WO2008075556A1 - 可変動弁機構付き内燃機関 - Google Patents

可変動弁機構付き内燃機関 Download PDF

Info

Publication number
WO2008075556A1
WO2008075556A1 PCT/JP2007/073397 JP2007073397W WO2008075556A1 WO 2008075556 A1 WO2008075556 A1 WO 2008075556A1 JP 2007073397 W JP2007073397 W JP 2007073397W WO 2008075556 A1 WO2008075556 A1 WO 2008075556A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
valve mechanism
spring
internal combustion
variable valve
Prior art date
Application number
PCT/JP2007/073397
Other languages
English (en)
French (fr)
Other versions
WO2008075556A9 (ja
Inventor
Shuichi Ezaki
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to US12/377,390 priority Critical patent/US8006659B2/en
Priority to EP07850045A priority patent/EP2096274B1/en
Priority to CN2007800428582A priority patent/CN101553647B/zh
Publication of WO2008075556A1 publication Critical patent/WO2008075556A1/ja
Publication of WO2008075556A9 publication Critical patent/WO2008075556A9/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/0015Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque
    • F01L13/0063Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque by modification of cam contact point by displacing an intermediate lever or wedge-shaped intermediate element, e.g. Tourtelot
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/26Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of two or more valves operated simultaneously by same transmitting-gear; peculiar to machines or engines with more than two lift-valves per cylinder
    • F01L1/267Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of two or more valves operated simultaneously by same transmitting-gear; peculiar to machines or engines with more than two lift-valves per cylinder with means for varying the timing or the lift of the valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/12Transmitting gear between valve drive and valve
    • F01L1/18Rocking arms or levers
    • F01L1/185Overhead end-pivot rocking arms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/20Adjusting or compensating clearance
    • F01L1/22Adjusting or compensating clearance automatically, e.g. mechanically
    • F01L1/24Adjusting or compensating clearance automatically, e.g. mechanically by fluid means, e.g. hydraulically
    • F01L1/2405Adjusting or compensating clearance automatically, e.g. mechanically by fluid means, e.g. hydraulically by means of a hydraulic adjusting device located between the cylinder head and rocker arm
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/047Camshafts
    • F01L1/053Camshafts overhead type
    • F01L2001/0537Double overhead camshafts [DOHC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/46Component parts, details, or accessories, not provided for in preceding subgroups
    • F01L2001/467Lost motion springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/0015Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque
    • F01L13/0063Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque by modification of cam contact point by displacing an intermediate lever or wedge-shaped intermediate element, e.g. Tourtelot
    • F01L2013/0068Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque by modification of cam contact point by displacing an intermediate lever or wedge-shaped intermediate element, e.g. Tourtelot with an oscillating cam acting on the valve of the "BMW-Valvetronic" type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2305/00Valve arrangements comprising rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2820/00Details on specific features characterising valve gear arrangements
    • F01L2820/02Formulas

