WO2008072578A1 - コート材用組成物 - Google Patents

コート材用組成物 Download PDF

Info

Publication number
WO2008072578A1
WO2008072578A1 PCT/JP2007/073711 JP2007073711W WO2008072578A1 WO 2008072578 A1 WO2008072578 A1 WO 2008072578A1 JP 2007073711 W JP2007073711 W JP 2007073711W WO 2008072578 A1 WO2008072578 A1 WO 2008072578A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating material
mass
polymer
group
composition
Prior art date
Application number
PCT/JP2007/073711
Other languages
English (en)
French (fr)
Inventor
Yasuhiro Matsuda
Yuichi Kawata
Yuko Tachibana
Original Assignee
Nippon Shokubai Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2007052572A external-priority patent/JP2008214452A/ja
Priority claimed from JP2007052580A external-priority patent/JP2008214453A/ja
Priority claimed from JP2007101035A external-priority patent/JP2008255281A/ja
Priority claimed from JP2007152514A external-priority patent/JP5139721B2/ja
Priority claimed from JP2007182653A external-priority patent/JP2009019110A/ja
Application filed by Nippon Shokubai Co., Ltd. filed Critical Nippon Shokubai Co., Ltd.
Publication of WO2008072578A1 publication Critical patent/WO2008072578A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/12Polymers provided for in subclasses C08C or C08F
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/20Esters of polyhydric alcohols or polyhydric phenols, e.g. 2-hydroxyethyl (meth)acrylate or glycerol mono-(meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/40Esters of unsaturated alcohols, e.g. allyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/67Particle size smaller than 100 nm
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances

