WO2008065970A1 - Module de cellule solaire et procédé de fabrication de module de cellule solaire - Google Patents

Module de cellule solaire et procédé de fabrication de module de cellule solaire Download PDF

Info

Publication number
WO2008065970A1
WO2008065970A1 PCT/JP2007/072670 JP2007072670W WO2008065970A1 WO 2008065970 A1 WO2008065970 A1 WO 2008065970A1 JP 2007072670 W JP2007072670 W JP 2007072670W WO 2008065970 A1 WO2008065970 A1 WO 2008065970A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive film
solar cell
cell module
photoelectric conversion
conversion layer
Prior art date
Application number
PCT/JP2007/072670
Other languages
English (en)
French (fr)
Inventor
Shigeo Yata
Original Assignee
Sanyo Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co., Ltd. filed Critical Sanyo Electric Co., Ltd.
Priority to US12/516,581 priority Critical patent/US20100065115A1/en
Priority to CN2007800437596A priority patent/CN101542750B/zh
Priority to EP07832399A priority patent/EP2093803A1/en
Priority to KR1020097011113A priority patent/KR101048937B1/ko
Publication of WO2008065970A1 publication Critical patent/WO2008065970A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • H01L31/0463PV modules composed of a plurality of thin film solar cells deposited on the same substrate characterised by special patterning methods to connect the PV cells in a module, e.g. laser cutting of the conductive or active layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention includes a first electrode laminated on a translucent substrate, a photoelectric conversion layer laminated on the first electrode, and a second electrode laminated on the photoelectric conversion layer,
  • the two electrodes relate to a solar cell module including a translucent conductive film and a metal film, and a method for manufacturing the solar cell module.
  • Figure 1 shows an example of a cross-sectional view of a conventional thin-film solar cell module.
  • a conventional thin-film solar cell module 10 includes a first translucent conductive film 12, a photoelectric conversion layer 13, and a back electrode 14 on a translucent substrate 11 such as glass. Are sequentially laminated while being patterned by laser irradiation.
  • the protective material 16 force S such as Poly Ethylene Terephthalate (PET) is disposed on the back electrode 14 via the filler 15 such as Ethylene Vinyl Acetate (EVA).
  • the back electrode 14 is formed by laminating a metal thin film 14b on a second light-transmitting conductive film 14a (see, for example, Patent Document 1). According to this, it is possible to easily perform patterning by laser irradiation by effectively utilizing the laser ablation phenomenon in the second translucent conductive film 14a that occurs when the back electrode 14 is patterned by laser irradiation. Can do. That is, the back electrode 14 is patterned by simultaneously irradiating the second light-transmitting conductive film 14a and the metal thin film 14b with laser.
  • Patent Document 1 JP-A-8-56004
  • the solar cell module 10 is used outdoors for a long period of time. Therefore, even if moisture enters the solar cell module 10, the solar cell module 10 needs to have sufficient moisture resistance to maintain a stable and high power generation.
  • the solar cell module 10 as shown in FIG. 1, a part of the second light transmissive conductive film 14a is exposed without being covered with the metal thin film 14b. Therefore, if the moisture that has infiltrated the protective material 16 and the filler 15 reaches the second light transmitting conductive film 14a, the second light transmitting conductive film 14a is easily deteriorated. As a result, there was a problem that the solar cell module 10 could not maintain the stable high V and power generation! /, And! /.
  • the present invention has been made in view of the above problems, and provides a solar cell module and a method for manufacturing the solar cell module that can maintain high power generation even when moisture enters. With the goal.
  • a solar cell module includes a translucent substrate, a first electrode laminated on the translucent substrate, and a photoelectric conversion laminated on the first electrode.
  • a solar cell module comprising: a layer; a second electrode laminated on the photoelectric conversion layer; and a groove separating the second electrode, wherein the second electrode is laminated on the photoelectric conversion layer.
  • a translucent conductive film and a metal film laminated on the translucent conductive film, and the metal film has a width that is greater than the width at which the translucent conductive film is separated in the groove. The main point is that they are separated by a narrow width.
  • the translucent conductive film is covered with the metal film and is not exposed, even if the infiltrated moisture reaches the back electrode, The translucent conductive film sealed with the metal film is not deteriorated by moisture and can maintain a stable high power / generated power.
  • a second feature of the present invention relates to the first feature of the present invention, wherein the translucent conductive film is in contact with the first electrode while covering a side wall of the photoelectric conversion layer in the groove.
  • the gist of the solar cell module is characterized in that the metal film is in contact with the first electrode while covering the side wall of the translucent conductive film in the groove.
  • a third feature of the present invention relates to the first feature of the present invention, wherein the metal film covers the photoelectric conversion layer while covering the side wall of the translucent conductive film in the groove.
  • the gist of the solar cell module is that it is in contact.
  • the fourth feature of the present invention is that the translucent substrate and the first electrode laminated on the translucent substrate. And a photoelectric conversion layer laminated on the first electrode, a translucent conductive film laminated on the photoelectric conversion layer, and a metal film laminated on the translucent conductive film, A method for manufacturing a solar cell module having a groove part that separates a photoelectric conversion layer, the translucent conductive film, and the metal film, wherein the groove part is irradiated with a laser beam to thereby form one of the photoelectric conversion layers.
  • Step A for removing the portion Step B for laminating the light-transmitting conductive film on the photoelectric conversion layer, and Step for removing a part of the light-transmitting conductive film by irradiating the groove with laser light C, step D of laminating a metal film on the translucent conductive film, and step E of removing a part of the metal film by irradiating the groove with laser light.
  • the width for removing a part of the metal film is a step.
  • the gist of the present invention is a method for producing a solar cell module, characterized in that C and V are narrower than the width from which part of the translucent conductive film is removed.
  • FIG. 1 is a cross-sectional view showing a configuration of a conventional solar cell module.
  • FIG. 2 is a top view of the solar cell module according to the embodiment.
  • FIG. 3 is an enlarged cross-sectional view of the solar cell module according to the embodiment taken along the line AA in FIG. 2 (part 1).
  • FIG. 4 is an enlarged cross-sectional view of the solar cell module according to the embodiment taken along the line BB in FIG. 2 (part 2).
  • FIG. 5 (A) is a view for explaining the method of manufacturing the solar cell module according to the embodiment along section AA in FIG. 2 (part 1).
  • FIG. 5 (B) is a view for explaining the method for manufacturing the solar cell module according to the embodiment, taken along the line BB in FIG. 2 (part 1).
  • FIG. 6 (A) is a view for explaining the method for manufacturing the solar cell module according to the embodiment along section AA in FIG. 2 (part 2).
  • FIG. 6 (B) is a view for explaining the method for manufacturing the solar cell module according to the embodiment along section B-B in FIG. 2 (part 2).
  • FIG. 7 is a view for explaining the method for manufacturing the solar cell module according to the embodiment, taken along the line AA in FIG. 2 (part 3).
  • FIG. 8 is a view for explaining the method for manufacturing the solar cell module according to the embodiment along the AA line in FIG. 2 (part 4).
  • FIG. 8B is a view for explaining the method for manufacturing the solar cell module according to the embodiment along the BB section in FIG. 2 (part 3).
  • FIG. 9 (A) is a view for explaining the method of manufacturing the solar cell module according to the embodiment along section AA in FIG. 2 (part 5).
  • FIG. 9B is a view for explaining the method for manufacturing the solar cell module according to the embodiment along the BB line in FIG. 2 (part 4).
  • FIG. 10 (A) is a view for explaining the method for manufacturing the solar cell module according to the embodiment along section AA in FIG. 2 (part 6).
  • FIG. 10B is a view for explaining the method for manufacturing the solar cell module according to the embodiment along the BB line in FIG. 2 (part 5).