Definitions

  • the present invention relates to an internal combustion engine with a variable valve mechanism that has a variable valve mechanism that can mechanically change a valve operating angle and a lift amount.
  • variable valve mechanism that can mechanically change a valve operating angle and a lift amount according to an operating state of an internal combustion engine is known (see, for example, Patent Document 1). According to this apparatus, the variable valve mechanism is disposed between the cam and the rocker arm.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2003-239712
  • Patent Document 2 Japanese Patent Laid-Open No. 6-221123
  • Patent Document 3 Japanese Patent Laid-Open No. 9228808
  • Patent Document 4 Japanese Patent No. 2503932
  • the rocker arm is supported by a valve and a hydraulic lash adjuster (HLA). Therefore, the rocker arm is pressed against the variable valve mechanism by the urging force of these valve springs and the hydraulic lash adjuster.
  • HLA hydraulic lash adjuster
  • the valve operating system including the variable valve operating mechanism, the rocker arm, and the vano rev operates at a high speed, so that the inertial force acting on the valve operating system increases. . If the force or the inertial force increases, the contact point between the variable valve mechanism and the rocker arm may be separated. In this case, when the hydraulic lash adjuster is instantaneously extended, the rocker arm and the variable valve mechanism come into contact again. In other words, the hydraulic lash adjuster pumps up. As a result, there is a possibility that a valve closing failure that the valve cannot be completely closed may occur.
  • the present invention has been made to solve the above-described problems, and it is possible to suppress an increase in excess friction while preventing pump-up of a hydraulic lash adjuster.
  • An object is to provide an internal combustion engine with a variable valve mechanism.
  • the first invention provides an internal combustion engine having a mechanical variable valve mechanism between a drive cam and a rocker arm supported by a hydraulic lash adjuster and a valve.
  • a lost motion spring that applies a load so as to press the variable valve mechanism against the drive cam
  • a valve spring for applying a load so as to press the rocker arm against the variable valve mechanism
  • a critical engine in which the inertial force of the variable valve mechanism exceeds the maximum load of the lost motion spring is defined as the first engine speed, and the inertial force of the valve and the rocker arm exceeds the maximum load of the valve spring.
  • the maximum loads of the lost motion spring and the valve spring are set so that the first engine speed is lower than the second engine speed when the speed is the second engine speed. It is characterized by.
  • the second invention is the first invention, wherein
  • the engine speed force at which the bounce of the valve occurs The maximum load of the lost motion spring and the valve spring is set so that the maximum allowable engine speed that is instantaneously allowed is the maximum allowable engine speed. It is characterized by that.
  • the third invention is the first or second invention
  • the maximum load of the valve spring is set so that the second engine speed becomes a long-time guaranteed speed that is the maximum speed that can be achieved only by the internal combustion engine after the fuel power is executed! / It is characterized by that.
  • the inertia force of the variable valve mechanism is the maximum load of the lost motion spring.
  • First engine speed force exceeding the load The inertial force of the valve and rocker arm is made lower than the second engine speed exceeding the maximum valve spring load. This allows the contact between the variable valve mechanism and the drive cam to be separated before the contact between the rocker arm and the variable valve mechanism.
  • the contact point between the rocker arm and the variable valve mechanism is separated, pumping up of the hydraulic lash adjuster may occur, which may cause a valve closing failure.
  • the occurrence of a pump-up of the hydraulic lash adjuster is prevented while allowing the occurrence of a jump due to the contact between the variable valve mechanism and the drive cam separating. For this reason, it is possible to prevent the occurrence of poor valve closing, and it is possible to prevent the performance deterioration of the internal combustion engine.
  • the contact between the variable valve mechanism and the drive cam is not separated. Since the maximum load of the lost motion spring is set to be low as allowed, an increase in excess friction of the variable valve mechanism can be suppressed. As a result, it is possible to suppress the deterioration of fuel consumption and the decrease in wear resistance of the components of the variable valve mechanism.
  • the engine speed at which bounce occurs is set to the instantaneous allowable maximum speed by setting the maximum loads of the lost motion spring and the valve spring.
  • the maximum spring load is set lower than when the engine speed at which bouncing occurs is higher than the instantaneous maximum allowable engine speed, thereby suppressing an increase in excess friction of the variable valve mechanism. The power S to do.
  • the critical engine speed (second engine speed) at which the inertia force of the valve and the rocker arm exceeds the maximum load of the valve spring is long.
  • Time guaranteed speed As a result, the contact between the mouth arm and the variable valve mechanism is prohibited, and the pump up of the hydraulic lash adjuster is prohibited up to the long-term guaranteed rotational speed. Therefore, since the valve closing failure is prohibited up to the long-term guaranteed rotational speed, it is possible to avoid a situation in which the performance deterioration of the internal combustion engine occurs. wear.
  • FIG. 1 is a diagram for explaining an overall configuration of a system according to an embodiment of the present invention.
  • FIG. 2 is a perspective view for explaining the configuration of the variable valve mechanism 40 shown in FIG. 1.
  • FIG. 2 is a perspective view for explaining the configuration of the variable valve mechanism 40 shown in FIG. 1.
  • variable valve mechanism 40 shown in FIG. 2 as viewed from the axial direction of the intake camshaft 15.
  • FIG. 4 is a diagram showing continuous changes in the operating angle and lift amount of the intake valve 14 realized by the variable valve mechanism 40.
  • FIG. 5 is a diagram showing an example of a spring load and an inertial force.
  • FIG. 6 is a diagram for explaining the occurrence of valve jump during high rotation.
  • FIG. 7 is a diagram for explaining the occurrence of bounce of the valve at the time of high rotation.
  • FIG. 8 is a diagram for explaining a method of setting spring maximum loads Plm ax and P2ma X in the embodiment of the present invention.
  • FIG. 9 is a diagram showing a comparative example with respect to the embodiment of the present invention.
  • FIG. 1 is a diagram for explaining the overall configuration of a system according to an embodiment of the present invention.
  • the system of the present embodiment includes an internal combustion engine 1.
  • the internal combustion engine 1 has a plurality of cylinders 2.
  • FIG. 1 shows only one cylinder among a plurality of cylinders.
  • the internal combustion engine 1 includes a cylinder block 4 having a piston 3 inside.
  • the piston 3 is connected to the crankshaft 6 through a crank mechanism.
  • a crank angle sensor 7 is provided in the vicinity of the crankshaft 6.
  • the crank angle sensor 7 is configured to detect the rotation angle (crank angle CA) of the crankshaft 6.
  • a cylinder head 8 is assembled to the upper part of the cylinder block 4.
  • the space from the top surface of the piston 3 to the cylinder head 8 forms a combustion chamber 10.
  • the cylinder head 8 is provided with an injector 11 that directly injects fuel into the combustion chamber 10.
  • the cylinder head 8 is provided with a spark plug 12 that ignites the air-fuel mixture in the combustion chamber 10.
  • the cylinder head 8 includes an intake port 13 that communicates with the combustion chamber 10.
  • An intake valve 14 is provided at a connection portion between the intake port 13 and the combustion chamber 10.
  • the system according to the first embodiment includes two intake valves 14 (see FIG. 2) corresponding to the two intake ports 13 provided for each cylinder.
  • a mechanical variable valve mechanism 40 is provided between the intake valve 14 and the intake cam 16 provided on the intake cam shaft 15. The force that will be described in detail later
  • the variable valve mechanism 40 is configured such that the valve opening characteristics of the intake valve 14 can be mechanically changed. That is, the variable valve mechanism 40 is configured to continuously change the interlocking state between the rotational motion of the intake cam 16 and the swing motion of the rocker arm 56 described later.
  • the intake camshaft 15 can be driven to rotate by transmitting the driving force of the crankshaft 6.
  • An intake passage 18 is connected to the intake port 13.
  • a surge tank 20 is provided in the middle of the intake passage 18!
  • a throttle valve 22 is installed upstream of the surge tank 20. It has been.
  • the throttle valve 22 is an electronically controlled valve that is driven by a throttle motor 23.
  • the throttle valve 22 is driven based on the accelerator opening AA detected by the accelerator opening sensor 24.
  • a throttle opening sensor 25 for detecting the throttle opening TA is provided.
  • An air flow meter 26 is provided upstream of the throttle valve 22.
  • the air flow meter 26 is configured to detect the intake air amount Ga.
  • An air cleaner 27 is provided upstream of the air flow meter 26.
  • the cylinder head 8 includes an exhaust port 28 that communicates with the combustion chamber 10.
  • An exhaust valve 30 is provided at the connection between the exhaust port 28 and the combustion chamber 10.
  • An exhaust passage 32 is connected to the exhaust port 28.
  • a catalyst 34 for purifying exhaust gas is provided in the exhaust passage 32.
  • An air-fuel ratio sensor 36 that detects the exhaust air-fuel ratio is provided upstream of the catalyst 34.
  • the system according to the present embodiment includes an ECU (Electronic Control Unit) 60 as a control device.
  • ECU Electronic Control Unit
  • an injector 11, a spark plug 12, a throttle motor 23, a variable valve mechanism 40, and the like are connected.
  • a crank angle sensor 7, an accelerator opening sensor 24, a throttle opening sensor 25, an air flow meter 26, an air-fuel ratio sensor 36, and the like are connected.
  • the ECU 60 executes overall control of the internal combustion engine such as fuel injection control and ignition timing control based on the output of each sensor.
  • the ECU 60 calculates the engine speed NE based on the output of the crank angle sensor 7. Further, the ECU 60 calculates the load KL required for the internal combustion engine 1 based on the accelerator opening AA, the throttle opening TA, and the like. Further, the ECU 60 continuously and variably controls the operating angle / lift amount of the intake valve 14 by controlling the position of the control shaft 41 in accordance with the operating state (NE, L) of the internal combustion engine 1.
  • FIG. 2 is a perspective view for explaining the configuration of the variable valve mechanism 40 shown in FIG.
  • FIG. 3 is a side view of the variable valve mechanism 40 shown in FIG. 2 as viewed from the axial direction of the intake camshaft 15.
