WO2008087061A1 - Feste fahrbahn mit einem betonband - Google Patents

Feste fahrbahn mit einem betonband Download PDF

Info

Publication number
WO2008087061A1
WO2008087061A1 PCT/EP2008/050086 EP2008050086W WO2008087061A1 WO 2008087061 A1 WO2008087061 A1 WO 2008087061A1 EP 2008050086 W EP2008050086 W EP 2008050086W WO 2008087061 A1 WO2008087061 A1 WO 2008087061A1
Authority
WO
WIPO (PCT)
Prior art keywords
concrete
segments
segment
track according
profile
Prior art date
Application number
PCT/EP2008/050086
Other languages
English (en)
French (fr)
Inventor
Dieter Reichel
Original Assignee
Max Bögl Bauunternehmung GmbH & Co. KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Max Bögl Bauunternehmung GmbH & Co. KG filed Critical Max Bögl Bauunternehmung GmbH & Co. KG
Priority to EP08701265.4A priority Critical patent/EP2102415B1/de
Priority to US12/523,221 priority patent/US8281722B2/en
Priority to RU2009131063/11A priority patent/RU2472893C2/ru
Priority to CN200880002560.3A priority patent/CN101583761B/zh
Publication of WO2008087061A1 publication Critical patent/WO2008087061A1/de

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D19/00Structural or constructional details of bridges
    • E01D19/06Arrangement, construction or bridging of expansion joints
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B1/00Ballastway; Other means for supporting the sleepers or the track; Drainage of the ballastway
    • E01B1/001Track with ballast
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B1/00Ballastway; Other means for supporting the sleepers or the track; Drainage of the ballastway
    • E01B1/002Ballastless track, e.g. concrete slab trackway, or with asphalt layers
    • E01B1/007Ballastless track, e.g. concrete slab trackway, or with asphalt layers with interlocking means to withstand horizontal forces
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B2/00General structure of permanent way
    • E01B2/003Arrangement of tracks on bridges or in tunnels
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D19/00Structural or constructional details of bridges
    • E01D19/06Arrangement, construction or bridging of expansion joints
    • E01D19/067Flat continuous joints cast in situ
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D19/00Structural or constructional details of bridges
    • E01D19/12Grating or flooring for bridges; Fastening railway sleepers or tracks to bridges

