ ンジォキシ) ジ一 2—ナフトェ酸以外の芳香族ジカルボン酸を含有する芳香族ポ リエステルの優れた機械的特性を有する。
本発明において、 フィルムの面方向とはフィルムの厚みに直交する面の方向で ある。 フィルムの製膜方向 (縦方向) を Machine Direction (MD) という。 フ イルムの幅方向 (横方向) とはフィルムの製膜方向 (MD) に直交する方向であ り、 Transverse Direction (TD) という。
(温度膨張係数: a t )
本発明のフィルムは、 フィルム面方向における少なくとも一方向の温度膨張係 数 (a t) が、 好ましくは 14X 10— 6Z :以下、 より好ましくは 10 X 10一 6 で以下、 さらに好ましくは 7X 10一6 以下、 特に好ましくは 5 X 10一6 以下の範囲である。 温度膨張係数 (a t) がこの範囲にあると、 本発明のフ イルムを例えば磁気記録テープに用いたとき、 雰囲気の温湿度変化による寸法変 化に対して優れた寸法安定性を発現できる。
本発明のフィルムの面方向における少なくとも一方向の温度膨張係数 (ひ t) の下限は、 好ましくは— 15 X 1 0—6 で、 より好ましくは一 10 X 1 0— 6 Z :、 さらに好ましくは一 7 X 10— 6Zt:、 特に好ましくは一 5 X 10— 6 で である。
本発明のフィルムは、 フィルム面方向における幅方向の温度膨張係数 (a t) が、 好ましくは 14X 10— 6/で以下、 より好ましくは 10 X 10— 6/ 以下、 さらに好ましくは 7 X 10— 6Zt:以下、 特に好ましくは 5 X 10— 6 で以下の 範囲である。 本発明のフィルムの面方向における幅方向の温度膨張係数 (a t) の下限は、 好ましくは一 15 X 1 0一6 Z 、 より好ましくは— 1 0 X 1 0— 6 で、 さらに好ましくは一 7 X 10一6 Z :、 特に好ましくは一 5X 10— 6 である。
本発明のフィルムの所定の温度膨張係数 (a t) を有する方向と、 寸法安定性 が求められる方向とを合わせることで、 環境変化に対する優れた寸法安定性を有 するフィルムとなる。
特許文献 3によれば、 ポリアルキレン一 6, 6' 一 (アルキレンジォキシ) ジ 一 2—ナフ卜エートを共重合したポリエステルフィルムの温度膨張係数 (a t) は大きくなることが予想される。 しかし、 本発明によれば、 特定の共重合比のポ リエステルを採用し、 かつ延伸することにより、 温度膨張係数 (a t) を小さく することができる。
(湿度膨張係数: ah)
本発明のフィルムは、 フィルム面方向における少なくとも一方向の湿度膨張係 数 (ah) が 1〜7 X 1 0— 6Z%RHの範囲にあること力好ましい。
面方向における少なくとも一方向の湿度膨張係数 (ah) の上限は、 好ましく は 7 X 1 0— 6/%RH、 より好ましくは 6 X 1 0一6 /%RHである。 a h力こ の範囲にあると、 磁気記録テープにしたときの寸法安定性が良好となる。
一方向とは、 好ましくは温度膨張係数 (a t) が 1 4 X 1 0— 6 以下の方 向である。
下限は特に制限されないが、 製膜性などの点から 1 X 1 0_6Z%RH程度で ある。 特に、 磁気記録テープのベースフィルムに用いる場合、 ahを満足する方 向が二軸配向ポリエステルフィルムの幅方向であることが、 磁気記録テープとし たとき、 トラックずれなどを極めて抑制できることから好ましい。
(ヤング率: γ)
本発明のフィルムは、 フィルム面方向における少なくとも一方向のヤング率 (Y) が好ましくは 4. 5GP a以上、 より好ましくは 6 GP a以上である。 本 発明のフィルムの面方向における少なくとも一方向のヤング率 (Y) の上限は 1 2 GP a程度が好ましい。
本発明のフィルムの面方向における少なくとも一方向のヤング率の範囲は、 好 ましくは 5〜: l l GP a、 より好ましくは 6〜: L O GP a、 さらに好ましくは 7 〜1 OGP aの範囲である。 この範囲から外れると、 前述の a tや a hを達成す ることが困難になったり、 機械的特性が不十分になることがある。 ヤング率は、 前述の共重合の組成および延伸によって調整できる。 一方向とは、 好ましくは温 度膨張係数 (a t) が 14 X 1 0— 6 で以下である方向をいう。
温度膨張係数 (a t ) が 1 4 X 1 0— 6以下の方向については、 少なくとも一 方向、 好ましくは前述のとおり、 幅方向が満足していれば良いが、 それに直交す る方向も寸法安定性の点からは、 同様な温度膨張係数 (a t ) や湿度膨張係数 (ah), さらにヤング率などを満足することが好ましい。 即ち、 本発明のフィルムは、 フィルム面方向における直行する 2方向のヤング 率 (Y) が共に 5 GP a以上であることが好ましい。
(Yと ahとの関係)
本発明のフィルムは、 フィルム面方向における少なくとも一方向のヤング率 (Y) と湿度膨張係数 (ah) とが下記式 (1) を満足することが好ましい。
a h<- 1. 2 Y+ 17 (1)
(式 (1) 中、 (¾11の単位は10—6 /%1¾11、 Υの単位は GPaである) 一方向とは、 好ましくは温度膨張係数 (a t) が 14X 10一6 で以下の方 向である。 ポリエステルフィルムが、 上記式 (1) の関係を満足しない場合、 従 来のポリエチレンテレフ夕レートやポリエチレン一 2, 6—ナフ夕レンジカルボ キシレートからなるフィルムと同等なャング率に対する a hにしかならず、 ポリ アルキレン一 6, 6 ' 一 (アルキレンジォキシ) ジ— 2—ナフトェ一トを共重合 したことによる湿度膨張の低減効果が十分に発現されない。
上記式 (1) における 「― 1. 2」 という係数は、 本願明細書の比較例 1〜3 に記したポリエチレン一 2, 6—ナフ夕レンジカルボキシレ一トフイルムのヤン グ率と ahの関係から導き出されたものである。 また、 6, 6' — (アルキレン ジォキシ) ジー 2—ナフトェ酸を共重合する芳香族ポリエステルとしては、 ヤン グ率をより大きくしゃすいことからポリエチレン一 2, 6 _ナフ夕レンジカルボ キシレ一卜力 子ましい。
ヤング率に対する湿度膨張係数 (ah) を小さくするには、 ポリエチレンテレ フタレートを共重合させることが好ましい。 湿度膨張係数 (ah) とヤング率 (Y) の関係は、 より好ましくは下記式 ( 1 ')、 さらに好ましくは下記式 (1 ") である。
ah<- 1. 2 Y+ 16. δ (1 ')
ah<— 1. 2 Y+ 16. 0 (1 ")
なお、 ahの下限は特に制限されないが、 通常、 下記式 (1 ''') で表される。
h>- 1. 2 Y+ 12. 0 (1 "')
上述のようなヤング率、 a t、 ahは、 共重合の組成および後述の延伸によつ て調整できる。
本発明のフィルムは、 磁気記録媒体のベ一スフイルムに用いられる。 また本発 明のフィルムは、 磁気記録媒体がリニア記録方式の高密度磁気記録テープに用い られる。 即ち、 ベースフィルム、 その一方の面に形成された非磁性層および磁性 層、 他方の面にバックコート層が形成された磁気記録テープにおいて、 ベースフ ィルムとして本発明のポリエステルフィルムを用いることができる。
[フィルムの製造方法]
本発明のフィルムは、 製膜方向 (MD) と幅方向 (T D) に延伸してそれぞれ の方向の分子配向を高めたものである。 本発明のフィルムは、 例えば以下のよう な方法で製造することが製膜性を維持しつつ、 a t、 a hを低減しやすいことか ら好ましい。 即ち、 本発明のフィルムは、 本発明のポリエステルを溶融押出し、 冷却し、 延伸することにより製造することができる。
(押出工程)
まず、 本発明のポリエステルを乾燥後、 該ポリエステルの融点 (Tm :で) な いし (Tm+ 5 0 ) での温度に加熱された押出機に供給して溶融し、 例えば Tダ ィなどのダイよりシー卜状に押出す工程である。
(冷却工程)
この押出されたシート状物を回転している冷却ドラムなどで急冷固化して未延 伸フィルムとする工程である。
本発明で規定する a t、 h , ヤング率などを達成するためには、 その後の延 伸を進行させやすくすることが必要であり、 そのような観点から冷却ドラムによ る冷却は非常に速やかに行なうことが好ましい。 そのような観点から、 特許文献 3に記載されるような 8 0 といった高温ではなく、 2 0〜6 0でという低温で 行なうことが好ましい。 このような低温で行うことで、 未延伸フィルムの状態で の結晶化が抑制され、 その後の延伸をよりスムーズに行うことが可能となる。 (延伸工程)
得られた未延伸フィルムを二軸延伸する工程である。 二軸延伸としては、 逐次 二軸延伸でも同時二軸延伸でもよい。 ここでは、 逐次二軸延伸で、 縦延伸、 横延 伸および熱処理をこの順で行う製造方法を一例として挙げて説明する。 まず、 最 初の縦延伸は芳香族ポリエステルのガラス転移温度 (Tg: ) ないし (Tg +
40) での温度で、 3〜: 10倍、 好ましくは 3〜 8倍に延伸し、 次いで横方向に 先の縦延伸よりも高温で (Tg+10) 〜 (Tg + 50) の温度で 3〜 8倍に 延伸し、 さらに熱処理としてポリマーの融点以下の温度でかつ (Tg+50) 〜 (Tg+ 150) の温度で 1〜 20秒間、 さらに 1〜 15秒間、 熱固定処理す るのが好ましい。
本発明のポリエステルフィルムは、 6, 6' — (アルキレンジォキシ) ジー 2 一ナフトェ酸成分が共重合されていることから極めて延伸性に富む反面、 同じ延 伸倍率ではヤング率が低くなる傾向があり、 目的とするヤング率を得るにはより 高めの延伸倍率で延伸することが必要である。 通常であれば、 延伸倍率を上げる と製膜安定性が損なわれるが、 本発明では 6, 6' - (アルキレンジォキシ) ジ 一 2—ナフトェ酸成分が共重合されているので延伸性力非常に高く、 そのような 問題は無い。
本発明のポリエステルフィルムは縦延伸と横延伸とを同時に行う同時二軸延伸 でも製造できる。 その条件は前述の延伸倍率や延伸温度などを参考にすればよい。 また、 本発明のポリエステルフィルムが積層フィルムの場合、 2種以上の溶融 ポリエステルをダイ内で積層してからフィルム状に押出すことができる。 また 2 種以上の溶融ポリエステルをダイから押出した後に積層し、 急冷固化して積層未 延伸フィルムとすることもできる。 押し出し温度は、 好ましくはそれぞれのポリ エステルの融点 (Tm:で) ないし (Tm+70) の温度である。
ついで前述の単層フィルムの場合と同様な方法で二軸延伸および熱処理を行う とよい。 また、 塗布層を設ける場合、 未延伸フィルムまたは一軸延伸フィルムの 片面または両面に所望の塗布液を塗布し、 後は前述の単層フィルムの場合と同様 な方法で二軸延伸および熱処理を行うことが好ましい。
本発明のポリエステルフィルムをベースフィルムとし、 その一方の面に非磁性 層および磁性層をこの順で形成し、 他方の面にバックコート層を形成して磁気記 録テープを製造することができる。 [組成物]
本発明は、 前述の式 (A) で表される酸成分を所定量含有するポリエステルお よび平均粒径が 0. 05〜 5 xmの粒子を含有する組成物を包含する。
本発明の組成物は、 延伸するときの応力カ徘常に低く、 より高倍率で延伸して もボイドの小さなフィルムが得られる。 しかも得られるフィルムは、 温度膨張係 数 (a t) を大きくすることなく湿度膨張係数 (ah) を小さくできる。 本発明 の組成物において、 ポリエステルは前述の通りである。
粒子の平均粒径は、 0. 05 m以上、 好ましくは 0. 07 m以上、 より好 ましくは 0. l zm以上、 さらに好ましくは 0. 15 /m以上である。 平均粒径 が下限未満では、 非常に粒子が小さくてボイドによる影響が発生し難く、 またフ イルムなどにしたときの走行性ゃ卷取り性の向上効果も十分に発現され難い。 一 方、 平均粒径は、 5/ m以下、 好ましくは 3 / m以下である。 特に磁気記録媒体 として用いる場合、 平均粒径の上限は 1 zzmであることが好ましい。 粒子の平均 粒径をこの範囲にすることにより得られる成形品の取扱い性を向上させることが できる。
従って、 粒子の平均粒径は、 好ましくは 0. 05〜5 zm、 より好ましくは 0. 07〜5 zm、 さらに好ましくは 0. l〜3j mである。 平均粒径は、 走査型電 子顕微鏡で観察した粒子 1000個の面積円相当径 (d) の平均値である。