  • the two intake valves 14 L and 14 R are arranged symmetrically about the intake cam 16 that is a drive cam. Between intake cam 16 and intake valves 14L, 14R Is provided with a variable valve mechanism 40 that links the lift movement of the intake valves 14L and 14R to the rotational movement of the intake cam 16.
  • variable valve mechanism 40 and the components arranged symmetrically such as the intake valves 14L and 14R are not particularly required to be distinguished. , L and R symbols that distinguish left and right may not be attached.
  • variable valve mechanism 40 has a control shaft 41.
  • the control shaft 41 is arranged in parallel with the intake cam shaft 15.
  • the control shaft 41 is rotationally driven by a drive mechanism (not shown).
  • the drive mechanism can be constituted by, for example, a worm wheel fixed to the control shaft 41, a worm gear engaged with the worm wheel, an electric motor having an output shaft to which the worm gear is fixed.
  • a control arm 42 is fixed to the control shaft 41 with bolts 43.
  • An intermediate arm 44 is attached to the protruding portion of the control arm 42 by a pin 45.
  • the pin 45 is arranged at a position eccentric from the center of the control shaft 41. Therefore, the intermediate arm 44 is configured to swing around the pin 45.
  • Rollers 52 and 53 which will be described later, are rotatably provided at the tip of the intermediate arm 44.
  • two swing arms 50L and 50R are swingably supported on the control shaft 41.
  • the swing arm 50 has a slide surface 50 a on the side facing the intake cam 16.
  • the slide surface 50 a is formed so as to contact the second roller 53.
  • the slide surface 50a is formed in a curved surface such that the distance from the intake cam 16 gradually decreases as the second roller 53 moves from the distal end side of the swing arm 50 toward the shaft center side of the control shaft 41. .
  • the swing arm 50 has a swing cam surface 51 on the opposite side of the slide surface 50a.
  • the oscillating cam surface 51 has a non-operating surface 51a formed so that the distance from the oscillating center of the oscillating arm 50 is constant, and a position farther away from the non-operating surface 51a is more It consists of a working surface of 5 lb formed to be far away.
  • a first roller (hereinafter also referred to as “cam roller”) 52 and a second roller 53 are disposed between the slide surface 50 a and the peripheral surface of the intake cam 16. More specifically, the cam roller 52 is disposed so as to be in contact with the peripheral surface of the intake force drum 16. The second roller 53 is disposed so as to contact the slide surface 50a of the swing arm 50.
  • the cam roller 52 and the second roller 53 are rotatably supported by a connecting shaft 54 that is fixed to the distal end portion of the intermediate arm 44. Since the intermediate arm 44 swings about the pin 45 as a fulcrum, the rollers 52 and 53 also swing along the slide surface 50 a and the peripheral surface of the intake cam 16 while maintaining a certain distance from the pin 45.
  • the swing arm 50 is formed with a spring seat 50b.
  • One end of a lost motion spring 55 is hung on the spring seat 50b.
  • the other end of the lost motion spring 55 is fixed to a stationary part of the internal combustion engine 1.
  • the lost motion spring 55 is a compression panel.
  • a rocker arm 56 is disposed below the swing arm 50.
  • the rocker arm 56 is provided with a rocker roller 57 so as to face the swing cam surface 51.
  • the rocker roller 57 is rotatably attached to an intermediate portion of the rocker arm 56.
  • One end of the rocker arm 56 is supported by the valve shaft 14 a of the valve 14, and the other end of the rocker arm 56 is rotatably supported by a hydraulic lash adjuster 58.
  • the rocker arm 56 can rotate with the hydraulic lash adjuster 58 as a fulcrum.
  • the hydraulic lash adjuster 58 urges the rocker arm 56 in a direction to push it up so that there is no clearance between the rocker roller 57 and the swing cam surface 51.
  • valve shaft 14a The upper portion of the valve shaft 14a is connected to the valve seat 14c.
  • a valve spring 14b is provided below the valve seat 14c. Due to the load P1 of the valve spring 14b, the valve seat 14c is pushed up in the valve closing direction and pressed against the rocker arm 56. As a result, the rocker arm 56 is urged in the pushing-up direction, and the rocker roller 57 is pressed against the swing cam surface 51 of the swing arm 50.
  • the setting of the maximum load Plmax of the valve spring 14b will be described later.
  • the pressing force of the intake force 16 is transmitted to the slide surface 50a via the cam roller 52 and the second roller 53 as the intake cam 16 rotates. .
  • the rocker arm 56 is pushed down and the intake valve 14 is opened.
  • variable valve mechanism 40 when the rotation angle (rotation position) of the control shaft 41 is changed, the position of the second roller 53 on the slide surface 50a changes, and the lift operation is performed.
  • the swing range of swing arm 50 changes.
  • the inertial force acting on the valve operating system including the variable valve operating mechanism 40, the rocker arm 56, the valve 14 and the like is proportional to the square of the engine speed NE.
  • the inertial force F1 acting on the rocker arm 56 below the variable valve mechanism 40, the valve 14 and the like (hereinafter also referred to as "vanolev side valve system") is given by (1) It can be expressed as shown in 2).
  • “We” is the equivalent equivalent mass [kg] of the valve side valve system
  • “A” is the valve acceleration [mm / deg 2 (CAM)].
  • the inertial force F2 acting on the variable valve mechanism 40 in the valve train that is, the inertial force F2 acting on the cam roller 52 of the variable valve mechanism 40 is obtained from the inertia moment around the control shaft 41. I'll do it.
  • FIG. 8 is a diagram for explaining a method of setting the maximum load Plmax of the valve spring 14b and the maximum load P2max of the lost motion spring 55 in the present embodiment.
  • the time required for the leak down (reduction) is longer than the time required for the hydraulic lash adjuster 58 to check (pump up). This is because if the hydraulic lash adjuster 58 is extended or contracted too sensitively, the position of the rocker arm 56 will change excessively and the lift amount of the intake valve 14 will change excessively. Therefore, the leak-down of the pumped-up hydraulic lash adjuster 58 is not completed until the jumped intake valve 14 is seated.
  • the pivot point of the rocker arm 56 is shifted upward, so that the intake valve 14 is closed poorly. If the intake valve 14 is closed poorly, the amount of fresh air blown back into the intake passage 18 increases, so that the amount of air sucked into the combustion chamber 10 becomes insufficient and the actual compression ratio becomes low. As a result, the performance of the internal combustion engine 1 is reduced, such as a decrease in compression end temperature and a decrease in engine output.
  • the long-time guaranteed rotational speed N2 is the maximum engine speed that can be realized only by the internal combustion engine 1 after the fuel cut is executed. This long-term guaranteed rotational speed N2 takes into account overshoots after fuel cuts performed in the red zone, variations in the fuel cuts, and the like. Long-time guaranteed rotation speed N2 is higher than the maximum output rotation speed (for example, 6000 rpm). For example, 6500 rpm.
  • This instantaneous allowable maximum rotational speed Nmax is an engine rotational speed that is instantaneously realized by an increase in rotational speed at the time of downshifting rather than the internal combustion engine 1 rotating by itself, and is 69 OOrpm, for example.
  • the inertial force F2 of the variable valve mechanism 40 is reduced at an engine speed N1 (for example, 61 OOrpm) lower than the long-term guaranteed speed N2.
  • N1 for example, 61 OOrpm
  • the contact A between the intake cam 16 and the cam roller 52 is allowed at the engine speed N1.
  • the jumping of the intake valve 14 is allowed after the engine speed N1.
  • the maximum load P2max is set so that bounce occurs at the instantaneous allowable maximum rotational speed Nmax. That is, at the momentary allowable maximum rotational speed Nmax, the maximum load P2max so that the total F of the two inertial forces F1 and F2 is larger than the total P of the two maximum loads Plmax and P2max by a predetermined value ⁇ F. Set.
  • the contact point B between the rocker roller 57 and the swing arm 50 is set up to the long-term guaranteed rotational speed N2 by setting the maximum load P1 max of the valve spring 14b. Separation is prohibited.
  • the contact C between the rocker arm 56 and the hydraulic lash adjuster 58 is prohibited, and the pumping up of the hydraulic lash adjuster 58 is prohibited up to the long-term guaranteed rotational speed N2.
  • the occurrence of poor closing of the intake valve 14 is prohibited up to the long-time guaranteed rotational speed N2, so that it is possible to avoid the occurrence of a deterioration in the performance of the internal combustion engine 1.
  • the separation of the contact A between the intake cam 16 and the cam roller 52 is allowed prior to the separation of the contact B between the rocker roller 57 and the swing arm.
  • the maximum load P2max of the lost motion spring 55 can be kept low. Therefore, even when the maximum load Plmax of the valve spring 14b is set as described above, the maximum load P2max of the lost motion spring 55 is set low so that the separation of the contact A is allowed. Therefore, the variable valve mechanism 40 It is possible to suppress an excessive increase in friction. Therefore, it is possible to suppress deterioration of fuel consumption and deterioration of wear resistance of the components of the variable valve mechanism 40.
  • the engine speed at which bounce occurs is set to the instantaneous allowable maximum speed Nmax by setting the maximum loads Plmax and P2max. Therefore, the engine speed at which bounce occurs is higher than the instantaneous maximum allowable engine speed Nmax! / The extra friction increase of structure 40 can be suppressed.
  • bounce is generated at the instantaneous allowable maximum rotational speed Nmax, but the engine rotational speed at which the bounce occurs is not limited to this instantaneous allowable maximum rotational speed Nmax. .
  • the critical engine speed at which the inertial force F2 exceeds the maximum load P2max of the lost motion spring lower than the critical engine speed at which the inertial force F1 exceeds the maximum load of the valve spring Plmax, the engine speed at which bounce occurs is It can be made lower than the engine speed N3 in the comparative example shown in FIG. Therefore, it is possible to suppress an increase in excess friction.
  • the lost motion spring maximum load P2max can be further reduced as compared with the case where bounce is generated at the momentary maximum permissible rotational speed Nmax, so that an increase in excess friction can be further suppressed.
  • the intake cam 16 is the “drive cam” in the first invention
  • the hydraulic lash adjuster 58 is the “hydraulic lash adjuster” in the first invention.
  • the valve 14 corresponds to the “valve” in the first invention
  • the rocker arm 56 corresponds to the “rocker arm” in the first invention.
  • the variable valve mechanism 40 is the “variable valve mechanism” in the first invention
  • the internal combustion engine 1 is the “internal combustion engine” in the first invention
  • the lost motion spring 55 is the first.
  • the valve spring 14b corresponds to the “lost spring” in the first invention
  • the valve spring 14b corresponds to the “valve spring” in the first invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Device For Special Equipments (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)