  • FIG. 2 shows a top view of the solar cell module 10 according to the first embodiment of the present invention.
  • the solar cell module 10 includes a power generation region 21 including a plurality of photovoltaic elements 20 on a translucent substrate 11, a non-power generation region 22 provided around the power generation region 21, and a first groove 30. And a second groove portion 40.
  • the translucent substrate 11 is a single substrate of the solar cell module 10.
  • the translucent substrate 11 is made of a member having light transmissivity and water shielding properties such as glass.
  • the photovoltaic element 20 includes a first light-transmissive conductive film 12, a photoelectric conversion layer 13, and a back electrode 14 sequentially. It is formed by stacking.
  • the first transparent conductive film 12 of one photovoltaic element 20 is connected to the back electrode 14 of another photovoltaic element 20 adjacent in the first groove 30. As a result, the photovoltaic elements 20 are electrically connected in series.
  • the first groove portion 30 electrically connects the photoelectric conversion layer 13 and the back electrode 14 of one photovoltaic element 20 and the photoelectric conversion layer 13 and the back electrode 14 of another adjacent photovoltaic element 20. It is a groove to separate.
  • the power generation region 21 is formed by electrically connecting a plurality of photovoltaic elements 20 in series.
  • the power generation region 21 is a region that contributes to power generation.
  • the non-power generation area 22 is provided around the power generation area 21 via the second groove 40.
  • the non-power generation region 22 is a region that does not contribute to power generation.
  • the non-power generation region 22 is a laminate formed by sequentially laminating the first light-transmissive conductive film 12, the photoelectric conversion layer 13, and the back electrode 14.
  • the second groove part 40 is a groove that electrically separates the power generation region 21 and the non-power generation region 22.
  • FIG. 3 is a cross-sectional view taken along the line AA in FIG. 2, and is an enlarged view of the lower part (portion surrounded by ⁇ ) in FIG.
  • the solar cell module 10 includes a translucent substrate 11, a first translucent conductive film 12 (first electrode) laminated on the translucent substrate 11, a first electrode A photoelectric conversion layer 13 laminated on the translucent conductive film 12 and a back electrode 14 (second electrode) laminated on the photoelectric conversion layer 13 are provided.
  • the first light transmissive conductive film 12 is laminated on the light transmissive substrate 11. By removing a part of the first translucent conductive film 12 in the first groove portion 30, the first translucent conductive film 12 is formed in a strip shape.
  • the first translucent conductive film 12 is made of ZnO, InO, SnO, CdO, TiO,
  • ZnO is suitable as a light-transmitting conductive film material because it has high light transmittance, low resistance, and plasticity and is inexpensive.
  • the photoelectric conversion layer 13 is stacked on the first light-transmissive conductive film 12.
  • the photoelectric conversion layer 13 is formed in a strip shape by removing a part of the photoelectric conversion layer 13 in the first groove 30.
  • the photoelectric conversion layer 13 is composed of an amorphous silicon semiconductor.
  • the photoelectric conversion layer 13 is formed by stacking a microcrystalline silicon semiconductor over an amorphous silicon semiconductor. Since amorphous silicon and microcrystalline silicon have different light absorption wavelengths, such a tandem solar cell module can effectively use the solar spectrum.
  • the term “microcrystal” means a material containing a large number of fine crystal grains, and also means a state partially including an amorphous state.
  • the back electrode 14 has a two-layer structure in which a metal film 14b is laminated on a second translucent conductive film 14a.
  • the second light transmissive conductive film 14a is stacked on the photoelectric conversion layer 13. 1st groove 30
  • the second translucent conductive film is formed in a strip shape by removing a part of the second translucent conductive film 14a. As shown in FIG. 3, let A be the width from which part of the second light-transmissive conductive film 14a has been removed.
  • the metal film 14b is stacked on the second light-transmissive conductive film 14a. By removing a part of the metal film 14b in the first groove portion 30, the metal film 14b is formed in a strip shape. As shown in FIG. 3, let B be the width from which part of the metal film 14b has been removed.
  • the width B from which a part of the metal film 14b is removed is larger than the width A from which a part of the second light-transmissive conductive film 14a is removed.
  • the metal film 14b is narrower than the width A from which the second light-transmissive conductive film 14a is separated in the first groove portion 30, and is separated by the width B! /.
  • the second light transmissive conductive film 14a is formed on the first light transmissive conductive film 12 while covering the side wall of the photoelectric conversion layer 13. Touch.
  • the metal film 14b is in contact with the first light-transmissive conductive film 12 while covering the side wall of the second light-transmissive conductive film 14a.
  • the metal film 14b is in contact with the first light-transmissive conductive film 12 while covering the side wall of the second light-transmissive conductive film 14a formed on the photoelectric conversion layer 13 in the first groove portion 30.
  • the second light-transmissive conductive film 14a is covered with the metal film 14b and is not exposed to the outside.
  • the second light-transmitting conductive film 14a is made of ZnO, InO, SnO, C.
  • the metal film 14b is composed of one type selected from a group of Ag, Al, Ti, Pt, Mo, Ta, and the like, and a certain!
  • FIG. 4 is a cross-sectional view taken along the line BB in FIG. 2, and is an enlarged view of the right part of FIG. 2 (the part surrounded by / 3).
  • the second translucent conductive film 14a is stacked on the photoelectric conversion layer 13. In the second groove 40
  • a part of the two translucent conductive film 14a is removed. As shown in FIG. 4, the second translucent conductive film
  • the metal film 14b is laminated on the second light-transmissive conductive film 14a. A part of the metal film 14b is removed in the second groove 40. As shown in FIG. 4, the width from which a part of the metal film 14b is removed is represented by.
  • the width A from which a part of the metal film 14b is removed and the width A from which a part of the second light-transmissive conductive film 14a is removed. narrow.
  • the metal film 14b is separated in the second groove part 40 by a width B ′ that is narrower than the width A ′ from which the second light-transmissive conductive film 14a is separated.
  • the metal film 14b is formed of the second light-transmissive conductive film 14a formed on the photoelectric conversion layer 13 in the second groove portion 40.
  • the photoelectric conversion layer 13 is in contact with the side wall.
  • the second light-transmissive conductive film 14a is covered with the metal film 14b and is not exposed to the outside.
  • a first light-transmitting conductive film 12 is formed on the light-transmitting substrate 11 by sputtering or the like. As shown in FIG. 5A, the first translucent conductive film 12 is turned into a strip shape by irradiation with a YAG laser. Thereby, the first light-transmissive conductive film 12 is electrically separated between the photovoltaic elements 20. Further, as shown in FIG. 5 (B), the first translucent conductive film 12 has a YAG layer. Irradiated by reciprocating multiple times, the power is separated into the power generation region 21 side and the non-power generation region 22 side. That is, a part of the first translucent conductive film 12 is removed in the second groove portion 40. YAG laser irradiation is performed from the light incident side or from the back side opposite to the light incident side with force S.
  • the photoelectric conversion layer 13 is formed by a plasma CVD method. Specifically, as shown in FIGS. 6A and 6B, after pin-type amorphous silicon semiconductors are sequentially stacked on the first light-transmitting conductive film 12, Pin-type microcrystals are formed. Silicon semiconductors are sequentially stacked to form the photoelectric conversion layer 13.
  • the photoelectric conversion layer 13 is patterned in a strip shape by irradiating the YAG laser from the light incident side to the position where the patterning force of the first light-transmitting conductive film 12 is also separated by a predetermined distance. That is, a part of the photoelectric conversion layer 13 is removed in the first groove portion 30. As a result, the photoelectric conversion layer 13 is electrically separated for each photovoltaic element 20 as shown in FIG.