Definitions

  • the present invention relates to a coating material composition.
  • These transparent plastics are used for the purpose of imparting scratch resistance in order to prevent scratches on the surface of optical films such as CD, DVD and Blu-ray discs, which are used by being attached to the display surface of liquid crystal display devices, etc.
  • a scratch-resistant coating layer may be formed on the substrate surface.
  • a method for forming the scratch-resistant coating layer for example, a method of coating the surface of a transparent plastic base material with a polyfunctional acrylate curable transparent resin of 2 to 10 m or so can be mentioned.
  • a curable resin mainly composed of a polyfunctional acrylate monomer although the scratch resistance of the plastic substrate surface is improved, the volume shrinkage during curing is increased. If the scratch-resistant coating layer is peeled off from the substrate, the scratch-resistant coating layer may crack. Also, when the film was coated on a film substrate, if the film curled due to cure shrinkage, the film with the scratch-resistant coating layer folded and the scratch-resistant coating layer could be peeled off or cracked. In addition, when a plastic film with a scratch-resistant coating layer is cut, there are problems such as cracking at the edge.
  • the thickness of the scratch-resistant coat layer is made thicker than 10 inches.
  • the degree of cracking of the scratch-resistant coating layer may become larger if the scratch-resistant coating layer and the substrate are peeled off due to volumetric shrinkage during curing. There is also a problem that the curl amount of the film becomes larger.
  • Patent Document 1 contains a crosslinkable polymer containing an ethylenically unsaturated group in the side chain A method using a curable resin composition is disclosed.
  • Patent Document 2 discloses a photocurable resin composition containing a polymer of polyethylene glycol mono (meth) acrylate.
  • Patent Document 3 discloses a radiation curable coating using a compound having a (meth) atalyloyl group at both ends of a prebolimer molecule and a (meth) atalyleunole group as a side chain in the unit of the prebolimer main chain. An agent has been disclosed!
  • Patent Document 4 discloses a hard coat film in which a buffer layer is provided between a plastic substrate film and a hard coat layer.
  • Patent Document 5 discloses a hard coat film in which a first hard coat layer containing a curable epoxy acrylate and a second hard coat layer containing a curable urethane acrylate are laminated on a plastic substrate. .
  • the problem to be solved by the present invention is a cured product having a high hardness after curing, which is hard to be scratched, and the curing after curing is small and the coating film is hardly peeled off.
  • An object of the present invention is to provide a composition for a coating material that can provide a product.
  • Patent Document 1 JP 2002-322430 A
  • Patent Document 2 Japanese Patent No. 2959050
  • Patent Document 3 Japanese Patent No. 3158527
  • Patent Document 4 JP-A-11 300873
  • Patent Document 5 Japanese Patent Laid-Open No. 2006-58574
  • a heteropolymeric monomer can be polymerized or copolymerized based on a cationic polymerization method to produce a (meth) atallyloyl group pendant polymer or copolymer. If such a (meth) atallyloyl group pendant type polymer or copolymer is used, the cured film has a high hardness and is hard to be damaged.
  • the present invention was completed by finding that a laminate with a coat layer having a small warp after curing was obtained. That is, the present invention provides the following formula (1)
  • R 1 is an alkylene group having 2 to 8 carbon atoms
  • R 2 is a hydrogen atom or a methyl group
  • m is a positive integer.
  • a composition for a coating material comprising a bulle polymer having a repeating unit represented by the formula:
  • the composition for a coating material of the present invention uses a (meth) atalyloyl group pendant polymer, so that the cured film has a high hardness and is hard to be damaged.
  • a bulle-based polymer since a bulle-based polymer is used, it is possible to provide a laminated body with less warpage after curing, which is less likely to cause peeling of the coating film than when a bulle-based monomer is used.
  • FIG. 1 The mass% value (A) of the repeating unit represented by the formula (1) in the bull polymers in Examples 58 to 77 to the third power, the number average molecular weight of the bull polymers, and It is a figure showing about the value of the product of, and the relation with curvature.
  • composition for a coating material of the present invention is characterized by containing a bull polymer having a repeating unit represented by the following formula (1).
  • R 1 is an alkylene group having 2 to 8 carbon atoms
  • R 2 is a hydrogen atom or a methyl group
  • m is a positive integer.
  • examples of the alkylene group having 2 to 8 carbon atoms represented by R 1 include an ethylene group, a trimethylene group, a propylene group, a tetramethylene group, a pentamethylene group, and a hexamethylene group.
  • the bull polymer having a repeating unit represented by the above formula (1) can be easily prepared by cationic polymerization of a monomer mixture containing a heterogeneous polymerizable monomer represented by the following formula (2). can do.
  • the different polymerizable monomers represented by the above formula (2) may be used singly or in combination of two or more.
  • the resulting copolymer may be a random copolymer, an alternating copolymer, a periodic copolymer, a block copolymer, or a combination thereof.
  • a graft copolymer may be sufficient.
  • heteropolymerizable monomer represented by the above formula (2) include, for example, (meth) atalylic acid 2 vinyloxetyl, (meth) acrylic acid 3 vinyloxychetyl, (meth) acrylic acid 2-vinylic acid Roxypropyl, (meth) acrylic acid 1-methyl-2-vinyloxychetyl, (meth) acrylic acid 4 vinyloxybutyl, (meth) acrylic acid 6-vinyloxyhexyl, (meth) atari Noreic acid 4 vinyloxycyclohexyl, (meth) acrylic acid 4 vinyloxymethylcyclohexylmethyl, (meth) acrylic acid 2- (2-vinyloxyethoxy) ethyl, (meth) acrylic acid 2 mono (2-vinyloxyiso) Propoxy) propyl, (meth) acrylic acid 2- ⁇ 2- (2-vinyloxyethoxy) ethoxy ⁇ ethyl is preferred.
  • the heteropolymerizable monomer represented by the above formula (2) can be produced by a conventionally known method.
  • R 1 is an ethylene group and m is 1, the ability to condense a metal salt of (meth) acrylic acid with 2-halogenoethyl butyl ether, (meth) acrylic acid The ability to transesterify methyl with 2-hydroxyethyl butyl ether, or the ability to produce by condensing (meth) acrylic acid halide with 2-hydroxyethyl butyl ether.
  • the heteropolymerizable monomer represented by the above formula (2) has a radically polymerizable or anion polymerizable (meth) atalyloyl group and a cationic polymerizable butyl ether group at the same time.
  • a polymer having a (meth) atalyloyl group or a butyl ether group as a pendant group is obtained.
  • the butyl ether group of the hetero-polymerizable monomer represented by the above formula (2) is cationically polymerized, thereby indicating the above formula (1) having a (meth) acryloyl group as a pendant group.
  • a bull polymer having a repeating unit can be obtained.
  • the bull polymer having a repeating unit represented by the above formula (1) is derived from a monomer capable of cationic polymerization in addition to the heteropolymerizable monomer represented by the above formula (2). It may have structural units.
  • Such a copolymer can be easily prepared by cationic polymerization of a monomer mixture containing a heteropolymerizable monomer represented by the above formula (2) and a cationically polymerizable monomer. Can do.
  • the heteropolymerizable monomers represented by the above formula (2) may be used alone or in combination of two or more.
  • the copolymer obtained is A random copolymer, an alternating copolymer, a periodic copolymer, a block copolymer, or a combination thereof! /, A misaligned or a graft copolymer! /.
  • the cationically polymerizable monomer may be any monomer that is copolymerizable with the heteropolymerizable monomer represented by the above formula (2). These cationically polymerizable monomers may be used alone or in combination of two or more. Among these cationically polymerizable monomers, butyl ether compounds such as methinolevinoleatenore, isobutinorevininoreatenore, otadecinorevininoreatenore, cyclohexyl bull ether, and dihydrofuran, N-bule force rubazole and the like are suitable.
  • the molar ratio of the monomers is preferably 0.1 or more, more preferably 0.5 or more, and still more preferably 0.8. 10 or less is preferred, more preferably 8 or less, and even more preferably 5 or less.
  • the molar ratio of the monomer exceeds 10
  • the content of the repeating unit represented by the above formula (1) in the resulting bull polymer decreases, and the hardness and mechanical strength after curing are insufficient. There is.
  • the physical properties required for various applications can be adjusted by adjusting the molar ratio of the monomers as appropriate.
  • the bull polymer is preferably polymerized in the presence of a heteropolyacid.
  • the catalyst used in the cationic polymerization is not particularly limited as long as it is a catalyst containing a heteropolyacid, and may contain other substances as long as the catalyst performance is not impaired.
  • a catalyst in which the heteropolyacid is usually contained in the range of 30% by mass to 100% by mass is preferable in terms of performance.
  • the heteropolyacid used in the catalyst is such that the central atom of the skeletal acid is selected from tungsten, molybdenum, vanadium, etc., and the heteroatom is phosphorus, silicon, germanium, titanium, zirconium, boron, arsenic, cobalt, etc.
  • the heteropolyacid used in the present invention may be a partially neutralized salt.
  • these partially neutralized salts include sodium salts, potassium salts, cesium salts, organic amine salts, ammonium salts, and the like.
  • the partially neutralized salt of the heteropolyacid may be prepared and then added to the reaction system, but it may be formed by reacting the heteropolyacid with a base in the reaction system.
  • the heteropolyacid may be used in the form of a powder, or may be used after being dissolved and diluted in an organic solvent.
  • the solvent used for dissolution dilution is not particularly limited, but oxygen-containing organic solvents such as acetone, methylolethyl ketone, jetinoletel, ethylene glycol dimethylol ether, ethyl acetate, and butyl acetate are preferred. Les.
  • the heteropolyacid is dried at high temperature and / or reduced pressure before use, and the water portion of the heteropolyacid is preferably 1% by mass or more, particularly preferably 3% by mass or more, preferably 15%. It is preferable to use it for polymerization by adjusting it to be not more than mass%, particularly preferably not more than 8 mass%. If the partial force of crystallization water is less than 15% by mass or exceeds 15% by mass, the molecular weight of the resulting bull polymer may not increase.
  • the heteropolyacid used in the present invention is highly active, a monomer mixture containing a heteropolymerizable monomer represented by the above formula (2) (hereinafter simply referred to as "monomer mixture").
  • the polymerization reaction proceeds sufficiently even if the amount used is less than lOOppm, but the amount of catalyst may be increased as necessary.
  • the amount of catalyst used is lp pm or more with respect to the monomer mixture, preferably ⁇ is lOppm or more, 30000 ppm or less, and preferably ⁇ is 5000 ppm or less.
  • it is preferably from 1 ppm to ⁇ pm.
  • the polymerization may not start. If the amount used exceeds 300 OOppm, the polymerization becomes too intense and the reaction cannot be controlled, the molecular weight of the resulting bulle polymer may be low, In some cases force s coloring is or what happened. [0032] When the above monomer mixture is polymerized, polymerization may be carried out with Balta, but a solvent may be used in order to control the reaction temperature and viscosity.
  • the solvent to be used is not particularly limited, but aromatic hydrocarbons such as toluene, xylene and benzene, aliphatic hydrocarbons such as hexane and octane, cyclohexane, methylcyclohexane and the like. Saturated cyclic hydrocarbons, halogenated hydrocarbons such as chloroform, trichloroethylene, esters such as ethyl acetate, butyl acetate and butyl propionate, cyclic ethers such as tetrahydrofuran and 1,4 dioxane, acetonitrile, benzonitrile, etc. Nitriles can be used. In addition, in order to obtain a high molecular weight polybutyl ether, it is preferable to use nonpolar solvents such as aromatic hydrocarbons, aliphatic hydrocarbons, saturated cyclic hydrocarbons and esters.
  • the molecular weight of the bull polymer obtained can be adjusted by adding alcohol or water.
  • the alcohol include methanol, ethanol, linear or branched propanol, and linear or branched butanol.
  • impurities such as moisture and alcohol in the reaction system are small.
  • the temperature for polymerizing the monomer mixture is not particularly limited, but is preferably 30 ° C or higher and 100 ° C or lower.
  • the polymerization start temperature is ⁇ 10 ° C to 60 ° C and the maximum temperature during polymerization is 0 ° C to 80 ° C by heating or cooling. Adjusting power S is preferred.
  • the molecular weight distribution of the polymer obtained by the polymerization is narrowed so that the temperature of the polymerization solution in the reaction vessel becomes substantially constant. Therefore, it is preferable to adjust the polymerization temperature as much as possible.
  • the polymerization temperature is less than 30 ° C, the polymerization rate may be low, the molecular weight of the resulting bull polymer may be low, or the solidification or high viscosity may be difficult to handle.
  • the polymerization temperature exceeds 100 ° C, the molecular weight of the resulting bull polymer may be low.
  • the reaction pressure may be normal pressure or increased pressure, but is usually carried out at normal pressure.
  • the reaction may be stopped by adding an organic base such as ammonia and amine, or an inorganic base such as NaOH and KOH, if necessary.
  • an organic base such as ammonia and amine
  • an inorganic base such as NaOH and KOH
  • the bull polymer having a repeating unit represented by the above formula (1) can be easily prepared by cationic polymerization as described above.
  • Mw / Mn which is the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn)
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • the living cationic polymerization is performed using a cation source in the presence of, for example, two types of Lewis acid and an oxygen-containing compound or a nitrogen-containing compound (hereinafter sometimes referred to as “compound A”).
  • Power S can be.
  • one of the two Lewis acids hereinafter sometimes referred to as “Lewis acid A”
  • the other Lewis acid hereinafter referred to as “Luisic acid B”. Is introduced into the system.
  • “cation source” means a compound capable of generating an initiation cation.
  • Lewis acids examples include B, Mg, Al, Si, P, halides of elements after the third period (for example, Sn), or organometallic compounds of these elements. I can get lost.
  • Lewis acid A is preferably a halide of B, Mg, Al, Si, or P, or an organometallic compound of these elements.
  • Halides of elements after the third period (for example, tin tetrachloride) or organometallic compounds of these elements are suitable.
  • an organoaluminum compound is particularly suitable, and specific examples include jetyl aluminum chloride, dimethylaluminum bromide, ethylaluminum dichloride, and the like.
  • an organoaluminum compound When used as the Lewis acid A, it may be used alone or in combination of two or more.
  • the compound A is not particularly limited, and examples thereof include esters (for example, 1 isobutoxy cetate) such as ethyl acetate, butyl acetate, and phenyl acetate.
  • Compound A may be used alone or in combination of two or more.
  • the cation source include proton acids such as hydrochloric acid and acetic acid; water: alcohol; halogenated compounds, hydrogen halides or adduct compounds of carboxylic acid and butyl ether. These cation sources are usually used in combination with norelic acid A.
  • the Lewis acid A it is preferable to use a Lewis acid that easily generates a cation from a cation source.
  • Living cationic polymerization may be carried out using a solvent such as aromatic hydrocarbons such as benzene, toluene and black benzene; esters such as methyl acetate and ethyl acetate.
  • Compound A may be used as a solvent.
  • the living cation polymerization reaction conditions are not particularly limited because they vary depending on the type of monomer and the amount used.
  • the polymerization temperature is preferably 30 ° C or higher, more preferably 0 ° C or higher, preferably 60 ° C or lower, more preferably 40 ° C or lower.
  • the polymerization time is preferably 0.01 hours or more, more preferably 0.1 hours or more, preferably 10 hours or less, more preferably 5 hours or less.
  • the reaction may be performed under pressure, normal pressure, or reduced pressure, but is preferably performed under normal pressure.
  • the living cationic polymerization is preferably performed in a dry inert gas atmosphere.
  • the relative humidity in the reaction atmosphere at this time is preferably 10% RH or less, more preferably 1% RH or less.
  • the inert gas include nitrogen, helium, and argon.
  • the mass% value (A) of the repeating unit represented by the formula (1) in the bull polymer having the repeating unit represented by the above formula (1) and the number of the bull polymers is preferably 600 X 10 6 or less, particularly preferably 360 X 10 6 or less. ⁇ [If 1 exceeds 600 10 6 , warping occurs greatly when the coating material composition is cured, and the low warping property, which is one of the features of the present invention, is impaired. Although the detailed reason is unknown, it is considered that the crosslink density and mechanical strength, particularly toughness, are related to the reason that warpage is attributed to A 3 X Mn.
  • the bull polymer having a repeating unit represented by the above formula (1) preferably has a molecular weight distribution (Mw / Mn) which is a ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn), preferably 1.00. Preferably, it is 2.4 or less, more preferably 2.0 or less, even more preferably 1.6 or less, and particularly preferably 1.2 or less. If the molecular weight distribution (Mw / Mn) exceeds 2.4, low molecular weight components may increase, which may reduce the strength of the cured product. is there.
  • the number average molecular weight (Mn) of the bull polymer is preferably 1,000 or more, more preferably 2,000 or more, further preferably 5,000 or more, preferably 200,000 or less, and more preferably. Is in the range of 100,000 or less. If the number average molecular weight (Mn) of the bulle polymer is less than 1,000, the curing rate may be decreased and the strength of the cured product may be decreased.
  • the number average molecular weight (Mn) and the molecular weight distribution (Mw / Mn) are manufactured by Tosoh Corporation under the conditions of a temperature of 40 ° C and a flow rate of 0.3 mL / min using tetrahydrofuran (THF) as a mobile phase. Columns TSK-gel SuperHM-H, TSK-gel SuperH2000
  • the bull polymer having a repeating unit represented by the above formula (1) can be obtained as a liquid viscous material unless the polymer content obtained from the solid monomer is large.
  • spin coating is possible without diluting with a polymerizable monomer and lowering the resin viscosity.
  • it has good solubility with a polymerizable monomer that can be mixed with a polymerizable monomer, so that work efficiency can be improved when preparing a resin composition.
  • the viscosity of the preferred bull polymer of the present invention is preferably 0.1 Pa's or more, more preferably 1 Pa's or more, further preferably 2 Pa's or more, preferably 2, OOOPa-s or less, more Preferably it is 1, OOOPa-s or less, more preferably 500 Pa-s or less.
  • the viscosity is a value calculated using a RB80 viscometer (model “RB80L”: manufactured by Toki Sangyo Co., Ltd.) under the condition of a temperature of 25 ° C.
  • a secondary amine may be added to a part of the carbon-carbon double bond of the bull polymer.
  • the polarity of the bull polymer can be increased, and the wettability of the coating composition to a substrate such as plastic can be improved.
  • the bull polymer to which the secondary amine is added as described above preferably has a repeating unit represented by the following formula (3) and / or the following formula (4)! / ,.
  • R 2 and m have the same meaning as in the above formula (1).
  • R 3 and R 4 are the same or different, a hydroxyalkyl group having 1 to 4 carbon atoms, an alkyl group or a carbon number from 6 to 1 to 6 carbon atoms; represents an Ariru group of 12, further R 3 and R 4 may form a 5- to 8-membered ring with or without a nitrogen atom or oxygen atom.
  • R 2 and m have the same meaning as in the above formula (1).
  • R 3 and R 4 are the same or different, a hydroxyalkyl group having 1 to 4 carbon atoms, an alkyl group or a carbon number from 6 to 1 to 6 carbon atoms; represents an Ariru group of 12, further R 3 and R 4 may form a 5- to 8-membered ring with or without a nitrogen atom or oxygen atom.
  • Examples of the secondary amine added to the bull polymer having the repeating unit represented by the above formula (1) include N-methyloctylamine, methylethylamine, methylpropynoleamine, and ethyl.
  • N-alkylamines such as propylamine, di-n-propylamine, di-2-ethylhexylamine, dimethylamine, dimethylamine, diisopropylamine, dibutylamine and other alkylamines; dimethylamines such as N-methylaniline; diarylamines such as diphenylamine; N-methylethanol Amine, N ethyl alcohol Hydroxyl-containing dialkylamines such as diamine, diethanolamine and diisopropanolamine; Halogenated alkylamines such as bis (2-chloroethinolemine) and 2-chloroethyl (propinole) amine; piperidine, 4-methylbiamine Secondary cyclic amines such as peridine, 1-
  • dialkylamines such as diisopropylamine and dibutanolamine
  • N-hydroxylamine-containing dialkylamines such as methylethanolamine, diethanolamine and diisopropanolamine are preferred, and in particular, dipropylamine and dibutylamine.
  • Dialkylamines such as diethanolamine and diisopropanolamine are preferred.
  • the amount of secondary amine added to the bull polymer having a repeating unit represented by the above formula (1) is the carbon content of the bull polymer having a repeating unit represented by the above formula (1).
  • the addition to 5 mol% or more of the carbon double bond is preferably 10 mol% or more, more preferably 20 mol% or more. If the amount of secondary amine added is less than 5 mol% of the carbon-carbon double bond of the bull polymer, the polarity of the bull polymer obtained may not be sufficiently increased.
  • the additional amount of secondary Amin is rather preferably be less than 60 mole% of the carbon-carbon double bonds Bulle polymer has, more preferably 50 mol 0/0 or less, more preferably 40 mol 0 / 0 or less. When the addition amount of the secondary amine exceeds 60 mol% of the carbon-carbon double bond of the bull polymer, the polymerizability of the resulting bull polymer may be lowered.
  • a polydimethylsiloxane moiety may be introduced into the bull polymer having a repeating unit represented by the above formula (1).
  • a functional group may be used when a bulle polymer is prepared by conventionally known cationic polymerization. It can be synthesized by adding an organically modified silicone compound having. Examples of the organically modified silicone compound having a functional group include the following formulas (9) to (9) depending on the place where the functional group is introduced.
  • R 5 to R 1Q are functional residues having 2 to 20 carbon atoms, and X and Y are positive integers. In addition, when a plurality of R 5 and R 9 are present, they may be the same or different. ]
  • examples of the functional group possessed by the organic residue represented by R 5 to R 1Q include a hydroxyl group, an epoxy group, and an amino group. These may be the same or different. In addition to R 5 to R 1Q , it may further have a (meth) atalyleuno group or the like. Only one type of organically modified silicone compound having a functional group of the above formulas (5) to (8) may be used, or two or more types may be used in combination.
  • the organically modified silicone compound may be used in a range that does not impair the antifouling performance.
  • the mass ratio is not particularly limited! /, But the mass ratio (organic having functional groups of the above formulas (5) to (8)) Modified silicone compound / monomer capable of thione polymerization) is preferably 0.001 or more, more preferably 0.005 or more, preferably 10 or less, more preferably 5 or less.
  • composition for a coating material of the present invention can contain other polymerizable monomer and / or radical polymerizable resin in addition to the bull polymer.
  • other polymerizable monomer and / or radical polymerizable resin is contained, the physical properties of the cured product layer obtained by curing the coating material composition can be adjusted.
  • the content of the other polymerizable monomer in the coating material composition is preferably 0% by mass or more, preferably 80% by mass or less, more preferably 60% by mass or less.
  • content of the other polymerizable monomer exceeds 80% by mass, curing shrinkage increases, and internal distortion and warpage of the cured product increase, which is not preferable.
  • the polymerizable monomer is not particularly limited as long as it can be co-cured with the bull polymer.
  • the polymerizable monomers may be used alone or in combination of two or more.
  • As the polymerizable monomer (meth) acrylic acid ester, (meth) acrylic acid ester having an alicyclic structure substituent, and (meth) acrylic monomer having an oxyethylene group are suitable.
  • the (meth) acrylic monomer having an oxyethylene group can be obtained by condensation of an alcohol or polyhydric alcohol having an ether structure and (meth) acrylic acid (ester).
  • Examples of the (meth) acrylic monomer having an oxyethylene group include methoxyethyl (meth) acrylate, ethoxyethyl (meth) acrylate, propoxycetyl (meth) acrylate, isopropoxy cetyl (meth) ) Atalylate, butoxychetyl (meth) acrylate, (meth) acrylic acid 2-vinyloxychetyl, (meth) acrylic acid 2- (2-vinyloxyethoxy) ) Ethyl, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, trimethylol propane ethylene oxide adduct tri (meth) acrylate, glycerin ethylene Mono-di-tri (meth) acrylate of oxide adduct, (meth) acrylate of ethylene oxide adduct of (di) pentaerythrito
  • the content thereof is 20% by mass or more with respect to 100% by mass of the composition. It is preferable to be less than mass%! /.
  • the content of the (meth) acrylic monomer having an oxyethylene group is less than 20% by mass, the surface curability is poor, the adhesion to the substrate is poor, the viscosity is high and the workability is high.
  • the amount exceeds 60% by mass the curing rate may decrease or the coating strength of the cured product may be insufficient.
  • the coating material composition of the present invention can be easily reduced in viscosity and adjusted in viscosity, and can be molded. , Workability is improved, curing shrinkage is reduced, and low warpage is improved. In addition, the hardness and mechanical strength of the coating after curing, adhesion to the substrate and! /, And various other physical properties are dramatically improved.
  • the content of the radical polymerizable resin in the coating material composition is preferably 0% by mass or more, preferably 50% by mass or less, more preferably 30% by mass or less in 100% by mass of the composition.
  • the content of the radical polymerizable resin exceeds 50% by mass, the viscosity of the coating material composition becomes too high, and there is a possibility that the coating onto the substrate cannot be performed satisfactorily.
  • the radical polymerizable resin is not particularly limited as long as it can be co-cured with the bull polymer of the present invention.
  • the acrylic resin is a polymer of (meth) acrylic acid ester such as polymethyl methacrylate.
  • a resin ((meth) acrylic syrup) in which the coalescence is dissolved in a (meth) acrylic acid ester monomer such as methyl methacrylate is preferable.
  • a polymer obtained by copolymerizing glycidyl methacrylate with acrylic acid or glycidyl methacrylate in order to provide the polymer with a functional group of an oxy-epoxy group was further reacted with the functional group to give a polymerizable functional group. It is also possible to use a polymer or a monomer introduced with a monomer such as styrene other than acrylic.
  • the urethane (meth) acrylate is obtained with a force S obtained by urethanization reaction between a (meth) acrylic acid ester having a hydroxyl group and a compound having at least one isocyanate group in the molecule.
  • Examples of the (meth) acrylic acid ester having a hydroxyl group include, for example, hydroxyethyl (polyester), polyethylene glycol mono (meth) acrylate, polypropylene glycol (meth) acrylate, neopentyl glycol (meth) acrylate.
  • These (meth) acrylic acid esters may be used singly or in combination of two or more, and among them, pentaerythritol triatalylate or dipentaerythritol pentaacrylate is preferred.
  • Examples of the compound having an isocyanate group include 2,4-tolylene diisocyanate and isomers thereof, diphenylmethane diisocyanate, hexamethylene diisocyanate, and isophorone diisocyanate.
  • Xylylene diisocyanate 2, 4, 4-trimethylenohexamethylene diisocyanate, cyclohexylmethane diisocyanate, dicyclomethane diisocyanate, 4,4'-methylenebis (cyclohexyl isocyanate) ), Lysine di-isocyanate, 1,3- (isocyanatomethyl) cyclohexane, 1,5-naphthalene diisocyanate, triphenylmethane triisocyanate, etc .; adducts and burettes of these polyisocyanates Of polyisocyanates such as isomers and isocyanurates Examples thereof include derivatives (modified products). These compounds having an isocyanate group may be used alone or in combination of two or more. Of these, isophorone diisocyanate or its isocyanurate is preferred.
  • the urethane (meth) acrylate content in the coating material composition of the present invention is 5 parts by mass with respect to 100 parts by mass of the bull polymer. It is desirable that the amount be not less than 10 parts by mass, more preferably not less than 10 parts by mass. Also, not more than 200 parts by mass, preferably not more than 150 parts by mass, more preferably not more than 100 parts by mass, most preferably not more than 50 parts by mass. desirable. If the content of urethane (meth) acrylate exceeds 200 parts by mass with respect to 100 parts by mass of the bulle polymer, the shrinkage of curing increases, and internal distortion and warping of the cured product may increase. If it is less than the part, the adhesion may not be improved.
  • the urethane (meth) acrylate is not particularly limited, but polyfunctional urethane (meth) acrylate having a plurality of (meth) taroloyl groups in one molecule is preferable!
  • the number of (meth) attaroyl groups in the molecule of the polyfunctional urethane (meth) acrylate is preferably 3 or more, more preferably 6 or more.
  • polyfunctional urethane (meth) acrylate examples include, for example, 2-hydroxyethyl acrylate, a hydroxyl group-containing (meth) acrylate ester, and isophorone diisocyanate as a compound having an isocyanate group.
  • composition for a coating material of the present invention can further contain a polymerization initiator.
  • the coating material composition can be cured with heat or ultraviolet rays.
  • the repeating unit represented by the formula (1) has a radically polymerizable (meth) atalyloyl group, for example, a thermal polymerization initiator that generates a polymerization initiating radical by heating; Photopolymerization initiators that generate polymerization initiating radicals upon irradiation of the above. These polymerization initiators may be used alone or in combination of two or more. It is also preferable to further add a thermal polymerization accelerator, a photosensitizer, a photopolymerization accelerator and the like.
  • thermal polymerization initiator examples include methyl ethyl ketone peroxide, cyclohexanone peroxide, tamen hydroperoxide, t-butyl peroxybenzoate, and benzoyl.
  • Metal oxides such as peroxide and / or compounds such as amine compounds that can generate radicals efficiently, 2, 2'-azobisisobutyronitrile, 2, 2, -azobis ( 2, 4 dimethylvaleronitrile).
  • the photopolymerization initiator include acetophenones, benzophenones, and acyl phosphinoxides.
  • 2 Methyl-1 [4 (methylthio) phenol]]-2-morpholinopropane 1-one, 2-hydroxy-1-methyl 2-phenyl 1-phenyl, 1-on, 2-methyl 2-morpholino (4-thiomethylphenol) propane 1-on, 1-hydroxycyclohexyl phenyl ketone are particularly preferred.
  • the content of the polymerization initiator in the coating material composition is preferably 0.05% by mass or more, more preferably 0.1% by mass or more, and further preferably 0.2% by mass or more. Preferably it is 20 mass% or less, More preferably, it is 15 mass% or less, More preferably, it is 10 mass% or less.
  • the content of the polymerization initiator is less than 0.05% by mass, the coating material composition may not be sufficiently cured.
  • the content of the polymerization initiator exceeds 20% by mass, the physical properties of the cured product will not be further improved, but rather adversely affected and the economy will be impaired.
  • a force S is preferably 0.05% by mass or more, more preferably 0.1% by mass or more, and further preferably 0.2% by mass or more.
  • it is 20 mass% or less, More preferably, it is 15 mass% or less, More preferably, it is 10 mass% or less.
  • the content of the polymerization initiator is less than 0.05% by mass, the coating material composition may not be sufficiently
  • thermal polymerization accelerators can be used.
  • the thermal polymerization accelerator include metal sarcophagus containing cobalt, copper, tin, zinc, manganese, iron, zirconium, chromium, vanadium, calcium, potassium, etc., primary, secondary, and tertiary amines. Compounds, quaternary ammonium salts, thiourea compounds, and ketone compounds. These thermal polymerization accelerators may be used alone or in combination of two or more.
  • cobalt octylate, cobalt naphthenate, copper octylate, copper naphthenate, manganese octylate, manganese naphthenate, dimethylaniline, triethanolamine, triethylbenzyl ammonium chloride, Di (2-hydroxyethyl) p-toluidine, ethylenethiourea, acetylacetone and methyl acetoacetate are preferred.
  • the content of the thermal polymerization accelerator in the coating material composition is preferably 0.001% by mass or more, more preferably 0.01% by mass or more, and still more preferably 0.05% by mass or more. Preferably it is 20 mass% or less, More preferably, it is 10 mass% or less, More preferably, it is in the range of 5 mass% or less. If the content of the thermal polymerization accelerator is within such a range, it is preferable from the viewpoints of curability of the curable resin composition, physical properties of the cured product, and economic efficiency.
  • a photopolymerization initiator When a photopolymerization initiator is used as the polymerization initiator, excitation energy is transferred to the photopolymerization initiator from the excited state force generated by photoexcitation to effectively decompose the photopolymerization initiator and effectively radicalize.
  • produce can be used. Examples of the photosensitizer include 2-chlorodithioxanthone, 2,4-jetylthioxanthone, and 2,4-diisopropylpropyl thixanthone. These photosensitizers may be used alone or in combination of two or more.
  • the content of the photosensitizer in the coating material composition is preferably 0.05% by mass or more, more preferably 0.1% by mass or more, and further preferably 0.2% by mass. It is preferably 20% by mass or less, more preferably 15% by mass or less, and still more preferably 10% by mass or less.
  • the content of the photosensitizer is within such a range, it is preferable from the viewpoints of curability of the coating material composition, physical properties of the cured product, and economic efficiency.
  • a photopolymerization initiator is used as the polymerization initiator, a photopolymerization accelerator capable of promoting the decomposition of the photopolymerization initiator and generating radicals effectively can be used.
  • Examples of the photopolymerization accelerator include triethanolamine, methyl jetanolamine, triisopropanolamine, methyl 4-dimethylaminobenzoate, ethyl 4-dimethylaminobenzoate, isoamyl 4-dimethylaminobenzoate, 4-dimethylaminobenzoic acid 2-n.
  • Examples include butoxychetyl, 2-dimethylaminoethyl benzoate, N, N dimethylbalatluidine, 4,4'-dimethylaminobenzophenone, 4,4'-jetylaminobenzophenone.
  • These photopolymerization accelerators may be used alone or in combination of two or more. Of these photopolymerization accelerators, triethanolamine, methyljetanolamine, and triisopropanolamine are preferable.
  • the content of the photopolymerization accelerator in the coating material composition is preferably 0.05% by mass or more, more preferably 0.1% by mass or more, and further preferably 0.2% by mass or more. Yes, preferably 20% by mass or less, more preferably 15% by mass or less, and still more preferably 10% by mass or less.
  • the content of the photopolymerization accelerator is within such a range, it is preferable from the viewpoints of curability of the coating material composition, physical properties of the cured product, and economical efficiency.
  • the thermal polymerization initiator in the coating material composition is preferably 0.05% by mass or more, more preferably 0.1% by mass or more, still more preferably 0.2% by mass or more, and preferably 20% by mass or less. Is in the range of 15% by weight or less, more preferably 10% by weight or less. If the total content of the combination of the polymerization initiator and the like is within such a range, it is preferable in terms of curability of the coating material composition, physical properties of the cured product, and economical efficiency.
  • composition for a coating material of the present invention may contain a solvent.
  • a solvent an effect of being able to easily disperse and dissolve additives and the like to be described later is achieved.
  • the blending amount of the solvent is preferably 0% by mass or more, preferably 80% by mass or less, more preferably 50% by mass or less, with respect to the total amount of the coating material composition.
  • the amount of the solvent exceeds 80% by mass, it takes time to distill off the medium solvent of the composition. Or may remain in the cured product.
  • Examples of the solvent include aromatic hydrocarbons such as benzene, toluene, and black benzene; aliphatic or alicyclic hydrocarbons such as pentane, hexane, cyclohexane, and heptane; carbon tetrachloride, chlorine Halogenated hydrocarbons such as oral form and ethylene dichloride; Nitro compounds such as nitromethane and nitrobenzene; Ethers such as jetyl ether, methyl t-butyl ether, tetrahydrofuran and 1,4 dioxane; methyl acetate, ethyl acetate, Esters such as isopropyl acetate and amyl acetate; alcohols such as dimethylformamide, methanol, ethanol and propanol can be used.
  • aromatic hydrocarbons such as benzene, toluene, and black benzene
  • aliphatic or alicyclic hydrocarbons such as pentan
  • a ketone solvent can also be used as a preferred solvent.
  • ketone solvents include acetone, methyl ethyl ketone, methyl propyl ketone, methyl isopropyl ketone, methyl butyl ketone, methyl isobutyl ketone, methyl tertiary butyl ketone, cyclohexanone and the like S, particularly methyl ethyl.
  • Ketone, methyl propyl ketone, methyl isopropyl ketone, methyl isobutyl ketone, and cyclohexanone are preferred.
  • the boiling point of the ketone solvent in the coating material composition of the present invention is preferably 200 ° C or lower, more preferably 150 ° C or lower, and particularly preferably 130 ° C or lower. Further, it is preferably 40 ° C or higher. When the boiling point is too high, when the composition is air-dried, it takes time S to dry and the productivity may deteriorate. If the boiling point is too low, there is a risk of solvent contamination in the working environment, which is not preferable.
  • a reactive diluent having a ketone group is also included as a ketone solvent.
  • the ketone solvent in the coating material composition is preferably 50% by mass or more, more preferably 75% by mass or more. If it is less than 50% by mass, the substrate adhesion may deteriorate.
  • the ketone solvent in the coating material composition is preferably 95% by mass or less, more preferably 90% by mass or less. When the amount of the ketone solvent is more than 95% by mass, the amount of the bull polymer is relatively small, which is not preferable.
  • the coating material composition of the present invention may contain inorganic fine particles and / or inorganic fine particles coated with an organic compound.
  • Inorganic fine particles and / or organic compounds By containing the inorganic fine particles coated with, it is possible to obtain a composition having a small curing shrinkage and a coating material.
  • the obtained cured product has high transparency, high refractive index, and high hardness.
  • the inorganic fine particles preferably have an average particle size of not less than Slnm, more preferably not less than 5 nm.
  • the average particle size is preferably 10 nm or less, more preferably 50 nm or less, still more preferably 30 nm or less, and particularly preferably 20 nm or less. If the average particle size is less than lnm, the refractive index of the cured product obtained from the coating material composition may not be improved. If the average particle size exceeds lOOnm, the cured product obtained from the coating material composition is transparent. This is not preferable because the property may be lowered.
  • the “average particle size” means an image taken using a field emission scanning electron microscope (FE—SEM), an image analysis software (“Media—Pro (registered trademark) Plus” manufactured by Media Cybernetics, Inc. Ver. 6.2 ”) refers to the number average particle diameter that can be obtained by processing.
  • FE—SEM field emission scanning electron microscope
  • Media—Pro (registered trademark) Plus manufactured by Media Cybernetics, Inc. Ver. 6.2
  • the content of the inorganic fine particles in the coating material composition of the present invention is 10 parts by mass or more, more preferably 40 parts by mass with respect to 100 parts by mass of the bull polymer. Part or more, 90 parts by weight or less, more preferably 70 parts by weight or less.
  • the content of the inorganic fine particles exceeds 90 parts by mass, the amount of the curable component is decreased, so that the curing rate of the coating material composition may be decreased or the hardness of the cured product may not be sufficiently obtained.
  • the refractive index of the cured product obtained from the coating material composition may not be improved, which is not preferable.
  • the metal oxide constituting the inorganic fine particles more preferably contains at least one metal element selected from the group consisting of Si, Ti, Zr, Zn, Sn, In, La, and Y.
  • the metal oxide constituting the inorganic fine particles may be a single oxide containing these elements or a complex oxide containing these elements! /.
  • the metal oxide Mononogu body case constituting the inorganic fine particles for example, SiO, SiO, TiO, ZrO , ZnO, SnO, In O, La O, YO, Si_ ⁇ 2 - Al O, SiO -Zr O , SiO ⁇ Ti O, Al 2 O 3 —ZrO 2 , Ti 0 2 —Zr 0 2 and the like.
  • the inorganic fine particles may be used alone or in combination of two or more. Of these inorganic fine particles, SiO, TiO, ZrO, and ZnO are preferable.
  • the inorganic fine particles preferably have a particle surface coated with an organic compound.
  • an organic compound By coating the surface of the inorganic fine particles with the organic compound, the particle surface of the inorganic fine particles that are inherently hydrophilic changes to hydrophobic, and the dispersibility in the bull polymer is improved.
  • nano-level particles within the average particle size range of not less than 30 nm and not more than 30 nm have a high surface energy, and therefore, by covering the particle surface with a force organic compound that tends to be very cohesive, By acting as a protective agent and reducing the cohesiveness between the particles, the dispersibility in the bull polymer is improved.
  • the hydrophobic organic compound for coating the surface of the inorganic fine particles is preferably an organic compound having a functional group such as a carboxyl group, a hydroxyl group, an alkoxy group, an amino group, a thiol group, or an amide group.
  • a functional group such as a carboxyl group, a hydroxyl group, an alkoxy group, an amino group, a thiol group, or an amide group.
  • the organic compound having a carboxyl group is preferably an aliphatic carboxylic acid having 6 or more carbon atoms, more preferably 10 or more carbon atoms, and more preferably 20 or less. Is preferably 16 or less. If the carbon number of the aliphatic carboxylic acid is less than the carbon number, the surface of the organic fine particles cannot be sufficiently made hydrophobic, and the dispersibility of the inorganic fine particles in the bull polymer may be reduced.
  • Examples of the aliphatic carboxylic acid having 6 to 20 carbon atoms include hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, 2-ethylhexanoic acid, 2-methylheptanoic acid, 4-methylenooctanoic acid, Salicylic acid, naphthenic acid, decanoic acid, undecanoic acid, neodecanoic acid, lauric acid, tridecyl acid, myristic acid, pentadecanoic acid, normitic acid, heptadecanoic acid, stearic acid, nonadecanoic acid, arachidonic acid, undecenoic acid, etc. .
  • These aliphatic monocarboxylic acids may be used alone or in combination of two or more. Of these, neodecanoic acid is preferably used.
  • the coating amount of the organic compound is preferably 5% by mass or more of the total amount of the inorganic fine particles after coating, more preferably 10% by mass or more, and further preferably 15% by mass or more. Further, the coating amount is preferably 50% by mass or less, more preferably 40% by mass or less, and further preferably 30% by mass or less.
  • the coating amount of the organic compound is less than 5% by mass, There is a risk that the dispersibility improvement of the inorganic fine particles in the bulle polymer may be reduced, and if the coating amount exceeds 50% by mass, the content of the metal oxide in the inorganic fine particles is reduced. There is a possibility that the improvement of the refractive index of the cured product obtained from the product is reduced.
  • the inorganic fine particles are preferably treated inorganic fine particles whose surface is treated with a silane coupling agent.
  • a silane coupling agent By treating the surface of the inorganic fine particles with a silane coupling agent, the dispersibility of the inorganic fine particles in the bull polymer is improved, and the water resistance and mechanical strength of the cured product obtained from the coating material composition of the present invention are improved. improves.
  • a method for treating the surface of the inorganic fine particles with a silane coupling agent a known method can be employed. For example, the inorganic fine particles are dispersed in an arbitrary solvent in advance, and a silane coupling agent is added to the heat treatment. The method of doing is mentioned.
  • silane coupling agent examples include butyltrimethoxysilane, butyltrichlorosilane, butyltriethoxysilane, 2- (3,4 epoxy cyclohexyl) ethyltrimethyloxysilane, 3-glycidoxypropyltri Ethoxysilane, p-styryltrimethoxytrimethoxysilane, 3-methacryloxypropylmethyljetoxysilane, 3-methacryloxypropyltriethoxysilane, 3-ataryloxypropyl trimethoxysilane, N-2- (aminoethyl) 3 Minopropylmethyldimethoxysilane, N-2 (aminoethyl) 3-aminopropyltrimethoxysilane, hexamethyldisilane zan and the like. Of these, 3-Ataryloxypropyltrimethoxysilane is preferably used.
  • the amount of the silane force pulling agent with respect to the inorganic fine particles when the silane force pulling agent treatment is performed is preferably 1 part by mass or more, more preferably 10 parts by mass with respect to 100 parts by mass of the inorganic fine particles. In addition, 100 parts by mass or less is preferable, and 50 parts by mass or less is more preferable. If the amount of silane coupling agent is less than 1 part by mass, there is a risk that the improvement in water resistance and mechanical strength of the cured product obtained from the coating material composition may be reduced. There is a possibility that the content of the metal oxide is reduced and the improvement in the refractive index of the cured product obtained from the coating material composition is reduced.
  • the inorganic fine particles are compared to the inorganic fine particles whose surface is coated with an organic compound. It may be treated with a run coupling agent, or the surface may be coated with an organic compound! /, N! /, Or a fine particle treated with a silane coupling agent may be used! Since the dispersibility of the treated inorganic fine particles in the vinyl polymer can be further improved, it is preferable to perform the silane coupling agent treatment on the inorganic fine particles whose surfaces are coated with an organic compound.
  • ZrO is preferably crystalline ZrO, and its crystal state is preferably cubic or tetragonal. Further, it is more preferable that the cubic and / or tetragonal lattice structure is 70% by mass or more of the entire crystal structure, more preferably 75% by mass or more, and still more preferably 85% by mass or more. . By having a cubic and / or tetragonal lattice structure of 70 mass% or more of the entire crystal structure, the refractive index of the cured product obtained from the coating material composition can be further improved by the force S.
  • the ZrO may contain a crystal stabilizing material for crystal stabilization.
  • the crystal stabilizer include alkaline earth metal oxides such as MgO and CaO, and rare earth metal oxides such as lanthanide and YO. These may be used alone or in combination of two or more. May be.
  • the content of the crystal stabilizing material is preferably 0.01 parts by mass or more, more preferably 0.1 parts by mass or more with respect to 100 parts by mass of ZrO.
  • a method for synthesizing ZrO in the present invention a known method can be adopted, and hydrothermal synthesis is performed in the presence of an organic compound capable of coordinating and / or binding to the surface of ZrO particles.
  • the dispersion method of the ZrO particles in the bulle polymer in the present invention includes, for example, a method in which the vinyl polymer and the ZrO particles are synthesized independently and then mixed together, Either the method of synthesizing the bull polymer under the condition that the ZrO particles existed, or the method of synthesizing the ZrO particles in the bull polymer synthesized in advance can be employed. Specifically, for example, a solution in which a bull polymer is dissolved And then mixing the two dispersions of the ZrO2 particles uniformly dispersed and removing the solvent by heating under reduced pressure, or mixing the ZrO particle powder as it is in the melted state of the bull polymer and melting.
  • Examples thereof include a kneading method, a method of blending a dispersion in which ZrO particles are uniformly dispersed in a melted state of a bull resin, and removing the solvent under reduced pressure after melt kneading.
  • the coating material composition of the present invention may further include, as necessary, non-reactive resins, color pigments, plasticizers, polymerization inhibitors, ultraviolet absorbers, near infrared absorbers, light stabilizers, and oxidation agents.
  • Add inhibitors, flame retardants, anti-fogging agents, dyes, antifoaming agents, leveling agents, antistatic agents, dispersants, slip agents, surface modifiers, thixotropic agents, thixotropic agents, etc. be able to. The presence of these additives does not particularly affect the effects of the present invention. These additives may be used alone or in combination of two or more.
  • the compounding amount of the additive is not particularly limited as long as it is appropriately set depending on the type and purpose of use of the additive, the use and usage of the coating material composition, and the like.
  • the blending amount of the non-reactive resin, the color pigment, the plasticizer or the thixotropic agent is preferably 1% by mass or more, more preferably 5% by mass or more, and still more preferably based on the total amount of the coating material composition. Is 10% by mass or more, preferably 40% by mass or less, more preferably 30% by mass or less, and further preferably 25% by mass or less.
  • the total amount of the coating material composition is preferably 0% by mass or more, more preferably 0.001% by mass or more, still more preferably 0.01% by mass or more, preferably 10% by mass or less. More preferably, it is 5 mass% or less, More preferably, it exists in the range of 3 mass% or less.
  • the composition for a coating material of the present invention comprises a bull polymer having a repeating unit represented by the above formula (1), and, if necessary, a polymerizable monomer and / or a radical polymerizable resin, heat or Mix and mix a photopolymerization initiator, thermal polymerization accelerator, photosensitizer, photopolymerization accelerator, and other solvents other than the solvent used in the production of the composition, inorganic fine particles, and various additives.
  • the blending amount of the bull polymer having the repeating unit represented by the above formula (1) is preferably 10 with respect to the total amount of the coating material composition.
  • % By mass or more, more preferably 15% by mass or more, further preferably 20% by mass or more, preferably 100% by mass or less, more preferably 90% by mass or less, still more preferably 85% by mass or less.
  • the amount of the bulle polymer is less than 10% by mass, the crosslinking density is lowered, so that the curing rate is lowered and the coating strength of the cured product may be insufficient.
  • composition for a coating material of the present invention is characterized in that it contains a bull polymer having a repeating unit represented by the above formula (1).
  • the polymerizable compound-containing coating material composition of the present invention is characterized by satisfying the following requirements (a) to (d).
  • composition for a polymerizable compound-containing coating material contains at least one of a polymerizable monomer, a polymerizable oligomer, and a polymerizable polymer, and the total content is 80% by mass or more.
  • the viscosity of the polymerizable compound-containing coating material composition is at least 1, OOOmPa's and at most 5, OOOmPa's at 25 ° C.
  • the scratch resistance evaluation of the cured film obtained by curing the polymerizable compound-containing coating material composition is AA or A.
  • composition for a coating material containing a polymerizable compound of the present invention is a force containing at least one of a polymerizable monomer, a polymerizable oligomer, and a polymerizable polymer.
  • a polymerizable monomer a polymerizable oligomer
  • a polymerizable polymer a polymerizable polymer that can be contained.
  • One or more kinds can be contained. As long as the effects of the present invention are not impaired, other components may be further contained.
  • the polymerizable monomer may be a compound containing at least one functional group having a polymerizable property in the molecule.
  • the polymerizable monomer is not particularly limited as long as it can be co-cured with the bulle polymer represented by the above formula (1).
  • styrene Monomers styrene Monomers; (meth) acrylic acid derivatives such as monofunctional or bifunctional (meth) acrylates; maleic acid Examples include ester monomers; fumaric acid ester monomers. These polymerizable monomers may be used alone or in combination of two or more. Of these polymerizable monomers, (meth) acrylic acid ester is preferable, and (meth) acrylic acid ester having an alicyclic structure substituent is preferable. Further, as the polymerizable monomer, a heteropolymerizable monomer represented by the above formula (2) used in the coating material composition described above can also be used.
  • the blending amount of the polymerizable monomer is preferably 0% by mass or more, preferably 70% by mass or less, more preferably 40% by mass or less, based on the total amount of the composition.
  • the blending amount of the polymerizable monomer exceeds 70% by mass, curing shrinkage increases, and internal distortion and warpage of the cured product may increase.
  • Examples of polymerizable oligomers and polymerizable polymers include acrylic resins having one or more polymerizable functional groups in the molecule, urethane acrylate resins, epoxy acrylate resins, polyester resins, polyurethane resins, polystyrene resins, Examples include silicone resins and rubber resins.
  • the total content of the polymerizable monomer, polymerizable oligomer, and polymerizable polymer in the polymerizable compound-containing coating material composition is 80% by mass or more. Preferably it is 85 mass% or more, More preferably, it is 90 mass% or more. If the total content is less than 80% by mass, scratch resistance may be inferior if the hardness of the cured product is insufficient.
  • the polymerizable compound-containing coating material composition is a component that can be blended in the coating material composition, for example, heat or photopolymerization initiator, thermal polymerization accelerator, photosensitizer, photopolymerization accelerator.
  • it may contain a solvent other than the solvent used in the production of the composition, inorganic fine particles, various additives, and the like.
  • a preferable aspect is the same as that of the above-mentioned composition for coating materials.