本発明の組成物は、 前述の粒子を樹脂組成物の重量を基準として、 好ましくは 0. 01重量%以上、 より好ましくは 0. 05重量%以上、 さらに好ましくは 0. 1重量%以上含有する。 含有量が下限未満では、 粒子の数が少なくボイドによる 影響が発生し難く、 またフィルムとしたときの走行性や巻取り性の向上効果も十 分に発現され難い。 含有量の上限は、 50重量%以下、 好ましくは 10重量%以 下である。 特に、 磁気記録媒体用のフィルムとして用いる場合は 1重量%以下で あることが好ましい。 粒子の含有量をこの範囲にすることにより得られる成形品 の取扱い性を向上させることができる。 従って、 粒子の含有量は、 組成物の重量 を基準として、 好ましくは 0. 01〜50重量%、 より好ましくは 0. 05〜1 0重量%である。 粒子の体積形状係数 (f ) は、 好ましくは 0. 4〜πΖ 6、 より好ましくは 0. 5〜πΖ 6である。 体積形状係数 (f ) が下限以上であることで、 粒子の配置さ れる状況が異なっても形成される突起の形状が揃いやすくなる。 そして、 得られ る突起が均一になると、 例えば同じ摩擦係数のフィルムとしたとき、 より表面粗 さの小さいフィルムとすることができ、 平坦性と層構成とを高度に両立しやすく なる。 なお、 体積形状係数 (f ) が大きくなるほど、 粒子の形状は球に近づき、 ポリマーと粒子との界面が小さくなり、 通常はポイドが生じやすくなるが、 前述 のとおり、 本発明では延伸応力の小さなポリマーを採用しているので、 そのよう な球に近い粒子を用いてもボイドを抑制しつつ突起を均一化することができる。 本発明の組成物は、 前述の特定の体積形状係数 (f ) を有する粒子を含有する 場合、 フィルムにしたときの搬送性と表面の平坦性に優れている。
体積形状係数 (f ) は、 以下の方法で求める。 即ち、 走査型電子顕微鏡で 1 0 0 0個の粒子を観察し、 投影面最大径 (D) と面積円相当径 (d ) とを求める。 個々の粒子の面積円相当径 (d ) を用いて、 粒子の形状が球であるとして換算し たときの体積 (V) を算出し、 下記式によりそれぞれの粒子の体積形状係数を計 算し、 それらの平均値を体積形状係数 (f ) とした。
f =V/D 3
体積形状係数 (f ) は、 粒子の形状を示すものであり、 7t Z 6である粒子の形 状は、 球 (真球) である。 すなわち、 体積形状係数 (f ) が 0. 4〜πΖ 6のも のは、 実質的に球ないしは真球、 ラグビーポールのような楕円球を含む。
粒子としては、 有機高分子粒子、 金属酸化物、 金属炭酸塩、 金属硫酸塩、 炭素、 粘土鉱物などが挙げられる。
有機高分子粒子として、 シリコーン樹脂、 架橋ポリスチレン、 架橋アクリル樹 脂、 メラミン一ホルムアルデヒド樹脂、 芳香族ポリアミド樹脂、 ポリイミド樹脂、 ポリアミドイミド樹脂、 架橋ポリエステルなどが挙げられる。 金属酸化物として、 酸化アルミニウム、 二酸化チタン、 二酸化ケイ素 (シリカ)、 酸化マグネシウム、 酸化亜鉛、 酸化ジルコニウムなどが挙げられる。 金属炭酸塩として、 炭酸マグネ シゥム、 炭酸カルシウムなどが挙げられる。 金属硫酸塩として、 硫酸カルシウム、 硫酸バリウムなどが挙げられる。 炭素として、 カーボンブラック、 グラフアイト、 ダイァモンドなどが挙げられる。 粘土鉱物として、 カオリン、 クレー、 ベントナ ィトなどが挙げられる。
また、 異なる素材をコアとシェルに用いたコアシェル型などの複合粒子など粒 子の状態で添加する外部添加粒子や、 触媒などの析出によって形成する内部析出 粒子などを挙げることができる。
これらの中でも、 シリコーン樹脂、 架橋アクリル樹脂、 架橋ポリエステル、 架 橋ポリスチレンなどの有機高分子粒子およびシリカからなる群から選ばれる少な くとも 1種の粒子であることが前述の体積形状係数 (f ) などの点から好ましい。 特にシリコーン樹脂、 架橋ポリスチレンおよびシリカからなる群から選ばれる少 なくとも 1種の粒子であることが好ましい。 もちろん、 これらは 2種以上を併用 しても良い。
粒子がシリ力粒子および有機高分子粒子からなる群より選ばれる少なくとも一 種の粒子であること力好ましい。 また、 粒子が、 シリコーン樹脂粒子および架橋 ポリスチレン粒子からなる群より選ばれる少なくとも一種であることが好ましい。 もちろん、 本発明の組成物は、 上述のような粒子を含有していればよく、 粒子 は単成分系に限られず 2種以上を併用する多成分系でもよい。
粒子は、 単独分散型粒子が好ましい。 含有する粒子が凝集粒子や多孔質粒子で あると、 ボイドは抑制しやすいものの、 ポリマー中の粒子径がばらつき易くなる。 すなわち、 本発明の組成物は、 優れたポイド抑制効果を有するので、 ボイドの問 題を気にすることなく、 前述の体積形状係数 (f ) と同じく、 フィルムなどにし たときの搬送性と表面の平坦性とを両立させる点から、 単独分散型粒子を好適に 使用することができる。 なお、 ここでいう単独分散型粒子とは、 一次粒子の大半、 好ましくは全一次粒子数に対して 6 0 %以上の一次粒子が、 一次粒子のままポリ マー中に分散している粒子のことを意味する。
粒子のポリエステルへの添加方法としては、 特に制限されず、 それ自体公知の 添加方法を採用できる。 例えば、 重合反応段階でグリコールスラリーの状態で粒 子を添加する方法や、 得られたポリエステルに混練押出機で粒子を溶融混練する 方法などが挙げられる。 粒子の分散性の観点からは、 重合反応段階でグリコール スラリーの状態で粒子を添加して高濃度で粒子を含有するポリエステル組成物の 粒子マスターポリマーを作成し、 該粒子マスターポリマーを、 粒子を含有しない ポリエステルで希釈するのが好ましい。
本発明の組成物には、 本発明の効果を阻害しない範囲で、 他の熱可塑性ポリマ 一、 紫外線吸収剤等の安定剤、 酸化防止剤、 可塑剤、 滑剤、 難燃剤、 離型剤、 顔 料、 核剤、 充填剤あるいはガラス繊維、 炭素繊維、 層状ケィ酸塩などを必要に応 じて配合しても良い。 他 ^熱可塑性ポリマーとしては、 脂肪族ポリエステル系樹 脂、 ポリアミド系樹脂、 ポリカーボネート、 ABS樹脂、 ポリメチルメタクリレ ート、 ポリアミド系エラストマ一、 ポリエステル系エラストマ一、 ポリエーテル イミド、 ポリイミドなどが挙げられる。 実施例
以下に実施例および比較例を挙げ、 本発明をより具体的に説明する。 なお、 本 発明では、 以下の方法により、 その特性を測定および評価した。
(1) 固有粘度
得られたポリエステルの固有粘度は P—クロ口フエノール/テトラクロ口エタ ン (40ノ 60重量比) の混合溶媒を用いてポリマーを溶解して 35 で測定し て求めた。
(2) ガラス転移点および融点
ガラス転移点および融点は DSC (T Aインスツルメンッ株式会社製、 商品 名: The rma l An a l y s t 2100) により昇温速度 20 m i n で測定した。
(3) 共重合量
(グリコール成分)
試料 1 Omgを p—クロ口フエノール:重テトラクロ口ェ夕ン =3 : 1 (容積 比) 混合溶液 0. 5mlに 80でで溶解し、 イソプロピルアミンを加えて、 十分 に混合した後に 600Mの1 H— NMR (日立電子製、 J E〇L A600) に て 80でで測定し、 それぞれのグリコール成分量を測定した。
(酸成分)
試料 5 Omgを p—クロ口フエノール:重テトラクロ口ェ夕ン =3 : 1 (容積 比) 混合溶液 0. 5m 1に 140でで溶解し、 40 OM 13C— NMR (日立 電子製、 J E〇L A600) にて 140でで測定し、 それぞれの酸成分量を測 定した。
(4) ヤング率
得られたフィルムを試料幅 1 Omm、 長さ 15 cmで切り取り、 チャック間 1 0 Omm, 引張速度 l OmmZ分、 チャート速度 500 mmZ分の条件で万能引 張試験装置 (東洋ポールドウイン製、 商品名:テンシロン) にて引っ張る。 得ら れた荷重一伸び曲線の立ち上がり部の接線よりヤング率を計算した。
(5) 温度膨張係数 (a t)
得られたフィルムを、 フィルムの幅方向が測定方向となるように長さ 15mm、 幅 5mmに切り出し、 真空理工製 TMA3000にセットし、 窒素雰囲気下 (0%RH)、 60でで 30分前処理し、 その後室温まで降温させた。 その後 2 5でから 70でまで 2 :Zmi nで昇温して、 各温度でのサンプル長を測定し、 次式より温度膨張係数 (a t) を算出した。 なお、 測定方向が切り出した試料の 長手方向であり、 5回測定し、 その平均値を用いた。
a t = {(L60-L40)} / (L40XAT)} +0. 5
ここで、 上記式中の L4Gは 40でのときのサンプル長 (mm)、 L6()は 60 のときのサンプル長 (mm)、 ΔΤは 20 (=60— 40) で、 0. 5は石英ガ ラスの温度膨張係数 (a t) (X 10— 6/で) である。
(6) 湿度膨張係数 (ah)
得られたフィルムを、 フィルムの幅方向が測定方向となるように長さ 15mm、 幅 5mmに切り出し、 真空理工製 TMA3000にセットし、 3 O :の窒素雰囲 気下で、 湿度 30%RHと湿度 70%RHにおけるそれぞれのサンプルの長さを 測定し、 次式にて湿度膨張係数 (ah) を算出した。 なお、 測定方向が切り出し た試料の長手方向であり、 5回測定し、 その平均値を ahとした。 ah= (L70-L30) / (L30XAH)
ここで、 上記式中の L30は 30%RHのときのサンプル長 (mm)、 L7Qは 7 0 %RHのときのサンプル長 (mm)、 ΔΗ : 40 (=70— 30) %RHであ る。
(7) 粒子の平均粒径 (//m)、 単一分散指数、 体積形状係数 (f)
ポリエステル組成物を押出機に投入し、 300での溶融状態でダイから押出し、 厚さ 1 mmの未延伸シ一トとした。 これを試料として走査型電子顕微鏡用試料台 に固定し、 日本電子 (株) 製スパッターリング装置 (J FC— 1 1 00型イオン エッチング装置) を用いて試料表面に下記条件にてイオンエッチング処理を施し た。 条件は、 ベルジャー内に試料を設置し、 約 1 0— 3To r r (0. 1 3 3 P a) の真空状態まで真空度を上げ、 電圧 0. 2 5 kV、 電流 1 2. 5mAにて約 1 0分間イオンエッチングを実施した。 更に同装置にて、 試料表面に金スパッ夕 一を施し、 走査型電子顕微鏡にて 5, 000〜1 0, 000倍で観察し、 日本レ ギュレーター (株) 製ルーゼックス 500にて 1 000個の粒子について、 投影 面最大径 (D) ( ) と面積円相当径 (d) とを求めた。 そして、 粒子 1 00 0個の面積円相当径 (d) の平均値を平均粒径とした。 また、 個々の粒子の面積 円相当径 (d) を用いて、 粒子の形状が球であるとして換算したときの体積 (V) (mm3) を算出し、 下記式によりそれぞれの粒子の体積形状係数を計算 し、 それらの平均値を体積形状係数 (f ) とした。
f =V/D3
また、 粒子が単独分散型かどうかは、 上記粒子 1 000個のうち、 一次粒子の まま分散している一次粒子の個数が 600個以上である場合、 単独分散型粒子と した。 なお、 ポリエステル組成物に添加する前の粒子の平均粒径は、 イオンエツ チングを行なわずに粒子のまま同様な測定を行なった。
(8) 粒子の含有量
ポリエステルは溶解し粒子は溶解させない溶媒を選択し、 ポリエステル組成物 を溶解処理した後、 粒子をポリエステルから遠心分離し、 ポリエステル組成物の 全体重量に対する粒子重量の比率 (重量%) をもって粒子の含有量とした。 (9) ボイド比の測定
試料フィルム小片を走査型電子顕微鏡用試料台に固定し、 日本電子 (株) 製ス パッターリング装置 (J FC— 1100型イオンエッチング装置) を用いてフィ ルム表面に下記条件にてイオンエッチング処理を施した。 条件は、 ベルジャー内 に試料を設置し、 約 10— 3To r r (0. 133 P a ) の真空状態まで真空度 を上げ、 電圧 0. 25kV、 電流 12. 5mAにて約 10分間イオンエッチング を実施した。 更に同装置にて、 フィルム表面に金スパッ夕一を施し、 走査型電子 顕微鏡にて 20, 000倍で観察し、 得られた画像から日本レギユレ一夕一 (株) 製ル一ゼックス 500により画像解析処理を行い、 粒子の周囲にボイドに よる境界が確認できるものを抽出し、 個々の粒子について粒子面積およびボイド 面積を求め、 次の定義によりボイド比を算出した。
ボイド比 = (粒子面積 +ボイド面積) Z粒子面積
この測定を粒子 100個について実施し、 その平均値をもってボイド比とした。 ボイド比が小さいほどボイドが小さく良好と判断される。
(9) エステル化率
エステル化率は、 600MHzの1 H— NMR (日本電子株式会社製、 J E〇 L A— 600) によって測定した。
表中の T Aはテレフタル酸成分、 NAは 2, 6—ナフ夕レンジカルボン酸成分、 ENAは 6, 6 ' - (エチレンジォキシ) ジ— 2—ナフトェ酸成分、 EGはェチ レングリコール成分、 D EGはジエチレングリコール成分を表す。
実施例 1
(ポリエステル、 TA (65) /ENA (35))
テレフタル酸ジメチル、 6, 6' — (エチレンジォキシ) ジ一 2—ナフトェ酸 およびェチレンダリコールを、 チタンテトラブトキシドの存在下でエステル化反 応およびエステル交換反応させ、 引き続いて重縮合反応させポリエステルを得た。 得られたポリエステルは、 固有粘度 0. 73d lZgで、 酸成分の 65モル%が テレフタル酸成分、 酸成分の 35モル%が 6, 6' 一 (エチレンジォキシ) ジ— 2—ナフトェ酸成分、 グリコール成分の 98. 5モル%がエチレングリコール成 分、 1: 5モル%がジエチレングリコール成分であった。
なお、 ポリエステルには、 重縮合反応の前に平均粒径 0. 5 /zmのシリカ粒子 を、 得られる樹脂組成物の重量を基準として、 0. 2重量%となるように含有さ せた。 このポリエステルの融点は 233t:、 ガラス転移温度は 91 であった。