  • a second light-transmissive conductive film 14a is formed on the photoelectric conversion layer 13 by sputtering or the like.
  • the second translucent conductive film 14a is patterned in a strip shape by irradiating the back surface side with a YAG laser at a position spaced from the patterning position of the photoelectric conversion layer 13 by a predetermined distance. That is, a part of the translucent conductive film 14 a is removed in the first groove portion 30. Accordingly, as shown in FIG. 9A, the translucent conductive film 14 a is electrically separated for each photovoltaic element 20.
  • the second light-transmissive conductive film 14a is irradiated with a YAG laser reciprocated multiple times from the back side to generate the power generation region 21 side and the non-power generation region 22 side. And are electrically separated. That is, the partial force of the second light-transmissive conductive film 14a is removed in the second groove portion 40.
  • a metal film 14b is formed on the second light-transmitting conductive film 14a by sputtering or the like.
  • the photoelectric conversion layer 13 and the metal film 14b are irradiated with a YAG laser from the light incident side at a position spaced apart from the patterning position of the second translucent conductive film 14a. By doing so, it is put into a strip shape. That is, a part of the metal film 14 b is removed in the first groove portion 30. In particular, the metal film 14b is removed in the first groove 30 with a width B narrower than the width A from which the second light-transmissive conductive film 14a is removed. In addition, as shown in FIG.
  • the photoelectric conversion layer 13 and the metal film 14b are irradiated with the YAG laser from the light incident side, and are electrically applied to the power generation region 21 side and the non-power generation region 22 side.
  • a part of the metal film 14b is removed in the second groove portion 40.
  • the metal film 14b is removed in the second groove portion 40 with a width narrower than the width from which the second light-transmissive conductive film 14a is removed.
  • a filler 15 and a protective material 16 (not shown) made of resin are sequentially disposed on the back surface side, and vacuum thermocompression bonding is performed using a laminating apparatus. Thereafter, the filler 15 is crosslinked and stabilized by heat treatment.
  • ethylene-based resin such as EEA, PVB, silicon, urethane, acrylic, epoxy resin may be used.
  • a structure in which a fluorine resin (ETFE, PVDF, PCTFE, etc.), PC, glass or the like sandwiches a metal foil, SUS, or a steel plate may be used.
  • the solar cell module 10 As described above, the solar cell module 10 according to this embodiment is manufactured.
  • the solar cell module 10 can be connected to a terminal box and an extraction electrode, and an aluminum frame can be attached with butyl rubber or the like.
  • the second light-transmissive conductive film 14a is in contact with the first light-transmissive conductive film 12 while covering the side wall of the photoelectric conversion layer 13 in the first groove portion 30.
  • the metal film 14b is in contact with the first light-transmissive conductive film 12 in the first groove portion 30 while covering the side wall of the second light-transmissive conductive film 14a. Further, the metal film 14b is in contact with the photoelectric conversion layer 13 while covering the side wall of the second light-transmissive conductive film 14a formed on the photoelectric conversion layer 13 in the first groove portion 30.
  • the second light-transmissive conductive film 14a is covered with the metal film 14b and is not exposed to the outside.
  • the solar cell module 10 can maintain a stable high power generation.
  • Such a solar cell module 10 is suitable for using ZnO, which is easily deteriorated by moisture, as the second light-transmitting conductive film material.
  • the photoelectric conversion layer 13 in which an amorphous silicon semiconductor and a microcrystalline silicon semiconductor are sequentially stacked is used! /, But a single layer of a microcrystalline or amorphous silicon semiconductor is used. Alternatively, the same effect can be obtained by using a laminate in which three or more layers are laminated.
  • the second translucent conductive film 14a is formed with a desired force after patterning with a YAG laser after the second translucent conductive film 14a is stacked on the photoelectric conversion layer 13. It may be formed using a pattern photomask! /.
  • a solar cell module 10 shown in FIGS. 3 and 4 was manufactured as follows.
  • a 600 nm thick SnO electrode 12 was formed on a 4 mm thick glass substrate 11 by thermal CVD.
  • YAG laser is irradiated from the light incident side of the glass substrate 11 to shorten the SnO electrode 12.
  • a photoelectric conversion layer 13 including an amorphous silicon semiconductor layer and a microcrystalline silicon semiconductor layer was formed by a plasma CVD method.
  • the amorphous silicon semiconductor layer is formed from a mixed gas of SiH, CH, H, and BH by a plasma CVD method with a pOn type amorphous film having a thickness of lOnm.
  • the semiconductor layer is made from a mixed gas of SiH, H, and PH, and the n-type amorphous silicon semiconductor with a film thickness of 20 nm.
  • the microcrystalline silicon semiconductor layer is formed by SiH by plasma CVD method.
  • An i-type microcrystalline silicon semiconductor layer with a film thickness of 2000 nm is mixed from a mixed gas of 2 2 6 4 with SiH, H, PH,
  • n-type microcrystalline silicon semiconductor layer having a thickness of 20 nm was sequentially formed from a mixed gas of 2 4 2 3.
  • Table 1 shows details of the conditions for the plasma CVD method.
  • n layer 180 H 2 2000 133 20 20
  • n layer 200 Ha 2000 133 20 20
  • the photoelectric conversion layer 13 composed of an amorphous silicon semiconductor layer and a microcrystalline silicon semiconductor layer is placed on the YAG from the light incident side at a position 50 m away from the patterning position of the SnO electrode 12.
  • a ZnO film 14a having a thickness of 90 nm was formed on the microcrystalline silicon semiconductor layer by sputtering.
  • the ZnO film 14a was patterned in a strip shape by irradiating a YAG laser from the back side at a position 50 m away from the patterning position of the photoelectric conversion layer 13.
  • the width for removing a part of the Z ⁇ film 14a was 140 111.
  • Nd YAG laser with a wavelength of about 1.0 & ⁇ ⁇ ⁇ energy density l X 10 5 W / cm 2 was used for the laser separation process.
  • an Ag film 14b having a thickness of 200 nm was formed on the ZnO film 14a by sputtering.
  • the photoelectric conversion layer 13 and the Ag electrode 14 were patterned in a strip shape by irradiating a YAG laser from the light incident side.
  • the width for removing a part of the Ag film 14b is 100
  • the laser separation process has a wavelength of about 1.06 H m and an energy density of 1 X 1
  • EVA1 5 and PET film 1 6 are sequentially arranged, and 1 50
  • a solar cell module 10 shown in FIG. 1 was produced.
  • a YAG laser is applied from the light incident side to a position 100 m away from the patterning position of the photoelectric conversion layer 13. The same steps as in the above example were performed except that the irradiation was performed.
  • the characteristics were evaluated after the thermal annealing treatment was performed. Specifically, each module was exposed to an atmosphere of 200 ° C for 3 hours.
  • the characteristic evaluation results after the thermal annealing treatment are as follows.
  • the conversion efficiency of the solar cell module according to the conventional example was reduced by about 20% compared with that before the treatment.
  • the conversion efficiency of the solar cell module according to the example did not change even after the thermal annealing treatment, and maintained high power generation.
  • the ZnO film 14 a is in contact with the SnO electrode 12 while covering the side wall of the photoelectric conversion layer 13 in the first groove 30.
  • Ag film 14b is in contact with the SnO electrode 12 while covering the side wall of the photoelectric conversion layer 13 in the first groove 30.
  • Ag film 14b Is in contact with the photoelectric conversion layer 13 while covering the side wall of the ZnO film 14 a formed on the photoelectric conversion layer 13 in the first groove 30.
  • the Ag electrode 14b covers the ZnO film 14a, and moisture does not contact the ZnO film 14a. Therefore, the solar cell module according to the example was able to maintain a stable high output.
  • ZnO has a great advantage as a light-transmitting conductive film material, it cannot be put into practical use due to the property of being easily deteriorated by moisture. It was found that it could be put to practical use by adopting it.
  • the solar cell module according to the present invention is useful in solar power generation because it can maintain high power generation even when moisture enters.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Description