  • the viscosity of the polymerizable compound-containing coating material composition is 1, OOOmPa's or more at 25 ° C, 5, OOOmPa's or less, preferably 3, OOOmPa's or less, more preferably 2, Less than OOOm Pa's. If the viscosity is outside the range of 1, OOOmPa or more and 5, OOOmPa's or less at 25 ° C, for example, when spin coating is applied, the resin layer thickness at the center becomes thinner, or the resin thickness at the end May be thicker.
  • the preferred range of viscosity at 25 ° C of the coating material for the transparent cover of Blu-ray Disc is 1, OOOmPa's or more and 5, OOOmPa ⁇ s or less! Published by Japan Institute of Technology Information: Latest UV hardness Practical Handbook, 273).
  • the curing shrinkage of the polymerizable compound-containing coating material composition is 8.5% or less. More preferably, it is 8.0% or less. If the cure shrinkage exceeds 8.5%, for example, if a coating composition containing a polymerizable compound is applied to a Blu-ray disc, the warpage of the disc will increase, and if it cannot be mounted in the drive, or a read error will occur. Information may not be recorded or played back.
  • the scratch resistance of the cured film obtained by curing the polymerizable compound-containing coating material composition is AA or A.
  • the scratch resistance evaluation does not reach A but B to D, the surface hardness is not sufficiently obtained.
  • the disc surface may be damaged during use. A recording error occurs and information recording cannot be performed.
  • the cured product of the present invention is obtained by curing a coating material composition or a polymerizable compound-containing coating material composition.
  • the “cured product” means a substance having no fluidity.
  • the coating material composition and the polymerizable compound-containing coating material composition of the present invention are irradiated with an electron beam when no polymerization initiator is blended, and heated when a thermal polymerization initiator is blended.
  • a photopolymerization initiator when a photopolymerization initiator is blended, it can be hardened by irradiating with ultraviolet rays.
  • infrared rays infrared rays, far infrared rays, hot air, high-frequency heating or the like may be used.
  • the heating temperature is not particularly limited as long as it is appropriately adjusted according to the type of the substrate, but is preferably 80 ° C or higher, more preferably 90 ° C or higher, and still more preferably 100 ° C or higher.
  • the temperature is preferably 200 ° C. or lower, more preferably 180 ° C. or lower, and further preferably 170 ° C. or lower.
  • the heating time may be appropriately adjusted according to the application area and the like, and is not particularly limited, but is preferably 1 minute or more, more preferably 10 minutes or more, and further preferably 30 minutes or more, preferably Within 24 hours or less, more preferably 12 hours or less, and even more preferably 6 hours or less.
  • the acceleration voltage is preferably 10 kV or more, more preferably 20 kV or more, further preferably 30 kV or more, preferably 500 kV or less, more preferably 300 kV or less, and still more preferably.
  • An electron beam within a range of 200 kV or less may be used.
  • the irradiation dose is preferably 2 kGy or more, more preferably 3 kGy or more, further preferably 4 kGy or more, preferably 500 kGy or less, more preferably 300 kGy or less, and even more preferably 200 kGy or less.
  • heat it is possible to use heat by infrared rays, far infrared rays, hot air, high frequency heating, etc.
  • a light source including light within a wavelength range of 150 nm to 450 nm may be used.
  • Examples of such light sources include sunlight, low-pressure mercury lamp, high-pressure mercury lamp, ultra-high pressure mercury lamp, metalno, ride lamp, gallium lamp, xenon lamp, xenon flash lamp, and carbon arc lamp.
  • Irradiation integrated light quantity is preferably rather is 0. lj / cm 2 or more, more preferably 0. 15j / cm 2 or more, more preferably 0.
  • 2j / cm 2 or more preferably 10j / cm 2 or less, more Preferably it is in the range of 8j / cm 2 or less, more preferably 5j / cm 2 or less.
  • high pressure mercury lamps, ultra high pressure mercury lamps, and xenon flash lamps are suitable.
  • UV irradiation is carried out in the first step! / No fluidity! / A state of cocoon is obtained, and then the UV irradiation intensity is changed in the second step to increase the degree of hardening.
  • the power of having S is preferable.
  • the number of irradiations in the first step and the second step, as well as the distance from the light source to the coating surface! / is cured in the final step.
  • the ultraviolet irradiation step of the first step for curing to a state without fluidity is also referred to as semi-curing.
  • the semi-cured state of the coating material composition or the polymerizable compound-containing coating material composition means that the desired cured product strength, hardness and the like are not obtained in the curing process of the composition. It is in the middle of the stage and means the state before the final curing by further UV irradiation.
  • the final curing means that the curing process by UV curing is completed and the desired strength is obtained. Means the step of obtaining a cured product having hardness. Even if it has unreacted reactive substituents at the final curing stage, the desired cured product can be obtained!
  • the amount of light irradiated in the first step of ultraviolet irradiation is 10% or less of the integrated amount of ultraviolet irradiation until final curing! /
  • the irradiation in the second step of ultraviolet irradiation A method for producing a cured product is preferred in which the amount of light to be cured is 90% or more of the cumulative amount of ultraviolet irradiation until the final curing.
  • warping can be suppressed as much as possible by devising the amount of light in the second step or the distance from the light source.
  • the integrated light amount means the sum of the ultraviolet irradiation light amounts in the first step and the second step (the integrated value of the light amount).
  • the accumulated light quantity is measured using an illuminometer that can measure the ultraviolet accumulated light quantity. Xenon's ultraviolet light such as a flash lamp cannot be measured with a normal illuminometer! / In some cases, it is preferable to measure using UV Power Puck TM from EIT USA.
  • the preferable amount of ultraviolet irradiation in the first step is more preferably 8% or less of the integrated light amount, further preferably 6% or less, and preferably 0.1% or more. If the amount of UV irradiation in the first step exceeds 10% of the integrated light amount, warpage will occur in the first step, and the warpage of the cured product will increase by proceeding to the second step, suppressing warpage. I can't do that. In addition, if the amount of UV irradiation in the first step is less than 0.1% of the integrated amount, the warpage in the first step can be suppressed. The amount of UV light in the second step is increased, resulting in a reduction in warpage. I can't do that. On the other hand, the preferable amount of UV irradiation in the second step is more preferably 92% or more, more preferably 94% or more, and more preferably 99.9% or less of the integrated light amount.
  • the distance between the ultraviolet lamp and the substrate may be adjusted so as to obtain an appropriate integrated light quantity.
  • the preferred distance is 0.5 cm or more, preferably lcm or more, and 50 cm or less, preferably It is 25cm or less.
  • the distance between the UV lamp and the substrate in the second step may be changed stepwise from, for example, 25 cm, 10 cm, and 2 cm, or the distance may be continuously changed from 25 cm to 2 cm. It may be irradiated.
  • the heating value of the coating material composition or the coating material-containing coating material composition used is preferably 200 mj / mg or more! /. Curing calorific value is less than 200mj / mg In addition, since the amount of the polymerizable functional group is small, the strength and hardness of the target cured product may not be obtained. A more preferable curing calorific value is 240 mj / mg or more.
  • the laminate of the present invention has a substrate and a layer obtained by curing the coating material composition or polymerizable compound-containing coating material composition of the present invention on at least one surface of the substrate.
  • Examples of the substrate used in the laminate include metals such as iron, aluminum, steel plate, tin-free steel plate, tin plate, polyethylene terephthalate film laminated steel plate; concrete; polyethylene (PE), polypropylene (PP ), Polymethyl methacrylate (PMMA), polyacrylate, polybutyl alcohol (PVA), polystyrene (PS), polyethylene terephthalate (PET), polyethylene naphthalate, polybutylene terephthalate (PBT), ethylene Polymer (EVA), Acrylonitrile Butadiene styrene copolymer (ABS), Triacetinoresenorelose (TAC), Cycloolefin polymer (C OP), Polycarbonate (PC), Polyamide, Polyetherketone (PEEK), Polyamide imine (PAI), polyimide (PI), polyether Amide (PEI), Nylon (NY), Polychlorinated Bulle (PVC), Polyvinylidene Chloride, Therm
  • PET polyethylene terephthalate
  • TAC triacetyl cellulose
  • PMMA polymethyl methacrylate
  • COP cycloolefin polymer
  • PC polycarbonate
  • Rataton ring-containing heavy A resin molded body and a film obtained from a thermoplastic resin composition containing a coalescence, a thermoplastic resin composition containing a copolymer of a lactone ring-containing monomer and MMA are more preferred, and more preferably transparent and heat resistant.
  • thermoplastic resin composition containing a polymer containing a rataton ring structure, and a thermoplastic resin composition containing a copolymer of a monomer having a rataton ring structure and MMA.
  • Resin molded body and film The film thickness is preferably in the range of 30 to 300 ⁇ m.
  • heat-resistant acrylic resin a heat-resistant acrylic resin (hereinafter referred to as “heat-resistant acrylic resin”) can also be used as the substrate of the laminate.
  • heat-resistant acrylic resin a rataton ring-containing polymer obtained by subjecting a polymer having a hydroxyl group and an ester group in a molecular chain to a rataton cyclocondensation reaction (for example, JP 2000-230016 A) JP-A-2001-151814, JP-A-2002-120326, JP-A-2002-254544) and maleimide copolymers obtained by copolymerizing maleimides (for example, JP-A-09-324016) (See information).
  • a copolymer of (meth) acrylate ester it is particularly preferable to include a so-called rataton ring-containing polymer into which a rataton ring structure is introduced by an intramolecular cyclization reaction.
  • “Main component” means 50% by mass or more based on the total mass of the heat-resistant acrylic resin!
  • the lactone ring-containing polymer is not particularly limited, but preferably has a rataton ring structure represented by the following general formula (9).
  • R u , R 1 and R ′′ each independently represents a hydrogen atom or an organic residue having 1 to 20 carbon atoms.
  • organic residue having 1 to 20 carbon atoms includes carbon atoms such as methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group and cyclohexyl group.
  • Examples include alkyl groups having 1 to 20 alkyl, aryl groups such as phenyl groups, and aralkyl groups such as benzyl groups.
  • These organic residues may contain nitrogen, oxygen and sulfur atoms.
  • the coating material composition or the polymerizable compound-containing coating material composition of the present invention is applied to a substrate, depending on the purpose of use, hand coating such as brush coating, roll coating, gravure coating, etc. , Gravure offset coating, curtain flow coating, reverse coating, screen printing IJ, spray coating, dipping, and the like, are applied to the substrate.
  • the coating amount is preferably 0.2 g / m 2 or more, more preferably 0.5 g / m 2 or more, preferably 100 g / m 2 or less, more preferably 70 g / m 2 or less.
  • the coating thickness is preferably 1 m or more, more preferably 2 m or more, preferably 500 m or less, more preferably 200 m or less.
  • a method for forming a coat layer there is a simultaneous molding decoration method using a decorative film containing a hard coat material.
  • a decorative film composed of at least a film and a decorative layer is placed in a mold for injection molding, and after the mold is closed, the molded resin is injected into the cavity to solidify the molded resin.
  • a decorative sheet is obtained by integrally bonding a decorative sheet to the surface of the molded product.
  • the laminate may include an antistatic layer, an adhesive layer, an adhesive layer, an easy-adhesion layer, a strain relaxation layer, an antiglare layer (non-glare) layer, an antifouling layer such as a photocatalyst layer, Various functional coating layers such as an antireflection layer, an ultraviolet ray shielding layer, a heat ray shielding layer, an electromagnetic wave shielding layer, and a gas barrier property may be laminated and applied. Note that the layering order of the layers obtained by curing the coating material composition or the polymerizable compound-containing coating material composition of the present invention and each layer is not particularly limited, and the laminating method is not particularly limited.
  • the coating material composition or the polymerizable compound-containing coating material composition of the present invention can be applied to a three-dimensional shape structure.
  • the three-dimensional shape structure is not particularly limited as long as it is not a simple planar shape base.
  • a structure in which planar materials are joined, a structure in which planar materials are processed into a force curve shape, or a structure having irregularities on a planar material is a three-dimensional shaped structure.
  • Other examples of 3D shape structures include polyhedral structures such as tetrahedrons, hexahedrons, and octahedrons, cylinders, spheres, and cones.
  • the coating material composition or polymerizable compound-containing coating material composition of the present invention can be used in the form of a plate or sheet.
  • the coating material composition or polymerizable compound-containing coating material composition of the present invention comprises a cathode tube.
  • Display devices CRT
  • liquid crystal display devices LCD
  • plasma display panels PDP
  • field emission displays FED
  • organic EL displays touch panels for home appliances, etc. It is suitably used in application fields such as protective films such as window glass and optical disk protective layers such as CD and DVD.
  • the number average molecular weight (Mn), weight average molecular weight (Mw), and molecular weight distribution (Mw / Mn) were measured by Tosoh Corporation under the conditions of THF as the mobile phase, temperature of 40 ° C, flow rate of 0.3 mL / min. It is a value obtained by gel permeation chromatography (GPC) equipment (HLC-8220GPC, manufactured by Tosoichi Co., Ltd.) using two columns TSK-gel SuperHM-H and one TSK-gel SuperH2000, and converted to standard polystyrene. . Both the bull polymer and the heat-resistant acrylic resin of the substrate were analyzed by the same method.
  • GPC gel permeation chromatography
  • the viscosity was measured using an RB80 viscometer (model “RB80L” manufactured by Toki Sangyo Co., Ltd.). The measurement temperature is 25 ° C.
  • reaction rate at the time of the polymerization reaction and the content of the specific monomer unit in the polymer were determined by gas chromatography (Shimadzu Corporation, device name) using the amount of the unreacted monomer in the obtained polymerization reaction mixture. : GC17A) was used for measurement.
  • Thermal analysis of acrylic resin was carried out using a differential scanning calorimeter (manufactured by Rigaku Corporation, apparatus name: DSC-8230) under the conditions of about 10 mg sample, heating rate 10 ° C / min, nitrogen flow 50 cc / min. line I got it.
  • the glass transition temperature (Tg) was determined by the midpoint method according to ASTM-D-3418.
  • the melt flow rate was measured based on JIS K7210 at a test temperature of 240 ° C and a load of lOkgf.
  • a grid cut (lmm X lm m, 100 mm) was made on the cured product surface of the laminate, and a peel test using a cellophane adhesive tape was performed. The number is the remaining number
  • a 12cm x 12cm laminate is placed on a horizontal base at a temperature of 25 ° C. After placing, the average value of the floating height from the horizontal platform at the four corners was measured and evaluated according to the following criteria
  • Curing shrinkage (%) 100 (d2-dl) / d2
  • UV irradiation conditions Peak illuminance 185mW / cm 2 , Integrated light quantity 500mj / cm 2
  • Sampu Nore Size Dimensions 15mm X 30mm Thickness lmm
  • the surface of the laminate (cured product layer / polycarbonate plate substrate) is visually observed, and the coating material composition is applied evenly on the substrate to confirm the force with which the cured product layer is formed. evaluated.
  • a uniform and transparent cured product layer is formed, and it is allowed to stand for 96 hours under the condition of a temperature of 70 ° C. No change.
  • the cured product layer is non-uniform or opaque immediately after curing.
  • UV irradiation conditions Initial stabilization time 3 minutes ⁇ UV irradiation time 5 minutes ⁇ Standing time 2 minutes
  • the bendability is obtained by cutting a laminate formed with a cured product layer into dimensions of 3 cm x 5 cm and setting the surface on which the cured product layer is formed outside (under the substrate side) at a temperature of 25 ° C.
  • a 180 ° bend test was conducted, and the diameter of the mandrel in which abnormalities such as cracks and peeling occurred in the bent part of the cured product layer was examined and evaluated according to the following criteria.
  • the diameter of the mandrel Means that the cured product layer has better bendability! /
  • Slightly good (the diameter of the mandrel is 6 mm or more, 10 mm or less)
  • the average particle size of zirconium oxide particles was measured using a field emission scanning electron microscope (FE—SEM) (manufactured by Hitachi High-Technologies Corporation, Hitachi Ultra High Resolution Field Emission Scanning Electron Microscope S—4800). Samples were taken under the conditions of 10,000 times, viewing field: 10 m x 10 m, and the resulting images were processed by image analysis software (Media Cybernetics, Image — Pro (registered trademark) Plus Ver. 6.2) was determined by
  • the coating amount of the organic compound that coats the zirconium oxide particles is TG-DTA (trade name: TG-DTA2000S, manufactured by Mac Science Co., Ltd.), and the zirconium oxide particles are placed in an air atmosphere (air inflow rate: 50 ml / min). ) was heated to 500 ° C at a heating rate of 10 ° C / min, and the amount of reduction at that time was measured, and the coating amount of the organic compound was derived from the charged amount and the amount of reduction.
  • TG-DTA trade name: TG-DTA2000S, manufactured by Mac Science Co., Ltd.
  • a resin mixture in which a bulle polymer, zirconium oxide particles and a photopolymerization initiator used in each example or comparative example are mixed is arranged on the glass plate.
  • a glass plate was placed to spread the resin mixture.
  • the resin mixture between the glass plates was UV-cured with a UV irradiation machine (trade name “PM25C-100”, Usio Electric Co., Ltd.) with an irradiation integrated light quantity of 2j / cm 2 to a thickness of 50 m.
  • the cured product was prepared, and the refractive index of this cured product at 25 ° C. was measured using an Abbe refractometer (model: DR-2M, manufactured by Atago Co., Ltd.).
  • the polymerization reaction was carried out in a dry nitrogen atmosphere using a sufficiently dried glass container with a three-way cock.
  • 25 mL (2.5 millimonoles) of etheno-reluminium dichloride 0.1 mol / L as Lewis acid B was added and mixed, and then allowed to stand for 30 minutes to generate a reaction starting species.
  • VEE A 2- (2-vinyloxyethoxy) ethyl acrylate pre-cooled to 0 ° C. 0.2 mol ( 37.24g) was added, and the reaction was started by adding 25.11 (1.25 millimonoles) of a solution of 0.15 mol / s of tin tetrachloride precooled to 0 ° C as Lewis acid A. After polymerization for 14 minutes, methanol was added to stop the reaction. Chromium form was added to the mixture after the reaction, and the residue of the polymerization initiator was removed by washing with water. Subsequently, after concentrating by an evaporator, it was made to vacuum-dry and the bull-type polymer ((homo V ⁇ ) -1) was obtained.
  • VEE A 2- (2-vinyloxyethoxy) ethyl acrylate
  • the reaction rate of the monomer was found to be 98% by analyzing the mixed solution after the reaction was stopped by gas chromatography (GC). Further, the number average molecular weight ( ⁇ ) of the obtained bull polymer was 14,200, and the molecular weight distribution (Mw / Mn) was 1.10. Further, 1 H-NMR measurement (measurement solvent: deuterated black mouth form, measurement instrument: 400 MHz 'H-NMR UNITY plus 400 manufactured by Varian) of the obtained bulle polymer was performed. The butyl ether group was selectively polymerized, and it was confirmed to be a pendant polymer having an allyloyl group having a double bond capable of radical polymerization in the side chain.
  • Example 1 Using the same reaction apparatus, solvent and raw materials as in Example 1, the charge ratio shown in Table 1, A bull polymer was synthesized at the reaction temperature. Table 1 shows the physical properties.
  • VEEA Acrylic acid 2_ (2-vinyloxyethoxy) ethyl
  • VEM Methacrylic acid 2-vinyloxychetyl
  • IBVE Isobutyl vinyl ether
  • the reaction rate of the monomer was found to be 99.7% by analyzing the mixed solution after stopping the reaction by gas chromatography (GC). Further, the number average molecular weight (Mn) of the obtained bull polymer was 1,480, and the molecular weight distribution (Mw / Mn) was 2.01.
  • Heterophoric acid phosphotungstic acid
  • VEEA Acrylic acid 2_ (2 TM vinyloxyethoxy) ethyl
  • VEM Methacrylic acid 2-vinyloxychetyl
  • the number average molecular weight (Mn) of the obtained bull polymer was 5,850, and the molecular weight distribution (Mw / Mn) was 2.96.
  • toluene dehydrated toluene, Wako Pure Chemical Industries, Ltd.
  • VEEA nitrogen / air mixed gas introduction tube
  • a mixed solution of 2 g of ethyl acetate and lO mg of phosphotungstic acid was added to the flask, and polymerization was started at room temperature. After a while, intense fever was seen. After completion of the polymerization, triethylamine was added to complete the reaction. Subsequently, after concentrating with an evaporator, a bull polymer was obtained.
  • the reaction rate of the monomer was found to be 96.7% by analyzing the mixed solution after stopping the reaction by gas chromatography (GC). Further, the number average molecular weight (Mn) of the obtained polybutyl ether was 6,900, and the molecular weight distribution (Mw / Mn) was 3.39.
  • ethinole acetate 80 g was placed on four Roflascos equipped with a stir bar, thermometer, dripping line, and nitrogen / air mixed gas inlet tube, and the temperature was raised to 50 ° C. After the temperature rise, 171 g of VEEA and 29 g of cyclohexyl butyl ether (hereinafter sometimes referred to as “CHVE”) and 26 g of ethyl acetate and 13 mg of phosphotungstic acid were added dropwise over 2 hours. The polymerization was performed. After completion of the polymerization, triethylamine was added to complete the reaction.
  • CHVE cyclohexyl butyl ether
  • a bull polymer ((VEEA8.55 -CHVE1.45)) was obtained.
  • the monomer reaction rate is analyzed by gas chromatography (GC) after the reaction is stopped. It was found to be 99.5%. Further, the number average molecular weight (Mn) of the obtained bull polymer was 1,280, and the molecular weight distribution (Mw / Mn) was 1.79.
  • a bull polymer was synthesized using the same reaction apparatus, solvent and raw materials as in Example 17 at the blending ratio and reaction temperature shown in Table 4.
  • Table 4 shows the physical property values.
  • VEEA Acrylic acid 2- (2-vinyloxyethoxy) ethyl
  • Ethyl acetate (50 g) was added to four Roflascos equipped with a stir bar, thermometer, dripping line, and nitrogen / air mixed gas introduction pipe.
  • VEEA 200g and organically modified silicone compound with hydroxyl groups at both ends (trade name “SF-8427”, manufactured by Toray Dow Coung Co., Ltd.) 2g mixture, ethyl acetate 13g and phosphotungstic acid 13mg mixed solution for 2 hours each Or Then, it was dropped and polymerization was carried out at room temperature. After completion of the polymerization, triethylamine was added to complete the reaction, and an ethyl acetate solution of a bull polymer ((VEEA-silicone) -1) was obtained.
  • the bull polymer ((VEEA-silicone) -1) obtained by concentration is dissolved in a small amount of ethyl acetate, dropped into a large amount of hexane, and precipitated to precipitate a viscous substance. Obtained. Ethylene acetate and hexane were removed by decantation and then dried with a heating vacuum dryer.
  • Reference Example 2 Production method of acrylic resin containing rataton ring
  • the pellets obtained had a weight average molecular weight of 17,000, a melt flow rate of 11. Og / 10 min, and a glass transition temperature of 130 ° C.
  • Reference Example 3 Method for producing an acrylic resin film containing a rataton ring
  • the temperature of the cylinder, gear pump, filter, and T-die was set to 265 ° C.
  • the film thickness of the obtained unstretched film (1B) was 90.
  • the extrusion rate per unit time was 33 kg / hr, and molding was continued for 3 hours, but no so-called eyes were observed on the lip of the T die.
  • Reference Example 4 Method for producing stretched acrylic resin film containing rataton ring
  • the obtained unstretched film (1B) was biaxially stretched using a corner stretch type biaxial stretching test apparatus X6-S manufactured by Toyo Seiki Co., Ltd. After preheating at 155 ° C for 3 minutes, the first stage was uniaxially stretched so that the magnification was 1.8 times in 5 seconds. The lateral direction was not shrunk. After completion of stretching, the sample was immediately taken out and cooled. This film was cut into a 97 mm square both vertically and horizontally and stretched in the second step. The stretching direction was a direction orthogonal to the first stretching direction. The distance inside the chuck was 80mm both vertically and horizontally.
  • Reference Example 5 Method for producing silica dispersion
  • Silica sol (trade name “Onoregano Silica Zonole MEK—ST”, manufactured by Nissan Chemical Industries, Ltd .; solid content 30%, silica particle diameter 10 to 15 nm) 100 parts by mass, (3-Atalyloxypropyl) trimethoxysilane ( A product name “KBM-5103” (manufactured by Shin-Etsu Chemical Co., Ltd.) 7 parts by mass and 0.02 N hydrochloric acid aqueous solution 2 parts by mass were mixed and stirred to prepare a silica dispersion.
  • 3-Atalyloxypropyl) trimethoxysilane A product name “KBM-5103” (manufactured by Shin-Etsu Chemical Co., Ltd.) 7 parts by mass and 0.02 N hydrochloric acid aqueous solution 2 parts by mass were mixed and stirred to prepare a silica dispersion.
  • Tetradecane 600 parts by mass and neodecanoic acid 400 parts by mass were mixed to prepare a 40% by mass neodecanoic acid-tetradecane solution.
  • 67.5 parts by mass of magnesium oxide was added and stirred at 60 ° C. for 1 hour to prepare a magnesium neodecanoate solution.
  • 75 parts by mass of 0.05 mol / L hydrochloric acid aqueous solution was added to 402.8 parts by mass of zirconium oxychloride, and dissolved in pure water to 2500 parts by mass to prepare a Zr (IV) aqueous solution.
  • the reaction product was washed with acetone, dried, and then dispersed in toluene to obtain a cloudy dispersion.
  • filtration is performed again with a quantitative filter paper (No. 5C manufactured by Advantech Toyo Co., Ltd.), coarse particles in the dispersion are removed, and toluene in the filtrate is heated and dried under reduced pressure to obtain white. Zirconium oxide particles, which are powders of, were obtained.
  • the average particle diameter of the obtained zirconium oxide particles was 5 nm. Further, when the crystal structure was analyzed by XRD analysis (X-ray powder diffraction analysis), it was a tetragonal structure. Furthermore, absorption from C—H and absorption from COOH were confirmed by IR analysis. When TG DTA analysis (thermal mass differential thermal analysis) was performed on the zirconium oxide particles, an exothermic peak derived from neodecanoic acid was observed near 350 ° C. Moreover, the coating amount of neodecanoic acid was 18.6% by mass.
  • IR analysis of the treated zirconium oxide particles obtained confirmed absorption from C H and COOH, and absorption from Si—O—C.
  • TG-DTA analysis thermal mass differential thermal analysis
  • Reference Example 7 Method for producing non-reactive methacryl syrup
  • a reactor equipped with a thermometer, cooler, nitrogen gas inlet tube, and stirrer was charged with 121 g of methyl methacrylate, 4 g of methacrylic acid, 91 g of toluene, and 91 g of ethyl acetate, Was replaced with nitrogen gas.
  • the temperature of the above mixture was increased to 90 ° C. while stirring, and then a polymerization initiator was added to add a mixture of 0.3 g of t-butylperoxy-2-ethylhexanoate and 4.7 g of tonolen to initiate polymerization. .
  • Reference Example 8 Method for producing reactive methacryl syrup
  • isobutyl vinyl ether as a butyl ether compound was added to the above methacrylic syrup, and then heated to 100 ° C and stirred for 30 minutes, whereby the n-dodecyl mercaptan remaining in the metataryl syrup was added. Processed. The above isobutyl vinyl ether was added so as to have a 2.0-fold mole relative to n-dodecyl mercaptan added at the time of polymerization. Subsequently, after adding glycidyl methacrylate, triphenylphosphine 0.4g as an esterification catalyst and hydroquinone 0.
  • the amount of double bonds per molecule of the methacrylic polymer in the reactive methacrylic syrup was measured. That is, first, the difference in the acid value of the methacrylic polymer before and after reacting with glycidyl methacrylate was measured, and the number of moles of carboxyl groups lost per methacrylic polymer lg was calculated. The number of moles of the polymerizable double bond. Further, the number of moles of the methacrylic polymer lg was calculated from the weight average molecular weight Mw of the methacrylic polymer.
  • the number of moles of polymerizable double bonds in the methacrylic polymer lg was calculated from the number of moles of lg polymer. As a result, the number of double bonds per molecule was 5.3 mol.
  • Reference Example 11 Method for producing 10-functional urethane acrylate
  • Reference Example 12 Method for producing trifunctional urethane acrylate
  • a four-necked flask equipped with a stirrer, thermometer, condenser, and nitrogen / air mixed gas inlet tube is isophorone diisocyanate (trimer) 266 ⁇ 7g (0.40 mol), 2 ⁇ Hydroxyethyl acrylate 139.3 g (l. 20 mol), hydroquinone methyl ether 0.02 g, Diph, Chinores Zirau relay 02 02 g, and methino lecithin regen 406 g were charged and reacted at 60 ° C so that the internal temperature was constant, and the remaining isocyanate group was 0. When the amount reached 1% by mass, the reaction was terminated, and a solution of a trifunctional urethane acrylate having 3 allyloyl groups in one molecule was obtained.
  • a coating solution was applied onto a polycarbonate (PC) sheet having dimensions of 12 cm X 12 cm and a thickness of 1 mm using an applicator.
  • the resin layer applied to the PC sheet was cured with ultraviolet rays using an UV irradiation machine (manufactured by Eye Graphics Co., Ltd.) having an ultrahigh pressure mercury lamp at an irradiation integrated light quantity of 50 Omj / cm 2 .
  • the thickness of the cured product layer was measured and found to be 100 m.
  • the shrinkage of the cured product was measured and found to be 7.8%.
  • the scratch resistance of the cured product on the laminate was evaluated, it was evaluated as A because it was a force with no scratches.
  • the pencil hardness was evaluated as 2H. The results are shown in Table 5.
  • PC polycarbonate
  • DCP—A polymerizable monomer dimethylol) cyclodecane diacrylate (trade name ⁇ light acrylate DCP—AJ, manufactured by Kyoeisha Chemical Co., Ltd.)
  • ⁇ 306 surface conditioner polyether-modified polydimethylsiloxane (trade name) ⁇ 306 ”, manufactured by Big Chemie's Japan)
  • TMPTA Trimethylolpropane triacrylate
  • 1, 6HDAA 1, 6-Hexanediol diacrylate (trade name "Lite acrylate 1, 6HX-A", manufactured by Kyoeisha Chemical Co., Ltd.)
  • UV7510B Urethane acrylate (trade name “UV7510 ⁇ ”, manufactured by Nippon Synthetic Chemical Industry Co., Ltd.)
  • the coating material composition was applied to a thickness of 100 m on a polycarbonate (PC) substrate having dimensions of 12 cm X 12 cm and a thickness of 1 mm using an applicator.
  • PC polycarbonate
  • the coating material composition layer applied to this PC substrate was first irradiated twice with a flash at a lamp height of 10 cm. Then, the lamp was 5 cm in height, and the flash was irradiated 10 times to complete the curing.
  • the integrated irradiation light quantity at 320 nm to 390 nm was about 300 mj / cm 2 .
  • the thickness of the cured product layer was measured and found to be 100 ⁇ 3 m.
  • Table 6 shows the results of evaluating the scratch resistance of the cured product on the laminate and the amount of warpage of the laminate.
  • PC polycarbonate
  • Bis— EO— A Diacrylate of the ethylene oxyto 'adduct of bisphenol A (trade name “Right acrylate BP—4EAJ, manufactured by Kyoeisha Chemical Co., Ltd.)
  • IB— XA Isobornyl acrylate (trade name ⁇ Litea) CREATE IB—XAJ, manufactured by Kyoeisha Chemical Co.
  • Photoinitiator 1-Hydroxycyclohexyl phenyl ketone (trade name “Irgacure (registered trademark)” 1 84 Ciba 'Special' Chemicals Co., Ltd.)
  • Surface conditioner Polyether-modified polydimethylsiloxane (trade name “BYK333”, manufactured by Big Chemie-Japan Co., Ltd.)
  • FIG. 1 shows the relationship with warpage.
  • the symbols in the figure are as follows.
  • VEEA 2- (2-vinyloxyethoxy) ethyl acrylate
  • 9ND-A 1, 9 Nonanediol acrylate (trade name “Light acrylate” !. 9ND—AJ, manufactured by Kyoeisha Chemical Co., Ltd.)
  • TMPTA Trimethylol Provantary Clear
  • BP— 4PA Diacrylate of propylene oxide adduct of bisphenol A (trade name ⁇ light acrylate BP— 4PAJ, manufactured by Kyoeisha Chemical Co., Ltd.)
  • Photoinitiator 1 Human 'mouth cyclohexyl phenyl ketone (trade name: ⁇ Irgacure (registered trademark) 1 B4J, Ciba's Specialty ⁇ Chemicals Co., Ltd.)
  • Surface conditioner Polyether-modified polydimethylsiloxane (trade name! "BYK307", manufactured by Big Chemi 'Japan Co., Ltd.)
  • Example 95 In the same manner as in Example 95, a cured product was prepared and evaluated under the ultraviolet irradiation conditions shown in Table 8 using the coating material composition shown in Table 8. The results are shown in Table 8.
  • the coating material composition used in Example 95 was dropped on a polycarbonate (PC) sheet having dimensions of 12 cm x 12 cm and a thickness of 1 mm. Using a spin coater, the diameter was about 12 cm and the average cured film thickness was 100 ⁇ 2 m. Coated so that. After placing the resin layer applied to this PC sheet at a distance of 15 cm from the light source, 2 shots (11 ⁇ 2 mj / cm) using a pulsed UV irradiation device (Xenon 'flash lamp model RC-801; manufactured by Xenon Co., Ltd.) 2 ; 2.5% of the integrated light amount) was irradiated, and the first step of ultraviolet irradiation was performed.
  • PC polycarbonate
  • the coating material composition was not fluid.
  • flip the PC sheet place it at a distance of 2 cm from the light source, and take 8 shots from the PC sheet side (288.8 mj / cm 2 ; 65.0% of the integrated light amount).
  • 4 shots 144.4 mj / cm 2 ; 32.5% of the integrated light amount
  • the cured product on the PC sheet was evaluated. The results are shown in Table 8.
  • the coating material composition prepared in Example 92 was dropped onto a 12 mm X 12 cm, 1 mm thick polyforce-bonate (PC) sheet, and was approximately 12 cm in diameter and average cured using a spin coater. Coating was performed so that the film thickness was 100 ⁇ 2 111. After placing the resin layer applied on this PC sheet at a distance of 5 cm, the light source force, etc., 10 shots (199 mj / cm) using a pulsed UV irradiation device (Xenon 'flash lamp model RC-801; manufactured by Xenon Co., Ltd.) 2 ; 100% of the integrated light amount) was irradiated, and only the first step of ultraviolet irradiation was performed. Table 8 shows the evaluation results.
  • a pulsed UV irradiation device Xenon 'flash lamp model RC-801; manufactured by Xenon Co., Ltd.
  • Example 105 In the same manner as in Example 105, using the coating material composition shown in Table 8, cured products were prepared and evaluated under the ultraviolet irradiation conditions shown in Table 8. Table 8 shows the evaluation results.
  • THF—A Tetrahydr ⁇ furfurylacrylate (manufactured by Kyoeisha Chemical Co., Ltd.)
  • Photopolymerization initiator 1-Hydroxycyclohexylphenyl cane (trade name: ⁇ Irgacure (registered trademark) 184 ”, Tipa 'Specialty' manufactured by Chemicals Co., Ltd.)
  • Surface conditioner Polyethylene modified polydimethylsiloxane (product) Name "BYK307", manufactured by Bicchemi Japan Co., Ltd.
  • Example 48 100 parts by mass of the bull polymer (VEEA silicone) 1 obtained in Example 48 and 5 parts by mass of the photopolymerization initiator 1 were mixed and stirred to prepare a coating material composition.
  • the resulting coating material composition was transparent with no turbidity.
  • Coated yarn composition is dropped on a 12cm x 12cm, 1mm thick polycarbonate (PC) sheet, and the spin coater is used to obtain a diameter of about 12cm and an average cured film thickness of 100 ⁇ 2 111 So that it was coated.
  • the resin layer applied to this PC sheet was placed at a distance of 20 cm from the light source, UV curing was performed using a Norse UV irradiation device (Xenon 'flash lamp model RC-801; manufactured by Xenon Corporation) ( Integrated light quantity 400mj / cm 2 ).
  • the cured product on the PC sheet was evaluated.
  • the obtained cured product was transparent and had good surface slipperiness. The results are shown in Table 9.
  • Example 112 a cured product was prepared and evaluated under the ultraviolet irradiation conditions shown in Table 9 using the coating material composition shown in Table 9. The results are shown in Table 9.
  • PET Polyethylene terephthalate
  • the composition layer for the coating material applied to the PET film was cured with an ultraviolet ray using an UV irradiation machine (manufactured by Eye Graphics Co., Ltd.) having an ultrahigh pressure mercury lamp at an irradiation integrated light quantity of 250 mj / cm 2 .
  • the thickness of the cured film was measured and found to be 10 ⁇ m. No curling was observed in the cured film / PET film laminate (size 15 cm x 25 cm) after curing.
  • the pencil hardness test of the cured film on the PET film was 2H, and the scratch resistance was evaluated as A. The results are shown in Table 10.
  • Example 117 a coating material composition layer was formed on a PET film.
  • the coating material composition layer applied to this PET film was passed through an electron beam irradiator (trade name “EBC300-60”, manufactured by NHV Corporation) for 3 passes at an acceleration voltage of 150 kV and an irradiation dose of 40 kGy.
  • EBC300-60 electron beam irradiator
  • the thickness of the cured film was measured and found to be 10 ⁇ m. No curling was observed in the cured film / PET film laminate (size 15 cm x 25 cm) after curing.
  • the pencil hardness test of the cured film on the PET film was 2H, and the scratch resistance evaluation was A.
  • Example 117 a coating material composition layer was formed on a PET film.
  • the composition layer for a coating material applied to this PET film was left to stand in a heating furnace adjusted to 60 ° C. for 15 hours to be cured by heating.
  • the thickness of the cured film was measured to be 11 m. No curling was observed in the cured film / PET film laminate (size 15 cm x 25 cm) after curing. On PET film The pencil hardness test of the cured film was 2H, and the scratch resistance evaluation was A. The results are shown in Table 10.
  • the coating liquid prepared in Example 125 was applied onto an acrylic (PMMA: trade name “Technoloy”, manufactured by Sumitomo Chemical Co., Ltd.) film having a thickness of 125 111 using a bar coater # 14. Thereafter, the mixture was heated and dried at 80 ° C. for 2 minutes to evaporate toluene, thereby forming a coating material composition layer.
  • the composition layer for the coating material applied to the PMMA film was UV-cured with an irradiation light amount of 250 mj / cm 2 using a UV irradiation machine (manufactured by Eye Graphics Co., Ltd.) having an ultrahigh pressure mercury lamp.
  • the thickness of the cured film was measured and found to be 10 ⁇ m. No warpage was observed in the cured film / PMMA film laminate (dimensions 15 cm X 25 cm) after curing. When the pencil hardness test of the cured film on the PMMA film was performed, it was 2H, and the scratch resistance evaluation was A. The results are shown in Table 1.
  • thermoplastic resin pellet 1A containing a polymer containing a rataton ring obtained in Reference Example 2 a bar coater # 14 was placed on a 100 m thick unstretched PHMA film prepared in the same manner as Reference Example 3.
  • the coating solution prepared in Example 125 was applied. Thereafter, the mixture was heated and dried at 80 ° C. for 2 minutes to evaporate toluene, thereby forming a coating material composition layer.
  • the composition layer for a coating material applied to this film was cured with ultraviolet rays using an UV irradiation machine (manufactured by Eye Graphics Co., Ltd.) having an ultrahigh pressure mercury lamp at an irradiation integrated light quantity of 250 mj / cm 2 .
  • the thickness of the cured film was measured and found to be 10 ⁇ m. No curl was observed in the cured film / PHMA film laminate (size 15cm x 25cm) after curing.
  • the pencil hardness test of the cured film was 3H, and the scratch resistance evaluation was A. The results are shown in Table 10.
  • the composition layer for a coating material applied to the PET film was cured with ultraviolet rays at an irradiation integrated light quantity of 250 mj / cm 2 using a UV irradiation machine (manufactured by Eye Graphics Co., Ltd.) having an ultrahigh pressure mercury lamp.
  • the thickness of the cured film was measured and found to be 10 ⁇ m. No warpage was observed in the cured film / double-layer substrate film (size: 15cm x 25cm) after curing.
  • the pencil hardness test of the cured film on the two-layer substrate was 3H, and the scratch resistance evaluation was A. The results are shown in Table 10.
  • DPHA Dipentaerythritol hexaacrylate (manufactured by Kyoeisha Chemical Co., Ltd.)
  • U-15HA Urethane acrylate (manufactured by Shin-Nakamura Chemical Co., Ltd.)
  • Photoinitiator 2-Methyl- 1- [4- (Methylthio) fur I dil] — 2-Morpholinopropane 1 1-one
  • R-604 5—Ethyl —— 2— (Hydroxy 1,1,1-dimethylethyl) -1,5- (Hydroxymethyl) 1,1,3-Dioxane
  • U— 6LPA Urethane acrylate (manufactured by Shin-Nakamura Chemical Co., Ltd.)
  • the bull polymer obtained in Example 1 ((homo VEEA) —1) 100 parts by mass, methyl ethyl ketone (MEK) IOO part, 3 parts by mass of the photopolymerization initiator—1, polyether-modified polydimethylsiloxane ( Brand name “BYK306”, manufactured by Big Chemie Japan Co., Ltd. (hereinafter referred to as “Surface Conditioner 2”) 0.1 part was mixed and stirred to prepare a coating solution.
  • a coating solution was applied using a bar coater # 5. Thereafter, the mixture was heated and dried at 80 ° C. for 2 minutes to evaporate MEK to form a coating material composition layer.
  • This film was UV-cured using a high pressure mercury lamp under the conditions of an illuminance of 150 mW / cm 2 and an integrated irradiation light quantity of 300 mj / cm 2 to obtain a film with a cured film (laminate). The thickness of the cured film was measured and found to be 3 111.
  • a laminate having a cured film thickness of 10 m was obtained in the same manner except that bar coater # 14 was used.
  • Table 11 shows the evaluation results of the laminate.
  • TMPTA Trimethylolpropane triacrylate
  • Photoinitiator 1 1 tdroxycyclohexyl phenyl ketone (trade name: ⁇ Irgacure (registered trademark) 1 84 ”, manufactured by Chipa 'Specialty' Chemicals Co., Ltd.)
  • Surface conditioner Polyether-modified polydimethylsiloxane (trade name“ BYK306 ”) , Big Kemiichi 'Japan Co., Ltd.)
  • a bar coater # 28 was used on a 100 m thick polyethylene terephthalate (PET) film (product number “0-300” manufactured by Mitsubishi Chemical Polyester Film Co., Ltd.) with easy adhesion treatment on both sides. Then, the coating material composition was applied. Thereafter, it was dried by heating at 80 ° C. for 2 minutes to evaporate 2-butanone to form a coating material composition layer.
  • the composition layer for the coating material formed on this PET film is UV-cured with a UV irradiation machine (manufactured by AiGraph Co., Ltd.) having an ultra-high pressure mercury lamp with a total irradiation amount of 250 mj / cm 2 , and then cured. Formed.
  • a cured film was uniformly formed on the PET film, and the coating appearance evaluation was ⁇ .
  • the thickness was 20.
  • the evaluation of scratch resistance of the cured product layer was A.
  • the curl amount of the laminate after cutting was 10 mm.
  • Table 12 shows the composition of the coating material composition and the evaluation results.
  • a laminate (cured material layer / PET film) was produced in the same manner as in Example 144, except that the ammine adduct was changed to the ammine adducts 2 to 4 obtained in Examples 44, 45 and 46.
  • Table 12 shows the composition of the coating material composition and the evaluation results.
  • Example 43 100 parts by mass of the amine adduct 1 obtained in Example 43, 109.7 parts by mass of the non-reactive methacryl syrup obtained in Reference Example 7, 5 parts by mass of the photopolymerization initiator-2, 2 butane (Methyl ethyl ketone) 40.3 parts by mass were mixed and stirred to prepare a coating material composition.
  • the coating composition obtained by mixing did not show turbidity, and the ammine adduct and the non-reactive methacryl syrup were compatible.
  • a laminate (cured product layer / PET film) was produced in the same manner as in Example 144.
  • the composition of the coating material composition and the evaluation results are shown in Table 12.
  • Example 43 100 parts by mass of the amine adduct 1 obtained in Example 43, 62.4 parts by mass of the reactive methacryl syrup obtained in Reference Example 8, 5 parts by mass of the photopolymerization initiator 2, 2 butanone ( Me Chilletyl ketone) 87.5 parts by mass were mixed and stirred to prepare a coating material composition. No turbidity was observed in the coating material composition obtained by mixing, and the ammine adduct and the reactive metataryl syrup were compatible. Next, a laminate (cured product layer / PET film) was produced in the same manner as in Example 144. Table 12 shows the composition of the coating material composition and the evaluation results.
  • Example 12 100 parts by weight of the bulle polymer obtained in Example 10, 5 parts by weight of the photopolymerization initiator 2 and 100 parts by weight of 2-butanone (methylethyl ketone) were mixed and stirred for coating materials. A composition was prepared. Next, a laminate (cured product layer / PET film) was produced in the same manner as in Example 148. Table 12 shows the composition of the coating material composition and the evaluation results.
  • the composition layer for the coating material applied to this PET film is cured with UV light using an UV irradiation machine (manufactured by I-Graphics Co., Ltd.) having an ultra-high pressure mercury lamp at an integrated irradiation light amount of 250 mj / cm 2 to form a cured film. did.
  • the thickness of the formed cured film was measured and found to be 10. Further, the curled amount of the cured film / PET film laminate (size: 15 cm ⁇ 25 cm) after curing was 5 mm.
  • Table 13 shows the results of the pencil hardness test and scratch resistance evaluation performed on the cured film formed, and the curl amount, bendability and adhesion evaluation performed on the cured film / PET film laminate. Indicated.
  • a cured film / PET film laminate was prepared in the same manner as in Example 153.
  • Table 13 shows the results of the pencil hardness test and scratch resistance evaluation performed on the formed cured film, and evaluation of curled amount, bendability and adhesion performed on the cured film / PET film laminate! Indicated.
  • Example 14 40 parts by weight of the bulle polymer obtained in Example 14, 120 parts by weight of the solution of the 15-functional urethane acrylate obtained in Reference Example 9, and 2 parts of butanone (methyl ethyl ketone)
  • a cured film / PET film laminate was produced in the same manner as in Example 153, except that was changed to 40 parts by mass.
  • the formed cured film! / The lead pen hardness test and scratch resistance evaluation, the cured film / PET film laminate! /, The curl amount, bending property and adhesion evaluation performed The results are shown in Table 13.
  • a coating material composition was prepared by mixing and stirring 200 parts by mass of the 15-functional urethane acrylate obtained in Reference Example 9 and 3 parts by mass of the photopolymerization initiator 2.
  • a cured film / PET film laminate was produced in the same manner as in Example 153.
  • Table 13 shows the results of the pencil hardness test and scratch resistance evaluation performed on the formed cured film, and the evaluation results of curl amount, bendability and adhesion performed on the cured film / PET film laminate. It was.
  • Example 12 100 parts by weight of the bulle polymer obtained in Example 12, 66 parts by weight of the treated zirconium oxide particles obtained in Reference Example 6, 10 parts by weight of the photoinitiator 2, 2 butanone (methyl ethyl ketone) 160 parts by weight The parts were mixed and stirred to prepare a coating solution.
  • the prepared coating solution was transparent with good dispersibility of the treated zirconium oxide particles.
  • a bar coater # 14 was used on a 100 m thick polyethylene terephthalate (PET) film (Mitsubishi Chemical Polyester Film Co., Ltd., product number “0-300”) with easy adhesion treatment on both sides. Then, the above coating solution was applied. Then, 2-butanone was evaporated by heating at 80 ° C. for 2 minutes to form a coating material composition layer.
  • the composition layer for the coating material applied to this PET film is UV-cured with a UV irradiation machine (manufactured by Eye Graphics Co., Ltd.) having an ultra-high pressure mercury lamp at an integrated irradiation light quantity of 300 mj / cm 2 to form a cured film. Formed. The thickness of the formed cured film was 5 am.
  • a coating solution was prepared in the same manner as in Example 161, except that the bull polymer was changed from the bull polymer obtained in Example 12 to the ammine adduct 5 obtained in Example 47. .
  • the prepared coating solution was transparent with good dispersibility of the treated zirconium oxide particles.
  • a cured film / PET film laminate was produced in the same manner as in Example 161. Then, the refractive index of the cured film thus prepared is measured, the light transmittance, turbidity and curl amount of the cured film / PET film laminate are measured, and the pencil hardness of the cured film formed on the PET film is measured. Measurements were made. The results are shown in Table 14.
  • DPHA Dipentaerythritol hexaatalylate
  • Reference Example 6 5 parts by mass of the photopolymerization initiator 2 and 63 parts by mass of 2 butanone (methylethyl ketone) were mixed and stirred to prepare a coating solution.
  • 2 butanone methylethyl ketone
  • Example 14 100 parts by mass of the amine adduct 5 obtained in Example 46, 10 parts by mass of the photoinitiator 2 and 160 parts by mass of 2 butanone (methylethyl ketone) were mixed and stirred to prepare a coating solution. did.
  • a cured film / PET film laminate was produced in the same manner as in Example 161. Then, the refractive index of the cured film thus prepared is measured, the light transmittance, turbidity and curl amount of the cured film / PET film laminate are measured, and the pencil hardness of the cured film formed on the PET film is measured. Measurements were made. The results are shown in Table 14.
  • the coating solution was applied by spray on the outer peripheral surface of an acrylic resin pipe having an outer diameter of 35 mm, an inner diameter of 31 mm, and a length of 100 mm. Thereafter, the coating layer was formed by heating and drying at 80 ° C for 2 minutes to evaporate toluene.
  • the composition layer for a coating material applied to the acrylic resin pipe was UV-cured at an irradiation integrated light quantity of 500 mj / cm 2 using a UV irradiation machine (manufactured by Eye Graphics Co., Ltd.) having an ultrahigh pressure mercury lamp.
  • the thickness of the cured product layer was measured and found to be 20 Hm. No cracks were seen in the cured product layer after curing. When the adhesiveness test of the hardened
  • the composition layer for a coating material applied to the curved substrate was UV-cured with an irradiation light amount of 500 mj / cm 2 using a UV irradiation machine (manufactured by Eye Graphics Co., Ltd.) having an ultrahigh pressure mercury lamp.
  • the thickness of the cured product layer was measured and found to be 20 Hm. There was no crack in the cured product layer after curing.
  • the evaluation was ⁇ , and the evaluation in the scratch resistance test was AA.
  • a cured product layer / sheet substrate laminate was produced in the same manner as in Example 169 except that the sheet substrate was changed to PMMA. No cracks occurred in the cured product layer after curing.
  • the evaluation was ⁇
  • the evaluation in the scratch resistance test was AA.
  • a cured product layer / sheet substrate laminate was produced in the same manner as in Example 169 except that the sheet substrate was changed to ABS.
  • the cured product layer after curing had no cracks.
  • the evaluation was ⁇
  • the evaluation in the scratch resistance test was AA.
  • a cured product layer / sheet base laminate was produced in the same manner as in Example 169, except that the coating solution was changed to the toluene solution of the polyfunctional attalylate used in Comparative Example 12. Many cracks were generated in the cured product layer after curing.
  • the evaluation of the adhesion test of the cured product layer was ⁇ , and the evaluation in the scratch resistance test was A.
  • the coating liquid prepared in Example 164 was applied to the outside of a plastic case made of acrylic resin having a thickness of 5 mm by spraying. Thereafter, the mixture was heated and dried at 40 ° C. for 5 minutes to evaporate toluene, thereby forming a coating material composition layer.
  • the composition layer for a coating material applied to the acrylic resin substrate was UV-cured with an irradiation integrated light quantity of 500 mj / cm 2 using a UV irradiation machine (manufactured by Eye Graphics Co., Ltd.) having an ultrahigh pressure mercury lamp.
  • the thickness of the cured product layer was measured and found to be 100 ⁇ m.
  • the evaluation of the cured layer in the scratch resistance test was AA
  • a cured product layer / acrylic substrate laminate was produced in the same manner as in Example 172 except that the coating solution was changed to the toluene solution of the polyfunctional attalylate used in Comparative Example 12. Many cracks were generated in the cured product layer after curing.
  • the evaluation of the cured product layer in the scratch resistance test was A.
  • the bull polymer obtained in Example 1 ((homo VEEA) -1) was placed on a glass substrate, and the force was also covered with a PET film with a thickness of 25 m to spread the bull polymer. .
  • This resin layer was cured with an electron beam at an acceleration voltage of 300 kV and an irradiation dose of 150 kGy using an electron beam irradiator (trade name “EBC300-60” manufactured by NHV Corporation). A cured resin having a thickness of 20001 11 m could be obtained.
  • a cured resin having a thickness of 200 m could be obtained in the same manner as in Example 173, except that the bull polymer was changed to the polymer ((homomo VEM)) obtained in Example 4.
  • a cured resin having a thickness of 200 m could be obtained in the same manner as in Example 173, except that the bull polymer was changed to the polymer ((VEEA—IBVE)) obtained in Example 6.
  • a mixture of 100 parts by mass of the bulle polymer ((homo VEEA) -1) obtained in Example 1 and 3 parts by mass of the photopolymerization initiator 3 was placed on the glass substrate, and both ends of the glass substrate were placed.
  • a guide of thickness 40 111 was placed and spread with a glass rod.
  • This resin layer coated on the glass substrate is UV-cured with a total irradiation amount of lj / cm 2 using a UV irradiation machine (trade name “PM25C-100”, manufactured by Usio Electric Co., Ltd.) with a 250W ultra-high pressure mercury lamp. I let you.
  • the resin surface is It was confirmed that the material was cured without stickiness.
  • UV curing was carried out in the same manner as in Example 176, except that the bull polymer was changed to the polymer obtained in Example 6 ((VEEA—IBVE)). It was confirmed that the resin surface was hardened without stickiness.
  • the glass substrate was placed, and a 40 m thick guide was placed on both ends of the glass substrate and spread with a glass rod.
  • This resin layer coated on the glass substrate is UV-cured with a UV irradiation machine (trade name “PM25C-100”, manufactured by Usio Electric Co., Ltd.) with a 250 W ultra-high pressure mercury lamp at an irradiation integrated light quantity of 4 j / cm 2.
  • a UV irradiation machine trade name “PM25C-100”, manufactured by Usio Electric Co., Ltd.
  • the resin surface was not sufficiently cured.
  • the composition for a coating material of the present invention uses a (meth) atalyloyl group pendant polymer, the cured film has a high hardness and is hard to be damaged.
  • a bulle-based polymer since a bulle-based polymer is used, it is possible to provide a laminated body with less warpage after curing, which is less likely to cause peeling of the coating film than when a bulle-based monomer is used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Paints Or Removers (AREA)

