WO2008065874A1 - Procédé de fabrication d'un polycarbonate aromatique de qualité élevée à l'échelle industrielle - Google Patents

Procédé de fabrication d'un polycarbonate aromatique de qualité élevée à l'échelle industrielle Download PDF

Info

Publication number
WO2008065874A1
WO2008065874A1 PCT/JP2007/071911 JP2007071911W WO2008065874A1 WO 2008065874 A1 WO2008065874 A1 WO 2008065874A1 JP 2007071911 W JP2007071911 W JP 2007071911W WO 2008065874 A1 WO2008065874 A1 WO 2008065874A1
Authority
WO
WIPO (PCT)
Prior art keywords
distillation column
tower
carbonate
column
formula
Prior art date
Application number
PCT/JP2007/071911
Other languages
English (en)
French (fr)
Inventor
Shinsuke Fukuoka
Hironori Miyaji
Hiroshi Hachiya
Original Assignee
Asahi Kasei Chemicals Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corporation filed Critical Asahi Kasei Chemicals Corporation
Priority to JP2008546932A priority Critical patent/JP5344927B2/ja
Publication of WO2008065874A1 publication Critical patent/WO2008065874A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/30General preparatory processes using carbonates
    • C08G64/307General preparatory processes using carbonates and phenols
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • the present invention relates to an industrial process for producing an aromatic polycarbonate. More specifically, the present invention is a method for stably producing a high-quality, high-performance aromatic polycarbonate having no mechanical coloring and excellent mechanical properties from a cyclic carbonate and an aromatic dihydroxy compound on an industrial scale for a long period of time. About.
  • Aromatic polycarbonate is widely used in many fields as engineering plastics having excellent heat resistance, impact resistance and transparency. Various studies have been conducted on the process for producing this aromatic polycarbonate, and among them, aromatic dihydroxy compounds such as 2,2-bis (4-hydroxyphenyl) propane (hereinafter referred to as bisphenol A) are included.
  • bisphenol A 2,2-bis (4-hydroxyphenyl) propane
  • the interfacial polycondensation process between phosgene and phosgene has been industrialized. However, in this interfacial polycondensation method, toxic phosgene must be used, and methylene chloride, which is a health and environmental problem, must be used in a large amount of more than 10 times per polycarbonate as a polymerization solvent.
  • the equipment is corroded by by-product hydrogen chloride, sodium chloride, and chlorine-containing compounds such as methylene chloride, and it is difficult to separate residual chlorine-based impurities such as sodium chloride and methylene chloride that adversely affect polymer properties
  • There are many problems such as the need to treat a large amount of process wastewater containing methylene chloride and unreacted bisphenol A.
  • Various polymerizers are known as a polymerizer for producing an aromatic polycarbonate by a melting method.
  • a method using a vertical stirring tank type polymerizer equipped with a stirrer is generally well known.
  • the vertical stirred tank type polymerizer has the advantage of high volumetric efficiency and small size on a small scale, and can proceed with polymerization efficiently, but on an industrial scale, as described above.
  • As the polymerization proceeds it is difficult to efficiently extract phenol as a by-product out of the system, and the polymerization rate is extremely low.
  • a large-scale vertical stirred tank type polymerization apparatus usually has a larger liquid volume ratio to the evaporation area than a small scale, and the so-called liquid depth is large.
  • Aromatic dihydroxy compounds such as high-purity bisphenol A, are manufactured in large quantities industrially and are easy to obtain.To obtain high-purity diaryl carbonate in large quantities on an industrial scale, Impossible. Therefore, it is necessary to manufacture this.
  • diaryl carbonate As a method for producing diaryl carbonate, an aromatic monohydroxy compound and phosgene are used. Reaction methods have been known for a long time, and various studies have been made recently. However, in this method, in addition to the problem of using phosgene, the diaryl carbonate produced by this method contains chlorine-based impurities that are difficult to separate, and cannot be used as a raw material for aromatic polycarbonate as it is. This is because this chlorine-based impurity significantly inhibits the polymerization reaction of the transesterification aromatic polycarbonate carried out in the presence of a very small amount of a basic catalyst. Can't progress.
  • reaction systems are basically a batch system force and a switching system.
  • the present inventors continuously supply a dialkyl carbonate and an aromatic hydroxy compound to a multistage distillation column, continuously react in the column in the presence of a catalyst, and have a low boiling point containing alcohol as a by-product.
  • a reactive distillation method in which the components containing the generated alkylaryl carbonate are extracted from the bottom of the column, alkylaryl carbonate is continuously supplied to the multistage distillation column, and the catalyst is used.
  • Reactive distillation in which the low-boiling components containing dialkyl carbonate as a by-product are continuously extracted by distillation while the produced components including diaryl carbonate are extracted from the bottom of the column.
  • the applicant of the present invention has disclosed a high boiling point substance containing a catalyst component as an active substance as a method for stably producing a high-purity aromatic carbonate for a long time without requiring a large amount of catalyst in a reactive distillation system.
  • the catalyst components are separated after being reacted with each other, and the catalyst components are recycled (see Patent Document 27), while the polyvalent aromatic hydroxy compound in the reaction system is maintained at a mass ratio of 2.0 or less with respect to the catalyst metal.
  • the method to perform (refer patent document 28) was proposed.
  • the inventors of the present invention use 70 to 99% by mass of phenol produced as a by-product in the polymerization process as a raw material to produce diphenyl carbonate by a reactive distillation method and use this as a polymerization raw material for aromatic polycarbonate.
  • Patent Document 29 The inventors of the present invention use 70 to 99% by mass of phenol produced as a by-product in the polymerization process as a raw material to produce diphenyl carbonate by a reactive distillation method and use this as a polymerization raw material for aromatic polycarbonate. was also proposed (see Patent Document 29).
  • the production rate of the cart was only about 6.7 kg / hr, which was not strong on an industrial scale.
  • the dialkyl carbonate used in the step (II) of the present invention needs to be produced on an industrial scale and further does not contain a halogen.
  • the only method in which dialkyl carbonate is industrially produced in large quantities as a raw material for aromatic polycarbonate is the oxidative carbonylation method in which methanol is reacted with carbon monoxide and oxygen to produce dimethyl carbonate and water. Is due to.
  • this oxidative carbonylation method (see Patent Document 30) must be reacted in a slurry state using a large amount of CuCl-HCl as a catalyst, and the reaction system and separation / purification system are very corrosive. Is a problem.
  • carbon monoxide is easily oxidized to carbon dioxide by this method, the problem is that the selectivity based on carbon monoxide is as low as about 80%.
  • the reaction cannot be completed completely and the reaction rate is low.
  • the dialkyl carbonate to be produced in order to increase the reaction rate of the cyclic carbonate, the dialkyl carbonate to be produced must be distilled off using an extremely large amount of an aliphatic monohydric alcohol. Long reaction time is required.
  • the reaction can proceed at a higher reaction rate than in (1), (2), and (3).
  • the method (4) that has been proposed so far is a method for producing a small amount of dialkyl carbonate and diol or a short-term production method, and is stable for a long time on an industrial scale. It was not about manufacturing.
  • the object is to stably produce dialkyl carbonate in a large amount continuously (for example, 2 tons or more per hour) for a long period of time (for example, 1000 hours or more, preferably 3000 hours or more, more preferably 5000 hours or more). It was not something to achieve.
  • Table 2 shows the maximum values for (cm), number of plates (n), dimethyl carbonate production P (kg / hr), and continuous production time T (hr).
  • Patent Document 38 (paragraph 0060) states that “this example employs a process flow similar to that of the preferred embodiment shown in FIG. 1 above, and is transesterified by the catalytic conversion reaction of ethylene carbonate and methanol to form dimethyl ester. It was designed for the operation of commercial scale equipment for producing carbonate and ethylene glycol. These numerical values are sufficiently applicable to the operation of actual equipment. As an example, it is described that 3 750 kg / hr of dimethyl carbonate was specifically produced. Since this scale described in the examples corresponds to an annual output of 30,000 tons or more, at the time of filing of Patent Document 38 (April 9, 2002), the world's largest large-scale commercial plant was operated by this method.
  • Patent Document 38 the production amount of dimethyl carbonate is the same as the theoretically calculated value, the yield of ethylene glycol is about 85.6%, and the selectivity is about 88. It is 4% and it is difficult to say that high yield and high selectivity are achieved. The low selectivity indicates that this method has a fatal defect as an industrial production method. (Note that Patent Document 38 was deemed to be dismissed on July 26, 2005 by an unexamined request.)
  • Patent Document 1 Japanese Patent Publication No. 50-19600 (British Patent No. 1007302)
  • Patent Document 2 Japanese Patent Publication No. 52-36159
  • Patent Document 3 Japanese Patent Publication No. 53-5718 (US Pat. No. 3,888,826)
  • Patent Document 4 Japanese Patent Laid-Open No. 2-153923
  • Patent Document 5 JP-A-8-225641
  • Patent Document 6 JP-A-8-225643
  • Patent Document 7 JP-A-8-325373
  • Patent Document 8 WO 97-22650
  • Patent Document 9 Japanese Patent Laid-Open No. 10-81741
  • Patent Document 10 JP-A-10-298279
  • Patent Document ll WO 99/36457
  • Patent Document 12 WO 99/64492
  • Patent Document 13 JP-A-54-48732 (West German Patent Publication No. 736063, US Pat. No. 4,252,737)
  • Patent Document 14 Japanese Patent Laid-Open No. 58-185536 (US Pat. No. 410464)
  • Patent Document 15 Japanese Patent Laid-Open No. 56-123948 (US Pat. No. 4,182,726)
  • Patent Document 16 Japanese Patent Laid-Open No. 3- No.291257
  • Patent Document 17 Japanese Patent Laid-Open No. 4 9358
  • Patent Document 18 Japanese Patent Application Laid-Open No. 4-211038 (WO 91/09832 Publication, European Patent 046 1274, US Patent 5210268)
  • Patent Document 19 JP-A-4 235951
  • Patent Document 20 Japanese Patent Laid-Open No. 6-157424 (European Patent 0582931 Specification, US Patent ⁇ 5334742 ⁇
  • Patent Document 21 Japanese Patent Laid-Open No. 6-184058 (European Patent 0582930, US Patent 5344954)
  • Patent Document 22 JP-A-9 40616
  • Patent Document 23 JP-A-9 59225
  • Patent Document 24 JP-A-9 176094
  • Patent document 25 WO 00/18720 (US Pat. No. 6093842)
  • Patent Document 26 JP 2001-64235 A
  • Patent Document 27 WO 97/11049 (European Patent No. 0855384, US Patent No. 5 872275 Uzuki Itoda)
  • Patent Document 28 Japanese Patent Laid-Open No. 11 92429 (European Patent No. 1016648, US Patent H6262210 ⁇ " spirit »)
  • Patent Document 29 Japanese Patent Laid-Open No. 9 255772 (European Patent 0892001 Specification, US Patent ⁇ 5747609 ⁇
  • Patent Document 30 WO 03/016257
  • Patent Document 31 Japanese Patent Laid-Open No. 4 198141
  • Patent Document 32 JP-A-9 194435
  • Patent Document 33 WO99 / 64382 (European Patent No. 1086940, US Patent H6346638 ⁇ " course »)
  • Patent Document 34 WO00 / 51954 (European Patent No. 1174406, US Patent H6479689 ⁇ " date »)
  • Patent Document 35 Japanese Patent Laid-Open No. 5-213830 (European Patent No. 0530615, US Patent No. 5231212)
  • Patent Document 36 Japanese Patent Laid-Open No. 6-9507 (European Patent No. 0569812, US Patent No. 5359118)
  • Patent Document 37 Japanese Patent Laid-Open No. 2003-119168 (WO03 / 006418)
  • Patent Document 38 Japanese Patent Laid-Open No. 2003-300936
  • Patent Document 39 Japanese Patent Laid-Open No. 2003-342209
  • the problem to be solved by the present invention is that a large amount of high-quality, high-performance aromatic polycarbonate having no mechanical coloring and excellent mechanical properties from a cyclic carbonate and an aromatic dihydroxy compound (for example, a large amount (for example, It is to provide a specific method capable of stable production over a long period (for example, 1000 hours or more, preferably 3000 hours or more, more preferably 5000 hours or more) over 1 ton per hour.
  • the dialkyl power generated by continuously feeding into the tank and simultaneously performing reaction and distillation in the column.
  • the dialkyl carbonate and phenol are used as raw materials, and the raw materials are continuously fed into a first continuous multistage distillation column in which a homogeneous catalyst is present, and the reaction and distillation are simultaneously performed in the first column,
  • the first tower low boiling point reaction mixture containing the generated alcohol is continuously withdrawn from the upper part of the first tower in the form of a gas, and the first tower high boiling point reaction mixture containing the alkyl phenyl carbonates is produced at the lower part of the first tower.
  • the liquid is continuously extracted in a liquid state, and the high-boiling reaction mixture in the first column is continuously fed into the second continuous multi-stage distillation column in which the catalyst exists, and the reaction and distillation are simultaneously performed in the second column.
  • the second tower low-boiling reaction mixture containing the dialkyl carbonate to be produced is continuously withdrawn in the form of a gas from the upper part of the second tower, and the second tower high-boiling reaction mixture containing the diphenyl carbonate to be produced is obtained.
  • the liquid is continuously extracted from the lower part of the second tower in a liquid state, Write, by continuously feeding the second column low boiling point reaction mixture containing a dialkyl carbonate into the first continuous multi-stage evaporation column, and Jifue two Le carbonate continuously producing be that process (II),
  • the second tower high boiling point reaction mixture containing the diphenyl carbonate is continuously introduced into the high boiling point substance separation tower A, and contains the top component (A) containing diphenyl carbonate and a catalyst.
  • the bottom component (A) is continuously distilled and separated, and then the top component (A) is removed from the side cut.
  • Diphenyl carbonate purification tower B with outlet is continuously introduced into the tower top component (B)
  • the continuous multi-stage distillation column has a T force length (cm) and a cylindrical body having an inner diameter D (cm),
  • the first continuous multistage distillation column has a cylindrical body having a length L (cm) and an inner diameter D (cm).
  • the second continuous multi-stage distillation column has a structure having a cylindrical body having a length L (cm) and an inner diameter D (cm) and having an internal number n.
  • the high boiling point substance separation tower A satisfies the following formulas (19) to (21), and has a length (cm),
  • a continuous multi-stage distillation column having an internal diameter of D (cm) and n stages inside,
  • the diphenyl carbonate purification tower B force The length (cm) satisfying the following formulas (22) to (27)
  • the number of steps in the null is n, and the number of steps in the lower internal from the side cut extraction port B2 is n.
  • the tapered bottom case of the polymerization reaction zone is connected to the upper side casing at an angle C degree inside the upper side casing, and the angle C degree satisfies the equation (30).
  • a process for producing high-quality aromatic polycarbonate on an industrial scale characterized in that
  • the continuous multi-stage distillation column ⁇ has trays and / or packings as the internal
  • the perforated plate tray of the continuous multi-stage distillation column has a perforated plate area of 100 to 100 per lm 2 ;
  • the cross-sectional area per hole of the perforated plate tray of the continuous multi-stage distillation column T is 0.5-5 cm 2
  • step (II) The d and d of the first continuous multistage distillation column used in step (II) satisfy the formula (34).
  • Multistage distillation column L, D, L / D, n, D / d, D / d is 2000 ⁇ L2 ⁇ 6 respectively
  • the above-mentioned items V, 14, and 14 are characterized in that the first continuous multistage distillation column and the second continuous multistage distillation column are distillation columns each having a tray and / or a packing as the internal.
  • the first continuous multistage distillation column is a tray-type distillation column having a tray as the internal
  • the second continuous multistage distillation column is a distillation column having both a packing and a tray as the internal.
  • Each of the trays of the first continuous multistage distillation column and the second continuous multistage distillation column is a perforated plate tray having a multi-hole plate portion and a downcomer portion, Method,
  • the perforated plate tray has 100 to 1000 holes per area lm 2 of the multi-hole plate portion.
  • the ordered packing of the second continuous multi-stage distillation column is at least one selected from mela pack, gem pack, techno pack, flexi pack, sulza packing, good roll packing, and glitch grid.
  • the filler is at least one rule filler selected from a mela pack, a gem pack, a techno bag, a flexi pack, a sulzer packing, a good roll packing, and a glitch grid.
  • the side casing of the polymerization reaction zone is a cylindrical shape having an inner diameter D (cm) and a length L (cm), and is connected to the lower part thereof.
  • the bottom casing has a tapered shape, and the lowermost discharge port of the tapered bottom casing has a cylindrical shape with an inner diameter d (cm), and D, L, and d are the expressions (36), (37) , (38) and (39) are satisfied,
  • One of the guides is a cylindrical shape having an outer diameter r (cm) or a pipe shape in which no molten prepolymer is contained inside, and r satisfies the formula (41). 0. 1 ⁇ r ⁇ 1 (41)
  • step (IV) the method according to any one of the preceding items;! -28, wherein the polymerization is performed by connecting two or more guide contact flow type polymerization reactors;
  • the two or more guide contact flow type polymerization reactors described in the preceding paragraph 29 are two polymerization vessels of a guide contact flow type first polymerization device and a guide contact flow type second polymerization device, and the polymerization degree in this order.
  • the total external surface area SI (m 2 ) of the entire guide of the first polymerization vessel and the external total surface area S2 (m 2 ) of the entire guide of the second polymerization vessel are expressed by the following equation (42). Satisfied,
  • a high-quality and high-performance aromatic polycarbonate excellent in mechanical properties without coloring from a cyclic carbonate and an aromatic dihydroxy compound is produced at a high polymerization rate for 1 hour. It was found that it can be produced on an industrial scale of 1 ton or more. High-quality aromatic polycarbonate that is stable for a long period of time with little variation in molecular weight, such as 2000 hours or more, preferably 3 000 hours or more, more preferably 5000 hours or more. It has also been found that nates can be produced. Therefore, the present invention is a method having an extremely excellent effect as an industrial production method for high-quality aromatic polycarbonate.
  • step (I) for continuously producing dialkyl carbonate and diol on an industrial scale from cyclic carbonate and aliphatic monohydric alcohol is performed.
  • the reaction in step (I) is a reversible transesterification reaction represented by the following formula.
  • R 1 represents a divalent group — (CH 2) ⁇ (k is an integer of 2 to 6), and one or more hydrogens thereof
  • R 2 represents a monovalent aliphatic group having a carbon number;! To 12, and one or more hydrogens thereof may be substituted with an alkyl group or a aryl group having a carbon number; )
  • Examples of such cyclic carbonates include alkylene carbonates such as ethylene carbonate and propylene power carbonate, 1,3-dioxacyclohexan 2-one, 1,3-dioxacyclohepter 2- On and the like are preferably used, ethylene carbonate and propylene carbonate are more preferably used from the viewpoint of easy availability, and ethylene carbonate is particularly preferably used.
  • aliphatic monohydric alcohols those having a boiling point lower than that of the generated diols are used. Therefore, although it may vary depending on the type of cyclic carbonate used, for example, methanol, ethanol, propanol (each isomer), allyl alcohol, butanol (each isomer), 3-buten-1-ol, amyl Alcohol (each isomer), hexanol alcohol (each isomer), heptyl alcohol (each isomer), octyl alcohol (each isomer), nonyl alcohol (each isomer), decyl alcohol (each isomer), Undecylanolol (all isomers), dodecyl alcohol (each isomer), cyclopentanol, cyclohexanol, cycloheptanol, and cyclooctanoyl, methinorecyclopentanol Isomer), e
  • alcohols having 1 to 6 carbon atoms are preferably used, and more preferably methanol, ethanol, propanol (each heterogeneous substance), butanol ( Each isomer) is an alcohol having 1 to 4 carbon atoms.
  • methanol and ethanol are preferable, and methanol is particularly preferable.
  • any method may be used for allowing the catalyst to be present in the reactive distillation column.
  • the catalyst can be present in the liquid phase in the reactive distillation column by continuously supplying the catalyst into the reactive distillation column, or it does not dissolve in the reaction solution under the reaction conditions.
  • a catalyst can be present in the reaction system by disposing a solid catalyst in the reactive distillation column, or a method using these in combination.
  • the homogeneous catalyst When the homogeneous catalyst is continuously supplied into the reactive distillation column, it may be supplied simultaneously with the cyclic carbonate and / or the aliphatic monohydric alcohol, or supplied at a position different from the raw material. May be. Since the reaction actually proceeds in the distillation column is a region under the catalyst supply position force, it is preferable to supply the catalyst to a region between the top of the column and the raw material supply position.
  • the number of stages in which the catalyst is present needs to be 5 or more, preferably 7 or more, and more preferably 10 or more.
  • the number of stages in which the catalyst exists needs to be 5 or more, preferably 7 or more, and more preferably 10 or more.
  • a solid catalyst that also has an effect as a packing for a distillation column can be used.
  • Examples of the catalyst used in the step (I) include: Alkali metals and alkaline earth metals such as lithium, sodium, potassium, norebidium, cesium, magnesium, calcium, strontium, barium;
  • Basic compounds such as alkali metal and alkaline earth metal hydrides, hydroxides, alkoxides, aryl-oxides, amidates, etc .;
  • Basic compounds such as alkali metal and alkaline earth metal carbonates, bicarbonates, organic acid salts;
  • N-alkylpyrrole N-alkylindole, oxazole, N-alkylenoreidazonole, N-alkyl Pyrazole, Oxadiazole, Pyridine, Alkyl pyridine, Quinoline, Alkyl quinoline, Isoquinoline, Alkyl isoquinoline, Atalidine, Alkyl atalidine, Phenanthorin, Alkylphenantorin, Pyrimidine, Alkynole Pyrimidine, Pyrazine, Alkylvirazine, Triazine, Alkyltria Nitrogen-containing complex aromatic compounds such as gin;
  • Cyclic amidines such as diazabicycloundecene (DBU) and diazabicyclononene (DBN);
  • Thallium compounds such as thallium oxide, thallium halide, thallium hydroxide, thallium carbonate, thallium nitrate, thallium sulfate, organic acid salts of thallium;
  • tributyl methoxytin tributyl ethoxy tin
  • dibutyl dimethoxy tin jetyl methoxy tin
  • dibutyl methoxy tin dibutyl phenoxy tin
  • diphenyl methoxy tin dibutyl tin acetate
  • tributyl tin chloride tin 2-ethylhexanoate, etc.
  • Aluminum compounds such as aluminum trimethoxide, aluminum triisopropoxide, aluminum tributoxide;
  • Trimethylphosphine, triethylphosphine, tributylphosphine, triphenylphosphite Phosphorus compounds such as N, tributylmethylphosphonium halide, trioctylbutylphosphonium halide, triphenylmethylphosphonium halide;
  • Zirconium compounds such as zirconium halide, zirconium acetyl cetate, zirconium alkoxide, zirconium acetate;
  • Lead and lead-containing compounds eg lead oxides such as PbO, PbO, Pbo;
  • Lead sulfides such as PbS, Pb S, PbS; Lead hydroxides such as Pb (OH), Pb 2 O (OH), Pb [PbO (OH)], Pb 2 O (OH); Na PbO, K PbO, NaHPbO , NaHPbO, NaHPbO, KPbO, K [Pb (OH)], KPbO, C
  • Lead salts such as PbO and CaPbO; Lead carbonates such as PbCO and 2PbCO 2 -Pb (OH)
  • Lead compounds (Bu represents butyl group, Ph represents phenyl group); Pb—Na, Pb—Ca, Pb—Ba, Pb—Sn, Pb—Sb Alloys; lead minerals such as howenite, sengyanite, and hydrates of these lead compounds;
  • These compounds can be used as homogeneous catalysts when dissolved in reaction raw materials, reaction mixtures, reaction by-products, etc., and can be used as solid catalysts when not dissolved. . Furthermore, it is also preferable to use a mixture obtained by dissolving these compounds in advance using reaction raw materials, reaction mixtures, reaction by-products or the like, or using a mixture obtained by reaction as a homogeneous catalyst. .
  • an anion exchange resin having a tertiary amino group an ion exchange resin having an amide group, an ion exchange resin having at least one exchange group of a sulfonic acid group, a carboxylic acid group, and a phosphoric acid group
  • Ion exchangers such as solid strongly basic anion exchangers having quaternary ammonium groups as exchange groups; silica, silica-alumina, silica-magnesia, aluminosilicates, gallium silicates, various zeolites, various metal exchange zeolites, Solid inorganic compounds such as ammonium exchanged zeolites are used as the catalyst.
  • a solid strong basic anion exchanger having a quaternary ammonium group as an exchange group is particularly preferably used.
  • a solid catalyst include a quaternary ammonium group as an exchange group.
  • the strongly basic anion exchange resin having a quaternary ammonium group as an exchange group for example, a styrenic strongly basic anion exchange resin is preferably used.
  • Styrene-based strongly basic anion exchange resin is based on a copolymer of styrene and dibutenebenzene and has a quaternary ammonia (type I! /, Type II) as the exchange group. For example, it is schematically represented by the following formula.
  • X represents an anion, and usually X is F-, Cl-, Br-, ⁇ , HCO-, CO, CH
  • CO-, HCO-, IO-, BrO- is for at least one Anion is used selected from among CIO-, preferably Cl @ -, Br @ -, HCO-, CO 2 of Churyoku, chosen et At least one anion is used.
  • the resin matrix structure is gel type, macroreticular type (MR type), the ability to use misalignment, high resistance to organic solvents, and MR type is particularly preferred from the point of view.
  • a strongly cellulose basic anion exchanger having a quaternary ammonium group as an exchange group examples thereof include cellulose having an OCH CH NR X exchange group obtained by trialkylaminoethylation of part or all of —OH groups of cellulose.
  • R represents an alkyl group, and methyl, ethyl, propyl, butyl, etc. are usually used, and methyl and ethyl are preferably used.
  • X represents an anion as described above.
  • An inorganic carrier-supported strong basic cation exchange having a quaternary ammonium group as an exchange group is a quaternary ammonium group by modifying part or all of the surface hydroxyl group OH of the inorganic carrier.
  • ⁇ (CH) This means that NR X is introduced. However, R and X are
  • silica, alumina, silica alumina, titania, zeolite, and the like can be used, preferably silica, alumina, silica alumina, and particularly preferably silica.
  • any method for modifying the surface hydroxyl group of the inorganic carrier any method can be used.
  • solid strongly basic ayuone exchangers having a quaternary ammonium group as an exchange group can also be used. In that case, it can be used as a transesterification catalyst after ion exchange with a desired anion species in advance as a pretreatment.
  • the solid catalyst is preferably used as a transesterification catalyst. Furthermore, solid catalysts in which some or all of these nitrogen-containing heterocyclic groups are quaternized are also used. It should be noted that solid catalysts such as ion exchangers can be fulfilled with the ability S to function as packing materials.
  • the amount of the catalyst used in step (I) varies depending on the type of catalyst used, but when a homogeneous catalyst that is dissolved in the reaction solution under the reaction conditions is continuously supplied, a percentage of the total mass of the cyclic carbonate and an aliphatic monohydric alcohol as a raw material to Table Wa, usually 0.000;! ⁇ 50 weight 0/0, preferably from 0.005 to 20 mass 0/0, more preferably 0 01 ⁇ ; Used at 10% by mass.
  • a solid catalyst is used in the distillation column, it is 0.0;! To 75% by volume, preferably 0.05 to 6% with respect to the empty volume of the distillation column.
  • a catalyst amount of 0% by volume, more preferably 0.;! ⁇ 60% by volume is preferably used.
  • step (I) the continuous multistage distillation column T, which is a reactive distillation column, is added to the cyclic carbon as a raw material.
  • the nate and the aliphatic monohydric alcohol there is no particular limitation that they are catalysts in the region of at least 5 or more, preferably 7 or more, more preferably 10 or more of the distillation column. Any supply method can be used as long as it can be brought into contact with the substrate.