(製膜)
このようにして得られたポリエステルを、 押し出し機に供給して 290 でダ ィから溶融状態で回転中の温度 40 の冷却ドラム上にシート状に押し出し未延 伸フィルムとした。 そして、 製膜方向に沿って回転速度の異なる二組のローラー 間で、 上方より I Rヒ一夕一にてフィルム表面温度が 110 になるように加熱 して製膜方向 (MD) の延伸を、 延伸倍率 4. 0倍で行い、 一軸延伸フィルムを 得た。 そして、 この一軸延伸フィルムをステン夕一に導き、 1201:で幅方向 (TD) に延伸倍率 4. 5倍で延伸し、 その後 210でで 3秒間熱固定処理を行 レ 、 厚さ 10 zmの二軸延伸フィルムを得た。 得られた二軸配向ポリエステルフ イルムの特性を表 1に示す。
実施例 2
(ポリエステル、 TA (80) /ENA (20))
テレフタル酸ジメチル、 6, 6' — (エチレンジォキシ) ジー 2—ナフトェ酸、 およびエチレングリコールを、 チタンテトラブトキシドの存在下でエステル化反 応およびエステル交換反応させ、 さらに引き続いて重縮合反応させポリエステル を得た。 得られたポリエステルは、 固有粘度 0. 68 d l/gで、 酸成分の 80 モル%がテレフタル酸成分、 酸成分の 20モル%が 6, 6' 一 (エチレンジォキ シ) ジ— 2—ナフトェ酸成分、 グリコール成分の 98モル%がエチレングリコー ル成分、 2モル%がジェチレングリコール成分であつた。
なお、 ポリエステルには、 重縮合反応の前に平均粒径 0. 5 /zmのシリカ粒子 を、 得られる樹脂組成物の重量を基準として、 0. 2重量%となるように含有さ せた。 この芳香族ポリエステルの融点は 230t:、 ガラス転移温度は 85でであ つた。
(製膜) 得られたポリエステルを、 押し出し機に供給して 2 9 0ででダイから溶融状態 で回転中の温度 3 0 の冷却ドラム上にシート状に押し出し未延伸フィルムとし た。 そして、 製膜方向 (MD) に沿って回転速度の異なる二組のローラー間で、 上方より I Rヒーターにてフィルム表面温度が 1 0 5でになるように加熱して製 膜方向 (MD) の延伸を、 延伸倍率 5. 0倍で行い、 一軸延伸フィルムを得た。 そして、 この一軸延伸フィルムをステン夕一に導き、 1 1 5でで幅方向 (T D) に延伸倍率 5. 0倍で延伸し、 その後 2 1 0でで 3秒間熱固定処理を行い、 厚さ 1 0 mの二軸延伸フィルムを得た。 得られた二軸配向ポリエステルフィルムの 特性を表 1に示す。
実施例 3
(ポリエステル、 NA ( 7 3 ) /E NA ( 2 7 ) )
2 , 6—ナフ夕レンジカルボン酸ジメチル、 6, 6 ' — (エチレンジォキシ) ジ一 2—ナフトェ酸、 およびエチレングリコールを、 チタンテトラブトキシドの 存在下でエステル化反応およびエステル交換反応させ、 さらに引き続いて重縮合 反応させポリエステルを得た。
得られたポリエステルは、 固有粘度 0 . 7 8 d l Z gで、 酸成分の 7 3モル% 力 2, 6—ナフ夕レンジカルボン酸成分、 酸成分の 2 7モル%が 6 , 6 ' - (ェ チレンジォキシ) ジー 2—ナフトェ酸成分、 グリコール成分の 9 8. 5モル%が エチレングリコール成分、 1 . 5モル%がジエチレングリコール成分であった。 ポリエステルには、 重縮合反応の前に平均粒径 0 . 5 mのシリカ粒子を、 得 られる樹脂組成物の重量を基準として、 0 . 2重量%となるように含有させた。 このポリエステルの融点は 2 4 o , ガラス転移温度は 1 1 2 であった。 (製膜)
得られたポリエステルを、 押し出し機に供給して 3 0 0 でダイから溶融状態 で回転中の温度 4 5 の冷却ドラム上にシート状に押し出し未延伸フィルムとし た。 そして、 製膜方向 (MD) に沿って回転速度の異なる二組のローラー間で、 上方より I Rヒー夕一にてフィルム表面温度が 1 3 0でになるように加熱して製 膜方向 (MD) の延伸を、 延伸倍率 4. 0倍で行い、 一軸延伸フィルムを得た。 そして、 この一軸延伸フィルムをステン夕一に導き、 140 で幅方向 (TD) に延伸倍率 6. 0倍で延伸し、 その後 200でで 10秒間熱固定処理を行い、 厚 さ 7 zmの二軸延伸フィルムを得た。 得られた二軸配向ポリエステルフィルムの 特性を表 1に示す。
実施例 4
(ポリエステル、 NA (94) /ENA (6))
2, 6 _ナフ夕レンジカルボン酸ジメチル、 6, 6' — (エチレンジォキシ) ジ—2 _ナフトェ酸、 およびエチレングリコールを、 チタンテトラブトキシドの 存在下でエステル化反応およびエステル交換反応させ、 さらに引き続いて重縮合 反応させポリエステルを得た。 得られたポリエステルは、 固有粘度 0. 81 d l Zgで、 酸成分の 94モル%が 2, 6—ナフ夕レンジカルボン酸成分、 酸成分の 6モル%が 6, 6, 一 (エチレンジォキシ) ジ— 2—ナフトェ酸成分、 グリコ一 ル成分の 99モル%がエチレングリコール成分、 1モル%がジエチレングリコー ル成分であった。
なお、 ポリエステルには、 重縮合反応の前に平均粒径 0. 5 /xmのシリカ粒子 を、 得られる樹脂組成物の重量を基準として、 0. 2重量%となるように含有さ せた。 このポリエステルの融点は 255 、 ガラス転移温度は 117でであった。 (製膜)
得られたポリエステルを、 押し出し機に供給して 300 でダイから溶融状態 で回転中の温度 55での冷却ドラム上にシート状に押し出し未延伸フィルムとし た。 そして、 製膜方向に沿って回転速度の異なる二組のローラー間で、 上方より
I Rヒ一夕一にてフィルム表面温度が 135でになるように加熱して製膜方向 (MD) の延伸を、 延伸倍率 3. 0倍で行い、 一軸延伸フィルムを得た。 そして、 この一軸延伸フィルムをステン夕一に導き、 135でで幅方向 (TD) に延伸倍 率 5. 0倍で延伸し、 その後 200でで 10秒間熱固定処理を行い、 厚さ 10 X mの二軸延伸フィルムを得た。 得られた二軸配向ポリエステルフィルムの特性を 表 1に示す。
実施例 5 実施例 4において、 製膜方向の延伸温度を 140でに、 製膜方向の延伸倍率を 5. 0倍に、 幅方向の延伸温度を 140 に、 幅方向の延伸倍率を 4. 2倍に、 熱固定処理温度を 210 に変更するほかは同様な操作を繰り返して厚み 10 mの二軸延伸フィルムを得た。
得られた二軸配向ポリエステルフィルムの特性を表 1に示す。 なお、 得られた フィルムは、 幅方向のヤング率が極めて低く、 磁気記録媒体としたときに幅方向 の寸法変化が大きく、 また幅方向に張力が係ると非常に伸びやすいものであった。 実施例 6
(ポリエステル、 NA (57) /ENA (43))
2, 6 _ナフ夕レンジカルボン酸ジメチル、 6, 6' — (エチレンジォキシ) ジ—2 _ナフトェ酸、 およびエチレングリコールを、 チタンテトラブトキシドの 存在下でエステル化反応およびエステル交換反応させ、 さらに引き続いて重縮合 反応させポリエステルを得た。
得られたポリエステルは、 固有粘度 0. 78 d l/gで、 酸成分の 57モル% が 2, 6 _ナフ夕レンジカルボン酸成分、 酸成分の 43モル%が 6, 6' — (ェ チレンジォキシ) ジー 2—ナフトェ酸成分、 グリコール成分の 98. 5モル%が エチレングリコール成分、 1. 5モル%がジエチレングリコール成分であった。 ポリエステルには、 重縮合反応の前に平均粒径 0. のシリカ粒子を、 得 られる樹脂組成物の重量を基準として、 0. 2重量%となるように含有させた。 このポリエステルの融点は 253で、 ガラス転移温度は 116でであった。
mm)
得られたポリエステルを、 押し出し機に供給して 300 でダイから溶融状態 で回転中の温度 45 の冷却ドラム上にシート状に押し出し未延伸フィルムとし た。 そして、 製膜方向 (MD) に沿って回転速度の異なる二組のローラー間で、 上方より I Rヒー夕一にてフィルム表面温度が 140でになるように加熱して製 膜方向 (MD) の延伸を、 延伸倍率 4. 5倍で行い一軸延伸フィルムを得た。 そ して、 この一軸延伸フィルムをステン夕一に導き、 140でで幅方向 (TD) に 延伸倍率 5. 2倍で延伸し、 その後 200でで 5秒間熱固定処理を行い、 厚さ 1 0 mの二軸延伸フィルムを得た。 得られた二軸配向ポリエステルフィルムの特 性を表 1に示す。
比較例 1
(ポリエステル、 NA ( 1 0 0 ))
2 , 6—ナフ夕レンジ力ルポン酸ジメチルとエチレングリコールとを、 チタン テトラブトキシドの存在下でエステル化反応およびエステル交換反応を行い、 さ らに引き続いて重縮合反応を行って、 ポリエステルを得た。 得られたポリエステ ルは、 固有粘度 0 . 6 2 d l Z gで、 グリコール成分の 1 . 5モル%がジェチレ ングリコール成分であつた。
なお、 ポリエステルには、 重縮合反応の前に平均粒径 0. 5 z^mのシリカ粒子 を、 得られる樹脂組成物の重量を基準として、 0 . 2重量%となるように含有さ せた。 このポリエステルの融点は 2 7 0 t:、 ガラス転移温度は 1 2 0でであった。
(製膜)
得られたポリエステルを、 押し出し機に供給して 3 0 0 でダイから溶融状態 で回転中の温度 6 0での冷却ドラム上にシート状に押し出し未延伸フィルムとし た。 そして、 製膜方向に沿って回転速度の異なる二組のローラ一間で、 上方より
I Rヒー夕一にてフィルム表面温度が 1 4 0 になるように加熱して製膜方向 (MD) の延伸を、 延伸倍率 3 . 0倍で行い、 一軸延伸フィルムを得た。 そして、 この一軸延伸フィルムをステン夕一に導き、 1 4 0でで幅方向 (TD) に延伸倍 率 4. 3倍で延伸し、 その後 2 0 0 で 1 0秒間熱固定処理を行い、 厚さ 1 0 mの二軸延伸フィルムを得た。 得られた二軸配向ポリエステルフィルムの特性を 表 1に示す。
比較例 2
比較例 1において、 製膜方向の延伸温度を 1 4 0 に、 製膜方向の延伸倍率を 4. 0倍に、 幅方向の延伸温度を 1 4 0 に、 幅方向の延伸倍率を 4. 0倍に、 熱固定処理温度を 2 0 0 に変更するほかは同様な操作を繰り返して二軸延伸フ イルムを得た。 得られた二軸配向ポリエステルフィルムの特性を表 1に示す。 比較例 3 比較例 1において、 製膜方向の延伸温度を 1 4 0でに、 製膜方向の延伸倍率を 4. 5倍に、 幅方向の延伸温度を 1 4 0でに、 幅方向の延伸倍率を 3 . 4倍に、 熱固定処理温度を 2 0 0 に変更するほかは同様な操作を繰り返して二軸延伸フ イルムを得た。 得られた二軸配向ポリエステルフィルムの特性を表 1に示す。
表 1
Figure imgf000040_0001
実施例 7
(ポリエステル、 NA (73) /ENA (27))
2, 6—ナフ夕レンジカルボン酸ジメチル、 6, 6' — (エチレンジォキシ) ジ一 2—ナフトェ酸、 およびエチレングリコールを、 チタンテトラブトキシドの 存在下でエステル化反応およびエステル交換反応させ、 さらに引き続いて重縮合 反応させ、 ポリエステルを得た。
得られたポリエステルは、 固有粘度 0. 66d lZgで、 酸成分の 73モル% が 2, 6—ナフ夕レンジカルボン酸成分、 酸成分の 27モル%が 6, 6 ' 一 (ェ チレンジォキシ) ジー 2—ナフトェ酸成分、 グリコール成分の 98モル%がェチ レンダリコール成分、 2モル%がジエチレングリコール成分であった。
なお、 ポリエステルには、 重縮合反応の前に平均粒径 0. 5 zmのシリカ粒子 を、 得られる榭脂組成物の重量を基準として、 0. 2重量%となるように含有さ せた。 このポリエステルの融点は 240t:、 ガラス転移温度は 117 であった。
(製膜)
得られたポリエステルを、 押し出し機に供給して 29 Ot:でダイから溶融状態 で回転中の温度 50 の冷却ドラム上にシート状に押し出し未延伸フィルムとし た。 そして、 製膜方向に沿って回転速度の異なる二組のローラ一間で、 上方より I Rヒー夕一にてフィルム表面温度が 135でになるように加熱して製膜方向 (MD) の延伸を、 延伸倍率 6. 2倍で行い、 一軸延伸フィルムを得た。 そして、 この一軸延伸フィルムをステンターに導き、 140でで幅方向 (TD) に延伸倍 率 6. 3倍で延伸し、 その後 200でで 10秒間熱固定処理を行い、 厚さ 6 /m の二軸延伸フィルムを得た。 得られた二軸配向ポリエステルフィルムの特性を表 2に示す。
実施例 8
実施例 7において、 製膜方向の延伸温度を 135でに、 製膜方向の延伸倍率を 5. 3倍に、 幅方向の延伸温度を 135 に、 幅方向の延伸倍率を 5. 8倍に、 熱固定処理温度を 210でに変更するほかは同様な操作を繰り返して二軸延伸フ ィルムを得た。 得られた二軸配向ポリエステルフィルムの特性を表 2に示す。 実施例 9
(ポリエステル、 NA ( 9 4 ) /E NA ( 6 ) )