Abstract

 硬化後の塗膜の硬度が高く、傷つきにくい硬化物であり、塗膜剥がれが生じにくく、硬化後の反りが小さい硬化物を与えることができるコート材用組成物を提供する。  本発明のコート材用組成物は、下記式(1): 【化1】 [式中、R1は炭素数2~8のアルキレン基、R2は水素原子またはメチル基、mは正の整数である] で示される繰り返し単位を有するビニル系重合体を含有することを特徴とする。

Description

明 細 書
コート材用組成物
技術分野
[0001] 本発明は、コート材用組成物に関する。
背景技術
[0002] 液晶表示装置等のディスプレイ表面に貼着されて使用されるプラスチックフィルム や、 CD、 DVD,ブルーレイディスク等の光ディスク表面の傷つき防止のために、耐 擦傷性を付与する目的でこれら透明プラスチック基体表面に耐擦傷性コート層が形 成される場合がある。
[0003] 耐擦傷性コート層を形成する方法として、例えば、透明プラスチック基材表面に多 官能アタリレート系の紫外線硬化型透明樹脂を 2〜; 10 m程度コーティングする方 法が挙げられる。し力もながら、多官能アタリレートモノマーを主成分とする硬化性樹 脂の場合、プラスチック基材表面の耐引つかき性ゃ耐擦傷性は改善されるものの硬 化時の体積収縮が大きくなるので、耐擦傷性コート層と基材の剥離ゃ耐擦傷性コー ト層のひび割れが発生する場合がある。またフィルム基材にコーティングした場合、 同じく硬化収縮によりフィルムがカールする場合ゃ耐擦傷性コート層を形成したフィ ルムを折り曲げたりすると耐擦傷性コート層の剥離やひび割れが発生する場合があ つた。また耐擦傷性コート層付きプラスチックフィルムを裁断する場合、エッジ部でひ び割れする等の問題点があった。
[0004] また耐擦傷性コート層付きフィルム表面の硬度を向上させる方法として、耐擦傷性 コート層の厚みを 10 inよりも厚くする方法が挙げられる。しかし、硬化時の体積収 縮により耐擦傷性コート層と基材の剥離ゃ耐擦傷性コート層のひび割れ程度がより 大きくなる場合がある。またフィルムのカール量もより大きくなる等の問題点があった。
[0005] そこで耐擦傷性コート層の高硬度化を実現するとともに、前述の耐擦傷性コート層 の割れやカール等の問題点を改善する為に種々の検討がなされている。プラスチッ ク基材に耐擦傷性コート層を形成する方法として、例えば、以下のようなものが挙げ られる。特許文献 1には、側鎖にエチレン性不飽和基を含む架橋性ポリマーを含有 する硬化性樹脂組成物を用いる方法が開示されている。特許文献 2には、ポリエチレ ングリコールモノ (メタ)アタリレートの重合体を含有した光硬化性樹脂組成物が開示 されている。特許文献 3には、プレボリマー分子の両末端に(メタ)アタリロイル基を有 し、かつプレボリマー主鎖のユニット中に (メタ)アタリロイノレ基を側鎖として有する化 合物を用いた放射線硬化型塗工剤が開示されて!/、る。
[0006] また特許文献 4には、プラスチック基材フィルムとハードコート層との間に緩衝層を 設けたハードコートフィルムが開示されている。特許文献 5には、プラスチック基材上 に硬化型エポキシアタリレートを含む第 1ハードコート層および硬化型ウレタンアタリレ ートを含む第 2ハードコート層が積層されたハードコートフィルムが開示されている。
[0007] 上記のように基材フィルム上に多層に材料を形成する場合には生産工程数が多く なったり、得られた重合体が固体状の場合ではハードコート材用樹脂組成物を調製 する際に、材料粘度を下げる為に有機溶剤の使用量が多くなるなど、生産工程に負 荷が生じたりするなど問題があった。
[0008] 上述した状況の下、本発明が解決すべき課題は、硬化後の塗膜の硬度が高ぐ傷 つきにくい硬化物であり、塗膜剥がれが生じにくぐ硬化後の反りが小さい硬化物を 与えることができるコート材用組成物を提供することにある。
特許文献 1 :特開 2002— 322430号公報
特許文献 2:特許第 2959050号公報
特許文献 3:特許第 3158527号公報
特許文献 4 :特開平 11 300873号公報
特許文献 5:特開 2006— 58574号公報
発明の開示
[0009] 本発明者らは、種々検討の結果、異種重合性単量体をカチオン重合法に基づ!/、 て重合または共重合すれば、(メタ)アタリロイル基ペンダント型重合体または共重合 体が得られ、このような (メタ)アタリロイル基ペンダント型重合体または共重合体を用 いれば、硬化後の塗膜の硬度が高ぐ傷つきにくい硬化物であり、塗膜剥がれが生じ にくく、硬化後の反りが小さいコート層付き積層体が得られることを見出して、本発明 を完成した。 [0010] すなわち、本発明は、下記式(1)
[0011] [化 1]
Figure imgf000004_0001
[式中、 R1は炭素数 2〜8のアルキレン基、 R2は水素原子またはメチル基、 mは正の 整数である]
で示される繰り返し単位を有するビュル系重合体を含有することを特徴とするコート 材用組成物である。
[0012] 本発明のコート材用組成物は、(メタ)アタリロイル基ペンダント型重合体を用いてい るので、硬化後の塗膜の硬度が高ぐ傷つきにくい硬化物となる。また、ビュル系重 合体を用いているので、ビュル系単量体を用いた場合と比較すると、塗膜剥がれが 生じにくぐ硬化後の反りが小さい積層体を与えることができる。
図面の簡単な説明
[0013] [図 1]実施例 58〜77におけるビュル系重合体中の式(1)で示される繰り返し単位の 質量%値 (A)の 3乗と、該ビュル系重合体の数平均分子量との積の値、さらに反りと の関係について示す図である。
発明を実施するための最良の形態
[0014] コート材用組成物
本発明のコート材用組成物は、下記式(1)で示される繰り返し単位を有するビュル 系重合体を含有することを特徴とするものである。
[0015] [化 2]
Figure imgf000004_0002
[式中、 R1は炭素数 2〜8のアルキレン基、 R2は水素原子またはメチル基、 mは正の 整数である] [0016] 上記式(1)において、 R1で表される炭素数 2〜8のアルキレン基としては、例えば、 エチレン基、トリメチレン基、プロピレン基、テトラメチレン基、ペンタメチレン基、へキ サメチレン基、ヘプタメチレン基、オタタメチレン基、シクロへキシレン基、 1 , 4ージメ チルシクロへキサン— α , α , 一ジィル基、 1 , 3—ジメチルシクロへキサン— α , α , ジィル基、 1 , 2 ジメチルシクロへキサン— α , α ' ジィル基、 1 , 4ージメチルフ ェニノレー α , α , 一ジィル基、 1 , 3 ジメチルフエ二ルー α , α , 一ジィル基、 1 , 2— ジメチルフエ二ルー α , α , 一ジィル基などが挙げられる。 R1は、上記式(1)中に m個 存在するが、同一であっても異なっていてもよい。また、上記式(1)において、 mは正 の整数、好ましくは;!〜 20の整数、より好ましくは;!〜 10の整数、さらに好ましくは;!〜 5の整数である。
[0017] ビュル系重合体
まず、上記式(1)で示される繰返し単位を有するビュル系重合体について説明す る。上記式(1)で示される繰返し単位を有するビュル系重合体は、下記式(2)で示さ れる異種重合性単量体を含有する単量体混合物をカチオン重合することにより、容 易に調製することができる。
[0018] [化 3]
C»l~i2
Figure imgf000005_0001
[式中、
Figure imgf000005_0002
R2および mは上記式(1)と同意義である]
[0019] このとき、上記式(2)で示される異種重合性単量体は、単独で用いても 2種以上を 併用してもよい。 2種以上を併用した場合、得られる共重合体は、ランダム共重合体、 交互共重合体、周期的共重合体、ブロック共重合体またはその組合せのいずれであ つてもよい。また、グラフト共重合体であってもよい。
[0020] 上記式(2)で示される異種重合性単量体の具体例としては、例えば、(メタ)アタリ ル酸 2 ビニロキシェチル、 (メタ)アクリル酸 3 ビニロキシェチル、 (メタ)アクリル酸 2—ビニロキシプロピル、 (メタ)アクリル酸 1ーメチルー 2—ビニロキシェチル、 (メタ)ァ クリル酸 4 ビニロキシブチル、 (メタ)アクリル酸 6—ビニロキシへキシル、 (メタ)アタリ ノレ酸 4 ビニロキシシクロへキシル、(メタ)アクリル酸 4 ビニロキシメチルシクロへキ シルメチル、(メタ)アクリル酸 2— (2—ビニロキシエトキシ)ェチル、(メタ)アクリル酸 2 一(2—ビニロキシイソプロポキシ)プロピル、(メタ)アクリル酸 2—{ 2—(2—ビニロキ シエトキシ)エトキシ }ェチルが好適である。
[0021] 上記式(2)で示される異種重合性単量体は、従来公知の方法を用いて製造するこ とができる。例えば、上記式(2)において、 R1がエチレン基、 mが 1である場合、(メタ) アクリル酸の金属塩と 2—ハロゲノエチルビュルエーテルとを縮合させる力、、(メタ)ァ クリル酸メチルと 2—ヒドロキシェチルビュルエーテルとをエステル交換させる力、、ある いは、(メタ)アクリル酸ハライドと 2—ヒドロキシェチルビュルエーテルとを縮合させる ことにより製造すること力 Sできる。また、上記式(2)において、 R1がエチレン基、 mが 2 である場合、(メタ)アクリル酸の金属塩と 2—(2—ハロゲノエトキシ)ェチルビニルェ 一テルとを縮合させるか、(メタ)アクリル酸メチルと 2—(2—ヒドロキシエトキシ)ェチ ルビニルエーテルとをエステル交換させる力、、あるいは、(メタ)アクリル酸ハライドと 2 一(2—ヒドロキシエトキシ)ェチルビュルエーテルとを縮合させることにより製造するこ と力 Sできる。
[0022] 上記式(2)で示される異種重合性単量体は、ラジカル重合性またはァニオン重合 性の(メタ)アタリロイル基と、カチオン重合性のビュルエーテル基とを同時に有する ので、重合方法を選択することにより、(メタ)アタリロイル基またはビュルエーテル基 をペンダント基として有する重合体が得られる。本発明では、例えば、上記式(2)で 示される異種重合性単量体のビュルエーテル基を、カチオン重合させることにより、 ( メタ)アクリルロイル基をペンダント基として有する上記式(1 )で示される繰返し単位を 有するビュル系重合体を得ることができる。
[0023] また、上記式(1)で示される繰返し単位を有するビュル系重合体は、上記式(2)で 示される異種重合性単量体以外に、カチオン重合可能な単量体に由来する構造単 位を有していても良い。かかる共重合体は、上記式(2)で示される異種重合性単量 体と、カチオン重合可能な単量体とを含有する単量体混合物をカチオン重合するこ とにより、容易に調製することができる。このとき、上記式(2)で示される異種重合性 単量体は、単独で用いても 2種以上を併用してもよい。また、得られる共重合体は、ラ ンダム共重合体、交互共重合体、周期的共重合体、ブロック共重合体またはその組 合せの!/、ずれであってもよぐグラフト共重合体であってもよ!/、。
[0024] 上記カチオン重合可能な単量体としては、上記式(2)で示される異種重合性単量 体と共重合可能な単量体であればよい。これらのカチオン重合可能な単量体は、単 独で用いても 2種以上を併用してもよい。これらのカチオン重合可能な単量体のうち 、メチノレビニノレエーテノレ、イソブチノレビニノレエーテノレ、オタタデシノレビニノレエーテノレ、 シクロへキシルビュルエーテル、ジヒドロフランなどのビュルエーテル化合物や、 N— ビュル力ルバゾールなどが好適である。
[0025] なお、単量体混合物に上記式(2)で示される異種重合性単量体と、上記カチオン 重合可能な単量体とを含有させてカチオン重合する場合、単量体のモル比(力チォ ン重合可能な単量体/上記式(2)で示される異種重合性単量体)は、 0. 1以上が好 ましぐより好ましくは 0. 5以上、さらに好ましくは 0. 8以上であり、 10以下が好ましぐ より好ましくは 8以下、さらに好ましくは 5以下である。上記単量体のモル比が 10を超 えると、得られるビュル系重合体中の上記式(1)で示される繰返し単位の含有量が 少なくなり、硬化後の硬度や機械強度が不足する場合がある。なお、単量体のモル 比を適宜調整することにより、各種用途において要求される物性の調整が可能であ
[0026] ビュル系重合体の重合方法
ヘテロポリ酸を用レ、た力チオン重合
前記ビュル系重合体は、ヘテロポリ酸の存在下で重合することが好ましい。カチォ ン重合において用いられる触媒としては、ヘテロポリ酸を含有してなる触媒であれば 、特に限定されず、触媒性能を損なわない範囲で、他の物質を含有していてもよい。 ヘテロポリ酸が、通常、 30質量%以上 100質量%以下の範囲で含有されてなる触媒 が性能上好ましい。
[0027] 前記触媒に用いられるヘテロポリ酸は、骨格酸の中心原子がタングステン、モリブ デン、バナジウム等から選ばれ、ヘテロ原子がリン、ケィ素、ゲルマニウム、チタン、ジ ルコニゥム、ホウ素、ヒ素、コバルト等から選ばれた原子からなるケギン構造を有する ポリ酸である。例えば、リンタングステン酸、ケィタングステン酸、リンモリブデン酸、ケ ィモリブデン酸、ホウタングステン酸、ホウモリブデン酸、コバルトモリブデン酸、コバ ノレトタングステン酸、ヒ素タングステン酸、ゲノレマニウムタングステン酸、リンモリブドタ ングステン酸、ホウモリブドタングステン酸等が挙げられる。これらの中でも、リンタンダ ステン酸が無着色、溶解性及び重合開始能力の点で特に好まし!/、。
[0028] 本発明に用いられるヘテロポリ酸は部分的に中和された塩でも使用できる。これら の部分中和塩としては、例えば、ナトリウム塩、カリウム塩、セシウム塩、有機アミン塩 、アンモニゥム塩等が挙げられる。ヘテロポリ酸の部分中和塩は調製してから反応系 中に添加してもよいが、反応系中でヘテロポリ酸と塩基とを反応させることにより生成 させてもよい。
[0029] 前記へテロポリ酸は、粉末状で用いてもよいし、有機溶媒に溶解希釈して用いても よい。溶解希釈に使用する溶媒としては、特に制限は無いが、例えば、アセトン、メチ ノレェチルケトン、ジェチノレエ一テル、エチレングリコールジメチノレエ一テル、酢酸ェチ ル、酢酸ブチル等の含酸素有機溶媒が好ましレ、。
[0030] 前記へテロポリ酸は、使用前に高温および/または減圧で乾燥させて、ヘテロポリ 酸の結晶水部分が、好ましくは 1質量%以上、特に好ましくは 3質量%以上であり、 好ましくは 15質量%以下、特に好ましくは 8質量%以下になるように調整して重合に 使用することが好ましい。結晶水部分力 質量%未満の場合や 15質量%を超える場 合には得られるビュル系重合体の分子量が高くならない場合がある。
[0031] 本発明で用いられるヘテロポリ酸は、高活性であるため、上記式(2)で示される異 種重合性単量体を含む単量体混合物(以下、単に「単量体混合物」とレ、うことがある 。)に対する使用量は lOOppm以下であっても十分に重合反応が進行するが、必要 に応じて触媒量を増やしてもよい。通常、触媒使用量は単量体混合物に対して、 lp pm以上であり、好まし <は lOppm以上であり、 30000ppm以下、好まし <は 5000pp m以下である。特に、高分子量のビュル系重合体を得るためには lOppm以上 ΙΟΟρ pm以下が好ましい。 lppm未満の使用量では重合が開始されない場合があり、 300 OOppmを超える使用量では重合が激しくなりすぎて反応が制御できなくなったり、得 られるビュル系重合体の分子量が低くなつたり、生成物の着色が起こったりする場合 力 sある。 [0032] 上記単量体混合物を重合する際は、バルタで重合を行ってもよいが、反応温度や 粘度をコントロールするため溶媒を使用してもよい。
[0033] 使用する溶媒としては、特に制限はないが、トルエンゃキシレン、ベンゼン等の芳 香族炭化水素類、へキサンやオクタン等の脂肪族炭化水素類、シクロへキサン、メチ ルシクロへキサン等の飽和環状炭化水素、クロ口ホルム、トリクロロエチレン等のハロ ゲン化炭化水素、酢酸ェチル、酢酸ブチル、プロピオン酸ブチル等のエステル類、 テトラヒドロフラン、 1, 4 ジォキサン等の環状エーテル類、ァセトニトリル、ベンゾニト リル等の二トリル類等が使用できる。また、高分子量ポリビュルエーテルを得るために は、芳香族炭化水素類、脂肪族炭化水素類、飽和環状炭化水素類、エステル類等 の非極性溶媒を使用することが好ましレ、。
[0034] また、本発明のビュル系重合体はカチオン重合によって重合されるため、アルコー ルゃ水を添加することによって、得られるビュル系重合体の分子量を調整することが できる。上記アルコールとしては、メタノール、エタノール、直鎖または分岐のプロパノ ール、直鎖または分岐のブタノールが挙げられる。なお、高分子量体のビュル系重 合体を得るには反応系中の水分、アルコール等の不純物は少ないほうが好ましい。
[0035] 上記単量体混合物を重合する温度は特に制限はないが、 30°C以上 100°C以下 が好ましい。特に高分子量のビュル系重合体を得るためには、重合開始温度を— 1 0°C以上 60°C以下、重合中の最高温度を 0°C以上 80°C以下に、加熱または冷却に より調整すること力 S好ましい。重合中、反応容器内の重合液温度がほぼ一定になるよ うに重合することで得られるポリマーの分子量分布が狭くなるので、できるだけ重合温 度を調整することが好ましい。重合温度が 30°C未満では、重合速度が小さくなつ たり、得られるビュル系重合体の分子量が低くなつたり、あるいは固化したり粘度が高 くなつたりして取扱いが困難になる場合がある。重合温度が 100°Cを超える場合には 得られるビュル系重合体の分子量が低くなる場合がある。
[0036] 反応圧力は、常圧または加圧の何れでも良いが、通常は常圧で実施する。
[0037] 重合反応後は必要に応じ、アンモニアおよびアミン等の有機塩基あるいは NaOH および KOH等の無機塩基を加え反応を停止しても良いし、これらを加えなくても良 いが、ビュル系重合体の安定性のためには上記塩基を用いて反応を停止する方が 好ましい。
[0038] ビュル系重合体のリビング力チオン重合方法
上記式(1)で示される繰返し単位を有するビュル系重合体は、上記で述べたように 、カチオン重合により容易に調製することができる。また、重量平均分子量 (Mw)と数 平均分子量 (Mn)との比である分子量分布(Mw/Mn)が狭レ、重合体を調製するこ とができることから、上記単量体混合物をリビングカチオン重合させることも好ましい 態様である。
[0039] 上記リビングカチオン重合は、例えば、 2種類のルイス酸と、含酸素化合物または含 窒素化合物(以下「化合物 A」ということがある。)との存在下で、カチオン源を用いて 行うこと力 Sできる。この際、 2種類のルイス酸のうち一方のルイス酸(以下「ルイス酸 A」 ということがある。)を系中に導入し、同時もしくはその後に他方のルイス酸 (以下「ル イス酸 B」ということがある。)を系中に導入する。ここで、「カチオン源」とは、開始カチ オンを生成することができる化合物を意味する。
[0040] 上記 2種類のルイス酸としては、例えば、 B、 Mg、 Al、 Si、 Pまたは第 3周期以降の 元素(例えば、 Sn)のハロゲン化物、あるいは、これらの元素の有機金属化合物が挙 げられる。これら 2種類のルイス酸のうち、ルイス酸 Aとしては、 B、 Mg、 Al、 Si、 Pの ハロゲン化物、あるいは、これらの元素の有機金属化合物が好適であり、ルイス酸 Bと しては、第 3周期以降の元素のハロゲン化物(例えば、四塩化スズなど)、あるいは、 これらの元素の有機金属化合物が好適である。上記ルイス酸 Aとしては、有機アルミ ニゥム化合物が特に好適であり、具体例としては、例えば、ジェチルアルミニウムクロ リド、ジメチルアルミニウムブロミド、ェチルアルミニウムジクロリドなどが挙げられる。ル イス酸 Aとして、有機アルミニウム化合物を使用する場合、単独で用いても 2種以上を 併用してもよい。上記化合物 Aとしては、特に限定されるものではないが、例えば、酢 酸ェチル、酢酸ブチル、酢酸フエニルなどのエステル類(例えば、 1 イソブトキシァ セテート)などが挙げられる。化合物 Aは、単独で用いても 2種以上を併用してもよい 。上記カチオン源としては、例えば、塩酸、酢酸などのプロトン酸;水:アルコール;ノヽ ロゲン化物、ハロゲン化水素またはカルボン酸とビュルエーテルの付加化合物など が挙げられる。これらのカチオン源は、通常、ノレイス酸 Aと組み合わせて用いられる。 ルイス酸 Aとしては、カチオン源からカチオンを発生させやすいルイス酸を用いること が好ましい。
[0041] リビングカチオン重合は、例えば、ベンゼン、トルエン、クロ口ベンゼンなどの芳香族 炭化水素;酢酸メチル、酢酸ェチルなどのエステル類などの溶媒を用いて行ってもよ い。なお、化合物 Aを溶媒として用いてもよい。上記リビングカチオン重合の反応条 件は、単量体の種類や使用量などに応じて変化するので、特に限定されるものでは ない。例えば、重合温度は、好ましくは 30°C以上、より好ましくは 0°C以上であり、 好ましくは 60°C以下、より好ましくは 40°C以下の範囲内である。重合時間は、好まし くは 0. 01時間以上、より好ましくは 0. 1時間以上であり、好ましくは 10時間以下、よ り好ましくは 5時間以下の範囲内である。また、反応は、加圧下、常圧下または減圧 下のいずれの圧力下で行ってもよいが、好ましくは常圧下で行われる。また、リビング カチオン重合は、乾燥した不活性ガス雰囲気下で行われることが好ましい。この際の 反応雰囲気における相対湿度は、好ましくは 10%RH以下、より好ましくは 1 %RH以 下である。不活性ガスとしては、窒素、ヘリウム、アルゴンなどが挙げられる。
[0042] 繰り返し単位の質量 A3 X数平均分子量
本発明において、上記式(1)で示される繰返し単位を有するビュル系重合体中の 式(1)で示される繰り返し単位の質量%値 (A)の 3乗と、該ビュル系重合体の数平均 分子量 (Mn)との積 (A3 X Mn)の値力 600 X 106以下であることが好ましぐ特に好 ましくは 360 X 106以下である。 ^ [1が600 106を超ぇる場合には、コート材用 組成物を硬化した際に、反りが大きく発生し、本発明の特徴の 1つである低反り性が 損なわれる。なお、詳細な理由は不明ながら、反り性が A3 X Mnに起因する理由とし て、架橋密度と機械的強度、特に靭性が関係しているものと考えられる。
[0043] ビュル系重合体の分子量分布
上記式(1)で示される繰返し単位を有するビュル系重合体は、重量平均分子量( Mw)と数平均分子量(Mn)との比率である分子量分布(Mw/Mn)が、好ましくは 1 . 00以上であり、好ましくは 2. 4以下、より好ましくは 2. 0以下、さらに好ましくは 1. 6 以下、特に好ましくは 1. 2以下の範囲内である。分子量分布(Mw/Mn)が 2. 4を 超えると、低分子量成分が増加することがあるので、硬化物の強度が低下することが ある。また、ビュル系重合体の数平均分子量 (Mn)は、好ましくは 1 , 000以上、より 好ましくは 2, 000以上、さらに好ましくは 5, 000以上で り、好ましくは 200, 000以 下、さらに好ましくは 100, 000以下の範囲内である。ビュル系重合体の数平均分子 量 (Mn)が 1 , 000未満であると、硬化速度の低下や硬化物の強度低下を生じること がある。ここで、数平均分子量 (Mn)および分子量分布(Mw/Mn)は、テトラヒドロ フラン (THF)を移動相とし、温度 40°C、流速 0. 3mL/minの条件下で、東ソー株 式会社製のカラム TSK— gel SuperHM-H 2本、 TSK— gel SuperH2000
1本を用い、東ソー株式会社製のゲル浸透クロマトグラフィー(GPC)装置 HLC— 8220GPCにより求め、標準ポリスチレン換算した値である。
[0044] ビュル系重合体の粘度
上記式(1)で示される繰返し単位を有するビュル系重合体は、固体状の単量体か ら得た重合体含有量が多い場合を除き、液状粘性体として得ることができる。液状粘 性体であれば、重合性単量体で希釈して樹脂粘度を下げなくてもスピンコートが可 能である。また、必要であれば重合性単量体と混合しても良ぐ重合性単量体との溶 解性が良いので、樹脂組成物を調製する際に作業効率の向上化が図れる。粘度が 低いと作業性が良ぐまた、光記録媒体を作成する際に、情報記録層との濡れ性は 向上するが、ビュル系重合体の数平均分子量 (Mn)が小さい場合があり、硬化物の 強度が低下することがある。好ましい本発明のビュル系重合体の粘度は、好ましくは 0. lPa' s以上、より好ましくは lPa' s以上、さらに好ましくは 2Pa' s以上であり、好ま しくは 2, OOOPa - s以下、より好ましくは 1 , OOOPa- s以下、さらに好ましくは 500Pa- s 以下である。ここで、粘度は、温度 25°Cの条件下で、 RB80型粘度計 (型式「RB80L 」:東機産業 (株)製)を用いて算出した値である。
[0045] ビュル系重合体へのァミン付加
また、上記式(1)で示される繰返し単位を有するビュル系重合体は、当該ビュル系 重合体が有する炭素 炭素二重結合の一部に二級アミンを付加させてもよい。二級 アミンを付加させることによって、ビュル系重合体の極性を高めることができ、コート材 用組成物のプラスチックなどの基体への濡れ性を向上させることができる。
[0046] 上記式(1)で示される繰返し単位を有するビュル系重合体への二級ァミンの付加 は、上記式(1)で示される繰返し単位を有するビュル系重合体と二級ァミンとを混合 、撹拌し、上記式(1)で示される繰返し単位を有するビュル系重合体が有する炭素 炭素二重結合と二級ァミンとを付加反応させることにより容易に行うことができる。
[0047] そして、上記のようにして二級ァミンが付加されたビュル系重合体は、下記式(3)お よび/または下記式 (4)で示される繰返し単位を有することが望まし!/、。
[0048] [化 4]
Figure imgf000013_0001
[式中、
Figure imgf000013_0002
R2および mは、上記式(1)と同意義である。また、 R3および R4は同一また は異なって、炭素数 1〜4のヒドロキシアルキル基、炭素数 1〜6のアルキル基または 炭素数 6〜; 12のァリール基を表し、さらに R3と R4が窒素原子または酸素原子を介し て若しくは介さずに 5〜8員環を形成していても良い。 ]
[化 5]
Figure imgf000013_0003
[式中、
Figure imgf000013_0004
R2および mは、上記式(1)と同意義である。また、 R3および R4は同一また は異なって、炭素数 1〜4のヒドロキシアルキル基、炭素数 1〜6のアルキル基または 炭素数 6〜; 12のァリール基を表し、さらに R3と R4が窒素原子または酸素原子を介し て若しくは介さずに 5〜8員環を形成していても良い。 ]
[0050] 上記式(1)で示される繰返し単位を有するビュル系重合体へ付加される前記二級 ァミンとしては、例えば、 N メチルォクチルァミン、メチルェチルァミン、メチルプロピ ノレアミン、ェチルプロピルァミン、ジ—n—プロピルァミン、ジー2—ェチルへキシルァ ミン、ジメチルァミン、ジェチルァミン、ジイソプロピルァミン、ジブチルァミンなどのァ ルキルアミンゃジアルキルアミン; N メチルァニリンなどのァリールァミン;ジフエニル ァミンなどのジァリールァミン; N メチルエタノールァミン、 N ェチルエタノールアミ ン、ジエタノールァミン、ジイソプロパノールァミンなどの水酸基含有ジアルキルァミン ;ビス(2—クロロェチノレ)ァミン、 2—クロ口ェチル(プロピノレ)ァミンなどのハロゲン化ァ ルキルァミン;ピぺリジン、 4ーメチルビペリジン、 1ーメチルビペラジン、モルホリンな どの 2級環状ァミンなどが挙げられる。これらの中でも、ジイソプロピルァミン、ジブチ ノレアミンなどのジアルキルァミン; N メチルエタノールァミン、ジエタノールァミン、ジ イソプロパノールァミンなどの水酸基含有ジアルキルァミンが好適であり、特に、ジィ ソプロピルァミン、ジブチルァミンなどのジアルキルアミンゃジエタノールァミン、ジイソ プロパノールァミンなどのジァルカノールァミンが好適である。
[0051] 上記式(1)で示される繰返し単位を有するビュル系重合体への二級ァミンの付加 量としては、上記式(1)で示される繰返し単位を有するビュル系重合体が有する炭 素 炭素二重結合の 5モル%以上に付加させることが好ましぐより好ましくは 10モ ル%以上、さらに好ましくは 20モル%以上である。二級ァミンの付加量が、ビュル系 重合体が有する炭素 炭素二重結合の 5モル%未満では、得られるビュル系重合 体の極性を十分に高めることができないおそれがある。また、二級ァミンの付加量は 、ビュル系重合体が有する炭素 炭素二重結合の 60モル%以下とすることが好まし く、より好ましくは 50モル0 /0以下、さらに好ましくは 40モル0 /0以下である。二級アミン の付加量が、ビュル系重合体が有する炭素 炭素二重結合の 60モル%を超えると 、得られるビュル系重合体の重合性が低下するおそれがある。
[0052] ポリジメチルシロキサン部位の導入
また、上記式(1)で示される繰返し単位を有するビュル系重合体には、ポリジメチル シロキサン部位を導入してもよい。上記式(1)で示される繰返し単位を有するビュル 系重合体中にポリジメチルシロキサン部位が導入されたものは、従来から知られてい るカチオン重合によりビュル系重合体を調製する際に、官能基を有する有機変性シ リコーン化合物を加えることで合成が可能である。官能基を有する有機変性シリコー ン化合物としては、例えば、官能基の導入場所により下記式 ½)〜(9)が挙げられる
[0053] 側鎖型
[0054] [化 6]
Figure imgf000015_0001
[0055] 片末端型
[0056] [化 7]
Figure imgf000015_0002
[0057] 両末端型
[0058] [化 8]
Figure imgf000015_0003
[0059] 側鎖/末端型
[0060] [化 9]
Figure imgf000015_0004
[式(5)〜(8)中、 R5〜R1Qは官能基を有する炭素数 2〜20の有機残基で、 X、 Yは正 の整数である。なお、 R5および R9は複数個存在する場合、同一または異なっていて あよい。 ]
[0061] 上記式(5)〜(8)において、 R5〜R1Qで表される有機残基が有する官能基としては、 水酸基、エポキシ基、アミノ基などが挙げられる。これらは同一でも異なっていても良 い。 R5〜R1Q以外に (メタ)アタリロイノレ基等をさらに有していてもよい。上記式(5)〜(8 )の官能基を有する有機変性シリコーン化合物は 1種類のみ用いてもよいし、 2種類 以上を組み合わせて使用してもよい。
[0062] 上記式 (2)で示される異種重合性単量体等と、上記式(5)〜(8)の官能基を有する 有機変性シリコーン化合物は、防汚性能を損なわない範囲で使用すればよぐその 質量比は特に限定しな!/、が、質量比(上記式(5)〜(8)の官能基を有する有機変性 シリコーン化合物/力チオン重合可能な単量体)は、好ましくは 0. 001以上、より好 ましくは 0. 005以上であり、好ましくは 10以下、より好ましくは 5以下の範囲内である
[0063] ビュル系重合体以外の成分
重合性単量体、ラジカル重合性樹脂
本発明のコート材用組成物は、前記ビュル系重合体に加えて、他の重合性単量体 および/またはラジカル重合性樹脂を含むことができる。他の重合性単量体および /またはラジカル重合性樹脂を含む場合には、コート材用組成物を硬化させて得ら れる硬化物層の物性を調節することができるという効果を奏する。
[0064] 重合性単量体
コート材用組成物中の上記他の重合性単量体の含有量は、好ましくは 0質量%以 上であり、好ましくは 80質量%以下、より好ましくは 60質量%以下である。上記他の 重合性単量体の含有量が 80質量%を超えると、硬化収縮が大きくなり、硬化物の内 部歪や反りが大きくなることがあり好ましくない。
[0065] 前記重合性単量体としては、前記ビュル系重合体と共硬化可能なものである限り、 特に限定されない。重合性単量体は、単独で用いても 2種以上を併用してもよい。重 合性単量体としては、(メタ)アクリル酸エステル、脂環構造置換基を有する(メタ)ァク リル酸エステル、ォキシエチレン基を有する(メタ)アクリル系単量体が好適である。
[0066] ォキシエチレン基含有(メタ)アクリル系単量体
前記ォキシエチレン基を有する (メタ)アクリル系単量体は、エーテル構造を有する アルコールまたは多価アルコールと(メタ)アクリル酸(エステル)との縮合によって得る ことが可能である。
[0067] 前記ォキシエチレン基を有する(メタ)アクリル系単量体としては、例えばメトキシェ チル (メタ)アタリレート、エトキシェチル (メタ)アタリレート、プロポキシェチル (メタ)ァ タリレート、イソプロポキシェチル(メタ)アタリレート、ブトキシェチル(メタ)アタリレート 、 (メタ)アクリル酸 2—ビニロキシェチル、 (メタ)アクリル酸 2—(2—ビニロキシエトキシ )ェチル、ジエチレングリコールジ(メタ)アタリレート、トリエチレングリコールジ(メタ)ァ タリレート、テトラエチレングリコールジ(メタ)アタリレート、トリメチロールプロパンのェ チレンォキシド付加物のトリ(メタ)アタリレート、グリセリンのエチレンォキシド付加物の モノ ·ジ ·トリ(メタ)アタリレート、 (ジ)ペンタエリスリトールのエチレンォキシド付加物の (メタ)アタリレート、ビスフエノール Aのエチレンォキシド付加物のジ (メタ)アタリレート 、などが挙げられる。
[0068] 本発明のコート材用組成物に、前記ォキシエチレン基を有する(メタ)アクリル系単 量体を含有させる場合、その含有量としては、組成物 100質量%に対して 20質量% 以上 60質量%以下であることが好まし!/、。前記ォキシエチレン基を有する(メタ)ァク リル系単量体の含有量が 20質量%より少ない場合には表面硬化性が悪くなつたり、 基体との密着性が悪くなつたり、粘度が高く作業性が悪くなり均一に塗布することが 難しくなる場合があり、 60質量%より多い場合には、硬化速度が低下したり、硬化物 の塗膜強度が不充分になることがある。
[0069] ォキシエチレン基を有する (メタ)アクリル系単量体を上記の含有量にて含有するこ とによって、本発明のコート材用組成物は、低粘度化や粘度調整が容易となり、成形 性、作業性が向上し、また、硬化収縮が低減し低反り性が向上する。さらに、硬化後 の塗膜の硬度や機械強度、基体との密着性と!/、つた各種物性などが劇的に向上す
[0070] ラジカル重合性樹脂
コート材用組成物中の上記ラジカル重合性樹脂の含有量は、組成物 100質量% 中好ましくは 0質量%以上であり、好ましくは 50質量%以下、より好ましくは 30質量% 以下である。上記ラジカル重合性樹脂の含有量が 50質量%を超えると、コート材用 組成物の粘度が高くなりすぎて基体への塗布が良好に行なえないおそれがある。
[0071] 前記ラジカル重合性樹脂としては、本発明のビュル系重合体と共硬化可能なもの である限り、特に限定されない。例えば、アクリル樹脂、不飽和ポリエステル樹脂、ェ ポキシ (メタ)アタリレート、ウレタン (メタ)アタリレート、ポリエステル (メタ)アタリレートな どを挙げること力 Sできる。
[0072] 上記アクリル樹脂は、ポリメタクリル酸メチルのような(メタ)アクリル酸エステルの重 合体を、メタクリル酸メチルのような(メタ)アクリル酸エステルモノマーに溶解させた樹 脂((メタ)アクリルシラップ)であることが好ましい。更に、用途により、重合体に酸ゃェ ポキシ基の官能基を設けるためにアクリル酸ゃメタクリル酸グリシジルを共重合させた ものや、さらにその官能基に反応させて重合性官能基を持たせた重合体や、アクリル 系以外のスチレンのようなモノマーを導入したものを使用することも可能である。
[0073] ウレタン (メタ)アタリレート
上記ウレタン (メタ)アタリレートは、水酸基を有する(メタ)アクリル酸エステルと分子 中に少なくとも 1個以上のイソシァネート基を有する化合物とのウレタン化反応により 得ること力 Sでさる。
[0074] 前記水酸基を有する(メタ)アクリル酸エステルとしては、例えば、ヒドロキシェチル( ート、ポリエチレングリコールモノ(メタ)アタリレート、ポリプロピレングリコール(メタ)ァ タリレート、ネオペンチルグリコール(メタ)アタリレート、トリメチロールプロパンモノ(メタ )アタリレート、トリメチロールプロパンジ(メタ)アタリレート、ペンタエリスリトールモノ(メ タ)アタリレート、ペンタエリスリトールジ(メタ)アタリレート、ペンタエリスリトールトリ(メタ )アタリレート、ジペンタエリスリトールモノ(メタ)アタリレート、ジペンタエリスリトールジ( メタ)アタリレート、ジペンタエリスリトールテトラ(メタ)アタリレート、ジペンタエリスリトー ルペンタ(メタ)アタリレート等が挙げられる。これらの(メタ)アクリル酸エステルは、単 独で用いても 2種以上を併用してもよい。これらの中でもペンタエリスリトールトリアタリ レートまたはジペンタエリスリトールペンタアタリレートが好適である。
[0075] 前記イソシァネート基を有する化合物としては、例えば、 2, 4—トリレンジイソシァネ ートおよびその異性体、ジフエニルメタンジイソシァネート、へキサメチレンジイソシァ ネート、イソホロンジイソシァネート、キシリレンジイソシァネート、 2, 4, 4—トリメチノレ へキサメチレンジイソシァネート、シクロへキシルメタンジイソシァネート、ジシクロメタ ンジイソシァネート、 4, 4'ーメチレンビス(シクロへキシルイソシァネート)、リジンジィ ソシァネート、 1 , 3— (イソシアナ一トメチル)シクロへキサン、 1 , 5—ナフタレンジイソ シァネート、トリフエニルメタントリイソシァネート等のポリイソシァネート;これらのポリイ ソシァネートのァダクト体、ビュレット体、イソシァヌレート体等のポリイソシァネートの 誘導体(変性物)等が挙げられる。これらのイソシァネート基を有する化合物は、単独 で用いても 2種以上を併用してもよい。これらの中でもイソホロンジイソシァネートまた はそのイソシァヌレート体が好適である。
[0076] 上記ウレタン (メタ)アタリレートを含有させる場合、本発明のコート材用組成物中の 上記ウレタン (メタ)アタリレート含有量は、前記ビュル系重合体 100質量部に対して、 5質量部以上、より好ましくは 10質量部以上とすることが望ましぐまた、 200質量部 以下、好ましくは 150質量部以下、より好ましくは 100質量部以下、最も好ましくは 50 質量部以下とすることが望ましい。ウレタン (メタ)アタリレートの含有量が前記ビュル 系重合体 100質量部に対して 200質量部を超えると、硬化収縮が大きくなり、内部歪 や硬化物の反りが大きくなることがあり、 5質量部未満であると、密着性が改善されな いことがある。
[0077] また、上記ウレタン (メタ)アタリレートは、特に限定されるものではないが、 1分子中 に (メタ)アタリロイル基を複数有する多官能ウレタン (メタ)アタリレートが好まし!/、。前 記多官能ウレタン (メタ)アタリレートが 1分子中に有する (メタ)アタリロイル基の個数は 、 3個以上が好ましぐ 6個以上がより好ましい。 1分子中に 3個以上の(メタ)アタリロイ ル基を有する多官能ウレタン (メタ)アタリレートを使用することにより、硬化後の架橋 密度を高めることができ、硬化後のコート層の硬度を向上させることができる。