Definitions

  • the present invention relates to a slab with a concrete band on a building made of individual juxtaposed segments and with rails (6) for a rail-guided vehicle, which are arranged on the concrete band, wherein the concrete strip runs continuously and bridges the individual segments, and between the concrete band and the segments a sliding layer (10) is arranged.
  • Solid lanes are used, for example, for high-speed lines or for freight transport and heavy rail lines in rail.
  • a concrete band is usually formed, which consists of juxtaposed and interconnected precast concrete, an in-situ concrete layer or a combination of in-situ concrete and precast concrete parts.
  • the concrete strip is erected on bridges on a structure made of individual strung segments.
  • the concrete band bridges the individual segments and supports the rails for a rail-guided vehicle.
  • a sliding layer is arranged between the concrete band and the segments.
  • the concrete strip usually has a substantially rectangular cross-section.
  • Rail supports on which the rails are supported, are located on the concrete belt with a corresponding elevation or curvature, as the course demands.
  • the rail supports must therefore be arranged individually on or in the concrete band. This requires a high construction cost.
  • the concrete band is particularly at risk in the range of shocks of the segments of the substructure. In a positional shift of the segments forces can arise against the concrete band, which destroy the concrete band or at least can move the position of the rail supports arranged thereon inadmissible.
  • DE 103 33 616 A1 has proposed separating layers which are arranged between a track bed and a protective material of a longitudinal beam section of a bridge.
  • the separating layers are located within a rigid lubricant layer and extend starting from a bearing axis of the longitudinal member a short distance in the direction of the inside of the longitudinal member. This is intended to compensate for the final tangent angle of the side members, which may result from kinks or offsets at transverse joints.
  • a disadvantage of this design is that the track bed is not supported over a relatively large distance and thus must be performed either very massive in this area or the carrying capacity of the track bed is severely limited. Moreover, it is disadvantageous that the production of the self-supporting track bed with in-situ concrete is very complex. And finally, by incorporating the release liners into the lubricant layer, a thick lubricant layer is required to allow the inclusion of a sufficiently thick release liner.
  • the separation layers are not intended by their arrangement on the bearing axes towards the carrier inside to absorb pressures. The separating layers can only take reliefs, but not loads, which would arise from a change in the position of the side members in the region of the joints of two side members.
  • Object of the present invention is therefore to provide a solid roadway with a concrete strip, which is inexpensive and reliable without particularly great effort can be produced and is stable and reliable to operate in operation even on a critical surface.
  • the present invention is achieved with a fixed track, which is provided with a concrete strip with a structure made of individual, juxtaposed segments with the features of claim 1.
  • An essential aspect of the solution according to the invention on a rigid surface is the fact that we use a continuous sliding concrete band, which absorbs all the forces acting and dissipates stable and permanently in the segments.
  • a continuous sliding concrete band which absorbs all the forces acting and dissipates stable and permanently in the segments.
  • only the rail runs uninterrupted over the structures. This requires that the rail must absorb all the longitudinal forces from temperature, braking forces, centrifugal forces, deformations and subsidence of the segments, etc., which can easily lead to voltage overshoots and rail breakage.
  • the continuous and sliding concrete strip relieves strain on the rail, making this solution much safer and more economical.
  • the concrete slab of the slab track forms a continuous band extending over at least two segments.
  • the expansion joint between the two segments thus remains unconsidered for the course of the concrete strip.
  • the concrete strip is exposed to much higher thermal expansion than the segment itself, and the segment in its thermal expansion is much slower than the concrete band, an inventive structure was created which makes the segments independent of the concrete band.
  • This construction consists in that the concrete band is designed in the form of a profiled concrete on the segment. The profile concrete is formed throughout. Between the profile concrete and the segment is arranged a sliding layer. In this way it is the concrete band or the concrete profile allowed to slide on the segment. The thermal expansion can thus take place largely independently.
  • the profiled concrete bridges the joints or the adjacent end faces of the individual adjoining segments. It is thus created a slab track, which can be built continuously without interruption even in the area of a segmentally executed and shocks having substructure. As a result, the slab track is inexpensive to produce and also more comfortable than ever when driving.
  • the course of the track is shown with respect to curvature and bank.
  • the profile concrete thus has different cross-sections, for example, to produce an elevation of the route in curves.
  • Rail supports for supporting the rails can be carried out very easily and in most cases as equal parts, which are mounted in or on the concrete profile. A fast, inexpensive and very accurate production of the track substructure is thus possible.
  • a device bridging the two end faces is arranged for receiving a change in position of the adjacent end faces, which avoids a critical force acting on the profile concrete and does not substantially impair the effect of the sliding layer.
  • the device bridges the end faces of the adjoining segments and can thus serve in addition to the function of the power also as a formwork element for the production of profiled concrete in situ concrete.
  • the profiled concrete also need not be reinforced with another continuous concrete strip, for example a layer of interconnected precast concrete slabs, since it itself is strong enough, even with a relatively thin design, since the forces from the segments through the Facility to be intercepted.
  • the device is also able to absorb not only the forces in the horizontal direction from below on the concrete profile, but also the forces that arise by a sliding movement of the segments to the profile concrete, the mobility of the profiled concrete is maintained on the segments and Inadmissible tension and thus changes in position of the rails reliably avoided.
  • the segment is supported on a fixed bearing and a movable bearing and the profiled concrete in the region of the fixed bearing of the segment firmly connected thereto.
  • the different expansions of solid roadway and profiled concrete in relation to the segment are influenced in an advantageous manner to the extent that the expansions basically take place in substantially the same direction.
  • the relative movements of the two units to each other thus remain relatively low.
  • segment and profile concrete with connecting elements such as anchors, in particular screw-in, stirrup or dowel created, which for example protrude from the segment and is concreted on soft the concrete profile.
  • anchors in particular screw-in, stirrup or dowel created, which for example protrude from the segment and is concreted on soft the concrete profile.
  • the anchors are screwed and thus be screwed into the segment immediately before concreting the profile concrete. It is thus possible that the segment before the concrete is poured concrete can be driven on construction vehicles without the anchors are damaged.
  • the two structures are largely decoupled from each other. They can expand without mutual tension.
  • the device for receiving a change in position of the adjacent end faces must in this case be able, in particular, not to restrict the sliding movement of the segments in relation to the profiled concrete, since larger sliding movements can be expected in this type of bearing of the segments than in the case of storage with a solid - and a floating bearing.
  • a particular advantage is the use of a device for recording a change in position by means of a resilient layer, for example a hard foam layer or an elastomer layer in the region of end faces of two segments, which is arranged between the segments and the profile concrete.
  • a resilient layer for example a hard foam layer or an elastomer layer in the region of end faces of two segments, which is arranged between the segments and the profile concrete.
  • the compliant layer thus forms a particularly Partial element in the present construction.
  • the resilient layer may be, for example, a hard foam layer, which is placed in the form of rigid foam panels on the segments before concreting the profile concrete. It is thus simultaneously obtained a formwork for the profile concrete in the region of the spaced end faces of two adjacent segments.
  • the compliant layer is so strong that the forces are absorbed during concreting of the profiled concrete without significant deformation, whereas the forces press through the segments at a later angle change or a transverse or vertical displacement of the segments in the resilient layer and thus an unacceptable force avoid the profile concrete.
  • a suitable material for the hard foam layer for example, Styrodur comes into question.
  • the reinforcement for the profile concrete can be advantageously deposited on this support plate before and during concreting without damaging the flexible layer or confusing it with concrete in the profile concrete ,
  • the compliant layer and / or the support plate of the device bridges the two end faces of the segments.
  • this is intended to ensure that the profile concrete can be concreted without additional measures in the area of the segment joints.
  • the flexible layer extends at least from the end face of the segment to beyond the bearing axis of the segment, then the end of the segment approaching the profile concrete, which changes its position, presses into the yielding layer.
  • the end of the segment rotates about the bearing, in particular the bearing axis in the direction of the profile concrete.
  • the resilient layer thus prevents damage to the profile concrete. If a depression is arranged in the segment and / or in the profiled concrete for at least partially receiving the compliant layer, then on the one hand the layer's position is defined and on the other hand, with an arrangement in the segment, the profiled concrete in the region of the compliant layer is not particularly weakened. The height of the profiled concrete is thus in the region of the transition of two segments almost equal to the thickness in the rest of the profile concrete.
  • the resilient layer is arranged in the profile concrete, then no separate recess must be provided in the segments.
  • the production of the segments is thus facilitated and there is no weakening of the segments, which may be particularly advantageous if the segments are only plates that are laid, for example, at ground level or on supports.
  • these two solutions ensure that there is no obstruction to the sliding movement of the segments with respect to the profiled concrete. If the weakening of the segment and the profile concrete is to be uniformly low, the arrangement of the device with the flexible layer in both parts, the profiled concrete and the segment, can be offered.
  • the sliding layer between the profile concrete and the segment is advantageously produced from a film and / or a geotextile. It is also advantageous to use two films which lie on top of one another and can slide against each other in a defined manner.
  • the geotextile has the advantage that it is at least partially soaked by the concrete and thus combines very well with the concrete. Unevenness of the segment can be compensated with the geotextile, which can have a thickness of 2-10 mm. The sliding of the profiled concrete on the segment is thereby considerably facilitated. Tensions can thus be largely avoided.
  • a geotextile layer can be arranged on the segment and / or on the side of the profiled concrete facing the segment and have one or two foils, for example PE foils with a thickness of approximately 0.3-0.5 mm, between them.
  • a plurality of rail supports are arranged on or in the profiled concrete.
  • the rails are thereby fastened discontinuously on the rail supports on or in the profile concrete.