2 , 6—ナフ夕レンジカルボン酸ジメチル、 6 , 6 ' — (エチレンジォキシ) ジ一 2—ナフトェ酸、 およびエチレングリコールを、 チタンテトラブトキシドの 存在下でエステル化反応およびエステル交換反応させ、 さらに引き続いて重縮合 反応させ、 ポリエステルを得た。 得られたポリエステルは、 固有粘度 0 . 7 2 d l Z gで、 酸成分の 9 4モル%が 2 , 6—ナフ夕レンジカルボン酸成分、 酸成分 の 6モル%が 6, 6 ' - (エチレンジォキシ) ジ— 2—ナフトェ酸成分、 グリコ ール成分の 9 9モル%がエチレングリコール成分、 1モル%がジエチレングリコ —ル成分であった。
なお、 ポリエステルには、 重縮合反応の前に平均粒径 0. 4 i mのシリカ粒子 を、 得られる樹脂組成物の重量を基準として、 0 . 2重量%となるように含有さ せた。 このポリエステルの融点は 2 5 5 、 ガラス転移温度は 1 1 9 であった。 謹)
得られたポリエステルを、 押し出し機に供給して 2 9 0 でダイから溶融状態 で回転中の温度 6 01の冷却ドラム上にシート状に押し出し未延伸フィル厶とし た。 そして、 製膜方向に沿って回転速度の異なる二組のローラー間で、 上方より I Rヒー夕一にてフィルム表面温度が 1 4 0 になるように加熱して製膜方向 (MD) の延伸を、 延伸倍率 5 . 3倍で行い、 一軸延伸フィルムを得た。 そして、 この一軸延伸フィルムをステン夕一に導き、 1 4 0でで幅方向 (TD) に延伸倍 率 4. 0倍で延伸し、 その後 2 0 0 で 1 0秒間熱固定処理を行い、 厚さ 8 m の二軸延伸フィルムを得た。 得られた二軸配向ポリエステルフィルムの特性を表 2に示す。
実施例 1 0
実施例 9において、 製膜方向の延伸温度を 1 3 5でに、 製膜方向の延伸倍率を 3 . 0倍に、 幅方向の延伸温度を 1 3 5でに、 幅方向の延伸倍率を 5. 0倍に、 熱固定処理温度を 2 1 0でに変更するほかは同様な操作を繰り返して二軸延伸フ ィルムを得た。 得られた二軸配向ポリエステルフィルムの特性を表 2に示す。 実施例 11
(ポリエステル、 NA (80) /ENA (20))
2, 6—ナフ夕レンジカルボン酸ジメチル、 6, 6' _ (エチレンジォキシ) ジー 2—ナフトェ酸、 およびエチレングリコールを、 チタンテトラブトキシドの 存在下でエステル化反応およびエステル交換反応させ、 さらに引き続いて重縮合 反応させポリエステルを得た。
得られたポリエステルは、 固有粘度 0. 77d lZgで、 酸成分の 80モル% が 2, 6—ナフ夕レンジカルボン酸成分、 酸成分の 20モル%が 6, 6, — (ェ チレンジォキシ) ジー2—ナフトェ酸成分、 グリコール成分の 99モル%がェチ レンダリコール成分、 1モル%が: エチレングリコール成分であった。
なお、 ポリエステルには、 重縮合反応の前に平均粒径 0. 4 //mのシリカ粒子 を、 得られる樹脂組成物の重量を基準として、 0. 1重量%となるように含有さ せた。 このポリエステルの融点は 252で、 ガラス転移温度は 116でであった。
(製膜)
得られたポリエステルを、 押し出し機に供給して 290ででダイから溶融状態 で回転中の温度 50での冷却ドラム上にシート状に押し出し未延伸フィルムとし た。 そして、 製膜方向に沿って回転速度の異なる二組のローラー間で、 上方より I Rヒー夕一にてフィルム表面温度が 135t:になるように加熱して製膜方向 (MD) の延伸を、 延伸倍率 5. 5倍で行い、 一軸延伸フィルムを得た。 そして、 この一軸延伸フィルムをステン夕一に導き、 140 で幅方向 (TD) に延伸倍 率 4. 3倍で延伸し、 その後 210 で 10秒間熱固定処理を行い、 厚さ の二軸延伸フィルムを得た。 得られた二軸配向ポリエステルフィルムの特性を表 2に示す。
実施例 12
(ポリエステル、 NA (65) /ENA (35))
2, 6—ナフ夕レンジカルボン酸ジメチル、 6, 6' — (エチレンジォキシ) ジ一 2—ナフトェ酸、 およびエチレングリコールを、 チタンテトラブトキシドの 存在下でエステル化反応およびエステル交換反応させ、 さらに引き続いて重縮合 反応させ、 ポリエステルを得た。
得られたポリエステルは、 固有粘度 0. 7 7 d l Z gで、 酸成分の 6 5モル% が 2, 6—ナフ夕レンジカルボン酸成分、 酸成分の 3 5モル%が 6 , 6 ' — (ェ チレンジォキシ) ジー 2—ナフトェ酸成分、 グリコ一ル成分の 9 8モル%がェチ レンダリコール成分、 2モル%がジエチレングリコール成分であった。
なお、 ポリエステルには、 重縮合反応の前に平均粒径 0. 4 / mのシリカ粒子 を、 得られる樹脂組成物の重量を基準として、 0 . 1重量%となるように含有さ せた。 このポリエステルの融点は 2 4 7で、 ガラス転移温度は 1 1 6 であった。 (製膜)
得られたポリエステルを、 押し出し機に供給して 2 9 0ででダイから溶融状態 で回転中の温度 5 0 の冷却ドラム上にシ一ト状に押し出し未延伸フィルムとし た。 そして、 製膜方向に沿って回転速度の異なる二組の口一ラー間で、 上方より I Rヒー夕一にてフィルム表面温度が 1 4 0でになるように加熱して製膜方向 (MD) の延伸を、 延伸倍率 5 . 5倍で行い、 一軸延伸フィルムを得た。 そして、 この一軸延伸フィルムをステン夕一に導き、 1 4 0でで幅方向 (T D) に延伸倍 率 6 . 0倍で延伸し、 その後、 2 1 0でで 1 0秒間熱固定処理を行い、 厚さ 7 mの二軸延伸フィルムを得た。 得られた二軸配向ポリエステルフィルムの特性を 表 2に示す。
実施例 1 3
実施例 7において、 製膜方向の延伸温度を 1 3 5 に、 製膜方向の延伸倍率を 4. 8倍に、 幅方向の延伸温度を 1 3 5でに、 幅方向の延伸倍率を 6 . 7倍に、 熱固定処理温度を 1 9 0でに変更するほかは同様な操作を繰り返して二軸延伸フ ィルムを得た。 得られた二軸配向ポリエステルフィルムの特性を表 2に示す。 表 2
Figure imgf000045_0001
実施例 14
(ポリエステル、 NA (73) /ENA (27))
2, 6—ナフ夕レンジカルボン酸ジメチル、 6, 6' — (エチレンジォキシ) ジ— 2—ナフトェ酸、 およびエチレングリコールを、 チタンテトラブトキシドの 存在下でエステル化反応およびエステル交換反応させ、 さらに引き続いて重縮合 反応を行って、 ポリエステルを得た。
得られたポリエステルは、 固有粘度 0. 66d lZgで、 酸成分の 73モル% が 2, 6—ナフ夕レンジカルボン酸成分、 酸成分の 27モル%が 6, 6 ' 一 (ェ チレンジォキシ) ジ— 2—ナフトェ酸成分、 グリコール成分の 98モル%がェチ レングリコール成分、 2モル%がジエチレングリコール成分であった。
なお、 該ポリエステルには、 重縮合反応の前に体積形状係数 (f) が 0. 51、 平均粒径 0. 28 mのシリカ粒子を、 エチレングリコールスラリーの状態で、 その含有量が得られる樹脂組成物の重量を基準として、 0. 1重量%となるよう に添加した。 このポリエステルの融点は 240でで、 ガラス転移温度は 117で で、 ポリマー中のシリカ粒子は、 60%以上の粒子が一次粒子のまま分散してい る単独分散型粒子であった。
(製膜)
得られたポリエステルを、 押し出し機に供給して 290 でダイから溶融状態 で回転中の温度 50での冷却ドラム上にシート状に押し出し未延伸フィルムとし た。 そして、 製膜方向に沿って回転速度の異なる二組のローラー間で、 上方より I Rヒー夕一にてフィルム表面温度が 135 になるように加熱して製膜方向 (MD) の延伸を、 延伸倍率 4. 8倍で行い、 一軸延伸フィルムを得た。 そして、 この一軸延伸フィルムをステン夕一に導き、 140 で幅方向 (TD) に延伸倍 率 7. 7倍で延伸し、 その後 200でで 10秒間熱固定処理を行い、 厚さ 6 m の二軸延伸フィルムを得た。 得られたポリエステル組成物および二軸配向ポリエ ステルフィルムの特性を表 3に示す。
実施例 15
実施例 14において、 シリカ粒子の代わりに、 体積形状係数 (f) が 0. 50、 平均粒径 0. 5 mのシリコーン粒子を加え、 さらに添加量を 0. 07重量%に 変更した以外は同様な操作を繰り返した。 なお、 ポリマー中のシリコーン粒子は、 60%以上の粒子が一次粒子のまま分散している単独分散型粒子であった。 得ら れたポリエステル組成物および二軸配向ポリエステルフィルムの特性を表 3に示 す。
実施例 16
実施例 14において、 シリカ粒子の代わりに、 体積形状係数 (f) が 0. 48、 平均粒径 0. 7 mの架橋ポリスチレン粒子を加え、 さらに添加量を 0. 05重 量%に変更した以外は同様な操作を繰り返した。 ポリマー中の架橋ポリスチレン 粒子は、 60%以上の粒子が一次粒子のまま分散している単独分散型粒子であつ た。 得られたポリエステル組成物および二軸配向ポリエステルフィルムの特性を 表 3に示す。
実施例 17
実施例 14のシリカ粒子を、 体積形状係数 (f) が 0. 51、 平均粒径 0. 1 2 mのシリカ粒子に変え、 さらに添加量を 0. 5重量%に変更した以外は同様 な操作を繰り返した。 ポリマー中のシリカ粒子は、 60 %以上の粒子が一次粒子 のまま分散している単独分散型粒子であった。 得られたポリエステル組成物およ び二軸配向ポリエステルフィルムの特性を表 3に示す。
実施例 18
(ポリエステル、 NA (94) ZENA (6))
2, 6—ナフ夕レンジカルボン酸ジメチル、 6, 6' — (エチレンジォキシ) ジー 2—ナフトェ酸、 およびエチレングリコールを、 チタンテトラブトキシドの 存在下でエステル化反応およびエステル交換反応させ、 さらに引き続いて重縮合 反応させポリエステルを得た。
得られたポリエステルは、 固有粘度 0. 72 d lZgで、 酸成分の 94モル% 2, 6—ナフ夕レンジカルボン酸成分、 酸成分の 6モル%が 6, 6' - (ェチ レンジォキシ) ジー2—ナフトェ酸成分、 グリコール成分の 99モル%がェチレ ングリコール成分、 1モル%がジェチレングリコール成分であつた。 なお、 該ポリエステルには、 重縮合反応の前に体積形状係数 (f) が 0. 51、 平均粒径 0. 28 imのシリカ粒子を、 エチレングリコ一ルスラリーの状態で、 その含有量が得られる樹脂組成物の重量を基準として、 0. 1重量%となるよう に添加した。 このポリエステルの融点は 255でで、 ガラス転移温度は 119で で、 ポリマー中のシリカ粒子は、 60%以上の粒子が一次粒子のまま分散してい る単独分散型粒子であった。
(製膜)
このようにして得られたポリエステルを、 押し出し機に供給して 290ででダ ィから溶融状態で回転中の温度 60 の冷却ドラム上にシート状に押し出し未延 伸フィルムとした。 そして、 製膜方向に沿って回転速度の異なる二組のローラー 間で、 上方より I Rヒー夕一にてフィルム表面温度が 140でになるように加熱 して製膜方向 (MD) の延伸を、 延伸倍率 5. 3倍で行い、 一軸延伸フィルムを 得た。 そして、 この一軸延伸フィルムをステン夕一に導き、 140 で幅方向 (TD) に延伸倍率 4. 0倍で延伸し、 その後 200 で 10秒間熱固定処理を 行い、 厚さ 8 zxmの二軸延伸フィルムを得た。 得られたポリエステル組成物およ び二軸配向ポリエステルフィルムの特性を表 3に示す。
実施例 19
(ポリエステル、 NA (80) /ENA (20))
2, 6—ナフ夕レンジカルボン酸ジメチル、 6, 6' — (エチレンジォキシ) ジ一 2—ナフトェ酸、 およびエチレングリコールを、 チタンテトラブトキシドの 存在下でエステル化反応およびエステル交換反応させ、 さらに引き続いて重縮合 反応させポリエステルを得た。
得られたポリエステルは、 固有粘度 0. 77 d lZgで、 酸成分の 80モル% 力 2, 6—ナフ夕レンジカルボン酸成分、 酸成分の 20モル%が 6, 6' — (ェ チレンジォキシ) ジ— 2—ナフトェ酸成分、 グリコール成分の 99モル%がェチ レンダリコール成分、 1モル%がジエチレンダリコール成分であった。
なお、 該ポリエステルには、 重縮合反応の前に体積形状係数 (f) が 0. 51、 平均粒径 0. 28 mのシリカ粒子を、 エチレングリコールスラリーの状態で、 その含有量が得られる樹脂組成物の重量を基準として、 0. 1重量%となるよう に添加した。 このポリエステルの融点は 252でで、 ガラス転移温度は 116で で、 ポリマー中のシリカ粒子は、 60%以上の粒子が一次粒子のまま分散してい る単独分散型粒子であった。
(製膜)
得られたポリエステルを、 押し出し機に供給して 290 でダイから溶融状態 で回転中の温度 50での冷却ドラム上にシート状に押し出し未延伸フィルムとし た。 そして、 製膜方向に沿って回転速度の異なる二組のローラー間で、 上方より I Rヒーターにてフィルム表面温度が 135 になるように加熱して製膜方向 (MD) の延伸を、 延伸倍率 5. 5倍で行い、 一軸延伸フィルムを得た。 そして、 この一軸延伸フィルムをステン夕一に導き、 140でで幅方向 (TD) に延伸倍 率 4. 3倍で延伸し、 その後、 210でで 10秒間熱固定処理を行い、 厚さ 6 mの二軸延伸フィルムを得た。 得られたポリエステル組成物および二軸配向ポリ エステルフィルムの特性を表 3に示す。