[0078] 前記多官能ウレタン (メタ)アタリレートの具体例としては、例えば、水酸基を有する( メタ)アクリル酸エステルとして 2—ヒドロキシェチルアタリレート、イソシァネート基を有 する化合物としてイソホロンジイソシァネートのイソシヌレート体(3量体)を用いた 6官 能ウレタン (メタ)アタリレート;水酸基を有する(メタ)アクリル酸エステルとしてペンタエ リスリトールトリ(メタ)アタリレート、イソシァネート基を有する化合物としてイソホロンジ イソシァネートを用いた 6官能ウレタン (メタ)アタリレート;水酸基を有する (メタ)アタリ ル酸エステルとしてジペンタエリスリトールペンタ(メタ)アタリレート、イソシァネート基 を有する化合物としてイソホロンジイソシァネートを用いた 10官能ウレタン (メタ)アタリ レート;水酸基を有する(メタ)アクリル酸エステルとしてジペンタエリスリトールペンタ( メタ)アタリレート、イソシァネート基を有する化合物としてイソホロンジイソシァネートの イソシヌレート体(3量体)を用いた 15官能ウレタン (メタ)アタリレートなどが挙げられる [0079] 重合開始剤
本発明のコート材用組成物は、さらに重合開始剤を含むことができる。重合開始剤 を含む場合には、コート材用組成物を熱や紫外線で硬化させることができるという効 果を奏する。
[0080] 上記重合開始剤としては、上記式(1)で示される繰返し単位がラジカル重合性の( メタ)アタリロイル基を有するので、例えば、加熱により重合開始ラジカルを発生する 熱重合開始剤;紫外線の照射により重合開始ラジカルを発生する光重合開始剤;な どが挙げられる。これらの重合開始剤は、単独で用いても 2種以上を併用してもよい。 また、熱重合促進剤、光増感剤、光重合促進剤などをさらに添加することも好ましい
[0081] 上記熱重合開始剤としては、好適なものとして、メチルェチルケトンペルォキシド、 シクロへキサノンペルォキシド、タメンヒドロペルォキシド、 t ブチルペルォキシベン ゾエート、ベンゾィルペルォキシドなどの金属石鹼および/またはァミン化合物など の触媒作用により効率的にラジカルを発生させることができる化合物や、 2, 2'—ァゾ ビスイソブチロニトリル、 2, 2,ーァゾビス(2, 4 ジメチルバレロニトリル)等が挙げら れる。
[0082] 上記光重合開始剤としては、好適なものとして、ァセトフエノン類、ベンゾフエノン類 、ァシルホスフィンォキシド類が挙げられ、 2 メチルー 1 [4 (メチルチオ)フエ二 ノレ]— 2—モルホリノプロパン一 1—オン、 2—ヒドロキシ一 2—メチル 1—フエニルプ 口パン 1 オン、 2 メチル 2 モルホリノ(4ーチオメチルフエ二ノレ)プロパン 1 オン、 1ーヒドロキシシクロへキシルフェニルケトンが特に好適である。
[0083] コート材用組成物中の前記重合開始剤の含有量は、好ましくは 0. 05質量%以上 、より好ましくは 0. 1質量%以上、さらに好ましくは 0. 2質量部以上であり、好ましくは 20質量%以下、より好ましくは 15質量%以下、さらに好ましくは 10質量%以下であ る。重合開始剤の含有量が 0. 05質量%未満であると、コート材用組成物が充分に 硬化しないことがある。逆に、重合開始剤の含有量が 20質量%を超えると、硬化物 の物性がさらに向上することはなぐむしろ悪影響を及ぼすうえ、経済性を損なうこと 力 Sある。
[0084] 重合開始剤として、熱重合開始剤を用いる場合には、熱重合開始剤の分解温度を 低下させるために、熱重合開始剤の分解を促進して有効にラジカルを発生させること ができる熱重合促進剤を用いることができる。熱重合促進剤としては、例えば、コバ ルト、銅、錫、亜鉛、マンガン、鉄、ジルコニウム、クロム、バナジウム、カルシウム、カリ ゥムなどを含む金属石鹼、 1級、 2級、 3級のアミン化合物、 4級アンモニゥム塩、チォ 尿素化合物、ケトン化合物などが挙げられる。これらの熱重合促進剤は、単独で用い ても 2種以上を併用してもよい。これらの熱重合促進剤のうち、ォクチル酸コバルト、 ナフテン酸コバルト、ォクチル酸銅、ナフテン酸銅、ォクチル酸マンガン、ナフテン酸 マンガン、ジメチルァニリン、トリエタノールァミン、トリェチルベンジルアンモニゥムクロ ライド、ジ(2—ヒドロキシェチル) p—トルイジン、エチレンチォ尿素、ァセチルアセトン 、ァセト酢酸メチルが好適である。
[0085] コート材用組成物中の熱重合促進剤の含有量は、好ましくは 0. 001質量%以上、 より好ましくは 0. 01質量%以上、さらに好ましくは 0. 05質量%以上であり、好ましく は 20質量%以下、より好ましくは 10質量%以下、さらに好ましくは 5質量%以下の範 囲内である。熱重合促進剤の含有量がこのような範囲内であれば、硬化性樹脂組成 物の硬化性、硬化物の物性、経済性の点で好ましい。
[0086] 重合開始剤として、光重合開始剤を用いる場合には、光励起により生じた励起状態 力、ら光重合開始剤に励起エネルギーを移し、光重合開始剤の分解を促進して有効 にラジカルを発生させることができる光増感剤を用いることができる。光増感剤として は、例えば、 2—クロ口チォキサントン、 2, 4—ジェチルチオキサントン、 2, 4—ジイソ プロピルチォキサントンなどを挙げることができる。これらの光増感剤は、単独で用い ても 2種以上を併用してもよい。
[0087] コート材用組成物中の前記光増感剤の含有量は、好ましくは 0. 05質量%以上、よ り好ましくは 0. 1質量%以上、さらに好ましくは 0. 2質量%であり、好ましくは 20質量 %以下、より好ましくは 15質量%以下、さらに好ましくは 10質量%以下の範囲内であ る。光増感剤の含有量がこのような範囲内であれば、コート材用組成物の硬化性、硬 化物の物性、経済性の点で好ましい。 [0088] 重合開始剤として、光重合開始剤を用いる場合には、光重合開始剤の分解を促進 して有効にラジカルを発生させることができる光重合促進剤を用いることができる。光 重合促進剤としては、例えば、トリエタノールァミン、メチルジェタノールァミン、トリイソ プロパノールァミン、 4ージメチルァミノ安息香酸メチル、 4ージメチルァミノ安息香酸 ェチル、 4ージメチルァミノ安息香酸イソァミル、 4ージメチルァミノ安息香酸 2— n ブトキシェチル、安息香酸 2—ジメチルアミノエチル、 N, N ジメチルバラトルイジ ン、 4, 4 'ージメチルァミノべンゾフエノン、 4, 4 'ージェチルァミノべンゾフエノンなど を挙げること力 Sできる。これらの光重合促進剤は、単独で用いても 2種以上を併用し てもよい。これらの光重合促進剤のうち、トリエタノールァミン、メチルジェタノールアミ ン、トリイソプロパノールァミンが好適である。
[0089] コート材用組成物中の前記光重合促進剤の含有量は、好ましくは 0. 05質量%以 上、より好ましくは 0. 1質量%以上、さらに好ましくは 0. 2質量%以上であり、好ましく は 20質量%以下、より好ましくは 15質量%以下、さらに好ましくは 10質量%以下の 範囲内である。光重合促進剤の含有量がこのような範囲内であれば、コート材用組 成物の硬化性、硬化物の物性、経済性の点で好ましい。
[0090] 前記熱重合開始剤、光重合開始剤、熱重合促進剤、光増感剤、光重合促進剤な どを組み合わせて含有する場合、コート材用組成物中の前記熱重合開始剤などの 組み合わせの含有量の合計量は、好ましくは 0. 05質量%以上、より好ましくは 0. 1 質量%以上、さらに好ましくは 0. 2質量%以上であり、好ましくは 20質量%以下、より 好ましくは 15質量%以下、さらに好ましくは 10質量%以下の範囲内である。重合開 始剤などの組合せの含有量の合計量がこのような範囲内であれば、コート材用組成 物の硬化性、硬化物の物性、経済性の点で好ましい。
[0091] 溶剤
また、本発明のコート材用組成物は、溶剤を含有しても良い。溶剤を含有する場合 、後述する添加剤などを容易に分散、溶解させることができるという効果を奏する。
[0092] 前記溶剤の配合量は、コート材用組成物の合計量に対して、好ましくは 0質量%以 上であり、好ましくは 80質量%以下、より好ましくは 50質量%以下である。溶剤の配 合量が 80質量%を超えると、組成物中力 溶剤を留去させたい場合に時間を要した り、硬化物に残存したりすることがある。
[0093] 前記溶剤としては、例えば、ベンゼン、トルエン、クロ口ベンゼンなどの芳香族炭化 水素;ペンタン、へキサン、シクロへキサン、ヘプタンなどの脂肪族または脂環式炭化 水素;四塩化炭素、クロ口ホルム、二塩化エチレンなどのハロゲン化炭化水素;ニトロ メタン、ニトロベンゼンなどのニトロ化合物;ジェチルエーテル、メチル t ブチルエー テル、テトラヒドロフラン、 1 , 4 ジォキサンなどのエーテル類;酢酸メチル、酢酸ェチ ル、酢酸イソプロピル、酢酸ァミルなどのエステル類;ジメチルホルムアミド、メタノー ル、エタノール、プロパノールなどのアルコール類などを使用することができる。
[0094] ケトン系溶剤
また、ケトン系溶剤も好ましい溶剤として用いることができる。ケトン系溶剤としては 例えばアセトン、メチルェチルケトン、メチルプロピルケトン、メチルイソプロピルケトン 、メチルブチルケトン、メチルイソブチルケトン、メチルターシャリーブチルケトン、シク 口へキサノン等が挙げられる力 S、特にメチルェチルケトン、メチルプロピルケトン、メチ ルイソプロピルケトン、メチルイソブチルケトン、シクロへキサノンが好ましい。
[0095] 本発明のコート材用組成物における、ケトン系溶剤の沸点は 200°C以下が好ましく 、さらに好ましくは 150°C以下、特に好ましくは 130°C以下である。また 40°C以上で あることが好ましい。沸点が高すぎる場合には組成物を風乾する場合、乾燥に時間 力 Sかかり生産性が悪くなる場合がある。また沸点が低すぎる場合には作業環境の溶 剤汚染のおそれがあり、好ましくない。なお、本発明ではケトン系溶剤としてケトン基 を有する反応性希釈剤も含むこととする。
[0096] 前記ケトン系溶剤を含有する場合、コート材用組成物中のケトン系溶剤は 50質量 %以上が好ましぐより好ましくは 75質量%以上である。 50質量%より少ない場合に は基体密着性が悪くなる場合がある。また、コート材用組成物中のケトン系溶剤は 95 質量%以下が好ましぐ 90質量%以下がより好ましい。ケトン系溶剤が 95質量%より 多い場合には相対的にビュル系重合体の量が少なくなり好ましくない。
[0097] 無機微粒子
また、本発明のコート材用組成物は、無機微粒子および/または有機化合物にて 被覆された無機微粒子を含有しても良い。無機微粒子および/または有機化合物 にて被覆された無機微粒子を含有させることで、硬化収縮の小さレ、コート材用組成 物を得ること力 Sできる。また、得られる硬化物は、高透明性、高屈折率および高硬度 を有するものとなる。
[0098] 前記無機微粒子は、平均粒子径カ Slnm以上であることが好ましぐより好ましくは 5 nm以上である。また、平均粒子径は lOOnm以下が好ましぐより好ましくは 50nm以 下であり、さらに好ましくは 30nm以下であり、特に好ましくは 20nm以下である。平均 粒子径が lnm未満では、コート材用組成物より得られる硬化物の屈折率が向上しな いおそれがあり、平均粒子径が lOOnmを超えるとコート材用組成物より得られる硬化 物の透明性が低下するおそれがあるため好ましくない。なお、本発明において「平均 粒子径」とは、電界放射型走査電子顕微鏡 (FE— SEM)を用いて撮影した画像を、 画像解析ソフト(Media Cybernetics社製、「Image— Pro (登録商標) Plus Ver. 6. 2」)を使用して処理することにより求めることができる個数平均粒子径をいう。
[0099] 前記無機微粒子を含有させる場合、本発明のコート材用組成物中の無機微粒子の 含有量は、前記ビュル系重合体 100質量部に対して、 10質量部以上、より好ましく は 40質量部以上、また、 90質量部以下、より好ましくは 70質量部以下とすることが望 ましい。無機微粒子の含有量が 90質量部を超えると、硬化性成分量が減少するため 、コート材用組成物の硬化速度が低下したり、硬化物の硬度が十分に得られないお それがある。また、 10質量部未満であると、コート材用組成物より得られる硬化物の 屈折率が向上しないおそれがあり好ましくない。
[0100] 無機微粒子を構成する金属酸化物は、より好ましくは、 Si、 Ti、 Zr、 Zn、 Sn、 In、 L aおよび Yよりなる群から選択される少なくとも 1種の金属元素を含む。無機微粒子を 構成する金属酸化物は、これらの元素を含む単独の酸化物であってもよいし、これら の元素を含む複合酸化物であってもよ!/、。無機微粒子を構成する金属酸化物の具 体例としては、例えば、 SiO、 SiO、 TiO、 ZrO、 ZnO、 SnO、 In O、 La O、 Y O 、 Si〇2— Al O、 SiO -Zr O , SiO^Ti O、 Al O -ZrO , Ti〇2— Zr〇2などが挙 げられる。無機微粒子は、単独で用いても 2種以上を併用してもよい。これらの無機 微粒子のうち、 SiO、 TiO、 ZrO、 ZnOが好適である。
[0101] 前記無機微粒子は、粒子表面が有機化合物により被覆されていることが好ましい。 無機微粒子の表面が有機化合物により被覆されていることにより、本来親水性である 無機微粒子の粒子表面が疎水性に変化し、ビュル系重合体中での分散性が向上す る。さらに、平均粒子径カ nm以上 30nm以下の範囲内であるナノレベルの粒子は その表面エネルギーが高いため、凝集性が非常に高くなる傾向にある力 有機化合 物を粒子表面に被覆することにより、保護剤として働き、粒子同士の凝集性を低下さ せることにより、ビュル系重合体中での分散性が向上する。
[0102] 前記無機微粒子表面を被覆するための疎水性有機化合物としては、カルボキシル 基、ヒドロキシノレ基、アルコキシノレ基、アミノ基、チオール基、アミド基等の官能基を有 する有機化合物が好ましい。これらの官能基を有することにより、有機化合物が無機 微粒子の表面に配位および/または結合することが可能となるからである。これらの 官能基の中でも、無機微粒子への結合力が強ぐコート材用組成物より得られる硬化 物の変色等の悪影響が少な!/、ことから、カルボキシル基が好まし!/、。
[0103] さらに、上記カルボキシル基を有する有機化合物としては、炭素数が 6以上の脂肪 族カルボン酸が好ましぐより好ましくは炭素数が 10以上であり、また、 20以下が好ま しぐより好ましくは 16以下が望ましい。脂肪族カルボン酸の炭素数力 未満では、無 機微粒子の表面を十分疎水性に変化させることができず、ビュル系重合体中での無 機微粒子の分散性の向上が少なくなるおそれがある。
[0104] 上記炭素数が 6以上 20以下の脂肪族カルボン酸としては、へキサン酸、ヘプタン 酸、オクタン酸、ノナン酸、 2—ェチルへキサン酸、 2—メチルヘプタン酸、 4ーメチノレ オクタン酸、サリチル酸、ナフテン酸、デカン酸、ゥンデカン酸、ネオデカン酸、ラウリ ン酸、トリデシル酸、ミリスチン酸、ペンタデカン酸、ノ ルミチン酸、ヘプタデカン酸、ス テアリン酸、ノナデカン酸、ァラキドン酸、ゥンデセン酸等が挙げられる。これらの脂肪 族モノカルボン酸は単独で用いても 2種以上を併用してもよい。これらの中でもネオ デカン酸が好ましく用いられる。
[0105] 上記有機化合物の被覆量としては、被覆後の無機微粒子全量の 5質量%以上が 好ましぐより好ましくは 10質量%以上であり、さらに好ましくは 15質量%以上である 。また、被覆量は 50質量%以下が好ましぐより好ましくは 40質量%以下であり、さら に好ましくは 30質量%以下である。上記有機化合物の被覆量が 5質量%未満では、 ビュル系重合体中での無機微粒子の分散性の向上が少なくなるおそれがあり、被覆 量が 50質量%を超えると、無機微粒子中の金属酸化物の含有量が少なくなるため、 コート材用組成物から得られる硬化物の屈折率の向上が少なくなるおそれがある。
[0106] また、前記無機微粒子は、その表面がシランカップリング剤処理されている処理無 機微粒子であることが好ましレ、。無機微粒子の表面がシランカップリング剤処理され ることにより、ビュル系重合体への無機微粒子の分散性が向上し、本発明のコート材 用組成物より得られる硬化物の耐水性や機械強度が向上する。無機微粒子の表面 をシランカップリング剤処理する方法としては、公知の方法を採用することができ、例 えば、あらかじめ無機微粒子を任意の溶媒中に分散し、シランカップリング剤を配合 して加熱処理する方法が挙げられる。
[0107] 上記シランカップリング剤としては、例えば、ビュルトリメトキシシラン、ビュルトリクロ ノレシラン、ビュルトリエトキシシラン、 2—(3, 4 エポキシシクロへキシル)ェチルトリメ ルジェトキシシラン、 3—グリシドキシプロピルトリエトキシシラン、 p スチリルトリメトキ ルトリメトキシシラン、 3—メタクリロキシプロピルメチルジェトキシシラン、 3—メタクリロ キシプロピルトリエトキシシラン、 3—アタリロキシプロビルトリメトキシシラン、 N— 2— ( アミノエチル) 3 ァミノプロピルメチルジメトキシシラン、 N— 2 (アミノエチル) 3 ーァミノプロピルトリメトキシシラン、へキサメチルジシランザン等が挙げられる。これら の中でも、 3—アタリロキシプロピルトリメトキシシランが好ましく用いられる。
[0108] 上記シラン力ップリング剤処理を行う際の無機微粒子に対するシラン力ップリング剤 の量としては、無機微粒子 100質量部に対して、 1質量部以上が好ましぐより好まし くは 10質量部以上、また、 100質量部以下が好ましぐより好ましくは 50質量部以下 である。シランカップリング剤の量力 1質量部未満では、コート材用組成物より得ら れる硬化物の耐水性や機械強度の向上が少なくなるおそれがあり、 100質量部を超 えると処理無機微粒子中の金属酸化物の含有量が少なくなり、コート材用組成物より 得られる硬化物の屈折率の向上が少なくなるおそれがある。
[0109] なお、上記無機微粒子は、表面が有機化合物に被覆された無機微粒子に対してシ ランカップリング剤処理を行ったものでも良いし、表面が有機化合物によって被覆さ れて!/、な!/、無機微粒子に対してシランカップリング剤処理を行ったものでも良!/、。ビ ニル系重合体中での処理無機微粒子の分散性をより向上させることができるため、 表面が有機化合物に被覆された無機微粒子に対してシランカップリング剤処理を行 うことが好ましい。
[0110] 無機微粒子を構成する金属酸化物として ZrOを用いる場合、 ZrOは、結晶性の Z rOであって、その結晶状態が、立方晶あるいは正方晶であることが好ましい。さらに 、これらの立方晶および/または正方晶の格子構造を結晶構造全体の 70質量%以 上有することが好ましぐより好ましくは 75質量%以上であり、さらに好ましくは 85質 量%以上である。立方晶および/または正方晶の格子構造を結晶構造全体の 70質 量%以上有することにより、コート材用組成物より得られる硬化物の屈折率をより向上 させること力 Sでさる。
[0111] また、前記 ZrOは、結晶安定化のために結晶安定化材を含有していても良い。上 記結晶安定化材としては、 MgOや CaO等のアルカリ土類金属酸化物、ランタニド、 Y O等の希土類金属酸化物等を挙げることができ、これらは単独で用いても 2種以 上を併用してもよい。なお、結晶安定化材の含有量は、 ZrO 100質量部に対して、 0 . 01質量部以上が好ましぐより好ましくは 0. 1質量部以上である。
[0112] 本発明における ZrOの合成方法としては、公知の方法を採用することができるが、 ZrO粒子の表面に配位および/または結合可能な有機化合物の共存下で水熱合 成して ZrO粒子を得る方法や、あらかじめ該表面に配位および/または結合可能な 有機化合物とジルコニウム化合物から ZrO前駆体を合成し、該前駆体の水熱合成 により ZrO粒子を得る方法等が、配位および/または結合可能な有機化化合物によ り被覆された ZrO粒子を簡便に得られることから好ましい合成方法である。
[0113] 本発明におけるビュル系重合体中への ZrO粒子の分散方法としては、例えば、ビ ニル系重合体と ZrO粒子をそれぞれ独立して合成し、その後に両者を混合させる方 法、あらかじめ合成した ZrO粒子が存在する条件でビュル系重合体を合成する方法 、あらかじめ合成したビュル系重合体中で ZrO粒子を合成する方法のいずれの方 法をも採用すること力できる。具体的には、例えば、ビュル系重合体が溶解した溶液 と、 Zr〇2粒子が均一に分散した分散液の二液を均一に混合し、溶媒を減圧加熱除 去する方法や、ビュル系重合体を溶融した状態で ZrO粒子粉末をそのまま配合して 溶融混練する方法、ビュル系樹脂を溶融した状態で ZrO粒子が均一に分散した分 散液を配合して溶融混練後に溶媒を減圧除去する方法等が挙げられる。
[0114] その他の成分
本発明のコート材用組成物は、さらに必要に応じて、添加物として、非反応性樹脂 、着色顔料、可塑剤、重合禁止剤、紫外線吸収剤、近赤外線吸収剤、光安定剤、酸 化防止剤、難燃化剤、艷消し剤、染料、消泡剤、レべリング剤、帯電防止剤、分散剤 、スリップ剤、表面改質剤、揺変化剤、揺変助剤などを添加することができる。これら の添加物の存在は、特に本発明の効果に影響を及ぼすものではない。これらの添加 物は、単独で用いても 2種以上を併用してもよい。
[0115] 添加物の配合量は、添加物の種類や使用目的、コート材用組成物の用途や使用 方法などに応じて適宜設定すればよぐ特に限定されるものではない。例えば、非反 応性樹脂、着色顔料、可塑剤または揺変化剤の配合量は、コート材用組成物の合計 量に対して、好ましくは 1質量%以上、より好ましくは 5質量%以上、さらに好ましくは 10質量%以上であり、好ましくは 40質量%以下、より好ましくは 30質量%以下、さら に好ましくは 25質量%以下の範囲内である。重合禁止剤、紫外線吸収剤、酸化防止 剤、艷消し剤、染料、消泡剤、レべリング剤、帯電防止剤、分散剤、スリップ剤、表面 改質剤または揺変助剤の配合量は、コート材用組成物の合計量に対して、好ましく は 0質量%以上、より好ましくは 0. 001質量%以上、さらに好ましくは 0. 01質量%以 上であり、好ましくは 10質量%以下、より好ましくは 5質量%以下、さらに好ましくは 3 質量%以下の範囲内である。
[0116] コート材用組成物の製造
本発明のコート材用組成物は、上記式(1)で示される繰返し単位を有するビュル系 重合体と、必要に応じて、重合性単量体および/またはラジカル重合性樹脂、熱ま たは光重合開始剤、熱重合促進剤、光増感剤、光重合促進剤など、組成物の製造 時に使用した溶媒以外の溶媒、無機微粒子、各種の添加物などとを配合し、混合- ft禅することにより得ること力 Sでさる。 [0117] 本発明のコート材用組成物において、上記式(1)で示される繰り返し単位を有する ビュル系重合体の配合量は、コート材用組成物の合計量に対して、好ましくは 10質 量%以上、より好ましくは 15質量%以上、さらに好ましくは 20質量%以上であり、好 ましくは 100質量%以下、より好ましくは 90質量%以下、さらに好ましくは 85質量% 以下である。ビュル系重合体の配合量が 10質量%未満であると、架橋密度が低下 するので硬化速度の低下や硬化物の塗膜強度が不充分になることがある。
[0118] 重合性化合物含有コート材用組成物
本発明のコート材用組成物は、上記式(1)で示される繰り返し単位を有するビュル 系重合体を含有することを特徴とするものである。
[0119] また、本発明の重合性化合物含有コート材用組成物は、下記の(a)から(d)の要件 を満足することを特徴とするものである。
(a)重合性化合物含有コート材用組成物中に、重合性単量体、重合性オリゴマー、 重合性ポリマーのうち少なくとも 1種を含んで、その合計含有量が 80質量%以上であ
(b)重合性化合物含有コート材用組成物の粘度が 25°Cにおいて 1 , OOOmPa ' s以 上 5, OOOmPa' s以下である。
(c)重合性化合物含有コート材用組成物の硬化収縮率が 8. 5%以下である。
(d)重合性化合物含有コート材用組成物を硬化して得られる硬化膜の耐スクラッチ 性評価が AAまたは Aである。
[0120] 本発明の重合性化合物含有コート材用組成物は、重合性単量体、重合性オリゴマ 一、重合性ポリマーのうち少なくとも 1種を含有するものである力 これらの各成分は、 それぞれ 1種または 2種以上含有することができる。なお、本発明の作用効果を損な わない限り、他の成分を更に含有していてもよい。
[0121] 上記重合性化合物含有コート材用組成物において、重合性単量体としては、重合 性を有する官能基を分子内に 1個以上含む化合物であればよい。
[0122] 重合性単量体としては、上記式(1)で示されるビュル系重合体と共硬化可能なもの である限り、特に限定されるものではないが、具体的には、例えば、スチレン系単量 体; 1官能または 2官能(メタ)アタリレートなどの(メタ)アクリル酸系誘導体;マレイン酸 エステル系単量体;フマル酸エステル系単量体などが挙げられる。これらの重合性単 量体は、単独で用いても 2種以上を併用してもよい。これらの重合性単量体のうち、 ( メタ)アクリル酸エステルが好適で、さらに脂環構造置換基を有する (メタ)アクリル酸 エステルが好適である。また、重合性単量体としては、前述したコート材用組成物に 使用される上記(2)式で示される異種重合性単量体も使用することができる。
[0123] 重合性単量体の配合量は、組成物の合計量に対して、好ましくは 0質量%以上で あり、好ましくは 70質量%以下、より好ましくは 40質量%以下である。重合性単量体 の配合量が 70質量%を超えると、硬化収縮が大きくなり、内部歪や硬化物の反りが 大きくなることがある。
[0124] 重合性オリゴマー、重合性ポリマーとしては、例えば、分子中に重合性官能基を 1 つ以上有するアクリル系樹脂、ウレタンアタリレート樹脂、エポキシアタリレート樹脂、 ポリエステル樹脂、ポリウレタン樹脂、ポリスチレン樹脂、シリコーン樹脂、ゴム系樹脂 などが挙げられる。
[0125] 重合性化合物含有コート材用組成物中の重合性単量体、重合性オリゴマー、重合 性ポリマーの合計含有量は 80質量%以上。好ましくは 85質量%以上、より好ましく は 90質量%以上である。合計含有量が 80質量%未満であれば、硬化物の硬度が 不足することゃ耐スクラッチ性が劣る場合がある。
[0126] 重合性化合物含有コート材用組成物は、前記したコート材用組成物に配合可能な 成分、例えば、熱または光重合開始剤、熱重合促進剤、光増感剤、光重合促進剤な ど、組成物の製造時に使用した溶媒以外の溶媒、無機微粒子、各種の添加物などを 含んでいても良い。なお、好ましい態様は、前記したコート材用組成物と同様である。
[0127] 重合性化合物含有コート材用組成物の粘度は、 25°Cにおいて 1 , OOOmPa ' s以上 であり、 5, OOOmPa' s以下、好ましくは 3, OOOmPa' s以下、より好ましくは 2, OOOm Pa ' s以下である。粘度が 25°Cにおいて 1 , OOOmPa以上 5, OOOmPa' s以下の範囲 外であれば、例えば、スピンコートをした場合に中心部の樹脂層厚みがより薄くなる 場合や、端部の樹脂厚が厚くなる場合がある。なお、ブルーレイディスクの透明カバ 一層用コート材の 25°Cにおける粘度の好ましい範囲が 1 , OOOmPa ' s以上 5, OOOm Pa · s以下であることは既に知られて!/、る事実である(技術情報協会発行:最新 UV硬 化実用便覧、 273頁)。
[0128] 重合性化合物含有コート材用組成物の硬化収縮率は 8. 5%以下である。より好ま しくは 8. 0%以下である。硬化収縮率が 8. 5%を超えると、例えば、重合性化合物含 有コート材用組成物をブルーレイディスクに塗布した場合、ディスクの反りが大きくな るため、ドライブに装着できない場合や、読み取りエラーが生じ、情報の記録 ·再生が できない場合がある。
[0129] 重合性化合物含有コート材用組成物を硬化して得られる硬化膜の耐スクラッチ性 評価は AAまたは Aである。対スクラッチ性評価が Aに至らず B〜Dとなる場合は、表 面硬度が十分に得られてなぐ例えば、ブルーレイディスクに硬化膜を形成すると、 使用時にディスク表面が傷つく場合があり、同様に読み取りエラーが生じ情報の記録 •再生ができない場合がある。
[0130] 硬化物
本発明の硬化物は、コート材用組成物または重合性化合物含有コ一ト材用組成物 を硬化させて得られるものである。ここで、「硬化物」とは、流動性の無い物質を意味 する。
[0131] 硬化物の製造方法
本発明のコート材用組成物および重合性化合物含有コート材用組成物は、重合開 始剤を配合しない場合には電子線を照射することにより、熱重合開始剤を配合した 場合には加熱により、また、光重合開始剤を配合した場合には紫外線を照射すること により、硬ィ匕させること力 Sできる。
[0132] 例えば、加熱による硬化の場合、赤外線、遠赤外線、熱風、高周波加熱などを用い ればよい。加熱温度は、基体の種類などに応じて適宜調節すればよぐ特に限定さ れるものではないが、好ましくは 80°C以上、より好ましくは 90°C以上、さらに好ましく は 100°C以上であり、好ましくは 200°C以下、より好ましくは 180°C以下、さらに好まし くは 170°C以下の範囲内である。加熱時間は、塗布面積などに応じて適宜調節すれ ばよく、特に限定されるものではないが、好ましくは 1分間以上、より好ましくは 10分 間以上、さらに好ましくは 30分間以上であり、好ましくは 24時間以下、より好ましくは 12時間以下、さらに好ましくは 6時間以下の範囲内である。 [0133] 例えば、電子線による硬化の場合、加速電圧が好ましくは 10kV以上、より好ましく は 20kV以上、さらに好ましくは 30kV以上であり、好ましくは 500kV以下、より好まし くは 300kV以下、さらに好ましくは 200kV以下の範囲内である電子線を用いればよ い。また、照射量は、好ましくは 2kGy以上、より好ましくは 3kGy以上、さらに好ましく は 4kGy以上であり、好ましくは 500kGy以下、より好ましくは 300kGy以下、さらに好 ましくは 200kGy以下の範囲内である。電子線と共に、赤外線、遠赤外線、熱風、高 周波加熱などによる熱の併用も可能である。
[0134] 例えば、紫外線による硬化の場合、波長 150nm以上 450nm以下の範囲内の光を 含む光源を用いればよい。このような光源としては、例えば、太陽光線、低圧水銀灯 、高圧水銀灯、超高圧水銀灯、メタルノ、ライド灯、ガリウム灯、キセノン灯、キセノン'フ ラッシュ灯、カーボンアーク灯などが挙げられる。これらの光源と共に、赤外線、遠赤 外線、熱風、高周波加熱などによる熱の併用も可能である。照射積算光量は、好まし くは 0. lj/cm2以上、より好ましくは 0. 15j/cm2以上、さらに好ましくは 0. 2j/cm2 以上であり、好ましくは 10j/cm2以下、より好ましくは 8j/cm2以下、さらに好ましく は 5j/cm2以下の範囲内である。これらの光源の中でも高圧水銀灯、超高圧水銀灯 、キセノン 'フラッシュ灯が好適である。
[0135] 紫外泉硬化方法
上記紫外線による硬化の場合、第 1工程にて紫外線照射を行!/、流動性の無!/ヽ状 態を得た後、第 2工程にて紫外線照射強度を変化させ、硬化度を高める工程を有す ること力 S好ましい。第 1工程及び第 2工程での照射回数、さらには光源から塗布面ま での距離につ!/、ては、最終工程でコート材用組成物または重合性化合物含有コート 材用組成物が硬化し、硬化物の反りを抑えることができる範囲で組み合わせて実施 すればよい。また、本発明において流動性の無い状態まで硬化させる第 1工程の紫 外線照射工程を半硬化とも称する。
[0136] コート材用組成物または重合性化合物含有コート材用組成物の半硬化の状態とは 、組成物の硬化過程において目的とする硬化物の強度、硬度等が得られておらず硬 化途中の段階にあり、更なる紫外線照により最終硬化を行う前段階の状態を意味す る。また最終硬化とは、紫外線硬化による硬化過程が終了し、 目的とする強度あるい は硬度を有する硬化物を得る段階を意味する。最終硬化の段階で未反応の反応性 置換基を有してレ、ても目的とする硬化物が得られて!/、れば良レ、。
[0137] 紫外線の照射方法として、紫外線照射の第 1工程で照射させる光量が最終硬化に 至るまでの紫外線照射の積算光量の 10%以下で行!/、、紫外線照射の第 2工程で照 射させる光量が最終硬化に至るまでの紫外線照射の積算光量の 90%以上で硬化さ せる硬化物の製造方法が好ましい。ただし、第 1工程の段階で硬化物の収縮により 反りが発生しない程度の光量を照射すれば、第 2工程での光量または光源からの距 離を工夫することで反りを極力抑えることができる。積算光量とは、第 1工程及び第 2 工程での紫外線照射光量の総和(光量の積算された値)を意味する。積算光量は、 紫外線積算光量を測定できる照度計を用いて測定する。キセノン 'フラッシュ灯の様 なノ ルス波の紫外線照射は通常の照度計では測定できな!/、場合があることから、米 国 EIT社の UV Power Puck™を用いて測定することが好ましい。
[0138] 第 1工程での好ましい紫外線照射の光量としては、より好ましくは積算光量の 8%以 下、さらに好ましくは 6%以下であり、好ましくは 0. 1 %以上である。第 1工程での紫 外線照射の光量が積算光量の 10%を超えると第 1工程の段階で反りが発生し、さら に第 2工程へ進むことで硬化物の反りが増大し、反りを抑えることができなくなる。また 、第 1工程での紫外線照射の光量が積算光量も 0. 1 %未満であれば、第 1工程での 反りは抑えられる力 第 2工程での紫外線光量がより多くなり結果として反りを抑える ことができなくなる。一方、第 2工程での好ましい紫外線照射の光量としては、より好 ましくは積算光量の 92%以上、さらに好ましくは 94%以上であり、好ましくは 99. 9% 以下である。
[0139] 紫外線ランプと基体との距離は、適切な積算光量が得られるように調整すればよい ヽ好ましい距離としては、 0. 5cm以上、好ましくは lcm以上であり、 50cm以下、好 ましくは 25cm以下である。第 2工程での紫外線ランプと基体からの距離は、例えば、 25cm, 10cm, 2cmへと段階的に変動させてもよい、または、 25cmから 2cmへと連 続的に距離を変動させて紫外線を照射させてもよい。
[0140] 使用するコート材用組成物または重合性化合物含有コ一ト材用組成物の硬化発熱 量は 200mj/mg以上であることが好まし!/、。硬化発熱量が 200mj/mg未満である と、重合性官能基量が少ないので目的とする硬化物の強度や硬度が得られない場 合がある。より好ましい硬化発熱量は、 240mj/mg以上である。
[0141] 積層体
本発明の積層体は、基体と、該基体の少なくとも一方の面に、本発明のコート材用 組成物または重合性化合物含有コート材用組成物を硬化させて得られる層を有する ものである。
[0142] 上記積層体に使用される基体としては、例えば、鉄、アルミニウム、鋼板、ティンフリ 一スチール板、ブリキ板、ポリエチレンテレフタレートフィルムラミネート鋼板などの金 属;コンクリート;ポリエチレン(PE)、ポリプロピレン(PP)、ポリメチルメタタリレート(P MMA)、ポリアタリレート、ポリビュルアルコール(PVA)、ポリスチレン(PS)、ポリエ チレンテレフタレート(PET)、ポリエチレンナフタレート、ポリブチレンテレフタレート( PBT)、エチレン 酢酸ビュル共重合体(EVA)、アクリロニトリル ブタジエンースチ レン共重合体(ABS)、トリァセチノレセノレロース(TAC)、シクロォレフィンポリマー(C OP)、ポリカーボネート(PC)、ポリアミド、ポリエーテルケトン(PEEK)、ポリアミドイミ ド(PAI)、ポリイミド(PI)、ポリエーテルアミド(PEI)、ナイロン(NY)、ポリ塩化ビュル (PVC)、ポリ塩化ビユリデン、ラタトン環構造含有重合体を含む熱可塑性樹脂組成 物、ラタトン環構造を有する単量体と MMAとの共重合体を含む熱可塑性樹脂組成 物、などの樹脂成形物およびフィルム;ポリエチレンコート紙、ポリエチレンテレフタレ ートコート紙などのコート紙、非コート紙などの紙類;木材;などが挙げられる。
[0143] これらの中でもポリエチレンテレフタレート(PET)、トリァセチルセルロース(TAC)、 ポリメチルメタタリレート(PMMA)、ポリアタリレート、シクロォレフインポリマー(COP) 、ポリカーボネート(PC)、ラタトン環含有重合体を含む熱可塑性樹脂組成物、ラクト ン環含有単量体と MMAとの共重合体を含む熱可塑性樹脂組成物から得られる樹 脂成形体およびフィルムが好ましぐより好ましくは透明性、耐熱性、光学特性、硬度 上昇の面から、ラタトン環構造含有重合体を含む熱可塑性樹脂組成物、ラタトン環構 造を有する単量体と MMAとの共重合体を含む熱可塑性樹脂組成物から得られる樹 脂成形体およびフィルムである。なお、フィルム厚みとしては、好ましくは 30〜300〃 mの範囲内である。 [0144] 耐熱アクリル系樹脂
また、積層体の基体として耐熱性を有するアクリル系樹脂(以下「耐熱アクリル系樹 脂」と称する)を用いることもできる。上記耐熱アクリル系樹脂としては、分子鎖中に水 酸基とエステル基とを有する重合体をラタトン環化縮合反応させることによって得られ るラタトン環含有重合体 (例えば、特開 2000— 230016号公報、特開 2001— 1518 14号公報、特開 2002— 120326号公報、特開 2002— 254544号公報参照)や、 マレイミド類を共重合したマレイミド系共重合体 (例えば、特開平 09— 324016号公 報参照)などを使用すること力 Sできる。
[0145] 上記耐熱アクリル系樹脂としては、透明性、耐熱性、光学等方性がいずれも高ぐ 各種光学用途に応じた特性を十分に発揮できるため、(メタ)アクリル酸エステルの共 重合体に、分子内環化反応によりラタトン環構造を導入した、いわゆるラタトン環含有 重合体を含むことが好ましぐ主成分とすることが特に好ましい。「主成分」とは耐熱ァ クリル系樹脂の総質量に対して 50質量%以上含有して!/、ると!/、う意味である。ラクト ン環含有重合体としては、特に限定されるものではないが、好ましくは、下記一般式 ( 9)で表されるラタトン環構造を有する。
[0146] [化 10]
Figure imgf000035_0001
[式中、 Ru、 R , R"は、それぞれ独立に、水素原子または炭素数 1以上 20以下の 有機残基を表す。 ]