Abstract

 油圧式ラッシュアジャスタのポンプアップの発生を防止しつつ、余分なフリクションの増加を抑制することが可能な可変動弁機構付き内燃機関を提供する。  可変動弁機構の慣性力F2がロストモーションスプリングの最大荷重P2maxを超える臨界回転数を第1機関回転数N1とし、バルブ及びロッカーアームの慣性力F1がバルブスプリングの最大荷重P1maxを超える臨界回転数を第2機関回転数N2とした場合に、第1機関回転数N1が第2機関回転数N2よりも低くなるように、最大荷重P1max,P2maxを設定する。

Description

明 細 書
可変動弁機構付き内燃機関
技術分野
[0001] 本発明は、バルブの作用角及びリフト量を機械的に変更可能な可変動弁機構を有 する可変動弁機構付き内燃機関に関する。
背景技術
[0002] 内燃機関の運転状態に応じて、バルブの作用角及びリフト量を機械的に変更可能 な可変動弁機構を有する装置が知られている(例えば、特許文献 1参照。)。この装 置によれば、カムとロッカーアームとの間に、上記可変動弁機構が配置されている。
[0003] 特許文献 1 :日本特開 2003— 239712号公報
特許文献 2 :日本特開平 6— 221123号公報
特許文献 3 :日本特開平 9 228808号公報
特許文献 4 :日本特許第 2503932号公報
発明の開示
発明が解決しょうとする課題
[0004] ところで、ロッカーアームは、バルブと油圧式ラッシュアジヤスタ(HLA : Hydraulic L ash Adjuster)とにより支持されている。よって、これらのバルブスプリングと油圧式ラッ シュアジャスタの付勢力により、ロッカーアームが可変動弁機構に押しつけられてい
[0005] しかしな力 、内燃機関の高回転時には、可変動弁機構、ロッカーアーム及びバノレ ブ等からなる動弁系が高速で動作するため、該動弁系に作用する慣性力が大きくな る。力、かる慣性力が大きくなると、可変動弁機構とロッカーアームとの接点が離間する 場合がある。この場合、瞬時に油圧式ラッシュアジヤスタが伸びることで、ロッカーァ ームと可変動弁機構とが再度接触することとなる。すなわち、油圧式ラッシュアジヤス タのポンプアップが発生することとなる。その結果、バルブが完全に閉じきらないバル ブ閉じ不良が発生する虞がある。
[0006] また、スプリング最大荷重を高く設定すると、動弁系の余分なフリクションが増加して しまい、燃費の悪化や、構成部品の耐摩耗性の低下を招来する虞がある。
[0007] 本発明は、上述のような課題を解決するためになされたもので、油圧式ラッシュアジ ヤスタのポンプアップの発生を防止しつつ、余分なフリクションの増加を抑制すること が可能な可変動弁機構付き内燃機関を提供することを目的とする。
課題を解決するための手段
[0008] 第 1の発明は、上記の目的を達成するため、駆動カムと、油圧式ラッシュアジヤスタ 及びバルブにより支持されたロッカーアームとの間に機械式の可変動弁機構を有す る内燃機関であって、
前記可変動弁機構を前記駆動カムに押し当てるように荷重を加えるロストモーショ ンスプリングと、
前記ロッカーアームを前記可変動弁機構に押し当てるように荷重を加えるバルブス プリングとを備え、
前記可変動弁機構の慣性力が前記ロストモーションスプリングの最大荷重を超える 臨界機関回転数を第 1機関回転数とし、前記バルブ及び前記ロッカーアームの慣性 力が前記バルブスプリングの最大荷重を超える臨界機関回転数を第 2機関回転数と した場合に、該第 1機関回転数が該第 2機関回転数よりも低くなるように、前記ロスト モーションスプリング及び前記バルブスプリングの最大荷重が設定されていることを 特徴とする。
[0009] また、第 2の発明は、第 1の発明において、
前記バルブのバウンスが発生する機関回転数力 瞬間的に許容される最大の機関 回転数である瞬間許容最大回転数となるように、前記ロストモーションスプリング及び 前記バルブスプリングの最大荷重が設定されていることを特徴とする。
[0010] また、第 3の発明は、第 1又は第 2の発明において、
前記第 2機関回転数が、燃料力ット実行後に前記内燃機関のみで実現可能な最大 回転数である長時間保証回転数となるように、前記バルブスプリングの最大荷重が設 定されて!/、ることを特徴とする。
発明の効果
[0011] 第 1の発明によれば、可変動弁機構の慣性力がロストモーションスプリング最大荷 重を超える第 1機関回転数力 バルブ及びロッカーアームの慣性力がバルブスプリン グ最大荷重を超える第 2機関回転数よりも低くされる。これにより、ロッカーアームと可 変動弁機構との接点の離間よりも先に、可変動弁機構と駆動カムとの接点の離間が 許容される。
ここで、ロッカーアームと可変動弁機構との接点が離れると、油圧式ラッシュアジャ スタのポンプアップが発生してしまい、バルブの閉じ不良が発生する可能性がある。 しかし、第 1の発明によれば、可変動弁機構と駆動カムとの接点が離れることによる ジャンプの発生を許容しつつ、油圧式ラッシュアジヤスタのポンプアップの発生が防 止される。このため、バルブの閉じ不良の発生を防止することができ、内燃機関の性 能低下を防止することができる。
さらに、第 1の発明によれば、ロッカーアームと可変動弁機構の接点の離間を防止 するためにバルブスプリングの最大荷重を設定した場合でも、可変動弁機構と駆動 カムとの接点の離間が許容されるようにロストモーションスプリングの最大荷重が低く 設定されるため、可変動弁機構の余分なフリクションの増加を抑制することができる。 これにより、燃費の悪化、可変動弁機構の構成部品の耐摩耗性の低下を抑制するこ と力 Sできる。
[0012] 第 2の発明によれば、ロストモーションスプリング及びバルブスプリングの最大荷重 の設定により、バウンスが発生する機関回転数が、瞬間許容最大回転数とされる。こ れにより、実質的にバウンスの発生を禁止することができる。さらに、バウンスが発生 する機関回転数が瞬間許容最大回転数よりも高くされた場合に比して、スプリング最 大荷重が低く設定されているため、可変動弁機構の余分なフリクションの増加を抑制 すること力 Sでさる。
[0013] 第 3の発明によれば、バルブスプリングの最大荷重の設定により、バルブ及びロッカ 一アームの慣性力がバルブスプリングの最大荷重を超える臨界機関回転数 (第 2機 関回転数)が長時間保証回転数とされる。これにより、長時間保証回転数までは、口 ッカーアームと可変動弁機構との接点の離間が禁止され、油圧式ラッシュアジヤスタ のポンプアップが禁止される。よって、長時間保証回転数までは、バルブの閉じ不良 の発生が禁止されるため、内燃機関の性能低下が発生する事態を回避することがで きる。
図面の簡単な説明
[0014] [図 1]本発明の実施の形態によるシステムの全体構成を説明するための図である。
[図 2]図 1に示した可変動弁機構 40の構成を説明するための斜視図である。
[図 3]図 2に示した可変動弁機構 40を吸気カム軸 15の軸方向から見た側面図である
[図 4]可変動弁機構 40により実現される吸気バルブ 14の作用角及びリフト量の連続 的変化を示す図である。
[図 5]スプリング荷重と'慣性力の一例を示す図である。
[図 6]高回転時のバルブのジャンプ発生を説明するための図である。
[図 7]高回転時のバルブのバウンス発生を説明するための図である。
[図 8]本発明の実施の形態において、スプリング最大荷重 Plmax,P2maXの設定方法 を説明するための図である。
[図 9]本発明の実施の形態に対する比較例を示す図である。
符号の説明
[0015] 1 内燃機関
7 クランク角センサ
14 吸気バルブ
14b ノ ノレブスプリング
16 吸気カム
40 可変動弁機構
41 制御軸
50 揺動アーム
52 カムローラ
55 ロストモーションスプリング
56 ロッカーアーム
57 ロッカーローラ
58 油圧式ラッシュアジヤスタ 発明を実施するための最良の形態
[0016] 以下、図面を参照して本発明の実施の形態について説明する。尚、各図において 共通する要素には、同一の符号を付して重複する説明を省略する。
[0017] [システム構成の説明]
図 1は、本発明の実施の形態によるシステムの全体構成を説明するための図である 。本実施の形態のシステムは、内燃機関 1を備えている。内燃機関 1は、複数の気筒 2を有している。図 1には、複数気筒のうちの 1気筒のみを示している。
[0018] 内燃機関 1は、内部にピストン 3を有するシリンダブロック 4を備えている。ピストン 3 は、クランク機構を介してクランク軸 6と接続されている。クランク軸 6の近傍には、クラ ンク角センサ 7が設けられている。クランク角センサ 7は、クランク軸 6の回転角度(クラ ンク角 CA)を検出するように構成されている。
[0019] シリンダブロック 4の上部にはシリンダヘッド 8が組み付けられている。ピストン 3上面 力、らシリンダヘッド 8までの空間は燃焼室 10を形成している。シリンダヘッド 8には、燃 焼室 10内に直接燃料を噴射するインジェクタ 11が設けられている。また、シリンダへ ッド 8には、燃焼室 10内の混合気に点火する点火プラグ 12が設けられている。
[0020] シリンダヘッド 8は、燃焼室 10と連通する吸気ポート 13を備えている。吸気ポート 13 と燃焼室 10との接続部には吸気バルブ 14が設けられている。本実施の形態 1のシス テムは、気筒毎に設けられた 2つの吸気ポート 13に対応して、 2つの吸気バルブ 14 ( 図 2参照)を備えている。
[0021] 吸気バルブ 14と、吸気カム軸 15に設けられた吸気カム 16との間には、機械式の可 変動弁機構 40が設けられている。詳細は後述する力 この可変動弁機構 40は、吸 気バルブ 14の開弁特性を機械的に変更可能に構成されている。すなわち、この可 変動弁機構 40は、吸気カム 16の回転運動と後述するロッカーアーム 56の揺動運動 との連動状態を連続的に変化させるように構成されている。また、吸気カム軸 15は、 クランク軸 6の駆動力が伝達されることにより回転駆動可能である。
[0022] 吸気ポート 13には、吸気通路 18が接続されている。吸気通路 18の途中にはサー ジタンク 20が設けられて!/、る。サージタンク 20の上流にはスロットルバルブ 22が設け られている。スロットルバルブ 22は、スロットルモータ 23により駆動される電子制御式 のバルブである。スロットルバルブ 22は、アクセル開度センサ 24により検出されるァク セル開度 AAに基づいて駆動されるものである。スロットルバルブ 22の近傍には、スロ ットル開度 TAを検出するスロットル開度センサ 25が設けられている。
[0023] スロットルバルブ 22の上流には、ェアフロメータ 26が設けられている。エアフロメ一 タ 26は吸入空気量 Gaを検出するように構成されている。ェアフロメータ 26の上流に はエアクリーナ 27が設けられている。