実施例 20
(ポリエステル、 NA (65) /ENA (35))
2, 6—ナフ夕レンジカルボン酸ジメチル、 6, 6' — (エチレンジォキシ) ジー 2—ナフトェ酸、 およびエチレングリコールを、 チタンテトラブトキシドの 存在下でエステル化反応およびエステル交換反応させ、 さらに引き続いて重縮合 反応させ、 ポリエステルを得た。
得られたポリエステルは、 固有粘度 0. 77 d 1/gで、 酸成分の 65モル% 力 2, 6—ナフ夕レンジカルボン酸成分、 酸成分の 35モル%が 6, 6 ' - (ェ チレンジォキシ) ジ _2_ナフトェ酸成分、 グリコール成分の 98モル%がェチ レングリコール成分、 2モル%がジエチレンダリコール成分であった。
なお、 該ポリエステルには、 重縮合反応の前に体積形状係数 (f ) 力 SO. 51、 平均粒径 0. 28 mのシリカ粒子を、 エチレングリコールスラリーの状態で、 その含有量が得られる樹脂組成物の重量を基準として、 0. 1重量%となるよう に添加した。 このポリエステルの融点は 247でで、 ガラス転移温度は 116で で、 ポリマー中のシリカ粒子は、 60%以上の粒子が一次粒子のまま分散してい る単独分散型粒子であった。
(製膜) ' . 得られたポリエステルを、 押し出し機に供給して 290ででダイから溶融状態 で回転中の温度 50での冷却ドラム上にシート状に押し出し未延伸フィルムとし た。 そして、 製膜方向に沿って回転速度の異なる二組のローラー間で、 上方より I Rヒー夕一にてフィルム表面温度が 140でになるように加熱して製膜方向 (MD) の延伸を、 延伸倍率 5. 5倍で行い、 一軸延伸フィルムを得た。 そして、 この一軸延伸フィルムをステン夕一に導き、 140でで幅方向 (TD) に延伸倍 率 6. 0倍で延伸し、 その後、 210 で 10秒間熱固定処理を行い、 厚さ 7 mの二軸延伸フィルムを得た。 得られたポリエステル組成物および二軸配向ポリ エステルフィルムの特性を表 3に示す。
実施例 21
(ポリエステル、 TA (65) /ENA (35))
テレフタル酸ジメチル、 6, 6' — (エチレンジォキシ) ジ一 2—ナフトェ酸、 およびェチレンダリコールを、 チタンテトラブトキシドの存在下でエステル化反 応およびエステル交換反応させ、 さらに引き続いて重縮合反応させ、 ポリエステ ルを得た。 得られたポリエステルは、 固有粘度 0. y S d lZgで、 酸成分の 6 5モル%がテレフタル酸成分、 酸成分の 35モル%が 6, 6 ' - (エチレンジォ キシ) ジー 2—ナフトェ酸成分、 グリコール成分の 98. 5モル%がエチレング リコール成分、 1. 5モル%がジエチレングリコール成分であった。
なお、 該ポリエステルには、 重縮合反応の前に体積形状係数 (f) が 0. 51、 平均粒径 0. 28 imのシリカ粒子を、 エチレングリコールスラリーの状態で、 その含有量が得られる樹脂組成物の重量を基準として、 0. 1重量%となるよう に添加した。 このポリエステルの融点は 233でで、 ガラス転移温度は 9 Itで、 ポリマー中のシリカ粒子は、 60%以上の粒子が一次粒子のまま分散している単 独分散型粒子であった。
(製膜) 得られたポリエステルを、 押し出し機に供給して 2 9 0ででダイから溶融状態 で回転中の温度 4 0での冷却ドラム上にシート状に押し出し未延伸フィルムとし た。 そして、 製膜方向に沿って回転速度の異なる二組のローラ一間で、 上方より I Rヒー夕一にてフィルム表面温度が 1 1 0でになるように加熱して製膜方向 (MD) の延伸を、 延伸倍率 4. 0倍で行い、 一軸延伸フィルムを得た。 そして、 この一軸延伸フィルムをステン夕一に導き、 1 2 0でで幅方向 (TD) に延伸倍 率 4. 5倍で延伸し、 その後 2 1 0でで 3秒間熱固定処理を行い、 厚さ 1 の二軸延伸フィルムを得た。 得られたポリエステル組成物および二軸配向ポリェ ステルフィルムの特性を表 3に示す。
実施例 2 2
(ポリエステル、 TA ( 8 0 ) /E NA ( 2 0 ) )
テレフタル酸ジメチル、 6 , 6 ' — (エチレンジォキシ) ジー 2—ナフトェ酸、 およびエチレングリコールを、 チタンテトラブトキシドの存在下でエステル化反 応およびエステル交換反応させ、 さらに引き続いて重縮合反応させポリエステル を得た。
得られたポリエステルは、 固有粘度 0 . 6 8 d l Z gで、 酸成分の 8 0モル% がテレフタル酸成分、 酸成分の 2 0モル%が 6, 6 ' 一 (エチレンジォキシ) ジ 一 2—ナフ卜ェ酸成分、 グリコール成分の 9 8モル%がエチレングリコール成分、 2モル%がジェチレングリコール成分であつた。
なお、 該ポリエステルには、 重縮合反応の前に体積形状係数 (f ) が 0 . 5 1、 平均粒径 0 . 2 8 / mのシリカ粒子を、 エチレングリコールスラリーの状態で、 その含有量が得られる樹脂組成物の重量を基準として、 0 . 1重量%となるよう に添加した。 このポリエステルの融点は 2 3 0 で、 ガラス転移温度は 8 5でで、 ポリマー中のシリカ粒子は、 6 0 %以上の粒子が一次粒子のまま分散している単 独分散型粒子であった。
mm)
得られたポリエステルを、 押し出し機に供給して 2 9 0 でダイから溶融状態 で回転中の温度 3 0 の冷却ドラム上にシート状に押し出し未延伸フィルムとし た。 そして、 製膜方向に沿って回転速度の異なる二組のローラー間で、 上方より I Rヒー夕一にてフィルム表面温度が 1 0 5 になるように加熱して製膜方向 (MD) の延伸を、 延伸倍率 5. 0倍で行い、 一軸延伸フィルムを得た。 そして、 この一軸延伸フィルムをステン夕一に導き、 1 1 5でで幅方向 (TD) に延伸倍 率 5. 0倍で延伸し、 その後 2 1 0でで 3秒間熱固定処理を行い、 厚さ 1 0 m の二軸延伸フィルムを得た。 得られたポリエステル組成物および二軸配向ポリェ ステルフィルムの特性を表 3に示す。
比較例 4
(ポリエステル、 NA ( 1 0 0 ) )
2 , 6—ナフ夕レンジ力ルポン酸ジメチルとエチレングリコールとを、 チタン テトラブトキシドの存在下でエステル化反応およびエステル交換反応を行い、 さ らに引き続いて重縮合反応を行って、 ポリエステルを得た。 得られたポリエステ ルは、 固有粘度 0 . 6 2 d l / gで、 グリコール成分の 1 . 5モル%がジェチレ ングリコール成分であった。
なお、 該ポリエステルには、 重縮合反応の前に体積形状係数 (f ) が 0 . 5 1、 平均粒径 0. 2 8 / mのシリカ粒子を、 エチレングリコールスラリーの状態で、 その含有量が得られる樹脂組成物の重量を基準として、 0. 1重量%となるよう に添加した。 このポリエステルの融点は 2 7 0でで、 ガラス転移温度は 1 2 0 で、 ポリマー中のシリカ粒子は、 6 0 %以上の粒子が一次粒子のまま分散してい る単独分散型粒子であった。
mm)
得られたポリエステルを、 押し出し機に供給して 3 0 0ででダイから溶融状態 で回転中の温度 6 0での冷却ドラム上にシート状に押し出し未延伸フィルムとし た。 そして、 製膜方向に沿って回転速度の異なる二組のローラー間で、 上方より I Rヒ一夕一にてフィルム表面温度が 1 4 0 になるように加熱して製膜方向 (MD) の延伸を、 延伸倍率 3 . 0倍で行い、 一軸延伸フィルムを得た。 そして、 この一軸延伸フィルムをステン夕一に導き、 1 4 0でで幅方向 (TD) に延伸倍 率 4. 3倍で延伸し、 その後 2 0 0 で 1 0秒間熱固定処理を行い、 厚さ 1 0 mの二軸延伸フィルムを得た。 得られたポリエステル組成物および二軸配向ポリ エステルフィルムの特性を表 3に示す。
比較例 5
比較例 4において、 製膜方向の延伸温度を 1 4 0でに、 製膜方向の延伸倍率を 4. 0倍に、 幅方向の延伸温度を 1 4 0でに、 幅方向の延伸倍率を 5 . 5倍に、 熱固定処理温度を 2 0 0でに変更するほかは同様な操作を繰り返して二軸延伸フ ィルムを得た。 得られたポリエステル組成物および二軸配向ポリエステルフィル ムの特性を表 3に示す。
比較例 6
比較例 4において、 製膜方向の延伸温度を 1 4 0 に、 製膜方向の延伸倍率を 4. 5倍に、 幅方向の延伸温度を 1 4 0 に、 幅方向の延伸倍率を 3 . 4倍に、 熱固定処理温度を 2 0 0 に変更するほかは同様な操作を繰り返して二軸延伸フ ィルムを得た。 得られたポリエステル組成物および二軸配向ポリエステルフィル ムの特性を表 3に示す。
表 3
Figure imgf000054_0001
実施例 2 3
2 , 6—ナフ夕レンジカルボン酸ジメチル、 6 , 6 ' — (エチレンジォキシ) ジー 2—ナフトェ酸およびェチレングリコールを、 チタンテ卜ラブトキシドの存 在下でエステル化反応およびエステル交換反応を行い、 さらに引き続いて重縮合 反応を行って、 固有粘度 0. 6 6 d 1 / gで、 酸成分の 7 3モル%が 2 , 6—ナ フタレンジカルボン酸成分、 酸成分の 2 7モル%が 6, 6, - (エチレンジォキ シ) ジー 2—ナフトェ酸成分、 グリコール成分の 9 8モル%がエチレングリコー ル成分、 2モル%がジェチレングリコール成分である芳香族ポリエステルを得た。 なお、 該芳香族ポリエステルには、 重縮合反応の前に平均粒径 0 . のシリ 力粒子を、 得られる樹脂組成物の重量を基準として、 0 . 2重量%となるように 含有させた。 この芳香族ポリエステルの融点は 2 4 0 、 ガラス転移温度は 1 1 7でであった。
このようにして得られた芳香族ポリエステルを、 押し出し機に供給して 2 9 0ででダイから溶融状態で回転中の温度 5 0での冷却ドラム上にシート状に押し 出し未延伸フィルムとした。 そして、 製膜方向に沿って回転速度の異なる二組の ローラー間で、 上方より I Rヒー夕一にてフィルム表面温度が 1 3 0 になるよ うに加熱して縦方向 (製膜方向) の延伸を、 延伸倍率 4. 5倍で行い、 一軸延伸 フィルムを得た。 そして、 この一軸延伸フィルムをステン夕一に導き、 1 3 0 で横方向 (幅方向) に延伸倍率 7 . 5倍で延伸し、 その後 1 8 0 で 1 0秒間熱 固定処理を行い、 厚さ 5 i mの二軸延伸フィルムを得た。 得られた二軸配向ポリ エステルフィルムの特性を表 4に示す。
実施例 2 4
実施例 2 3において、 縦方向 (製膜方向) の延伸を、 延伸倍率 5 . 7倍で、 横 方向 (幅方向) の延伸を、 延伸倍率 7 . 7倍で、 熱固定を 1 9 0 で 1 0秒間に 変更し、 得られるフィルムの厚さを 5 mとなるように未延伸フィルムの厚みを 変更した以外は同様な操作を繰り返した。 得られた二軸配向ポリエステルフィル ムの特性を表 4に示す。
実施例 2 5 実施例 2 3において、 縦方向 (製膜方向) の延伸を、 延伸倍率 6 . 0倍で、 横 方向 (幅方向) の延伸を、 延伸倍率 8 . 5倍で、 熱固定を 1 9 5でで 1 0秒間に 変更し、 得られるフィルムの厚さを 4. 5 となるように未延伸フィルムの厚 みを変更した以外は同様な操作を繰り返した。 得られた二軸配向ポリエステルフ イルムの特性を表 4に示す。
実施例 2 6
2 , 6—ナフ夕レンジカルボン酸ジメチル、 6, 6 ' — (エチレンジォキシ) ジ— 2—ナフトェ酸およびェチレンダリコールを、 チタンテトラブトキシドの存 在下でエステル化反応およびエステル交換反応を行い、 さらに引ぎ続いて重縮合 反応を行って、 固有粘度 0 . 6 6 d 1 / gで、 酸成分の 7 6モル%が 2, 6—ナ フタレンジカルボン酸成分、 酸成分の 2 4モル%が 6, 6 ' — (エチレンジォキ シ) ジー 2—ナフトェ酸成分、 グリコール成分の 9 8モル%がエチレングリコー ル成分、 2モル%がジエチレングリコール成分である芳香族ポリエステルを得た。 なお、 該芳香族ポリエステルには、 重縮合反応の前に平均粒径 0 . のシリ 力粒子を、 得られる樹脂組成物の重量を基準として、 0 . 2重量%となるように 含有させた。 この芳香族ポリエステルの融点は 2 4 3 、 ガラス転移温度は 1 1 7 であった。
このようにして得られた芳香族ポリエステルを、 押し出し機に供給して 2 9 0ででダイから溶融状態で回転中の温度 5 0 の冷却ドラム上にシート状に押し 出し未延伸フィルムとした。 そして、 製膜方向に沿って回転速度の異なる二組の ローラー間で、 上方より I Rヒー夕一にてフィルム表面温度が 1 3 O t:になるよ うに加熱して縦方向 (製膜方向) の延伸を、 延伸倍率 6 . 0倍で行い、 一軸延伸 フィルムを得た。 そして、 この一軸延伸フィルムをステン夕一に導き、 1 3 0で で横方向 (幅方向) に延伸倍率 8 . 4倍で延伸し、 その後 1 9 5でで 1 0秒間熱 固定処理を行い、 厚さ 4. 5 i mの二軸延伸フィルムを得た。
得られた二軸配向ポリエステルフィルムの特性を表 4に示す。
実施例 2 7