明 細 書
太陽電池モジュール及び太陽電池モジュールの製造方法
技術分野
[0001] 本発明は、透光性基板上に積層された第 1電極と、第 1電極上に積層された光電 変換層と、光電変換層上に積層された第 2電極とを備え、第 2電極は、透光性導電膜 と金属膜とから構成された太陽電池モジュール及び太陽電池モジュールの製造方法 に関する。
背景技術
[0002] 近年、太陽電池の低コスト化、高効率化を両立するために原材料の使用量が少な い薄膜系の太陽電池モジュールの開発が精力的に行われている。従来の薄膜系の 太陽電池モジュールの断面図の一例を、図 1に示す。
[0003] 図 1に示すように、従来の薄膜系の太陽電池モジュール 10は、ガラス等の透光性 基板 11上に、第 1透光性導電膜 12と光電変換層 13と裏面電極 14とを、レーザー照 射によりパターユングしながら順次積層して形成される。又、太陽電池モジュール 10 では、 Poly Ethylene Terephthalate (PET)等の保護材 16力 S、裏面電極 14上におい て、 Ethylene Vinyl Acetate (EVA)等の充填材 15を介して配置される。
[0004] ここで、裏面電極 14を、第 2透光性導電膜 14a上に金属薄膜 14bを積層して形成 することが提案されている(例えば、特許文献 1参照)。これによれば、裏面電極 14を レーザー照射によりパターユングする際に生じる第 2透光性導電膜 14aにおけるレー ザ一アブレーシヨン現象を有効に利用することにより、容易にレーザー照射によるパ ターニングを行うことができる。即ち、第 2透光性導電膜 14aと金属薄膜 14bとに対し て同時にレーザーを照射することにより、裏面電極 14のパターユングが行われる。 特許文献 1 :特開平 8— 56004号公報
発明の開示
[0005] 一般的に、太陽電池モジュール 10は屋外で長期間に渡って使用される。そのため 、太陽電池モジュール 10の内部に、たとえ水分が浸入したとしても、太陽電池モジュ ール 10は安定した高い発電力を維持できるだけの充分な耐湿性を備える必要があ [0006] しかしながら、太陽電池モジュール 10では、図 1に示すように、第 2透光性導電膜 1 4aの一部は金属薄膜 14bに覆われることなく露出している。従って、保護材 16及び 充填材 15を浸潤してきた水分が第 2透光性導電膜 14aにまで到達すれば、第 2透光 性導電膜 14aは容易に劣化される。その結果、太陽電池モジュール 10の安定した高 V、発電力を維持することができな!/、と!/、う問題があった。
[0007] そこで、本発明は、上記問題に鑑みてなされたものであり、水分が浸入しても、高い 発電力を維持することができる太陽電池モジュール及び太陽電池モジュールの製造 方法を提供することを目的とする。
[0008] 本発明の第 1の特徴に係る太陽電池モジュールは、透光性基板と、前記透光性基 板上に積層された第 1電極と、前記第 1電極上に積層された光電変換層と、前記光 電変換層上に積層された第 2電極と、前記第 2電極を分離する溝部とを備える太陽 電池モジュールであって、前記第 2電極は、前記光電変換層上に積層された透光性 導電膜と、前記透光性導電膜上に積層された金属膜とから構成されており、前記金 属膜は、前記溝部において、前記透光性導電膜が分離された幅よりも狭い幅で分離 されていることを要旨とする。
[0009] 第 1の特徴に係る太陽電池モジュールによれば、透光性導電膜は、金属膜によつ て覆われて露出していないため、浸入した水分が裏面電極まで到達しても、金属膜 によって封止されている透光性導電膜が水分によって劣化することはなぐ安定した 高!/ヽ発電力を維持することができる。
[0010] 本発明の第 2の特徴は、本発明の第 1の特徴に係り、前記透光性導電膜は、前記 溝部において、前記光電変換層の側壁を覆いながら、前記第 1電極に接しており、 前記金属膜は、前記溝部において、前記透光性導電膜の側壁を覆いながら、前記 第 1電極に接していることを特徴とする太陽電池モジュールであることを要旨とする。
[0011] 本発明の第 3の特徴は、本発明の第 1の特徴に係り、前記金属膜は、前記溝部に おいて、前記透光性導電膜の側壁を覆いながら、前記光電変換層に接していること を特徴とする太陽電池モジュールであることを要旨とする。
[0012] 本発明の第 4の特徴は、透光性基板と、前記透光性基板上に積層された第 1電極 と、前記第 1電極上に積層された光電変換層と、前記光電変換層上に積層された透 光性導電膜と、前記透光性導電膜上に積層された金属膜とを備え、前記光電変換 層と前記透光性導電膜と前記金属膜とを分離する溝部を有する太陽電池モジユー ルの製造方法であって、前記溝部にレーザー光を照射することにより、前記光電変 換層の一部を除去するステップ Aと、前記光電変換層上に透光性導電膜を積層する ステップ Bと、前記溝部にレーザー光を照射することにより、前記透光性導電膜の一 部を除去するステップ Cと、前記透光性導電膜上に金属膜を積層するステップ Dと、 前記溝部にレーザー光を照射することにより、前記金属膜の一部を除去するステップ Eとを含み、ステップ Eにおいて、前記金属膜の一部を除去する幅は、ステップ Cにお V、て前記透光性導電膜の一部を除去する幅よりも狭!/、ことを特徴とする太陽電池モ ジュールの製造方法であることを要旨とする。
図面の簡単な説明
[図 1]図 1は、従来の太陽電池モジュールの構成を示す断面図である。
[図 2]図 2は、実施形態に係る太陽電池モジュールの上面図である。
[図 3]図 3は、実施形態に係る太陽電池モジュールの図 2の A— A切断面における拡 大断面図である(その 1)。
[図 4]図 4は、実施形態に係る太陽電池モジュールの図 2の B— B切断面における拡 大断面図である(その 2)。
[図 5]図 5 (A)は、図 2の A— A切断面において、実施形態に係る太陽電池モジユー ルの製造方法説明するための図である(その 1)。図 5 (B)は、図 2の B— B切断面に おいて、実施形態に係る太陽電池モジュールの製造方法説明するための図である( その 1)。
[図 6]図 6 (A)は、図 2の A— A切断面において、実施形態に係る太陽電池モジユー ルの製造方法を説明するための図である(その 2)。図 6 (B)は、図 2の B— B切断面 において、実施形態に係る太陽電池モジュールの製造方法説明するための図であ る(その 2)。
[図 7]図 7は、図 2の A— A切断面において、実施形態に係る太陽電池モジュールの 製造方法を説明するための図である(その 3)。 [図 8]図 8 (A)は、図 2の A— A切断面において、実施形態に係る太陽電池モジユー ルの製造方法を説明するための図である(その 4)。図 8 (B)は、図 2の B— B切断面 において、実施形態に係る太陽電池モジュールの製造方法説明するための図であ る(その 3)。
[図 9]図 9 (A)は、図 2の A— A切断面において、実施形態に係る太陽電池モジユー ルの製造方法を説明するための図である(その 5)。図 9 (B)は、図 2の B— B切断面 において、実施形態に係る太陽電池モジュールの製造方法説明するための図であ る(その 4)。
[図 10]図 10 (A)は、図 2の A— A切断面において、実施形態に係る太陽電池モジュ ールの製造方法を説明するための図である(その 6)。図 10 (B)は、図 2の B— B切断 面において、実施形態に係る太陽電池モジュールの製造方法説明するための図で ある(その 5)。
発明を実施するための最良の形態
[0014] 次に、図面を用いて、本発明の実施の形態を説明する。以下の図面の記載におい て、同一又は類似の部分には、同一又は類似の符号を付している。ただし、図面は 模式的なものであり、各寸法の比率等は現実のものとは異なることに留意すべきであ る。従って、具体的な寸法等は以下の説明を参酌して判断すべきものである。又、図 面相互間におレ、ても互!/、の寸法の関係や比率が異なる部分が含まれて!/、ることは勿 論である。
[0015] 《第 1実施形態》
〈太陽電池モジュール 10の構成〉
本発明の第 1実施形態に係る太陽電池モジュール 10の上面図を図 2に示す。
[0016] 太陽電池モジュール 10は、透光性基板 11上に、複数の光起電力素子 20を含む 発電領域 21と、発電領域 21の周囲に設けられた非発電領域 22と、第 1溝部 30と、 第 2溝部 40とを備える。
[0017] 透光性基板 11は、太陽電池モジュール 10の単一基板である。透光性基板 11は、 ガラス等の光透過性、遮水性を有する部材により構成される。
[0018] 光起電力素子 20は、第 1透光性導電膜 12と光電変換層 13と裏面電極 14とを順次 積層することにより形成される。一の光起電力素子 20の第 1透光性導電膜 12は、第 1溝部 30において、隣接する他の光起電力素子 20の裏面電極 14と接続される。こ れにより、光起電力素子 20同士は電気的に直列接続される。
[0019] 第 1溝部 30は、一の光起電力素子 20の光電変換層 13及び裏面電極 14と、隣接 する他の光起電力素子 20の光電変換層 13及び裏面電極 14とを電気的に分離する 溝である。
[0020] 発電領域 21は、複数の光起電力素子 20を電気的に直列接続することにより形成さ れる。発電領域 21は、発電に寄与する領域である。
[0021] 非発電領域 22は、第 2溝部 40を介して、発電領域 21の周囲に設けられる。非発電 領域 22は、発電に寄与しない領域である。非発電領域 22は、光起電力素子 20と同 様に、第 1透光性導電膜 12と光電変換層 13と裏面電極 14とを順次積層することによ り形成される積層体である。
[0022] 第 2溝部 40は、発電領域 21と非発電領域 22とを電気的に分離する溝である。
[0023] 図 3は、図 2の A— A断面図であり、図 2の下部( αで囲んだ部分)を拡大したもので ある。