[0024] また、シリンダヘッド 8は、燃焼室 10と連通する排気ポート 28を備えている。排気ポ ート 28と燃焼室 10との接続部には排気バルブ 30が設けられている。排気ポート 28 には排気通路 32が接続されている。排気通路 32には、排気ガスを浄化する触媒 34 が設けられている。触媒 34の上流には、排気空燃比を検出する空燃比センサ 36が 設けられている。
[0025] また、本実施の形態のシステムは、制御装置としての ECU (Electronic Control Uni t) 60を備えている。 ECU60の出力側には、インジヱクタ 11、点火プラグ 12、スロット ルモータ 23、可変動弁機構 40等が接続されている。 ECU60の入力側には、クラン ク角センサ 7、アクセル開度センサ 24、スロットル開度センサ 25、ェアフロメータ 26、 空燃比センサ 36等が接続されている。 ECU60は、各センサの出力に基づいて、燃 料噴射制御や点火時期制御のような内燃機関全体の制御を実行する。
[0026] また、 ECU60は、クランク角センサ 7の出力に基づいて、機関回転数 NEを算出す る。また、 ECU60は、アクセル開度 AAやスロットル開度 TA等に基づいて、内燃機関 1に要求される負荷 KLを算出する。さらに、 ECU60は、内燃機関 1の運転状態(NE, L)に応じて制御軸 41の位置を制御することで、吸気バルブ 14の作用角/リフト量 を連続可変制御する。
[0027] [可変動弁機構の構成]
図 2は、図 1に示した可変動弁機構 40の構成を説明するための斜視図である。図 3 は、図 2に示した可変動弁機構 40を吸気カム軸 15の軸方向から見た側面図である。
[0028] 図 2に示すように、駆動カムである吸気カム 16を中心にして、 2つの吸気バルブ 14 L, 14Rが左右対称に配置されている。吸気カム 16と吸気バルブ 14L, 14Rとの間 には、吸気カム 16の回転運動に各吸気バルブ 14L, 14Rのリフト運動を連動させる 可変動弁機構 40が設けられて!/、る。
[0029] 以下、本明細書および図面では、可変動弁機構 40の各構成部品や吸気バルブ 1 4L, 14R等の対称に配置されている部品については、特に区別をする必要ない場 合には、左右を区別する L、 Rの記号は付けないこともある。
[0030] 図 2及び図 3に示すように、可変動弁機構 40は、制御軸 41を有している。この制御 軸 41は、吸気カム軸 15と平行に配置されている。この制御軸 41は、図示しない駆動 機構により回転駆動される。駆動機構は、例えば、制御軸 41に固定されたウォームホ ィール、該ウォームホイールと嚙み合わされるウォームギヤ、該ウォームギヤが固定さ れた出力軸を有する電動モータ等により構成することができる。
[0031] 制御軸 41には、制御アーム 42がボルト 43によって固定されている。制御アーム 42 の突出部には、中間アーム 44がピン 45によって取り付けられている。ピン 45は、制 御軸 41の中心から偏心した位置に配置されている。よって、中間アーム 44は、ピン 4 5を中心にして揺動するように構成されている。中間アーム 44の先端部には、後述す るローラ 52, 53が回転可能に設けられている。
[0032] また、制御軸 41には、 2つの揺動アーム 50L, 50Rが揺動可能に支持されている。
揺動アーム 50は、吸気カム 16に対向する側に、スライド面 50aを有している。このス ライド面 50aは、第 2ローラ 53に接触するように形成されている。スライド面 50aは、第 2ローラ 53が揺動アーム 50の先端側から制御軸 41の軸中心側に向かって移動する ほど、吸気カム 16との間隔が徐々に狭まるような曲面で形成されている。
[0033] また、揺動アーム 50は、スライド面 50aの反対側に、揺動カム面 51を有している。
揺動カム面 51は、揺動アーム 50の揺動中心からの距離が一定となるように形成され た非作用面 51aと、非作用面 51aから離れた位置ほど制御軸 41の軸中心からの距 離が遠くなるように形成された作用面 5 lbとで構成されている。
[0034] スライド面 50aと吸気カム 16の周面との間には、第 1ローラ(以下「カムローラ」ともい う。) 52と第 2ローラ 53が配置されている。より具体的には、カムローラ 52は、吸気力 ム 16の周面と接触するように配置されている。また、第 2ローラ 53は、揺動アーム 50 のスライド面 50aに接触するように配置されている。 [0035] カムローラ 52と第 2ローラ 53とは、上記中間アーム 44の先端部に固定された連結 軸 54によって回転自在に支持されている。中間アーム 44は、ピン 45を支点として揺 動するので、これらのローラ 52, 53もピン 45から一定距離を保ちながらスライド面 50 aおよび吸気カム 16の周面に沿って揺動する。
[0036] また、揺動アーム 50には、バネ座 50bが形成されている。このバネ座 50bには、ロス トモーションスプリング 55の一端が掛けられている。ロストモーションスプリング 55の他 端は、内燃機関 1の静止部位に固定されている。ロストモーションスプリング 55は圧 縮パネである。
[0037] ロストモーションスプリング 55の荷重 P2により、揺動アーム 50のスライド面 50aが第 2 ローラ 53に押し当てられ、更に、カムローラ 52が吸気カム 16に押し当てられる。ロスト モーションスプリング 55の最大荷重 P2maxの設定につ!/、ては、後述する。
[0038] 揺動アーム 50の下方には、ロッカーアーム 56が配置されている。ロッカーアーム 5 6には、揺動カム面 51に対向するようにロッカーローラ 57が設けられている。ロッカー ローラ 57は、ロッカーアーム 56の中間部に回転自在に取り付けられている。ロッカー アーム 56の一端は、バルブ 14のバルブシャフト 14aによって支持されており、ロッカ 一アーム 56の他端は、油圧式ラッシュアジヤスタ 58によって回転自在に支持されて いる。これにより、ロッカーアーム 56は、油圧式ラッシュアジヤスタ 58を支点として回 動可能となる。この油圧式ラッシュアジヤスタ 58は、ロッカーローラ 57と揺動カム面 51 との間にクリアランスができないように、ロッカーアーム 56を押し上げる方向に付勢す るものである。
[0039] また、バルブシャフト 14aの上部は、バルブシート 14cと接続されている。このバルブ シート 14cの下方には、バルブスプリング 14bが設けられている。バルブスプリング 14 bの荷重 P1により、バルブシート 14cがバルブ閉方向に押し上げられ、ロッカーアーム 56に押し当てられる。これにより、ロッカーアーム 56が押し上げる方向に付勢される ため、ロッカーローラ 57が揺動アーム 50の揺動カム面 51に押し当てられる。バルブ スプリング 14bの最大荷重 Plmaxの設定につ!/、ては、後述する。
[0040] 上述した可変動弁機構 40の構成によれば、吸気カム 16の回転に伴って、吸気力 ム 16の押圧力がカムローラ 52及び第 2ローラ 53を介してスライド面 50aに伝達される 。その結果、揺動カム面 51とロッカーローラ 57との接点が非作用面 51aから作用面 5 lbにまで及ぶと、ロッカーアーム 56が押し下げられ、吸気バルブ 14が開弁する。
[0041] また、可変動弁機構 40の構成によれば、制御軸 41の回転角度(回転位置)を変化 させると、スライド面 50a上における第 2ローラ 53の位置が変化し、リフト動作時の揺 動アーム 50の揺動範囲が変化する。
[0042] より具体的には、制御軸 41を図 3における反時計回り方向に回転させると、スライド 面 50a上における第 2ローラ 53の位置が揺動アーム 50の先端側に移動する。そうす ると、吸気カム 16の押圧力が伝達されることで揺動アーム 50が揺動動作を開始した 後に、現実にロッカーアーム 56が押圧され始めるまでに要する揺動アーム 50の回転 角度は、制御軸 41が図 3における反時計回り方向に回転するほど大きくなる。つまり 、制御軸 41を図 3における反時計回り方向に回転させることにより、バルブ 14の作用 角及びリフト量を小さくすることができる。逆に、制御軸 41を時計回り方向に回転させ ることにより、バルブ 14の作用角及びリフト量を大きくすることができる。このように制 御軸 41の位置を制御することで、図 4に示すように、吸気バルブ 14の作用角及びリ フト量を連続的に変化させることができる。
[0043] [実施の形態の特徴]
ところで、本発明者の知見によれば、可変動弁機構 40、ロッカーアーム 56及びバ ルブ 14等からなる動弁系に作用する慣性力は、機関回転数 NEの 2乗に比例する。
[0044] 動弁系のうち、可変動弁機構 40より下方のロッカーアーム 56及びバルブ 14等(以 下「バノレブ側動弁系」ということもある。 )に作用する慣性力 F1は、次式 (1)ズ2)のように 表すこと力 Sできる。次式 (1)ズ2)において、「We」はバルブ側動弁系の換算等価質量 [k g]であり、「A」はバルブ加速度 [mm/deg2(CAM)]である。
一方、動弁系のうちの可変動弁機構 40に作用する慣性力 F2、すなわち、可変動弁 機構 40のカムローラ 52に作用する慣性力 F2は、制御軸 41周りの慣性モーメントから 求めること力 Sでさる。
2
NE -X 360 (1 )
F 1 =了■- Χ Α χし 60 X 2
=0. 009 X We X A X NE ■ ■ · (2) [0045] 低回転時には、上記動弁系の動作速度は、さほど速くはない。このため、低回転時 には、図 5に示すように、破線 L2で表される動弁系の慣性力 F1,F2が、実線 L1で表さ れるスプリング荷重 P1,P2よりも小さい。力、かる低回転時には、図 3において示される 吸気カム 16とカムローラ 52との接点 Aと、揺動アーム 50とロッカーローラ 57との接点 Bとは、共に離間せずに接触している。従って、図 6において破線 C1で示される低回 転時のバルブリフト曲線は、設計されたバルブリフト曲線(以下「設計リフト曲線」という 。)通りとなる。よって、低回転時には、吸気バルブ 14のジャンプは発生しない。
[0046] ところ力 機関回転数 NEの増加に伴って、動弁系に作用する慣性力は、該機関回 転数 NEの 2乗に比例して大きくなる(図 5参照)。そして、慣性力がスプリング荷重を 超えると、上記の接点 Aや接点 Bが離れてしまう。そうすると、吸気バルブ 14のジヤン プが発生してしまい、低回転時のバルブリフト特性 C1とは異なり、図 6において実線 C 2で示すようなバルブリフト特性となる。