2 , 6—ナフ夕レンジカルボン酸ジメチル、 6, 6 ' — (エチレンジォキシ) ジ— 2—ナフトェ酸およびエチレングリコールを、 チタンテトラブトキシドの存 在下でエステル化反応およびエステル交換反応を行い、 さらに引き続いて重縮合 反応を行って、 固有粘度 0 . 6 6 d l Z gで、 酸成分の 8 2モル%が 2, 6—ナ フタレンジカルボン酸成分、 酸成分の 1 8モル%が 6, 6 ' 一 (エチレンジォキ シ) ジー 2 _ナフトェ酸成分、 グリコール成分の 9 8モル%がエチレングリコー ル成分、 2モル%がジェチレングリコ一ル成分である芳香族ポリエステルを得た。 なお、 該芳香族ポリエステルには、 重縮合反応の前に平均粒径 0 . のシリ 力粒子を、 得られる樹脂組成物の重量を基準として、 0 . 2重量%となるように 含有させた。 この芳香族ポリエステルの融点は 2 4 9 、 ガラス転移温度は 1 1 8 であった。
このようにして得られた芳香族ポリエステルを、 押し出し機に供給して 2 9 0ででダイから溶融状態で回転中の温度 5 0 の冷却ドラム上にシート状に押し 出し未延伸フィルムとした。 そして、 製膜方向に沿って回転速度の異なる二組の ローラ一間で、 上方より I Rヒー夕一にてフィルム表面温度が 1 3 5 になるよ うに加熱して縦方向 (製膜方向) の延伸を、 延伸倍率 5 . 0倍で行い、 一軸延伸 フィルムを得た。 そして、 この一軸延伸フィルムをステン夕一に導き、 1 3 5で で横方向 (幅方向) に延伸倍率 8 . 4倍で延伸し、 その後 2 0 3でで 1 0秒間熱 固定処理を行い、 厚さ 5 imの二軸延伸フィルムを得た。 得られた二軸配向ポリ エステルフィルムの特性を表 4に示す。
実施例 2 8
実施例 2 7において、 縦方向 (製膜方向) の延伸を、 延伸倍率 4. 9倍で、 横 方向 (幅方向) の延伸を、 延伸倍率 8 . 0倍で、 熱固定を 2 0 3 で 1 0秒間に 変更し、 得られるフィルムの厚さを 5 mとなるように未延伸フィルムの厚みを 変更した以外は同様な操作を繰り返した。 得られた二軸配向ポリエステルフィル ムの特性を表 4に示す。
実施例 2 9
実施例 2 7において、 縦方向 (製膜方向) の延伸を、 延伸倍率 5. 0倍で、 横 方向 (幅方向) の延伸を、 延伸倍率 7 . 6倍で、 熱固定を 2 0 3でで 1 0秒間に 変更し、 得られるフィルムの厚さを 4. 5 zmとなるように未延伸フィルムの厚 みを変更した以外は同様な操作を繰り返した。 得られた二軸配向ポリエステルフ イルムの特性を表 4に示す。
実施例 30
実施例 27において、 縦方向 (製膜方向) の延伸を、 延伸倍率 5. 0倍で、 横 方向 (幅方向) の延伸を、 延伸倍率 7. 9倍で、 熱固定を 203でで 10秒間に 変更し、 得られるフィルムの厚さを 5. 0 xmとなるように未延伸フィルムの厚 みを変更した以外は同様な操作を繰り返した。
得られた二軸配向ポリエステルフィルムの特性を表 4に示す。
実施例 31
2, 6—ナフタレンジカルボン酸ジメチル、 6, 6' — (エチレンジォキシ) ジ一 2—ナフトェ酸およびェチレングリコールを、 チタンテトラブトキシドの存 在下でエステル化反応およびエステル交換反応を行い、 さらに引き続いて重縮合 反応を行って、 固有粘度 0. 66 d l/gで、 酸成分の 85モル%が 2, 6—ナ フタレンジカルボン酸成分、 酸成分の 15モル%が 6, 6 ' 一 (エチレンジォキ シ) ジー 2—ナフトェ酸成分、 グリコール成分の 98モル%がエチレングリコー ル成分、 2モル%がジエチレングリコール成分である芳香族ポリエステルを得た。 なお、 該芳香族ポリエステルには、 重縮合反応の前に平均粒径 0. 5 mのシリ 力粒子を、 得られる樹脂組成物の重量を基準として、 0. 2重量%となるように 含有させた。 この芳香族ポリエステルの融点は 252 、 ガラス転移温度は 11 8でであった。
このようにして得られた芳香族ポリエステルを、 押し出し機に供給して 29 0ででダイから溶融状態で回転中の温度 55 の冷却ドラム上にシート状に押し 出し未延伸フィルムとした。 そして、 製膜方向に沿って回転速度の異なる二組の ローラー間で、 上方より I Rヒー夕一にてフィルム表面温度が 135でになるよ うに加熱して縦方向 (製膜方向) の延伸を、 延伸倍率 5. 0倍で行い、 一軸延伸 フィルムを得た。 そして、 この一軸延伸フィルムをステン夕一に導き、 140で で横方向 (幅方向) に延伸倍率 8. 1倍で延伸し、 その後 205 で 10秒間熱 固定処理を行い、 厚さ 4. 5 //mの二軸延伸フィルムを得た。
得られた二軸配向ポリエステルフィルムの特性を表 4に示す。
実施例 3 2
実施例 3 1において、 縦方向 (製膜方向) の延伸を、 延伸倍率 5. 3倍で、 横 方向 (幅方向) の延伸を、 延伸倍率 8 . 0倍で、 熱固定を 2 0 5でで 1 0秒間に 変更し、 得られるフィルムの厚さを 5 t mとなるように未延伸フィルムの厚みを 変更した以外は同様な操作を繰り返した。 得られた二軸配向ポリエステルフィル ムの特性を表 4に示す。
表 4
Figure imgf000060_0001
参考例 1 ビス (j6—ヒドロキシェチル) 6, 6' — (エチレンジォキシ) ジ一 2—ナフトェ酸の製造
6, 6, _ (エチレンジォキシ) ジー 2—ナフトェ酸 100重量部、 エチレン グリコール 62重量部およびテトラ— n—ブチルチタネート 0. 085重量部を 1Lの攪拌機、 窒素ガス導入口を供えたオートクレープに仕込み、 窒素置換後、 窒素圧 0. 2 MP aを印加し温度 230 で 6時間反応を行った。 反応後析出し た結晶をろ過し、 メタノールにて洗浄を行った。 洗浄後 120でで真空乾燥しビ ス ( ーヒドロキシェチル) 6, 6' _ (エチレンジォキシ) ジ一 2—ナフトェ 酸 115重量部を得た。 このもののエステル化度は 96%であった。 融点は 24 Ot:であった。
実施例 33 NA (87. 4) /ENA (12. 6)
参考例 1で得られたビス ( 3—ヒドロキシェチル) 6, 6' — (エチレンジォ キシ) ジ— 2—ナフトェ酸 100重量部、 2, 6—ビス (ヒドロキシエトキシカ ルポニル) ナフ夕レン 352重量部、 テトラ— n—プチルチ夕ネート 0. 09重 量部を精留塔付き反応器に仕込み窒素下 270でにて融解させた。 その後、 減圧 を徐々に行い 50 OmmHgにて約 20分攪拌反応後重合温度 320でに上昇さ せた。 次いで系内をさらに徐々に減圧にし 0. 2mmHg到達後、 約 20分攪拌 反応させ、 ナフ夕レンジカルボン酸成分が 87. 4モル%であり、 6, 6' _ (エチレンジォキシ) ジ— 2—ナフトェ酸成分が 12. 6モル%である共重合ポ リエチレン一 2, 6—ナフ夕レートを得た。 得られたポリマーの固有粘度 0. 9 8、 ガラス転移温度 115で、 融点は 238 であった。 得られたポリマーの物 性を表 5および表 6に示す。
得られた共重合ポリエチレン— 2, 6—ナフ夕レートについて XRD測定にお いて の値 5〜10° の範囲にはピークは観察されなかった (図 1)。 また得 られた共重合ポリエチレン— 2, 6 _ナフ夕レートについて DSC測定において 昇温速度 20で/m i nで 320でまで昇温した後、 10で Zm i nで冷却した ときの吸熱ピークは、 120で〜 220 の範囲に観察されなかった (図 2)。 実施例 34 NA (69. 5) /ENA (30. 5) 6, 6' — (エチレンジォキシ) ジ一 2—ナフトェ酸を 100重量部、 2, 6 —ビス (ヒドロキシエトキシカルボニル) ナフ夕レンを 145重量部とした以外 は実施例 1と同様にして、 ナフ夕レンジカルボン酸成分が 69. 5モル%であり、 6, 6' — (エチレンジォキシ) ジー 2—ナフトェ酸成分が 30. 5モル%であ る共重合ポリエチレン— 2, 6—ナフ夕レートを得た。 得られたポリマーの物性 を表 5および表 6に示す。 得られた共重合ポリエチレン一 2, 6—ナフ夕レート について XRD測定において 20の値 5〜10° の範囲にはピークは観察され なかった。 また得られた共重合ポリエチレン一 2, 6—ナフ夕レートについて D SC測定において昇温速度 20t:/m i nで 320でまで昇温した後、 10で mi nで冷却したときの吸熱ピークが 1点観測された (図 3)。
実施例 35 NA (62. 3) /ENA (37. 7)
6, 6, 一 (エチレンジォキシ) ジ一 2—ナフトェ酸を 100重量部、 2, 6 —ビス (ヒドロキシエトキシカルボニル) ナフタレンを 93重量部とした以外は 実施例 33と同様にして、 ナフ夕レンジカルボン酸成分が 62. 3モル%であり、 6, 6, 一 (エチレンジォキシ) ジ— 2—ナフトェ酸成分が 37. 7モル%であ る共重合ポリエチレン— 2, 6 _ナフ夕レートを得た。 得られたポリマーの物性 を表 5および表 6中に示す。 得られた共重合ポリエチレン— 2, 6—ナフタレ一 トについて XRD測定において 20の値 5〜10° の範囲にはピークは観察さ れなかった。 また得られた共重合ポリエチレン— 2, 6—ナフ夕レートについて DSC測定において昇温速度 20で mi nで 320 まで昇温した後、 10で Zm i nで冷却したときの吸熱ピークとして、 メインピークが 1点、 微小のピー クが 1点それぞれ観測された (図 4)。 表 5
Figure imgf000063_0001
表 6
Figure imgf000064_0001
実施例 36 NA (73) /ENA (27)
6, 6' — (エチレンジォキシ) ジー 2—ナフトェ酸を 100重量部、 2, 6 一ビス (ヒドロキシエトキシカルボニル) ナフ夕レンを 168重量部とした以外 は実施例 1と同様にして、 ナフ夕レンジカルボン酸成分が 73モル%であり、 6, 6' - (エチレンジォキシ) ジ— 2—ナフトェ酸成分が 27モル%である共重合 ポリエチレン一 2, 6—ナフ夕レートを得た。
得られた共重合ポリエチレン一 2, 6—ナフ夕レートを、 押し出し機に供給し て 290ででダイから溶融状態で回転中の温度 40 の冷却ドラム上にシート状 に押し出し未延伸フィルムとした。 そして、 製膜方向に沿って回転速度の異なる 二組のローラ一間で、 上方より I Rヒー夕一にてフィルム表面温度が 140でに なるように加熱して縦方向 (製膜方向) の延伸を、 表中記載の延伸倍率にて行つ た。 ついで 14 Οΐ:で横方向 (幅方向) に延伸し、 破断するまでの最大の延伸倍 率を求めた (ただし最大延伸倍率の測定は 6倍までとし、 それ以上は測定しなか つた)。 また破断するまでの最大の延伸倍率よりも小さい延伸倍率にて横方向 (幅方向) に延伸し、 厚さ 8 zmのフィルムを得て、 実質の縦横延伸倍率から面 倍率を求めた。 185 で 10秒間熱固定し、 得られた二軸配向ポリエステルフ イルムの特性を表 7に示す。
比較例 7 NA (100)
2, 6—ナフ夕レンジカルボン酸ジメチルとエチレングリコールとを、 チタン らに引き続いて重縮合反応を行って、 固有粘度 0. 62 d lZgで、 グリコール 成分の 1 . 5モル%がジエチレングリコール成分であるポリエチレン— 2, 6— ナフ夕レートを得た。 これを実施例 3 6と同様に表 7に記載の延伸倍率で二軸配 向ポリエステルフィルムを得て、 得られた二軸配向ポリエステルフィルムの特性 を表 7に示す。
表 7
Figure imgf000066_0001
実施例 3 7〜 3 9
実施例 3 3と同様にして、 ナフ夕レンジカルボン酸成分が表 8中のモル%であ る共重合ポリエチレン— 2, 6 _ナフ夕レートを得て、 実施例 3 6と同様に厚さ 8〜1 0 mのフィルムを得て、 二軸延伸フィルムの製膜〜評価を行った結果を 表 8中に示す。
表 8
Figure imgf000068_0001
発明の効果
本発明のポリエステルは、 機械的強度および寸法安定性に優れたフィルムとな る。 本発明のポリエステルは、 製膜性に優れるので、 優れた物性を有するフィル ムの原料となる。
本発明のフィルムは、 温度膨張係数 (C¾ t ) および湿度膨張係数 (CK h ) が低 く、 温度や湿度などの環境変化に対する寸法安定性に優れる。 本発明のフィルム は、 高いヤング率を有し、 機械的強度に優れる。 産業上の利用可能性
本発明のフィルムは、 優れた寸法安定性を有し、 高密度磁気記録媒体のベース フィルムなどの寸法安定性が求められる用途に好適に使用することができる。 また、 本発明のポリエステル、 ポリエステル組成物およびフィルムは、 高密度 磁気記録媒体のベースフィルムに限らず、 環境変化に対する寸法安定性が求めら れる用途、 例えば熱線反射フィルム、 太陽電池、 液晶などの表示装置における反 射板、 偏光板およびそれらの保護膜といった光学用のフィルム、 またフレキシブ ルディスプレイ、 透明導電 (半導体膜) 層付フィルム、 フレキシブルプリント基 板などの回路の基板用のフィルム、 燃料電池ゃコンデンサといつた電気絶縁用の フィルム、 さらには延伸性にも優れるということから金属などと貼り合わせて成 形したり、 インモールド転写のような成形加工用のフィルムとしても好適に利用 できる。