  • the track layout is already given by the respective, adapted to the route shape of the profile concrete. It is therefore only a small effort to operate the laying of the rails.
  • the rails can also be stored continuously.
  • the corresponding rails recordings, for example. Troughs can already be provided in the shape of the profile concrete.
  • the rail supports are cast or dowelled as precast concrete elements in the profile concrete.
  • the contours for receiving the rails and their fasteners may already be provided in the precast concrete parts.
  • individual components per support, sleepers, sleepers, bi-block sleepers, track gratings and / or plates or rail supports arranged thereon are suitable for the rail supports.
  • the individual components are in particular not coupled to each other, but are independent of each other in or on the profile concrete. This avoids additional installation work. However, a coupling of the individual components is still not excluded if it should be advantageous in the individual case of the construction project.
  • the profiled concrete also has the advantage that the routing of the slab track can be carried out with the profiled concrete.
  • an elevation of the route for example in curve sections, is formed by means of the profile concrete.
  • the components which have the rail supports, can be installed in always the same design. Special dimensions are not required in most cases.
  • the concrete profile is executed reinforced.
  • stoppers for lateral and / or vertical guidance of the profiled concrete are arranged on the segment.
  • the stoppers allow a relative movement of the profiled concrete in the longitudinal and / or vertical direction of the rails.
  • a lateral movement of the profiled concrete on the segments is prevented by the stoppers, which are arranged on both sides of the profiled concrete.
  • the device forms a formwork for producing the profiled concrete between two adjacent segments, additional formwork elements are generally not required.
  • the segments can be raised or laid at ground level. They can thus be used as bridge components, but also for ground-level bridging of unsustainable ground. Such a laying is cheaper than the preparation of the substrate.
  • the segments are advantageously bridge girder, top plates placed on a substrate or pile.
  • Figure 1 shows a longitudinal section through a slab track on a bridge structure in the region of end faces of two bridge segments;
  • Figure 2 is a plan view of a slab track in an area as in Figure 1;
  • FIG. 3 shows a cross section through a bridge segment
  • FIG. 4 shows a section with a detailed view of the sliding layer
  • Figure 5 shows a longitudinal section through an embodiment of a slab track
  • FIG. 6 shows a longitudinal section through a further embodiment of a slab track.
  • Figure 1 shows a longitudinal section through a slab track 1 in the region of a joint 12 at end faces 13 of two segments 2 of a bridge.
  • the slab track 1 is formed in the present embodiment of a profiled concrete 7, which is made of in-situ concrete and forms a continuous band.
  • rails 6 are laid on rail supports.
  • the rail supports 5 are arranged on the profile concrete 7. They may be formed so as to intermittently support the rails 6 as shown here. But it is also a continuous storage of the rails 6 possible by the rail support points 5 along the rails 6 extend.
  • the profile concrete 7 thus forms for the rail support points 5 a solid and consistent in their location surface for permanent operation of the slab track. 1
  • a sliding layer 10 is arranged between the profile concrete 7 and the top of the segment 2.
  • a sliding layer 10 is arranged between the profile concrete 7 and the top of the segment 2.
  • the slab track 1 and the profile concrete 7 on the segment 2 can slide. This prevents unacceptable tension and creates a, in particular in the field of slab track 1, very consistent structure, which significantly increases the ride comfort of the rail vehicle and on the other hand is relatively inexpensive to manufacture.
  • the segments 2 are arranged on a pillar 14 in the section shown here. They are each supported on a fixed bearing 15 and a movable bearing 16. As a result, the longitudinal extent of the segment 2, starting from the fixed bearing 15, takes place in the direction of the floating bearing 16 of the same segment 2. As a result, the gap in the joint 12 becomes smaller or larger depending on the longitudinal extent of the segment 2.
  • armature 18 are arranged in the region of the fixed bearing 15 of the segment 2, which connect the concrete profile 7 with the segment 2. Thermal expansions of the profiled concrete 7 and of the segment 2 are thereby also rectified in their direction, so that a lower relative movement of the two units is to be expected.
  • the anchors 18 are advantageously screw-in. This means that 2 Einschraubhülsen are concreted into the top of the segments, in which the armature 18 are screwed in just before concreting the concrete profile 7. This has the advantage that the top of the segments 2 can be used during the construction of the building as a roadway for construction vehicles, without the anchor 18, which would otherwise protrude from the top of the segment 2, are damaged.
  • a device 200 bridging the two end faces 13 is arranged for accommodating a change in position of the adjacent end faces 13.
  • the device 200 consists of a hard foam layer 20, which is arranged in the region of the joint 12.
  • the hard foam layer 20 is located in this embodiment between the segments 2 and the profile concrete 7 and extends partially into this.
  • the hard foam layer 20 may consist of rigid foam plates, which are inserted into a recess provided for this purpose of the segment 2. A thickness of hard foam layer 20 of a few centimeters is usually sufficient. Likewise, an overlap of the end faces 13 over a length of 1 -2 m is also sufficient to compensate for the expected relative movements of profiled concrete 7 and 2 segments in the vertical direction.
  • the recess in the top of the segment 2 for receiving the hard foam layer 20 is advantageous for the production, since the position of the hard foam layer 20 is securely retained during concreting of the profiled concrete 7, but it is not necessarily required for the function.
  • the device 200 has a support plate 21 on the hard foam layer 20.
  • the support plate 21 ensures that the reinforcement does not sink to the hard foam layer 20 during concreting, but maintains a predetermined distance thereto.
  • the Reinforcement can accordingly be supported on the support plate 21, for example with feet arranged thereon.
  • Figure 2 shows a plan view of a slab track 1 on segments 2 in the region of the joint 12 of two segments 2. It can be seen that the profile concrete 7 forms a continuous band, which passes over the end faces 12 of two segments 2. In the region of the joint 12, the hard foam layer 20 and the support plate 21 are incorporated. Likewise, in this area, the armature 18 are provided to provide a compound of the profile concrete 7 with the segment 2.
  • the rails 6 of the track for the rail-guided vehicle are laid on a plurality of rail supports 5. Depending on the system of rail installation but this can also be done differently.
  • continuous support as indicated by longitudinal sleepers 5 "
  • longitudinal sleepers 5 " can also be effected, and it is also possible for the fixed carriageway 1 to consist of individual sleepers 5 ', which carry both rails 6 and are connected to one another with concrete and reinforcement Bi-block sleepers, track grids and / or plates (5 '") are other ways in which the rail supports are made of precast concrete elements.
  • the rail supports can also be made of cast-in-situ concrete.
  • stopper 24 To ensure a constant position of the slab track 1 with respect to the transverse orientation to the segment 2 stopper 24 are provided.
  • the stoppers 24 are mounted on the segment 2 and guide the slab track 1 and the profile concrete 7 in the transverse direction.
  • the contact point to the slab trackway 1 and the profile concrete 7 is loose, so that tension is avoided in a longitudinal expansion. It can therefore be beneficial, even here to provide a sliding layer between the stopper 24 and the profile concrete 7.
  • FIG. 3 shows a cross section through the building according to the invention.
  • a section through a segment 2 and the slab track 1 in the region of an end face 13 of a Segment2 2 is shown on the left side of the illustration. It is therefore the hard foam layer 20 and the support plate 21 can be seen under the profile concrete 7.
  • the profile concrete 7 is wedge-shaped, so that the slab track 1 is excessive. This is particularly necessary in curved sections of the track of the slab track 1.
  • the elevation is carried out with the help of the profile concrete 7, which is concreted as needed.
  • stopper 24 are arranged laterally.
  • the stoppers 24 are on the one hand firmly connected to the segment 2 and on the other hand, the profiled concrete 7 can slide along the stopper 24.
  • FIG. 3 The right half of the illustration of Figure 3 shows a cross section in the region of the normal distance, away from the joint 12. Between the segment 2 and the concrete profile 7, the sliding layer 10 is arranged, which allows sliding of the profile concrete 7 on the segment 2. Incidentally, this illustration corresponds to the illustration on the left side of FIG. 3.
  • FIG. 4 shows a detail of the sliding connection between profiled concrete 7 and segment 2.
  • a geotextile 26 is arranged on the Top of the segment 2 as well as on the underside of the concrete profile 7 .
  • the geotextiles 26 compensate for the irregularities of the surfaces of the segment 2 and the profiled concrete 7. Sometimes they get soaked in concrete with concrete, when applied before setting the concrete. Usually, the geotextile 26 will be applied to the segment 2, however, only after the setting of the concrete. An impregnation of the geotextile 26 does not take place in this case.
  • the profiled concrete 7 is usually concreted onto the geotextile 26, penetrates into the geotextile 26 during concreting and thus creates a firm connection.
  • the two films 27 provide a sliding movement of the profiled concrete 7 on the segment 2, which has a very low friction.
  • the two films 27 slide against each other without much resistance.
  • FIG. 5 shows a further embodiment of the invention.
  • the profile concrete 7 is not interrupted by a recess for the hard foam layer 20. It runs above the joint 12 of the two segments 2 without change in cross section. Between the profile concrete 7 and the segments 2 and the hard foam layer 20, the sliding layer 10 is also arranged continuously and without paragraph. As a result, an undisturbed sliding of the segments 2 below the profile concrete 7 is possible.
  • the hard foam layer 20 is arranged in a recess at the respective ends of the segments 2. It extends from an area in front of the support of the first segment 2 beyond its end face 13 and the impact 12 beyond the end face 13 and the support of the second segment 2. The strength of the segments 2 is thereby affected only insignificantly.
  • the hard foam layer 20 bridges while the shock 12 and also serves as a formwork for the concrete produced with in-situ concrete 7. This can be done without support plate 21 when the shock 12 has only a small width or the hard foam layer 20 is formed sufficiently stable.
  • the two segments 2 are floatingly mounted in this embodiment. This is through the two plain bearings 16 indicated on soft the segments 2 are stored. Thermal expansions or movements of the substrate under the segments 2 can thereby be decoupled from the concrete profile 7 particularly well.
  • FIG. 6 shows an embodiment in which the hard foam layer 20 rests on the segments 2 and projects into the profiled concrete 7.
  • the profile concrete 7 must be designed in its strength so that they can absorb the expected forces despite the cross-sectional reduction in the hard foam layer 20.
  • the sliding layer 10 is interrupted in the region of the hard foam layer 20. The movement between the profile concrete 7 and the segments 2 is compensated by the hard foam layer 20, provided that the hard foam layer 20 does not move on the segments together with the profile concrete 7. If difficulties are to be expected in this case, it is also possible for the sliding layer 10 to be continuous and for the hard foam layer 20 to be arranged on the continuous sliding layer 10.
  • the storage of the segments 2 is also shown on a substrate 30.
  • the segments 2 are designed as plates, which are placed on the substrate 30.
  • the substrate 30 may be a hydraulically bound support layer or another more or less elaborate treated surface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Road Paving Structures (AREA)
  • Railway Tracks (AREA)
  • Lining And Supports For Tunnels (AREA)