[0147] 上記「炭素数 1以上 20以下の有機残基」としては、メチル基、ェチル基、プロピル基 、イソプロピル基、 n ブチル基、イソブチル基、 t ブチル基、シクロへキシル基など の炭素数 1以上 20以下のアルキル基、フエニル基などのァリール基、ベンジル基な どのァラルキル基などが挙げられる。なお、これらの有機残基は、窒素、酸素、硫黄 原子を含有していてもよい。 [0148] 本発明のコート材用組成物または重合性化合物含有コート材用組成物を基体に塗 布する場合、使用目的に応じて、刷毛塗りなどの手塗りや、ロールコート、グラビアコ ート、グラビアオフセットコート、カーテンフローコート、リバースコート、スクリーン印局 IJ 、スプレー塗装、浸漬法などの従来公知の方法で基体に塗布される。塗布量として は、好ましくは 0. 2g/m2以上、より好ましくは 0. 5g/m2以上であり、好ましくは 100 g/m2以下、より好ましくは 70g/m2以下の範囲内である。また、塗布厚みとしては、 好ましくは 1 m以上、より好ましくは 2 m以上であり、好ましくは 500 m以下、より 好ましくは 200 m以下の範囲内である。
[0149] また、コート層を形成する方法として、ハードコート材を含有する加飾用フィルムを 用いた成形同時加飾法がある。この方法は、少なくともフィルムと加飾層とから構成さ れる加飾用フィルムを射出成形用の金型内に入れて、型閉め後、成形樹脂をキヤビ ティに射出し、成形樹脂を固化した樹脂成形品の表面に加飾用シートを一体化接着 させて成形同時加飾成形品を得るものである。
[0150] 上記積層体には、 目的に応じて、帯電防止層、粘接着剤層、接着層、易接着層、 ひずみ緩和層、防眩(ノングレア)層、光触媒層などの防汚層、反射防止層、紫外線 遮蔽層、熱線遮蔽層、電磁波遮蔽層、ガスバリアー性等の種々の機能性コーティン グ層を各々積層塗工したりしてもよい。なお、本発明のコート材用組成物または重合 性化合物含有コート材用組成物を硬化させて得られる層と各層の積層順序は特に 限定されるものではなぐ積層方法も特に限定されない。
[0151] 本発明のコート材用組成物または重合性化合物含有コート材用組成物は 3次元形 状構造体へ塗布することも可能である。 3次元形状構造体は、単なる平面形状の基 体でなければ特に限定されない。但し、平面材料が接合された構造、平面材料が力 ーブ形状に加工された構造、または、平面材料上に凹凸を有する構造のものは 3次 元形状構造体とする。 3次元形状構造体の他の例としては、四面体、六面体、八面 体の様な多面体構造、円柱、球、円錐などが挙げられる。なお、本発明のコート材用 組成物または重合性化合物含有コート材用組成物を板状やシート状に成形して用 いることも可能である。
[0152] 本発明のコート材用組成物または重合性化合物含有コート材用組成物は、陰極管 表示装置(CRT)、液晶表示装置 (LCD)、プラズマディスプレイパネル (PDP)、フィ ールドエミッションディスプレイ(FED)、有機 ELディスプレイ等のディスプレイ、家電 製品等のタツチパネル、さらには自動車部品用、ショーウィンドウ、窓ガラス等の保護 フィルム、また CDや DVD等の光学ディスク保護層などの用途分野に好適に使用さ れる。
実施例
[0153] 以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実 施例により制限を受けるものではなぐ前 ·後記の趣旨に適合し得る範囲で適当に変 更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含ま れる。
[0154] 分析方法
分子量
数平均分子量 (Mn)、重量平均分子量 (Mw)および分子量分布(Mw/Mn)は、 THFを移動相とし、温度 40°C、流速 0. 3mL/minの条件下で、東ソー株式会社製 のカラム TSK— gel SuperHM-H 2本、 TSK— gel SuperH2000 1本を用 い、ゲル浸透クロマトグラフィー(GPC)装置(東ソ一株式会社製、 HLC— 8220GPC )により求め、標準ポリスチレン換算した値である。なお、ビュル系重合体及び基体の 耐熱アクリル樹脂ともに同法にて分析した。
[0155] 粘度
粘度は、 RB80型粘度計 (東機産業社製、型式「RB80L」)を用いて測定した。なお 、測定温度は 25°Cである。
[0156] 重合反応率、重合体組成分析
重合反応時の反応率および重合体中の特定単量体単位の含有率は、得られた重 合反応混合物中の未反応単量体の量をガスクロマトグラフィー(島津製作所社製、装 置名: GC17A)を用いて測定して求めた。
[0157] 樹脂の熱分析
アクリル系樹脂の熱分析は、試料約 10mg、昇温速度 10°C/min、窒素フロー 50c c/minの条件で、示差走査熱量計(リガク社製、装置名: DSC— 8230)を用いて行 つた。なお、ガラス転移温度(Tg)は、 ASTM— D— 3418に従い、中点法で求めた。
[0158] メノレトフローレート
メルトフローレートは、 JIS K7210に基づき、試験温度 240°C、荷重 lOkgfで測定 した。
[0159] 密着性評価
JIS K5600— 5— 6に準じ、積層体の硬化物表面に碁盤目の切り込み(lmm X lm m、 100桝)を入れ、セロハン粘着テープによる剥離試験を実施した。数値は残存数
〇:100 (剥離無し)
△ : 99〜95
X : 94〜1
X X : 0 (全て剥離)
[0160] 耐スクラッチ性
積層体 (硬化物層/ポリカーボネート板基体)の硬化物表面に対して、耐摩耗試験 機 (型式 IMC— 154A型、株式会社井元製作所製)を用いて、所定の荷重の下、ス チールウール # 0000番を、往復速度 30mm/秒、往復距離 25mmで 10回往復さ せた後、傷つき度合いを目視により観察し、以下の基準で評価した。
AA:荷重 500gf /cm2変化なし(傷が認められなレ、)
A:荷重 200gf /cm2変化なし (傷が認められなレ、)
B:荷重 200gf /cm2で数本の傷が認められる
C:荷重 200gf /cm2で十数本の傷が認められる;
D:荷重 200gf/cm2で無数の傷が認められる。
[0161] 鉛筆硬度
積層体 (硬化物層/ポリカーボネート板基体)の硬化物層表面に対して、鉛筆引つ かき硬度試験機 (株式会社安田精機製作所製)を用いて、 JIS K5600— 5— 4に準 拠して測定した。なお、荷重は 1 , 000gであった。
[0162] 反り量
12cm X 12cmの積層体を、温度 25°Cの条件下で水平台に硬化物層を上面側に 置いた後、四隅の水平台からの浮き高さの平均値を測定し、以下の基準で評価した
◎ : 0· 2mm未満
0 : 0. 2mm以上〜 0· 5mm未満
Δ: 0. 5mm以上〜 1 · Omm未満
X:丄. Omm以上
[0163] カール量
15cm X 15cmに切り出した積層体を、温度 25°Cの条件下で水平台に塗布面を上 面側に置いた後、四隅の水平台からの浮き高さの平均値を測定し、以下の基準で評 価した。
◎: 3mm未満
〇:3mm以上 8mm未満
△: 8mm以上 15mm未満
X:丄 5mm以上
[0164] 硬化収縮率
25°Cでの硬化前の樹脂組成物の液比重(dl)と、下記硬化条件で硬化して得られ た硬化物の 25°Cでの比重(d2)を測定し、以下の式を用いて硬化収縮率(%)を算 し/
硬化収縮率(%) = 100 (d2 - dl) /d2
硬化条件
ランプ :高圧水銀ランプ
紫外線照射条件:ピーク照度 185mW/cm2、積算光量 500mj/cm2 サンプノレサイズ:寸法 15mm X 30mm 厚さ lmm
[0165] 硬化物外観
積層体 (硬化物層/ポリカーボネート板基体)の表面を目視により観察し、基体上 にコート材用組成物がムラ無く塗布され、硬化物層が形成されている力、確認し、以下 の基準で評価した。
◎:均一透明な硬化物層が形成され、かつ温度 70°Cの条件下、 96時間放置しても 変化なし。
〇:均一透明な硬化物層が形成されるが、温度 70°Cの条件下、 96時間放置後、僅 力、な剥離がある。
△:均一透明な硬化物層が形成された。
X:硬化直後から硬化物層が不均一、または不透明である。
[0166] 撥油性
得られた積層体 (硬化物層/ポリカーボネート板基体)の硬化物層表面に、 23°C、 相対湿度 50%の環境下において、トリオレイン 1. 5 1を 1滴で滴下し、接触角測定 器 (協和界面科学社製)を用いて、硬化物表面に対するトリオレインの接触角を測定 した。
[0167] 硬化発熱量
(1)コート材用組成物約 10mgをアルミパンに量り取り、このコート材用組成物入り アルミパンを試料とし、リファレンスとして空のアルミパンを使用し、紫外線照射装置( SEIKO社製、「UV—1」)を取り付けた示差走査熱量計(SEIKO社製、「DSC— 62 00」 )を用いて、下記の測定条件にて発熱量を測定した。
(2)上記の(1)の測定においてコート材用組成物が硬化された硬化物入りアルミパ ンを試料とし、リファレンスとして空のアルミパンを使用し、(1)と同様の測定装置、測 定条件にて発熱量を測定した。
(1)および(2)の測定で得られた発熱量の差((1)一(2) )を算出し、これを硬化発 熱量とした。
DSC条件:窒素雰囲気下、 30°C、
照射エネルギー量: 5mW/cm2
UV照射条件:初期安定化時間 3分→UV照射時間 5分→放置時間 2分
[0168] 折り曲げ性
折り曲げ性は、後述するように硬化物層を形成した積層体を、寸法 3cm X 5cmに 切断し、温度 25°Cの条件下で、硬化物層が形成された面を外側として(基体側を心 棒に接触させる) 180° 折り曲げ試験を行い、硬化物層の屈曲部にクラック、剥がれ などの異常が生じた心棒の直径を調べ、下記の基準で評価した。なお、心棒の直径 が小さ!/ヽほど硬化物層の折り曲げ性が優れて!/ヽることを意味して!/、る。
〇:良好(心棒の直径が 5mm以下)
△:やや良好(心棒の直径が 6mm以上、 10mm以下)
X:劣る(心棒の直径が 11mm以上)
[0169] 平均粒子径
酸化ジルコニウム粒子の平均粒子径は、電界放射型走査電子顕微鏡 (FE— SEM ) (株式会社日立ハイテクノロジーズ製、 日立超高分解能電界放出形走査電子顕微 鏡 S— 4800)を使用して、観察倍率 1万倍、観察視野: 10 m X 10 mの条件で 試料を撮影し、得られた画像を画像解析ソフト(Media Cybernetics社製、 Image — Pro (登録商標) Plus Ver. 6. 2)により処理することにより求めた。
[0170] 結晶状態
酸化ジルコニウム粒子の結晶状態の同定は、 XRD (商品名:全自動多目的 X線回 折装置、スぺタトリス株式会社製)を使用して行った。
[0171] 有機化合物の被覆量
酸化ジルコニウム粒子を被覆する有機化合物の被覆量は、 TG— DTA (商品名: T G— DTA2000S、マックサイエンス株式会社製)を使用して、酸化ジルコニウム粒子 を空気雰囲気下(空気流入量: 50ml/min)にて 10°C/minの昇温速度で 500°C まで加熱し、そのときの減少量を測定することによって、仕込み量と減少量から有機 化合物の被覆量を導出した。
[0172] 屈折率
両サイドに 50 mのスぺーサーを配置したガラス板上に、各実施例または比較例 で使用するビュル系重合体、酸化ジルコニウム粒子および光重合開始剤を混合した 樹脂混合物を配置し、その上力 ガラス板を載せて樹脂混合物を押し広げた。次い で、ガラス板間の樹脂混合物を UV照射機(商品名「PM25C— 100」、ゥシォ電機株 式会社)を用いて、照射積算光量 2j/cm2で紫外線硬化させて、厚さ 50 mの硬化 物を作製し、この硬化物の 25°Cにおける屈折率を、アッベ屈折計 (型式: DR— 2M、 ァタゴ株式会社製)を用いて測定した。
[0173] 光線透過率、濁度 実施例および比較例で作製した積層体 (硬化物/ PETフィルム)の光線透過率及 び濁度を、濁度計 (型式: NDH2000、 日本電色工業株式会社製)を用いて測定し た。
[0174] 重合体の製造例
リビング力チ才ン重合
実施例 1
重合反応は、充分に乾燥した三方コック付きガラス容器を用いて、乾燥した窒素雰 囲気下で行った。まず、室温で、このガラス容器に、充分に乾燥および精製したトル ェン 159mL、酢酸ェチル 25mL、化合物 Aとして 1 イソブトキシェチルアセテート 0 . 2モル/ Lのトルエン溶液 5mL (lミリモル)を加えた。さらに、ルイス酸 Bとしてェチ ノレアルミニウムジクロリド 0. 1モル/ Lのトノレェン溶液 25mL (2. 5ミリモノレ)を加えて 混合した後、 30分間放置して反応開始種を生成させた。次いで、系内を 0°Cに冷却 した後、 0°Cに予冷したアクリル酸 2—(2—ビニロキシエトキシ)ェチル(以下、「VEE A」と称する場合がある。 ) 0. 2モル(37· 24g)を加え、さらに、ルイス酸 Aとして 0°C に予冷した四塩化スズ 0· 05モル/しのトルェン溶液25111し(1. 25ミリモノレ)をカロえて 反応を開始した。 14分間重合を行った後、メタノールを加えて反応を停止させた。反 応を終えた混合液中にクロ口ホルムを加え、水洗により重合開始剤の残渣を除去した 。次いで、エバポレーターで濃縮した後、真空乾燥させて、ビュル系重合体((ホモ V ΕΕΑ)— 1)を得た。
[0175] 単量体の反応率は、反応停止後の混合液をガスクロマトグラフィー(GC)で分析す ることにより、 98%であることが判明した。また、得られたビュル系重合体の数平均分 子量(Μη)は 14, 200、分子量分布(Mw/Mn)は 1. 10であった。さらに、得られた ビュル系重合体の1 H— NMR測定 (測定溶媒:重水素化クロ口ホルム、測定機器: Va rian社製の 400MHz 'H-NMR UNITY plus400)を行ったところ、アタリロイ ル基が残存し、選択的にビュルエーテル基が重合しており、側鎖にラジカル重合可 能な二重結合を有するアタリロイル基ペンダント型重合体であることが確認された。
[0176] 実施例 2〜6
実施例 1と同様の反応装置、溶媒および原料を用い、表 1に示す仕込み量比率、 反応温度にて、ビュル系重合体を合成した。物性値を表 1に示す。
[表 1]
分子量分布の狭いポリマ一の合成
Figure imgf000044_0001
化合物 A: 1—イソブトキシェチルアセテート ルイス酸 A:ェチルアルミニウムジクロリド ルイス酸 B :四塩化スズ
溶媒 1:卜ルェン
溶媒 2 :酢酸ェチル (合計量)
VEEA :アクリル酸 2_ (2—ビニロキシエトキシ)ェチル VEM:メタクリル酸 2—ビニロキシェチル
VEA :アクリル酸 2—ビニロキシェチル
IBVE:イソブチルビニルエーテル
[0178] ヘテロポリ酸を用いた重合
実施例 7
撹拌棒、温度計、滴下ライン、窒素/空気混合ガス導入管を取り付けた 4つロフラ スコに酢酸ェチノレ 80gをカロえ、 50°Cへ昇温した。昇温後、 VEEA200gとメタノール 3 gの混合物、酢酸ェチル 24. 5gとリンタングステン酸 12. 2mgの混合溶解物をそれ ぞれ 2時間かけて滴下し重合を行った。重合終了後はトリエチルァミンを加えて反応 を終了した。次いで、エバポレーターで濃縮した後、ビュル系重合体((ホモ VEEA) —4)を得た。単量体の反応率は、反応停止後の混合液をガスクロマトグラフィー(GC )で分析することにより、 99. 7%であることが判明した。また、得られたビュル系重合 体の数平均分子量(Mn)は 1 , 480、分子量分布(Mw/Mn)は 2. 01であった。
[0179] 実施例 8
撹拌棒、温度計、滴下ライン、窒素/空気混合ガス導入管を取り付けた 4つロフラ スコにトルエン 41gを加えた。 VEEA50g、酢酸ェチル 10gとリンタングステン酸 10m gの混合溶解物をそれぞれ 2時間かけて滴下し、室温にて重合を行った。重合終了 後はトリエチルァミンを加えて反応を終了した。次いで、エバポレーターで濃縮した後 、ビュル系重合体((ホモ VEEA)— 5)を得た。単量体の反応率は、反応停止後の混 合液をガスクロマトグラフィー(GC)で分析することにより、 99. 5%であることが判明し た。また、得られたビュル系重合体の数平均分子量 (Mn)は 2, 520、分子量分布( Mw/Mn)は 1 · 75であった。
[0180] 実施例 9〜; 11
実施例 8と同様の反応装置、溶媒および原料を用い、表 2に示す配合比率、反応 温度にて、ビュル系重合体を合成した。
[0181] [表 2] ヘテロポリ酸を用いたポリマ一の合成
Figure imgf000046_0001
ヘテロホ'リ酸:リンタングステン酸
溶媒 1:メタノール
溶媒 2 :トルエン
溶媒 3 :酢酸ェチル
VEEA:アクリル酸 2_ (2™ビニロキシエトキシ)ェチル VEM:メタクリル酸 2—ビニロキシェチル
[0182] カチオン重合
実施例 12
まず、室温で、反応容器に、トルエン (和光純薬工業株式会社製、特級試薬) 297 mLおよび VEEA0. 2モルを加えた後、反応容器を氷浴に浸漬して重合系内を 10 °Cに冷却した。次いで、 10°Cに予冷した三フッ化ホウ素'ジェチルエーテル錯体 0. 05モル/ Lのトルエン溶液 26mLを加えて反応を開始した。重合反応を 10分間行つ た後、メタノールを加えて反応を停止させた。反応を終えた混合液中にクロ口ホルム を加え、水洗により重合開始剤の残渣を除去した。次いで、エバポレーターで濃縮し た後、真空乾燥させて、ビュル系重合体((ホモ VEEA)— 8)を得た。得られたビュル 系重合体の数平均分子量(Mn)は 5, 850、分子量分布(Mw/Mn)は 2. 96であつ た。
[0183] 実施例 13〜; 16
実施例 12と同様の反応装置、溶媒および原料を用い、表 3に示す配合比率、反応 温度にて、ビュル系重合体を合成した。
[0184] [表 3]
Figure imgf000048_0002
Figure imgf000048_0001
Figure imgf000048_0003
比較例:
撹拌棒、温度計、滴下ライン、窒素 Z空気混合ガス導入管を取り付けた 4つロフラ スコにトノレェン 500g、 VEEA50gをカロえ、 0°Cへ冷却した。冷却後、 1. 0Mのェチル アルミニウムジクロライドのへキサン溶液(アルドリッチ製) 0· 5mlを加えて重合を行つ た。 0°C、 4時間撹拌を行った後、トリェチルァミンを加えて反応を終了した。単量体 の反応率は、反応停止後の混合液をガスクロマトグラフィー(GC)で分析することによ り、 96. 5%であることが判明した力 S、フラスコ底部にゲル物が見られた。
[0186] 比較例 2
撹拌棒、温度計、窒素/空気混合ガス導入管を取り付けた 4つ口フラスコに酢酸ェ チル 5g、 VEEA50gを加えた。次に活性白土 lOOmg (商品名「ガレオンアース V2」 、水澤化学工業 (株)製)を加えて室温にて反応を開始した。 9時間撹拌を行った後、 サンプリングを行い単量体の反応率を測定したところ、 20. 5%で反応が非常に遅い ことが判明した。
[0187] 参考例 1
撹拌棒、温度計、窒素/空気混合ガス導入管を取り付けた 4つ口フラスコにトルェ ン(脱水トルエン、和光純薬工業株式会社製) 60g、 VEEA50gを加えた。酢酸ェチ ル 2gとリンタングステン酸 lOmgの混合溶解物をフラスコに投入し室温にて重合を開 始した。しばらくすると激しい発熱が見られた。重合終了後はトリエチルァミンを加え て反応を終了した。次いで、エバポレーターで濃縮した後、ビュル系重合体を得た。 単量体の反応率は、反応停止後の混合液をガスクロマトグラフィー(GC)で分析する ことにより、 96. 7%であることが判明した。また、得られたポリビュルエーテルの数平 均分子量(Mn)は 6, 900、分子量分布(Mw/Mn)は 3. 39であった。
[0188] 実施例 17
撹拌棒、温度計、滴下ライン、窒素/空気混合ガス導入管を取り付けた 4つロフラ スコに酢酸ェチノレ 80gをカロえ、 50°Cへ昇温した。昇温後、 VEEA171gとシクロへキ シルビュルエーテル(以下、「CHVE」と称する場合がある。)29gの混合物、酢酸ェ チル 26gとリンタングステン酸 13mgの混合溶解物をそれぞれ 2時間かけて滴下し重 合を行った。重合終了後はトリエチルァミンを加えて反応を終了した。次いで、エバポ レーターで濃縮した後、ビュル系重合体((VEEA8. 55 -CHVE1. 45) )を得た。 単量体の反応率は、反応停止後の混合液をガスクロマトグラフィー(GC)で分析する ことにより、 99. 5%であることが判明した。また、得られたビュル系重合体の数平均 分子量(Mn)は 1 , 280、分子量分布(Mw/Mn)は 1. 79であった。
[0189] 実施例 18〜42
実施例 17と同様の反応装置、溶媒および原料を用い、表 4に示す配合比率、反応 温度にて、ビュル系重合体を合成した。物性値を表 4に示す。
[0190] [表 4]
Figure imgf000050_0001
VEEA:アクリル酸 2— (2—ビニロキシエトキシ)ェチル
CHVE :シクロへキシルビ二ルェ一テル
[0191] ァミン付加
実施例 43
反応容器に、実施例 10で得た(ホモ VEEA)—7を 100質量部、ジエタノールァミン 2. 83質量部、 2—ブタノン 102. 83質量部を入れた後、室温にて 5時間撹拌して、ビ ニル系重合体の側鎖のアタリロイル基へのァミン付加反応を行った。ァミン付加反応 終了後、エバポレーターで減圧下にて溶媒を留去してァミン付加体 1を得た。
[0192] 実施例 44
反応容器に、実施例 10で得た(ホモ VEEA)—7を 100質量部、ジエタノールァミン 11. 29質量部、 2 ブタノン 111. 29質量部入れた後、室温にて 5時間撹拌して、ビ ニル系重合体の側鎖のアタリロイル基へのァミン付加反応を行った。ァミン付加反応 終了後、エバポレーターで減圧下にて溶媒を留去してァミン付加体 2を得た。
[0193] 実施例 45
反応容器に、実施例 10で得た(ホモ VEEA)—7を 100質量部、ジブチルァミン 13 . 88質量部、 2 ブタノン 113. 88質量部入れた後、 60°Cにて 18時間撹拌して、ビ ニル系重合体の側鎖のアタリロイル基へのァミン付加反応を行った。ァミン付加反応 終了後、エバポレーターで減圧下にて溶媒を留去してァミン付加体 3を得た。
[0194] 実施例 46
反応容器に、実施例 1で得た(ホモ VEEA)—1を 100質量部、ジエタノールァミン 2 . 83質量部、 2 ブタノン 102. 83質量部入れた後、室温にて 5時間撹拌して、ビニ ル系重合体の側鎖のアタリロイル基へのァミン付加反応を行った。ァミン付加反応終 了後、エバポレーターで減圧下にて溶媒を留去してァミン付加体 4を得た。
[0195] 実施例 47
反応容器に実施例 12で得た(ホモ VEEA)—8を 100質量部、ジエタノールァミン 2 . 83質量部、 2 ブタノン 102. 83質量部を加えた後、室温にて 3時間撹拌を行った 。反応液をエバポレーターで濃縮した後、真空乾燥させて、ビュル系重合体のジエタ ノールァミン付加体 5を得た。
[0196] 有機変性シリコーン
実施例 48
撹拌棒、温度計、滴下ライン、窒素/空気混合ガス導入管を取り付けた 4つロフラ スコに酢酸ェチル 50gを加えた。 VEEA200gと両末端に水酸基を有する有機変性 シリコーン化合物(商品名「SF— 8427」、東レ 'ダウコーユング株式会社製) 2gの混 合物、酢酸ェチル 13gとリンタングステン酸 13mgの混合溶解物をそれぞれ 2時間か けて滴下し、室温にて重合を行った。重合終了後はトリエチルァミンを加えて反応を 終了し、ビュル系重合体( (VEEA—シリコーン)— 1)の酢酸ェチル溶液を得た。
[0197] 次いで、ビュル系重合体((VEEA シリコーン) 1)の酢酸ェチル溶液をエバポ レーターで濃縮した後、ビュル系重合体(( シリコーン) を得た。単量体 の反応率は、反応停止後の混合液をガスクロマトグラフィー(GC)で分析することによ り、 99. 8%であることが判明した。また、得られたビュル系重合体の数平均分子量( Mn)は 3, 310、分子量分布(Mw/Mn)は 1. 66であった。
[0198] 濃縮して得られたビュル系重合体((VEEA—シリコーン)— 1)を少量の酢酸ェチ ルに溶解し、多量のへキサンに滴下し、沈殿させて粘ちよう性物質を得た。酢酸ェチ ノレ、へキサンをデカンテーシヨンにて除いた後、加熱真空乾燥機で乾燥させた。得ら れた粘ちよう性物質の1 H— NMR測定 (測定溶媒:重水素化クロ口ホルム、測定機器 : Varian社製の 400MHz 'H-NMR UNITY plus400)を行ったところ、アタリ ロイル基が残存し、選択的にビュルエーテル基が重合しており、側鎖にラジカル重合 可能な二重結合を有するアタリロイル基ペンダント型重合体であることが確認され、ま たジメチルシロキサン由来のピークが見られたことからビュル系重合体中にポリジメチ ルシロキサン部位を含有していることも確認された。
[0199] 実施例 49
撹拌棒、温度計、滴下ライン、窒素/空気混合ガス導入管を取り付けた 4つロフラ スコに酢酸ェチノレ 50gをカロえ、 50°Cへ昇温した。昇温後、 VEEA155gとシクロへキ シルビュルエーテル(CHVE) 45gと両末端に水酸基を有する有機変性シリコーン化 合物(商品名「SF— 8427」、東レ 'ダウコーユング株式会社製) 2· Ogの混合物、酢 酸ェチル 13gとリンタングステン酸 13mgの混合溶解物をそれぞれ 2時間かけて滴下 し室温にて重合を行った。重合終了後はトリエチルァミンを加えて反応を終了しビニ ル系重合体((VEEA シリコーン) 2)の酢酸ェチル溶液を得た。
[0200] 次いで、ビュル系重合体((VEEA シリコーン) 2)の酢酸ェチル溶液をエバポ レーターで濃縮した後、ビュル系重合体(( シリコーン) 2)を得た。単量体 の反応率は、反応停止後の混合液をガスクロマトグラフィー(GC)で分析することによ り、 99. 8%であることが判明した。また、得られたビュル系重合体の数平均分子量( Mn)は 2, 570、分子量分布(Mw/Mn)は 1. 73であった。
[0201] 参考例 2:ラタトン環含有アクリル樹脂の製造方法
撹拌装置、温度センサー、冷却管、窒素導入管を付した lm2の反応釜に、 136kg のメタクリル酸メチル(MMA)、 34kgの 2—(ヒドロキシメチル)アクリル酸メチル(MH MA)、 166kgのトルエンを仕込み、これに窒素を通じつつ、 105°Cまで昇温し、還流 したところで、重合開始剤として 187gのターシャリーアミルパーォキシイソノナノエー ト(アルケマ吉富製、商品名:ルパゾール (登録商標) 570)を添加すると同時に、 374 gの重合開始剤と 3. 6kgのトルエンからなる溶液を 2時間かけて滴下しながら、還流 下(約 105〜 110°C)で溶液重合を行レ \さらに 4時間かけて熟成を行った。
[0202] 得られた重合体溶液に、 170gのリン酸ステアリル/リン酸ジステアリル混合物(堺 化学製、商品名: Phoslex A— 18)を加え、還流下 (約 90〜; 110°C)で 5時間、環化 縮合反応を行った。次いで、上記環化縮合反応で得られた重合体溶液を、バレル温 度 250。C、回転数 150rpm、減圧度 13. 3〜400hPa (10〜300mmHg)、リアベン ト数 1個、フォアベント数 4個のベントタイプスクリュー二軸押出し機( φ =42mm、 L /D = 42)に、樹脂量換算で 13kg/時間の処理速度で導入し、該押出し機内で環 化縮合反応と脱揮を行い、押出すことにより、透明なペレットを得た。
[0203] 得られたペレットは重量平均分子量が 147, 000、メルトフローレートが 11. Og/1 0min、ガラス転移温度が 130°Cであった。
[0204] 次!/、で φ 50mm,多条フライト構造のミキシング部を有するフルフライト型スクリュー 力もなる L/D = 36の単軸押出し機を用い、ラタトン環含有アクリル樹脂ペレット 90部 、 AS樹脂(旭化成ケミカルズ社製、スタイラック (登録商標) AS783) 10部および酢 酸亜鉛 0. 04部をシリンダ設定温度 270°Cにて 50kg/hの処理速度で溶融押出しを 行い、ペレット(PHMAペレット 1A)を作製した。
[0205] 参考例 3:ラタトン環含有アクリル樹脂フィルムの製造方法
上記ペレット(1A)を、 φ 65mm, L/D = 32、 ノ リアフライト型スクリューを有するベ ント付き単軸押出機に仕込んだ。ベントロカも 13hPa (10mmHg)にて吸引を行いな がら、ノ リアフライト型スクリューにて溶融混練した。溶融混練後、ペレット(1A)は、ギ ァポンプを用いて、ろ過面積 0. 75m2,ろ過精度 5 mのリーフディスクフィルターに 通し、幅 700mmの Tダイより、 90°Cの冷却ロール上にフィルム(PHMA未延伸フィ ルム 1B)を成形した。シリンダ、ギアポンプ、フィルター、 Tダイの温度は、 265°Cに設 定した。得られた未延伸フィルム(1B)の膜厚は 90 であった。単位時間当たりの 押出量は 33kg/hrとし、 3時間連続して成形したが、 Tダイのリップにいわゆる目ャ 二は見られなかった。
[0206] 参考例 4:ラタトン環含有アクリル樹脂延伸フィルムの製造方法
得られた未延伸フィルム(1B)に対し、株式会社東洋精機製作所製、コーナースト レツチ式ニ軸延伸試験装置 X6— Sを用い、二軸延伸を行った。 155°Cで 3分間予熱 後、 5秒間で倍率 1. 8倍になるように 1段目の 1軸延伸を行った。横方向は収縮しな いようにした。延伸終了後、速やかにサンプルを取り出して冷却した。このフィルムを 縦横ともに 97mmの正方形に切り出し、 2段目の延伸を行った。延伸方向は 1段目の 延伸方向と直交する方向とした。チャックの内側の距離は縦横共に 80mmとした。 13 8°Cで 3分間予熱後、 2分 30秒で 2. 5倍になるように 2段目の 1軸延伸を行った。横 方向は収縮しないようにし、延伸フィルム(PHMAフィルム 1C)を得た。得られた延伸 フィルム(1C)の膜厚は 40 μ mであった。
[0207] 参考例 5 :シリカ分散液の製造方法
シリカゾル (商品名「オノレガノシリカゾノレ MEK— ST」、 日産化学工業株式会社製; 固形分 30%、シリカ粒子径 10〜; 15nm) 100質量部、(3—アタリロキシプロピル)トリ メトキシシラン(商品名「KBM— 5103」、信越化学工業株式会社製) 7質量部、 0. 0 02N塩酸水溶液 2質量部を混合 ·撹拌して、シリカ分散液を調製した。
[0208] 参考例 6:ジルコユア微粒子の製造方法
テトラデカン 600質量部とネオデカン酸 400質量部を混合し、 40質量%ネオデカン 酸—テトラデカン溶液を調製した。その溶液に、酸化マグネシウムを 67. 5質量部添 加し、 60°Cで 1時間撹拌を行い、ネオデカン酸マグネシウム溶液を調製した。次に、 ォキシ塩化ジルコニウム 402. 8質量部に 0. 05モル/ L塩酸水溶液を 75質量部加 え、純水にて溶解させて 2500質量部とし、 Zr (IV)水溶液を調製した。該 Zr (IV)水 溶液 1125質量部とネオデカン酸マグネシウム溶液 800質量部とを混合し、 60°Cで 4 0分間撹拌を行い、ネオデカン酸ジルコニウム溶液を調製した。 [0209] 撹拌機付きオートグレーブ内に、上記ネオデカン酸ジルコニウム溶液 500質量部と 水 500質量部を混合したものを仕込み、窒素雰囲気下、 175°Cまで加熱し、 3時間 反応させた。昇温終了時の圧力は、 0. 9MPaであった。反応液を取り出し、底部に たまった反応物をろ過により回収した。反応物をアセトンで洗浄し乾燥させた後、トル ェンに分散させたところ、白濁の分散液となった。次に、精製工程として定量濾紙 (ァ ドバンテック東洋株式会社製 No. 5C)にて再度ろ過を施し、分散液中の粗大粒子 を除去し、濾液中のトルエンを減圧加熱乾燥させることにより、白色の粉体である酸 化ジルコニウム粒子を得た。
[0210] 得られた酸化ジルコニウム粒子の粒子径を FE— SEM分析にて分析したところ、平 均粒子径は 5nmであった。また、 XRD分析 (X線粉末回折分析)にて結晶構造を分 析したところ、正方晶の構造であった。さらに、 IR分析により C— H由来の吸収および COOH由来の吸収が確認できた。そして、この酸化ジルコニウム粒子について TG DTA分析 (熱質量 示差熱分析)を行ったところ、 350°C付近にネオデカン酸由 来の発熱ピークが確認された。また、ネオデカン酸の被覆量は 18. 6質量%であった
[0211] 次に、得られた酸化ジルコニウム粒子 10質量部をトルエン 90質量部に分散させた 分散液に、水 2質量部と、シランカップリング剤として 3—アタリロキシプロピルトリメトキ シシラン(商品名: KBM— 5103、信越化学工業株式会社製)を 2質量部添加し、 90 °Cで 1時間還流反応を行った。反応液に n へキサンを 200質量部添加して、凝集 白濁した粒子をろ過にて分離後、乾燥してシランカップリング剤にて表面処理を施し た処理酸化ジルコニウム粒子を得た。得られた処理酸化ジルコニウム粒子の IR分析 により C H由来の吸収および COOH由来の吸収、さらに、 Si— O— C由来の吸収 が確認できた。また、処理酸化ジルコニウム粒子について TG— DTA分析 (熱質量 示差熱分析)を行ったところ、 200°C付近にシランカップリング剤由来の発熱ピーク 1S 350°C付近にネオデカン酸由来の発熱ピークが確認できた。
[0212] 参考例 7:非反応性メタクリルシラップの製造方法
温度計、冷却器、窒素ガス導入管、および撹拌機を備えた反応器に、メタクリル酸メ チル 121g、メタクリル酸 4g、トルエン 91g、酢酸ェチル 91gを仕込んだ後、反応器内 を窒素ガス置換した。次に、上記の混合物を撹拌しながら 90°Cに昇温した後、重合 開始剤として t—ブチルパーォキシ 2—ェチルへキサノエート 0. 3gとトノレェン 4. 7gと の混合物を添加して重合を開始した。 8時間後、トルエン 119g、酢酸ェチル 69gを 加えて混合し、不揮発分が 21 %、重量平均分子量 Mwが 100, 000の非反応性重 合体を含んだ非反応性メタクリルシラップを得た。
[0213] 参考例 8:反応性メタクリルシラップの製造方法
温度計、冷却器、窒素ガス導入管、および撹拌機を備えた反応器に、メタクリル酸メ チル 194gと、メタクリル酸 6gとを仕込んだ後、反応器内を窒素ガス置換した。次に、 上記の混合物を撹拌しながら 80°Cに昇温した後、重合開始剤としての 2, 2'ーァゾ ビスイソブチロニトリル 0. 1質量部と、チオール化合物としての n—ドデシルメルカプタ ン 2質量部とを添加して、 6時間共重合反応を行った。これにより、メタクリルシラップ を得た。得られたメタクリルシラップの酸価は 19mgKOH/gであった。
[0214] 次いで、上記のメタクリルシラップに、ビュルエーテル化合物としてのイソブチルビ ニルエーテルを添加した後、 100°Cに昇温して 30分間撹拌することにより、該メタタリ ルシラップ中に残存する n—ドデシルメルカプタンを処理した。上記のイソブチルビ二 ルエーテルは、重合時に添加した n—ドデシルメルカプタンに対して 2. 0倍モルとな るように添加した。続いて、メタクリル酸グリシジルと、エステル化触媒としてのトリフエ ニルホスフィン 0· 4gと、重合禁止剤としてのハイドロキノン 0. Olgとを添カロした後、 1 00°Cで 10時間撹拌することにより、エステル化反応を行った。上記のメタクリル酸ダリ シジルは、メタクリル酸に対して 0. 5倍モルとなるように添加した。これにより、反応性 重合体を含んだ反応性メタクリルシラップを得た。メタクリルシラップの不揮発分は 42 質量%、粘度は 280mPa' s、酸価は 1 lmgKOH/gであった。
[0215] さらに、反応性メタクリルシラップ中のメタクリル重合体の一分子当たりの二重結合 量を測定した。すなわち、まず、メタクリル酸グリシジルを反応させる前後のメタクリル 重合体の酸価の差を測定し、メタクリル重合体 lg当たりにおける消失したカルボキシ ル基のモル数を算出して、これをメタクリル重合体 lg中の重合性二重結合のモル数 とした。また、メタクリル重合体の重量平均分子量 Mwからメタクリル重合体 lgのモル 数を算出した。そして、メタクリル重合体 lg中の重合性二重結合のモル数と、メタタリ ル重合体 lgのモル数とから、メタクリル重合体一分子当たりの二重結合の数を算出 した。その結果、一分子当たりの二重結合の数は 5. 3モルであった。
[0216] 参考例 9 : 15官能ウレタンアタリレートの製造方法
撹拌棒、温度計、冷却管、窒素/空気混合ガス導入管を取り付けた四つ口フラスコ ίこ、イソホロンジイソシァネートのイソシヌレート体(3量体) 116. 7g (0. 175モノレ)、 ジペンタエリスリトールペンタアタリレート 286· 5g (0. 53モル)、ハイドロキノンメチル ユーテノレ 0· 02g、ジフ"チノレスズジラウリレー卜 0· 02g、メチノレュチノレゲ卜ン 404gを仕 込み、 60°Cで内温が一定になるように反応させ、残存イソシァネート基が 0. 1質量% となった時点で反応を終了し、 1分子中に 15個のアタリロイル基を有する 15官能ウレ タンアタリレートの溶液を得た。
[0217] 参考例 10: 6官能ウレタンアタリレートの製造方法
撹拌棒、温度計、冷却管、窒素/空気混合ガス導入管を取り付けた四つ口フラスコ ίこ、イソホロンジイソシ ネート 111. lg (0. 50モノレ)、ペンタエリスリトーノレトリ クリレ ート 298. 3g (l. 00モル)、ハイドロキノンメチルエーテル 0· 02g、ジブチルスズジラ ゥリレー卜 0· 02g、メチノレエチノレケ卜ン 409gを仕込み、 60。Cで内温力《一定になるよう に反応させ、残存イソシァネート基が 0. 1質量%となった時点で反応を終了し、 1分 子中に 6個のアタリロイル基を有する 6官能ウレタンアタリレートの溶液を得た。
[0218] 参考例 11: 10官能ウレタンアタリレートの製造方法
撹拌棒、温度計、冷却管、窒素/空気混合ガス導入管を取り付けた四つ口フラスコ に、イソホロンジイソシァネート 68· 9g (0. 31モル)、ジペンタエリスリトールペンタァ クリレート 335· lg (0. 62モノレ)、ノヽイド口キノンメチノレエーテノレ 0· 02g、ジフ、、チノレス ズジラウリレート 0· 02g、メチルェチルケトン 404gを仕込み、 60°Cで内温が一定にな るように反応させ、残存イソシァネート基が 0. 1質量%となった時点で反応を終了し、 1分子中に 10個のアタリロイル基を有する 10官能ウレタンアタリレートの溶液を得た。
[0219] 参考例 12 : 3官能ウレタンアタリレートの製造方法
撹拌棒、温度計、冷却管、窒素/空気混合ガス導入管を取り付けた四つ口フラスコ に、イソホロンジイソシァネートのイソシヌレート体(3量体) 266· 7g (0. 40モル)、 2 ーヒドロキシェチルアタリレート 139. 3g (l. 20モル)、ハイドロキノンメチルエーテル 0. 02g、ジフ、、チノレスズジラウリレー卜 0· 02g、メチノレュチノレゲ卜ン 406gを仕込み、 60 °Cで内温が一定になるように反応させ、残存イソシァネート基が 0. 1質量%となった 時点で反応を終了し、 1分子中に 3個のアタリロイル基を有する 3官能ウレタンアタリレ ートの溶液を得た。
[0220] コート材用組成物
実施例 50