  • the cyclic carbonate and the aliphatic monohydric alcohol can be continuously supplied from the necessary number of inlets to the stage satisfying the above conditions of the continuous multistage distillation column. Further, the cyclic carbonate and the aliphatic monohydric alcohol may be introduced into the same stage of the distillation column, or may be introduced into different stages.
  • the raw material cyclic carbonate and aliphatic monohydric alcohol are continuously supplied to the continuous multistage distillation column T as a liquid, a gas, or a mixture of a liquid and a gas.
  • a gaseous raw material intermittently or continuously from the lower part of the distillation column.
  • cyclic carbonate is continuously supplied to the distillation column in a liquid or gas-liquid mixed state to the upper stage from the stage where the catalyst exists, and the aliphatic monohydric alcohol is gaseous and / or lower to the lower part of the distillation tower.
  • a continuous supply method in a liquid state is also a preferable method. In this case, it goes without saying that an aliphatic monohydric alcohol is contained in the cyclic carbonate.
  • the feedstock may contain dialkyl carbonate and / or diol as the product.
  • the content of the dialkyl carbonate is usually 0 to 40% by mass, preferably 0 to 30% by mass, and more preferably represented by the mass% of dialkyl carbonate in the aliphatic monohydric alcohol / dialkyl carbonate mixture.
  • it is 0 to 20% by mass
  • the diol is represented by mass% in the cyclic carbonate / diol mixture, and is usually 0 to; 10% by mass, preferably 0 to 7% by mass, and more preferably 0 to 5%. % By mass.
  • step (I) When the reaction of step (I) is carried out industrially, in addition to the cyclic carbonate and / or aliphatic monohydric alcohol newly introduced into the reaction system, it is recovered in this step or / and other processes. It is preferable that the material mainly composed of cyclic carbonate and / or aliphatic monohydric alcohol can be used as these raw materials. This is the present invention. This is an excellent feature of the present invention.
  • the other process includes, for example, a process (II) for producing diphenyl carbonate from a dialkyl carbonate and phenol. In this process (II), an aliphatic monohydric alcohol is by-produced and recovered.
  • This recovered by-product aliphatic monohydric alcohol usually contains dialkyl carbonates, phenols, alkylphenyl ethers, etc., and even a small amount of alkylphenyl carbonates, diphenyl carbonates, etc. There is.
  • the by-product aliphatic monohydric alcohol can be used as it is as the raw material of step (I), or after reducing the content of substances having a boiling point higher than that of the aliphatic monohydric alcohol by distillation or the like, the step (I) It can also be used as a raw material.
  • preferable cyclic carbonates used in the step (I) are those produced by reaction of alkylene oxide such as ethylene oxide, propylene oxide and styrene oxide with carbon dioxide, One round carbon dioxide containing a small amount of the above compound can be used as a raw material for the step (I).
  • step (I) the amount ratio between the cyclic carbonate and the aliphatic monohydric alcohol supplied to the reactive distillation column varies depending on the type and amount of the transesterification catalyst and the reaction conditions, but is usually supplied.
  • the aliphatic monohydric alcohols can be supplied in a molar ratio of 0.01 to 1000 times with respect to the cyclic carbonate.
  • the molar ratio of the aliphatic monohydric alcohol to the cyclic carbonate is preferably 2 to 20, more preferably 3 to 15, and even more preferably 5 to 12; If a large amount of unreacted cyclic carbonate remains, it reacts with the product diols to produce by-products such as dimers and trimers. It is preferable to reduce the remaining amount of the reactive cyclic carbonate as much as possible.
  • the reaction rate of the cyclic carbonate can be 97% or more, preferably 98% or more, and more preferably 99% or more. This is also one of the features of the present invention.
  • step (I) preferably a force that continuously produces about 0.4 tons or more of dialkyl carbonate per hour is obtained.
  • the minimum amount of salt is usually 0.44 tons / hr, preferably 0.42 tons / hr, more preferably 0.4 P, relative to the amount of aromatic polycarbonate to be produced (P tons / hr).
  • T / hr In a more preferred case, it can be less than 0 ⁇ 39 P ton / hr.
  • the continuous multistage distillation column T used in step (I) is a length (cm) and an inner diameter D (cm).
  • top of the tower or the upper part of the tower close to it means a part of about 0.25 L downward from the top of the tower, and the term “bottom of the tower or the lower part of the tower close to it"
  • the dialkyl strength-bonate is preferably 0.4 ton or more and / or the diol is preferably 0.26 ton or more per hour. Since it was found that it can be stably produced for a long period of time, such as 1000 hours or more, preferably 3000 hours or more, and more preferably 5000 hours or more, on an industrial scale, with a high reaction rate and high selectivity. is there. By carrying out step (I), an industrial-scale dialkyl carbonate having such excellent effects is obtained. The reason why it has become possible to produce diols and diols is unclear! /, But it is presumed to be due to the combined effect brought about when the conditions of formulas (1) to (6) are combined. The preferred range of each factor is shown below.
  • L must be 8000 or less in order to reduce equipment costs while ensuring a reaction rate that can achieve the target production volume.
  • the more preferable range of L (cm) is 2300 ⁇ L ⁇
  • D In order to reduce equipment costs while achieving the above, D must be 2000 or less.
  • the preferred range of D (cm) is 200 ⁇ D ⁇ 1000, more preferably 210 ⁇ D
  • n is less than 10, the reaction rate decreases and the target production volume cannot be achieved.
  • n is not less than 120.
  • n is 30 ⁇ n ⁇ 100, more preferably 40 ⁇ n ⁇ 90.
  • the more preferred range of D / d is 4 ⁇ D / d ⁇ 15, and more preferably 5 ⁇ D / d ⁇
  • the 0 02 range is 7 ⁇ D / d ⁇ 25, more preferably 9 ⁇ D / d ⁇ 20.
  • the d and the d02 of the continuous multistage distillation column T used in the step (I) satisfy the formula (33).
  • the long-term stable operation in the process (I) is based on the operating conditions where there is no flooding, piping clogging or erosion for 1000 hours or more, preferably 3000 hours or more, more preferably 5000 hours or more! This means that a certain amount of dialkyl carbonate and diol can be produced while maintaining a high reaction rate, high selectivity, and high productivity.
  • the selectivity of the dialkyl carbonate and the diol refers to the reacted cyclic carbonate, and in the present invention, the selectivity is usually 95% or more, preferably 97%. As described above, a high selectivity of 99% or more can be achieved.
  • the reaction rate in the step (I) usually represents the reaction rate of the cyclic carbonate.
  • the reaction rate of the cyclic carbonate is 95% or more, preferably 97% or more, more preferably 99% or more, Preferably, it can be 99.5 or more, and even more preferably 99.9% or more.
  • One of the excellent features of the process (I) is that a high reaction rate can be achieved while maintaining a high selectivity.
  • the continuous multi-stage distillation column T used in step (I) is used as an internal tray and / or
  • a distillation column having a packing means a portion where the gas-liquid contact is actually performed in the distillation column.
  • a tray for example, a foam tray, a perforated plate tray, a valve tray, a counter-flow tray, a super flack tray, a max flack tray, etc. are preferred fillings such as Raschig rings, less rings, pole rings, Berle saddles. , Interlocks Saddle, Dixon Packing, McMahon Packing, Irregular Packing such as Helicac Pack, Mela Pack, Gem Pack, Techno Back, Flexi Pack, Snow leather Packing, Good Rono Packing, Glitch Regular packing such as a grid is preferred.
  • a multi-stage distillation column having both a tray part and a part filled with packing can also be used.
  • the term “internal plate number” in the present invention means the number of trays in the case of trays, and means the theoretical plate number in the case of packing. Therefore, in the case of a multi-stage distillation column having both a tray part and a packed part, the number of stages is the sum of the number of trays and the theoretical number of stages.
  • the continuous continuous multi-stage distillation column and / or the packing comprising a tray and / or a packing having a predetermined number of internal plates High reaction rate using any of the tower-type continuous multistage distillation columns
  • the internal distillation column-type distillation column was found to be more preferable. Furthermore, it has been found that a perforated plate tray having a perforated plate portion and a downcomer portion is particularly excellent in terms of function and equipment cost. It was also found that the perforated plate tray preferably has 100 to 1000 holes per area lm 2 of the perforated plate portion. More preferably, the number of holes is 120 to 900 per lm 2 , and more preferably 150 to 800. It has also been found that the cross-sectional area per hole of the perforated plate tray is preferably 0.5 to 5 cm 2 .
  • the cross-sectional area per hole is more preferably 0.7 to 4 cm 2 , and further preferably 0.9 to 3 cm 2 .
  • the perforated plate tray has 100 to 1000 holes per lm 2 area of the perforated plate portion, and has a cross-sectional area of 0.5 to 5 cm 2 per hole. In particular, it has been found to be particularly preferred.
  • the aperture ratio of the perforated plate tray is preferably 1.5 to 15%. More preferably, the aperture ratio is 1.7 to 13%, and more preferably 1.9 to 11%.
  • the aperture ratio of the perforated plate tray represents the ratio of the cross-sectional area of all the holes existing in the perforated plate to the area of the perforated plate portion (total hole cross-sectional area).
  • the force S may be different in the area of the perforated plate portion and / or the total hole cross-sectional area, and in this case also, the aperture ratio of each multi-holed plate tray is preferably in the above range.
  • the number of holes in the perforated plate portion may be the same in all perforated plates, or may be different.
  • step (I) When the step (I) is carried out, the cyclic carbonate as a raw material and the aliphatic monohydric alcohol are continuously fed into a continuous multistage distillation column in which a catalyst exists, and the reaction and distillation are carried out in the column. At the same time, the low-boiling reaction mixture containing dialkyl carbonate to be produced is continuously withdrawn in the form of gas from the top of the tower, and the high boiling point reaction mixture containing diols is continuously withdrawn in the form of liquid from the bottom of the tower. Diols are produced continuously.
  • step (I) in order to continuously supply the raw material cyclic carbonate and aliphatic monohydric alcohol into the continuous multistage distillation column T, the gas outlet at the top of the distillation column is more than
  • It may be supplied in liquid and / or gaseous form as a raw material mixture or separately from one or several inlets installed in the lower part but at the upper part or the middle part of the tower.
  • the raw material containing a large amount thereof is supplied in the form of an introduction loca in the upper part or middle part of the distillation column, and the aliphatic monohydric alcohol or the raw material containing a large amount of the raw material is provided above the liquid outlet at the lower part of the distillation column. It is also preferable to supply it in the form of gas from the inlet installed in the middle or lower part.
  • the reaction time of the transesterification performed in the step (I) is the reaction time in the continuous multistage distillation column T.
  • the reaction temperature in the step (I) varies depending on the type of raw material compound used and the type and amount of the catalyst, and is usually 30 to 300 ° C. In order to increase the reaction rate, it is preferable to increase the reaction temperature. However, if the reaction temperature is high, side reactions tend to occur. Preferred reaction temperatures range from 40 to 250 ° C, more preferably from 50 to 200 ° C, even more preferably from 60 to; In the present invention, the reaction distillation can be carried out at a column bottom temperature of 150 ° C. or lower, preferably 130 ° C. or lower, more preferably 110 ° C. or lower, and even more preferably 100 ° C. or lower. .
  • the reaction pressure may vary depending on the type and composition of the raw material compound used, the reaction temperature, etc., and may be any of reduced pressure, normal pressure, and increased pressure, usually 1 Pa to 2 X 10 7 Pa, preferably 10 3 Pa. ⁇ ; 10 7 Pa, more preferably 10 4 Performed in the range of Pa to 5 X 10 6 Pa.
  • the reflux ratio of the continuous multistage distillation column T in step (I) is usually from 0 to 10;
  • the material constituting the continuous multistage distillation column used in step (I) is mainly carbon steel, stainless steel.
  • step (II) for continuously producing the dialkyl carbonate produced in the step (I), phenol and force, and diphenyl carbonate on an industrial scale is performed.
  • the dialkyl carbonate used in the step (II) is represented by the following formula described in the following formula.
  • R 2 is as described above.
  • dialkyl carbonates having R 2 examples include dimethyl carbonate, jetyl carbonate, dipropyl carbonate (each isomer), diaryl carbonate, dibutyr carbonate (each isomer), and dibutyl.
  • dialkyl carbonates comprising R 2 and an alkyl group having 4 or less carbon atoms not containing halogen are preferably used in the present invention, and dimethyl carbonate is particularly preferred.
  • dialkyl carbonates more preferred is a dialkyl carbonate produced in a state substantially free of halogen.
  • an alkylene carbonate substantially free of halogen and an alcoholic power substantially free of halogen are particularly preferred.
  • the phenol used in the step (II) is represented by the following general formula, and is a compound in which a hydroxyl group is directly bonded to the phenyl group (Ph).
  • a substituted phenol substituted with a lower alkyl group or a lower alkoxy group is used.
  • phenol which is substantially free of halogen! /.
  • diphenyl carbonate referred to in the present invention is represented by the following general formula.
  • the molar ratio of the dialkyl carbonate used as a raw material in the step (II) to the phenol is preferably 0. Outside this range, the amount of unreacted raw material that remains is large relative to the desired production amount of diphenyl carbonate, which is not efficient, and requires a lot of energy to recover them. In this sense, the molar ratio is more preferably 0.8-5, more preferably 0.8-3, and even more preferably;!-2.
  • the minimum amount of phenol continuously fed is usually 15 P ton / hr with respect to the amount of aromatic polycarbonate to be produced (P ton / hr).
  • the dialkyl carbonate and phenol used as raw materials in the step (II) may be high in purity or may contain other compounds.
  • the first continuous multi-stage. Formation in distillation column and / or second continuous multistage distillation column It may contain compounds and reaction by-products.
  • these raw materials include those recovered from the first continuous multistage distillation column and / or the second continuous multistage distillation column in addition to the dialkyl carbonate and phenol newly introduced into the reaction system. It is preferable to use it.
  • the top component which is a low boiling point reaction mixture in the second continuous multistage distillation column is supplied to the first continuous multistage distillation column.
  • the second column low-boiling reaction mixture may be supplied as it is to the first continuous multistage distillation column, or may be supplied after separating a part of the components.
  • the raw materials supplied to the first continuous multi-stage distillation column include alcohols, alkyl phenyl carbonates, diphenyl carbonates, alkyl phenyl ethers, and the like. Even more preferred are those containing a small amount of high-boiling by-products such as fleece transfer products and derivatives thereof of alkylphenyl carbonate or diphenyl carbonate.
  • the reaction product methyl alcohol or methanol, is used as the reaction product. It is preferable to contain norecarbonate and diphenolate.
  • step (II) consists of phenol by-produced in step (IV) of the present invention. This by-product phenol must be circulated to step (II) by step (V).
  • the diphenyl carbonate produced in the step (II) has a force S obtained by a transesterification reaction between a dialkyl carbonate and a phenol.
  • this transesterification reaction one or two alkoxy groups of the dialkyl carbonate are phenol.
  • This reaction includes conversion to diphenyl carbonate and dialkyl carbonate by a disproportionation reaction, which is a transesterification reaction between two molecules of the alkyl phenyl carbonate produced by exchanging with the phenoxy group of the alcohol and leaving the alcohol. ing.
  • a disproportionation reaction which is a transesterification reaction between two molecules of the alkyl phenyl carbonate produced by exchanging with the phenoxy group of the alcohol and leaving the alcohol.
  • diphenyl carbonate and dialkyl carbonate are obtained mainly by the disproportionation reaction of the alkyl phenyl carbonate. Since the diphenyl carbonate obtained in the step (II) does not contain any halogen, it is important as a raw material for industrially producing the aromatic polycarbonate of the present invention. This is because if the halogen is present in the polymerization raw material even in an amount less than 1 ppm, for example, the polymerization reaction is inhibited, the stable production of the aromatic polycarbonate is inhibited, and the produced aromatic polymer is also inhibited. This is because the physical properties of the carbonate are deteriorated and coloring is caused.
  • the catalyst used in the first continuous multistage distillation column and / or the second continuous multistage distillation column in step (II) is selected from, for example, the following compounds:
  • Lead salts such as Ca PbO and CaPbO; Lead carbonates such as PbCO and 2PbCO 2 -Pb (OH)
  • Ph represents a phenyl group.
  • ⁇ Copper group metal compounds > CuCl, CuCl, CuBr, CuBr, Cul, Cul, Cu (OAc), Cu (acac), copper oleate, Bu Cu, (CH 2 O) Cu, AgNO, AgBr, silver picrate, A
  • Alkali metal complexes such as Li (acac) and LiN (C H);
  • Zinc complex such as Zn (acac);
  • L, D, L / D, n, D / d, D / d force respectively satisfy the equations (7) to (; 12).
  • the second continuous multi-stage distillation column used in step (II) has a cylindrical body having a length (cm) and an inner diameter D (cm), and an internal having a number n of stages inside.
  • dialkyl carbonate and phenol can be converted into diphenyl.
  • the formulas (7) to (18) It is presumed to be due to the combined effect that results when conditions are combined.
  • the preferred range of each factor constituting the continuous multistage distillation column used in step (II) is shown below.
  • L and L In order to reduce the equipment cost while securing the reaction rate that can achieve the target production volume, L and L must be 8000 or less respectively.
  • More preferred L (cm) and L (cm) ranges are 2000 ⁇ L ⁇ 6000 and
  • D (cm) and D (cm) are each less than 100, the target production can be achieved.
  • D and D are the first continuous multistage distillation column and the second continuous multistage distillation column.
  • the inner diameter may be the same from the upper part to the lower part of the tower, or the inner diameters may be partially different.
  • the inner diameter of the upper part of the column may be smaller or larger than the inner diameter of the lower part of the tower.
  • the L / ⁇ ranges are 3 ⁇ L / ⁇ 30 and 3 ⁇ L / ⁇ 30, respectively.
  • N is greater than 120
  • n 30 ⁇ n
  • n the reaction rate decreases, so the target production amount in the second continuous multistage distillation column cannot be achieved, and the facility is secured while ensuring the reaction rate that can achieve the target production amount.
  • n must be 80 or less.
  • the n force is greater than 0, the pressure difference between the top and bottom of the column becomes too large, and the long-term stable operation of the second continuous multistage distillation column becomes difficult, and the temperature at the bottom of the column must be increased. Side reactions are likely to occur, leading to a decrease in selectivity.
  • a more preferable range of n is 15 ⁇ n ⁇ 60, and more preferably 20 ⁇ n ⁇ 50.
  • the second continuous multistage Preferably, 7 ⁇ D / d ⁇ 15. If the D / d force is less than 3 ⁇ 4, the second continuous multistage
  • D / d is 7 ⁇ D / d ⁇ 25, and further preferably 9 ⁇ D / d ⁇ 20.
  • step (II) the d and the d satisfy the formula (34), and the d and the d are represented by the formula (35).
  • the long-term stable operation in the process (II) is a steady state based on operating conditions where there is no flooding, piping clogging or erosion for 1000 hours or more, preferably 3000 hours or more, more preferably 5000 hours or more. This means that a predetermined amount of diphenyl carbonate is produced while maintaining high selectivity.
  • Step (II) is characterized in that diphenyl carbonate is stably produced for a long period of time with high selectivity and high productivity of preferably 1 ton or more per hour, but more preferably It is to produce diphenyl carbonate of 2 tons or more per hour, more preferably 3 tons or more per hour.
  • step (II) L, D, L / of the first continuous multistage distillation column
  • step (II) L, D, L / D, n, D / d, D / d of the first continuous multistage distillation column
  • 1 1 1 1 1 1 1 11 1 each 2500 ⁇ L ⁇ 5000, 200 ⁇ D ⁇ 800, 5 ⁇ L / D ⁇ 1 5, 40 ⁇
  • n ⁇ 90, 10 ⁇ D / d ⁇ 25, 7 ⁇ D / d ⁇ 15, and the second continuous multistage distillation column 2 , D 2 , L 2 / D 2 , n 2 , D 2 / d 2i , D 2 / d 22 units, 2500 ⁇ 2 ⁇ 5000, 200 ⁇ D ⁇ 800, 5 ⁇ L / D ⁇ 10, 20 ⁇ n ⁇ 50, 3 ⁇ D / d ⁇ 10, 9 ⁇ D / d ⁇ 2
  • the selectivity of diphenyl carbonate is relative to the reacted phenol, and in the step (II), the selectivity is usually 95% or higher, preferably 97% or higher. More preferably, a high selectivity of 98% or more can be achieved.
  • the first continuous multistage distillation column and the second continuous multistage distillation column used in the step (II) are preferably distillation columns having trays and / or packings as internal.
  • the term “internal” as used in the present invention means a portion where the gas-liquid contact is actually performed in the distillation column. As such a tray, those described in the step (I) are preferable.
  • the “internal number of stages” is as described above.
  • the force S that mainly produces a reaction to produce an alkylphenol carbonate from a dialkyl carbonate and phenol, this reaction has an extremely small equilibrium constant. Since the reaction force was slow, the first continuous multi-stage distillation column used for reactive distillation was found to be the internal distillation column-type distillation column. In the second continuous multistage distillation column, a reaction for disproportionating the alkylphenol carbonate is mainly carried out. This reaction also has a small equilibrium constant and a slow reaction rate. However, it has been found that the second continuous multi-stage distillation column used for the reactive distillation is more preferably a distillation column whose internal has both a packing and a tray.
  • the second continuous multistage distillation column is preferably one with a packing at the top and a tray at the bottom. It has also been found that the packing of the second continuous multi-stage distillation column is particularly preferred among the regular packings that are preferred to the regular packing.
  • the tray installed in each of the first continuous multi-stage distillation column and the second continuous multi-stage distillation column is particularly excellent in terms of the function and equipment cost. It was found that It has also been found that the perforated plate tray preferably has 100 to 1000 holes per lm 2 of the perforated plate part! /. More preferred! /, Hole count Is about 120 to 900, more preferably about 150 to 800.
  • the cross-sectional area per hole of the perforated plate tray is preferably 0.5 to 5 cm2.
  • the cross-sectional area per hole is more preferably 0.7 to 4 cm 2 , and even more preferably 0.9 to 3 cm 2 .
  • the perforated plate tray has 100 to 1000 holes per lm 2 of the perforated plate portion, and the cross-sectional area per hole is 0.5 to 5 cm 2.
  • step (II) When carrying out step (II), the raw materials dialkyl carbonate and phenol are continuously fed into the first continuous multistage distillation column in which the catalyst is present, and the reaction and distillation are the same in the first column.
  • the first column low-boiling point reaction mixture containing the resulting alcohols is continuously withdrawn from the upper portion of the first column in a gaseous state, and the first column high-boiling point reaction mixture containing the alkyl phenyl carbonates formed is The liquid is continuously withdrawn from the lower part of the first column, and the high-boiling reaction mixture in the first column is continuously fed into the second continuous multi-stage distillation column in which the catalyst exists, and the reaction and distillation are simultaneously performed in the second column.
  • the second column low-boiling point reaction mixture containing dialkyl carbonates produced is continuously withdrawn in the form of a gas from the upper part of the second column, and the resulting second column high-boiling point reaction mixture containing diphenyl carbonates is obtained. Liquid continuously from the bottom of the second tower On the other hand, diphenyl carbonate is continuously produced by continuously feeding the second column low boiling point reaction mixture containing dialkyl carbonates into the first continuous multi-stage distillation column.
  • This raw material contains reaction by-products such as alcohols, alkyl phenyl carbonates, diphenyl carbonates, alkyl phenyl ethers and high boiling point compounds as reaction products! /, Les, as described above. Considering the equipment and cost for separation and purification in other steps, in the case of the present invention which is actually carried out industrially, it is preferable to contain a small amount of these compounds.
  • step (II) in order to continuously supply the dialkyl carbonate and phenol as raw materials into the first continuous multistage distillation column, the lower portion is located below the gas outlet at the top of the first distillation column. It may be supplied in liquid and / or gaseous form from one or several inlets installed in the upper or middle part of the tower! /, And the first steamed raw material rich in phenol.
  • a raw material containing a large amount of dialkyl carbonate is supplied in liquid form from the inlet at the upper part of the distillation column, and the inlet power or gas installed above the liquid outlet at the lower part of the first distillation tower and at the lower part of the tower It is also a preferred method to supply in the form.
  • step (II) the first high boiling point reaction mixture containing alkylphenol carbonates continuously extracted from the lower part of the first continuous multistage distillation column is continuously supplied to the second continuous multistage distillation column.
  • the supply position is lower than the gas extraction port at the top of the second distillation column, the liquid and liquid are introduced from one or several inlets installed at the top or middle of the column. It is preferable to supply in a gaseous state.
  • at least one of the inlets is installed between the packed portion and the tray portion. Is preferred.
  • the packing is composed of two or more regular packings, it is also a preferable method to install introduction ports at intervals that constitute the plurality of packings.
  • step (II) after condensing the components extracted from the top gas of the first continuous multistage distillation column and the second continuous multistage distillation column, respectively, a part of them is returned to the upper part of each distillation column.
  • the reflux ratio of the first continuous multistage distillation column is from 0 to 10; the reflux ratio of the second continuous multistage distillation column is from 0.01 to 10; preferably from 0.08 to 5, Preferably, it is in the range of 0.1 to 2.
  • a reflux operation is not performed, and a reflux ratio of 0 is also preferred! /.
  • step (II) any method may be used for allowing the catalyst to be present in the first continuous multistage distillation column.
  • the catalyst is in a solid state insoluble in the reaction solution, It is preferable to fix in the tower by a method of installing in a stage in a single continuous multi-stage distillation column or a method of installing in a packed form.
  • the catalyst solution dissolved in the raw material or the reaction solution may be introduced together with the raw material, or the catalyst solution may be introduced from an inlet different from the raw material.
  • the amount of catalyst used in the first continuous multi-stage distillation column of the present invention varies depending on the type of catalyst used, the type of raw material and its ratio, reaction temperature, reaction pressure, and other reaction conditions. expressed as a percentage of the total mass, usually 0.000;! ⁇ 30 mass 0/0, preferably ⁇ is 0. 0005 ⁇ ; 10 mass 0/0, more preferably ⁇ is 0. 0 0; Used at ⁇ 1% by mass.
  • any method may be used in which the catalyst is present in the second continuous multistage distillation column.
  • the second continuous multi-stage distillation column is preferably fixed in the column by a method of being installed in a stage or a method of being installed in a packed form.
  • the catalyst solution dissolved in the raw material or the reaction liquid may be introduced together with the raw material, or the catalyst liquid may be introduced from an inlet different from the raw material.
  • the amount of catalyst used in the second continuous multi-stage distillation column of the present invention varies depending on the type of catalyst used, the type of raw material and its ratio, the reaction temperature and the reaction pressure, but the total amount of raw materials. expressed as a percentage of mass, usually 0.000;! ⁇ 30 mass 0/0, preferably ⁇ is 0. 0005 ⁇ ; 10 mass 0/0, more preferably ⁇ is 0. 00;! ⁇ 1 wt% used.
  • the catalyst used in the first continuous multistage distillation column and the catalyst used in the second continuous multistage distillation column may be of the same type or different types. Preferably, it is preferable to use the same type of catalyst. Further preferred are catalysts of the same type that can be dissolved in both reaction solutions. In this case, the catalyst is usually dissolved in the high boiling point reaction mixture of the first continuous multi-stage distillation column, and is extracted from the lower part of the first distillation column together with the alkyl phenyl carbonate, etc., and is directly used in the second continuous multi-stage distillation column. This is a preferred embodiment. If necessary, a new catalyst can be added to the second continuous multi-stage distillation column.