Abstract

Es wird eine Feste Fahrbahn mit einem Betonband auf einem aus einzelnen, aneinandergereihten Segmenten (2) hergestellten Trägerbauwerk und mit Schienen (6) für ein schienengeführtes Fahrzeug, welche auf dem Betonband angeordnet sind, vorgeschlagen, wobei das Betonband durchgehend verläuft und die einzelnen Segmente (2) überbrückt, und zwischen dem Betonband und den Segmenten (2) eine Gleitschicht (10) angeordnet ist. Die erfindungsgemässe Feste Fahrbahn zeichnet sich dadurch aus, dass das Betonband eine Profilbetonschicht (7) ist, in welcher der Streckenverlauf der Festen Fahrbahn bezüglich Krümmung und Querneigung abgebildet ist, und imBereich von benachbarten Stirnseiten (13) zweier aneinandergrenzender Segmente (2) eine die beiden Stirnseiten (13) überbrückende Einrichtung (200) zur Aufnahme einer Lageveränderung der benachbarten Stirnseiten (13) angeordnet ist, welche eine kritische Krafteinwirkung auf die Profilbetonschicht (7) vermeidet und die Wirkung der Gleitschicht (10) nicht wesentlich beeinträchtigt.

Description

Feste Fahrbahn mit einem Betonband
Die vorliegende Erfindung betrifft eine Feste Fahrbahn mit einem Betonband auf einem aus einzelnen, aneinandergereihten Segmenten hergestellten Bauwerk und mit Schienen (6) für ein schienengeführtes Fahrzeug, welche auf dem Betonband angeordnet sind, wobei das Betonband durchgehend verläuft und die einzelnen Segmente überbrückt, und zwischen dem Betonband und den Segmenten eine Gleitschicht (10) angeordnet ist.
Feste Fahrbahnen werden beispielsweise für Hochgeschwindigkeitsstrecken oder für Güterverkehrs und Schwerlastverkehrsstrecken im Eisenbahnverkehr eingesetzt. Hierbei wird in der Regel ein Betonband gebildet, welches aus aneinandergereihten und miteinander verbundenen Betonfertigteilen, aus einer Ortbetonschicht oder aus einer Kombination aus Ortbeton und Betonfertigteilen besteht. Das Betonband wird auf Brücken auf einem aus einzelnen aneinandergereihten Segmenten hergestellten Bauwerk errichtet. Das Betonband überbrückt dabei die einzelnen Segmente und trägt die Schienen für ein schienengeführtes Fahrzeug. Um Spannungen zwischen dem Betonband und den Segmenten, beispielsweise durch Wärmeausdehnungen, zu vermeiden, ist zwischen dem Betonband und den Segmenten eine Gleitschicht angeordnet. Das Betonband weist in der Regel einen weitgehend rechteckigen Querschnitt auf. Schienenstützpunkte, auf weichen die Schienen gelagert sind, befinden sich auf dem Betonband mit einer entsprechenden Überhöhung oder Krümmung, je nach dem wie es der Streckenverlauf verlangt. Die Schienenstützpunkte müssen dementsprechend individuell auf oder in dem Betonband angeordnet werden. Dies erfordert einen hohen Bauaufwand. Das Betonband ist insbesondere im Bereich von Stößen der Segmente des Unterbaus gefährdet. Bei einer Lageverschiebung der Segmente können Kräfte gegen das Betonband entstehen, welche das Betonband zerstören oder zumindest die Lage der darauf angeordneten Schienenstützpunkte unzulässig verschieben können.
Für den Brückenbau wurden daher gemäß der DE 103 33 616 A1 Trennlagen vorgeschlagen, welche zwischen einem Gleisbett und einem Schutzmaterial eines Längsträgerabschnittes einer Brücke angeordnet sind. Die Trennlagen befinden sich dabei innerhalb einer starren Gleitmittelschicht und reichen beginnend von einer Lagerachse des Längsträgers ein kurzes Stück in Richtung zur Innenseite des Längsträgers. Hiermit soll der Endtangentenwinkel der Längsträger, welcher sich durch Knicke oder Versätze an Querfugen ergeben kann, ausgeglichen werden.
Nachteilig bei dieser Ausführung ist es, dass das Gleisbett über eine relativ große Strecke nicht abgestützt ist und damit in diesem Bereich entweder sehr massiv ausgeführt werden muss oder die Tragkraft des Gleisbettes stark eingeschränkt ist. Darüber hinaus ist es nachteilig, dass die Herstellung des freitragenden Gleisbettes mit Ortbeton sehr aufwändig ist. Und schließlich ist durch den Einbau der Trennlagen in die Gleitmittelschicht eine dicke Gleitmittelschicht erforderlich, um die Aufnahme einer ausreichend dicken Trennlage zu erlauben. Darüber hinaus sind die Trennlagen durch ihre Anordnung an den Lagerachsen hin zur Trägerinnenseite nicht dafür vorgesehen, Drücke aufzunehmen. Die Trennlagen können im Bereich der Stöße zweier Längsträger lediglich Entlastungen, nicht jedoch Belastungen, welche durch eine Veränderung der Lage der Längsträger entstehen würden, aufnehmen.
Aufgabe der vorliegenden Erfindung ist es daher, eine feste Fahrbahn mit einem Betonband zu schaffen, welches kostengünstig und zuverlässig ohne besonders großen Aufwand herstellbar ist und im Betrieb auch auf einem kritischen Untergrund stabil und zuverlässig zu betreiben ist.
Die vorliegende Erfindung wird gelöst mit einer festen Fahrbahn, die mit einem Betonband mit einem aus einzelnen, aneinandergereihten Segmenten hergestellten Bauwerk mit den Merkmalen des Anspruches 1.
Ein wesentlicher Aspekt der erfindungsgemäßen Lösung auf starrem Untergrund ist die Tatsache, dass wir ein durchlaufendes gleitendes Betonband verwenden, welches alle einwirkenden Kräfte aufnimmt und in die Segmente lagestabil und dauerhaft ableitet. Im Gegensatz dazu läuft bei den herkömmlichen Systemen nur die Schiene ohne Unterbrechung über die Bauwerke. Das bedingt, dass die Schiene alle Längskräfte aus Temperatur, Bremskräften, Fliehkräften, Verformungen und Setzungen der Segmente usw. aufnehmen muss, was leicht zu Spannungsüberschreitungen und zum Schienenbruch führen kann. Durch das durchlaufende und gleitende Betonband wird die Schiene entlastet, sodass diese Lösung wesentlich sicherer und wirtschaftlicher ist.
Erfindungsgemäß bildet das Betonband der Festen Fahrbahn ein über mindestens zwei Segmente durchgehend verlaufendes Band. Die Dehnungsfuge zwischen den beiden Segmenten bleibt somit unberücksichtigt für den Verlauf des Betonbandes. Nachdem aufgrund der hohen Masse des Segments im Vergleich zum Betonband, und aufgrund der Richtung der Wärmeeinstrahlung das Betonband sehr viel höheren Wärmedehnungen ausgesetzt ist, als das Segment selbst, und das Segment in seiner Wärmeausdehnung wesentlich träger als das Betonband ist, wurde ein erfindungsgemäßer Aufbau geschaffen, welcher die Segmente unabhängig von dem Betonband macht. Dieser Aufbau besteht darin, dass das Betonband in Form eines Profilbetons auf dem Segment ausgeführt ist. Der Profilbeton ist durchgehend ausgebildet. Zwischen dem Profilbeton und dem Segment ist eine Gleitschicht angeordnet. Auf diese Weise ist es dem Betonband bzw. dem Profilbeton ermöglicht, auf dem Segment zu gleiten. Die Wärmedehnungen können somit weitgehend unabhängig voneinander stattfinden. Der Profilbeton überbrückt die Stöße bzw. die benachbarten Stirnseiten der einzelnen aneinandergrenzenden Segmente. Es wird somit eine Feste Fahrbahn geschaffen, welche auch im Bereich eines segmentartig ausgeführten und Stöße aufweisenden Unterbau ohne Unterbrechung durchgehend gebaut werden kann. Hierdurch wird die Feste Fahrbahn kostengünstig herstellbar und zudem im Fahrbetrieb noch komfortabler als bisher.
In dem Profilbeton ist der Streckenverlauf der Festen Fahrbahn bezüglich Krümmung und Querneigung abgebildet. Der Profilbeton weist dadurch unterschiedliche Querschnitte auf, um bspw. eine Überhöhung der Fahrstrecke in Kurven herzustellen. Schienenstützpunkte zur Lagerung der Schienen können dadurch sehr einfach und in den meisten Fällen als Gleichteile ausgeführt werden, welche in oder auf dem Profilbeton befestigt werden. Eine schnelle, kostengünstige und sehr genaue Herstellung des Gleisunterbaus ist damit möglich.
Im Bereich von benachbarten Stirnseiten zweier aneinandergrenzender Segmente ist eine die beiden Stirnseiten überbrückende Einrichtung zur Aufnahme einer Lageveränderung der benachbarten Stirnseiten angeordnet, welche eine kritische Krafteinwirkung auf den Profilbeton vermeidet und die Wirkung der Gleitschicht nicht wesentlich beeinträchtigt. Die Einrichtung überbrückt die Stirnseiten der aneinandergrenzenden Segmente und kann damit neben der Funktion der Kraftaufnahme auch als Schalelement für die Herstellung des Profilbetons aus Ortbeton dienen. Bei einer Verschiebung der Segmente in Bezug zueinander, insbesondere bzgl. des Tangententenwinkels, drückt sich das Ende eines Segmentes in die Einrichtung hinein und verhindert, dass eine kritische Kraft auf den Profilbeton übertragen wird. Der Profilbeton muss daher nicht dafür ausgelegt werden, eine hohe Kraft, aus- gehend von den Enden der Segmente, aufnehmen zu müssen. Sie kann relativ dünn ausgeführt werden, wenn sichergestellt ist, dass die zu erwartende Kraft in der Einrichtung aufgenommen wird. Dies führt zu einer deutlichen Kostenersparnis, da weniger Beton erforderlich ist und zu einer Beschleunigung beim Bau der Strecke. Der Profilbeton muß darüber hinaus auch nicht mit einem weiteren durchgehenden Betonband, beispielsweise einer Schicht aus miteinander verbundenen Betonfertigteil-Platten, verstärkt werden, da sie selbst, auch bereits bei einer relativ dünnen Ausführung, stark genug ist, da die Kräfte aus den Segmenten durch die Einrichtung abgefangen werden.
Ist die Einrichtung darüber hinaus in der Lage nicht nur die Kräfte in horizontaler Richtung von unten auf den Profilbeton aufzunehmen, sondern auch noch die Kräfte, welche durch eine Gleitbewegung der Segmente zu dem Profilbeton entstehen, so wird die Beweglichkeit des Profilbetons auf den Segmenten beibehalten und unzulässige Verspannungen und damit Lageveränderungen der Schienen zuverlässig vermieden.
In einer bevorzugten Ausbildung der erfindungsgemäßen Festen Fahrbahn ist das Segment auf einem Festlager und einem Loslager abgestützt und der Profilbeton im Bereich des Festlagers des Segments fest mit diesem verbunden. Hierdurch werden in vorteilhafter Weise die unterschiedlichen Ausdehnungen von Fester Fahrbahn und Profilbeton in Bezug auf das Segment dahingehend beeinflußt, dass die Ausdehnungen grundsätzlich im wesentlichen in der selben Richtung erfolgen. Die Relativbewegungen der beiden Einheiten zueinander bleiben damit relativ gering.
Besonders vorteilhaft wird die feste Verbindung von Segment und Profilbeton mit Verbindungselementen wie Anker, insbesondere Einschraubanker, Bügelbewehrung oder Dübel geschaffen, welche beispielsweise aus dem Segment herausragen und auf weiche der Profilbeton betoniert wird. Besonders vorteilhaft ist es dabei, wenn die Anker Einschraubanker sind und damit erst unmittelbar vor dem Betonieren des Profilbetons in das Segment eingeschraubt werden. Es ist damit möglich, dass das Segment bevor der Profilbeton betoniert wird mit Baufahrzeugen befahren werden kann, ohne dass die Anker beschädigt werden.
Ist das Segment schwimmend gelagert und sind der Profilbeton und das Segment gleitend miteinander verbunden, so sind die beiden Bauwerke weitgehend von einander entkoppelt. Sie können sich ohne gegenseitige Verspannungen ausdehnen. Die Einrichtung zur Aufnahme einer Lageveränderung der benachbarten Stirnseiten muß hierbei insbesondere in der Lage sein die Gleitbewegung der Segmente in Bezug auf den Profilbeton nicht einzuschränken, da bei dieser Art der Lagerung der Segmente mit größeren Gleitbewegungen zu rechnen ist, als bei einer Lagerung mit einem Fest- und einem Loslager.