[0024] 太陽電池モジュール 10は、図 3に示すように、透光性基板 11と、透光性基板 11上 に積層された第 1透光性導電膜 12 (第 1電極)と、第 1透光性導電膜 12上に積層さ れた光電変換層 13と、光電変換層 13上に積層された裏面電極 14 (第 2電極)とを備
X·る。
[0025] 第 1透光性導電膜 12は、透光性基板 11上に積層されている。第 1溝部 30におい て第 1透光性導電膜 12の一部が除去されることにより、第 1透光性導電膜 12は短冊 状に形成されている。第 1透光性導電膜 12は、 ZnO, In O , SnO , CdO, TiO ,
2 3 2 2
Cdln O , Cd SnO , Zn SnOに Sn, Sb, F, Al、 B又は Gaをドープした金属酸化
2 4 2 4 2 4
物の一群より選択された一種類、あるいは、複数種類の積層体により構成される。な お、 ZnOは、高い光透過性、低抵抗性、可塑性を有し、低価格であるため透光性導 電膜材料として好適である。
[0026] 光電変換層 13は、第 1透光性導電膜 12上に積層されている。第 1溝部 30におい て光電変換層 13の一部が除去されることにより、光電変換層 13は短冊形状に形成 されている。光電変換層 13は、非結晶シリコン半導体により構成される。具体的に、 光電変換層 13は、非晶質シリコン半導体上に微結晶シリコン半導体を積層すること により形成される。非晶質シリコンと微結晶シリコンは、それぞれ光吸収波長が異なる ため、このようなタンデム型太陽電池モジュールは、太陽光スペクトルを有効に利用 すること力 Sできる。尚、本明細書に置いて、「微結晶」の用語は、多数の微小な結晶粒 を含むものを意味し、部分的に非晶質状態を含む状態をも意味するものとする。
[0027] 裏面電極 14は、第 2透光性導電膜 14a上に金属膜 14bが積層された 2層構造を有 する。
[0028] 第 2透光性導電膜 14aは、光電変換層 13上に積層される。第 1溝部 30において第
2透光性導電膜 14aの一部が除去されることにより、第 2透光性導電膜は短冊状に形 成されている。図 3に示すように、第 2透光性導電膜 14aの一部が除去された幅を Aと する。
[0029] 金属膜 14bは、第 2透光性導電膜 14a上に積層される。第 1溝部 30において金属 膜 14bの一部が除去されることにより、金属膜 14bは短冊状に形成されている。図 3 に示すように、金属膜 14bの一部が除去された幅を Bとする。
[0030] ここで、本実施形態に係る太陽電池モジュール 10では、金属膜 14bの一部が除去 された幅 Bは、第 2透光性導電膜 14aの一部が除去された幅 Aよりも狭レ、。
[0031] 即ち、金属膜 14bは、第 1溝部 30において、第 2透光性導電膜 14aが分離された 幅 Aよりも狭!/、幅 Bで分離されて!/、る。
[0032] 具体的には、図 3に示すように、第 1溝部 30において、第 2透光性導電膜 14aは、 光電変換層 13の側壁を覆いながら、第 1透光性導電膜 12に接する。又、金属膜 14 bは、第 2透光性導電膜 14aの側壁を覆いながら、第 1透光性導電膜 12に接する。又 、金属膜 14bは、第 1溝部 30において、光電変換層 13上に形成された第 2透光性導 電膜 14aの側壁を覆いながら、第 1透光性導電膜 12に接する。
[0033] このように、第 1溝部 30において、第 2透光性導電膜 14aは、金属膜 14bによって 覆われた状態にあり、外部に露出していない。
[0034] 第 2透光性導電膜 14aは、第 1透光性導電膜 12と同様に、 ZnO, In O , SnO , C
2 3 2 d〇, Ti〇, Cdln〇, Cd SnO, Zn SnOに Sn, Sb, F, Al、 B又は Gaをドープし た金属酸化物の一群より選択された一種類、あるいは、複数種類の積層体により構 成される。
[0035] 金属膜 14bは、 Ag、 Al、 Ti、 Pt、 Mo、 Ta等の一群より選択された一種類、ある!/ヽ は、複数種類の積層体により構成される。
[0036] 図 4は、図 2の B— B断面図であり、図 2の右部( /3で囲んだ部分)を拡大したもので ある。
[0037] 第 2透光性導電膜 14aは、光電変換層 13上に積層される。第 2溝部 40において第
2透光性導電膜 14aの一部は除去されている。図 4に示すように、第 2透光性導電膜
14aの一部が除去された幅を A'とする。
[0038] 金属膜 14bは、第 2透光性導電膜 14a上に積層される。第 2溝部 40において金属 膜 14bの一部は除去されている。図 4に示すように、金属膜 14bの一部が除去された 幅を とする。
[0039] ここで、本実施形態に係る太陽電池モジュール 10では、金属膜 14bの一部が除去 された幅 ΒΊま、第 2透光性導電膜 14aの一部が除去された幅 A りも狭い。
[0040] 即ち、金属膜 14bは、第 2溝部 40において、第 2透光性導電膜 14aが分離された 幅 A'よりも狭い幅 B'で分離されている。
[0041] 具体的には、図 4に示すように、第 2溝部 40において、金属膜 14bは、第 2溝部 40 において、光電変換層 13上に形成された第 2透光性導電膜 14aの側壁を覆いなが ら、光電変換層 13に接している。
[0042] このように、第 2溝部 40において、第 2透光性導電膜 14aは、金属膜 14bによって 覆われた状態にあり、外部に露出していない。
[0043] 〈太陽電池モジュール 10の製造方法〉
本実施形態に係る太陽電池モジュール 10の製造方法について、図 5乃至図 10を 用いて説明する。
[0044] 透光性基板 11上に、スパッタ等により第 1透光性導電膜 12を形成する。図 5 (A)に 示すように、第 1透光性導電膜 12は、 YAGレーザーを照射することにより、短冊状に ノ ターニングされる。これにより、第 1透光性導電膜 12は、各光起電力素子 20間で 電気的に分離される。又、図 5 (B)に示すように、第 1透光性導電膜 12は、 YAGレー ザ一を複数回往復させて照射され、発電領域 21側と、非発電領域 22側とに電気的 に分離される。即ち、第 1透光性導電膜 12の一部が、第 2溝部 40において除去され る。 YAGレーザーの照射は、光入射側から、又は、光入射側と反対の裏面側から行 うこと力 Sでさる。
[0045] 次に、プラズマ CVD法により、光電変換層 13を形成する。具体的には、図 6 (A)及 び (B)に示すように、第 1透光性導電膜 12上に p-i-n型の非晶質シリコン半導体を順 次積層した後、 P-i-n型の微結晶シリコン半導体を順次積層して光電変換層 13を形 成する。
[0046] 光電変換層 13は、第 1透光性導電膜 12のパターユング位置力も所定間隔離れた 位置に光入射側から YAGレーザーを照射することにより、短冊状にパターユングさ れる。即ち、光電変換層 13の一部が、第 1溝部 30において除去される。これにより、 図 7に示すように、光電変換層 13は、光起電力素子 20毎に電気的に分離される。
[0047] 次に、図 8 (A)及び (B)に示すように、第 2透光性導電膜 14aが、光電変換層 13上 にスパッタ等により形成される。第 2透光性導電膜 14aは、光電変換層 13のパター二 ング位置から所定間隔離れた位置に、裏面側から YAGレーザーを照射することによ り、短冊状にパターユングされる。即ち、透光性導電膜 14aの一部が、第 1溝部 30に おいて除去される。これにより、図 9 (A)に示すように、透光性導電膜 14aは、光起電 力素子 20毎に電気的に分離される。
[0048] 又、図 9 (B)に示すように、第 2透光性導電膜 14aは、裏面側から YAGレーザーを 複数回往復させて照射され、発電領域 21側と、非発電領域 22側とに電気的に分離 される。即ち、第 2透光性導電膜 14aの一部力 第 2溝部 40において除去される。
[0049] 次に、図 10 (A)及び (B)に示すように、金属膜 14bが、第 2透光性導電膜 14a上に スパッタ等により形成される。
[0050] 次に、図 3に示すように、光電変換層 13及び金属膜 14bは、第 2透光性導電膜 14a のパターユング位置から所定間隔離れた位置に光入射側から YAGレーザーを照射 することにより、短冊状にパターユングされる。即ち、金属膜 14bの一部が、第 1溝部 30において除去される。特に、金属膜 14bは、第 1溝部 30において、第 2透光性導 電膜 14aが除去された幅 Aよりも狭い幅 Bで除去される。 [0051] 又、図 4に示すように、光電変換層 13及び金属膜 14bは、光入射側から YAGレー ザ一を照射され、発電領域 21側と、非発電領域 22側とに電気的に分離する。即ち、 金属膜 14bの一部が、第 2溝部 40において除去される。特に、金属膜 14bは、第 2溝 部 40において、第 2透光性導電膜 14aが除去された幅 よりも狭い幅 で除去さ れる。
[0052] 次に、裏面側に、樹脂からなる充填材 15及び保護材 16 (不図示)を順次配置して 、ラミネート装置を用いて真空加熱圧着を行う。その後、加熱処理により充填材 15を 架橋、安定化させる。
[0053] 充填材 15として、 EVAの他、 EEA等のエチレン系樹脂、 PVB、シリコン、ウレタン、 アクリル、エポキシ樹脂を用いてもよい。又、保護材 16として、フッ素系樹脂(ETFE、 PVDF、 PCTFE等)、 PC、ガラス等が金属箔を挟んだ構造、 SUS、鋼板を用いても よい。
[0054] 以上により、本実施形態に係る太陽電池モジュール 10が作製される。尚、当該太 陽電池モジュール 10には、端子ボックス及び取出し電極を接続し、ブチルゴム等に よりアルミニウム枠を取付けることができる。
[0055] 〈作用及び効果〉