[0047] さらに、機関回転数 NEが増加すると、慣性力も更に大きくなる。詳細は後述するが 、慣性力の合計がスプリング最大荷重の合計を所定値 A Fだけ上回ると、図 7におい て実線 C3で示すように、ジャンプした吸気バルブ 14が着座した後に跳ね返る、いわ ゆるバウンスが発生してしまう。このバウンスの衝撃荷重は、吸気バルブ 14の傘部に 伝達されるため、バウンスの発生を回避することが望ましい。
[0048] 本実施の形態では、以下に説明する方法により、バルブスプリング 14bの最大荷重 Plmaxと、ロストモーションスプリング 55の最大荷重 P2maxとを設定する。図 8は、本実 施の形態において、バルブスプリング 14bの最大荷重 Plmaxと、ロストモーションスプ リング 55の最大荷重 P2maxの設定方法を説明するための図である。
[0049] 先ず、バルブスプリング 14bの最大荷重 Plmaxの設定方法について説明する。
ここで、吸気バルブ 14及びロッカーアーム 56の慣性力 F1がバルブスプリング 14b の最大荷重 Plmaxを超えるまでは、図 3に示されるロッカーローラ 57と揺動アーム 50 との接点 Bが接している。慣性力 F1が最大荷重 Plmaxを超えて接点 Bが離れると、接 点 Cも離れることとなる。つまり、ロッカーローラ 57と揺動アーム 50とが離間すると、口 ッカーアーム 56と油圧式ラッシュアジヤスタ 58も離間することとなる。そうすると、油圧 式ラッシュアジヤスタ 58が有するチェック機能が働き、油圧式ラッシュアジヤスタ 58が ロッカーアーム 56を押し上げる方向(上方向)に伸びる。すなわち、油圧式ラッシュァ ジャスタ 58のポンプアップが起こる。
[0050] また、接点 Bが離れると、吸気バルブ 14のジャンプが発生する。このジャンプした吸 気バルブ 14が着座するまでの間に、油圧式ラッシュアジヤスタ 58がリークダウンして ロッカーアーム 56が元の位置まで押し下げられれば、特に内燃機関 1の性能低下の 問題は生じない。
[0051] しかしながら、油圧式ラッシュアジヤスタ 58がチェック(ポンプアップ)に要する時間 よりも、リークダウン (縮小)に要する時間の方が長い。これは、油圧式ラッシュアジャ スタ 58の伸縮を余りにも過敏に行うと、ロッカーアーム 56の位置が過剰に変動するこ ととなり、吸気バルブ 14のリフト量が過剰に変動してしまうためである。従って、ジヤン プした吸気バルブ 14が着座するまでの間に、ポンプアップした油圧式ラッシュアジャ スタ 58のリークダウンは完了しない。
[0052] そうすると、ロッカーアーム 56の回動支点が上方にずれるため、吸気バルブ 14の 閉じ不良が生じてしまう。吸気バルブ 14の閉じ不良が生じると、吸気通路 18への新 気の吹き返し量が増大してしまうため、燃焼室 10内に吸入される空気量が不足し、 実圧縮比が低くなつてしまう。その結果、圧縮端温度の低下や機関出力の低下等、 内燃機関 1の性能低下を招来することとなる。
[0053] そこで、本実施の形態では、図 8に示すように、長時間保証回転数 N2までは、上記 の油圧式ラッシュアジヤスタ 58のポンプアップの発生を防止すベぐロッカーローラ 5 7と揺動アーム 50との接点 Bの離間を禁止する。すなわち、長時間保証回転数 N2に おいて、ロッカーアーム 56及びバルブ 14の慣性力 F1がバルブスプリング最大荷重 P lmaxを超えるように、該最大荷重 Plmaxが設定される。すなわち、慣性力 F1がバルブ スプリング最大荷重 Plmaxを超える臨界機関回転数が長時間保証回転数 N2とされる
[0054] ここで、長時間保証回転数 N2とは、燃料カット実行後に内燃機関 1のみで実現可能 な最大機関回転数である。この長時間保証回転数 N2は、レッドゾーンで実行される 燃料カット後のオーバーシュートや、該燃料カットのバラツキ等が考慮されている。長 時間保証回転数 N2は、最高出力回転数 (例えば、 6000rpm)よりも高い回転数であり 、例えば、 6500rpmである。
[0055] 次に、ロストモーションスプリング 55の最大荷重 P2maxの設定方法について説明す る。上記バルブスプリング最大荷重 Plmaxと同様に、図 9に示す比較例のように、長 時間保証回転数 N2において、可変動弁機構 40のカムローラ 52の慣性力 F2がロスト モーションスプリング最大荷重 P2maxを超えるように、該最大荷重 P2maxを設定する 方法が考えられる。かかる設定により、長時間保証回転数 N2までは、上記接点 Bと共 に、吸気カム 16とカムローラ 52との接点 Aの離間を防止することができる。
[0056] ところで、図 7に示したバウンスは、図 9に示すように、上記 2つの慣性力 F1,F2の合 計 F(=F1+F2)力 S、上記 2つのスプリング最大荷重 Plmax,P2maxの合計 P(=Plmax+P2m ax)よりも所定量 A Fだけ大きくなると発生する。よって、図 9に示すように、 2つの最大 荷重 Plmax, P2maxを長時間保証回転数 N2を基準として設定した場合、瞬間許容最 大回転数 Nmaxよりも高い機関回転数 N3以降において、バウンスが発生することとな る。この瞬間許容最大回転数 Nmaxは、内燃機関 1が自力で回転するのではなぐシ フトダウン時の回転数上昇により瞬間的に実現される機関回転数であり、例えば、 69 OOrpmである。
[0057] しかし、実際に到達可能であるのは瞬間許容最大回転数 Nmaxまでであって、機関 回転数 N3に到達することはない。従って、図 9の比較例においては、同図中に矢印 で示すように、瞬間許容最大回転数 Nmax〜機関回転数 N3の間においてバウンス発 生を余分に抑制する分だけ、最大荷重の合計 Pが過剰となっている。その結果、動弁 系のフリクションが増大してしまうため、燃費の悪化や、可変動弁機構 40の構成部品 の耐摩耗性の低下を招来する可能性がある。
[0058] そこで、本実施の形態では、図 8に示すように、長時間保証回転数 N2よりも低い機 関回転数 N1 (例えば、 61 OOrpm)において、可変動弁機構 40の慣性力 F2がロストモ ーシヨンスプリング最大荷重 P2maxを超えるように、該最大荷重 P2maxを設定する。す なわち、機関回転数 N1において、吸気カム 16とカムローラ 52の接点 Aの離間を許容 することとする。そうすると、機関回転数 N1以降において、吸気バルブ 14のジャンプ 発生が許容されることとなる。
[0059] ここで、吸気バルブ 14のジャンプが発生すると、着座時の音が問題となる可能性が ある。しかし、高回転時であるので、着座時の音は大して問題とはならないと考えられ る。さらに、ジャンプにより、バルブリフト量は大きくなるため、筒内に吸入される空気 量は増大することとなり、実圧縮比の低下も起こらない。よって、上記油圧式ラッシュ アジヤスタ 58のポンプアップ時とは異なり、上記のように吸気カム 16とカムローラ 52 の接点 Aの離間を許容しても、内燃機関 1の性能低下は起こらないものと考えられる。
[0060] さらに、本実施の形態では、バウンスが瞬間許容最大回転数 Nmaxにおいて発生す るように、上記最大荷重 P2maxを設定する。すなわち、瞬間許容最大回転数 Nmaxに おいて、上記 2つの慣性力 F1,F2の合計 Fが、 2つの最大荷重 Plmax,P2maxの合計 P よりも所定値 Δ Fだけ大きくなるように、最大荷重 P2maxを設定する。
[0061] 以上説明したように、本実施の形態によれば、バルブスプリング 14bの最大荷重 P1 maxの設定により、長時間保証回転数 N2までは、ロッカーローラ 57と揺動アーム 50と の接点 Bの離間が禁止される。これにより、長時間保証回転数 N2までは、ロッカーァ ーム 56と油圧式ラッシュアジヤスタ 58との接点 Cの離間が禁止され、油圧式ラッシュ アジヤスタ 58のポンプアップが禁止される。よって、長時間保証回転数 N2までは、吸 気バルブ 14の閉じ不良の発生が禁止されるため、内燃機関 1の性能低下が発生す る事 を回避すること力できる。
[0062] また、本実施の形態によれば、ロッカーローラ 57と揺動アームとの接点 Bの離間より も先に、吸気カム 16とカムローラ 52との接点 Aの離間を許容させる。これにより、吸気 バルブ 14のジャンプの発生を許容しつつも、油圧式ラッシュアジヤスタ 58のポンプァ ップを禁止すること力 Sできる。また、接点 Aの離間を先に許容することで、ロストモーシ ヨンスプリング 55の最大荷重 P2maxを低く抑えることができる。従って、上記のようにバ ルブスプリング 14bの最大荷重 Plmaxを設定した場合でも、接点 Aの離間が許容され るようにロストモーションスプリング 55の最大荷重 P2maxが低く設定されるため、可変 動弁機構 40の余分なフリクション増加を抑制することができる。よって、燃費の悪化、 可変動弁機構 40の構成部品の耐摩耗性の低下を抑制することができる。
[0063] さらに、本実施の形態によれば、最大荷重 Plmax, P2maxの設定により、バウンスが 発生する機関回転数が瞬間許容最大回転数 Nmaxとされる。よって、バウンスが発生 する機関回転数が瞬間許容最大回転数 Nmaxよりも高!/、場合に比して、可変動弁機 構 40の余分なフリクション増加を抑制することができる。
[0064] ところで、本実施の形態では、瞬間許容最大回転数 Nmaxにお!/、てバウンスを発生 させているが、バウンスが発生する機関回転数はこの瞬間許容最大回転数 Nmaxに 限られない。慣性力 F2がロストモーションスプリング最大荷重 P2maxを超える臨界機 関回転数を、慣性力 F1がバルブスプリング最大荷重 Plmaxを超える臨界機関回転数 よりも低くすることで、バウンスが発生する機関回転数は、図 9に示す比較例における 機関回転数 N3よりも低くすることができる。従って、余分なフリクションの増大を抑制 することが可能である。
[0065] さらに、バウンスの衝撃による信頼性低下の可能性を排除することができれば、瞬 間許容最大回転数 Nmaxよりも低回転側でバウンスを発生させてもよい。この場合、瞬 間許容最大回転数 Nmaxでバウンスを発生させる場合に比して、ロストモーションスプ リング最大荷重 P2maxを更に低く抑えることができるため、余分なフリクションの増大を 更に抑制することができる。
[0066] 尚、本実施の形態においては、吸気カム 16が第 1の発明における「駆動カム」に、 油圧式ラッシュアジヤスタ 58が第 1の発明における「油圧式ラッシュアジヤスタ」に、吸 気バルブ 14が第 1の発明における「バルブ」に、ロッカーアーム 56が第 1の発明にお ける「ロッカーアーム」に、それぞれ相当する。また、本実施の形態においては、可変 動弁機構 40が第 1の発明における「可変動弁機構」に、内燃機関 1が第 1の発明に おける「内燃機関」に、ロストモーションスプリング 55が第 1の発明における「ロストモ ーシヨンスプリング」に、バルブスプリング 14bが第 1の発明における「バルブスプリン グ」に、それぞれ相当する。