Einen besonderen Vorteil bringt die Verwendung einer Einrichtung zur Aufnahme einer Lageveränderung mittels einer nachgiebigen Schicht, beispielsweise einer Hartschaumschicht oder einer Elastomerschicht im Bereich von Stirnseiten zweier Segmente, welche zwischen den Segmenten und dem Profilbeton angeordnet ist. Nachdem die einzelnen Segmente unabhängig voneinander sind und im Gegensatz dazu der Profilbeton als ein durchgehendes Band auch über die Dehnungsfugen an den Stirnseiten der Segmente hinaus verläuft, entstehen unterschiedliche Biegelinien der beiden Einheiten. Die Segmente werden sich jeweils bogenförmig durchbiegen, während der Profilbeton wellenförmig über die einzelnen Segmente verläuft. Um hier zu große Spannungen im Bereich zwischen zwei Segmenten zu vermeiden, ist die Hartschaumschicht oder die Elastomerschicht vorgesehen. Die Enden der Segmente können sich im Extremfall in die nachgiebige Schicht hinein- und herausbewegen, ohne eine unzulässige Druckkraft auf den Profilbeton auszuüben. Die Belastung auf das durchgehende Band wird hierdurch reduziert. Die nachgiebige Schicht bildet somit ein besonders vor- teilhaftes Element bei der vorliegenden Bauausführung. Die nachgiebige Schicht kann beispielsweise eine Hartschaumschicht sein, welche in Form von Hartschaumplatten auf die Segmente vor dem Betonieren des Profilbetons aufgelegt wird. Es wird damit gleichzeitig eine Schalung für den Profilbeton im Bereich der voneinander beabstandeten Stirnseiten zweier benachbarter Segmente erhalten. Die nachgiebige Schicht ist dabei so stark, dass die Kräfte beim Betonieren des Profilbetons ohne wesentlicher Verformung aufgenommen werden, wohingegen die Kräfte durch die Segmente bei einer späteren Winkelveränderung oder einer Quer- oder Höhenverschiebung die Segmente in die nachgiebige Schicht eindrücken und damit eine unzulässige Kraft auf den Profilbeton vermeiden. Als geeignetes Material für die Hartschaumschicht kommt beispielsweise Styrodur in Frage.
Weist die Einrichtung auf der nachgiebigen Schicht eine Stützplatte auf, welche zum Profilbeton hin angeordnet ist, so kann auf dieser Stützplatte vorteilhafterweise die Bewehrung für den Profilbeton vor und während des Betonierens abgelegt werden ohne die nachgiebige Schicht zu beschädigen oder Undefiniert in den Profilbeton einbetoniert zu werden.
Vorteilhafterweise überbrückt die nachgiebige Schicht und/oder die Stützplatte der Einrichtung die beiden Stirnseiten der Segmente. Insbesondere soll dadurch gewährleistet sein, dass der Profilbeton ohne zusätzliche Maßnahme im Bereich der Segmentstöße betoniert werden kann.
Reicht die nachgiebige Schicht zumindest von der Stirnseite des Segmentes bis über die Lagerachse des Segmentes hinaus, so drückt sich das sich dem Profilbeton nähernde Ende des Segmentes, das sich in seiner Lage verändert, in die nachgiebige Schicht hinein. Das Ende des Segmentes dreht sich dabei um das Lager, insbesondere die Lagerachse in Richtung auf den Profilbeton. Die nachgiebige Schicht verhindert somit eine Beschädigung des Profilbetons. Ist in dem Segment und/oder in dem Profilbeton eine Vertiefung angeordnet zur zumindest teilweisen Aufnahme der nachgiebigen Schicht, so wird einerseits die Lage der Schichtdefiniert und andererseits wird, bei einer Anordnung im Segment, der Profilbeton im Bereich der nachgiebigen Schicht nicht sonderlich geschwächt. Die Bauhöhe des Profilbetons ist somit im Bereich des Übergangs zweier Segmente nahezu gleich der Dicke im übrigen Verlauf des Profilbetons. Ist die nachgiebige Schicht in des Profilbetons angeordnet, so muß in den Segmenten keine gesonderte Aussparung vorgesehen sein. Die Herstellung der Segmente wird damit erleichtert und es findet auch keine Schwächung der Segmente statt, was insbesondere dann vorteilhaft sein kann, wenn die Segmente lediglich Platten sind, die beispielsweise ebenerdig oder auf Trägern verlegt sind. Diese beiden Lösungen sorgen insbesondere dafür, dass keine Behinderung der Gleitbewegung der Segmente in Bezug auf den Profilbeton erfolgt. Soll die Schwächung von Segment und Profilbeton gleichmäßig gering sein, so kann sich die Anordnung der Einrichtung mit der nachgiebigen Schicht in beiden Teilen, dem Profilbeton und dem Segment, anbieten.
Die Gleitschicht zwischen Profilbeton und Segment wird vorteilhafterweise aus einer Folie und/oder einem Geotextil hergestellt. Auch die Verwendung von zwei Folien, welche aufeinanderliegen und damit definiert aneinander gleiten können, ist vorteilhaft. Das Geotextil hat den Vorteil, dass es von dem Beton zumindest teilweise getränkt wird und sich damit sehr gut mit dem Beton verbindet. Unebenheiten des Segments können mit dem Geotextil, welches eine Dicke von 2-10 mm aufweisen kann, ausgeglichen werden. Das Gleiten des Profilbetons auf dem Segment wird hierdurch wesentlich erleichtert. Verspannungen können damit weitgehend vermieden werden. Eine Geotextilschicht kann hierzu auf dem Segment und/oder auf der dem Segment zugewandten Seite des Profilbetons angeordnet sein und dazwischen eine oder zwei Folien, beispielsweise PE-Folien mit einer Stärke von etwa 0,3-0,5 mm aufweisen. Besonders vorteilhaft für die Erfindung ist es, wenn auf oder in dem Profilbeton eine Vielzahl von Schienenstützpunkten angeordnet sind. Die Schienen werden dabei diskontinuierlich über die Schienenstützpunkte auf oder in dem Profilbeton befestigt. Der Schienenverlauf ist durch die jeweilige, an den Streckenverlauf angepasste Form des Profilbetons bereits vorgegeben. Es ist somit nur ein geringer Aufwand für die Verlegung der Schienen zu betreiben. Alternativ können die Schienen auch kontinuierlich gelagert werden. Die entsprechenden Schienen aufnahmen, bspw. Tröge, können in der Form des Profilbetons bereits vorgesehen sein.
Vorteilhafterweise sind die Schienenstützpunkte als Betonfertigteile in den Profilbeton eingegossen oder aufgedübelt. Die Konturen zur Aufnahme der Schienen und deren Befestigungselemente können in den Betonfertigteilen bereits vorgesehen sein. Für die Schienenstützpunkte eignen sich insbesondere einzelne Bauteile pro Auflagerung, Querschwellen, Längsschwellen, Zweiblockschwellen, Gleisroste und/oder Platten oder darauf angeordnete Schienenstützpunkte. Die einzelnen Bauteile sind insbesondere nicht miteinander gekoppelt, sondern liegen voneinander unabhängig in oder auf dem Profilbeton. Damit wird ein zusätzlicher Verlegeaufwand vermieden. Eine Koppelung der einzelnen Bauteile ist aber dennoch nicht ausgeschlossen, wenn es im Einzelfall des Bauprojektes vorteilhaft sein sollte.
Der Profilbeton weist neben den oben genannten Vorteilen weiterhin den Vorteil auf, dass die Streckenführung der Festen Fahrbahn mit dem Profilbeton ausgeführt werden kann. Insbesondere eine Überhöhung der Streckenführung, beispielsweise in Kurvenabschnitten, wird mit Hilfe des Profilbetons geformt. Die Bauteile, welche die Schienenstützpunkte aufweisen, können dabei in stets gleicher Ausführung verlegt werden. Sondermaße sind in den meisten Fällen nicht erforderlich. Um einen stabilen Profilbeton zu erhalten, welcher Druck- und Zugspannungen aus Wärmedehnungen, aber auch aus Beschleunigungskräften der Schienenfahrzeuge aufnehmen kann, ist der Profilbeton bewehrt ausgeführt.
Insbesondere um ein seitliches Ausbrechen des Profilbetons und der Festen Fahrbahn zu vermeiden, sind an dem Segment Stopper zur seitlichen und/oder vertikalen Führung des Profilbetons angeordnet. Die Stopper erlauben eine Relativbewegung des Profilbetons in Längs- und/oder Höhenrichtung der Schienen. Eine seitliche Bewegung des Profilbetons auf den Segmenten wird durch die Stopper, welche beiderseits des Profilbetons angeordnet sind, vermieden.
Bildet die Einrichtung eine Schalung zur Herstellung des Profilbetons zwischen zwei benachbarten Segmenten, so werden zusätzliche Schalungselemente in der Regel nicht benötigt.
Die Segmente können aufgeständert oder ebenerdig verlegt sein. Sie können damit als Brückenbauteile, aber auch zur ebenerdigen Überbrückung von nicht ausreichend tragfähigem Untergrund verwendet werden. Eine derartige Verlegung ist kostengünstiger als die Aufbereitung des Untergrundes. Die Segmente sind vorteilhafterweise Brückenträger, auf einen Untergrund aufgelegte Platten oder Pfahl kopfplatten.
Weitere Vorteile der Erfindung sind in den nachfolgenden Ausführungsbeispielen beschrieben. Es zeigt:
Figur 1 einen Längsschnitt durch eine Feste Fahrbahn auf einem Brückenbauwerk im Bereich von Stirnseiten zweier Brückensegmente; Figur 2 eine Draufsicht auf eine Feste Fahrbahn in einem Bereich wie in Figur 1 ;
Figur 3 einen Querschnitt durch ein Brückensegment;
Figur 4 einen Ausschnitt mit einer Detailansicht der Gleitschicht;
Figur 5 einen Längsschnitt durch eine Ausführung einer Festen Fahrbahn und
Figur 6 einen Längsschnitt durch eine weitere Ausführung einer Festen Fahrbahn.
Figur 1 zeigt einen Längsschnitt durch eine Feste Fahrbahn 1 im Bereich eines Stoßes 12 an Stirnseiten 13 zweier Segmente 2 einer Brücke. Die Feste Fahrbahn 1 ist in dem vorliegenden Ausführungsbeispiel aus einem Profilbeton 7 gebildet, welche aus Ortbeton hergestellt ist und ein durchgehendes Band bildet. Auf der Festen Fahrbahn 1 sind auf Schienenstützpunkten 5 Schienen 6 verlegt. Die Schienenstützpunkte 5 sind auf dem Profilbeton 7 angeordnet. Sie können derart ausgeformt sein, dass sie die Schienen 6, wie hier dargestellt, diskontinuierlich lagern. Es ist aber auch eine kontinuierliche Lagerung der Schienen 6 möglich, indem die Schienenstützpunkte 5 entlang der Schienen 6 verlaufen. Der Profilbeton 7 bildet somit für die Schienenstützpunkte 5 einen festen und in ihrer Lage gleichbleibenden Untergrund zum dauerhaften Betrieb der Festen Fahrbahn 1.
Zwischen dem Profilbeton 7 und der Oberseite des Segments 2 ist eine Gleitschicht 10 angeordnet. Um unterschiedliche Ausdehnungen, welche insbesondere durch Sonneneinstrahlung und die unterschiedlichen Massen des Segments 2 und der Festen Fahrbahn 1 mit dem Profilbeton 7 eintreten, ist es notwendig, dass die Feste Fahrbahn 1 und der Profilbeton 7 auf dem Segment 2 gleiten können. Es werden hierdurch unzulässige Verspannungen vermieden und es entsteht ein, insbesondere im Bereich der Festen Fahrbahn 1 , sehr gleichbleibendes Bauwerk, welches den Fahrkomfort des Schienenfahrzeuges deutlich erhöht und andererseits relativ kostengünstig in der Herstellung ist.