Claims

1 . ジカルボン酸成分およびジオール成分を含有するポリエステルであり、
(i) ジカルボン酸成分が 5モル%以上 5 0モル%未満の下記式 (A) および 5 0 モル%を超え 9 5モル%以下の下記式 (B) で表される繰り返し単位を含有し、
Figure imgf000070_0001
式 (A) 中、 RAは炭素数 2〜1 0のアルキレン基である、
6
0 0 D 8
-C— RD— C- (B)
式 (B) 中、 RBはフエ二レン基またはナフ夕レンジィル基である、 (i i)ジオール成分が 9 0〜1 0 0モル%の下記式 (C) で表される繰り返し単位 を含有する、
(C)
式 (C) 中、 R cは炭素数 2〜1 0のアルキレン基である、
ポリエステル。
式 (A) で表される繰り返し単位が下記式 (A— 1 )
Figure imgf000070_0002
である請求項 1に記載のポリエステル。 3 . ジカルボン酸成分が 1 0〜4 0モル%の式 (A) および 9 0〜6 0モル% の下記式 (B— 1 )
Figure imgf000071_0001
で表される繰り返し単位を含有する請求項 1に記載のポリエステル。
4. ジカルボン酸成分が 5〜45モル%の式 (A) および 95〜55モル%の 下記式 (B— 2)
Figure imgf000071_0002
で表される繰り返し単位を含有する請求項 1に記載のポリエステル。
5. P—クロ口フエノール 1, 1, 2, 2—テトラクロ口ェ夕ン (重量比 4 0/60) の混合溶媒を用いて 35でで測定した固有粘度が 0. 4〜3である請 求項 1に記載のポリエステル。
6. 融点が 200〜260 の範囲にある請求項 1記載のポリエステル。 7. 340 で一旦溶融させその後氷浴で急冷することによって得た非晶体に ついての XRD測定において 2 Θの 5〜 10° の範囲にピークが観察されない 請求項 4記載のポリエステル。
8. DSC測定において昇温速度 2 O /m i nで 320 まで昇温した後、 1 O m i nで冷却したときの吸熱ピークが 12 Ot:〜 220での範囲に 0〜
1点観測される請求項 4に記載のポリエステル。
9. 請求項 1に記載のポリエステルを含有するフィルム。
10. フィルム面方向における少なくとも一方向のヤング率 (Y) が 4. 5G P a以上である請求項 9記載のフィルム。
1 1. フィルム面方向における少なくとも一方向のヤング率 (Y) が 6GPa 以上である請求項 9記載のフィルム。
12. フィルム面方向における直行する 2方向のヤング率 (Y) が共に 5GP a以上である請求項 9記載のフィルム。 13. フィルム面方向における少なくとも一方向の温度膨張係数 (a t) が 1 4X 10—6 で以下である請求項 9記載のフィルム。
14. フィルム面方向における少なくとも一方向の温度膨張係数 (a t) が 1 0 X 10—6Zで以下である請求項 9記載のフィルム。
15. フィルム面方向における幅方向の温度膨張係数 (a t) が 14X 10一 6 Zで以下である請求項 9記載のフィルム。
16. フィルム面方向における幅方向の温度膨張係数 (a t) が 10 X 10一 6 以下である請求項 9記載のフィルム。
17. フィルム面方向における少なくとも一方向の湿度膨張係数 (ah) が 1 〜7 X 10— 6Z%RHの範囲にある請求項 7記載のフィルム。 18. フィルム面方向における少なくとも一方向のヤング率 (Y) と湿度膨張 係数 (ah) とが下記式 (1) を満足する請求項 9記載のフィルム。
h<- 1. 2 Y+ 17 (1)
(式 (1) 中、 (¾11の単位は10—6 %1^11、 Υの単位は G P aである)
19. 磁気記録媒体のベースフィルムに用いられる請求項 9記載のフィルム。
20. 磁気記録媒体がリニァ記録方式の高密度磁気記録テープである請求項 1 9記載のフィルム。
21. 請求項 1に記載のポリエステルおよび平均粒径が 0. 05〜5 111の粒 子を含有する組成物。
22. 粒子の含有量が、 組成物の重量を基準として、 0. 01〜50重量%で ある請求項 21記載の組成物。
23. 粒子は、 その体積形状係数が 0. 4〜π/6の範囲にある請求項 21記 載の組成物。
24. 粒子がシリカ粒子および有機高分子粒子からなる群より選ばれる少なく とも一種の粒子である請求項 21記載の組成物。
25. 粒子が、 シリコーン樹脂粒子および架橋ポリスチレン粒子からなる群よ り選ばれる少なくとも一種である請求項 21記載の組成物。
PCT/JP2008/051023 2007-02-05 2008-01-18 ポリエステル、その組成物およびそのフィルム WO2008096612A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP20080703850 EP2116560B1 (en) 2007-02-05 2008-01-18 Polyester, composition thereof and film thereof
AT08703850T ATE540993T1 (de) 2007-02-05 2008-01-18 Polyester, zusammensetzung davon und folie daraus
CN2008800041907A CN101605834B (zh) 2007-02-05 2008-01-18 聚酯、其组合物及其膜
US12/524,214 US8017715B2 (en) 2007-02-05 2008-01-18 Polyester, and composition and film comprising the same
KR1020097015934A KR101370218B1 (ko) 2007-02-05 2008-01-18 폴리에스테르, 그 조성물 및 그 필름