Claims

請求の範囲
[1] 駆動カムと、油圧式ラッシュアジヤスタ及びバルブにより支持されたロッカーアームと の間に機械式の可変動弁機構を有する内燃機関であって、
前記可変動弁機構を前記駆動カムに押し当てるように荷重を加えるロストモーショ ンスプリングと、
前記ロッカーアームを前記可変動弁機構に押し当てるように荷重を加えるバルブス プリングとを備え、
前記可変動弁機構の慣性力が前記ロストモーションスプリングの最大荷重を超える 臨界機関回転数を第 1機関回転数とし、前記バルブ及び前記ロッカーアームの慣性 力が前記バルブスプリングの最大荷重を超える臨界機関回転数を第 2機関回転数と した場合に、該第 1機関回転数が該第 2機関回転数よりも低くなるように、前記ロスト モーションスプリング及び前記バルブスプリングの最大荷重が設定されていることを 特徴とする可変動弁機構付き内燃機関。
[2] 請求項 1に記載の可変動弁機構付き内燃機関にお!/、て、
前記バルブのバウンスが発生する機関回転数力 瞬間的に許容される最大の機関 回転数である瞬間許容最大回転数となるように、前記ロストモーションスプリング及び 前記バルブスプリングの最大荷重が設定されていることを特徴とする可変動弁機構 付き内燃機関。
[3] 請求項 1又は 2に記載の可変動弁機構付き内燃機関において、
前記第 2機関回転数が、燃料力ット実行後に前記内燃機関のみで実現可能な最大 回転数である長時間保証回転数となるように、前記バルブスプリングの最大荷重が設 定されていることを特徴とする可変動弁機構付き内燃機関。
PCT/JP2007/073397 2006-12-18 2007-12-04 可変動弁機構付き内燃機関 WO2008075556A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/377,390 US8006659B2 (en) 2006-12-18 2007-12-04 Internal combustion engine with variable valve mechanism
EP07850045A EP2096274B1 (en) 2006-12-18 2007-12-04 Internal combustion engine with variable actuation valve mechanism
CN2007800428582A CN101553647B (zh) 2006-12-18 2007-12-04 带可变动阀机构的内燃机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006340342A JP4380695B2 (ja) 2006-12-18 2006-12-18 可変動弁機構付き内燃機関
JP2006-340342 2006-12-18