Die Segmente 2 sind bei dem hier dargestellten Ausschnitt auf einem Pfeiler 14 angeordnet. Sie sind jeweils auf einem Festlager 15 und einem Loslager 16 abgestützt. Hierdurch wird die Längsausdehnung des Segments 2 von dem Festlager 15 ausgehend in Richtung auf das Loslager 16 desselben Segments 2 erfolgen. Der Spalt in dem Stoß 12 wird hierdurch je nach Längenausdehnung des Segments 2 kleiner oder größer. Um Schubkräfte aus der Festen Fahrbahn 1 und dem Profilbeton 7 auf das Segment 2 übertragen zu können, sind Anker 18 im Bereich des Festlagers 15 des Segments 2 angeordnet, welche den Profilbeton 7 mit dem Segment 2 verbinden. Wärmeausdehnungen des Profilbetons 7 und des Segments 2 werden hierdurch auch in ihrer Richtung gleichgerichtet, so dass eine geringere Relativbewegung der beiden Einheiten zu erwarten ist.
Die Anker 18 sind vorteilhafterweise Einschraubanker. Dies bedeutet, dass an der Oberseite der Segmente 2 Einschraubhülsen einbetoniert sind, in welche die Anker 18 erst kurz vor dem Betonieren des Profilbetons 7 eingeschraubt werden. Dies hat den Vorteil, dass die Oberseite der Segmente 2 während der Herstellung des Bauwerkes als Fahrweg für Baufahrzeuge genutzt werden kann, ohne dass die Anker 18, welche ansonsten aus der Oberseite des Segments 2 herausragen würden, beschädigt werden.
Nachdem die Segmente 2 nicht miteinander verbunden sind, werden sie sich bei einer Belastung jeweils bogenförmig durchbiegen. Im Gegensatz hierzu wird die Bewegung des durchgehenden Bandes des Profilbetons 7 und der Festen Fahrbahn 1 eher wellenförmig erfolgen. Um einen unzulässigen Knick des durchgehenden Bandes im Bereich der Stirnseiten 13 zu vermeiden, ist eine die beiden Stirnseiten 13 überbrückende Einrichtung 200 zur Aufnahme einer Lageveränderung der benachbarten Stirnseiten 13 angeordnet. Die Einrichtung 200 besteht aus einer Hartschaumschicht 20, die im Bereich des Stoßes 12 angeordnet ist. Die Hartschaumschicht 20 befindet sich bei diesem Ausführungsbeispiel zwischen den Segmenten 2 und des Profilbetons 7 und reicht teilweise in diese hinein. Ein gegebenenfalls auftretender Knick zwischen zwei Segmenten 2 im Bereich des Stoßes 12 drückt somit nicht gegen den Profilbeton 7, sondern bewegt sich in die Hartschaumschicht 20 hinein und komprimiert den Hartschaum ohne auf den Profilbeton 7 eine unzulässige Druckkraft auszuüben. Die Hartschaumschicht 20 kann aus Hartschaumplatten bestehen, welche in eine dafür vorgesehene Vertiefung des Segments 2 eingelegt sind. Eine Dicke der Hartschaumschicht 20 von wenigen Zentimetern ist üblicherweise ausreichend. Ebenso ist eine Überlappung der Stirnseiten 13 auf einer Länge von 1 -2 m ebenfalls ausreichend, um die zu erwartenden Relativbewegungen von Profilbeton 7 und Segmente 2 in vertikaler Richtung ausgleichen zu können. Die Vertiefung in der Oberseite des Segments 2 zur Aufnahme der Hartschaumschicht 20 ist zwar vorteilhaft für die Herstellung, da die Position der Hartschaumschicht 20 beim Betonieren des Profilbetons 7 sicher beibehalten wird, sie ist aber für die Funktion nicht notwendigerweise erforderlich.
Um beim Betonieren des Profilbetons 7 die Position der darin befindlichen Bewehrung und insbesondere bei größeren Abständen zwischen den Segmenten 2 das Betonieren des Profilbetons 7 ohne zusätzliche Schalungsmittel sicherstellen zu können, ist es vorteilhaft, wenn die Einrichtung 200 auf der Hartschaumschicht 20 eine Stützplatte 21 aufweist. Die Stützplatte 21 stellt sicher, dass die Bewehrung nicht auf die Hartschaumschicht 20 beim Betonieren sinkt, sondern einen vorbestimmten Abstand hierzu einhält. Die Bewehrung kann sich dementsprechend auf der Stützplatte 21 , beispielsweise mit daran angeordneten Füssen, abstützen.
Figur 2 zeigt eine Draufsicht auf eine Feste Fahrbahn 1 auf Segmenten 2 im Bereich des Stoßes 12 zweier Segmente 2. Es ist daraus ersichtlich, dass der Profilbeton 7 ein durchgehendes Band bildet, welches über die Stirnseiten 12 zweier Segmente 2 hinwegläuft. Im Bereich des Stoßes 12 sind die Hartschaumschicht 20 und die Stützplatte 21 eingearbeitet. Ebenso sind in diesem Bereich die Anker 18 vorgesehen, um eine Verbindung des Profilbetons 7 mit dem Segment 2 zu schaffen. Die Schienen 6 des Gleises für das schienengeführte Fahrzeug sind auf einer Vielzahl von Schienenstützpunkten 5 verlegt. Je nach System der Schienenverlegung kann dies aber auch anders ausgeführt sein. So kann anstelle der diskontinuierlichen Schienenabstützung auch eine kontinuierliche Abstützung, wie mit Längsschwellen 5" angedeutet wurde, erfolgen. Auch ist es möglich, dass die Feste Fahrbahn 1 aus einzelnen Querschwellen 5', welche beide Schienen 6 tragen und untereinander mit Beton und Bewehrung verbunden sind, hergestellt ist. Zweiblockschwellen, Gleisrost und/oder Platten (5'") sind weitere Möglichkeiten, wie die Schienenstützpunkte aus Betonfertigteilen gebildet werden. Alternativ können die Schienenstützpunkte auch aus Ortbeton hergestellt sein.
Wesentlich ist jedenfalls, dass ein durchgehendes Band der Festen Fahrbahn 1 entsteht, welches unabhängig von dem Stoß 12 fortlaufend ausgebildet ist.
Zur Sicherstellung einer gleichbleibenden Position der Festen Fahrbahn 1 in Bezug auf die Querausrichtung zum Segment 2 sind Stopper 24 vorgesehen. Die Stopper 24 sind auf dem Segment 2 befestigt und führen die Feste Fahrbahn 1 sowie den Profilbeton 7 in Querrichtung. Die Kontaktstelle zur Festen Fahrbahn 1 bzw. zum Profilbeton 7 ist lose, so dass bei einer Längenausdehnung Verspannungen vermieden werden. Es kann deshalb vor- teilhaft sein, auch hier eine Gleitschicht zwischen dem Stopper 24 und dem Profil beton 7 vorzusehen.
Figur 3 zeigt einen Querschnitt durch das erfindungsgemäße Bauwerk. Dabei ist auf der linken Seite der Darstellung ein Schnitt durch ein Segment 2 und die Feste Fahrbahn 1 im Bereich einer Stirnseite 13 eines Segment2 2 dargestellt. Es ist deshalb die Hartschaumschicht 20 und die Stützplatte 21 unter dem Profilbeton 7 zu sehen. Der Profilbeton 7 ist keilförmig ausgebildet, so dass die Feste Fahrbahn 1 überhöht ist. Dies ist insbesondere in Kurvenabschnitten der Strecke der Festen Fahrbahn 1 erforderlich. Die Überhöhung wird mit Hilfe des Profilbetons 7 ausgeführt, welche je nach Bedarf betoniert wird. Zur seitlichen Führung der Festen Fahrbahn 1 und des Profilbetons 7 sind Stopper 24 seitlich angeordnet. Die Stopper 24 sind einerseits mit dem Segment 2 fest verbunden und andererseits kann der Profilbeton 7 entlang der Stopper 24 gleiten.
Die rechte Hälfte der Darstellung der Figur 3 zeigt einen Querschnitt im Bereich der normalen Strecke, abseits des Stoßes 12. Zwischen dem Segment 2 und dem Profilbeton 7 ist die Gleitschicht 10 angeordnet, welche ein Gleiten des Profilbetons 7 auf dem Segment 2 erlaubt. Im Übrigen entspricht diese Darstellung der Darstellung auf der linke Seite der Figur 3.
Figur 4 zeigt ein Detail der gleitenden Verbindung zwischen Profilbeton 7 und Segment 2. Um ein Gleiten der relativ rauen Oberflächen des Segments 2 und dem Profilbeton 7 aneinander zu erlauben, ohne dass ein großer Widerstand dabei entsteht, ist bei dieser Ausführung vorgesehen, dass auf der Oberseite des Segments 2 ebenso wie auf der Unterseite des Profilbetons 7 jeweils ein Geotextil 26 angeordnet ist. Zwischen den Geotexti- lien 26 befinden sich zwei Folien 27. Die Geotextilien 26 gleichen die Ungleichmäßigkeiten der Oberflächen des Segments 2 und des Profilbetons 7 aus. Sie tränken sich teilweise beim Betonieren mit dem jeweiligen Beton, wenn sie vor dem Abbinden des Betons aufgebracht werden. Üblicherweise wird das Geotextil 26 auf dem Segment 2 allerdings erst nach dem Abbinden des Betons aufgebracht werden. Eine Durchtränkung des Geotextiles 26 erfolgt in diesem Falle nicht. Hingegen wird der Profilbeton 7 üblicherweise auf das Geotextil 26 aufbetoniert, dringt beim Betonieren in das Geotextil 26 ein und schafft somit eine feste Verbindung. Die beiden Folien 27 sorgen für eine Gleitbewegung des Profilbetons 7 auf dem Segment 2, welche eine sehr geringe Reibung aufweist. Die beiden Folien 27 gleiten aneinander ohne großen Widerstand. In einer einfacheren Ausführung der Erfindung ist es auch ausreichend, nur eine Folie 27 und gegebenenfalls sogar auch nur ein Geotextil 26 zu verwenden, um die Ungleichmäßigkeiten von Segment 2 und Profilbeton 7 auszugleichen und eine ausreichende Gleitwirkung zu erlauben.
In Figur 5 ist eine weitere Ausführung der Erfindung dargestellt. Der Profilbeton 7 ist nicht durch eine Aussparung für die Hartschaumschicht 20 unterbrochen. Sie verläuft oberhalb des Stoßes 12 der beiden Segmente 2 ohne Querschnittsänderung. Zwischen dem Profilbeton 7 und den Segmenten 2 bzw. der Hartschaumschicht 20 ist ebenfalls durchgehend und ohne Absatz die Gleitschicht 10 angeordnet. Hierdurch ist ein unbeeinträchtigtes Gleiten der Segmente 2 unterhalb des Profilbetons 7 möglich. Die Hartschaumschicht 20 ist in einer Aussparung an den jeweiligen Enden der Segmente 2 angeordnet. Sie reicht von einem Bereich vor dem Auflager des ersten Segmentes 2 über deren Stirnseite 13 und den Stoß12 hinweg bis über die Stirnseite 13 und das Auflager des zweiten Segmentes 2 hinaus. Die Festigkeit der Segmente 2 wird hierdurch nur unwesentlich beeinträchtigt. Die Hartschaumschicht 20 überbrückt dabei den Stoß 12 und dient gleichzeitig als Schalung für den mit Ortbeton hergestellte Profilbeton 7. Dies kann ohne Stützplatte 21 erfolgen, wenn der Stoß 12 nur eine geringe Breite aufweist oder die Hartschaumschicht 20 genügend stabil ausgebildet ist. Die beiden Segmente 2 sind in dieser Ausführung schwimmend gelagert. Dies ist durch die beiden Gleitlager 16 angedeutet, auf weichen die Segmente 2 gelagert sind. Wärmeausdehnungen oder Bewegungen des Untergrundes unter den Segmenten 2 können hierdurch von dem Profilbeton 7 besonders gut entkoppelt werden.
Figur 6 zeigt eine Ausführung, bei welcher die Hartschaumschicht 20 auf den Segmenten 2 aufliegt und in den Profilbeton 7 hineinragt. Bei dieser Ausführung müssen keine besonderen Maßnahmen bei den Segmenten 2 getroffen werden, um die Hartschaumschicht 20 aufzunehmen. Der Profilbeton 7 muss in ihrer Stärke dabei so ausgelegt werden, dass sie trotz der Querschnittsreduzierung im Bereich der Hartschaumschicht 20 die zu erwartenden Kräfte aufnehmen kann. Die Gleitschicht 10 ist im Bereich der Hartschaumschicht 20 unterbrochen. Die Bewegung zwischen Profilbeton 7 und den Segmenten 2 wird dabei durch die Hartschaumschicht 20 kompensiert, sofern sich die Hartschaumschicht 20 nicht auf den Segmenten zusammen mit dem Profilbeton 7 bewegt. Sofern hierbei Schwierigkeiten zu erwarten sind, ist es auch möglich, dass die Gleitschicht 10 durchgehend ausgeführt wird und die Hartschaumschicht 20 auf der durchgehenden Gleitschicht 10 angeordnet wird.
In dem Ausführungsbeispiel der Figur 6 ist zudem die Lagerung der Segmente 2 auf einem Untergrund 30 dargestellt. Die Segmente 2 sind als Platten ausgeführt, welche auf dem Untergrund 30 aufgelegt sind. Der Untergrund 30 kann eine hydraulisch gebundene Tragschicht oder eine andere mehr oder weniger aufwändig aufbereitete Fläche sein.
Die vorliegende Erfindung ist nicht auf die dargestellten Ausführungsbeispiele beschränkt. Abwandlungen in der Gestaltung des Profilbetons 7, dem Segment 2 sowie der Gleitschicht 10 sind jederzeit im Rahmen der Patentansprüche möglich.