  • the reaction time of the transesterification reaction performed in step (II) is considered to correspond to the average residence time of each reaction solution in the first continuous multistage distillation column and the second continuous multistage distillation column. This differs depending on the internal shape and number of stages of each distillation column, the amount of raw material supply, the type and amount of the catalyst, the reaction conditions, etc., but in each of the first continuous multistage distillation column and the second continuous multistage distillation column. Is usually from 0.01 to 10 hours, preferably from 0.05 to 5 hours, more preferably from 0.;! To 3 hours.
  • the reaction temperature of the first continuous multistage distillation column varies depending on the type of raw material compound and the type and amount of the catalyst used, but is usually in the range of 100 to 350 ° C. To increase the reaction rate It is preferable to increase the reaction temperature. However, if the reaction temperature is high, side reactions are likely to occur. For example, by-products such as alkyl phenyl ethers increase, such being undesirable. In this sense, the preferable reaction temperature in the first continuous multistage distillation column is 130 to 280 ° C, more preferably 150 to 260. C, more preferably 180-250. C range.
  • the reaction temperature of the second continuous multistage distillation column varies depending on the type of raw material compound and the type and amount of the catalyst used, but is usually in the range of 100 to 350 ° C. In order to increase the reaction rate, it is preferable to increase the reaction temperature. However, if the reaction temperature is high, side reactions are liable to occur. For example, alkyl phenyl ethers and alkyl phenyl carbons that are raw materials and products are used. This is not preferable because by-products such as the fries transfer product of todiphenyl carbonate and its derivatives increase. In this sense, the preferred reaction temperature in the second continuous multistage distillation column is 130 to 280. C, more preferably 150-260. C, more preferably in the range of 180-250 ° C.
  • the reaction pressure of the first continuous multi-stage distillation column varies depending on the type and composition of the raw material compound used, the reaction temperature, etc., but the first continuous multi-stage distillation column can be any of reduced pressure, normal pressure, and increased pressure. Ordinarily, the column top pressure is 0.;! To 2 ⁇ 10 7 Pa, preferably 10 5 to; 10 7 Pa, more preferably 2 ⁇ 10 5 to 5 ⁇ 10 6 Pa.
  • the reaction pressure of the second continuous multi-stage distillation column is a normal column top pressure which may be any force S, reduced pressure, normal pressure, or increased pressure depending on the type and composition of the raw material compound used, the reaction temperature, etc. 0.1 to 2 ⁇ 10 7 Pa, preferably 10 3 to 10 6 Pa, more preferably 5 ⁇ 10 3 to 10 5 Pa.
  • Two or more distillation towers can be used as the first continuous multistage distillation tower in the step (II). In this case, two or more distillation columns can be connected in series, connected in parallel, or combined in series and parallel. In addition, two or more distillation towers can be used as the second continuous multistage distillation tower in the step (II). In this case, it is possible to connect two or more distillation columns in series, connect them in parallel, or connect a combination of series and parallel.
  • the materials constituting the first continuous multistage distillation column and the second continuous multistage distillation column used in step (II) are mainly metal materials such as carbon steel and stainless steel. From the aspect of carbonate quality, stainless steel is preferred.
  • the second column high boiling point reaction mixture continuously extracted in liquid form from the bottom of the second continuous multistage distillation column of step (II) is a force mainly composed of diphenyl carbonate. It contains alkylphenyl carbonate, a small amount of unreacted raw materials, a small amount of high-boiling byproducts, and this catalyst component is also included when a homogeneous catalyst is used. Therefore, it is necessary to carry out a purification step (II I) for obtaining high-purity diphenyl carbonate from the second tower high boiling point reaction mixture.
  • step (III) two distillation columns (a high-boiling point material separation column A and a diphenyl carbonate purification column B having a side cut outlet) are used. Reacted alkyl phenyl carbonate, a small amount of unreacted raw material, a top component (A) mainly composed of diphenyl carbonate, a small amount of high-boiling by-products and / or catalyst components.
  • the top component (A) is continuously fed to the diphenyl carbonate purification tower B, and the diphenyl
  • the component (B) is continuously separated into three components and a high-purity diphenol is used as a side-cut component (B).
  • step (III) the high-boiling point substance separation tower A satisfies the following formulas (19) to (21), has a length (cm) and an inner diameter D (cm), and has n stages inside.
  • the diphenyl carbonate purification tower B has a length satisfying the following formulas (22) to (27) (c
  • the number of internal stages is n, and the number of internal stages below the side cut outlet B2 is
  • n must be a continuous multistage distillation column with a total number of plates (n + n + n) of 1. is there.
  • a second solution containing diphenyl carbonate obtained by transesterification (step II) using dialkyl carbonate and phenol as raw materials in the presence of a homogeneous catalyst is stable on an industrial scale of 1 ton per hour, for example 2000 hours or more, preferably 3000 hours or more, more preferably 5000 hours or more It has been found that it can be manufactured.
  • L (cm) is smaller than 800, the internal height that can be installed inside can be limited.
  • the range is 1000 ⁇ L ⁇ 2500, more preferably 1200 ⁇ L ⁇ 2000.
  • the preferred range of D (cm) is 200 ⁇ D ⁇ 600, more preferably 250 ⁇ D
  • n is smaller than 20! /, And the separation efficiency is lowered, so the desired high purity cannot be achieved! /,
  • n 100 or less.
  • n force is greater than 00, the pressure difference between the top and bottom of the tower becomes too large. Therefore, it is not preferable because the temperature at the bottom of the tower must be increased as well as the long-term stable operation of the high boiling point substance separation tower A becomes difficult, and side reactions are likely to occur.
  • the more preferable range of n is 30 ⁇ n ⁇ 70, more preferably 35 ⁇ n ⁇ 60
  • L (cm) is smaller than 1000, the internal height that can be installed inside can be limited.
  • Range is 1500 ⁇ L ⁇ 3000, more preferably 1700 ⁇ L ⁇ 2500
  • the preferred range of D (cm) is 150 ⁇ D ⁇ 500, more preferably 200 ⁇ D
  • n force If less than 0, the separation efficiency of the whole column decreases and the desired high purity is achieved.
  • N is 70 or less to reduce the equipment cost while achieving the desired separation efficiency.
  • n is greater than 70, the pressure difference between the top and bottom of the tower is large.
  • n is 25 ⁇ n ⁇ 55, and more preferably 30 ⁇ n
  • n, n, and n are 5 ⁇ n ⁇ 20, 12 ⁇ n ⁇ 40, 3 ⁇ n, respectively.
  • the high-boiling point substance separation tower A has a tower bottom temperature (T) of 185 to 280.
  • the diphenyl carbonate purification tower is operated at a top temperature (P) of 1000 to 20000 Pa at ° C.
  • T column bottom temperature
  • P column top pressure
  • the T force is lower than 85 degrees, the top pressure must be lowered, so a high vacuum is maintained.
  • the temperature is higher than 280 ° C because a high-boiling by-product is produced during distillation. More preferred T is 19
  • the P force is lower than OOOPa, it becomes a large facility capable of maintaining a high vacuum, and it is preferable 2000
  • P is 2000 to 15000 Pa, and more preferably 3000 to 13000 Pa.
  • the top pressure must be lowered, so a high vacuum is maintained.
  • the temperature is higher than 280 ° C because a high-boiling by-product is produced during distillation. More preferred T is 19
  • P is 2000 to 15000 Pa, and more preferably 3000 to 13000 Pa.
  • D may have the same inner diameter from the top to the bottom of the tower.
  • the inner diameter may be partially different.
  • the inner diameter of the upper part of the column may be smaller or larger than the inner diameter of the lower part of the tower.
  • the high boiling point substance separation tower A and the diphenyl carbonate purification tower B used in the step (III) are distillation towers each having a tray and / or a packing as an internal.
  • the term “rear internal” refers to a portion where the distillation column is actually brought into contact with gas and liquid. As such a tray, those described in the section of step (I) are preferable.
  • the “number of internal stages” is as described above.
  • the high boiling point substance separation column A in step (III) is preferably one having a packing as an internal, and more preferably a regular packing as a packing. It has also been found that the diphenyl carbonate purification tower B is preferably packed as an internal, and more preferably one or more ordered packings.
  • the high boiling point reaction mixture is continuously withdrawn from the bottom of the second reactive distillation column of step (II), usually, the dialkyl carbonate, from 0.05 to 2 mass 0/0, phenol is 1 20 mass 0/0 0.05 to 2% by weight of alkyl phenyl ether, 10 to 45% by weight of alkyl phenyl carbonate, 50 to 80% by weight of diphenyl carbonate, 0. Since the catalyst is contained at 0.00;! To 5% by mass, it is preferable to continuously supply the continuously extracted column bottom liquid to the high boiling point separation column A in step (III) as it is. .
  • the composition of the reaction mixture is almost constant as long as the transesterification reaction is carried out under constant conditions under conditions of transesterification reaction between dialkyl carbonate and phenol, the type and amount of the catalyst. Since a reaction mixture having a composition can be produced, the composition of the reaction mixture supplied to the high boiling point substance separation tower A is almost constant. However, in step (III), if the composition of the reaction mixture is within the above range, even if it varies, separation can be performed with substantially the same separation efficiency. This is one of the characteristics of the process (III) of the present invention.
  • step (III) in order to continuously supply the bottom liquid of the second reactive distillation column of step (II) into the high-boiling point material separation column A, It may be supplied in liquid form from one or several inlets installed below the middle part, or supplied into the tower via a reboiler from a pipe provided under the reboiler of the separation tower A. Is also a preferred method.
  • the amount of the bottom liquid of the second reactive distillation column supplied to the high boiling point substance separation column A is the amount of high-purity diphenyl carbonate to be produced, the concentration of diphenyl carbonate in the reaction mixture, the separation column
  • the force S varies depending on the separation conditions of A, etc., usually about 2 tons / hr or more, preferably about 6 tons / hr or more, more preferably about 10 tons / hr or more.
  • the high-boiling point reaction mixture of the second reactive distillation column continuously fed to the high-boiling point substance separation column A is composed of a large part of diphenyl carbonate and unreacted raw materials, alkylphenyl ether, aralkyl phenyl carbonate.
  • the top component (A) consisting of the majority of the compounds having a lower boiling point than diphenyl carbonate, etc., a small amount of diphenyl carbonate, a catalyst,
  • bottom component (A) containing organisms.
  • a small amount of alkyl fluoride is contained in the bottom component (A).
  • An phenyl carbonate may be contained. These organic substances in the bottom components are useful for dissolving the catalyst components and keeping them in a liquid state. Total or part of this bottom component (A)
  • step (III) As a catalyst component of the transesterification reaction, it is usually recycled and reused as it is in the first reactive distillation column and / or the second reactive distillation column in step (II). However, in some cases, it was separated from organic substances in the catalyst recovery process. After that, it is regenerated as a catalyst and recycled. [0149]
  • step (III) the boiling point is higher than that of diphenyl carbonates such as phenyl salicylate, xanthone, phenyl methoxybenzoate, 1-phenoxycarbonyl 2-phenoxycarboxy monophenylene, etc.
  • the by-product and catalyst component of this product are separated almost completely as the bottom component (A) in this high-boiling substance separation tower A, and the content in the top component (A) is usually 200 ppm or less.
  • step (III) One feature of step (III) is that it can be easily reduced to 10 ppm or less, more preferably 50 ppm or less.
  • the top component (A) contains almost all of these high-boiling byproducts.
  • step (III) it is one of the features of the step (III) that it is possible to extract a large portion of diphenyl carbonate in the introduced reaction mixture from the top of the reaction mixture.
  • step (III) 95% or more, preferably 96% or more, more preferably 98% or more of the diphenyl carbonate in the reaction mixture continuously supplied to the high boiling point substance separation tower A
  • the ability to pull out from S in the step (III) a force that depends on the composition of the high boiling point reaction mixture of the second reaction distillation column supplied to the separation column A is usually 90 to 97. % By mass is continuously withdrawn from the top of the column as the top component (A).
  • the dialkyl carbonate 0.5 05 ⁇ ;! mass 0/0
  • phenol is 1 to 10 mass 0/0
  • alkylphenyl ether from 0.05 to 0.5 wt%
  • alkylphenyl carbonates force 3 ⁇ 40 -40 mass%
  • diphenyl carbonate is 50-80 mass%
  • the content of high-boiling by-products is usually 200 ppm or less, preferably 10 ppm or less, more preferably 50 ppm.
  • the reflux ratio of the high boiling point substance separation column A is in the range of 0.01 to 10; preferably 0.08 to 5, more preferably 0.1 force, et al. 3 Range.
  • the force S which is usually about 90 to 97% of the high boiling point reaction mixture of the second reactive distillation column fed to the separation column A as described above, is directly introduced from the inlet B1 provided in the middle stage of the diphenyl carbonate purification column B. Continuously supplied to the purification tower B, the top component (B), side cut component (
  • top component (B) are continuously withdrawn from the top of the tower as a top component (B), and a small amount of liquid is removed from the bottom of the tower. It is continuously extracted.
  • the tower top component (B) contains a small amount of diphenyl carbonate.
  • the amount is usually !!-9%, preferably 3-8%, based on the diphenyl carbonate supplied.
  • the diphenyl carbonate in the top component (B) is converted to the top component (B).
  • the bottom component (B) is diphenyl carbonate and a small amount of high boiling point concentrated to several percent
  • the amount of the acid salt is very small, and the amount is usually 0.05 to 0.5% with respect to the supplied diphenyl carbonate.
  • high-purity diphenyl carbonate is usually continuously extracted at a flow rate of usually 1 ton / hr or more, preferably 3 ton / hr or more, more preferably 5 ton / or more, This amount usually corresponds to about 90 to 96% of the diphenyl carbonate fed to the purification tower B.
  • the content of high-boiling impurities in the high-purity diphenyl carbonate obtained by carrying out step (II) and step (III) using dimethyl carbonate and phenol as raw materials is 30 ppm or less, preferably 10 ppm or less, of phenolic salicylate.
  • xanthone is 30 ppm or less, preferably 1 Oppm or less, more preferably 1 ppm or less
  • methoxybenzoyl phenyl is 30 ppm or less, preferably 1 Oppm or less, more preferably 1 ppm or less
  • 1 phenoxycarbo 2-ru 2-phenoxyboxy fullerene is 30 ppm or less, preferably 10 ppm or less, more preferably 5 ppm or less.
  • the total content of these high-boiling byproducts is 10 ppm or less, preferably 5 ppm or less, more preferably 10 ppm or less.
  • the halogen content of the obtained diphenyl carbonate is 0.1 ppm or less, preferably 10 ppm or less, and more preferably lppb or less.
  • the reflux ratio of the diphenyl carbonate purification tower B is in the range of 0.01-10 (7), preferably from 0 .;! To 8, more preferably from 0.5 to 5 Range.
  • the high boiling point substance separation tower A and diphenyl carbonate purification tower B used in the present invention and the material constituting the liquid contact part are mainly metal materials such as carbon steel and stainless steel. In terms of quality, stainless steel is preferred.
  • step (IV) is performed. That is, an aromatic dihydroxy compound and the high-purity diphenyl carbonate are reacted to produce a molten prepolymer of an aromatic polycarbonate, and the molten prepolymer is allowed to flow down along the surface of the guide, and the molten prepolymer is dropped during the flow.
  • This is a process for producing an aromatic polycarbonate using a guided contact flow type polymerization reactor for polymerizing the polymer.
  • step (IV) the aromatic dihydroxy compound used is a compound represented by the following general formula.
  • Ar represents a divalent aromatic group
  • the divalent aromatic group Ar is preferably represented by the following general formula, for example.
  • Ar 1 and Ar 2 each independently represent a divalent carbocyclic or heterocyclic aromatic group having 5 to 70 carbon atoms, and Y is a divalent having 1 to 30 carbon atoms. Represents the alkane group of
  • divalent aromatic group A in Ar 2, 1 or more hydrogen atoms, other substituents not being adversely affect the reaction, for example, a halogen atom, the number 1 carbon; alkyl group having 10, It may be substituted by an aralkoxy group, phenyl group, phenoxy group, vinylol group, cyanol group, ester group, amide group, nitro group or the like having 10 to 10 carbon atoms.
  • the heterocyclic aromatic group include aromatic groups having one or more ring-forming nitrogen atoms, oxygen atoms or sulfur atoms.
  • the divalent aromatic groups A 1 and Ar 2 represent groups such as substituted or unsubstituted phenylene, substituted or unsubstituted biphenylene, substituted or unsubstituted pyridylene.
  • the substituents here are as described above.
  • the divalent alkane group Y is, for example, an organic group represented by the following chemical formula 3.
  • R 2 , R 3 and R 4 are each independently hydrogen, an alkyl group having 1 to 10 carbon atoms; an alkyl group having 10 carbon atoms; an alkoxy group having 10 to 10 carbon atoms; a cycloalkyl group having 5 to 10 carbon atoms; A carbocyclic aromatic group having 5 to 10 carbon atoms and a carbocyclic aralkyl group having 6 to 10 carbon atoms.
  • k represents an integer of 3 to 11
  • R 5 and R 6 are individually selected for each X, and independently of each other, represent hydrogen or an alkyl group having 1 to 6 carbon atoms
  • X represents carbon.
  • R 2 , R 3 , R 4 , R 5 , R 6 other substituents, for example, a halogen atom, an alkyl group having 1 to 10 carbon atoms, as long as one or more hydrogen atoms do not adversely influence the reaction, It may be substituted with an alkoxy group having 1 to 10 carbon atoms; a phenyl group, a phenoxy group, a bur group, a cyan group, an ester group, an amide group, a nitro group, or the like.
  • substituents for example, a halogen atom, an alkyl group having 1 to 10 carbon atoms, as long as one or more hydrogen atoms do not adversely influence the reaction, It may be substituted with an alkoxy group having 1 to 10 carbon atoms; a phenyl group, a phenoxy group, a bur group, a cyan group, an ester group, an amide group, a nitro group, or the like.
  • Examples of such a divalent aromatic group Ar include those represented by the following formulae:
  • R 7 and R 8 are each independently a hydrogen atom, a halogen atom, a carbon number of 1 to; an alkyl group of 10 to 10 carbon atoms, an alkoxy group of 10 to 10 carbon atoms in a ring; 10 and a cycloalkyl group or a phenyl group, and m and n are integers of !! to 4, and when m is 2 to 4, each R 7 may be the same or different. OK, and when n is 2 to 4, R 8 may be the same or different.
  • divalent aromatic group Ar may be represented by the following formula.
  • Z is a single bond or —O—, —CO—, —S, 1 S 02—, 1 SO, 1 C001, CON (R 1 ) Represents a divalent group such as —, where R 1 is the previous As described above. )
  • Examples of such a divalent aromatic group Ar include those represented by the following formulae:
  • divalent aromatic group Ar examples include substituted or unsubstituted phenylene, substituted or unsubstituted naphthylene, substituted or unsubstituted pyridylene, and the like.
  • the aromatic dihydroxy compound used in the present invention may be a single type or two or more types.
  • a typical example of the aromatic dihydroxy compound is bisphenol A.
  • a trivalent aromatic trihydroxy compound for introducing a branched structure may be used in combination as long as the object of the present invention is not impaired.
  • the use ratio (charge ratio) of the aromatic dihydroxy compound and the high-purity diphenyl carbonate in the step (IV) is the same as the aromatic dihydroxy compound used and the diphenyl carbonate.
  • diphenyl carbonate is usually 0.9 to 2.5 moles, preferably 0.95 to 2.0 moles per mole of aromatic dihydroxy compound. Monole, more preferably 0.98-1.5 monole harm.
  • a molten prepolymer produced from an aromatic dihydroxy compound and diphenyl carbonate (hereinafter referred to as a molten prepolymer) is produced from an aromatic dihydroxy compound and diphenyl carbonate. It means a melt in the middle of polymerization having a degree of polymerization lower than that of an aromatic polycarbonate having the desired degree of polymerization, and may of course be an oligomer.
  • a melted prepolymer used in step (IV) may be obtained by any known method.
  • a molten mixture of a predetermined amount of an aromatic dihydroxy compound and diphenyl carbonate is usually used in a temperature range of about 120 ° C. to about 280 ° C.
  • a method of continuously producing a melted polymer having a required degree of polymerization in which the degree of polymerization is sequentially increased by using two or more vertical stirring tanks connected in series is particularly preferred.
  • the molten prepolymer is continuously supplied to the guide contact flow type polymerization apparatus to continuously produce an aromatic polycarbonate having a desired degree of polymerization.
  • This guide contact flow type polymerizer is a polymerizer in which a polymer is melted and flowed along a guide, and can produce an aromatic polycarbonate of 1 ton or more per hour.
  • the guide contact flow type polymerization reactor is
  • the tapered bottom case of the polymerization reaction zone is connected to the upper side casing at an angle C degree inside the upper side casing, and the angle C degree satisfies the equation (30).
  • the internal cross sectional area A (m 2 ) in the horizontal plane (a—a ′ plane) of the side casing 10 of the polymerization reaction zone 5 is It is necessary to satisfy equation (28). If A is less than 0.7 m 2 , the target production cannot be achieved, and A must be 300 m 2 or less in order to achieve this production while lowering the equipment cost.
  • a / B is expressed by the formula (29) Must be satisfied.
  • a tapered bottom casing constituting the bottom of the polymerization reaction zone 5 is provided at an angle C degrees with respect to the upper side casing 10 at an angle C degrees. It is also necessary to satisfy (30).
  • the length h (cm) of the guide satisfies the formula (31).
  • the degree of polymerization of the melted polymer can be increased, but the degree is not sufficient, and the variation in the degree of polymerization becomes about 200 or more in number average molecular weight, which is not preferable.
  • the h force is longer than S5000cm, the difference in the melt viscosity of the melted prepolymer between the upper and lower parts of the guide becomes too large, so the variation in the degree of polymerization is about 300 or more (in some cases, about 500 or more). This is not preferable because the physical properties of the resulting aromatic polycarbonate vary with increasing size.
  • the large variation in the degree of polymerization means, for example, a variation in which there is a difference of about 200 or more, expressed in terms of number average molecular weight.
  • the total surface area S (m 2 ) of the guide 4 needs to satisfy the equation (32). If S is less than 2m 2 , the target production volume cannot be achieved, and in order to achieve this production volume while reducing equipment costs, and to eliminate variations in physical properties, S should be 50000m 2 or less. is required.
  • Step (IV) it is not clear why it is possible to produce an aromatic polycarbonate having such excellent effects on an industrial scale, but in addition to the above reasons, This is presumed to be due to the combined effects that appear when conditions are combined.
  • the molten prepolymer can be polymerized at a relatively low temperature, and large quantities of high quality aromatic polycarbonate having the desired molecular weight.
  • the tapered bottom casing that satisfies equation (30) can reduce the amount of time that this large amount of high quality product aromatic polycarbonate that falls from the guide reaches the outlet. As a result, it is estimated that the thermal history of the produced aromatic polycarbonate can be reduced.
  • step (IV) is a guided contact flow type polymerization reactor satisfying the equations (28), (29), (30), (31) and (32). Can reduce equipment costs as industrial production equipment
  • a more preferable range of the internal cross-sectional area A (m 2 ) in the horizontal plane of the side casing of the polymerization reaction zone is 0.8 ⁇ A ⁇ 250, more preferably 1 ⁇ A ⁇ 200.
  • a more preferable range of the ratio to (m 2 ) is 25 ⁇ A / B ⁇ 900, and more preferably 30 ⁇ A / B ⁇ 800.
  • the tapered bottom casing that forms the bottom of the polymerization reaction zone is A more preferable range of the angle C degree formed inside the side casing is 125 ⁇ C ⁇ 160, and more preferably 135 ⁇ C ⁇ 165.
  • the corresponding angles are Cl, C2, C3, ..., C1 ⁇ C2 ⁇ C3 ⁇ ... is preferable
  • the required length h (cm) of the guide depends on factors such as the degree of polymerization of the raw material prepolymer, the polymerization temperature and pressure, the degree of polymerization of the aromatic polycarbonate or prepolymer to be produced in the polymerization vessel, and the production amount. More preferred range of forces depending on the difference is 200 ⁇ h ⁇ 3000, more preferably 250 ⁇ h ⁇ 2500. It is particularly preferred when h satisfies the formula (40).
  • the total external surface area S (m 2 ) of the required guide as a whole varies depending on the same factors as above, but the more preferable range is 4 ⁇ S ⁇ 40000, and more preferably Is 10 ⁇ S ⁇ 30000. 15 ⁇ S ⁇ 20000 °, the preferred range.
  • the total external surface area of the entire guide referred to in the present invention means the entire surface area of the guide that flows down in contact with the molten polymer.
  • a guide such as a pipe
  • it means the outer surface area.
  • the surface area of the inner surface of the pipe where the polymer does not flow down is not included.
  • the shape of the internal cross section of the side casing of the polymerization reaction zone in the horizontal plane may be any shape such as a polygon, an ellipse, and a circle. . Since the polymerization reaction zone is usually operated under reduced pressure, it may be of any type as long as it can withstand it, but preferably it is circular or has a shape close to it. Therefore, the side casing of the polymerization reaction zone of the present invention is preferably cylindrical. In this case, it is preferable that a tapered bottom casing is connected to the lower portion of the cylindrical side casing, and a cylindrical aromatic polycarbonate discharge port is provided at the lowermost portion of the bottom casing.
  • a more preferable range of D (cm) is 150 ⁇ D ⁇ 1500, and further preferably 200 ⁇ D ⁇ 1200. Further, a more preferable range of D / d is 6 ⁇ D / d ⁇ 45, and more preferably 7 ⁇ D / d ⁇ 40. Further, a more preferable range of L / D is 0.6 ⁇ L / D ⁇ 25, and more preferably 0.7 ⁇ L / D ⁇ 20. Further, a more preferable range of L (cm) is h—10 ⁇ L ⁇ h + 250, and more preferably h ⁇ L ⁇ h + 200. If D, d, L, and h do not satisfy these relationships at the same time, it is difficult to achieve the object of the present invention.
  • process (IV) a high-quality, high-performance aromatic polycarbonate with a high polymerization rate, no coloration and excellent mechanical properties is stably produced on an industrial scale with no variation in molecular weight over a long period of time.
  • the exact reason for this is not clear, but the following are possible.
  • the molten precursor polymer is guided from the receiving port 1 to the guide 4 via the supply zone 3 and the perforated plate 2, and along the guide.
  • the degree of polymerization increases while flowing down.
  • the molten prepolymers are effectively agitated and renewed while flowing down along the guide, and phenol and the like are extracted effectively, so that the polymerization proceeds at a high speed.
  • the melt viscosity increases, so that the adhesive strength to the guide increases, and the amount of the melt sticking to the guide increases as it goes to the bottom of the guide.
  • the residence time of the molten prepolymer on the guide that is, the polymerization reaction time is increased.
  • the melted polymer that flows down under its own weight while being supported by the guide has a very large surface area per mass, and its surface is renewed efficiently.
  • the high molecular weight in the latter half of the polymerization, which was possible, can be easily achieved. This is one of the excellent features of the polymerization vessel used in step (IV).
  • Aromatic polycarbonate accumulated at the bottom of the tapered bottom casing is continuously withdrawn by the discharge pump 8 through the discharge port 7, and is normally pelletized continuously through an extruder. In this case, additives such as stabilizers and weathering agents can be added by an extruder.
  • the perforated plate constituting the guide contact flow type polymerization reactor used in the step (IV) is usually selected from a flat plate, a corrugated plate, a plate with a thick central portion, and the shape of the perforated plate is usually A shape force such as circular, oval, triangular or polygonal is selected.
  • the holes of the perforated plate are usually selected from shapes such as a circle, an ellipse, a triangle, a slit, a polygon, and a star.
  • the cross-sectional area of the hole is usually from 0.01 to 100 cm 2 , preferably from 0.05 to 10 cm 2 , particularly preferably from 0.;! To 5 cm 2 .
  • the distance between the holes is usually 1 to 500 mm, preferably 25 to 100 mm, based on the distance between the centers of the holes.