Publications (2)

Publication Number Publication Date
WO2008075556A1 true WO2008075556A1 (ja) 2008-06-26
WO2008075556A9 WO2008075556A9 (ja) 2009-02-19

Family

ID=39536189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/073397 WO2008075556A1 (ja) 2006-12-18 2007-12-04 可変動弁機構付き内燃機関

Country Status (5)

Country Link
US (1) US8006659B2 (ja)
EP (1) EP2096274B1 (ja)
JP (1) JP4380695B2 (ja)
CN (1) CN101553647B (ja)
WO (1) WO2008075556A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5533103B2 (ja) * 2010-03-23 2014-06-25 トヨタ自動車株式会社 可変動弁機構
CN103939164B (zh) * 2014-04-25 2016-08-17 安徽江淮汽车股份有限公司 一种发动机气门间隙调节器
JP6187494B2 (ja) 2015-02-06 2017-08-30 トヨタ自動車株式会社 可変動弁装置
DE102015016723A1 (de) * 2015-12-22 2017-08-03 Man Truck & Bus Ag Brennkraftmaschine mit einer Motorstaubremse und einer Dekompressionsbremse
DE102018130428A1 (de) * 2018-11-30 2020-06-04 Bayerische Motoren Werke Aktiengesellschaft Hubvariabler Ventiltrieb mit wenigstens zwei Arbeitslagen
CN111852674B (zh) * 2020-06-22 2022-04-26 潍柴动力股份有限公司 配气机构的监测控制装置及监测方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06221123A (ja) 1993-01-29 1994-08-09 Mazda Motor Corp エンジンのバルブタイミング制御装置
JP2503932B2 (ja) 1994-03-23 1996-06-05 三菱自動車工業株式会社 可変バルブタイミング機構のロストモ―ションアセンブリ
JPH09228808A (ja) 1996-02-22 1997-09-02 Yamaha Motor Co Ltd 内燃エンジンの動弁装置
JP2003239712A (ja) 2002-02-18 2003-08-27 Nippon Soken Inc 弁制御装置
JP2006283700A (ja) * 2005-04-01 2006-10-19 Toyota Motor Corp 可変動弁システム
JP2006307786A (ja) * 2005-04-28 2006-11-09 Toyota Motor Corp 可変動弁装置、並びにそれを備えた内燃機関の制御装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03258904A (ja) * 1990-03-07 1991-11-19 Nissan Motor Co Ltd エンジンの弁作動装置
DE4322480C2 (de) * 1993-07-06 1996-05-02 Meta Motoren Energietech Vorrichtung zur variablen Ventilsteuerung von Brennkraftmaschinen
JPH07293216A (ja) * 1994-04-26 1995-11-07 Mitsubishi Automob Eng Co Ltd 内燃エンジンの動弁装置
DE19509604A1 (de) * 1995-03-16 1996-09-19 Bayerische Motoren Werke Ag Ventiltrieb einer Brennkraftmaschine
DE19640520A1 (de) * 1996-07-20 1998-04-09 Dieter Dipl Ing Reitz Ventiltrieb und Zylinderkopf einer Brennkraftmaschine
JP3893205B2 (ja) * 1997-12-09 2007-03-14 株式会社日立製作所 内燃機関の可変動弁装置
GB2357131A (en) * 1999-12-09 2001-06-13 Mechadyne Internat Plc Valve actuating mechanism
DE10006018B4 (de) * 2000-02-11 2009-09-17 Schaeffler Kg Variabler Ventiltrieb zur Laststeuerung einer fremdgezündeten Brennkraftmaschine
JP3938339B2 (ja) * 2001-07-26 2007-06-27 本田技研工業株式会社 内燃機関の動弁制御装置
DE10221133A1 (de) * 2002-05-13 2003-11-27 Thyssen Krupp Automotive Ag Antriebs- und Verstellsystem für variable Ventilsteuerungen
DE10342075A1 (de) * 2003-09-10 2005-06-16 Rolf Jung Vollvariable Hubventilsteuerung einer Brennkraftmaschine
JP4412190B2 (ja) * 2004-04-28 2010-02-10 トヨタ自動車株式会社 可変動弁機構

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06221123A (ja) 1993-01-29 1994-08-09 Mazda Motor Corp エンジンのバルブタイミング制御装置
JP2503932B2 (ja) 1994-03-23 1996-06-05 三菱自動車工業株式会社 可変バルブタイミング機構のロストモ―ションアセンブリ
JPH09228808A (ja) 1996-02-22 1997-09-02 Yamaha Motor Co Ltd 内燃エンジンの動弁装置
JP2003239712A (ja) 2002-02-18 2003-08-27 Nippon Soken Inc 弁制御装置
JP2006283700A (ja) * 2005-04-01 2006-10-19 Toyota Motor Corp 可変動弁システム
JP2006307786A (ja) * 2005-04-28 2006-11-09 Toyota Motor Corp 可変動弁装置、並びにそれを備えた内燃機関の制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2096274A4 *

Also Published As

Publication number Publication date
JP4380695B2 (ja) 2009-12-09
US20100224150A1 (en) 2010-09-09
JP2008151037A (ja) 2008-07-03
US8006659B2 (en) 2011-08-30
EP2096274A1 (en) 2009-09-02
EP2096274A4 (en) 2012-01-04
CN101553647A (zh) 2009-10-07
CN101553647B (zh) 2011-07-06
EP2096274B1 (en) 2013-01-23
WO2008075556A9 (ja) 2009-02-19

Similar Documents

Publication Publication Date Title
EP2639415B1 (en) Variable valve device for internal combustion engine
US7779796B2 (en) Variable valve actuating apparatus for internal combustion engine and process of controlling the same
JP4858729B2 (ja) 可変動弁装置
JP3933115B2 (ja) 内燃機関の吸気制御装置
WO2008075556A1 (ja) 可変動弁機構付き内燃機関
JP2006329022A (ja) エンジンの吸気制御装置
JP5273258B2 (ja) 可変動弁装置を備える内燃機関の制御装置
JP2007192127A (ja) ターボ過給機付内燃機関
JP4661647B2 (ja) 可変動弁機構の制御装置
JP4780026B2 (ja) 内燃機関の制御装置
JP5310207B2 (ja) 内燃機関の動弁システム
JP4555771B2 (ja) 自然吸気式内燃機関
JP4165433B2 (ja) 内燃機関の制御装置
JP2008095668A (ja) 可変動弁機構付き内燃機関
JP5556932B2 (ja) 内燃機関の動弁システム
JP4165432B2 (ja) 内燃機関の制御装置
JP2009299655A (ja) 内燃機関の動弁システム
JP2007113470A (ja) スワール補正装置
JP4919878B2 (ja) 内燃機関の吸気制御装置
JP4661646B2 (ja) 内燃機関の制御装置
JP2005344531A (ja) 内燃機関の制御装置
JP2008075562A (ja) 可変動弁機構の制御装置
JP2010185400A (ja) 内燃機関の制御装置
JPWO2011086702A1 (ja) 内燃機関の可変動弁装置
JP2005315232A (ja) 内燃機関及び内燃機関の制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780042858.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07850045

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12377390

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007850045

Country of ref document: EP