本実施形態に係る太陽電池モジュール 10では、第 2透光性導電膜 14aは、第 1溝 部 30において、光電変換層 13の側壁を覆いながら、第 1透光性導電膜 12に接して いる。金属膜 14bは、第 1溝部 30において、第 2透光性導電膜 14aの側壁を覆いな がら、第 1透光性導電膜 12に接している。また、金属膜 14bは、第 1溝部 30において 、光電変換層 13上に形成された第 2透光性導電膜 14aの側壁を覆いながら、光電変 換層 13に接している。
[0056] このように、第 1溝部 30において、第 2透光性導電膜 14aは、金属膜 14bによって 覆われた状態にあり、外部に露出していない。
[0057] 従って、保護材 16及び充填材 15を浸潤してきた水分が裏面電極 14まで到達して も、金属膜 14bによって覆われている第 2透光性導電膜 14aが水分によって劣化する ことはない。そのため、太陽電池モジュール 10は、安定した高い発電力を維持するこ と力 Sできる。 [0058] このような太陽電池モジュール 10は、水分により劣化し易い ZnOを、第 2透光性導 電膜材料として使用するために好適である。
[0059] 〈その他の実施形態〉
本発明は上記の実施形態によって記載した力 この開示の一部をなす論述及び図 面はこの発明を限定するものであると理解すべきではない。この開示から当業者には 様々な代替実施形態、実施例及び運用技術が明らかとなろう。
[0060] 例えば、上記実施形態では、非晶質シリコン半導体と微結晶シリコン半導体とが順 次積層された光電変換層 13を用!/、たが、微結晶又は非晶質シリコン半導体の単層、 又は、これらが 3層以上積層された積層体を用いても同様の効果を得ることができる
[0061] 又、上記実施形態では、第 2透光性導電膜 14aを光電変換層 13上に積層した後 に YAGレーザーによりパターユングを行った力 第 2透光性導電膜 14aは、所望の パターンのフォトマスクを用いて形成されてもよ!/、。
[0062] このように、本発明はここでは記載していない様々な実施形態等を含むことは勿論 である。従って、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に 係る発明特定事項によってのみ定められるものである。
実施例
[0063] 以下、本発明に係る太陽電池モジュールについて、実施例を挙げて具体的に説明 する力 本発明は、下記の実施例に示したものに限定されるものではなぐその要旨 を変更しない範囲において、適宜変更して実施することができるものである。
[0064] 〈実施例〉
本発明の実施例に係る太陽電池モジュールとして、図 3及び図 4に示す太陽電池 モジュール 10を以下のように製造した。
[0065] 4mm厚のガラス基板 11上に、熱 CVDにより 600nm厚の SnO電極 12を形成した
2
[0066] 次に、ガラス基板 11の光入射側から YAGレーザーを照射して、 SnO電極 12を短
2
冊状にパターユングした。当該レーザー分離加工には、波長約 1 · 06 ^ m,エネルギ 密度 3 X 105W/cm2の Nd :YAGレーザーを使用した。ここで、発電領域 21と非 発電領域 22との境界部分については、 YAGレーザーを複数回往復させて、 3mm 幅の溝を形成した。
次に、プラズマ CVD法により、非晶質シリコン半導体層及び微結晶シリコン半導体 層からなる光電変換層 13を形成した。具体的には、非晶質シリコン半導体層は、ブラ ズマ CVD法により、 SiHと CHと Hと B Hとの混合ガスから膜厚 lOnmの p型非晶
4 4 2 2 6
質シリコン半導体層を、 SiHと Hとの混合ガスから膜厚 300nmの i型非晶質シリコン
4 2
半導体層を、 SiHと Hと PHとの混合ガスから膜厚 20nmの n型非晶質シリコン半導
4 2 3
体層を順次形成した。又、微結晶シリコン半導体層は、プラズマ CVD法により、 SiH
4 と Hと B Hとの混合ガスから膜厚 lOnmの p型微結晶シリコン半導体層を、 SiHと H
2 2 6 4 との混合ガスから膜厚 2000nmの i型微結晶シリコン半導体層を、 SiHと Hと PHと
2 4 2 3 の混合ガスから膜厚 20nmの n型微結晶シリコン半導体層を順次形成した。プラズマ CVD法の諸条件の詳細を表 1に示す。
[表 1] プラズマ CVD条件 基板温度 ガス流量 反応圧力 RFパヮ一 膜厚 層
(°C) (sccm) (Pa) (W) (nm) a- Si膜 SiH4:300
Figure imgf000013_0001
P層 180 106 10 10
Ha: 2000
B2He:3 i層 200 106 20 300
Figure imgf000013_0002
n層 180 H2:2000 133 20 20
Ph :5
微結晶 SiH4:10
Si膜 P層 180 H2:2000 106 10 10
B2H6:3
Figure imgf000013_0003
i層 200 133 20 2000
H2:2000
Sih O
n層 200 Ha :2000 133 20 20
PH3:5 [0068] 又、非晶質シリコン半導体層及び微結晶シリコン半導体層からなる光電変換層 13 を、 SnO電極 12のパターユング位置から 50 m離れた位置に光入射側から YAG
2
レーザーを照射することにより短冊状にパターユングした。当該レーザー分離加工に は、波長約 1 · 0& β ϊη^エネルギー密度 l X 105W/cm2の Nd : YAGレーザーを使 用レた。
[0069] 次に、 90nm厚の ZnO膜 14aを、微結晶シリコン半導体層上にスパッタにより形成し た。
[0070] 次に、 ZnO膜 14aを、光電変換層 13のパターユング位置から 50 m離れた位置に 裏面側から YAGレーザーを照射することにより短冊状にパターユングした。ここで、 Z ηθ膜 14aの一部を除去する幅は、 140 111とした。当該レーザー分離加工には、波 長約 1 . 0& β ϊη^エネルギー密度 l X 105W/cm2の Nd : YAGレーザーを使用した
[0071] 次に、 200nm厚の Ag膜 14bを、 ZnO膜 14a上にスパッタにより形成した。
[0072] 次に、光電変換層 13と Ag電極 14とを、光入射側から YAGレーザーを照射するこ とにより、短冊状にパターユングした。ここで、 Ag膜 14bの一部を除去する幅は、 100
H mとした。当該レーザー分離加工には、波長約 1 . 06 H m、エネルギー密度 1 X 1
05W/cm2の Nd: YAGレーザーを使用した。
[0073] 次に、 EVA1 5と PETフィルム 1 6とを順次配置して、ラミネート装置を用いて、 1 50
°Cで 30分加熱処理した。これにより、 EVA1 5を架橋、安定化した。
[0074] 最後に、端子ボックスを取付けて取出し電極を接続して本発明の実施例に係る太 陽電池モジュールを完成した。
[0075] 〈従来例〉
従来例として、図 1に示す太陽電池モジュール 10を作製した。従来例では、光電変 換層 13上に ZnO膜 14aと Ag膜 14bとを順次連続して積層した後に、光電変換層 13 のパターユング位置から 100 m離れた位置に光入射側から YAGレーザーを照射 したこと以外は、上記実施例と同様の工程を行った。
[0076] 従って、第 1溝部 30において、 ZnO膜 14aの一部は、 Ag膜 14bに覆われることなく 露出している。 [0077] 《熱ァニール処理後の特性評価》
実施例に係る太陽電池モジュールと従来例に係る太陽電池モジュールとの信頼性 を比較するために、熱ァニール処理を行った後に、これらの特性評価を行った。具体 的には、温度 200°Cの大気雰囲気中に各モジュールを 3時間暴露する処理を行った
[0078] 〈結果〉
熱ァニール処理後の特性評価結果は以下の通りである。
[表 2]
熱ァ二一ル処理による特性変化
Figure imgf000015_0001
[0079] 熱ァニール処理を行った後において、従来例に係る太陽電池モジュールの変換効 率は、処理前と比較して約 20%低下した。
[0080] 一方、実施例に係る太陽電池モジュールの変換効率は、熱ァニール処理を行った 後であっても変化は見られず、高い発電力を維持していた。
[0081] 表 2に示す結果となった原因を確認するため、熱ァニール処理後の従来例に係る 太陽電池モジュールの ZnO膜 14aの抵抗を測定した。当該 ZnO膜 14aの抵抗値は
、熱ァニール処理前の 2倍となっていた。即ち、大気中の水分によって ZnO膜 14aが 劣化したことが確認された。
[0082] このように、従来例に係る太陽電池モジュールの変換効率が低下した理由は、第 1 溝部 30を浸潤してきた水分が ZnO膜 14aを劣化させためであることが判った。
[0083] 一方、実施例に係る太陽電池モジュールでは、 ZnO膜 14aは、第 1溝部 30におい て、光電変換層 13の側壁を覆いながら、 SnO電極 12に接している。又、 Ag膜 14b
2
は、 ZnO膜 14aの側壁を覆いながら、 SnO電極 12に接している。さらに、 Ag膜 14b は、第 1溝部 30において、光電変換層 13上に形成された ZnO膜 14aの側壁を覆い ながら、光電変換層 13に接している。
[0084] このように、実施例に係る太陽電池モジュールでは、 Ag電極 14bが ZnO膜 14a上 を覆っており、水分が ZnO膜 14aに接触しない。そのため、実施例に係る太陽電池 モジュールは、安定した高い出力を維持することができた。
[0085] 又、 ZnOは、透光性導電膜材料として大きな利点を有するにも関わらず、水分によ つて容易に劣化するという特性のために実用化できな力、つた力 実施例の構成を採 用することにより十分実用化されうることが判った。
[0086] なお、 日本国特許出願第 2006— 324599号(2006年 11月 30日出願)の全内容 力 参照により、本願明細書に組み込まれている。
産業上の利用可能性
[0087] 以上のように、本発明に係る太陽電池モジュールは、水分が浸入しても、高い発電 力を維持することができるため、太陽光発電において有用である。