  • the hole in the perforated plate may be a hole penetrating the perforated plate or may be a case where a tube is attached to the perforated plate. Further, it may be tapered.
  • the guide constituting the guide contact flow type polymerization vessel used in the step (IV) has a very high ratio of the length in the vertical direction to the average length of the outer periphery of the horizontal cross section. It represents a large material. The ratio is usually in the range of 10-; 1,000,000, preferably 50-; 100,000.
  • the shape of the cross section in the horizontal direction is usually selected from shapes such as a circle, an ellipse, a triangle, a quadrangle, a polygon, and a star. The shape of the cross section may be the same or different in the length direction.
  • the guide may be hollow.
  • the guide may be a single guide, such as a wire-like one, a thin rod-like one, or a thin pipe-like one that prevents molten prepolymer from entering inside. It may be a combination of two or more. Further, a net-like one or a punching plate-like one may be used. The surface of the guide may be smooth or uneven, or may have a projection or the like partially.
  • a preferable guide is a cylindrical shape such as a wire shape or a thin rod shape, a net shape such as the above-mentioned thin pipe shape, or a punching plate shape.
  • the guide itself has a heating medium such as an electric heater! /, Or even! /.
  • the guide without a heating source is the heat of the prepolymer or aromatic polycarbonate on its surface. I don't have any concerns about denaturation.
  • a guide of the type of pipe that connects the guides at appropriate intervals above and below using a horizontal support material from the top to the bottom of the pipe-shaped guide. is there.
  • a wire mesh guide that is fixed at an appropriate distance above and below, for example, lcm to 200 cm using a horizontal support material from the top to the bottom of a plurality of wire-like or thin bar-like guides or thin pipe-like guides.
  • the support material in the lateral direction not only helps to keep the distance between the guides approximately the same, but also helps to strengthen the strength of the guides that are flat or curved as a whole, or three-dimensional guides. These supporting materials may be the same material as the guide, or may be different.
  • r is expressed by the formula (4 1 ) Satisfied and satisfied with it.
  • This guide is to advance the polymerization reaction while flowing down the molten prepolymer. It also has the function of holding the molten prepolymer for a certain period of time. This holding time is related to the polymerization reaction time, and as described above, the holding time and the holding amount increase as the melt viscosity increases as the polymerization proceeds.
  • the amount that the guide retains the melted prepolymer varies depending on the external surface area of the guide, that is, in the case of a cylindrical shape or a pipe shape, even if the melt viscosity is the same.
  • the guide installed in the polymerization vessel of the present invention needs to be strong enough to hold and support the weight of the molten prepolymer.
  • the thickness of the guide is important. In the case of a columnar shape or a pipe shape, it is preferable that the formula (41) is satisfied. If r is less than 0.1, it will be difficult to perform stable operation for a long time in terms of strength. When r is larger than 1, the guide itself becomes very heavy, and the melted prepolymer has only the inconvenience, for example, the thickness of the perforated plate has to be very thick in order to hold them in the polymerizer. There are inconveniences such as an increase in the portion where the amount of retention increases too much and the variation in molecular weight increases. In this sense, the more preferred range of r is 0.15 ⁇ r ⁇ 0.8, and even more preferred is 0.2 ⁇ r ⁇ 0.6.
  • a preferable material for such a guide is selected from metals such as stainless steel, carbon steel, hastelloy, nickel, titanium, chromium, aluminum and other alloys, and a polymer material having high heat resistance. Particularly preferred is stainless steel.
  • the surface of the guide may be subjected to various treatments such as plating, lining, passivation treatment, acid washing, and phenol washing as necessary.
  • the positional relationship between the guide and the perforated plate and the positional relationship between the guide and the hole in the perforated plate are not particularly limited as long as the guide contact flow of the molten prepolymer is possible! / .
  • the guide and the perforated plate may or may not be in contact with each other.
  • the guide is preferably installed in correspondence with the holes of the perforated plate, but is not limited thereto. This is because the molten pre-bolimer falling from the perforated plate may be designed to come into contact with the guide at an appropriate position.
  • the guide is installed corresponding to the hole of the perforated plate
  • (1) The upper end of the guide is fixed to the upper inner wall surface of the polymerization vessel and the guide penetrates near the center of the hole of the perforated plate.
  • (2) The upper end of the guide is the upper end of the hole in the perforated plate.
  • a method of flowing the molten prepolymer through the perforated plate along the guide a method of flowing down with a liquid head or its own weight, or by applying pressure using a pump or the like, the perforated plate force is also reduced.
  • a method such as extrusion is exemplified. It is preferable to supply a predetermined amount of the raw molten polymer to the polymerizer supply zone under pressure using a supply pump, and the molten polymer delivered to the guide through the perforated plate flows down along the guide under its own weight. It is a method.
  • the molten prepolymer is usually continuously supplied to the guide contact flow type polymerization reactor while being heated to a predetermined polymerization temperature.
  • a jacket or the like is usually provided on the outer wall surface of the guide contact flow type polymerization reactor, and it is preferable to heat the jacket to a predetermined temperature through a heating medium or the like. Accordingly, it is preferable to heat / preheat the molten prepolymer, the prepolymer supply zone and the perforated plate, and heat the polymerization reaction zone, the side casing, and the tapered bottom casing.
  • the temperature of the reaction for producing an aromatic polycarbonate by polymerizing a molten polymer obtained from an aromatic dihydroxy compound and diphenyl carbonate in a guided contact flow type polymerization reactor is usually 80. It is in the range of ⁇ 350 ° C.
  • the preferred reaction temperature is 100 to 290 ° C, and more preferred is 150 to 270 ° C.
  • the present invention can produce a high-quality aromatic polycarbonate without coloring or deterioration of physical properties.
  • high viscosity grade aromatic polycarbonate can be easily produced.
  • the guide contact flow type mixer of the present invention can produce all grades of aromatic polycarbonate from a disk grade having a relatively low molecular weight to a high viscosity grade. This is also a major feature of the present invention.
  • step (IV) the reaction rate is increased by removing the force generated by phenol as the polymerization reaction proceeds, and removing this force out of the reaction system. Therefore, nitrogen, argon, helium, carbon dioxide and lower hydrocarbon gases, such as inert gases that do not adversely affect the reaction, are introduced into the polymerization reactor, and the generated phenol is entrained with these gases and removed. Alternatively, a method of carrying out the reaction under reduced pressure is preferably used. Alternatively, a method in which these are used together is a force S that can be preferably used. In these cases, it is not necessary to introduce a large amount of inert gas into the polymerization vessel, and the inside may be maintained at an inert gas atmosphere.
  • the preferred reaction pressure in the polymerization vessel in step (IV) varies depending on the type of aromatic polycarbonate to be produced, the molecular weight, the polymerization temperature, and the like. For example, from a molten polymer from bisphenol A and diphenyl carbonate to aromatic In the case of producing polycarbonate, when the number average molecular weight is 5,000 or less, 400 to 3, OOOPa range force S is preferable, and when the number average molecular weight is 5,000 to 10,000, the range is 50 to 500 Pa. preferable. When the number average molecular weight is 10,000 or more, 300 Pa or less is preferable, and a range force of 20 to 250 Pa is preferably used.
  • step (IV) it is possible to produce an aromatic polycarbonate having the desired degree of polymerization with only one guided contact flow type polymerizer, but the molten prepolymer used as a raw material Depending on the degree of polymerization and the amount of aromatic polycarbonate produced, connect two or more guide contact flow-down type polymerizers and increase the degree of polymerization in order. That's right.
  • each polymerizer is a preferred method because guides and reaction conditions suitable for the degree of polymerization of the prepolymer or aromatic polycarbonate to be produced can be adopted separately.
  • a guide contact flow type first polymerization device For example, use a guide contact flow type first polymerization device, a guide contact flow type second polymerization device, a guide contact flow type third polymerization device, and a guide contact flow type fourth polymerization device.
  • the force S can be obtained as S1 ⁇ S2 ⁇ S3 ⁇ S4 ⁇ '—.
  • the polymerization temperature may be the same in each polymerization vessel, or may be raised in order.
  • the polymerization pressure can also be lowered sequentially in each polymerization vessel.
  • S1 / S2 is less than 1, there will be inconveniences such as large variations in molecular weight, making stable production difficult for a long period of time, and difficulty in obtaining a predetermined production amount.
  • S 1 / S2 is more than 20 If it is large, the flow rate of the molten polymer that flows down the guide in the second polymerization vessel increases, and as a result, the residence time of the molten polymer is reduced and the aromatic polycarbonate having the required molecular weight can be obtained. Inconvenience occurs. In this sense, it is a more preferable range (or 1.5 ⁇ S 1 / S2 ⁇ 15.
  • step (IV) 1 ton or more of aromatic polycarbonate is produced per hour, but phenol produced as a by-product of the polymerization reaction is discharged out of the system, so it is more than 1 ton per hour.
  • a large amount of melted polymer strength S needs to be supplied to the polymerization reactor. Therefore, the amount of molten preformomer supplied depends on the degree of polymerization and the degree of polymerization of the aromatic polycarbonate to be produced, but is usually 10 per ton / hr of aromatic polycarbonate produced. ⁇ 500kg / hr more, 1. 01 ⁇ ; 1. 5 tons / hr.
  • the reaction for producing an aromatic polycarbonate from an aromatic dihydroxy compound and diphenyl carbonate in step (IV) can be carried out without adding a catalyst. In order to increase the degree, it is carried out in the presence of a catalyst as necessary.
  • the catalyst is not particularly limited as long as it is used in this field, but alkali metal and alkaline earth metal hydroxides such as lithium hydroxide, sodium hydroxide, potassium hydroxide, and calcium hydroxide are used.
  • Alkali metal salts, alkaline earth metal salts, quaternary ammonium salts of hydrides of boron and aluminum such as lithium aluminum hydride, sodium borohydride, tetramethylammonium borohydride; lithium hydride, sodium hydride, hydrogen Hydrogenation of alkali metals and alkaline earth metals such as russia; alkali metals and alkaline earth metal alkoxides such as lithium methoxide, sodium ethoxide and calcium methoxide; lithium phenoxide, sodium phenoxide Cid, magnesium phenoxy Alkali metal and alkaline earth metal alkoxides such as LiO—Ar—OLi and NaO—Ar—ONa (Ar is aryl); Alkali metals and alkaline earth such as lithium acetate, calcium acetate and sodium benzoate Organic acid salts of metals, zinc compounds such as zinc oxide, zinc acetate, zinc phenoxide; boron oxide, boric acid, sodium boric
  • R 1R2R3R4 PB (RR'R'R'R 4 )
  • Ammonium borates or Phosphonium borates R 2 , R 3 and R 4 are as described above.
  • key compounds such as silicon oxide, sodium silicate, tetraalkyl key, tetraaryl key, diphenyl-ethyl-ethoxy key, germanium oxide, genoremanium tetrachloride, Genolemanium compounds such as genoremanium ethoxide and genoremanium phenoxide; alkoxy groups such as tin oxide, dialkyltin oxide, dialkyltin carboxylate, tin acetate, ethyltin tributoxide or aryloxy Tin compounds such as tin compounds and organic tin compounds bonded to the group; lead compounds such as lead oxide, lead acetate, lead carbonate, basic carbonates, lead and organic lead alkoxides or aliquot
  • antimony such as antimony oxide and antimony acetate
  • manganese compounds such as manganese acetate, manganese carbonate and manganese borate
  • Ni Zirconium oxide, Zirconium alkoxide or aryloxide
  • Zirconium A catalyst such as a compound of zirconium such as umucetylacetone
  • Preferred polymerization catalysts are the above alkali metal compounds and alkaline earth metal compounds.
  • Particularly preferred polymerization catalysts are alkali metal or alkaline earth metal hydroxides, alkoxides, and aryl-toxides.
  • these catalysts may be used alone or in combination of two or more.
  • the amount of these catalysts, the aromatic dihydroxy compound of the raw materials usually 10 1Q ⁇ ;!% by weight, preferably from 10-9 to 10-1 wt%, more preferably 10- 8 to 10-selected at 2% by weight range.
  • the polymerization catalyst used is the force remaining in the aromatic polycarbonate of the product, and these polymerization catalysts usually have an adverse effect on the polymer properties. Therefore, it is preferable to reduce the amount of catalyst used as much as possible. In the method of the present invention, since the polymerization can be carried out efficiently, the amount of catalyst used can be reduced. This is also one of the features of the present invention that can produce high-quality aromatic polycarbonate.
  • step (IV) There are no particular restrictions on the materials of the guide contact flow type polymerizer and piping used in step (IV). Usually stainless steel, carbon steel, hastelloy, nickel, titanium, chromium, and other alloys Metals such as manufactured products and medium heat resistant polymer materials are selected. In addition, the surface of these materials may be subjected to various treatments such as plating, lining, passivation treatment, pickling, and phenol washing as necessary. Particularly preferred are stainless steel, nickel, glass lining and the like.
  • step (IV) During the preparation of the polymer in step (IV) and during the polymerization in the guided contact flow type polymerizer, a large amount of phenol by-produced by the reaction is usually continuously extracted in the form of gas and condensed into a liquid state. And recovered.
  • a phenol recycling step (V) in which the phenol by-produced in the step (IV) is circulated to the diphenol carbonate production step (II).
  • the by-product phenol produced as a by-product in the process (IV) of the present invention usually contains a part of diphenyl carbonate, which has a high strength S and high purity, so that the diphenyl carbonate production process (II) It can also be recycled and reused.
  • a small amount of aromatics in the recovered phenol When dihydroxy compounds and trace amounts of oligomers are mixed, it is preferable to circulate and reuse them in the diphenyl carbonate production step (II) after further distillation to remove these high-boiling substances.
  • the aromatic polycarbonate produced by carrying out the system of the present invention has a repeating unit represented by the following formula.
  • aromatic polycarbonate containing 85 mol% or more of a repeating unit represented by the following formula among all repeating units.
  • the terminal group of the aromatic polycarbonate produced by carrying out the method of the present invention usually comprises a hydroxy group and / or a phenyl carbonate group or a substituted phenyl carbonate group).
  • the ratio of the hydroxy group to the phenyl carbonate group (or substituted phenyl carbonate group) is not particularly limited, but is usually in the range of 95: 5 to 5:95, preferably 90:10 to 10; : 90, more preferably 80:20 to 20:80.
  • Particularly preferred is an aromatic polycarbonate in which the proportion of vinyl carbonate groups (or substituted phenyl carbonate groups) in the terminal group is 85 mol% or more.
  • the aromatic polycarbonate produced by carrying out the method of the present invention may be partially branched from the main chain via a hetero bond such as an ester bond or an ether bond.
  • the amount of the heterologous binding to carbonate bonds is usually 0.005 to 2 mol%, good Mashiku is 0. 01 ;! Monore 0/0, a, more preferred, 0.05 It is -0. 5 Monore 0/0 .
  • This amount of dissimilar bonds improves flow characteristics during melt molding without deteriorating other polymer properties, making it suitable for precision molding and molding with relatively low temperature and excellent performance. Can be manufactured.
  • the molding cycle can be shortened, contributing to energy saving during molding.
  • the aromatic polycarbonate produced by carrying out the method of the present invention contains almost no impurities, but an alkali metal and / or alkaline earth metal is used as the metal element. ;
  • Aromatic polycarbonate containing lppm can be produced.
  • this content power is 0.005-0.5 ppm, more preferably (0.01-0.1 ppm).
  • Such a metal element is 1 ppm or less, preferably 0.5 ppm or less, more preferably Is not higher than 0. lp pm, the physical properties of the product aromatic polycarbonate are not adversely affected, so the aromatic polycarbonate produced in the present invention is of high quality.
  • aromatic polycarbonates produced by carrying out the method of the present invention particularly preferred are those produced by using a halogen-free aromatic dihydroxy compound and diphenyl carbonate.
  • the content is usually lOppb or less.
  • those having a halogen content of 5 ppb or less can be produced, and more preferably, aromatic polycarbonates having a halogen content of 1 ppb or less can be produced, resulting in a very high quality product. It will be.
  • Mn 'Number average molecular weight (Mn): Measured by gel permeation chromatography (GPC) method using tetrahydrofuran as a carrier solvent, and calculated using the converted molecular weight calibration curve of the following formula obtained using standard monodisperse polystyrene. Average molecular weight (Mn) was determined.
  • M is the molecular weight of the aromatic polycarbonate and M is the molecular weight of polystyrene.
  • the amount of heterogeneous bond was measured by the method described in W097 / 32916, alkali metal / alkaline earth metal was measured by ICP method, and halogen was measured by ion chromatography method.
  • the cross-sectional area per hole of the perforated plate part about 1.
  • a perforated plate tray having a number of pores of about 180 to 320 holes / m 2 was used.
  • Liquid ethylene carbonate 3.27 tons / hr was continuously introduced into the distillation column T from the inlet (3-a) installed at the 55th stage from the bottom.
  • Gaseous methanol (dimethyl carbonate) was continuously introduced into the distillation column T from the inlet (3-a) installed at the 55th stage from the bottom.
  • the catalyst is ⁇ ⁇ 1 (48% by weight aqueous solution) 2.
  • This catalyst solution was continuously introduced into the distillation column T from the inlet (3-e) provided at the 54th stage from the bottom (K concentration: 0.1 with respect to the supplied ethylene carbonate). mass%). Reactive distillation was continuously carried out under the conditions that the temperature at the bottom of the column was 98 ° C, the pressure at the top of the column was about 1.1 18 X 10 5 Pa, and the reflux ratio was 0.42.
  • the actual production amount of dimethyl carbonate per hour was 3.340 tons, and excluding ethylene glycol contained in the catalyst solution, the actual production amount of ethylene glycol per hour was 2. It was 301 tons.
  • the reaction rate of ethylene carbonate was 99.88%, the selectivity of dimethyl carbonate was 99.99% or more, and the selectivity of ethylene glycol was 99.99% or more.
  • the reaction rate of ethylene carbonate 99.90%, 99.89%, 99.89%, 99.88%, 99.88%, and the selectivity of dimethyl carbonate is 99.99% or more, 99.99% or more, 99.99% 99.99% or more, 99.99% or more, ethylene glycol selectivity is 99.99% or more, 99.99% or more, 99.99% or more, 99.99% or more, 99.99 It was more than%.
  • the lower part As an internal, there are two melapacks (total theoretical plate number: 11) in the upper part, and the lower part has a cross-sectional area of about 1.3 cm 2 per hole and a hole number of about 250 holes / m 2 A plate tray was used.
  • Diphenyl carbonate was produced by reactive distillation using an apparatus in which the first continuous multistage distillation column 101 and the second continuous multistage distillation column 201 were connected as shown in FIG.
  • the catalyst was introduced as Pb (OPh) from the upper inlet 11 of the first continuous multi-stage distillation column 101 so as to be about lOOppm in the reaction liquid.
  • the temperature at the bottom of the column was 225 ° C, and the reactive distillation was performed continuously under the conditions of the pressure at the top of the column S7 X 10 5 Pa.
  • the first tower low boiling point reaction mixture containing methyl alcohol, dimethyl carbonate, phenol, etc. is continuously withdrawn in the form of gas from the top 13 of the first tower, passed through the heat exchanger 14, and 34 tons / hr from the outlet 16 It was extracted at a flow rate of.
  • the first tower high boiling point reaction mixture containing methyl phenyl carbonate, dimethyl carbonate, phenol, diphenyl carbonate, catalyst and the like was continuously extracted in liquid form from the bottom 17 of the first tower.
  • the raw material installed between the melapack and the perforated plate tray of the second continuous multistage distillation column 201 was introduced as it was. It was continuously supplied from the port 21 at a flow rate of 66 tons / hr.
  • the liquid supplied to the second continuous multistage distillation column 201 contained 18.2% by mass of methyl phenyl carbonate and 0.8% by mass of diphenyl carbonate.
  • the temperature at the bottom of the column is 2 Reactive distillation was carried out continuously under the conditions of 10 ° C, a pressure at the top of the column of 3 X 10 4 Pa, and a reflux ratio of 0.3. After 24 hours, stable steady operation was achieved.
  • the second tower low boiling point reaction mixture containing 35% by mass of dimethyl carbonate and 56% by mass of phenol was continuously withdrawn from the top 23 of the second column, and the flow rate at the outlet 26 was 55.6 tons / hr.
  • the second tower high boiling point reaction mixture containing 38.4% by weight of methyl phenyl carbonate and 55.6% by weight of diphenyl carbonate was continuously withdrawn from the bottom 27 of the second tower.
  • the second column low boiling point reaction mixture was continuously supplied from the inlet 11 to the first continuous multistage distillation column 101. At this time, the amount of dimethyl carbonate and phenol to be newly supplied is adjusted so as to maintain the composition and amount of raw material 1 and raw material 2 in consideration of the composition and amount of the second tower low boiling point reaction mixture. Arranged. Diphenyl carbonate production was found to be 5.74 tons per hour. The selectivity for diphenyl carbonate was 98% with respect to the reacted phenol.
  • a long-term continuous operation was performed under these conditions. After 500 hours, 2000 hours, 4000 hours, 5000 hours, and 6000 hours, the production of diphenyl carbonate (excluding diphenyl carbonate contained in the raw material) is 5 ⁇ 74 tons per hour, 5 75 tons, 5.74 tons, 5.74 tons, 5.75 tons, and the selection rates were 98%, 98%, 98%, 98%, and were very stable. In addition, the produced aromatic carbonate was substantially free of halogen! / And not (lppb or less).
  • a continuous multi-stage distillation column equipped with a melapack was used as the separation column A.
  • the high-boiling reaction mixture of the second reactive distillation tower obtained in the above step (II) is introduced. It was continuously introduced from the inlet Al to the separation tower A at 13.1 ton / hr.
  • the temperature (T) at the bottom of the tower is 206 ° C
  • the pressure (P) at the top of the tower is 3800 Pa
  • the reflux ratio is 0.6.
  • the bottom component (A) was continuously withdrawn through the conduit 11 at 0.6 ton / hr. Top of the tower
  • Component (A) was continuously introduced into the purification tower B from the inlet B1 as it was.