実施例 1で得られたビュル系重合体(ホモ VEEA)— 1を 100質量部、 1ーヒドロキ シシクロへキシルフェニルケトン(商品名「ィルガキュア(登録商標) 184」、チバ 'スぺ シャルティ'ケミカルズ株式会社製)(以下、「光重合開始剤 1」という) 5質量部を混 合 ·撹拌して、コート材用組成物を調製した。コート材用組成物の粘度は 3, OOOmPa •sであった。
[0221] 寸法 12cm X 12cm、厚さ lmmのポリカーボネート(PC)シート上に、アプリケータ 一を用いて、塗工液を塗布した。この PCシートに塗布した樹脂層を、超高圧水銀ラ ンプを有する UV照射機 (アイグラフィックス株式会社製)を用いて、照射積算光量 50 Omj/cm2で紫外線硬化させた。
[0222] 硬化物層の厚さを測定したところ、 100 mであった。硬化物の収縮率を測定した ところ 7. 8%であった。積層体上の硬化物の耐スクラッチ性を評価したところ、傷が認 められな力 たことから Aと評価した。また鉛筆硬度は 2Hと評価した。結果を表 5に 示す。
[0223] なお、基体にポリカーボネート (PC)を選択した理由は光記録ディスク基材プラスチ ックに一般的に用いられるからである。
[0224] 実施例 5;!〜 57、比較例 3, 4
表 5に示すビュル系重合体を用い、表 5に示す配合比率にて、コート材用組成物を 作製した。実施例 50と同様の方法にて積層体を作製した。評価結果を表 5に示す。
[0225] [表 5]
Figure imgf000059_0001
DCP—A:重合性単量体ジメチロール一 )シクロデカンジァクリレート (商品名 Γライトァクリレート DCP—AJ、共栄社化学株式会社製) ΒΥΚ306:表面調整剤ポリエーテル変性ポリジメチルシロキサン (商品名 ΓΒΥΚ306」、ビックケミー'ジャパン株式会社製)
TMPTA:トリメチロールプロパントリァクリレート
1, 6HDAA:1, 6—へキサンジオールジァクリレート (商品名「ライトァクリレート 1, 6HX— A」、共栄社化学株式会社製)
UV7510B:ウレタンァクリレ一ト(商品名「UV7510巳」、日本合成化学工業株式会社製)
[0226] 実施例 58
実施例 20で得られたビュル系重合体((VEEA7— CHVE3)— 1) 50質量部、ビス フエノール Aのエチレンォキシド付加物のジアタリレート(商品名「ライトアタリレート BP -4EAJ、共栄社化学株式会社製) 30質量部、イソボルニルアタリレート(商品名「ラ イトアタリレート IB— XA」、共栄社化学株式会社製) 10質量部、テトラヒドロフルフリル アタリレート 10質量部、前記光重合開始剤— 1を 5質量部、ポリエーテル変性ポリジメ チルシロキサン(商品名「BYK333」、ビックケミー 'ジャパン株式会社製)(以下、「表 面調整剤— 1」という) 0. 1質量部を混合 ·撹拌して、コート材用組成物を調製した。
[0227] 次に、寸法 12cm X 12cm、厚さ lmmのポリカーボネート(PC)基体上に、アプリケ 一ターを用いて、上記コート材用組成物を厚さ 100 mで塗布した。この PC基体に 塗布したコート材組成物層を、キセノンフラッシュ UVランプを有する UV照射機 (米 国キセノン社製 形式 RC— 742)を用いて、初めにランプ高さ 10cmで、フラッシュを 2回照射し、次にランプ高さ 5cmで、フラッシュを 10回照射させて硬化を完結させた。 なお、 320nm〜390nmにおける照射積算光量は約 300mj/cm2であった。
[0228] 硬化物層の厚さを測定したところ、 100 ± 3 mであった。積層体上の硬化物の耐 スクラッチ性と、積層体の反り量を評価した結果を表 6に示す。
[0229] なお、基体にポリカーボネート (PC)を選択した理由は光記録ディスク基材プラスチ ックに一般的に用いられるからである。
[0230] 実施例 59〜77
表 6に示すビュル系重合体を用い、表 6に示す配合比率にて、コート材用組成物を 作製した。実施例 58と同様の方法にて積層体を作製した。評価結果を表 6に示す。
[0231] [表 6]
Figure imgf000061_0002
配合:莨量部
Bis— EO— A:ビスフエノール Aのエチレンォキシト'付加物のジァクリレート (商品名「ライトァクリレート BP— 4EAJ、共栄社化学株式会社製) IB— XA :イソボルニルァクリレート(商品名 Γライトァクリレート IB— XAJ,共栄社化学株式会社製)
THF— A:亍トラヒドロフルフリルァクリレ一ト
光重合開始剤: 1—ヒドロキシシクロへキシルフェニルケトン(商品名「ィルガキュア(登録商標)"1 84 チバ 'スペシャル亍ィ'ケミカルズ株式会社製)
Figure imgf000061_0001
表面調整剤:ポリエーテル変性ポリジメチルシロキサン(商品名「BYK333」、ビックケミー-ジャパン株式会社製)
示し、さらに反りとの関係について図 1にて示す。なお、図中の記号は下記の通りで ある。
•:反り性評価にお!/、て ©であった実施例
〇:反り性評価にお!/、て〇であった実施例
X:反り性評価において Xであった実施例
ライン:(Aの 3乗) X (Mn) = 600xl06
[0233] 実施例 78〜94
表 7に示すビュル系重合体を用い、表 7に示す配合比率にて、コート材用組成物を 作製した。実施例 58と同様の方法にて積層体を作製した。評価結果を表 7に示す。
[0234] [表 7]
ss
谘 412
、ロ 7
M薪 I
Figure imgf000063_0002
配合:質量部
BP ビスフエノ一ル Aのエチレンォキシド付加物のジァクリレ一ト (商品名 Γライトァクリレ一ト BP-4EAJ、共栄社化学株式会社製) 4EG—A:亍トラエチレンゲリコ一ルジァクリレート
ΤΜΡ— 6ΕΟ— Α:トリメチロールプロパンの 6ΕΟ付加物トリァクリレート
VEEA :アクリル酸 2—(2—ビニロキシエトキシ)ェチル
1 . 9ND-A : 1 , 9ノナンジォールジァクリレート(商品名「ライトァクリレート"!. 9ND—AJ、共栄社化字株式会社製)
TMPTA:トリメチロールプロバントリァクリレート
BP— 4PA:ビスフエノール Aのプロピレンォキシド付加物のジァクリレート(商品名 Γライトァクリレート BP— 4PAJ,共栄社化学株式会社製) TMP— 6PO— A:トリメチロールプロパンのプロピレンォキシド付加物のトリァゥリレ一卜(商品名「SR— 501」,サ トマ一社製)
光重合開始剤: 1 ヒト'口キシシクロへキシルフェニルケトン(商品名 Γィルガキュア(登録商標) 1 B4J、チバ'スペシャルティ■ケミカルズ株式会社製)
Figure imgf000063_0001
表面調整剤:ポリエーテル変性ポリジメチルシロキサン(商品名!" BYK307」、ビックケミ一'ジャパン株式会社製)
となるように塗工した。この PCシートに塗布した樹脂層を光源からの距離 20cmに配 置した後、ノ ルス UV照射装置(キセノン 'フラッシュランプ型式 RC— 801;キセノン株 式会社製)を用いて 2ショット(9. Omj/cm2 ;積算光量の 4. 3%)照射し、紫外線照 射第 1工程を行った。第 1工程終了後においてコート材用組成物は流動性が無!/、状 態であった。次に PCシートを光源からの距離 20cmは変えずに 4ショット(18. Omj/ cm2 ;積算光量の 12. 8%)、続いて PCシートを光源からの距離 10cmに配置し 4ショ ット(36. 8mj/cm2 ;積算光量の 26. 2%)、そして最後にもう 1度、 PCシートを光源 力、らの距離 5cmに配置し 4ショット(79. 6mj/cm2 ;積算光量の 56. 7%)照射し紫 外線照射第 2工程を行い、照射を完了した。 PCシート上の硬化物の評価を行った。 結果を表 8に示す。
[0237] 実施例 96〜; 103
実施例 95と同様に、表 8に示すコート材用組成物を用い、表 8に示す紫外線照射 条件にて硬化物を作製し、評価を行った。結果を表 8に示す。
[0238] 実施例 104
寸法 12cm X 12cm、厚さ lmmのポリカーボネート(PC)シート上に、実施例 95で 用いたコート材用組成物を落とし、スピンコーターを用いて直径約 12cm、平均硬化 膜厚が 100 ± 2 mとなるように塗工した。この PCシートに塗布した樹脂層を光源か らの距離 15cmに配置した後、パルス UV照射装置(キセノン 'フラッシュランプ型式 R C— 801 ;キセノン株式会社製)を用いて 2ショット(11 · 2mj/cm2 ;積算光量の 2· 5 %)照射し、紫外線照射第 1工程を行った。第 1工程終了後においてコート材用組成 物は流動性が無い状態であった。次に PCシートを反転させ、光源からの距離 2cmに 配置して PCシート側から 8ショット(288. 8mj/cm2 ;積算光量の 65. 0%)、再び PC シートを反転させ続いて光源からの距離 2cmを変えずに更に樹脂層側から 4ショット( 144. 4mj/cm2 ;積算光量の 32. 5%)を照射し紫外線照射第 2工程を行い、照射 を完了した。 PCシート上の硬化物の評価を行った。結果を表 8に示す。
[0239] 実施例 105
実施例 92で調製したコート材用組成物を寸法 12cm X 12cm、厚さ lmmのポリ力 ーボネート(PC)シート上に落とし、スピンコーターを用いて直径約 12cm、平均硬化 膜厚が 100 ± 2 111となるように塗工した。この PCシートに塗布した樹脂層を、光源 力、らの距離 5cmに配置した後、パルス UV照射装置(キセノン 'フラッシュランプ型式 RC- 801 ;キセノン株式会社製)を用いて 10ショット( 199mj/cm2;積算光量の 10 0%)照射し、紫外線照射第 1工程のみを行った。評価結果を表 8に示す。
[0240] 実施例 106〜; 111
実施例 105と同様に、表 8に示すコート材用組成物を用い、表 8に示す紫外線照射 条件にて硬化物を作製し、評価を行った。評価結果を表 8に示す。
[0241] [表 8]
〔〕 M薪0242112
Figure imgf000066_0001
THF—A:テトラヒド□フルフリルァクリレート(共栄社化学株式会社製〕
ΒΡ-4ΕΑ:ビスフエノール Αの EO付加物ジァクリレ一ト(共栄社化学株式会社製)
TMP— 6EO— A +リメチロールプロパンの 6EO付加物トリァクリレート(化薬サートマ一株式会社製)
光重合開始剤:1—ヒドロキシシクロへキシルフェニルケ卜ン(商品名 Γィルガキュア(登録商標) 184」,チパ 'スペシャルティ 'ケミカルズ株式会社製) 表面調整剤:ポリエ一亍ル変性ポリジメチルシロキサン(商品名「BYK307」、ビックケミ一ジャパン株式会社製)
実施例 48で得られたビュル系重合体(VEEA シリコーン) 1を 100質量部、前 記光重合開始剤 1を 5質量部を、混合 ·撹拌してコート材用組成物を調製した。得 られたコート材用組成物は、濁りは見られず透明であった。
[0243] 寸法 12cm X 12cm、厚さ lmmのポリカーボネート(PC)シート上に、コート材用糸且 成物を落とし、スピンコーターを用いて直径約 12cm、平均硬化膜厚が100 ± 2 111 となるように塗工した。この PCシートに塗布した樹脂層を光源からの距離 20cmに配 置した後、ノ ルス UV照射装置(キセノン 'フラッシュランプ型式 RC— 801;キセノン株 式会社製)を用いて紫外線硬化を行なった (積算光量 400mj/cm2)。 PCシート上 の硬化物の評価を行なった。得られた硬化物は透明で、表面の滑り性がよいもので あった。結果を表 9に示す。
[0244] 実施例 113〜; 116
実施例 112と同様に、表 9に示すコート材用組成物を用い、表 9に示す紫外線照射 条件にて硬化物を作製し、評価を行った。結果を表 9に示す。
[0245] [表 9]
l^卄:iw^丄^ ΛΛλΰ ΛC r α -uく.H,"ι
Figure imgf000068_0001
[0246] 実施例 117
実施例 1で得られたビュル系重合体 100質量部、トルエン 100質量部、 2—メチノレ 1 [4 (メチルチオ)フエニル] 2—モルホリノプロパン 1 オン(商品名「ィル ガキュア (登録商標) 907」、チバ 'スペシャルティ'ケミカルズ株式会社製)(以下、「光 重合開始剤 2」という) 3質量部を混合 ·撹拌して、塗工液を調製した。
[0247] 両面に易接着処理が施された厚さ 100 a mのポリエチレンテレフタレート(PET)フ イルム(三菱化学ポリエステルフィルム社製、品番「0— 300」)上に、バーコ一ター #
14を用いて、塗工液を塗布した。その後、 80°Cで 2分間加熱乾燥してトルエンを蒸 発させ、コート材用組成物層を形成した。この PETフィルムに塗布したコート材用組 成物層を、超高圧水銀ランプを有する UV照射機 (アイグラフィックス株式会社製)を 用いて、照射積算光量 250mj/cm2で紫外線硬化させた。
[0248] 硬化膜の厚さを測定したところ、 10 μ mであった。硬化後の硬化膜/ PETフィルム の積層体(寸法 15cm X 25cm)には、カールが見られなかった。 PETフィルム上の 硬化膜の鉛筆硬度試験をおこなったところ 2Hであり、耐スクラッチ性の評価は Aであ つた。結果を表 10に示す。
[0249] 実施例 118〜; 120、 123—126, 129、 130、 132、比較例 5〜9
表 10に示すビュル系重合体を用い、表 10中に示す配合比率にて、コート材用組 成物を作製し、実施例 117と同様の方法にて積層体を作製した。評価結果を表 10に 示す。
[0250] 実施例 121
実施例 117と同様に PETフィルム上にコート材用組成物層を形成した。この PETフ イルムに塗布したコート材用組成物層を、電子線照射機(商品名「EBC300— 60」、 株式会社 NHVコーポレーション製)を用いて、加速電圧 150kV、照射線量 40kGy で 3パスさせて電子泉硬化させた。
[0251] 硬化膜の厚さを測定したところ、 10 μ mであった。硬化後の硬化膜/ PETフィルム の積層体(寸法 15cm X 25cm)には、カールが見られなかった。 PETフィルム上の 硬化膜の鉛筆硬度試験を行ったところ 2Hであり、耐スクラッチ性の評価は Aであった
。結果を表 10に示す。
[0252] 実施例 122
実施例 117と同様に PETフィルム上にコート材用組成物層を形成した。この PETフ イルムに塗布したコート材用組成物層を、 60°Cに温度調節した加熱炉内に 15時間 静置して、加熱硬化させた。
[0253] 硬化膜の厚さを測定したところ、 11 mであった。硬化後の硬化膜/ PETフィルム の積層体(寸法 15cm X 25cm)には、カールが見られなかった。 PETフィルム上の 硬化膜の鉛筆硬度試験を行ったところ 2Hであり、耐スクラッチ性の評価は Aであった 。結果を表 10に示す。
[0254] 実施例 127
厚さ 125 111のアクリル (PMMA :商品名「テクノロイ」、住友化学工業 (株)製)フィ ルム上に、バーコ一ター # 14を用いて、実施例 125で調製した塗工液を塗布した。 その後、 80°Cで 2分間加熱乾燥してトルエンを蒸発させ、コート材用組成物層を形成 した。この PMMAフィルムに塗布したコート材用組成物層を、超高圧水銀ランプを有 する UV照射機 (アイグラフィックス株式会社製)を用いて、照射積算光量 250mj/c m2で紫外泉硬化させた。
[0255] 硬化膜の厚さを測定したところ、 10 μ mであった。硬化後の硬化膜/ PMMAフィ ルムの積層体(寸法 15cm X 25cm)には、反りが見られなかった。 PMMAフィルム 上の硬化膜の鉛筆硬度試験をおこなったところ 2Hであり、耐スクラッチ性の評価は A であった。結果を表 1に示す。
[0256] 実施例 128
参考例 2で得られたラタトン環含有重合体を含む熱可塑性樹脂のペレット 1Aを用 いて、参考例 3と同様にして作製した厚さ 100 mの未延伸 PHMAフィルム上に、バ ーコーター # 14を用いて、実施例 125で調製した塗工液を塗布した。その後、 80°C で 2分間加熱乾燥してトルエンを蒸発させ、コート材用組成物層を形成した。このフィ ルムに塗布したコート材用組成物層を、超高圧水銀ランプを有する UV照射機(アイ グラフィックス株式会社製)を用いて、照射積算光量 250mj/cm2で紫外線硬化させ た。
[0257] 硬化膜の厚さを測定したところ、 10 μ mであった。硬化後の硬化膜/ PHMAフィ ルムの積層体(寸法 15cm X 25cm)には、カールが見られなかった。硬化膜の鉛筆 硬度試験を行ったところ 3Hであり、耐スクラッチ性の評価は Aであった。結果を表 10 に示す。
[0258] 実施例 131
表 10に示すビュル系重合体を用い、表 10に示す混合比率にて、コート材用組成 物を作製し、実施例 121と同様の方法にて積層体を作製した。評価結果を表 10に示 す。
[0259] 実施例 133
まず、参考例 2で得られたラ外ン環含有重合体を含む樹脂溶液 100質量部、 2— ブタノン 300質量部に溶解させた。この樹脂溶解材料を両面に易接着処理が施され た厚さ 100 mの PETフィルム(三菱化学ポリエステルフィルム社製、品番「0— 300 」)上に、コーターを用いて塗布した。その後、 80°Cで 5分間加熱乾燥してトルエンを 蒸発させ、 PETフィルム上にさらにラタトン環含有重合体を含む熱可塑性樹脂を 20 〃m形成させた。この 2層基材上に、バーコ一ター # 14を用いて、実施例 125で調 整した塗工液を塗布した。その後、 80°Cで 2分間加熱乾燥してトルエンを蒸発させ、 コート材用組成物層を形成した。この PETフィルムに塗布したコート材用組成物層を 、超高圧水銀ランプを有する UV照射機(アイグラフィックス株式会社製)を用いて、 照射積算光量 250mj/cm2で紫外線硬化させた。
[0260] 硬化膜の厚さを測定したところ、 10 μ mであった。硬化後の硬化膜 /2層基体フィ ルムの積層体(寸法 15cm X 25cm)には、反りは見られなかった。 2層基体上の硬化 膜の鉛筆硬度試験をおこなったところ 3Hであり、耐スクラッチ性の評価は Aであった 。結果を表 10に示す。
[0261] [表 10]
Figure imgf000072_0001
HEMA:メタクリル酸 2— tドロキシェチル
AOI:アクリル酸 2—イソシアナトェチル(昭和 ¾ェ社製)
DPHA:ジペンタエリスリトールへキサァクリレート (共栄社化学社製)
U - 1 5HA :ウレタンァクリレート (新中村化学社製)
光重合開始剤:2—メチルー 1—[4— (メチルチオ)フ I二ル]— 2—モルホリノプロパン一 1一オン
(商品名 Γィルガキュア(登録商標) 907J、チバ 'スペシャルティ'ケミカルズ株式会社製)
R-604 : 5—ェチ -— 2—(ヒドロキジ一 1 , 1—ジメチルエス亍ル)一5—(ヒドロキシメチル)一 1 , 3—ジォキサンのジアクリル酸エステル
(商品名「カャラッド R— 604」、日本化薬 (株)製)
U— 6LPA:ウレタンァクリレート (新中村化学 (株)製)
[0262] 実施例 134
実施例 1で得られたビュル系重合体((ホモ VEEA)— 1) 100質量部、メチルェチ ルケトン (MEK) IOO部、前記光重合開始剤— 1を 3質量部、ポリエーテル変性ポリジ メチルシロキサン(商品名「BYK306」、ビックケミー 'ジャパン株式会社製)(以下、 「 表面調整剤 2」という) 0. 1部を混合 ·撹拌して、塗工液を調製した。
[0263] 参考例 4で得られた PHMA延伸フィルム 1C上に、バーコ一ター # 5を用いて、塗 ェ液を塗布した。その後、 80°Cで 2分間加熱乾燥して MEKを蒸発させ、コート材用 組成物層を形成した。このフィルムを高圧水銀ランプを用い、照度 150mW/cm2、 照射積算光量 300mj/cm2の条件で紫外線硬化させ、硬化膜付きフィルム (積層体 )を得た。硬化膜の厚さを測定したところ、 3 111であった。
[0264] またバーコ一ター # 14を使用する以外は同様にして、硬化膜の厚さ 10 mを有す る積層体を得た。積層体の評価結果を表 11に示す。
[0265] 実施例 135〜; 143、参考例 13〜; 17
実施例 134と同様の装置を用い、表 11に示す配合比率にて、積層体を作製した。 評価結果にっレ、て表 11に示す。
[0266] [表 11]
i¾lf#4^¾p¾e T30〇 411!;l<
Figure imgf000074_0001
配合:質量部
U— 1 5HA、 U— 6LPA :新中村化学製 硬質ウレタンァクリレート
DPHA:ジペンタエリスリトールへキサァクリレート
3000M :共栄社化学製 硬質エポキシァクリレート
TMPTA:トリメチロールプロパントリアクリレ一ト
光開始剤: 1一 tドロキシシクロへキシルフェニルケトン(商品名 Γィルガキュア(商標登録) 1 84」、チパ 'スペシャルティ'ケミカルズ株式会社製) 表面調整剤:ポリエーテル変性ポリジメチルシロキサン (商品名「BYK306」、ビックケミ一 'ジャパン株式会社製)
質量部、 2—ブタノン (メチルェチルケトン) 100質量部を混合、撹拌して、コート材用 組成物を調製した。
[0268] 次いで、両面に易接着処理が施された厚さ 100 mのポリエチレンテレフタレート( PET)フィルム(三菱化学ポリエステルフィルム社製、品番「0— 300」)上に、バーコ 一ター # 28を用いて、上記コート材用組成物を塗布した。その後、 80°Cで 2分間加 熱乾燥して 2—ブタノンを蒸発させ、コート材用組成物層を形成した。この PETフィル ムに形成したコート材用組成物層を、超高圧水銀ランプを有する UV照射機(アイグ ラフィックス株式会社製)を用いて、照射積算光量 250mj/cm2で紫外線硬化させ硬 化膜を形成した。
[0269] PETフィルム上には硬化膜が均一に形成されており、塗布外観評価は〇であった 。形成された硬化膜の厚さを測定したところ、厚みは 20 であった。硬化物層の耐 スクラッチ性評価は Aであった。また、切断後の積層体のカール量は 10mmであった 。コート材用組成物の配合および各評価結果を表 12に示した。
[0270] 実施例 145〜; 147
ァミン付加体を、実施例 44, 45, 46で得られたァミン付加体 2〜4に変更したこと 以外は実施例 144と同様にして、積層体 (硬化物層/ PETフィルム)を作製した。コ 一ト材用組成物の配合および各評価結果を表 12に示した。
[0271] 実施例 148
実施例 43で得られたァミン付加体 1を 100質量部、参考例 7で得られた非反応 性メタクリルシラップを 109. 7質量部、前記光重合開始剤— 2を 5質量部、 2 ブタノ ン (メチルェチルケトン) 40. 3質量部を混合、撹拌して、コート材用組成物を調製し た。混合して得られたコート材用組成物には濁りが見られず、ァミン付加体と非反応 性メタクリルシラップは相溶していた。次いで、実施例 144と同様にして積層体 (硬化 物層/ PETフィルム)を作製した。コート材用組成物の配合および各評価結果を表 1 2に示した。
[0272] 実施例 149
実施例 43で得られたァミン付加体 1を 100質量部、参考例 8で得られた反応性メ タクリルシラップを 62. 4質量部、前記光重合開始剤 2を 5質量部、 2 ブタノン (メ チルェチルケトン) 87. 5質量部を混合、撹拌して、コート材用組成物を調製した。混 合して得られたコート材用組成物には濁りが見られず、ァミン付加体と反応性メタタリ ルシラップは相溶していた。次いで、実施例 144と同様にして積層体 (硬化物層/ P ETフィルム)を作製した。コート材用組成物の配合および各評価結果を表 12に示し た。
[0273] 実施例 150
実施例 10で得られたビュル系重合体を 100質量部、前記光重合開始剤 2を 5質 量部、 2—ブタノン (メチルェチルケトン) 100質量部を混合、撹拌して、コート材用組 成物を調製した。次いで、実施例 148と同様にして積層体 (硬化物層/ PETフィルム )を作製した。コート材用組成物の配合および各評価結果を表 12に示した。
[0274] 実施例 151
実施例 10で得られたビュル系重合体を 100質量部、参考例 7で得られた非反応性 メタクリルシラップを 109. 7質量部、光重合開始剤— 2を 5質量部、 2 ブタノン (メチ ルェチルケトン) 40. 3質量部を混合、撹拌して、コート材用組成物を調製した。調製 したコート材用組成物は、ビュル系重合体と非反性メタクリルシラップが相溶せず、濁 りが見られた。次いで、実施例 144と同様にして積層体 (硬化物層/ PETフィルム) を作製した。コート材用組成物の配合および評価結果を表 12に示した。
[0275] 実施例 152
実施例 10で得られたビュル系重合体を 100質量部、参考例 8で得られた反応性メ タクリルシラップを 62. 4質量部、光重合開始剤 2を 5質量部、 2 ブタノン(メチル ェチルケトン) 87. 5質量部を混合、撹拌して、コート材用組成物を調製した。調整し たコート材用組成物は、ビュル系重合体と反応性メタクリルシラップが相溶せず、濁り が見られた。次いで、実施例 144と同様にして積層体 (硬化物層/ PETフィルム)を 作製した。コート材用組成物の配合および各評価結果を表 12に示した。
[0276] [表 12]
Figure imgf000077_0001
実施例 153
実施例 14で得られたビュル系重合体 90質量部、参考例 9で得られた 1 5官能ウレ タンアタリレートの溶液 20質量部、前記光重合開始剤一 2を 3質量部、 2—ブタノン ( メチルェチルケトン) 90質量部を混合、撹拌して、コート材用組成物を調製した。 [0278] 次いで、両面に易接着処理が施された厚さ 100 mのポリエチレンテレフタレート( PET)フィルム(三菱化学ポリエステルフィルム、品番「0— 300」)上に、バーコータ 一 # 14を用いて、上記コート材用組成物を塗布した。その後、 80°Cで 2分間加熱乾 燥して 2—ブタノンを蒸発させ、コート材用組成物層を形成した。この PETフィルムに 塗布したコート材用組成物層を、超高圧水銀ランプを有する UV照射機(アイグラフィ ックス株式会社製)を用いて、照射積算光量 250mj/cm2で紫外線硬化させ硬化膜 を形成した。形成された硬化膜の厚みを測定したところ、 10 であった。また、硬 化後の硬化膜/ PETフィルムの積層体(寸法 15cm X 25cm)のカール量は 5mmで あった。形成された硬化膜にっレ、て行った鉛筆硬度試験および耐スクラッチ性の評 価、硬化膜/ PETフィルムの積層体について行ったカール量、折り曲げ性および密 着性の評価結果を表 13に示した。
[0279] 実施例 154〜; 158
ウレタンアタリレートを、参考例 10、 11、 12で得られたウレタンアタリレートに、また はビュル系重合体を、実施例 1、 5で得られたビュル系重合体に変更したこと以外は 、実施例 153と同様にして硬化膜/ PETフィルムの積層体を作製した。形成された 硬化膜について行った鉛筆硬度試験および耐スクラッチ性の評価、硬化膜/ PETフ イルムの積層体につ!/、て行ったカール量、折り曲げ性および密着性の評価結果を表 13に示した。
[0280] 実施例 159
実施例 14で得られたビュル系重合体の仕込み量を 40質量部、参考例 9で得られ た 15官能ウレタンアタリレートの溶液の仕込み量を 120質量部、 2 ブタノン(メチル ェチルケトン)の仕込み量を 40質量部に変更したこと以外は、実施例 153と同様にし て硬化膜/ PETフィルムの積層体を作製した。形成された硬化膜につ!/、て行った鉛 筆硬度試験および耐スクラッチ性の評価、硬化膜/ PETフィルムの積層体につ!/、て 行ったカール量、折り曲げ性および密着性の評価結果を表 13に示した。
[0281] 実施例 160
実施例 14で得られたビュル系重合体 100質量部、前記光重合開始剤 2を 3質量 部、 2—ブタノン (メチルェチルケトン) 100質量部を混合.撹拌して、コート材用組成 物を調製した。次いで、実施例 153と同様にして硬化膜/ PETフィルムの積層体を 作製した。形成された硬化膜にっレ、て行った鉛筆硬度試験および耐スクラッチ性の 評価、硬化膜/ PETフィルムの積層体について行ったカール量、折り曲げ性および 密着性の評価結果を表 13に示した。
[0282] 比較例 10
参考例 9で得られた 15官能ウレタンアタリレート 200質量部、前記光重合開始剤 2を 3質量部を、混合 '撹拌してコート材用組成物を調製した。次いで、実施例 153と 同様にして硬化膜/ PETフィルムの積層体を作製した。形成された硬化膜につ!/、て 行った鉛筆硬度試験および耐スクラッチ性の評価、硬化膜/ PETフィルムの積層体 について行ったカール量、折り曲げ性および密着性の評価結果を表 13に示した。
[0283] [表 13]
Figure imgf000080_0001
[0284] 実施例 161
実施例 12で得られたビュル系重合体 100質量部、参考例 6で得られた処理酸化ジ ルコニゥム粒子 66質量部、前記光重合開始剤 2を 10質量部、 2 ブタノン (メチル ェチルケトン) 160質量部を混合、撹拌して、塗工液を調製した。調製した塗工液は 、処理酸化ジルコニウム粒子の分散性が良く透明なものであった。
[0285] 次いで、両面に易接着処理が施された厚さ 100 mのポリエチレンテレフタレート( PET)フィルム(三菱化学ポリエステルフィルム社製、品番「0— 300」)上に、バーコ 一ター # 14を用いて、上記塗工液を塗布した。その後、 80°Cで 2分間加熱乾燥して 2—ブタノンを蒸発させ、コート材用組成物層を形成した。この PETフィルムに塗布し たコート材用組成物層を、超高圧水銀ランプを有する UV照射機(アイグラフィックス 株式会社製)を用いて、照射積算光量 300mj/cm2で紫外線硬化させ硬化膜を形 成した。形成された硬化膜の厚さは 5 a mであった。
[0286] そして、作製した硬化膜につ!/、て屈折率の測定を行い、硬化膜/ PETフィルムの 積層体について光線透過率、濁度およびカール量の測定、 PETフィルム上に形成さ れた硬化膜の鉛筆硬度の測定を行った。結果を表 14に示した。
[0287] 実施例 162
ビュル系重合体を、実施例 12で得られたビュル系重合体から実施例 47で得られ たァミン付加物 5に変更したこと以外は、実施例 161と同様にして塗工液を調製し た。調整した塗工液は、処理酸化ジルコニウム粒子の分散性が良く透明なものであつ た。次いで、実施例 161と同様にして硬化膜/ PETフィルムの積層体を作製した。そ して、作製した硬化膜について屈折率の測定を行い、硬化膜/ PETフィルムの積層 体について光線透過率、濁度およびカール量の測定、 PETフィルム上に形成された 硬化膜の鉛筆硬度の測定を行った。結果を表 14に示した。
[0288] 比較例 11
ジペンタエリスリトールへキサアタリレート(DPHA) (商品名:「ライトアタリレート DPE 6A」、共栄社化学株式会社製) 50質量部、参考例 6で得られた処理酸化ジルコ二 ゥム粒子 33質量部、前記光重合開始剤 2を 5質量部、 2 ブタノン (メチルェチル ケトン) 63質量部を混合、撹拌して、塗工液を調製した。次いで、実施例 161と同様 にして硬化膜/ PETフィルムの積層体を作製した。そして、作製した硬化膜につい て屈折率の測定を行い、硬化膜/ PETフィルムの積層体について光線透過率、濁 度およびカール量の測定、 PETフィルム上に形成された硬化膜の鉛筆硬度の測定 を行った。結果を表 14に示した。
[0289] 実施例 163
実施例 46で得られたァミン付加物 5を 100質量部、前記光重合開始剤 2を 10 質量部、 2 ブタノン (メチルェチルケトン) 160質量部を混合、撹拌して、塗工液を 調製した。次いで、実施例 161と同様にして硬化膜/ PETフィルムの積層体を作製 した。そして、作製した硬化膜について屈折率の測定を行い、硬化膜/ PETフィノレ ムの積層体について光線透過率、濁度およびカール量の測定、 PETフィルム上に形 成された硬化膜の鉛筆硬度の測定を行った。結果を表 14に示した。
[0290] [表 14]
Figure imgf000083_0001
実施例 164
実施例 8で得られたビュル系重合体((ホモ VEEA)— 5) 100質量部、トルエン 40 質量部、 2—ヒドロキシ一 2—メチル 1—フエ二ループロパン一 1—オン(商品名「ダ 口キュア 1173」、チバ 'スペシャルティ'ケミカルズ株式会社製)(以下、「光重合開始 剤— 3」という) 5質量部を混合 ·撹拌して、塗工液を調製した。
[0292] 外径 35mm、内径 31mm、長さ 100mmのアクリル樹脂製パイプ外周面上に、スプ レーにより塗工液を塗布した。その後、 80°Cで 2分間加熱乾燥してトルエンを蒸発さ せ、コート材用組成物層を形成した。このアクリル樹脂製パイプに塗布したコート材用 組成物層を、超高圧水銀ランプを有する UV照射機 (アイグラフィックス株式会社製) を用いて、照射積算光量 500mj/cm2で紫外線硬化させた。
[0293] 硬化物層の厚さを測定したところ、 20 H mであった。硬化後の硬化物層にはクラッ クは見られな力 た。硬化物層の密着性試験を行ったところ評価は〇であった。結果 を表 15に示す。
[0294] 実施例 165〜; 168、比較例 12
ビュル系重合体を表 15に示す重合体またはオリゴマーに変更した以外は、実施例
164と同様にして硬化物層/アクリル樹脂製パイプの積層体を作製した。形成された 硬化物層につ!/、て行った評価結果を表 15に示す。
[0295] [表 15]
〔〕0962
Figure imgf000085_0002
Figure imgf000085_0001
。この湾曲した基体に塗布したコート材用組成物層を、超高圧水銀ランプを有する U V照射機(アイグラフィックス株式会社製)を用いて、照射積算光量 500mj/cm2で 紫外線硬化させた。
[0297] 硬化物層の厚さを測定したところ、 20 H mであった。硬化後の硬化物層にはクラッ クが発生していな力 た。硬化物層の密着性試験を行ったところ評価は〇であり、耐 スクラッチ性試験での評価は AAであった。
[0298] 実施例 170
シート基体を PMMAに変更したこと以外は、実施例 169と同様にして硬化物層/ シート基体の積層体を作製した。硬化後の硬化物層にはクラックが発生していなかつ た。硬化物層の密着性試験を行ったところ評価は〇であり、耐スクラッチ性試験での 評価は AAであった。
[0299] 実施例 171
シート基体を ABSに変更したこと以外は、実施例 169と同様にして硬化物層/シ ート基体の積層体を作製した。硬化後の硬化物層にはクラックが発生していな力 た 。硬化物層の密着性試験を行ったところ評価は〇であり、耐スクラッチ性試験での評 価は AAであった。
[0300] 比較例 13
塗工液を比較例 12で使用した多官能アタリレートのトルエン溶液に変更したこと以 外は、実施例 169と同様にして硬化物層/シート基体の積層体を作製した。硬化後 の硬化物層には多数のクラックが発生していた。硬化物層の密着性試験を行ったと ころ評価は〇であり、耐スクラッチ性試験での評価は Aであった。
[0301] 実施例 172
縦 6cm X横 9cm X厚さ 1. 5mmのアクリル樹脂製プラスチックケースの外側に実施 例 164で調製した塗工液をスプレーにより塗工した。その後、 40°Cで 5分間加熱乾 燥してトルエンを蒸発させ、コート材用組成物層を形成した。このアクリル樹脂基体に 塗布したコート材用組成物層を、超高圧水銀ランプを有する UV照射機(アイグラフィ ックス株式会社製)を用いて、照射積算光量 500mj/cm2で紫外線硬化させた。
[0302] 硬化物層の厚さを測定したところ、 100 μ mであった。硬化後の硬化物層にはクラ ックが発生して!/、なかった。硬化物層の耐スクラッチ性試験での評価は AAであった
[0303] 比較例 14
塗工液を比較例 12で使用した多官能アタリレートのトルエン溶液に変更したこと以 外は、実施例 172と同様にして硬化物層/アクリル基体の積層体を作製した。硬化 後の硬化物層には多数のクラックが発生していた。硬化物層の耐スクラッチ性試験で の評価は Aであった。
[0304] 比較例 15
コート材用組成物を塗布して!/、な!/、場合の耐スクラッチ性試験での評価は Eであつ た。
[0305] 実施例 173
実施例 1で得られたビュル系重合体((ホモ VEEA)— 1)をガラス基体上に載置し、 その上力も厚さ 25 mの PETフィルムをカバーし、ビュル系重合体を押し広げた。こ の樹脂層を、電子線照射機(商品名「EBC300— 60」、株式会社 NHVコーポレーシ ヨン製)を用いて、加速電圧 300kV、照射線量 150kGyで電子線硬化させた。厚さ 2 00 11 mの樹脂硬化物を得ることができた。
[0306] 実施例 174
ビュル系重合体を実施例 4で得られた重合体((ホモ VEM) )に変更した以外は実 施例 173と同様にして、厚さ 200 mの樹脂硬化物を得ることができた。
[0307] 実施例 175
ビュル系重合体を実施例 6で得られた重合体( (VEEA— IBVE) )に変更した以外 は実施例 173と同様にして、厚さ 200 mの樹脂硬化物を得ることができた。
[0308] 実施例 176
実施例 1で得られたビュル系重合体((ホモ VEEA)— 1) 100質量部、前記光重合 開始剤 3を 3質量部の混合物をガラス基体の上に載置し、ガラス基体の両端に厚さ 40 111のガイドを置き、ガラス棒で押し広げた。このガラス基体に塗布した樹脂層を、 250W超高圧水銀ランプを有する UV照射機(商品名「PM25C— 100」、ゥシォ電 機株式会社製)を用いて、照射積算光量 lj/cm2で紫外線硬化させた。樹脂表面は 、ベたつきがなぐ硬化していることが確認された。
[0309] 実施例 177
ビュル系重合体を実施例 6で得られた重合体( (VEEA— IBVE) )に変更した以外 は実施例 176と同様にして紫外線硬化させた。樹脂表面は、ベたつきがなぐ硬化し ていることが確認された。
[0310] 比較例 16
トリメチロールプロパン— 6EO付加物—トリアタリレート 91質量部、トリメチロールプ 口パン— 9EO付加物—トリアタリレート 9質量部、前記光重合開始剤— 3を 3質量部 の混合物をガラス基体上に載置し、ガラス基体の両端に厚さ 40 mのガイドを置き、 ガラス棒で押し広げた。このガラス基体に塗布した樹脂層を、 250W超高圧水銀ラン プを有する UV照射機(商品名「PM25C— 100」、ゥシォ電機株式会社製)を用いて 、照射積算光量 4j/cm2で紫外線硬化させたが、樹脂表面は硬化が不充分であつ た。
産業上の利用可能性
[0311] 本発明のコート材用組成物は、(メタ)アタリロイル基ペンダント型重合体を用いてい るので、硬化後の塗膜の硬度が高ぐ傷つきにくい硬化物となる。また、ビュル系重 合体を用いているので、ビュル系単量体を用いた場合と比較すると、塗膜剥がれが 生じにくぐ硬化後の反りが小さい積層体を与えることができる。