Claims

請求の範囲
[1] 透光性基板と、
前記透光性基板上に積層された第 1電極と、
前記第 1電極上に積層された光電変換層と、
前記光電変換層上に積層された第 2電極と、
前記第 2電極を分離する溝部と
を備え、
前記第 2電極は、前記光電変換層上に積層された透光性導電膜と、前記透光性導 電膜上に積層された金属膜とから構成されており、
前記金属膜は、前記溝部において、前記透光性導電膜が分離された幅よりも狭い 幅で分離されている
ことを特徴とする太陽電池モジュール。
[2] 前記透光性導電膜は、前記溝部にお!/、て、前記光電変換層の側壁を覆!/、ながら、 前記第 1電極に接しており、
前記金属膜は、前記溝部において、前記透光性導電膜の側壁を覆いながら、前記 第 1電極に接している
ことを特徴とする請求項 1に記載の太陽電池モジュール。
[3] 前記金属膜は、前記溝部にお!/、て、前記透光性導電膜の側壁を覆!/、ながら、前記 光電変換層に接している
ことを特徴とする請求項 1に記載の太陽電池モジュール。
[4] 透光性基板と、前記透光性基板上に積層された第 1電極と、前記第 1電極上に積 層された光電変換層と、前記光電変換層上に積層された透光性導電膜と、前記透 光性導電膜上に積層された金属膜と、前記光電変換層と前記透光性導電膜と前記 金属膜とを分離する溝部を備える太陽電池モジュールの製造方法であって、 前記溝部にレーザー光を照射することにより、前記光電変換層の一部を除去する 前記光電変換層上に透光性導電膜を積層するステップ Bと、
前記溝部にレーザー光を照射することにより、前記透光性導電膜の一部を除去す 前記透光性導電膜上に金属膜を積層するステップ Dと、
前記溝部にレーザー光を照射することにより、前記金属膜の一部を除去するステツ プ Eとを含み、
ステップ Eにおいて、前記金属膜の一部を除去する幅は、ステップ Cにおいて前記 透光性導電膜の一部を除去する幅よりも狭!/、
ことを特徴とする太陽電池モジュールの製造方法。
PCT/JP2007/072670 2006-11-30 2007-11-22 Module de cellule solaire et procédé de fabrication de module de cellule solaire WO2008065970A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/516,581 US20100065115A1 (en) 2006-11-30 2007-11-22 Solar cell module and solar cell module manufacturing method
CN2007800437596A CN101542750B (zh) 2006-11-30 2007-11-22 太阳能电池模块和太阳能电池模块的制造方法
EP07832399A EP2093803A1 (en) 2006-11-30 2007-11-22 Solar cell module and solar cell module manufacturing method
KR1020097011113A KR101048937B1 (ko) 2006-11-30 2007-11-22 태양 전지 모듈 및 태양 전지 모듈의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006324599A JP4909032B2 (ja) 2006-11-30 2006-11-30 太陽電池モジュール
JP2006-324599 2006-11-30

Publications (1)

Publication Number Publication Date
WO2008065970A1 true WO2008065970A1 (fr) 2008-06-05

Family

ID=39467761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/072670 WO2008065970A1 (fr) 2006-11-30 2007-11-22 Module de cellule solaire et procédé de fabrication de module de cellule solaire

Country Status (7)

Country Link
US (1) US20100065115A1 (ja)
EP (1) EP2093803A1 (ja)
JP (1) JP4909032B2 (ja)
KR (1) KR101048937B1 (ja)
CN (2) CN102347381A (ja)
TW (1) TW200832730A (ja)
WO (1) WO2008065970A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010114294A3 (ko) * 2009-03-31 2011-03-31 엘지이노텍주식회사 태양광 발전장치 및 이의 제조방법
KR101055019B1 (ko) * 2009-03-31 2011-08-05 엘지이노텍 주식회사 태양광 발전장치 및 이의 제조방법
US20110253208A1 (en) * 2008-12-11 2011-10-20 Tadahiro Ohmi Photoelectric Conversion Element and Solar Cell
KR101081143B1 (ko) 2009-06-25 2011-11-07 엘지이노텍 주식회사 태양전지 및 이의 제조방법
US20120111394A1 (en) * 2009-07-31 2012-05-10 National University Corporation Tohoku University Photoelectric conversion device
CN103053028A (zh) * 2010-07-30 2013-04-17 国立大学法人东北大学 光电转换构件