Description

明 細 書
高品質芳香族ポリカーボネートを工業的規模で製造する方法
技術分野
[0001] 本発明は、芳香族ポリカーボネートの工業的製造法に関する。更に詳しくは、本発 明は、環状カーボネートと芳香族ジヒドロキシ化合物から、着色がなく機械的物性に 優れた高品質 ·高性能の芳香族ポリカーボネートを、工業的規模で長期間安定的に 製造する方法に関する。
背景技術
[0002] 芳香族ポリカーボネートは、耐熱性、耐衝撃性、透明性などに優れたエンジニアリ ングプラスチックスとして、多くの分野において幅広く用いられている。この芳香族ポリ カーボネートの製造方法については、従来種々の研究が行われ、その中で、芳香族 ジヒドロキシ化合物、例えば 2, 2-ビス(4-ヒドロキシフエニル)プロパン(以下、ビスフ ェノール Aという)とホスゲンとの界面重縮合法が工業化されている。し力もながら、こ の界面重縮合法においては、有毒なホスゲンを用いなければならないこと、健康や 環境に問題のある塩化メチレンを重合溶媒としてポリカーボネートあたり 10倍以上も の大量使用しなければならないこと、副生する塩化水素や塩化ナトリウム、及び塩化 メチレンなどの含塩素化合物により装置が腐食すること、ポリマー物性に悪影響を及 ぼす塩化ナトリウム、塩化メチレンなどの塩素系残留不純物の分離が困難なこと、塩 化メチレンや未反応ビスフエノール Aなどを含む大量のプロセス廃水の処理が必要 なこと等、多くの課題がある。
[0003] 一方、芳香族ジヒドロキシ化合物とジァリールカーボネートとから、芳香族ポリカー ボネートを製造する方法としては、例えば、ビスフエノール Aとジフエニルカーボネート を溶融状態でエステル交換し、副生するフエノールを抜き出しながら重合する溶融法 が以前から知られている。このエステル交換反応は平衡反応であってし力、もその平 衡定数が小さいので、フエノールを溶融物の表面から効率的に抜き出さない限り重 合が進行しない。溶融法は、界面重縮合法と異なり、溶媒を使用しないなどの利点が ある一方、重合がある程度進行するとポリマーの粘度が急上昇し、副生するフエノー ルなどを効率よく系外に抜き出す事が困難になり、実質的に重合度を上げることがで きなくなるという芳香族ポリカーボネートそのものに基づく本質的な問題があった。す なわち、芳香族ポリカーボネートの場合、ポリアミドやポリエステルなど他の縮合系ポ リマーの溶融重縮合の場合と異なり、低分子量状態、例えば重合度 (n)が 15— 20程 度であっても、その溶融粘度が極端に高くなり、通常の攪拌では表面更新が非常に 困難になる。そして、ポリマー表面からのフエノールの抜出しが実質的に起こらなくな り、製品として必要な重合度 (n = 35— 65程度)のポリマーを製造することができない 。このことは、当業界ではよく知られていることである。
[0004] 芳香族ポリカーボネートを溶融法で製造するための重合器としては、種々の重合器 が知られている。攪拌機を備えた縦型の攪拌槽型重合器を用いる方法は一般に広く 知られている。し力、しながら、縦型の撹拌槽型重合器は小スケールでは容積効率が 高ぐシンプルであるという利点を有し、効率的に重合を進められるが、工業的規模 では、上述したように重合の進行と共に副生するフエノールを効率的に系外に抜き出 す事が困難となり重合速度が極めて低くなるという問題を有している。さらに、大スケ 一ルの縦型の撹拌槽型重合器は、通常、蒸発面積に対する液容量の比率が小スケ ールの場合に比べて大きくなり、いわゆる液深が大きな状態となる。このため、重合 度を高めるために真空度を高めていっても、撹拌槽の下部は液深があるために、上 部の空間部よりも液深に相当する高い圧力で重合される事になり、フエノール等は効 率的に抜き出すことが困難になってしまう。したがって、大スケールの縦型の撹拌槽 型重合器は、プレボリマーを製造する場合のみにし力、使用することができない。必要 な重合度を達成するためには、このプレボリマーからさらに重縮合反応を進行させる ための重合器が必須である。
[0005] この問題を解決しょうと、高粘度状態のポリマーからフエノール等を効率的に抜き出 すための種々の工夫がなされている。これらの工夫の大部分は、機械的攪拌の改良 に関するものであり、例えば、ベント部を有するスクリュー型重合器を用いる方法(特 許文献 1参照)、嚙合型 2軸押出機を用いる方法 (特許文献 2参照)、また、薄膜蒸発 型反応器、例えばスクリュー蒸発器や遠心薄膜蒸発器等を用いる方法 (特許文献 3 参照)が記載されており、さらに、遠心薄膜型蒸発装置と横型 2軸撹拌式重合器を組 み合わせて用いる方法(特許文献 4参照)が具体的に開示されている。これらの方法 は、いずれも機械的攪拌を行うことを技術の根幹としているため、自ずと限界があり、 この問題を解決するには至っていない。すなわち、超高溶融粘度に対応できる機械 的攪拌そのものに限界があるため、芳香族ポリカーボネートの超高溶融粘度にかか わる種々の問題を解決することができないままである。これらの方法では、温度を上 げその溶融粘度を少しでも下げることで解決してレ、こうとしてレ、る。
[0006] すなわち、 300°C近くの高温、高真空下で溶融プレボリマーを機械的攪拌で表面 更新を図りながら重合を行うのがこれらの方法である力 この温度でもなおその溶融 粘度が非常に高いため、その表面更新の程度を高くすることができない。したがって 、これらの方法では製造できるポリカーボネートの重合度に制限があり、高分子量グ レードの製品を製造することは困難である。さらに、これらの方法では 300°C近くの高 温で反応させるため、得られるポリマーの着色や物性低下が起こり易いことに加え、 攪拌装置の真空シール部からの空気や異物の漏れこみなどによるポリマーの着色や 物性低下も起こり易いことなど、高品質のポリカーボネートを長期間安定的に製造す るためには、なお多くの解決すべき多くの課題がある。
[0007] 本発明者らは、機械的攪拌を行わな!/、で、溶融プレボリマーをワイヤーなどのガイ ドに沿わせて自重で落下させながら重合させるガイド接触流下式重合器を用いる方 法を開発することによってこれらの課題を完全に解決できることを見出し、先に出願し た。 (例えば、特許文献 5〜; 12参照)し力もながら、これらの方法には、芳香族ポリ力 ーボネートを 1時間あたり 1トン以上生産できるような工業的製造法に関する具体的な 方法の開示や示唆はなされていなかった。
[0008] さらに、エステル交換反応による芳香族ポリカーボネートを工業的規模で製造する ためには、高純度ジァリールカーボネートを工業的規模で大量に入手することが必 要である。芳香族ジヒドロキシ化合物、例えば、高純度ビスフエノール Aは、工業的に 大量に製造されており、これを入手することは容易である力 高純度ジァリールカー ボネートを工業的規模で大量に入手することは、不可能である。したがって、これを 製造する必要がある。
[0009] ジァリールカーボネートの製法としては、芳香族モノヒドロキシ化合物とホスゲンとの 反応による方法が古くから知られており、最近も種々検討されている。しかしながら、 この方法はホスゲン使用の問題に加え、この方法によって製造されたジァリールカー ボネートには分離が困難な塩素系不純物が存在しており、そのままでは芳香族ポリ カーボネートの原料として用いることはできない。なぜならば、この塩素系不純物は、 極微量の塩基性触媒の存在下で行うエステル交換法芳香族ポリカーボネートの重合 反応を著しく阻害し、たとえば、 lppmでもこのような塩素系不純物が存在すると殆ど 重合を進行させることができない。そのため、エステル交換法芳香族ポリカーボネート の原料とするには、希アルカリ水溶液と温水による十分な洗浄と油水分離、蒸留など の多段階の面倒な分離 ·精製工程が必要であり、さらにこのような分離 ·精製工程で の加水分解ロスや蒸留ロスのため収率が低下するなど、この方法を経済的に見合つ た工業的規模で実施するには多くの課題がある。
[0010] 一方、ジアルキルカーボネートと芳香族モノヒドロキシ化合物とのエステル交換反応 による芳香族カーボネートの製造方法も知られている。し力、しながら、これらのエステ ル交換反応は全て平衡反応であって、し力、もその平衡が原系に極端に偏っているこ とに加えて反応速度が遅いことから、この方法によって芳香族カーボネート類を工業 的に大量に製造するのは多大な困難を伴っていた。
[0011] これを改良するためにいくつかの提案がなされている力 その大部分は、反応速度 を高めるための触媒開発に関するものである。このタイプのエステル交換反応用触媒 として数多くの金属化合物が提案されている。し力もながら、触媒開発だけでは、不 禾 IJな平衡の問題を解決できないので、大量生産を目的とする工業的製造法にするた めには、反応方式の検討を含め、非常に多くの検討課題がある。
[0012] 一方、反応方式を工夫することによって平衡をできるだけ生成系側にずらし、芳香 族カーボネート類の収率を向上させる試みもなされている。例えば、ジメチルカーボ ネートとフエノールの反応において、副生してくるメタノールを共沸形成剤とともに共 沸によって留去する方法(特許文献 13参照)、副生してくるメタノールをモレキュラー シーブで吸着させて除去する方法 (特許文献 14参照)が提案されている。また、反応 器の上部に蒸留塔を設けた装置によって、反応で副生してくるアルコール類を反応 混合物から分離させながら同時に蒸発してくる未反応原料との蒸留分離を行う方法 も提案されてレ、る(特許文献 15参照)。
[0013] しかしながら、これらの反応方式は基本的にはバッチ方式力、、切り替え方式である。
触媒開発による反応速度の改良もこれらのエステル交換反応に対しては限度があり 、反応速度が遅いことから、連続方式よりもバッチ方式の方が好ましいと考えられてい たからである。これらのなかには、連続方式として蒸留塔を反応器の上部に備えた連 続攪拌槽型反応器 (CSTR)方式も提案されて!/ヽるが、反応速度が遅!/ヽことや反応 器の気液界面が液容量に対して小さレ、ことから反応率を高くできな!/、などの問題が ある。したがって、これらの方法で芳香族カーボネートを連続的に大量に、長期間安 定的に製造するという目的を達成することは困難であり、経済的に見合う工業的実施 にいたるには、なお多くの解決すべき課題が残されている。
[0014] 本発明者等はジアルキルカーボネートと芳香族ヒドロキシ化合物を連続的に多段 蒸留塔に供給し、触媒を存在させた該塔内で連続的に反応させ、副生するアルコー ルを含む低沸点成分を蒸留によって連続的に抜き出すと共に、生成したアルキルァ リールカーボネートを含む成分を塔下部より抜き出す反応蒸留法 (特許文献 16参照 )、アルキルァリールカーボネートを連続的に多段蒸留塔に供給し、触媒を存在させ た該塔内で連続的に反応させ、副生するジアルキルカーボネートを含む低沸成分を 蒸留によって連続的に抜き出すと共に、生成したジァリールカーボネートを含む成分 を塔下部より抜き出す反応蒸留法 (特許文献 17参照)、これらの反応を 2基の連続多 段蒸留塔を用いて行い、副生するジアルキルカーボネートを効率的にリサイクルさせ ながらジァリールカーボネートを連続的に製造する反応蒸留法 (特許文献 18参照)、 ジアルキルカーボネートと芳香族ヒドロキシ化合物等を連続的に多段蒸留塔に供給 し、塔内を流下する液を蒸留塔の途中段及び/又は最下段に設けられたサイド抜き 出し口より抜き出し、蒸留塔の外部に設けられた反応器へ導入して反応させた後に、 該抜き出し口のある段よりも上部の段に設けられた循環用導入口へ導入することによ つて、該反応器内と該蒸留塔内の両方で反応を行う反応蒸留法 (特許文献 19参照) 等、これらのエステル交換反応を連続多段蒸留塔内で反応と蒸留分離とを同時に行 う反応蒸留法を開発し、これらのエステル交換反応に対して反応蒸留方式が有用で あることを世界で初めて開示した。 [0015] 本発明者等が提案したこれらの反応蒸留法は、芳香族カーボネート類を効率よぐ かつ連続的に製造することを可能とする初めてのものであり、その後これらの開示に 基づいて、 2基の連続多段蒸留塔を用いてジアルキルカーボネートからジァリール力 ーボネートを製造する方法が提案されてレ、る (特許文献 20〜26参照)。
[0016] さらに、本出願人は、反応蒸留方式において、多量の触媒を必要とせずに高純度 芳香族カーボネートを長時間、安定に製造できる方法として、触媒成分を含む高沸 点物質を作用物質と反応させた上で分離し、触媒成分をリサイクルする方法(特許文 献 27参照)や、反応系内の多価芳香族ヒドロキシ化合物を触媒金属に対して質量比 で 2· 0以下に保ちながら行う方法(特許文献 28参照)を提案した。本発明者等はさら に、重合工程で副生するフエノールの 70〜99質量%を原料として用いて、反応蒸留 法でジフエ二ルカーボネートを製造しこれを芳香族ポリカーボネートの重合原料とす る方法をも提案した (特許文献 29参照)。
[0017] しかしながら、これら反応蒸留法による芳香族カーボネート類の製造を提案する全 ての先行文献には、工業的規模の大量生産(例えば、 1時間あたり 1トン)を可能とす る具体的な方法や装置の開示は全くなぐまたそれらを示唆する記述もない。例えば 、ジメチルカーボネートとフエノールから主としてジフエニルカーボネート(DPC)を製 造するために開示された 2基の反応蒸留塔の高さ(Hおよび H: cm)、直径(Dおよ
1 2 1 び Dj cm)、段数 (nおよび n )と反応原料液導入量(Qおよび Q : kg/hr)に関する 記述は、表 1のとおりである。
[0018] [表 1]
Figure imgf000008_0001
[0019] すなわち、この反応を反応蒸留方式で実施するにあたり用いられた 2基の連続多段 蒸留塔の最大のものは、本出願人が特許文献 27、 28において開示したものである。 このようにこの反応用に開示されている連続多段蒸留塔における各条件の最大値は 、 H = 1200cm, H = 600cm、 D = 20cm、 D = 25cm、 n =n = 50 (この条件の
1 2 1 2 1 2
み特許文献 22参照)、 Q = 86kg/hr、 Q = 31kg/hrであり、ジフエニルカーボネ
1 2
ートの生産量は約 6. 7kg/hrに過ぎず、工業的規模の生産量ではな力 た。
[0020] 本発明の工程 (II)で用いられるジアルキルカーボネートは、工業的規模で製造さ れる必要があり、さらにハロゲンを含有しないことが必要である。芳香族ポリカーボネ ート原料として、ジアルキルカーボネートが工業的に大量に製造されている唯一の方 法は、メタノールを一酸化炭素と酸素と反応させて、ジメチルカーボネートと水を製造 する酸化的カルボニル化法によるものである。しかしながら、この酸化的カルボニル 化法(特許文献 30参照)は、大量の CuCl-HClを触媒として用いるスラリー状態で反 応させる必要があり、反応系および分離 ·精製系が非常に腐食性が高いことが問題 である。しかも、この方法では一酸化炭素が二酸化炭素に酸化されやすいので、一 酸化炭素基準の選択率が 80%程度と低いことも問題である。
[0021] 一方、環状カーボネートと脂肪族 1価アルコール類の反応から、ジアルキルカーボ ネートとジオール類を製造する方法力 いくつかの提案されている。この反応では、 ハロゲンを使用せずにジアルキルカーボネートが製造できるので、好ましい方法であ る。その反応方式として、 4つの方式が提案されている。これら 4つの反応方式は、最 も代表的な反応例であるエチレンカーボネートとメタノールからのジメチルカーボネー トとエチレングリコールの製造方法において用いられており、これらは、(1)完全なバ ツチ反応方式、(2)蒸留塔を上部に設けた反応釜を用いるバッチ反応方式、(3)管 式リアクターを用いる液状流通反応方式、(4)本発明者等が初めて開示した反応蒸 留方式 (特許文献 3;!〜 39参照)である。しかしながら、これらの方式では、それぞれ 、以下に述べるような問題点があった。
[0022] すなわち、(1)、(3)の場合には、環状カーボネートの反応率の上限は仕込み組成 と温度から決まるため、反応を完全に終結させることはできず、反応率が低い。また、 (2)の場合には環状カーボネートの反応率を高めるためには、生成するジアルキル カーボネートを、極めて大量の脂肪族 1価アルコールを使用して留去しなければなら ず、長い反応時間を必要とする。 (4)の場合には、(1)、 (2)、 (3)と比較して、高い 反応率で反応を進行させることが可能である。し力もながら、これまで提案されている (4)の方法は、少量のジアルキルカーボネートとジオール類を製造する方法であるか 、短期間の製造方法に関するものであり、工業的規模での長期間安定製造に関する ものではなかった。すなわち、ジアルキルカーボネートを連続的に大量(例えば、 1時 間あたり 2トン以上)に、長期間(例えば 1000時間以上、好ましくは 3000時間以上、 より好ましくは 5000時間以上)安定的に製造するという目的を達成するものではなか つた。
[0023] 例えば、エチレンカーボネートとメタノールからジメチルカーボネート(DMC)とェチ レングリコール (EG)を製造するために開示されている実施例における反応蒸留塔の 高さ(H : cm)、直径(D : cm)、段数(n)、ジメチルカーボネートの生産量 P (kg/hr) 、連続製造時間 T (hr)に関する最大値を示す記述は、表 2のとおりである。
[0024] [表 2]
Figure imgf000010_0001
(注 1) オールダーショウ蒸留塔。
(注 2) 蒸留塔を規定する記述はまったく無い。
(注 3) 蒸留塔を規定する記述は段数のみ。
(注 4> 生産量の記述はまったく無い。
(注 5) 長期間の安定製造に関する記述はまつたく無い。 なお、特許文献 38 (第 0060段落)には、「本実施例は上記の図 1に示した好ましい 態様と同様のプロセスフローを採用し、エチレンカーボネートとメタノールの接触転化 反応によりエステル交換させてジメチルカーボネート及びエチレングリコールを製造 する商業的規模装置の操業を目的になされたものである。なお、本実施例で下記す る数値は実装置の操作にも十分適用可能である。」と記載され、その実施例として、 3 750kg/hrのジメチルカーボネートを具体的に製造したとの記載がなされている。実 施例に記載のこの規模は年産 3万トン以上に相当するので、特許文献 38の出願当 時(2002年 4月 9日)としては、この方法による世界一の大規模商業プラントの操業 が実施されたことになる。し力もながら、このような事実は全くない。また、特許文献 38 の実施例では、ジメチルカーボネートの生産量は理論計算値と全く同一の値が記載 されている力、エチレングリコールの収率は約 85. 6%で、選択率は約 88. 4%であり 、高収率 ·高選択率を達成しているとはいい難い。特に選択率が低いことは、この方 法が工業的製造法として、致命的な欠点を有していることを表している。 (なお、特許 文献 38は、 2005年 7月 26日、未審査請求によるみなし取下処分がなされている。 )
[0026] 反応蒸留法は、蒸留塔内での反応による組成変化と蒸留による組成変化と、塔内 の温度変化と圧力変化等の変動要因が非常に多ぐ長期間の安定運転の継続させ ることは困難を伴うことが多ぐ特に大量を扱う場合にはその困難性はさらに増大する 。反応蒸留法によるジアルキルカーボネートとジオール類を高収率'高選択率を維持 しつつ、それらの大量生産を長期間安定的に継続させるためには、反応蒸留装置に 工夫をすることが必要である。し力もながら、これまでに提案されている反応蒸留法に おける、長期間の連続安定製造に関する記述は、特許文献 31の 400時間のみであ つた。
[0027] 特許文献 1 :特公昭 50— 19600号公報 (英国特許第 1007302号明細書)
特許文献 2:特公昭 52— 36159号公報
特許文献 3 :特公昭 53— 5718号公報 (米国特許第 3, 888, 826号明細書) 特許文献 4:特開平 2— 153923号公報
特許文献 5:特開平 8— 225641号公報
特許文献 6 :特開平 8— 225643号公報
特許文献 7 :特開平 8— 325373号公報
特許文献 8 :WO 97— 22650号公報
特許文献 9:特開平 10— 81741号
特許文献 10 :特開平 10— 298279号公報 特許文献 l l :WO 99/36457号公報
特許文献 12 : WO 99/64492号公報
特許文献 13:特開昭 54— 48732号公報(西独特許公開公報第 736063号明細書、 米国特許第 4252737号明細書)
特許文献 14 :特開昭 58— 185536号公報 (米国特許第 410464号明細書) 特許文献 15 :特開昭 56— 123948号公報 (米国特許第 4182726号明細書) 特許文献 16 :特開平 3— 291257号公報
特許文献 17:特開平 4 9358号公報
特許文献 18 :特開平 4— 211038号公報 (WO 91/09832号公報、欧州特許 046 1274号明細書、米国特許第 5210268号明細書)
特許文献 19 :特開平 4 235951号公報
特許文献 20 :特開平 6— 157424号公報(欧州特許 0582931号明細書、米国特許 ϋ5334742^|·„»)
特許文献 21 :特開平 6— 184058号公報(欧州特許 0582930号明細書、米国特許 第 5344954号明細書)
特許文献 22 :特開平 9 40616号公報
特許文献 23:特開平 9 59225号公報
特許文献 24:特開平 9 176094号公報
特許文献 25 : WO 00/18720公報(米国特許第 6093842号明細書)
特許文献 26:特開 2001— 64235号公報
特許文献 27 : WO 97/11049公報(欧州特許 0855384号明細書、米国特許第 5 872275 曰月糸田 ·)
特許文献 28 :特開平 11 92429号公報(欧州特許 1016648号明細書、米国特許 H6262210^"„»)
特許文献 29:特開平 9 255772号公報(欧州特許 0892001号明細書、米国特許 ϋ5747609^|·„»)
特許文献 30 : WO 03/016257号公報
特許文献 31:特開平 4 198141号公報 特許文献 32:特開平 9 194435号公報
特許文献 33 :W〇99/64382号公報(欧州特許第 1086940号明細書、米国特許 H6346638^"„»)
特許文献 34 :WO00/51954号公報(欧州特許第 1174406号明細書、米国特許 H6479689^"„»)
特許文献 35 :特開平 5— 213830号公報(欧州特許第 0530615号明細書、米国特 許第 5231212号明細書)
特許文献 36 :特開平 6— 9507号公報(欧州特許第 0569812号明細書、米国特許 第 5359118号明細書)
特許文献 37:特開 2003— 119168号公報(WO03/006418号公報)
特許文献 38:特開 2003— 300936号公報
特許文献 39:特開 2003— 342209号公報
発明の開示
発明が解決しょうとする課題
[0028] 本発明が解決しょうとする課題は、環状カーボネートと芳香族ジヒドロキシ化合物か ら、着色がなく機械的物性に優れた高品質 ·高性能の芳香族ポリカーボネートを、ェ 業的に大量 (例えば、 1時間あたり 1トン以上)に長期間(例えば、 1000時間以上、好 ましくは 3000時間以上、より好ましくは 5000時間以上)、安定的に製造できる具体 的な方法を提供することにある。
課題を解決するための手段
[0029] 本発明者等は、上記の課題を達成できる具体的な方法を見出すべき検討を重ねた 結果、本発明に到達した。
[0030] すなわち、本発明の第 1の態様では、
1.環状カーボネートと芳香族ジヒドロキシ化合物から高品質芳香族ポリカーボネート を工業的規模で連続的に製造する方法であって、
(I)環状カーボネートと脂肪族 1価アルコールとを触媒が存在する連続多段蒸留塔
Τ内に連続的に供給し、該塔内で反応と蒸留を同時に行い、生成するジアルキル力
0
ーボネートを含む低沸点反応混合物を塔上部よりガス状で連続的に抜出し、ジォー ル類を含む高沸点反応混合物を塔下部より液状で連続的に抜出す反応蒸留方式に よって、ジアルキルカーボネートとジオール類を連続的に製造する工程 (I)と、
(II)該ジアルキルカーボネートとフエノールとを原料とし、この原料を均一系触媒が 存在する第 1連続多段蒸留塔内に連続的に供給し、該第 1塔内で反応と蒸留を同時 に行い、生成するアルコール類を含む第 1塔低沸点反応混合物を該第 1塔上部より ガス状で連続的に抜出し、生成するアルキルフエ二ルカーボネート類を含む第 1塔高 沸点反応混合物を該第 1塔下部より液状で連続的に抜出し、該第 1塔高沸点反応混 合物を触媒が存在する第 2連続多段蒸留塔内に連続的に供給し、該第 2塔内で反 応と蒸留を同時に行い、生成するジアルキルカーボネート類を含む第 2塔低沸点反 応混合物を該第 2塔上部よりガス状で連続的に抜出し、生成するジフエニルカーボネ 一ト類を含む第 2塔高沸点反応混合物を該第 2塔下部より液状で連続的に抜出し、 一方、ジアルキルカーボネート類を含む第 2塔低沸点反応混合物を第 1連続多段蒸 留塔内に連続的に供給することによって、ジフエ二ルカーボネートを連続的に製造す る工程 (II)と、
(III)該ジフエ二ルカーボネートを含む第 2塔高沸点反応混合物を高沸点物質分離 塔 Aに連続的に導入し、ジフエニルカーボネートを含む塔頂成分 (A )と触媒を含む
T
塔底成分 (A )に連続的に蒸留分離し、次いで該塔頂成分 (A )を、サイドカット抜き
B T
出し口を有するジフエ二ルカーボネート精製塔 Bに連続的に導入し、塔頂成分 (B )
T
、サイドカット成分 (B )、塔底成分 (B )の 3つの成分に連続的に蒸留分離することに
S B
よって、サイドカット成分として高純度ジフエニルカーボネートを取得する精製工程 (II I)と、
(IV)該芳香族ジヒドロキシ化合物と該高純度ジフエ二ルカーボネートとを反応させ て芳香族ポリカーボネートの溶融プレボリマーを製造し、該溶融プレボリマーをガイド の表面に沿って流下せしめ、その流下中に該溶融プレボリマーの重合を行わせるガ イド接触流下式重合器を用いて芳香族ポリカーボネートを製造する工程 (IV)と、
(V)工程 (IV)で副生するフエノールをジフエニルカーボネート製造工程 (II)に循環 するフエノールのリサイクル工程 (V)と、
を含み、 (a)該連続多段蒸留塔 T力 長さし (cm) ,内径 D (cm)の円筒形の胴部を有し、
0 0 0
内部に段数 nをもつインターナルを有する構造をしており、塔頂部またはそれに近い
0
塔の上部に内径 d (cm)のガス抜出し口、塔底部またはそれに近い塔の下部に内
01
径 d (cm)の液抜出し口、該ガス抜出し口より下部であって塔の上部および/または
02
中間部に 1つ以上の第 1の導入口、該液抜出し口より上部であって塔の中間部およ び/または下部に 1つ以上の第 2の導入口を有するものであって、 L、 D、 L /D、
0 0 0 0 n、D /d 、D /d 力 それぞれ式(1)〜(6)を満足するものであり、
01 0 02
2100 < L < 8000 式 (1)
0
180 < D < 2000 式 (2)
0
4 < ) ≤ 40 式 (3)
0 0
10 < n < 120 式 (4)
0
3 < D , Zd ≤ 20 式 (5)
0 01
5 < D , Zd ≤ 30 式 (6)
(b)該第 1連続多段蒸留塔が、長さ L (cm) ,内径 D (cm)の円筒形の胴部を有し
1 1
、内部に段数 nをもつインターナルを有する構造をしており、塔頂部またはそれに近
1
い塔の上部に内径 d (cm)のガス抜出し口、塔底部またはそれに近い塔の下部に内
11
径 d (cm)の液抜出し口、該ガス抜出し口より下部であって塔の上部および/または
12
中間部に 1つ以上の第 3の導入口、該液抜出し口より上部であって塔の中間部およ び/または下部に 1つ以上の第 4の導入口を有するものであって、 L、 D、 L /D、
1 1 1 1 n、D /d 、D /d 力 S、それぞれ式(7)〜(; 12)を満足するものであり、
1500 < L < 8000 式 (7)
1
100 < D < 2000 式 (8)
1
2 < ZD ≤ 40 式 (9)
1 L
20 < n < 120 式(10)
1
5 < D ≤ 30 式(11)
1 Zd 1 1
3 < D Zd ≤ 20 式(12)
(c)該第 2連続多段蒸留塔が、長さ L (cm) ,内径 D (cm)の円筒形の胴部を有し、 内部に段数 nをもつインターナルを有する構造をしており、塔頂部またはそれに近い 塔の上部に内径 d (cm)のガス抜出し口、塔底部またはそれに近い塔の下部に内