Claims

P a t e n t a n s p r ü c h e
1. Feste Fahrbahn mit einem Betonband auf einem aus einzelnen, aneinandergereihten Segmenten hergestellten Bauwerk, und
- mit Schienen (6) für ein schienengeführtes Fahrzeug, welche auf dem Betonband angeordnet sind,
- wobei das Betonband durchgehend verläuft und die einzelnen Segmente überbrückt,
- und zwischen dem Betonband und den Segmenten eine Gleitschicht (10) angeordnet ist und dadurch gekennzeichnet, dass
- das Betonband ein Profilbeton (7) ist, in welcher der Streckenverlauf der Festen Fahrbahn bezüglich Krümmung und Querneigung abgebildet ist, und
- im Bereich von benachbarten Stirnseiten zweier aneinandergren- zender Segmente eine die beiden Stirnseiten überbrückende Einrichtung (200) zur Aufnahme einer Lageveränderung der benachbarten Stirnseiten angeordnet ist, welche eine kritische Krafteinwirkung auf den Profilbeton (7) vermeidet und die Wirkung der Gleitschicht nicht wesentlich beeinträchtigt.
2. Feste Fahrbahn nach Anspruch 1 , dadurch gekennzeichnet, dass das Segment (2) auf einem Festlager (15) und einem Loslager (16) abgestützt ist und der Profilbeton (7) im Bereich des Festlagers (15) des Segments (2) fest mit diesem verbunden ist.
3. Feste Fahrbahn nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die feste Verbindung von Segment (2) und Profilbeton (7) mit Verbindungselementen wie Anker (18), insbesondere Einschraubanker, Bügelbewehrung oder Dübel vorgesehen ist.
4. Feste Fahrbahn nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Einrichtung (200) eine nachgiebige Schicht, beispielsweise eine Hartschaumschicht (20) oder eine Elastomer- schicht zwischen dem Segment (2) und dem Profilbeton (7) beinhaltet.
5. Feste Fahrbahn nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Einrichtung (200) auf der nachgiebigen Schicht (20) eine Stützplatte (21 ) aufweist.
6. Feste Fahrbahn nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die nachgiebige Schicht (20) und/oder die Stützplatte (21 ) der Einrichtung (200) die beiden Stirnseiten (12) der Segmente (2) überbrückt.
7. Feste Fahrbahn nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die nachgiebige Schicht (20) zumindest von der Stirnseite (12) des Segmentes (2) bis über die Lagerachse des Segmentes (2) hinaus reicht.
8. Feste Fahrbahn nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass in dem Segment (2) eine Vertiefung angeordnet ist zur teilweisen Aufnahme der nachgiebigen Schicht (20).
9. Feste Fahrbahn nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Gleitschicht (10) aus einer Folie (27) und/oder einem Geotextil (26) besteht.
10. Feste Fahrbahn nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass auf oder in dem Profilbeton eine Vielzahl von Schienenstützpunkten (5) angeordnet sind.
11. Feste Fahrbahn nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Schienenstützpunkte (5) als Betonfertigteile in den Profilbeton eingegossen oder aufgedübelt sind.
12. Feste Fahrbahn nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Schienenstützpunkte (5) einzelne Bauteile (5) pro Auflagerung, Querschwellen (5'), Längsschwellen (5"), Zweiblockschwellen, ein Gleisrost und/oder Platten (5'") sind oder darauf angeordnet sind.
13. Feste Fahrbahn nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der Profilbeton (7) bewehrt ist.
14. Feste Fahrbahn nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass an dem Segment (2) Stopper (24) zur seitlichen und / oder vertikalen Führung des Profilbetons (7) angeordnet sind.
15. Feste Fahrbahn nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Einrichtung (200) eine Schalung zur Herstellung des Profilbetons (7) zwischen zwei benachbarten Segmenten (2) bildet.
16. Feste Fahrbahn nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Segmente (7) aufgeständert oder ebenerdig verlegt sind.
17. Feste Fahrbahn nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Segmente (7) Brückenträger, auf einen Untergrund aufgelegte Platten oder Pfahlkopfplatten sind.
PCT/EP2008/050086 2007-01-17 2008-01-07 Feste fahrbahn mit einem betonband WO2008087061A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP08701265.4A EP2102415B1 (de) 2007-01-17 2008-01-07 Feste fahrbahn mit einem betonband
US12/523,221 US8281722B2 (en) 2007-01-17 2008-01-07 Solid track comprising a concrete strip
RU2009131063/11A RU2472893C2 (ru) 2007-01-17 2008-01-07 Безбалластный путь с бетонным полотном
CN200880002560.3A CN101583761B (zh) 2007-01-17 2008-01-07 具有混凝土条的固定车行道

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007003351.8 2007-01-17
DE102007003351A DE102007003351A1 (de) 2007-01-17 2007-01-17 Feste Fahrbahn mit einem Betonband

Publications (1)

Publication Number Publication Date
WO2008087061A1 true WO2008087061A1 (de) 2008-07-24

Family

ID=39204945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/050086 WO2008087061A1 (de) 2007-01-17 2008-01-07 Feste fahrbahn mit einem betonband

Country Status (7)

Country Link
US (1) US8281722B2 (de)
EP (1) EP2102415B1 (de)
KR (1) KR20090100429A (de)
CN (1) CN101583761B (de)
DE (1) DE102007003351A1 (de)
RU (1) RU2472893C2 (de)
WO (1) WO2008087061A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103015317A (zh) * 2012-12-27 2013-04-03 南京工业大学 一种工厂预制正交异性钢板-复合材料组合桥面结构
CN103194970A (zh) * 2013-04-23 2013-07-10 黄海林 一种带肋frp构件与混凝土组合桥面板
CN104452584A (zh) * 2014-11-26 2015-03-25 安徽省交通投资集团有限责任公司 一种钢桥面铺装结构