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5781720B2 (ja) * 2008-12-15 2015-09-24 ルネサスエレクトロニクス株式会社 半導体装置及び半導体装置の製造方法
DE102009003491A1 (de) * 2009-02-16 2010-08-26 Q-Cells Se Solarzellenstring und Solarmodul mit derartigen Solarzellenstrings
WO2010113708A1 (ja) * 2009-03-30 2010-10-07 三菱マテリアル株式会社 太陽電池モジュールの製造方法
CN102598289A (zh) * 2009-09-18 2012-07-18 特鲁巴赫欧瑞康太阳能股份有限公司 光伏电池及制造光伏电池的方法
KR101295547B1 (ko) * 2009-10-07 2013-08-12 엘지전자 주식회사 박막 태양 전지 모듈 및 그 제조 방법
KR101114079B1 (ko) * 2010-01-06 2012-02-22 엘지이노텍 주식회사 태양광 발전장치 및 이의 제조방법
KR101262455B1 (ko) * 2010-09-10 2013-05-08 엘지이노텍 주식회사 태양광 발전장치 및 이의 제조방법
US20130306141A1 (en) 2011-05-20 2013-11-21 Panasonic Corporation Multi-junction compound solar cell, mutli-junction compound solar battery, and method for manufacturing same
TWI451580B (zh) * 2011-09-26 2014-09-01 Ind Tech Res Inst 薄膜太陽能電池之製法
US20130240009A1 (en) * 2012-03-18 2013-09-19 The Boeing Company Metal Dendrite-free Solar Cell
JP5446022B2 (ja) * 2013-03-06 2014-03-19 国立大学法人東北大学 光電変換部材

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55108780A (en) * 1979-02-14 1980-08-21 Sharp Corp Thin film solar cell
JPS6016568U (ja) * 1983-07-08 1985-02-04 三洋電機株式会社 光起電力装置
JPS6254971A (ja) * 1985-09-04 1987-03-10 Sanyo Electric Co Ltd 光起電力装置
JPS62242371A (ja) * 1986-04-14 1987-10-22 Sanyo Electric Co Ltd 光起電力装置の製造方法
JPH0290574A (ja) * 1988-09-27 1990-03-30 Kanegafuchi Chem Ind Co Ltd 耐熱型太陽電池
JPH0381647U (ja) * 1989-12-08 1991-08-21
JPH0645625A (ja) * 1992-07-27 1994-02-18 Sanyo Electric Co Ltd 光起電力装置及びその製造方法
JP2001053305A (ja) * 1999-08-12 2001-02-23 Kanegafuchi Chem Ind Co Ltd 非単結晶シリコン系薄膜光電変換装置
JP2002217436A (ja) * 2001-01-22 2002-08-02 Sanyo Electric Co Ltd 集積型光起電力装置の製造方法
JP2002270868A (ja) * 2001-03-12 2002-09-20 Sanyo Electric Co Ltd 集積型光起電力装置及びその製造方法
JP2006324599A (ja) 2005-05-20 2006-11-30 Canon Machinery Inc ダイボンダ用撮像装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4316049A (en) * 1979-08-28 1982-02-16 Rca Corporation High voltage series connected tandem junction solar battery
JPS6122370U (ja) * 1984-07-12 1986-02-08 富士電機株式会社 光起電力素子
JP3017422B2 (ja) * 1995-09-11 2000-03-06 キヤノン株式会社 光起電力素子アレー及びその製造方法
US5800632A (en) * 1995-09-28 1998-09-01 Canon Kabushiki Kaisha Photovoltaic device and method for manufacturing it
JP4034208B2 (ja) * 2003-02-25 2008-01-16 ローム株式会社 透明電極
JP2006185979A (ja) * 2004-12-27 2006-07-13 Matsushita Electric Ind Co Ltd 薄膜太陽電池モジュールおよびその製造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55108780A (en) * 1979-02-14 1980-08-21 Sharp Corp Thin film solar cell
JPS6016568U (ja) * 1983-07-08 1985-02-04 三洋電機株式会社 光起電力装置
JPS6254971A (ja) * 1985-09-04 1987-03-10 Sanyo Electric Co Ltd 光起電力装置
JPS62242371A (ja) * 1986-04-14 1987-10-22 Sanyo Electric Co Ltd 光起電力装置の製造方法
JPH0290574A (ja) * 1988-09-27 1990-03-30 Kanegafuchi Chem Ind Co Ltd 耐熱型太陽電池
JPH0381647U (ja) * 1989-12-08 1991-08-21
JPH0645625A (ja) * 1992-07-27 1994-02-18 Sanyo Electric Co Ltd 光起電力装置及びその製造方法
JP2001053305A (ja) * 1999-08-12 2001-02-23 Kanegafuchi Chem Ind Co Ltd 非単結晶シリコン系薄膜光電変換装置
JP2002217436A (ja) * 2001-01-22 2002-08-02 Sanyo Electric Co Ltd 集積型光起電力装置の製造方法
JP2002270868A (ja) * 2001-03-12 2002-09-20 Sanyo Electric Co Ltd 集積型光起電力装置及びその製造方法
JP2006324599A (ja) 2005-05-20 2006-11-30 Canon Machinery Inc ダイボンダ用撮像装置

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110253208A1 (en) * 2008-12-11 2011-10-20 Tadahiro Ohmi Photoelectric Conversion Element and Solar Cell
CN102254982A (zh) * 2008-12-11 2011-11-23 国立大学法人东北大学 光电转换装置
US9231130B2 (en) * 2008-12-11 2016-01-05 National University Corporation Tohoku University Photoelectric conversion element and solar cell
US20120186638A1 (en) * 2008-12-11 2012-07-26 Tadahiro Ohmi Photoelectric conversion element and solar cell
JP2012522393A (ja) * 2009-03-31 2012-09-20 エルジー イノテック カンパニー リミテッド 太陽光発電装置及びその製造方法
KR101055019B1 (ko) * 2009-03-31 2011-08-05 엘지이노텍 주식회사 태양광 발전장치 및 이의 제조방법
WO2010114294A3 (ko) * 2009-03-31 2011-03-31 엘지이노텍주식회사 태양광 발전장치 및 이의 제조방법
CN102449780A (zh) * 2009-03-31 2012-05-09 Lg伊诺特有限公司 太阳能电池装置及其制造方法
EP2416376A4 (en) * 2009-03-31 2017-07-05 LG Innotek Co., Ltd. Solar photovoltaic power generation apparatus and manufacturing method thereof
KR101081143B1 (ko) 2009-06-25 2011-11-07 엘지이노텍 주식회사 태양전지 및 이의 제조방법
US8941005B2 (en) * 2009-07-31 2015-01-27 National University Corporation Tohoku University Photoelectric conversion device
CN102473754A (zh) * 2009-07-31 2012-05-23 国立大学法人东北大学 光电转换装置
US20120111394A1 (en) * 2009-07-31 2012-05-10 National University Corporation Tohoku University Photoelectric conversion device
CN103053028A (zh) * 2010-07-30 2013-04-17 国立大学法人东北大学 光电转换构件

Also Published As

Publication number Publication date
EP2093803A1 (en) 2009-08-26
JP2008140920A (ja) 2008-06-19
CN101542750B (zh) 2012-01-25
JP4909032B2 (ja) 2012-04-04
US20100065115A1 (en) 2010-03-18
CN102347381A (zh) 2012-02-08
CN101542750A (zh) 2009-09-23
TW200832730A (en) 2008-08-01
KR20090086087A (ko) 2009-08-10
KR101048937B1 (ko) 2011-07-12

Similar Documents

Publication Publication Date Title
WO2008065970A1 (fr) Module de cellule solaire et procédé de fabrication de module de cellule solaire
JP4762100B2 (ja) 太陽電池モジュール
WO2010037102A2 (en) Monolithically-integrated solar module
KR100983951B1 (ko) 태양 전지 모듈
WO2008026581A1 (en) Solar battery module
US20110011443A1 (en) Solar battery module and manufacturing method thereof
JP4226032B2 (ja) 太陽電池モジュール
JP5022341B2 (ja) 光電変換装置
JP2009289817A (ja) 光電変換装置およびその製造方法
JP4812584B2 (ja) 太陽電池モジュール及び太陽電池モジュールの製造方法
JP5197845B2 (ja) 薄膜太陽電池およびその製造方法
JP5193991B2 (ja) 太陽電池モジュール
JP2008053303A (ja) 太陽電池パネル
JP2010118703A (ja) 太陽電池モジュールの製造方法
US20120024339A1 (en) Photovoltaic Module Including Transparent Sheet With Channel
JP2008091532A (ja) 太陽電池モジュール
WO2010074276A1 (ja) 光電変換モジュール
CN101499438B (zh) 透光型薄膜太阳能电池模块及其制造方法
JP2011023665A (ja) 太陽電池モジュール
JP2011023666A (ja) 太陽電池モジュールの製造方法
JP2011023667A (ja) 太陽電池モジュールの製造方法
JP2011192890A (ja) 光電変換装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780043759.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07832399

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020097011113

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007832399

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12516581

Country of ref document: US