21
径 d (cm)の液抜出し口、該ガス抜出し口より下部であって塔の上部および/または
22
中間部に 1つ以上の第 5の導入口、該液抜出し口より上部であって塔の中間部およ び/または下部に 1つ以上の第 6の導入口を有するものであって、 L、 D、 L /D、 n、D /d 、D /d 力 S、それぞれ式(13)〜(; 18)を満足するものであり、
21 2 22
1500 < L ≤ 8000 式(13)
2
100 < D ≤ 2000 式(14)
2
2 < ,D ≤ 40 式(15)
2 2
10 < n ≤ 80 式(16)
2
2 < D , Zd ≤ 15 式(17)
2 21
5 < D , Zd ≤ 30 式(18)
2 22
(d)該高沸点物質分離塔 Aが、下記式(19)〜(21)を満足する、長さし (cm) ,内
A
径 D (cm)で、内部に段数 nのインターナルを有する連続多段蒸留塔であり、
A A
800 ≤ L ≤ 3000 式(19)
A
100 ≤ D ≤ 1000 式(20)
A
20 ≤ n ≤ 100 式(21)
A
該ジフエニルカーボネート精製塔 B力 下記式(22)〜(27)を満足する、長さし (cm
B
)、内径 D (cm)で、内部にインターナルを有するものであって、塔の中段に導入口 B
B
1、該導入口 B1と塔底との間にサイドカット抜き出し口 B2を有し、導入口 B1から上部 のインターナルの段数が n 、導入口 B1とサイドカット抜き出し口 B2との間のインター
B1
ナルの段数が n 、サイドカット抜き出し口 B2から下部のインターナルの段数が n で
B2 B3
、段数の合計 (n +n +n )が1 である連続多段蒸留塔であり、
1000 < L < 5000 式(22)
B
100 < D < 1000 式(23)
B
5 < n < 20 式(24)
B1
12 < n < 40 式(25)
B2
3 < n < 15 式(26)
B3
20 < n < 70 式(27) (e)該ガイド接触流下式重合器が、
(1)溶融プレボリマー受給口、多孔板、該多孔板を通して該溶融プレボリマーを重 合反応ゾーンのガイドに供給するための溶融プレボリマー供給ゾーン、該多孔板と側 面ケーシングとテーパー形の底部ケーシングとに囲まれた空間に該多孔板から下方 に延びる複数のガイドが設けられた重合反応ゾーン、該重合反応ゾーンに設けられ た真空ベント口、テーパー形の底部ケーシングの最下部に設けられた芳香族ポリ力 ーボネート排出口、及び該排出口に接続された芳香族ポリカーボネート排出ポンプ を有するものであって、
(2)該重合反応ゾーンの側面ケーシングの水平面における内部断面積 A (m2)が、 式(28)を満足するものであって、
0. 7 ≤ A ≤ 300 式(28)
(3)該 A (m2)と、芳香族ポリカーボネート排出口の水平面における内部断面積 B (m2 )との比が、式(29)を満足するものであって、
20 ≤ A/B ≤ 1000 式(29)
(4)該重合反応ゾーンの底部を構成するテーパー形の底部ケーシンダカ 上部の側 面ケーシングに対してその内部において、角度 C度で接続されており、該角度 C度が 式(30)を満足するものであって、
120 ≤ C ≤ 165 式(30)
(5)該ガイドの長さ h (cm)が、式(31)を満足するものであって、
150 ≤ h ≤ 5000 式(31)
(6)該ガイド全体の外部総表面積 S (m2)が式(32)を満足するものである、
2 ≤ S ≤ 50000 式(32)
ことを特徴とする高品質芳香族ポリカーボネートを工業的規模で製造する方法、
2.製造される芳香族ポリカーボネートが 1時間あたり 1トン以上であることを特徴とす る前項 1に記載の方法、
3.工程 (I)で用いられる該連続多段蒸留塔 Tの該 d と該 d が式(33)を満足するこ
0 01 02
とを特徴とする前項 1または 2に記載の方法、
1 ≤ d /d ≤ 5 式(33) 4.該連続多段蒸留塔 Tの L、 D、 L /D、 n、 D /d 、 D /d がそれぞれ、 2
0 0 0 0 0 0 0 01 0 02
300≤L ≤6000、 200≤D ≤1000、 5≤L /Ό ≤30、 30≤η ≤100、 4≤
0 0 0 0 0
D /ά ≤1 5、 7≤D /ά ≤25であることを特徴とする前項 1〜3のうち何れいず
0 01 0 02
れか一項に記載の方法、
5.該連続多段蒸留塔 Τの L、 D、 L /D、 n、 D /d 、 D /d がそれぞれ、 2
0 0 0 0 0 0 0 01 0 02
500≤L ≤5000、 210≤D ≤800、 7≤L /Ό ≤20、 40≤η ≤90、 5≤D
0 0 0 0 0 0
/ά ≤13、 9≤D /ά ≤20であることを特徴とする前項 1〜4のうち何れいずれか
01 0 02
一項に記載の方法、
6.該連続多段蒸留塔 Τ 、該インターナルとしてトレイおよび/または充填物を有
0
する蒸留塔であることを特徴とする前項 1〜5のうち何れいずれか一項に記載の方法
7.該連続多段蒸留塔 Τ力 該インターナルとしてトレィを有する棚段式蒸留塔であ
0
ることを特徴とする前項 6記載の方法、
8.該連続多段蒸留塔 Τの該トレイが多孔板部とダウンカマー部を有する多孔板トレ
0
ィであることを特徴とする前項 6または 7記載の方法、
9.該連続多段蒸留塔 Τの該多孔板トレイが該多孔板部の面積 lm2あたり 100〜; 10
0
00個の孔を有するものであることを特徴とする前項 8記載の方法、
10.該連続多段蒸留塔 Tの該多孔板トレイの孔 1個あたりの断面積が 0. 5〜5cm2
0
であることを特徴とする前項 8または 9記載の方法、
1 1 .該連続多段蒸留塔 τの該多孔板トレイの開口率(多孔板部の面積に対する全
0
孔断面積の割合)が 1. 5〜; 15%であることを特徴とする前項 8〜; 10のうち何れか一 項に記載の方法、
12.工程 (II)で用いられる該第 1連続多段蒸留塔の該 d と該 d が式(34)を満足し
11 12
、且つ該第 2連続多段蒸留塔の該 d と該 d が式(35)を満足することを特徴とする前
21 22
項;!〜 1 1のうち何れか一項に記載の方法、
1 ≤ d /d ≤ 5 式(34)
12 11
1 ≤ d /d ≤ 6 式(35)
21 22
13.工程 (II)で用いられる該第 1連続多段蒸留塔の L、 D、 L /D、 n、 D /d 、 D /d 力 Sそれぞれ、 2000≤L ≤6000、 150≤D ≤1000, 3≤L /D ≤30
1 12 1 1 1 1
、 30≤n ≤100, 8≤D /d ≤25, 5≤D /d ≤ 18であり、且つ、該第 2連続
1 1 11 1 12
多段蒸留塔の L、 D、 L /D、 n、 D /d 、 D /d がそれぞれ、 2000≤L2≤6
2 2 2 2 2 2 21 2 22
000、 150≤D2≤1000 , 3≤L /O ≤30 15≤n2≤60, 2. 5≤D /d ≤1 2、 7≤D /d ≤25であることを特徴とする前項 1ないし 12のうち何れか一項に記
2 22
載の方法、
14.該第 1連続多段蒸留塔の L、 D、 L /D、 n、 D /d 、 D /d がそれぞれ、
1 1 1 1 1 1 11 1 12
2500≤L ≤5000、 200≤D ≤800、 5≤L /D ≤15、 40≤n ≤90、 10≤
1 1 1 1 1
D /d ≤25, 7≤D /d ≤ 15であり、且つ、該第 2連続多段蒸留塔の L、D、L
1 11 1 12 2 2 2
/D、 n、 D /d 、 D /d カそれぞれ、 2500≤L ≤5000、 200≤D ≤800、
2 2 2 21 2 22 2 2
5≤L /D ≤15, 20≤n ≤50, 3≤D /d ≤10、 9≤D /d ≤20であるこ
2 2 2 2 21 2 22
とを特徴とする前項 1ないし 13のうち何れか一項に記載の方法、
15.該第 1連続多段蒸留塔および該第 2連続多段蒸留塔が、それぞれ該インターナ ルとしてトレイおよび/または充填物を有する蒸留塔であることを特徴とする前項 1な V、し 14のうち何れか一項に記載の方法、
16.該第 1連続多段蒸留塔が、該インターナルとしてトレィを有する棚段式蒸留塔で あり、該第 2連続多段蒸留塔が、該インターナルとして充填物およびトレイの両方を 有する蒸留塔であることを特徴とする前項 15記載の方法、
17.該第 1連続多段蒸留塔および該第 2連続多段蒸留塔の該トレイそれぞれが、多 孔板部とダウンカマー部を有する多孔板トレイであることを特徴とする前項 15または 1 6記載の方法、
18.該第 1連続多段蒸留塔および該第 2連続多段蒸留塔の該多孔板トレイが該多 孔板部の面積 lm2あたり 100〜1000個の孔を有するものであることを特徴とする前 項 17記載の方法、
19.該第 1連続多段蒸留塔および該第 2連続多段蒸留塔の該多孔板トレイの孔 1個 あたりの断面積が 0. 5〜5cm2であることを特徴とする前項 17または 18記載の方法。
20.該第 2連続多段蒸留塔が、該インターナルとして充填物を上部に、トレィを下部 に有する蒸留塔であることを特徴とする前項 15または 16に記載の方法、 21.該第 2連続多段蒸留塔の該インターナルの該充填物が 1基または 2基以上の規 則充填物であることを特徴とする前項 15な!/、し 20のうち何れか一項に記載の方法、
22.該第 2連続多段蒸留塔の該規則充填物が、メラパック、ジェムパック、テクノパッ ク、フレキシパック、スルザ一パッキング、グッドロールパッキング、グリッチグリッドから 選ばれた少なくとも一種であることを特徴とする前項 21に記載の方法、
23.該高沸点物質分離塔 Aおよび該ジフエニルカーボネート精製塔 Bが、それぞれ 該インターナルとしてトレイおよび/または充填物を有する蒸留塔であることを特徴と する前項 1ないし 22のうち何れか一項に記載の方法、
24.該高沸点物質分離塔 Aおよび該ジフエニルカーボネート精製塔 Bのインターナ ルが、それぞれ充填物であることを特徴とする前項 23に記載の方法、
25.該充填物が、メラパック、ジェムパック、テクノバック、フレキシパック、スルザーパ ッキング、グッドロールパッキング、グリッチグリッドから選ばれた少なくとも一種の規則 充填物であることを特徴とする前項 24に記載の方法、
26.工程 (IV)で用いられる該ガイド接触流下式重合器において、重合反応ゾーン の側面ケーシングが内径 D (cm)、長さ L (cm)の円筒形であって、その下部に接続さ れた底部のケーシングがテーパー形であり、該テーパー形の底部ケーシングの最下 部の排出口が内径 d (cm)の円筒形であって、 D、 L、 d が式(36)、 (37)、 (38)およ び(39)を満足する、
100 ≤ D ≤ 1800 式(36)
5 ≤ D/d ≤ 50 式(37)
0. 5 ≤ L/D ≤ 30 式(38)
h- 20 ≤ L ≤ h+ 300 式(39)
ことを特徴とする前項;!〜 25のうち何れか一項に記載の方法、
27.ガイドの該 hが式(40)を満足する、
400 < h ≤ 2500 式(40)
ことを特徴とする前項;!〜 26のうち何れか一項に記載の方法、
28. 1つの該ガイドが外径 r (cm)の円柱状または内側に溶融プレボリマーが入らな いようにしたパイプ状のものであって、 r が式(41)を満足する、 0. 1 ≤ r ≤ 1 式(41)
ことを特徴とする前項 1ないし 27のうち何れか一項に記載の方法、
29.工程 (IV)において、該ガイド接触流下式重合器 2基以上を連結して重合を行う こと特徴とする前項;!〜 28のうち何れか一項に記載の方法、
30.前項 29記載の 2基以上のガイド接触流下式重合器が、ガイド接触流下式第 1重 合器、ガイド接触流下式第 2重合器の 2基の重合器であって、この順に重合度を上げ ていく方法において、該第 1重合器のガイド全体の外部総表面積 S I (m2)と該第 2重 合器のガイド全体の外部総表面積 S2 (m2)とが式 (42)を満足する、
1 ≤ S1/S2 ≤ 20 式(42)
ことを特徴とする前項 29に記載の方法、
を提供する。
[0031] また、本発明の第 2の態様では、
31.前項 1〜30のいずれかの方法によって 1時間あたり 1トン以上製造された高品質 芳香族ポリカーボネート、
32.アルカリ金属および/またはアルカリ土類金属化合物の含有量力 をこれらの 金属元素に換算して、 0. ;!〜 0. Olppmであり、且つ、ハロゲン含有量が、 lppb以 下であることを特徴とする前項 31記載の高品質芳香族ポリカーボネート、
33.主鎖に対してエステル結合やエーテル結合等の異種結合を介して部分的に分 岐している芳香族ポリカーボネートであって、該異種結合の含有量が、カーボネート 結合に対して、 0. 05-0. 5モル%であることを特徴とする前項 31または 32記載の 高品質芳香族ポリカーボネート、
を提供する。
発明の効果
[0032] 本発明の方法を実施することによって、環状カーボネートと芳香族ジヒドロキシ化合 物から、着色がなく機械的物性に優れた高品質 ·高性能の芳香族ポリカーボネートが 、高い重合速度で、 1時間当り 1トン以上の工業的規模で製造できることが見出され た。し力、も分子量のバラツキが少なぐ長期間、たとえば 2000時間以上、好ましくは 3 000時間以上、さらに好ましくは 5000時間以上、安定的に高品質芳香族ポリカーボ ネートが製造できることも見出された。したがって、本発明は高品質芳香族ポリカーボ ネートの工業的製造方法として極めて優れた効果のある方法である。
発明を実施するための最良の形態
[0033] 以下、本発明について具体的に説明する。
本発明では、先ず、環状カーボネートと脂肪族 1価アルコール類とから、ジアルキル カーボネートとジオール類を工業的規模で連続的に製造する工程 (I)が行われる。 工程 (I)の反応は、下記式で表わされる可逆的なエステル交換反応である。
[0034] [化 1]
R1 R20 OR2 R1
CK \〇 + 2R2OH C' + HO ヽ OH
°
[0035] (式中、 R1は 2価の基—(CH ) - (kは 2〜6の整数)を表わし、その 1個以上の水素
2 k
は炭素数 1〜10のアルキル基ゃァリール基によって置換されていてもよい。また、 R2 は炭素数;!〜 12の 1価の脂肪族基を表わし、その 1個以上の水素は炭素数;!〜 10の アルキル基ゃァリール基で置換されていてもよい。 )
[0036] このような環状カーボネートとしては、例えば、エチレンカーボネート、プロピレン力 ーボネート等のアルキレンカーボネート類や、 1 , 3—ジォキサシクロへキサー 2—ォ ン、 1 , 3—ジォキサシクロヘプター 2—オンなどが好ましく用いられ、エチレンカーボ ネートおよびプロピレンカーボネートが入手の容易さなどの点から更に好ましく使用さ れ、エチレンカーボネートが特に好ましく使用される。
[0037] また、脂肪族 1価アルコール類としては、生成するジオール類より沸点が低!/、ものが 用いられる。したがって、使用する環状カーボネートの種類によっても変わり得るが、 例えば、メタノール、エタノール、プロパノール(各異性体)、ァリルアルコール、ブタノ ール(各異性体)、 3-ブテン- 1-オール、ァミルアルコール(各異性体)、へキシルァ ノレコール(各異性体)、ヘプチルアルコール(各異性体)、ォクチルアルコール(各異 性体)、ノニルアルコール(各異性体)、デシルアルコール(各異性体)、ゥンデシルァ ノレコール(各異性体)、ドデシルアルコール(各異性体)、シクロペンタノール、シクロ へキサノーノレ.シクロヘプタノ一ノレ、シクロオタタノ一ノレ、メチノレシクロペンタノ一ノレ(各 異性体)、ェチルシクロペンタノール(各異性体)、メチルシクロへキサノール(各異性 体)、ェチルシクロへキサノール(各異性体)、ジメチルシクロへキサノール(各異性体 )、ジェチルシクロへキサノール(各異性体)、フエニルシクロへキサノール(各異性体 )、ベンジルアルコール、フエネチルアルコール(各異性体)、フエニルプロパノール( 各異性体)などが挙げられ、さらにこれらの脂肪族 1価アルコール類において、ハロゲ ン、低級アルコキシ基、シァノ基、アルコキシカルボニル基、ァリーロキシカルボ二ノレ 基、ァシロキシ基、ニトロ基等の置換基によって置換されていてもよい。
[0038] このような脂肪族 1価アルコール類の中で、好ましく用いられるのは炭素数 1〜6の アルコール類であり、さらに好ましいのはメタノール、エタノール、プロパノール(各異 性体)、ブタノール (各異性体)の炭素数 1〜4のアルコール類である。環状カーボネ ートとしてエチレンカーボネートやプロピレンカーボネートを使用する場合に好ましい のはメタノール、エタノールであり、特に好ましいのはメタノールである。
[0039] 工程 (I)の反応蒸留を行うにあたって、反応蒸留塔内に触媒を存在させる方法はど のような方法であってもよいが、例えば、反応条件下で反応液に溶解するような均一 系触媒の場合、反応蒸留塔内に連続的に触媒を供給することにより、反応蒸留塔内 の液相に触媒を存在させることもできるし、あるいは反応条件下で反応液に溶解しな いような不均一系触媒の場合、反応蒸留塔内に固体触媒を配置することにより、反応 系に触媒を存在させることもできるし、これらを併用した方法であってもよい。
[0040] 均一系触媒を反応蒸留塔内に連続的に供給する場合には、環状カーボネート及 び/又は脂肪族 1価アルコールと同時に供給してもよいし、原料とは異なる位置に供 給してもよい。該蒸留塔内で実際に反応が進行するのは触媒供給位置力 下の領 域であることから、塔頂から原料供給位置までの間の領域に該触媒を供給することが 好ましい。そして該触媒が存在する段は 5段以上あることが必要であり、好ましくは 7 段以上であり、さらに好ましくは 10段以上である。
[0041] また、不均一系の固体触媒を用いる場合、該触媒の存在する段の段数が 5段以上 あることが必要であり、好ましくは 7段以上であり、さらに好ましくは 10段以上である。 蒸留塔の充填物としての効果をも併せ持つ固体触媒を用いることもできる。
[0042] 工程 (I)において用いられる触媒としては、例えば、 リチウム、ナトリウム、カリウム、ノレビジゥム、セシウム、マグネシウム、カルシウム、スト ロンチウム、バリウム等のアルカリ金属およびアルカリ土類金属類;
アルカリ金属およびアルカリ土類金属の水素化物、水酸化物、アルコキシド化物類 、ァリ一口キシド化物類、アミド化物類等の塩基性化合物類;
アルカリ金属およびアルカリ土類金属の炭酸塩類、重炭酸塩類、有機酸塩類等の 塩基性化合物類;
トリエチノレアミン、トリブチノレアミン、トリへキシノレアミン、ベンジルジェチルァミン等の 3級ァミン類; N—アルキルピロール、 N—アルキルインドール、ォキサゾール、 N—ァ ノレキノレイミダゾーノレ、 N—アルキルピラゾール、ォキサジァゾール、ピリジン、アルキ ルビリジン、キノリン、アルキルキノリン、イソキノリン、アルキルイソキノリン、アタリジン、 アルキルアタリジン、フエナント口リン、アルキルフエナント口リン、ピリミジン、アルキノレ ピリミジン、ピラジン、アルキルビラジン、トリアジン、アルキルトリァジン等の含窒素複 素芳香族化合物類;
ジァザビシクロウンデセン(DBU)、ジァザビシクロノネン(DBN)等の環状アミジン 類;
酸化タリウム、ハロゲン化タリウム、水酸化タリウム、炭酸タリウム、硝酸タリウム、硫 酸タリウム、タリウムの有機酸塩類等のタリウム化合物類;
トリブチルメトキシ錫、トリブチルエトキシ錫、ジブチルジメトキシ錫、ジェチルジェト キシ錫、ジブチルジェトキシ錫、ジブチルフエノキシ錫、ジフエニルメトキシ錫、酢酸ジ ブチル錫、塩化トリブチル錫、 2—ェチルへキサン酸錫等の錫化合物類;
ジメトキシ亜 ジエトキシ亜 エチレンジ才キシ亜鈴、ジブトキシ亜鈴等の亜鈴 化合物類;
アルミニウムトリメトキシド、アルミニウムトリイソプロポキシド、アルミニウムトリブトキシ ド等のアルミニウム化合物類;
テトラメトキシチタン、テトラエトキシチタン、テトラブトキシチタン、ジクロロジメト のチタン化合物類;
トリメチルホスフィン、トリェチルホスフィン、トリブチルホスフィン、トリフエニルホスフィ ン、トリブチルメチルホスホニゥムハライド、トリオクチルブチルホスホニゥムハライド、ト リフエニルメチルホスホニゥムハライド等のリン化合物類;
ハロゲン化ジルコニウム、ジルコニウムァセチルァセトナート、ジルコニウムアルコキ シド、酢酸ジルコニウム等のジルコニウム化合物類;
鉛および鉛を含む化合物類、例えば、 PbO、 PbO、 Pb oなどの酸化鉛類;
2 3 4
PbS、 Pb S、 PbSなどの硫化鉛類; Pb (OH)、 Pb O (OH)、 Pb [PbO (OH) ]、 Pb O (OH)などの水酸化鉛類; Na PbO、 K PbO、 NaHPbO、 KHPbOなど の亜ナマリ酸塩類; Na PbO、 Na H PbO、 K PbO、 K [Pb (OH) ]、 K PbO、 C
2 3 2 2 4 2 3 2 6 4 4 a PbO、 CaPbOなどの鉛酸塩類; PbCO、 2PbCO -Pb (OH)などの鉛の炭酸塩
2 4 3 3 3 2
およびその塩基性塩類; Pb (OCH )、(CH〇)Pb (OPh)、 Pb (OPh)などのアルコ
3 2 3 2
キシ鉛類、ァリールォキシ鉛類; Pb (OCOCH )、Pb (OCOCH )、Pb (OCOCH )
3 2 3 4 3
•PbO- 3H Oなどの有機酸の鉛塩およびその炭酸塩や塩基性塩類; Bu Pb、 Ph P
2 2 4 4 b、 Bu PbCl、 Ph PbBr、 Ph Pb (または Ph Pb ) , Bu PbOH、 Ph PbOなどの有機
3 3 3 6 2 3 2 鉛化合物類(Buはブチル基、 Phはフエ二ル基を示す); Pb— Na、 Pb— Ca、 Pb— B a、 Pb— Sn、 Pb— Sbなどの鉛の合金類;ホウェン鉱、センァェン鉱などの鉛鉱物類 、およびこれらの鉛化合物の水和物類;
が挙げられる。
[0043] これらの化合物は、反応原料や、反応混合物、反応副生物などに溶解する場合に は、均一系触媒として用いることができるし、溶解しない場合には固体触媒として用 いること力 Sできる。さらには、これらの化合物を反応原料や、反応混合物、反応副生 物などで事前に溶解させたり、あるいは反応させることによって溶解させた混合物を 均一系触媒として用いることも好ましレ、方法である。
[0044] さらに 3級アミノ基を有する陰イオン交換樹脂、アミド基を有するイオン交換樹脂、ス ルホン酸基、カルボン酸基、リン酸基のうちの少なくとも一つの交換基を有するイオン 交換樹脂、第 4級アンモニゥム基を交換基として有する固体強塩基性ァニオン交換 体等のイオン交換体類;シリカ、シリカ-アルミナ、シリカ一マグネシア、アルミノシリケ ート、ガリウムシリケート、各種ゼォライト類、各種金属交換ゼォライト類、アンモニゥム 交換ゼォライト類などの固体の無機化合物類等が触媒として用いられる。 [0045] 固体触媒として、特に好ましく用いられるのは第 4級アンモニゥム基を交換基として 有する固体強塩基性ァニオン交換体であり、このようなものとしては、例えば、第 4級 アンモニゥム基を交換基として有する強塩基性ァニオン交換樹脂、第 4級アンモニゥ ム基を交換基として有するセルロース強塩基性ァニオン交換体、第 4級アンモニゥム 基を交換基として有する無機質担体担持型強塩基性ァユオン交換体などが挙げら れる。第 4級アンモニゥム基を交換基として有する強塩基性ァニオン交換樹脂として は、例えば、スチレン系強塩基性ァニオン交換樹脂などが好ましく用いられる。スチ レン系強塩基性ァニオン交換樹脂は、スチレンとジビュルベンゼンの共重合体を母 体として、交換基に第 4級アンモニゥム(I型ある!/、は II型)を有する強塩基性ァニオン 交換樹脂であり、例えば、次式で模式的に示される。
[0046] [化 2]
Figure imgf000026_0001
Figure imgf000026_0002
[0047] 式中、 Xはァニオンを示し、通常、 Xとしては、 F―、 Cl—、 Br―、 Γ、 HCO―、 CO 、 CH
CO―、 HCO―、 IO―、 BrO―、 CIO—の中から選ばれた少なくとも 1種のァニオンが使 用され、好ましくは Cl—、 Br―、 HCO―、 CO 2の中力、ら選ばれた少なくとも 1種のァニォ ンが使用される。また、樹脂母体の構造としては、ゲル型、マクロレティキュラー型 (M R型)レ、ずれも使用できる力 耐有機溶媒性が高!/、点から MR型が特に好ましレ、。
[0048] 第 4級アンモニゥム基を交換基として有するセルロース強塩基性ァニオン交換体と しては、例えば、セルロースの -OH基の一部または全部をトリアルキルアミノエチル 化して得られる、 OCH CH NR Xなる交換基を有するセルロースが挙げられる。 ただし、 Rはアルキル基を示し、通常、メチル、ェチル、プロピル、ブチルなどが用い られ、好ましくはメチル、ェチルが使用される。また、 Xは前述のとおりのァニオンを示 す。
[0049] 第 4級アンモユウム基を交換基として有する無機質担体担持型強塩基性ァユオン 交換体とは、無機質担体の表面水酸基 OHの一部または全部を修飾することによ り、 4級アンモニゥム基—〇(CH ) NR Xを導入したものを意味する。ただし、 R、 Xは
2 n 3
前述のとおりである。 nは通常 1〜6の整数であり、好ましくは n = 2である。無機質担 体としては、シリカ、アルミナ、シリカアルミナ、チタニア、ゼォライトなどを使用すること ができ、好ましくはシリカ、アルミナ、シリカアルミナが用いられ、特に好ましくはシリカ が使用される。無機質担体の表面水酸基の修飾方法としては、任意の方法を用いる こと力 Sでさる。
[0050] 第 4級アンモユウム基を交換基として有する固体強塩基性ァユオン交換体は、市販 のものを使用することもできる。その場合には、前処理として予め所望のァニオン種 でイオン交換を行なった後に、エステル交換触媒として使用することもできる。
[0051] また、少なくとも 1個の窒素原子を含む複素環基が結合している巨大網状およびゲ ルタイプの有機ポリマー、または少なくとも 1個の窒素原子を含む複素環基が結合し ている無機質担体から成る固体触媒もエステル交換触媒として好ましく用いられる。 また、さらにはこれらの含窒素複素環基の一部または全部が 4級塩化された固体触 媒も同様に用いられる。なお、イオン交換体などの固体触媒は、充填物としての機能 あ果たすこと力 Sでさる。
[0052] 工程 (I)で用いられる触媒の量は、使用する触媒の種類によっても異なるが、反応 条件下で反応液に溶解するような均一系触媒を連続的に供給する場合には、供給 原料である環状カーボネートと脂肪族 1価アルコールの合計質量に対する割合で表 わして、通常 0. 000;!〜 50質量0 /0、好ましくは 0. 005〜20質量0 /0、さらに好ましくは 0. 01〜; 10質量%で使用される。また、固体触媒を該蒸留塔内に設置して使用する 場合には、該蒸留塔の空塔容積に対して、 0. 0;!〜 75容積%、好ましくは 0. 05〜6 0容積%、さらに好ましくは 0. ;!〜 60容積%の触媒量が好ましく用いられる。
[0053] 工程 (I)において反応蒸留塔である連続多段蒸留塔 Tに、原料である環状カーボ
0
ネートおよび脂肪族 1価アルコールを連続的に供給する方法については、特別な限 定はなぐそれらが該蒸留塔の少なくとも 5段以上、好ましくは 7段以上、より好ましく は 10段以上の領域において触媒と接触させることができるような供給方法であれば 如何なる方法であってもよい。すなわち、該環状カーボネートと該脂肪族 1価アルコ ールは、連続多段蒸留塔の上記の条件を満たす段に必要な数の導入口から連続的 に供給すること力 Sできる。また、該環状カーボネートと該脂肪族 1価アルコールは該 蒸留塔の同じ段に導入されてもよいし、それぞれ別の段に導入してもよい。
[0054] 原料である環状カーボネートおよび脂肪族 1価アルコールは、液状、ガス状または 液とガスとの混合物として該連続多段蒸留塔 Tに連続的に供給される。このようにし
0
て原料を該蒸留塔に供給する以外に、付加的にガス状の原料を該蒸留塔の下部か ら断続的または連続的に供給することも好ましい方法である。また、環状カーボネート を触媒の存在する段よりも上部の段に液状または気液混合状態で該蒸留塔に連続 的に供給し、該蒸留塔の下部に該脂肪族 1価アルコールをガス状および/または液 状で連続的に供給する方法も好ましい方法である。この場合、環状カーボネート中に 、脂肪族 1価アルコールが含まれていても、もちろん構わない。