Claims

請求の範囲
[1] 下記式(1) :
[化 1] 卜し Hつ― CH"
Figure imgf000089_0001
[式中、 R1は炭素数 2〜8のアルキレン基、 R ま水素原子またはメチル基、 mは正の 整数である]
で示される繰り返し単位を有するビュル系重合体を含有することを特徴とするコート 材用組成物。
[2] 前記ビュル系重合体中の上記式(1)で示される繰返し単位の質量%値の 3乗と、 該ビュル系重合体の数平均分子量との積の値が、 600 X 106以下である請求項 1に 記載のコート材用組成物。
[3] 前記ビュル系重合体の重量平均分子量(Mw)と数平均分子量(Mn)との比である 分子量分布(Mw/Mn)が、 1. 0〜2. 4である請求項 1に記載のコート材用組成物 前記ビュル系重合体の有する炭素 炭素二重結合の少なくとも一部に 2級ァミン が付加されて!/、る請求項 1に記載のコート材用組成物。
下記式(3):
[化 2]
Figure imgf000089_0002
[式中、 R1は炭素数 2〜8のアルキレン基を表し、 R2は水素原子またはメチル基を表 し、 R3および R4は同一または異なって、炭素数 1〜4のヒドロキシアルキル基、炭素数 ;!〜 6のアルキル基または炭素数 6〜; 12のァリール基を表し、さらに R3と R4が窒素原 子または酸素原子を介して若しくは介さずに 5〜8員環を形成していても良ぐ mは正 の数を表す]
および/または下記式(4) :
[化 3]
Figure imgf000090_0001
[式中、 R1は炭素数 2〜8のアルキレン基を表し、 R2は水素原子またはメチル基を表 し、 R3および R4は同一または異なって、炭素数 1〜4のヒドロキシアルキル基、炭素数 ;!〜 6のアルキル基または炭素数 6〜; 12のァリール基を表し、さらに R3と R4が窒素原 子または酸素原子を介して若しくは介さずに 5〜8員環を形成していても良ぐ mは正 の数を表す]
で示される繰返し単位を有する請求項 4に記載のコート材用組成物。
[6] 前記ビュル系重合体が、ポリジメチルシロキサン構造を有する請求項 1に記載のコ ート材用組成物。
[7] ウレタン (メタ)アタリレート、ォキシエチレン基含有 (メタ)アクリル系単量体およびケ トン系溶剤よりなる群から選択される少なくとも 1種を含有する請求項 1に記載のコー ト材用組成物。
[8] 平均粒子径が;!〜 lOOnmの無機微粒子および/または有機化合物にて被覆され た平均粒子径が 1〜; !OOnmの無機微粒子を含有する請求項 1に記載のコート材用 組成物。
[9] (a)単量体、オリゴマーおよびポリマーよりなる群から選択される少なくとも 1種の重 合性化合物の合計含有量が 80質量%以上であり、
(b)コート材用組成物の硬化収縮率が 8. 5%以下であり、かつ、
(c)コート材用組成物を硬化して得られる硬化膜の耐スクラッチ性評価が AAまたは Aであることを特徴とする重合性化合物含有コート材用組成物。
[10] 請求項 1、 4または 8のいずれかに記載のコート材用組成物、または請求項 9に記載 の重合性化合物含有コート材用組成物を硬化させて得られることを特徴とする硬化 物。 [11] 基体と、該基体の少なくとも一方の面に、請求項 1、 4または 8のいずれかに記載の コート材用組成物、または請求項 9に記載の重合性単量体含有コート材用組成物を 硬化させて得られる層を有することを特徴とする積層体。
[12] 基体と該基体上に形成された情報記録層を有し、該情報記録層がコート層で覆わ れて!/、る光記録媒体、耐熱アクリル樹脂を主成分として含む基体表面がコート層で 覆われている積層体、および、基体が 3次元形状構造体であって、該基体がコート層 で覆われている 3次元形状積層体よりなる群から選択される少なくとも 1種の物品に おいて、
前記コート層が、請求項 1、 4または 8のいずれかに記載のコート材用組成物、また は請求項 9に記載の重合性化合物含有コート材用組成物の硬化膜から形成されて いることを特徴とする物品。
[13] 下記式(2) :
Figure imgf000091_0001
[式中、 R1は炭素数 2〜8のアルキレン基、 R2は水素原子またはメチル基、 mは正の 整数である]
で示されるビュルエーテルをへテロポリ酸の存在下で重合することを特徴とするポリ ビュルエーテルの製造方法。
[14] ヘテロポリ酸を反応器に連続滴下して重合する請求項 13に記載のポリビュルエー テルの製造方法。
[15] 基体上に塗布されたコート材用組成物に紫外線を照射させて硬化物を製造する方 法であって、
少なくとも、第 1工程にて、紫外線照射を行い流動性の無い状態を得た後、 第 2工程にて紫外線照射強度を変化させ、硬化度を高める工程を有することを特 徴とする硬化物の製造方法。
PCT/JP2007/073711 2006-12-08 2007-12-07 コート材用組成物 WO2008072578A1 (ja)

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2006-331625 2006-12-08
JP2006331625 2006-12-08
JP2007052572A JP2008214452A (ja) 2007-03-02 2007-03-02 樹脂組成物および光記録媒体
JP2007052580A JP2008214453A (ja) 2007-03-02 2007-03-02 ポリビニルエーテルの製造方法
JP2007-052572 2007-03-02
JP2007-052580 2007-03-02
JP2007101035A JP2008255281A (ja) 2007-04-06 2007-04-06 ビニル系重合体およびそれを用いた硬化性樹脂組成物
JP2007-101035 2007-04-06
JP2007-152514 2007-06-08
JP2007152514A JP5139721B2 (ja) 2007-06-08 2007-06-08 ハードコート用材料および積層体
JP2007182653A JP2009019110A (ja) 2007-07-11 2007-07-11 コート材用硬化性樹脂組成物
JP2007-182653 2007-07-11

Publications (1)

Publication Number Publication Date
WO2008072578A1 true WO2008072578A1 (ja) 2008-06-19

Family

ID=39511597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/073711 WO2008072578A1 (ja) 2006-12-08 2007-12-07 コート材用組成物

Country Status (2)

Country Link
TW (1) TWI437054B (ja)
WO (1) WO2008072578A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014531489A (ja) * 2011-09-19 2014-11-27 ヘンケル ユーエス アイピー エルエルシー 高官能化樹脂ブレンド
JP2016023235A (ja) * 2014-07-18 2016-02-08 日立化成株式会社 硬化性組成物
JP2018083935A (ja) * 2016-11-17 2018-05-31 信越化学工業株式会社 伸縮性膜及びその形成方法、並びに伸縮性配線膜及びその製造方法
WO2018139418A1 (ja) * 2017-01-30 2018-08-02 シャープ株式会社 防汚性フィルム
JPWO2018151060A1 (ja) * 2017-02-17 2019-07-25 シャープ株式会社 防汚性フィルム

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102585066B (zh) * 2011-06-16 2013-11-06 湖北固润科技股份有限公司 含乙烯基醚官能团的聚(甲基)丙烯酸酯低聚物
TWI636832B (zh) * 2017-08-09 2018-10-01 勤美信實業有限公司 Method for forming strong curing film

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4913212B1 (ja) * 1970-12-04 1974-03-29
JPS5245597A (en) * 1975-10-09 1977-04-11 Tokyo Ink Kk Ultraviolet rays curing accelerator
JPH1087722A (ja) * 1996-08-23 1998-04-07 Lubrizol Corp:The ヘテロポリ酸で触媒したオレフィンの重合
JP2002256022A (ja) * 2001-03-05 2002-09-11 Nippon Shokubai Co Ltd (メタ)アクリロイル基を側鎖に有するビニルエーテル系重合体の製造方法
JP2003162847A (ja) * 2001-09-13 2003-06-06 Tdk Corp 光記録媒体の製造方法及び製造装置
JP2004093947A (ja) * 2002-08-30 2004-03-25 Fuji Photo Film Co Ltd 反射防止膜、反射防止フィルムおよび画像表示装置
JP2004152418A (ja) * 2002-10-30 2004-05-27 Tdk Corp 光情報媒体
JP2005152751A (ja) * 2003-11-25 2005-06-16 Tdk Corp 保護層の形成方法及び光情報媒体の製造方法
JP2005234554A (ja) * 2004-01-23 2005-09-02 Fuji Photo Film Co Ltd 反射防止フィルム、偏光板および画像表示装置
JP2006241189A (ja) * 2005-02-28 2006-09-14 Osaka Univ ポリアルケニルエーテルの製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4913212B1 (ja) * 1970-12-04 1974-03-29
JPS5245597A (en) * 1975-10-09 1977-04-11 Tokyo Ink Kk Ultraviolet rays curing accelerator
JPH1087722A (ja) * 1996-08-23 1998-04-07 Lubrizol Corp:The ヘテロポリ酸で触媒したオレフィンの重合
JP2002256022A (ja) * 2001-03-05 2002-09-11 Nippon Shokubai Co Ltd (メタ)アクリロイル基を側鎖に有するビニルエーテル系重合体の製造方法
JP2003162847A (ja) * 2001-09-13 2003-06-06 Tdk Corp 光記録媒体の製造方法及び製造装置
JP2004093947A (ja) * 2002-08-30 2004-03-25 Fuji Photo Film Co Ltd 反射防止膜、反射防止フィルムおよび画像表示装置
JP2004152418A (ja) * 2002-10-30 2004-05-27 Tdk Corp 光情報媒体
JP2005152751A (ja) * 2003-11-25 2005-06-16 Tdk Corp 保護層の形成方法及び光情報媒体の製造方法
JP2005234554A (ja) * 2004-01-23 2005-09-02 Fuji Photo Film Co Ltd 反射防止フィルム、偏光板および画像表示装置
JP2006241189A (ja) * 2005-02-28 2006-09-14 Osaka Univ ポリアルケニルエーテルの製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014531489A (ja) * 2011-09-19 2014-11-27 ヘンケル ユーエス アイピー エルエルシー 高官能化樹脂ブレンド
JP2016023235A (ja) * 2014-07-18 2016-02-08 日立化成株式会社 硬化性組成物
JP2018083935A (ja) * 2016-11-17 2018-05-31 信越化学工業株式会社 伸縮性膜及びその形成方法、並びに伸縮性配線膜及びその製造方法
WO2018139418A1 (ja) * 2017-01-30 2018-08-02 シャープ株式会社 防汚性フィルム
JPWO2018139418A1 (ja) * 2017-01-30 2019-12-19 シャープ株式会社 防汚性フィルム
JPWO2018151060A1 (ja) * 2017-02-17 2019-07-25 シャープ株式会社 防汚性フィルム

Also Published As

Publication number Publication date
TW200838950A (en) 2008-10-01
TWI437054B (zh) 2014-05-11

Similar Documents

Publication Publication Date Title
EP2840110B1 (en) Method for manufacturing hard coating film
JP4003800B2 (ja) フィルム保護層用活性エネルギー線硬化型樹脂組成物及びそれを用いたフィルム
WO2008072578A1 (ja) コート材用組成物
JP5898551B2 (ja) 半硬化物、硬化物およびそれらの製造方法、光学部品、硬化樹脂組成物
JP5664970B2 (ja) 活性エネルギー線硬化型樹脂組成物
WO2014030851A1 (ko) 하드코팅 필름
JP5555089B2 (ja) ウレタン(メタ)アクリレートおよびそれを含有する光硬化性樹脂組成物
JP2013173871A (ja) 組成物、帯電防止性コート剤及び帯電防止性積層体
JP6048804B2 (ja) 活性エネルギー線硬化型樹脂、活性エネルギー線硬化型樹脂組成物、活性エネルギー線硬化型ハードコート剤、それらを用いた硬化膜、硬化膜が積層された加飾フィルム及び加飾フィルムを用いたプラスチック射出成型品。
TWI510530B (zh) 製備塑膠膜的方法
JP2009108211A (ja) 硬化性組成物および硬化物
WO2016088777A1 (ja) 硬化性組成物及び膜
JP5819481B2 (ja) ウレタン(メタ)アクリレートおよびそれを含有する光硬化性樹脂組成物
JP5255962B2 (ja) 活性エネルギー線硬化性被膜形成組成物
JP5892799B2 (ja) 伸びがあり耐傷つき性に優れる硬化物を形成するウレタン(メタ)アクリレートおよびそれを含有する光硬化性樹脂組成物
JP5226373B2 (ja) 硬化性樹脂組成物およびその硬化物
JP2007191507A (ja) コーティング剤組成物
JP6394258B2 (ja) 硬化性組成物、硬化物及び積層体
JP2018135481A (ja) 硬化性組成物及び膜
JP6175338B2 (ja) 光学積層体シートの製造方法
JPWO2016104555A1 (ja) 樹脂シートの製造方法
JPWO2019044786A1 (ja) 樹脂シート及びこれを製造するための硬化型組成物
JP6701879B2 (ja) 硬化性組成物、硬化物及び積層体
JP6609895B2 (ja) 硬化性樹脂組成物
JP2008063400A (ja) 硬化性樹脂組成物および硬化物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07850289

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07850289

Country of ref document: EP

Kind code of ref document: A1