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011120187A1 (zh) * 2010-03-29 2011-10-06 上海磁浮交通发展有限公司 磁浮轨道梁端构造结构
KR101158466B1 (ko) * 2011-06-15 2012-06-20 강남훈 교체가 용이한 3차원 입체형상의 궤도블록 및 그 제조방법, 이 궤도블록을 이용한 콘크리트 궤도 부설방법 및 안내궤도식 고무차륜 경전철의 궤도 부설방법
KR101416157B1 (ko) * 2012-02-03 2014-07-09 강남훈 교체가 용이한 3차원 입체형상의 궤도블록 및 그 제조방법, 이 궤도블록을 이용한 콘크리트 궤도 부설방법 및 안내궤도식 고무차륜 경전철의 궤도 부설방법
RU2544041C2 (ru) * 2013-12-03 2015-03-10 Александр Тихонович Зиньковский Рельсовая колея и способ её эксплуатации
RU2700098C2 (ru) * 2017-05-15 2019-09-12 Альберт Васильевич Горностаев Рельсовый железнодорожный путь
RU2668529C1 (ru) * 2017-12-28 2018-10-01 Открытое Акционерное Общество "Российские Железные Дороги" Земляное полотно высокоскоростной магистрали
RU2668530C1 (ru) * 2017-12-28 2018-10-01 Открытое Акционерное Общество "Российские Железные Дороги" Земляное полотно высокоскоростной магистрали
IT201800004163A1 (it) * 2018-04-03 2019-10-03 Metodo di stabilizzazione, per alleggerimento, di un rilevato ferroviario o stradale
CN110761125A (zh) * 2019-12-04 2020-02-07 中铁二院工程集团有限责任公司 岩石地基既有高铁粗粒土填筑路堤帮宽结构及施工方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1459714A1 (de) * 1963-12-06 1968-12-05 Philipp Holzmann AG, 6OOO Frankfurt; Erfi Antrag auf Nichtnennung Fahrbahnübergang zur Überbrückung von Bewegungs- bzw. Dehnungsfugen in Fahrbahnen
DE2443770A1 (de) * 1974-09-13 1976-03-25 Zueblin Ag Eisenbahnbruecke mit schotterlosem gleisunterbau
CH599399A5 (en) * 1975-12-08 1978-05-31 Gutehoffnungshuette Sterkrade Roadway joint on bridge
DE3919833A1 (de) * 1989-06-16 1990-12-20 Zueblin Ag Verfahren zum auswechseln eines gleitlagers unter einer festen fahrbahn auf bruecken
DE19620731A1 (de) * 1996-05-23 1997-11-27 Strabag Hoch Und Ingenieurbau Feste Fahrbahn für schienengebundene Fahrzeuge auf Brücken und Verfahren zu ihrer Herstellung
DE19806566A1 (de) * 1998-02-17 1999-08-19 Pfeifer Ausgleichplatte für Eisenbahnbrücken
WO2007006640A1 (de) * 2005-07-12 2007-01-18 Max Bögl Bauunternehmung GmbH & Co. KG Feste fahrbahn auf einem brückenbauwerk

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2543243C2 (de) * 1975-09-27 1985-04-25 Dyckerhoff & Widmann AG, 8000 München Brückentragwerk mit gleitend auf dem Überbau aufgelagerten und ohne Unterbrechung über diesen hinweggeführten Verkehrsweg
DE3012867A1 (de) * 1980-04-02 1981-10-08 Ed. Züblin AG, 7000 Stuttgart Eisenbahnbruecke mit schotterlosem gleisoberbau
AT382178B (de) * 1985-10-02 1987-01-26 Getzner Chemie Gmbh & Co Gleiskoerper
HU207756B (en) * 1988-06-03 1993-05-28 Beton Es Vasbetonipari Muevek Arrangement for forming large-panel railroad permanent ways
DE4313105A1 (de) * 1993-04-22 1994-11-03 Walter Bau Ag Verfahren zum Herstellen eines schotterlosen Gleisoberbaus und ein nach dem Verfahren hergestellter Gleisoberbau
US5782405A (en) * 1993-12-27 1998-07-21 Vincent; Jon R. Railroad track collector pan system
RU2100523C1 (ru) * 1995-01-12 1997-12-27 Акционерное общество открытого типа "Сибирский горный институт по проектированию шахт, разрезов и обогатительных фабрик" Сборное пролетное строение моста и мостовое полотно
DE10333616A1 (de) 2003-06-06 2004-11-11 Sbp Gmbh Brücke, insbesondere Bahnbrücke

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1459714A1 (de) * 1963-12-06 1968-12-05 Philipp Holzmann AG, 6OOO Frankfurt; Erfi Antrag auf Nichtnennung Fahrbahnübergang zur Überbrückung von Bewegungs- bzw. Dehnungsfugen in Fahrbahnen
DE2443770A1 (de) * 1974-09-13 1976-03-25 Zueblin Ag Eisenbahnbruecke mit schotterlosem gleisunterbau
CH599399A5 (en) * 1975-12-08 1978-05-31 Gutehoffnungshuette Sterkrade Roadway joint on bridge
DE3919833A1 (de) * 1989-06-16 1990-12-20 Zueblin Ag Verfahren zum auswechseln eines gleitlagers unter einer festen fahrbahn auf bruecken
DE19620731A1 (de) * 1996-05-23 1997-11-27 Strabag Hoch Und Ingenieurbau Feste Fahrbahn für schienengebundene Fahrzeuge auf Brücken und Verfahren zu ihrer Herstellung
DE19806566A1 (de) * 1998-02-17 1999-08-19 Pfeifer Ausgleichplatte für Eisenbahnbrücken
WO2007006640A1 (de) * 2005-07-12 2007-01-18 Max Bögl Bauunternehmung GmbH & Co. KG Feste fahrbahn auf einem brückenbauwerk

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103015317A (zh) * 2012-12-27 2013-04-03 南京工业大学 一种工厂预制正交异性钢板-复合材料组合桥面结构
CN103194970A (zh) * 2013-04-23 2013-07-10 黄海林 一种带肋frp构件与混凝土组合桥面板
CN104452584A (zh) * 2014-11-26 2015-03-25 安徽省交通投资集团有限责任公司 一种钢桥面铺装结构

Also Published As

Publication number Publication date
DE102007003351A1 (de) 2008-07-24
EP2102415A1 (de) 2009-09-23
RU2472893C2 (ru) 2013-01-20
RU2009131063A (ru) 2011-02-27
CN101583761B (zh) 2012-10-03
CN101583761A (zh) 2009-11-18
US20100065651A1 (en) 2010-03-18
KR20090100429A (ko) 2009-09-23
EP2102415B1 (de) 2017-03-01
US8281722B2 (en) 2012-10-09

Similar Documents

Publication Publication Date Title
EP2102415B1 (de) Feste fahrbahn mit einem betonband
EP1904682B1 (de) Feste fahrbahn auf einem brückenbauwerk
EP3673113B1 (de) Verfahren zur herstellung einer integralen brücke und integrale brücke
EP3303707B1 (de) Verfahren zur herstellung einer fahrbahnplatte für eine brücke
EP2143843A2 (de) Stahl-Beton-Verbundtrog als Brückenüberbau und Verfahren zu seiner Herstellung
DE10321047B4 (de) Fahrbahn für Magnetschwebebahnen und Herstellungsverfahren dafür
EP2431525A1 (de) Brückenkonstruktion für eine Hilfsbrücke
AT514036B1 (de) Fahrbahnübergangsvorrichtung
EP2806067B1 (de) Trogbrücke mit einer Fahrbahnplatte aus Grobblech und Verfahren zur Herstellung einer Trogbrücke
DE2247609B1 (de) Verfahren zum herstellen eines brueckenbauwerks aus spannbeton im abschnittsweisen freien vorbau
AT520614B1 (de) Verfahren zur Herstellung einer Fahrbahnplatte mit untenliegenden Fertigteilplatten
DE102006038888B3 (de) Fahrbahn für Magnetschwebebahnen
WO2021203150A1 (de) Verfahren zur herstellung einer fahrbahnplatte für eine brücke
DE10237176B4 (de) Fahrbahn für Magnetbahnzüge
EP2029813B1 (de) Verfahren zur herstellung einer segmentfertigteilbrücke und segmentfertigteilbrücke
EP2119828A2 (de) Gleisabdecksystem und Maschine zur Demontage und Verlegung eines Gleisabdecksystems
EP2166149B2 (de) Gleiskörperformteileinheit
AT526252B1 (de) Verfahren zur herstellung einer fahrbahnplatte für eine brücke
DE19959978A1 (de) Gleisanlagen-Tragplatte, Gleisanlagen-Unterbau und Gleisanlage
DE19944783A1 (de) Feste-Fahrbahn-System
DE2451574C3 (de) Spannbeton-Fahrbahnplatte für Brückentragwerke sowie Verlegegerät und Verfahren zu deren Herstellung
DE3144558A1 (de) Bruecke mit durchgehendem verkehrsweg
DE19947882A1 (de) Gleisanlagen-Tragplatte, Gleisanlagen-Unterbau und Gleisanlage
DE1154139B (de) Gelenklager zum Befestigen von bruecken-aehnlichen Bauteilen auf Unterstuetzungen, insbesondere von vorgefertigten Stahlbeton-Tragbalkenstuecken von Einschienenstandbahnen auf Stuetzen
DE2729250A1 (de) Bruecke

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880002560.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08701265

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2008701265

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008701265

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12523221

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 4923/DELNP/2009

Country of ref document: IN

Ref document number: 1020097015912

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2009131063

Country of ref document: RU

Kind code of ref document: A