[0055] 工程 (I)において、供給原料中に、生成物であるジアルキルカーボネートおよび/ またはジオール類が含まれていてもよい。その含有量は、ジアルキルカーボネートが 、脂肪族 1価アルコール/ジアルキルカーボネート混合物中のジアルキルカーボネ ートの質量%で表わして、通常、 0〜40質量%、好ましくは 0〜30質量%、さらに好 ましくは 0〜20質量%であり、ジオール類が環状カーボネート/ジオール混合物中 の質量%で表わして、通常、 0〜; 10質量%、好ましくは 0〜7質量%、さらに好ましく は 0〜5質量%である。
[0056] 工程 (I)の反応を工業的に実施する場合、新規に反応系に導入される環状カーボ ネートおよび/または脂肪族 1価アルコールに加え、この工程または/および他のェ 程で回収された、環状カーボネートおよび/または脂肪族 1価アルコールを主成分と する物質が、これらの原料として使用できることは好ましいことである。本発明はこのこ とを可能にするものであり、これは本発明の優れた特徴である。他の工程とは、例え ば、ジアルキルカーボネートとフエノールからジフエ二ルカーボネートを製造する工程 (II)があり、この工程 (II)では、脂肪族 1価アルコールが副生し、回収される。この回 収副生脂肪族 1価アルコールには、通常ジアルキルカーボネート、フエノール、アル キルフエニルエーテルなどが含まれる場合が多ぐさらには少量のアルキルフエニル カーボネート、ジフエ二ルカーボネートなどが含まれる場合がある。副生脂肪族 1価ァ ルコールはそのままで工程 (I)の原料とすることもできるし、蒸留等により該脂肪族 1 価アルコールよりも沸点の高い含有物質量を減少させた後に工程 (I)の原料とするこ ともできる。
[0057] また、工程 (I)で用いられる好ましい環状カーボネートは、例えば、エチレンォキシド 、プロピレンォキシド、スチレンォキシドなどのアルキレンォキシドと二酸化炭素との反 応によって製造されたものであるので、これらの化合物などを少量含む環状カーボネ 一卜を、工程 (I)の原料として用いることあできる。
[0058] 工程 (I)において、反応蒸留塔に供給する環状カーボネートと脂肪族 1価アルコー ル類との量比は、エステル交換触媒の種類や量および反応条件によっても異なるが 、通常、供給される環状カーボネートに対して、脂肪族 1価アルコール類はモル比で 0. 01〜; 1000倍の範囲で供給することができる。環状カーボネートの反応率を上げ るためには脂肪族 1価アルコール類を 2倍モル以上の過剰量供給することが好ましい 1S あまり大過剰に用いると装置を大きくする必要がある。このような意味において、 環状カーボネートに対する脂肪族 1価アルコール類のモル比は、 2〜20が好ましぐ さらに好ましくは 3〜15、さらにより好ましくは 5〜; 12である。なお、未反応環状カーボ ネートが多く残存していると、生成物であるジオール類と反応して 2量体、 3量体など の多量体を副生するので、工業的に実施する場合、未反応環状カーボネートの残存 量をできるだけ減少させることが好ましい。本発明の方法では、このモル比が 10以下 であっても、環状カーボネートの反応率を 97%以上、好ましくは 98%以上、さらに好 ましくは 99%以上にすることが可能である。このことも本発明の特徴のひとつである。
[0059] 工程(I)においては、好ましくは 1時間あたり約 0. 4トン以上のジアルキルカーボネ ートを連続的に製造するのである力 そのために連続的に供給される環状カーボネ ートの最低量は、製造すべき芳香族ポリカーボネートの量 (Pトン/ hr)に対して、通 常 0. 44Pトン/ hr、好ましくは、 0. 42Pトン/ hr、より好ましくは 0. 4Pトン/ hrである 。さらに好ましい場合は、 0· 39Pトン/ hrよりも少なくできる。
[0060] 工程 (I)において用いられる連続多段蒸留塔 Tとは、長さし (cm) ,内径 D (cm)の
0 0 0 円筒形の胴部を有し、内部に段数 nをもつインターナルを有する構造をしており、塔
0
頂部またはそれに近い塔の上部に内径 d (cm)のガス抜出し口、塔底部またはそれ
01
に近い塔の下部に内径 d (cm)の液抜出し口、該ガス抜出し口より下部であって塔
02
の上部および/または中間部に 1つ以上の第 1の導入口、該液抜出し口より上部で あって塔の中間部および/または下部に 1つ以上の第 2の導入口を有するものであ って、し、0、し/0、1 、 0 /(1 、D /d 力 S、それぞれ式(;!)〜(6)を満足する
0 0 0 0 0 0 01 0 02
ものであることが必要である。
2100 < L ≤ 8000 式 (1)
0
180 < D ≤ 2000 式 (2)
0
4 < L /DO ≤ 40 式 (3)
0
10 < n ≤ 120 式 (4)
0
3 < D /ά ≤ 20 式 (5)
0 01
5 < D /d ≤ 30 式 (6)
[0061] なお、本発明で用いる用語「塔頂部またはそれに近い塔の上部」とは、塔頂部から 下方に約 0. 25Lまでの部分を意味し、用語「塔底部またはそれに近い塔の下部」と
0
は、塔底部から上方に約 0. 25Lまでの部分を意味する。 (第 1および第 2連続多段
0
蒸留塔においては、それぞれ 0· 25Lおよび 0· 25Lである。 )
1 2
[0062] 式(1)、(2)、(3)、 (4)、 (5)および (6)を同時に満足する連続多段蒸留塔 Tを用
0 いることによって、環状カーボネートと脂肪族 1価アルコール類とから、ジアルキル力 ーボネートを 1時間あたり好ましくは 0. 4トン以上、および/またはジオール類を 1時 間あたり好ましくは 0. 26トン以上の工業的規模で、高反応率'高選択率'高生産性 で、例えば 1000時間以上、好ましくは 3000時間以上、さらに好ましくは 5000時間 以上の長期間、安定的に製造できることが見出されたのである。工程 (I)を実施する ことによって、このような優れた効果を有する工業的規模でのジアルキルカーボネー トとジオール類の製造が可能になった理由は明らかではな!/、が、式(1)〜(6)の条件 が組み合わさった時にもたらされる複合効果のためであると推定される。なお、各々 の要因の好ましい範囲は下記に示される。
[0063] L (cm)が 2100より小さいと、反応率が低下するため目的とする生産量を達成でき
0
ないし、 目的の生産量を達成できる反応率を確保しつつ設備費を低下させるには、 L を 8000以下にすることが必要である。より好ましい L (cm)の範囲は、 2300≤L≤
0 0 0
6000 であり、さらに好ましくは、 2500≤L≤5000 である。
0
D (cm)が 180よりも小さいと、 目的とする生産量を達成できないし、 目的の生産量
0
を達成しつつ設備費を低下させるには、 Dを 2000以下にすることが必要である。より
0
好ましい D (cm)の範囲は、 200≤D≤1000 であり、さらに好ましくは、 210≤D
0 0 0
≤800 である。
[0064] L /Ό力 より小さい時や 40より大きい時は安定運転が困難となり、特に 40より大
0 0
きいと塔の上下における圧力差が大きくなりすぎるため、長期安定運転が困難となる だけでなぐ塔下部での温度を高くしなければならないため、副反応が起こりやすくな り選択率の低下をもたらす。より好ましい L /Όの範囲は、 5≤L /Ό≤30 であり、
0 0 0 0
さらに好ましくは、 7≤L /D≤20 である。
0 0
[0065] nが 10より小さいと反応率が低下するため目的とする生産量を達成できないし、 目
0
的の生産量を達成できる反応率を確保しつつ設備費を低下させるには、 nを 120以
0 下にすることが必要である。さらに、 n力 よりも大きいと塔の上下における圧力差
0
が大きくなりすぎるため、長期安定運転が困難となるだけでなぐ塔下部での温度を 高くしなければならないため、副反応が起こりやすくなり選択率の低下をもたらす。よ り好ましい nの範囲は、 30≤n≤100 であり、さらに好ましくは、 40≤n≤90 であ
0 0 0
[0066] D /d 力 ¾より小さいと設備費が高くなるだけでなく大量のガス成分が系外に出や
0 01
すくなるため、安定運転が困難になり、 20よりも大きいとガス成分の抜出し量が相対 的に小さくなり、安定運転が困難になるだけでなぐ反応率の低下をもたらす。より好 ましい D /d の範囲は、 4≤D /d ≤15 であり、さらに好ましくは、 5≤D /d ≤
0 01 0 01 0 01
13 である。 [0067] D /d 力 ¾より小さいと設備費が高くなるだけでなく液抜出し量が相対的に多くなり
0 02
、安定運転が困難になり、 30よりも大きいと液抜出し口や配管での流速が急激に速く なりエロージョンを起こしやすくなり装置の腐食をもたらす。より好ましい D /d の範
0 02 囲は、 7≤D /d ≤25 であり、さらに好ましくは、 9≤D /d ≤20 である。
0 02 0 02
[0068] さらに工程 (I)で用いられる連続多段蒸留塔 Tの該 d と該 d02が式(33)を満足す
0 01
る場合、さらに好ましいことがわ力 た。
1 ≤ d /d ≤ 5 式(33)
01 02
[0069] 工程(I)でいう長期安定運転とは、 1000時間以上、好ましくは 3000時間以上、さら に好ましくは 5000時間以上、フラッデイングや、配管のつまりやエロージョンがなぐ 運転条件に基づ!/、た定常状態で運転が継続でき、高反応率 ·高選択率 ·高生産性を 維持しながら、所定量のジアルキルカーボネートとジオール類が製造されていること を意味する。
[0070] 工程(I)でいぅジアルキルカーボネートおよびジオール類の選択率とは、反応した 環状カーボネートに対するものであって、本発明では通常 95%以上の高選択率であ り、好ましくは 97%以上、さらに好ましくは 99%以上の高選択率を達成することがで きる。また、工程 (I)でいう反応率とは、通常、環状カーボネートの反応率を表し、本 発明では環状カーボネートの反応率を 95%以上、好ましくは 97%以上、より好ましく は 99%以上、さらに好ましくは 99. 5以上、さらにより好ましくは 99. 9%以上にするこ とが可能である。このように高選択率を維持しながら、高反応率を達成できることもェ 程 (I)の優れた特徴のひとつである。
[0071] 工程 (I)で用いられる連続多段蒸留塔 Tは、インターナルとして、トレイおよび/ま
0
たは充填物を有する蒸留塔であることが好ましい。なお、本発明でいうインターナルと は、蒸留塔において実際に気液の接触を行わせる部分のことを意味する。このような トレイとしては、例えば泡鍾トレイ、多孔板トレイ、バルブトレイ、向流トレイ、スーパー フラックトレイ、マックスフラックトレイ等が好ましぐ充填物としては、ラシヒリング、レツ シングリング、ポールリング、ベルルサドル、インタロックスサドル、ディクソンパッキン グ、マクマホンパッキング、ヘリパック等の不規則充填物やメラパック、ジェムパック、 テクノバック、フレキシパック、スノレザーパッキング、グッドローノレパッキング、グリッチ グリッド等の規則充填物が好ましレ、。トレイ部と充填物の充填された部分とを合わせ 持つ多段蒸留塔も用いることができる。また、本発明でいう用語「インターナルの段数 」とは、トレイの場合は、トレイの数を意味し、充填物の場合は、理論段数を意味する。 したがって、トレイ部と充填物の充填された部分とを合わせて持つ多段蒸留塔の場 合、段数はトレイの数と理論段数の合計である。
[0072] 環状カーボネートと脂肪族 1価アルコール類とを反応させる工程 (I)において、イン ターナルが所定の段数を有するトレイおよび/または充填物からなる棚段式連続多 段蒸留塔および/または充填塔式連続多段蒸留塔のいずれを用いても、高反応率
•高選択率 ·高生産性を達成することができる力、インターナルカ^レイである棚段式 蒸留塔がより好ましいことが見出された。さらに、該トレイが多孔板部とダウンカマー 部を有する多孔板トレイが機能と設備費との関係で特に優れていることが見出された 。そして、該多孔板トレイが該多孔板部の面積 lm2あたり 100〜; 1000個の孔を有し ていることが好ましいことも見出された。より好ましい孔数は該面積 lm2あたり 120〜9 00個であり、さらに好ましくは、 150〜800個である。また、該多孔板トレイの孔 1個あ たりの断面積が 0. 5〜5cm2であることが好ましいことも見出された。より好ましい孔 1 個あたりの断面積は、 0. 7〜4cm2であり、さらに好ましくは 0. 9〜3cm2である。さら には、該多孔板トレイが該多孔板部の面積 lm2あたり 100〜; 1000個の孔を有してお り、かつ、孔 1個あたりの断面積が 0. 5〜5cm2である場合、特に好ましいことが見出 された。
[0073] さらに、該多孔板トレイの開口率が 1. 5〜; 15%であることが好ましいことが見出され た。より好ましい該開口率は、 1. 7〜; 13%であり、さらに好ましくは 1. 9〜; 1 1 %である 。ここで、多孔板トレイの開口率とは、該多孔板部の面積に対する該多孔板に存在す る孔全部の断面積 (全孔断面積)の割合を表す。各多孔板トレイにおいて、多孔板部 の面積および/または全孔断面積が異なる場合がある力 S、この場合においても各多 孔板トレイの開口率が上記の範囲であることが好ましい。なお、該多孔板部の孔数は 、全ての多孔板において同じであってもよいし、異なるものであってもよい。連続多段 蒸留塔 Tに上記の条件を付加することによって、工程 (I)における課題力 S、より容易
0
に達成されることが判明したのである。 [0074] 工程 (I)を実施する場合、原料である環状カーボネートと脂肪族 1価アルコール類と を触媒が存在する連続多段蒸留塔内に連続的に供給し、該塔内で反応と蒸留を同 時に行い、生成するジアルキルカーボネートを含む低沸点反応混合物を塔上部より ガス状で連続的に抜出し、ジオール類を含む高沸点反応混合物を塔下部より液状 で連続的に抜出すことによりジアルキルカーボネートとジオール類が連続的に製造さ れる。
[0075] また、工程 (I)において、原料である環状カーボネートと脂肪族 1価アルコール類を 連続多段蒸留塔 T内に連続的に供給するには、蒸留塔の上部のガス抜出し口よりも
0
下部であるが塔の上部または中間部に設置された 1箇所または数箇所の導入口から 、原料混合物として、またはそれぞれ別々に、液状および/またはガス状で供給して もよいし、環状カーボネートまたはそれを多く含む原料を蒸留塔の上部または中間部 の導入ロカ 液状で供給し、脂肪族 1価アルコール類またはそれを多く含む原料を 蒸留塔の下部の液抜出し口よりも上部であって塔の中間部または下部に設置された 導入口からガス状で供給することも好ましレ、方法である。
[0076] 工程 (I)で行われるエステル交換反応の反応時間は連続多段蒸留塔 T内での反
0 応液の平均滞留時間に相当すると考えられるが、これは蒸留塔のインターナルの形 状や段数、原料供給量、触媒の種類や量、反応条件などによって異なるが、通常 0. ;!〜 20時間、好ましくは 0. 5〜; 15時間、より好ましくは;!〜 10時間である。
[0077] 工程 (I)の反応温度は、用いる原料化合物の種類や触媒の種類や量によって異な る力 通常、 30〜300°Cである。反応速度を高めるためには反応温度を高くすること が好ましいが、反応温度が高いと副反応も起こりやすくなる。好ましい反応温度は 40 〜250°C、より好ましくは 50〜200°C、さらに好ましくは、 60〜; 150°Cの範囲である。 本発明においては、塔底温度として 150°C以下、好ましくは 130°C以下、より好ましく は 110°C以下、さらにより好ましくは 100°C以下にして反応蒸留を実施することが可 能である。このような低!/、塔底温度であっても高反応率 ·高選択率 ·高生産性を達成 できることは、工程 (I)の優れた特徴のひとつである。また、反応圧力は、用いる原料 化合物の種類や組成、反応温度などにより異なる力 減圧、常圧、加圧のいずれで あってもよく、通常 lPa〜2 X 107Pa、好ましくは、 103Pa〜; 107Pa、より好ましくは 104 Pa〜5 X 106Paの範囲で行われる。
[0078] また、工程 (I)の連続多段蒸留塔 Tの還流比は、通常 0〜; 10が用いられ、好ましく
0
は 0. 0;!〜 5が、さらに好ましくは 0. 05〜3が用いられる。
[0079] 工程 (I)で用いられる連続多段蒸留塔 Τを構成する材料は、主に炭素鋼、ステンレ
0
ススチールなどの金属材料であるが、製造するジアルキルカーボネートとジオール類 の品質の面からは、ステンレススチールが好ましい。
[0080] 本発明では、続いて、工程 (I)で製造されたジアルキルカーボネートとフエノールと 力、らジフエニルカーボネートを工業的規模で連続的に製造する工程 (II)が行われる 。工程 (II)で用いられるジアルキルカーボネートとは、下記式に記載の下式で表され るものである。
R2OCOOR2
ここで、 R2は前記のとおりである。
[0081] このような R2を有するジアルキルカーボネートとしては、例えば、ジメチルカーボネ ート、ジェチルカーボネート、ジプロピルカーボネート(各異性体)、ジァリルカーボネ ート、ジブテュルカーボネート(各異性体)、ジブチルカーボネート(各異性体)、ジぺ ンチルカーボネート(各異性体)、ジへキシルカーボネート(各異性体)、ジヘプチル カーボネート(各異性体)、ジォクチルカーボネート(各異性体)、ジノニルカーボネー ト(各異性体)、ジデシルカーボネート(各異性体)、ジシクロペンチルカーボネート、 ジシクロへキシノレカーボネート、ジシクロへプチノレカーボネート、ジベンジノレカーボネ ート、ジフエネチノレカーボネート(各異十生体)、ジ(フエ二ノレプロピノレ)カーボネート(各 異性体)、ジ(フエニルブチル)カーボネート(各異性体)ジ(クロ口ベンジル)カーボネ ート(各異性体)、ジ (メトキシベンジル)カーボネート (各異性体)、ジ (メトキシメチル) カーボネート、ジ (メトキシェチル)カーボネート(各異性体)、ジ(クロロェチル)カーボ ネート(各異性体)、ジ (シァノエチル)カーボネート (各異性体)等が挙げられる。
[0082] これらの中で、本発明において好ましく用いられるのは、 R2がハロゲンを含まない炭 素数 4以下のアルキル基からなるジアルキルカーボネートであり、特に好ましいのは ジメチルカーボネートである。また、好ましいジアルキルカーボネートのなかで、さらに 好ましいのは、ハロゲンを実質的に含まない状態で製造されたジアルキルカーボネ ートであって、例えばハロゲンを実質的に含まないアルキレンカーボネートとハロゲン を実質的に含まないアルコール力 製造されたものである。
[0083] 工程(II)で用いられるフエノールとは、下記一般式で表されるものであり、フエニル 基(Ph)に直接ヒドロキシル基が結合している化合物である力 場合によっては、フエ ニル基が低級アルキル基または低級アルコキシ基で置換された置換フエノールを用 いることあでさる。
PhOH
本発明にお!/、て好ましく用いられるのは、ハロゲンを実質的に含まな!/、フエノール である。
[0084] したがって、本発明でいうジフエニルカーボネートとは、下記一般式で表されるもの である。
PhOCOOPh
工程(II)で原料として用いられるジアルキルカーボネートのフエノールに対する量 比はモル比で、 0. ;!〜 10であることが好ましい。この範囲外では、 目的とするのジフ ェニルカーボネートの所定生産量に対して、残存する未反応の原料が多くなり、効率 的でないし、またそれらを回収するために多くのエネルギーを要する。この意味で、こ のモル比は、 0. 5〜5がより好ましぐより好ましくは 0. 8〜3であり、さらに好ましくは、 ;!〜 2である。
[0085] 本発明においては、 1時間あたり 1トン以上の芳香族ポリカーボネートを連続的に製 造するのである力 そのためには 1時間あたり約 0. 85トン以上の高純度ジフエ二ルカ ーボネートを連続的に製造する必要がある。
[0086] したがって、工程 (II)において、連続的に供給されるフエノールの最低量は、製造 すべき芳香族ポリカーボネートの量(Pトン/ hr)に対して、通常 15Pトン/ hrであり、 好ましくは、 13Pトン/ hr、より好ましくは 10Pトン/ hrである。さらに好ましい場合は、 8Pトン/ hrよりも少なくできる。
[0087] なお、工程(II)において原料として用いられるジアルキルカーボネートとフエノール は、それぞれ純度の高いものであってもいいが、他の化合物を含むものであってもよ ぐ例えば、第 1連続多段蒸留塔および/または第 2連続多段蒸留塔で生成する化 合物や反応副生物を含むものであってもよい。工業的に実施する場合、これらの原 料として、新規に反応系に導入されるジアルキルカーボネートとフエノールに加え、第 1連続多段蒸留塔および/または第 2連続多段蒸留塔から回収されたものをも使用 することが好ましい。本発明の方法では、第 2連続多段蒸留塔での低沸点反応混合 物である塔頂成分が第 1連続多段蒸留塔に供給される。この場合、第 2塔低沸点反 応混合物はそのままで第 1連続多段蒸留塔に供給してもよいし、成分の一部を分離 した後に供給してもよい。
[0088] したがって、工業的に実施する本発明においては、第 1連続多段蒸留塔に供給さ れる原料中には、アルコール類、アルキルフエニルカーボネート、ジフエニルカーボ ネート、アルキルフエニルエーテルなどが含まれているものが好ましぐさらには生成 物であるアルキルフエニルカーボネートゃジフエニルカーボネートのフリース転移生 成物やその誘導体などの高沸点副生物を少量含むものであっても好ましく用いられ る。本発明において例えば、ジアルキルカーボネートとしてジメチルカーボネートを、 フエノールとして非置換フエノールを原料にして、メチルフエニルカーボネートおよび ジフエニルカーボネートを製造する場合、その原料中に反応生成物であるメチルァ ノレコーノレや、メチノレフエ二ノレカーボネートおよびジフエ二ノレカーボネートを含んでいる こと力 S好ましく、さらには反応副生物であるァニソールゃサリチル酸フエニル、サリチ ル酸メチルゃこれらから誘導される高沸点副生物を少量含んでレ、てもよレ、。
[0089] さらに、工程 (II)で使用されるフエノールの大部分は、本発明の工程 (IV)で副生す るフエノールから成っている。この副生フエノールは工程 (V)によって、工程(II)に循 環されることが必要である。
[0090] 工程(II)において製造されるジフエニルカーボネートは、ジアルキルカーボネートと フエノールとのエステル交換反応によって得られる力 S、このエステル交換反応には、 ジアルキルカーボネートの 1つまたは 2つのアルコキシ基がフエノールのフエノキシ基 と交換されアルコール類を離脱する反応と、生成したアルキルフエニルカーボネート 2分子間のエステル交換反応である不均化反応によってジフエ二ルカーボネートとジ アルキルカーボネートに変換される反応が含まれている。工程 (II)の第 1連続多段蒸 留塔においては、主としてアルキルフエニルカーボネートが得られ、第 2連続多段蒸 留塔においては、主としてこのアルキルフエニルカーボネートの不均化反応よつて、 ジフエニルカーボネートとジアルキルカーボネートが得られる。工程 (II)で得られたジ フエニルカーボネートは、ハロゲンを全く含まないため、本発明の芳香族ポリカーボネ ートを工業的に製造するときの原料として重要である。なぜならば、重合原料中にハ ロゲンがたとえば lppmよりも少ない量であっても存在しておれば、重合反応を阻害 するし、芳香族ポリカーボネートの安定製造を阻害するし、しかも生成した芳香族ポリ カーボネートの物性低下や、着色の原因となるからである。
工程 (II)の第 1連続多段蒸留塔および/または第 2連続多段蒸留塔で使用される 触媒としては、例えば下記の化合物から選択される:
<鉛化合物〉 PbO、 PbO、 Pb O等の酸化鉛類; PbS、 Pb S等の硫化鉛類; Pb (
2 3 4 2
OH) 、 Pb O (OH)等の水酸化鉛類; Na PbO、 K PbO、 NaHPbO、 KHPbO 等の亜ナマリ酸塩類; Na PbO、 Na H PbO、 K PbO、 K [Pb (OH) ]、 K PbO、
2 3 2 2 4 2 3 2 6 4 4
Ca PbO、 CaPbO等の鉛酸塩類; PbCO、 2PbCO -Pb (OH)等の鉛の炭酸塩及
2 4 3 3 3 2
びその塩基性塩類; Pb (OCOCH ) 、Pb (OCOCH ) 、Pb (OCOCH ) -PbO - 3H
3 2 3 4 3 2
O等の有機酸の鉛塩及びその炭酸塩や塩基性塩類; Bu Pb、 Ph Pb、 Bu PbCl、 P
2 4 4 3 h PbBr、 Ph Pb (又は Ph Pb ) , Bu PbOH、 Ph PbO等の有機鉛化合物類(Butt
3 3 6 2 3 3
ブチル基、 Phはフエ二ル基を示す。); Pb (OCH ) 、 (CH O) Pb (OPh)、 Pb (OPh
3 2 3
)等のアルコキシ鉛類、ァリールォキシ鉛類; Pb— Na、 Pb— Ca、 Pb— Ba、 Pb— Sn 、 Pb— Sb等の鉛の合金類;ホウェン鉱、センァェン鉱等の鉛鉱物類、及びこれらの 鉛化合物の水和物;
<銅族金属の化合物〉 CuCl、 CuCl、 CuBr、 CuBr、 Cul、 Cul、 Cu (OAc) 、 Cu (acac) 、ォレイン酸銅、 Bu Cu、 (CH O) Cu、 AgNO、 AgBr、ピクリン酸銀、 A
2 2 3 2 3
gC H CIO、 [AuC≡C-C (CH ) ]n、 [C (C H ) CI] 4等の銅族金属の塩及び錯
6 6 4 3 3 7 8
体(acacはァセチルアセトンキレート配位子を表す。 );
<アルカリ金属の錯体〉 Li (acac)、 LiN (C H )等のアルカリ金属の錯体;
4 9 2
<亜鉛の錯体〉 Zn (acac)等の亜鉛の錯体;
くカドミウムの錯体 > Cd (acac) 等のカドミウムの錯体;
<鉄族金属の化合物〉 Fe (C H ) (CO) 、 Fe (CO) 、 Fe (C H ) (CO) 、 Co (メ
Figure imgf000039_0001
、 暴 ^鍵 ω (ra
3) α¾ (rao) q¾ ^W f^i^l 講 ¾I镍纏 <5T^、 ^ 、 ¾ ΚΠ)¾Ι 600]
Figure imgf000039_0002
¾ ^ ¾¾^¾ ^ /ェ
# (¾JO)9d、 (HO)9d、 (¾JO)us ng、〇us 、 (¾jO
)us
Figure imgf000039_0003
、(¾JO)LL£(09l/V) '(¾0)ΐ (09M)、£(qdO)LL(09 w) ' (9MO) Ϊ 'ΐθΐ ! z (¾o) d、z(HO)qd、oqd 、¾ 翁 ¾、 军
Figure imgf000039_0004
°、 0) ^ $ £¾¾|^ ( ¾¾^ 佛
c-7v¾-^¾、 、 Τ¾ ^θ) ^ ^ ¾¾4— ^— ^^^ 、114—
^^ f^—^^ S— ^-^^^^Z、¾ /— 、¾ /— c: /
¾
Figure imgf000039_0005
[ OO] °、 m ^^m^mm ^ mi^ 、 翁 ¾ ^圉
• i ^^ ^i|j^O)# (HO) OUS 、 IOUS ng、〇us ( H O)、〇us 、H〇us ^d、H〇us ( H )、 ( HOO) us d、Z(¾JO)us 、 ( H 〇)us 、 ( HOO)us'ng、¾j〇us ( H O) 'H
ε z zz \\ z z z z z z z
OUS ¾J H O O)us ( H O O)us HOOOO^S ^d HO
OOOus' g、 H OOOOUS ( U D) ^HOOOOUS ( HO)く呦^ 憲 >
Figure imgf000039_0006
^)'xus 'x9d XUZ ΧΛ、£XOA 'χΐ ''xi 、XIVく呦^ ¾ ^ / >
:ま 爭0)マ
Figure imgf000039_0007
>
Ψ爾 急ぺ^ a ON H — -ΐΝ、 (OD) d OOO、 (¾J ¾d) { Λ^
Tl6l.0/.00Zdf/X3d ζε 17.8S90/800Z OAV り、塔頂部またはそれに近い塔の上部に内径 d (cm)のガス抜出し口、塔底部また
11
はそれに近い塔の下部に内径 d (cm)の液抜出し口、該ガス抜出し口より下部であ
12
つて塔の上部および/または中間部に 1つ以上の第 3の導入口、該液抜出し口より 上部であって塔の中間部および/または下部に 1つ以上の第 4の導入口を有するも のであって、 L、 D、 L /D、 n、 D /d 、 D /d 力 それぞれ式(7)〜(; 12)を満
1 1 1 1 1 1 11 1 12
足するものであることが必要である。