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2007025456A JP5209218B2 (ja) 2007-02-05 2007-02-05 二軸配向ポリエステルフィルム
JP2007-025455 2007-02-05
JP2007-025456 2007-02-05
JP2007025457A JP5209219B2 (ja) 2007-02-05 2007-02-05 二軸配向ポリエステルフィルム
JP2007025455A JP5199580B2 (ja) 2007-02-05 2007-02-05 共重合ポリエチレン−2,6−ナフタレート
JP2007-025457 2007-02-05
JP2007173801A JP5199611B2 (ja) 2007-07-02 2007-07-02 ポリエステル組成物
JP2007-173801 2007-07-02

Publications (1)

Publication Number Publication Date
WO2008096612A1 true WO2008096612A1 (ja) 2008-08-14

Family

ID=39681523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/051023 WO2008096612A1 (ja) 2007-02-05 2008-01-18 ポリエステル、その組成物およびそのフィルム

Country Status (6)

Country Link
US (1) US8017715B2 (ja)
EP (1) EP2116560B1 (ja)
KR (1) KR101370218B1 (ja)
AT (1) ATE540993T1 (ja)
TW (1) TWI419907B (ja)
WO (1) WO2008096612A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009091072A1 (ja) * 2008-01-18 2009-07-23 Teijin Limited ポリエステル樹脂、その製造方法およびそれを用いた二軸配向ポリエステルフィルム
JP2009166424A (ja) * 2008-01-18 2009-07-30 Teijin Ltd 二軸配向ポリエステルフィルム
CN101805495A (zh) * 2009-05-07 2010-08-18 东洋纺织株式会社 聚酯组合物及聚酯薄膜
EP2221336A1 (en) * 2009-02-19 2010-08-25 Mitsubishi Plastics, Inc. Biaxially oriented polyester film with favorable light shielding properties, having hydrolysis resistance
JP2010264683A (ja) * 2009-05-15 2010-11-25 Teijin Ltd 支持体
JP2011108849A (ja) * 2009-11-17 2011-06-02 Sharp Corp 電子部品および表示モジュール
US20110135965A1 (en) * 2009-12-03 2011-06-09 Teijin Limited Copolymerized aromatic polyester, biaxially oriented polyester film, and magnetic recording medium
JP2012173402A (ja) * 2011-02-18 2012-09-10 Teijin Ltd 立体視眼鏡用反射偏光フィルム、それからなる偏光板および立体視眼鏡
US8313849B2 (en) 2008-04-21 2012-11-20 Teijin Limited Biaxially oriented laminated film
JP2013003409A (ja) * 2011-06-17 2013-01-07 Teijin Ltd 多層延伸フィルム
JP2013003410A (ja) * 2011-06-17 2013-01-07 Teijin Ltd 多層延伸フィルム
WO2019151089A1 (ja) 2018-01-31 2019-08-08 帝人フィルムソリューション株式会社 ポリエステル組成物、ポリエステルフィルムおよび磁気記録媒体
WO2020054450A1 (ja) 2018-09-14 2020-03-19 東洋紡フイルムソリューション株式会社 ポリエステル組成物、ポリエステルフィルムおよび磁気記録媒体
WO2022249956A1 (ja) 2021-05-25 2022-12-01 東洋紡株式会社 リサイクルフィルムの製造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101466759B (zh) * 2006-07-21 2012-05-30 帝人株式会社 芳香族聚酯及其制造方法
WO2008153188A1 (ja) * 2007-06-13 2008-12-18 Teijin Limited 二軸配向積層フィルム
KR101327470B1 (ko) * 2008-10-08 2013-11-08 에스케이씨 주식회사 다층형태의 태양전지용 내후성필름
CN103620452B (zh) * 2011-06-17 2016-03-02 帝人株式会社 反射偏振膜、由其形成的液晶显示装置用光学部件和液晶显示装置
WO2014109186A1 (ja) * 2013-01-09 2014-07-17 日産化学工業株式会社 レジスト下層膜形成組成物
FR3017072B1 (fr) * 2014-01-31 2016-02-19 Toray Films Europ Film de polyester transparent multicouche, son procede de fabrication et son utilisation notamment dans les faces arrieres de panneaux photovoltaiques
CN108780821A (zh) * 2016-03-04 2018-11-09 东丽株式会社 太阳能电池组件用片以及太阳能电池组件

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60135428A (ja) 1983-12-23 1985-07-18 Teijin Ltd 芳香族ポリエステル及びその製造法
JPS60221420A (ja) 1984-04-17 1985-11-06 Teijin Ltd ポリエステルフイルム
JPS61143425A (ja) * 1984-12-18 1986-07-01 Teijin Ltd 芳香族ポリエステル及びその製造法
JPS61145724A (ja) 1984-12-19 1986-07-03 Teijin Ltd 磁気記録フレキシブルデイスク
JPH06145323A (ja) 1992-11-12 1994-05-24 Teijin Ltd 共重合ポリエステルおよびそれから得られる繊維
JPH08109318A (ja) * 1994-10-13 1996-04-30 Toray Ind Inc ポリエステル組成物およびそれからなるフイルム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4581420A (en) * 1984-12-24 1986-04-08 General Electric Company Copolyetherester-hexahydrophthalate ester-block copolymers
JP3797903B2 (ja) * 2001-10-02 2006-07-19 帝人デュポンフィルム株式会社 2軸配向ポリエステルフィルムの製造方法および磁気記録媒体の製造方法
EP1734067B1 (en) * 2004-02-17 2011-11-30 Toray Industries, Inc. Biaxially oriented polyester film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60135428A (ja) 1983-12-23 1985-07-18 Teijin Ltd 芳香族ポリエステル及びその製造法
JPS60221420A (ja) 1984-04-17 1985-11-06 Teijin Ltd ポリエステルフイルム
JPS61143425A (ja) * 1984-12-18 1986-07-01 Teijin Ltd 芳香族ポリエステル及びその製造法
JPS61145724A (ja) 1984-12-19 1986-07-03 Teijin Ltd 磁気記録フレキシブルデイスク
JPH06145323A (ja) 1992-11-12 1994-05-24 Teijin Ltd 共重合ポリエステルおよびそれから得られる繊維
JPH08109318A (ja) * 1994-10-13 1996-04-30 Toray Ind Inc ポリエステル組成物およびそれからなるフイルム

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009166424A (ja) * 2008-01-18 2009-07-30 Teijin Ltd 二軸配向ポリエステルフィルム
WO2009091072A1 (ja) * 2008-01-18 2009-07-23 Teijin Limited ポリエステル樹脂、その製造方法およびそれを用いた二軸配向ポリエステルフィルム
EP2233509A4 (en) * 2008-01-18 2013-01-16 Teijin Ltd POLYESTER RESIN, PROCESS FOR PRODUCING THE SAME, AND BIAXIALLY ORIENTED POLYESTER FILM COMPRISING THE SAME
US8168727B2 (en) 2008-01-18 2012-05-01 Teijin Limited Polyester resin, production process therefor, and biaxially oriented polyester film comprising the polyester resin
US8313849B2 (en) 2008-04-21 2012-11-20 Teijin Limited Biaxially oriented laminated film
EP2221336A1 (en) * 2009-02-19 2010-08-25 Mitsubishi Plastics, Inc. Biaxially oriented polyester film with favorable light shielding properties, having hydrolysis resistance
CN101805495A (zh) * 2009-05-07 2010-08-18 东洋纺织株式会社 聚酯组合物及聚酯薄膜
CN101805495B (zh) * 2009-05-07 2013-02-27 东洋纺织株式会社 聚酯组合物及聚酯薄膜
JP2010264683A (ja) * 2009-05-15 2010-11-25 Teijin Ltd 支持体
JP2011108849A (ja) * 2009-11-17 2011-06-02 Sharp Corp 電子部品および表示モジュール
US20110135965A1 (en) * 2009-12-03 2011-06-09 Teijin Limited Copolymerized aromatic polyester, biaxially oriented polyester film, and magnetic recording medium
US8431259B2 (en) * 2009-12-03 2013-04-30 Teijin Limited Copolymerized aromatic polyester, biaxially oriented polyester film, and magnetic recording medium
JP2012173402A (ja) * 2011-02-18 2012-09-10 Teijin Ltd 立体視眼鏡用反射偏光フィルム、それからなる偏光板および立体視眼鏡
JP2013003409A (ja) * 2011-06-17 2013-01-07 Teijin Ltd 多層延伸フィルム
JP2013003410A (ja) * 2011-06-17 2013-01-07 Teijin Ltd 多層延伸フィルム
WO2019151089A1 (ja) 2018-01-31 2019-08-08 帝人フィルムソリューション株式会社 ポリエステル組成物、ポリエステルフィルムおよび磁気記録媒体
WO2020054450A1 (ja) 2018-09-14 2020-03-19 東洋紡フイルムソリューション株式会社 ポリエステル組成物、ポリエステルフィルムおよび磁気記録媒体
WO2022249956A1 (ja) 2021-05-25 2022-12-01 東洋紡株式会社 リサイクルフィルムの製造方法

Also Published As

Publication number Publication date
TWI419907B (zh) 2013-12-21
US20100120967A1 (en) 2010-05-13
ATE540993T1 (de) 2012-01-15
TW200844135A (en) 2008-11-16
KR101370218B1 (ko) 2014-03-05
KR20100014348A (ko) 2010-02-10
EP2116560B1 (en) 2012-01-11
EP2116560A1 (en) 2009-11-11
US8017715B2 (en) 2011-09-13
EP2116560A4 (en) 2010-02-24

Similar Documents

Publication Publication Date Title
WO2008096612A1 (ja) ポリエステル、その組成物およびそのフィルム
US7884173B2 (en) Aromatic polyester and manufacturing process thereof
JP5684689B2 (ja) ポリエステル樹脂およびそれを用いたポリエステルフィルム
JP5199580B2 (ja) 共重合ポリエチレン−2,6−ナフタレート
JP2010031175A (ja) 共重合ポリエステルおよびその製造方法
JP2005029688A (ja) 二軸配向ポリエステルフィルム
JP2010031139A (ja) 共重合ポリエステル樹脂組成物およびその製造方法ならびにそれからなる二軸配向フィルム
JP5492569B2 (ja) ポリエステル樹脂、その製造方法およびそれを用いた二軸配向ポリエステルフィルム
JP5074215B2 (ja) 二軸配向積層フィルム
JP4928334B2 (ja) 共重合ポリエステル
JP5209219B2 (ja) 二軸配向ポリエステルフィルム
JP5788729B2 (ja) 配向ポリエステルフィルム
JP5199611B2 (ja) ポリエステル組成物
JP5346881B2 (ja) 共重合芳香族ポリエステルおよび二軸配向ポリエステルフィルム
JP4934063B2 (ja) 二軸配向ポリエステルフィルム
JP5209218B2 (ja) 二軸配向ポリエステルフィルム
JP2008255288A (ja) 二軸配向ポリエステルフィルム
JP5694865B2 (ja) ポリエステル組成物ならびにその製造方法および二軸配向ポリエステルフィルム
JP2009149808A (ja) ポリエステル樹脂組成物及びそれを用いた二軸配向フィルム
JP2009155426A (ja) ポリエステル組成物およびそれを用いた二軸配向フィルム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880004190.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08703850

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12524214

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020097015934

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008703850

Country of ref document: EP