1500 < L < 8000 式 (7)
1
100 < D < 2000 式 (8)
1
2 < ZD ≤ 40 式 (9)
1 L
20 < n < 120 式(10)
1
5 < D /d ≤ 30 式(11)
1 1 1
3 < D /d ≤ 20 式(12)
また、工程 (II)において用いられる第 2連続多段蒸留塔とは、長さし (cm) ,内径 D (cm)の円筒形の胴部を有し、内部に段数 nをもつインターナルを有する構造をして おり、塔頂部またはそれに近い塔の上部に内径 d (cm)のガス抜出し口、塔底部ま
21
たはそれに近い塔の下部に内径 d (cm)の液抜出し口、該ガス抜出し口より下部で
22
あって塔の上部および/または中間部に 1つ以上の第 5の導入口、該液抜出し口よ り上部であって塔の中間部および/または下部に 1つ以上の第 6の導入口を有する ものであって、 L、 D、 L /D、 n、 D /d 、 D /d 力 S、それぞれ式(13)〜(; 18)
2 2 2 2 2 2 21 2 22
を満足するものであることが必要である。
1500 < L ≤ 8000 式(13)
2
100 < D ≤ 2000 式(14)
2
2 < ,D ≤ 40 式(15)
2 2
10 < n ≤ 80 式(16)
2
2 < D , Zd ≤ 15 式(17)
2 21
5 < D , Zd ≤ 30 式(18)
2 22
式(7)〜(; 18)の全てを同時に満足する第 1連続多段蒸留塔および第 2連続多段 蒸留塔を用いることによって、ジアルキルカーボネートとフエノールとから、ジフエニル カーボネートを 1時間あたり約 0. 85トン以上、好ましくは 1トン以上の工業的規模で、 高選択率 ·高生産性で、例えば 2000時間以上、好ましくは 3000時間以上、さらに 好ましくは 5000時間以上の長期間、安定的に製造できることが見出されたのである 。本発明の方法を実施することによって、このような優れた効果を有する工業的規模 でのジフエ二ルカーボネートの製造が可能になった理由は明らかではないが、式(7) 〜(18)の条件が組み合わさった時にもたらされる複合効果のためであると推定され る。なお、工程 (II)で用いる連続多段蒸留塔を構成する各々の要因の好ましい範囲 は下記に示される。
[0097] L (cm)および L (cm)がそれぞれ 1500より小さいと、反応率が低下するため目的
1 2
とする生産量を達成できないし、 目的の生産量を達成できる反応率を確保しつつ設 備費を低下させるには、 Lおよび Lをそれぞれ 8000以下にすることが必要である。
1 2
より好ましい L (cm)および L (cm)の範囲は、それぞれ、 2000≤L ≤6000 およ
1 2 1
び 2000≤L≤6000 であり、さらに好ましくは、 2500≤L≤5000 および 2500≤
2 1
L≤5000 である。
[0098] D (cm)および D (cm)がそれぞれ 100よりも小さいと、 目的とする生産量を達成で
I 2
きないし、 目的の生産量を達成しつつ設備費を低下させるには、 Dおよび Dをそれ
1 2 ぞれ 2000以下にすることが必要である。より好ましい D (cm)および D (cm)の範囲
1 2
は、それぞれ 150≤D≤1000 および 150≤D≤1000 であり、さらに好ましくは
1 2
、それぞれ 200≤D≤800 および 200≤D≤800である。
1 2
[0099] なお、第 1連続多段蒸留塔および第 2連続多段蒸留塔において、 Dおよび D が
1 2 上記の範囲にある限り、塔の上部から下部までそれぞれ同じ内径であってもよいし、 部分的に内径が異なっていてもよい。例えば、これらの連続多段蒸留塔において、 塔上部の内径が塔下部の内径よりも小さくてもよいし、大きくてもよい。
[0100] L /D および L /D がそれぞれ 2より小さい時や 40より大きい時は安定運転
I I 2 2
が困難となり、特に 40より大きいと塔の上下における圧力差が大きくなりすぎるため、 長期安定運転が困難となるだけでなぐ塔下部での温度を高くしなければならないた め、副反応が起こりやすくなり選択率の低下をもたらす。より好ましい L /Ό および
1 1
L /Ό の範囲はそれぞれ、 3≤L /Ό≤30 および 3≤L /Ό≤30 であり、さら に好ましくは、 5≤L /Ό ≤15 および 5≤L /D ≤ 15である。
1 1 2 2
[0101] nが 20より小さ!/、と反応率が低下するため第 1連続多段蒸留塔での目的とする生
1
産量を達成できないし、 目的の生産量を達成できる反応率を確保しつつ設備費を低 下させるには、 nを 120よりも小さくすることが必要である。さらに nが 120よりも大きい
1 1
と塔の上下における圧力差が大きくなりすぎるため、第 1連続多段蒸留塔の長期安 定運転が困難となるだけでなぐ塔下部での温度を高くしなければならないため、畐 IJ 反応が起こりやすくなり選択率の低下をもたらす。より好ましい nの範囲は、 30≤n
1 1
≤100 であり、さらに好ましくは、 40≤n ≤90 である。
1
[0102] また、 n力 Oより小さいと反応率が低下するため第 2連続多段蒸留塔での目的とす る生産量を達成できないし、 目的の生産量を達成できる反応率を確保しつつ設備費 を低下させるには、 nを 80以下にすることが必要である。さらに n力 0よりも大きいと 塔の上下における圧力差が大きくなりすぎるため、第 2連続多段蒸留塔の長期安定 運転が困難となるだけでなぐ塔下部での温度を高くしなければならないため、副反 応が起こりやすくなり選択率の低下をもたらす。より好ましい nの範囲は、 15≤n ≤6 0 であり、さらに好ましくは、 20≤n ≤50 である。
[0103] D /ά 力 ¾より小さいと第 1連続多段蒸留塔の設備費が高くなるだけでなく大量の
1 11
ガス成分が系外に出やすくなるため、第 1連続多段蒸留塔の安定運転が困難になり
、 30よりも大きいとガス成分の抜出し量が相対的に小さくなり、安定運転が困難にな るだけでなぐ反応率の低下をもたらす。より好ましい D /ά の範囲は、 8≤D /ά
1 11 1 1
≤25 であり、さらに好ましくは、 10≤D /d ≤20 である。また、 D /d 力 ¾より
1 1 11 2 21 小さいと第 2連続多段蒸留塔の設備費が高くなるだけでなく大量のガス成分が系外 に出やすくなるため、第 2連続多段蒸留塔の安定運転が困難になり、 15よりも大きい とガス成分の抜出し量が相対的に小さくなり、安定運転が困難になるだけでなぐ反 応率の低下をもたらす。より好ましい D /d の範囲は、 5≤D /d ≤12 であり、
2 21 2 21
さらに好ましくは、 3≤D /d ≤10 である。
2 21
[0104] D /ά 力 ¾より小さいと第 1連続多段蒸留塔の設備費が高くなるだけでなく液抜出
1 12
し量が相対的に多くなり、第 1連続多段蒸留塔の安定運転が困難になり、 20よりも大 きレ、と液抜出し口や配管での流速が急激に速くなりエロ-ジョンを起こしやすくなり装 置の腐食をもたらす。より好ましい D /ά の範囲は、 5≤D /ά ≤18 であり、さら
1 12 1 12
に好ましくは、 7≤D /d ≤15 である。また、 D /d 力 ¾より小さいと第 2連続多段
1 12 2 22
蒸留塔の設備費が高くなるだけでなく液抜出し量が相対的に多くなり、第 2連続多段 蒸留塔の安定運転が困難になり、 30よりも大きいと液抜出し口や配管での流速が急 激に速くなりエロ-ジョンを起こしやすくなり装置の腐食をもたらす。より好ましい D /d の範囲は、 7≤D /d ≤25 であり、さらに好ましくは、 9≤D /d ≤20 である。
22 2 22 2 22
[0105] さらに工程(II)では、該 d と該 d が式(34)を満足し、且つ該 d と該 d が式(35)
11 12 21 22
を満足する場合、さらに好ましいことがわ力 た。
l≤d /d ≤5 式(34)
12 11
l≤d /ά ≤6 式(35)
21 22
工程 (II)でいう長期安定運転とは、 1000時間以上、好ましくは 3000時間以上、さ らに好ましくは 5000時間以上、フラッデイングや、配管のつまりやエロージョンなどが なぐ運転条件に基づいた定常状態で運転が継続でき、高選択率を維持しながら、 所定量のジフエ二ルカーボネートが製造されていることを意味する。
[0106] 工程 (II)では、 1時間あたり好ましくは 1トン以上の高生産性でジフエニルカーボネ 一トを高選択率で長期間安定的に生産することを特徴としているが、より好ましくは 1 時間あたり 2トン以上、さらに好ましくは 1時間あたり 3トン以上のジフエニルカーボネ ートを生産することにある。また、工程 (II)では、第 1連続多段蒸留塔の L、 D、 L /
1 1 1
D、n、D /d 、D /d カそれぞれ、 2000≤L ≤6000、 150≤D ≤1000 ,
1 1 1 11 1 12 1 1
3≤L /Ό ≤30, 30≤n ≤100, 8≤D /ά ≤25、 5≤D /ά ≤18であって
1 1 1 1 11 1 12
、第 2連続多段蒸留塔の L、 D、 L /D、 n、 D /d 、 D /d がそれぞれ、 2000
2 2 2 2 2 2 21 2 22
≤L ≤6000, 150≤D ≤1000, 3≤L /Ό ≤30, 15≤η ≤60, 2. 5≤D /ά ≤12, 7≤D /d ≤25の場合は、 1時間あたり 2トン以上、好ましくは 1時間あ
21 2 22
たり 2. 5トン以上、さらに好ましくは 1時間あたり 3トン以上のジフエ二ルカーボネートを 製造することを特徴とするものである。
[0107] さらに、工程 (II)では、第 1連続多段蒸留塔の L、 D、 L /D、 n、 D /d 、 D /d
1 1 1 1 1 1 11 1 カそれぞれ、 2500≤L ≤5000、 200≤D ≤800、 5≤L /D ≤1 5、 40≤
12 1 1 1 1
n ≤90, 10≤D /d ≤25, 7≤D /d ≤ 15であって、第 2連続多段蒸留塔の し2、 D2、 L2/D2、 n2、 D2/d2i、 D2/d22 カそれぞれ、 2500≤し2≤ 5000、 200≤D ≤800, 5≤L /D≤10, 20≤n≤50, 3≤D /d ≤10, 9≤D /d ≤2
2 2 2 2 2 21 2 22
0の場合は、 1時間あたり 3トン以上、好ましくは 1時間あたり 3· 5トン以上、さらに好ま しくは 1時間あたり 4トン以上のジフエニルカーボネートを製造することを特徴とするも のである。
[0108] 工程(II)でいぅジフエニルカーボネートの選択率とは、反応したフエノールに対する ものであって、工程 (II)では通常 95%以上の高選択率であり、好ましくは 97%以上 、さらに好ましくは 98%以上の高選択率を達成することができる。工程 (II)で用いら れる第 1連続多段蒸留塔および第 2連続多段蒸留塔は、インターナルとしてトレイお よび/または充填物を有する蒸留塔であることが好ましい。本発明でいうインターナ ルとは、蒸留塔において実際に気液の接触を行わせる部分のことを意味する。このよ うなトレイとしては、工程 (I)の項に記載のものが好ましい。また、「インターナルの段 数」とは、前記のとおりである。
[0109] 工程 (II)の第 1連続多段蒸留塔においては、主としてジアルキルカーボネートとフ ェノールからアルキルフエ二ルカーボネートを生成させる反応が行われる力 S、この反 応は平衡定数が極端に小さぐし力、も反応速度が遅いので、反応蒸留に用いる第 1 連続多段蒸留塔としては、インターナルカ^レイである棚段式蒸留塔がより好ましレ、こ とが見出された。また、第 2連続多段蒸留塔においては主として、該アルキルフエ二 ルカーボネートを不均化させる反応が行われるが、この反応も平衡定数が小さぐし かも反応速度が遅い。し力、しながら、反応蒸留に用いる第 2連続多段蒸留塔としては 、インターナルが充填物およびトレイの両方を有する蒸留塔がより好ましいことが見出 された。さらに第 2連続多段蒸留塔としては、上部に充填物、下部にトレィを設置した ものが好ましいことも見出された。第 2連続多段蒸留塔の該充填物は規則充填物が 好ましぐ規則充填物のなかでもメラパックが特に好ましいことも見出された。
[0110] さらに第 1連続多段蒸留塔および第 2連続多段蒸留塔にそれぞれ設置される該トレ ィが多孔板部とダウンカマー部を有する多孔板トレイが機能と設備費との関係で特に 優れていることが見出された。 そして、該多孔板トレイが該多孔板部の面積 lm2あた り 100〜; 1000個の孔を有して!/、ることが好まし!/、ことも見出された。より好まし!/、孔数 は該面積 lm¾?たり 120〜900固で り、さらに好ましくは、 150〜800固で る。
[0111] また、該多孔板トレイの孔 1個あたりの断面積が 0. 5〜5cm2であることが好ましいこ とも見出された。より好ましい孔 1個あたりの断面積は、 0. 7〜4cm2であり、さらに好 ましくは 0. 9〜3cm2である。さらには、該多孔板トレイが該多孔板部の面積 lm2あた り 100〜; 1000個の孔を有しており、且つ、孔 1個あたりの断面積が 0. 5〜5cm2であ る場合、特に好ましいことが見出された。連続多段蒸留塔に上記の条件を付加する ことによって、本発明の課題が、より容易に達成されることが判明したのである。
[0112] 工程 (II)を実施する場合、原料であるジアルキルカーボネートとフエノールとを触媒 が存在する第 1連続多段蒸留塔内に連続的に供給し、該第 1塔内で反応と蒸留を同 時に行い、生成するアルコール類を含む第 1塔低沸点反応混合物を該第 1塔上部よ りガス状で連続的に抜出し、生成するアルキルフエニルカーボネート類を含む第 1塔 高沸点反応混合物を該第 1塔下部より液状で連続的に抜出し、該第 1塔高沸点反応 混合物を触媒が存在する第 2連続多段蒸留塔内に連続的に供給し、該第 2塔内で 反応と蒸留を同時に行い、生成するジアルキルカーボネート類を含む第 2塔低沸点 反応混合物を該第 2塔上部よりガス状で連続的に抜出し、生成するジフエ二ルカ一 ボネート類を含む第 2塔高沸点反応混合物を該第 2塔下部より液状で連続的に抜出 し、一方、ジアルキルカーボネート類を含む第 2塔低沸点反応混合物を第 1連続多 段蒸留塔内に連続的に供給することによって、ジフエニルカーボネートが連続的に製 造される。
[0113] この原料中には、反応生成物であるアルコール類、アルキルフエニルカーボネート 、ジフヱニルカーボネートやアルキルフエニルエーテルや高沸点化合物などの反応 副生物が含まれて!/、ても!/、レ、ことは前述のとおりである。他の工程での分離'精製に かかる設備、費用のことを考慮すれば、実際に工業的に実施する本発明の場合は、 これらの化合物を少量含んでレ、ることが好ましレ、。
[0114] 工程 (II)において、原料であるジアルキルカーボネートとフエノールを第 1連続多段 蒸留塔内に連続的に供給するには、該第 1蒸留塔の上部のガス抜出し口よりも下部 であるが塔の上部または中間部に設置された 1箇所または数箇所の導入口から、液 状および/またはガス状で供給してもよ!/、し、フエノールを多く含む原料を該第 1蒸 留塔の上部の導入口から液状で供給し、ジアルキルカーボネートを多く含む原料を 該第 1蒸留塔の下部の液抜出し口よりも上部であって塔の下部に設置された導入口 力、らガス状で供給することも好ましい方法である。
[0115] また、工程 (II)においては、第 1連続多段蒸留塔下部より連続的に抜き出されるァ ルキルフエ二ルカーボネート類を含む第 1塔高沸点反応混合物が第 2連続多段蒸留 塔に連続的に供給されるが、その供給位置は第 2蒸留塔の上部のガス抜出し口より も下部であるが塔の上部または中間部に設置された 1箇所または数箇所の導入口か ら、液状および/またはガス状で供給することが好ましい。また、本発明の好ましい実 施態様である上部に充填物部、下部にトレィ部を有する蒸留塔を用いる場合、導入 口の少なくとも 1箇所は充填物部とトレイ部との間に設置されることが好ましい。また、 充填物が 2基以上の複数の規則充填物からなっている場合は、これらの複数の規則 充填物を構成する間隔に導入口を設置することも好ましレ、方法である。
[0116] また、工程 (II)において第 1連続多段蒸留塔および第 2連続多段蒸留塔の塔頂ガ ス抜き出し成分をそれぞれ凝縮した後、その一部をそれぞれの蒸留塔上部にもどす 還流操作を実施することも好ましい方法である。この場合、第 1連続多段蒸留塔の還 流比は 0〜; 10、であり、第 2連続多段蒸留塔の還流比は 0. 01〜; 10の範囲、好ましく は 0. 08〜5、さらに好ましくは、 0. 1から 2の範囲である。第 1連続多段蒸留塔では 還流操作をしなレ、還流比 0も好まし!/、実施態様である。
[0117] 工程 (II)において、第 1連続多段蒸留塔内に触媒を存在させる方法はどのようなも のであってもよいが、触媒が反応液に不溶解性の固体状の場合は、第 1連続多段蒸 留塔内の段に設置する方法や、充填物状にして設置する方法などによって塔内に固 定させることが好ましい。また、原料や反応液に溶解する触媒の場合は、該第 1蒸留 塔の中間部より上部の位置力 蒸留塔内に供給することが好ましい。この場合、原料 または反応液に溶解させた触媒液を原料と一緒に導入してもよレ、し、原料とは別の 導入口からこの触媒液を導入してもよい。本発明の第 1連続多段蒸留塔で用いる触 媒の量は、使用する触媒の種類、原料の種類やその量比、反応温度並びに反応圧 力などの反応条件の違いによっても異なるが、原料の合計質量に対する割合で表し て、通常 0. 000;!〜 30質量0 /0、好まし <は 0. 0005〜; 10質量0 /0、より好まし <は 0. 0 0;!〜 1質量%で使用される。
[0118] また、工程 (II)において、第 2連続多段蒸留塔内に触媒を存在させる方法はどのよ うなものであってもよいが、触媒が反応液に不溶解性の固体状の場合は、第 2連続 多段蒸留塔内の段に設置する方法や、充填物状にして設置する方法などによって 塔内に固定させることが好ましい。また、原料や反応液に溶解する触媒の場合は、該 第 2蒸留塔の中間部より上部の位置力 蒸留塔内に供給することが好ましい。この場 合、原料または反応液に溶解させた触媒液を原料と一緒に導入してもよいし、原料と は別の導入口からこの触媒液を導入してもよい。本発明の第 2連続多段蒸留塔で用 いる触媒の量は、使用する触媒の種類、原料の種類やその量比、反応温度並びに 反応圧力などの反応条件の違いによっても異なるが、原料の合計質量に対する割合 で表して、通常 0. 000;!〜 30質量0 /0、好まし <は 0. 0005〜; 10質量0 /0、より好まし < は 0. 00;!〜 1質量%で使用される。
[0119] 工程 (II)においては、第 1連続多段蒸留塔で用いる触媒と第 2連続多段蒸留塔で 用いる触媒は、同じ種類のものであってもよいし、異なる種類のものであってもよいが 、好ましくは、同じ種類の触媒を用いることである。さらに好ましいのは、同じ種類であ つて、両方の反応液に溶解することのできる触媒である。この場合、触媒は通常第 1 連続多段蒸留塔の高沸点反応混合物中に溶解した状態で、アルキルフエ二ルカ一 ボネート等とともに該第 1蒸留塔の下部から抜き出され、そのまま第 2連続多段蒸留 塔に供給されるので、好ましい実施態様である。なお、必要に応じて第 2連続多段蒸 留塔に新たに触媒を追加することも可能である。
[0120] 工程 (II)で行われるエステル交換反応の反応時間は第 1連続多段蒸留塔内およ び第 2連続多段蒸留塔内でのそれぞれの反応液の平均滞留時間に相当すると考え られるが、これはそれぞれの該蒸留塔のインターナルの形状や段数、原料供給量、 触媒の種類や量、反応条件などによって異なるが、第 1連続多段蒸留塔内および第 2連続多段蒸留塔内のそれぞれにおいて、通常 0. 01〜; 10時間、好ましくは 0. 05 〜5時間、より好ましくは 0.;!〜 3時間である。
[0121] 第 1連続多段蒸留塔の反応温度は、用いる原料化合物の種類や触媒の種類や量 によって異なるが、通常 100〜350°Cの範囲である。反応速度を高めるためには反 応温度を高くすることが好ましいが、反応温度が高いと副反応も起こりやすくなり、例 えばアルキルフエニルエーテルなどの副生が増えるので好ましくない。このような意 味で、第 1連続多段蒸留塔での好ましい反応温度は 130〜280°C、より好ましくは 15 0〜260。C、さらに好ましくは、 180〜250。Cの範囲である。
[0122] 第 2連続多段蒸留塔の反応温度は、用いる原料化合物の種類や触媒の種類や量 によって異なるが、通常 100〜350°Cの範囲である。反応速度を高めるためには反 応温度を高くすることが好ましいが、反応温度が高いと副反応も起こりやすくなり、例 えばアルキルフエニルエーテルや、原料や生成物であるアルキルフエニルカーボネ 一トゃジフエニルカーボネートのフリース転移反応生成物やその誘導体などの副生 が増えるので好ましくない。このような意味で、第 2連続多段蒸留塔での好ましい反 応温度は 130〜280。C、より好ましくは 150〜260。C、さらに好ましくは、 180—250 °Cの範囲である。
[0123] また、第 1連続多段蒸留塔の反応圧力は、用いる原料化合物の種類や組成、反応 温度などにより異なるが、第 1連続多段蒸留塔では減圧、常圧、加圧のいずれであつ てもよく、通常塔頂圧力が 0. ;!〜 2 X 107Pa、好ましくは、 105〜; 107Pa、より好ましく は 2 X 105〜5 X 106Paの範囲で行われる。
[0124] 第 2連続多段蒸留塔の反応圧力は、用いる原料化合物の種類や組成、反応温度 などにより異なる力 S、減圧、常圧、加圧のいずれであってもよぐ通常塔頂圧力が 0. 1 〜2 X 107Pa、好ましくは、 103〜; 106Pa、より好ましくは 5 X 103〜; 105Paの範囲で行 われる。
[0125] なお、工程 (II)における第 1連続多段蒸留塔として、 2基以上の蒸留塔を用いること もできる。この場合、 2基以上の蒸留塔を直列に連結することも、並列に連結すること も、さらに直列と並列を組み合わせて連結することも可能である。また、工程 (II)にお ける第 2連続多段蒸留塔として、 2基以上の蒸留塔を用いることもできる。この場合、 2 基以上の蒸留塔を直列に連結することも、並列に連結することも、さらに直列と並列 を組み合わせて連結することも可能である。
[0126] 工程 (II)で用いられる第 1連続多段蒸留塔および第 2連続多段蒸留塔を構成する 材料は、主に炭素鋼、ステンレススチールなどの金属材料である力 製造する芳香族 カーボネートの品質の面からは、ステンレススチーノレが好ましい。
[0127] 工程 (II)の第 2連続多段蒸留塔の塔下部より液状で連続的に抜出された第 2塔高 沸点反応混合物は、ジフエ二ルカーボネートが主成分である力 通常、未反応アル キルフエニルカーボネート、少量の未反応原料、少量の高沸点副生物等を含んでお り、均一系触媒を用いた場合は、この触媒成分も含まれている。したがって、第 2塔高 沸点反応混合物から、高純度ジフエニルカーボネートを取得するための精製工程 (II I)を実施することが必要である。
[0128] 工程 (III)では、 2基の蒸留塔 (高沸点物質分離塔 A、サイドカット抜き出し口を有す るジフエニルカーボネート精製塔 B)を用い、該高沸点物質分離塔 Aにおいて、未反 応アルキルフエニルカーボネート、少量の未反応原料、ジフエニルカーボネートを主 成分とする塔頂成分 (A )と、少量の高沸点副生物等および/または触媒成分を主
T
成分とする塔底成分 (A )とに連続的に分離するとともに、該高沸点物質分離塔の塔
B
頂成分 (A )をジフヱニルカーボネート精製塔 Bに連続的に供給し、該ジフヱ二ルカ
T
ーボネート精製塔 Bにおいて、塔頂成分 (B )、サイドカット成分 (B )、および塔底成
T S
分 (B )の 3つの成分に連続的に分離し、サイドカット成分 (B )として高純度ジフエ二
B S
ルカーボネートを取得する。
[0129] 工程 (III)において、該高沸点物質分離塔 Aは、下記式(19)〜(21)を満足する、 長さし (cm) ,内径 D (cm)で、内部に段数 nのインターナルを有する連続多段蒸
A A A
留塔であることが必要である。
800 ≤ L ≤ 3000 式(19)
A
100 ≤ D ≤ 1000 式(20)
A
20 ≤ n ≤ 100 式(21)
A
該ジフエニルカーボネート精製塔 Bは、下記式(22)〜(27)を満足する、長さし (c
B
m)、内径 D (cm)で、内部にインターナルを有するものであって、塔の中段に導入
B
口 Bl、該導入口 B1と塔底との間にサイドカット抜き出し口 B2を有し、導入口 B1から 上部のインターナルの段数が n 、導入口 B1とサイドカット抜き出し口 B2との間のィ
B1
ンターナルの段数が n 、サイドカット抜き出し口 B2から下部のインターナルの段数が
B2
n で、段数の合計 (n +n +n )が1 である連続多段蒸留塔であることが必要で ある。
1000 < L < 5000 式(22)
B
100 < D < 1000 式(23)
B
5 < n < 20 式(24)
Bl
12 < n < 40 式(25)
B2
3 < n < 15 式(26)
B3
20 < n < 70 式(27)
[0130] これらの条件の全てを同時に満足させることによって、均一系触媒の存在下にジァ ルキルカーボネートとフエノールを原料とするエステル交換反応(工程 II)で得られた ジフエニルカーボネートを含む第 2塔高沸点反応混合物から高純度ジフエ二ルカ一 ボネートを、 1時間あたり 1トン以上の工業的規模で、例えば 2000時間以上、好ましく は 3000時間以上、さらに好ましくは 5000時間以上の長期間、安定的に製造できる ことが見出されたのである。本発明の方法を実施することによって、このような優れた 効果を有する工業的規模での高純度ジフエ二ルカーボネートの製造が可能になった 理由は明らかではないが、式(19)〜(27)の条件を満足する高沸点物質分離塔 Aと 該ジフエニルカーボネート精製塔 Bが組み合わさった時にもたらされる効果であると 推定される。なお、各々の要因の好ましい範囲は下記に示される。
[0131] L (cm)が 800より小さいと、内部に設置できるインターナルの高さに制限ができる
A
ため分離効率が低下するため好ましくないし、 目的の分離効率を達成しつつ設備費 を低下させるには、 Lを 3000以下にすることが必要である。より好ましい L (cm)の
A A
範囲は、 1000≤L ≤2500 であり、さらに好ましくは、 1200≤L ≤2000 である。
A A
[0132] D (cm)が 100よりも小さいと、 目的とする生産量を達成できないし、 目的の生産量
A
を達成しつつ設備費を低下させるには、 Dを 1000以下にすることが必要である。よ
A
り好ましい D (cm)の範囲は、 200≤D ≤600 であり、さらに好ましくは、 250≤D
A A A
≤450 である。
[0133] nが 20より小さ!/、と分離効率が低下するため目的とする高純度を達成できな!/、し、
A
目的の分離効率を達成しつつ設備費を低下させるには、 nを 100以下にすることが
A
必要である。さらに n力 00よりも大きいと塔の上下における圧力差が大きくなりすぎ るため、高沸点物質分離塔 Aの長期安定運転が困難となるだけでなぐ塔下部での 温度を高くしなければならないため、副反応が起こりやすくなるので好ましくない。より 好ましい nの範囲は、 30≤n ≤70 であり、さらに好ましくは、 35≤n ≤60 である
A A A
[0134] L (cm)が 1000より小さいと、内部に設置できるインターナルの高さに制限ができ
B
るため分離効率が低下するため好ましくないし、 目的の分離効率を達成しつつ設備 費を低下させるには、 Lを 5000より小さくすることが必要である。より好ましい L (cm
B B
)の範囲は、 1500≤L ≤3000 であり、さらに好ましくは、 1700≤L ≤2500 であ
B B
o
[0135] D (cm)が 100よりも小さいと、 目的とする生産量を達成できないし、 目的の生産量
B
を達成しつつ設備費を低下させるには、 Dを 1000以下にすることが必要である。よ
B
り好ましい D (cm)の範囲は、 150≤D ≤500 であり、さらに好ましくは、 200≤D
B B B
≤400 である。
[0136] n力 0より小さいと塔全体としての分離効率が低下するため目的とする高純度を達
B
成できないし、 目的の分離効率を達成しつつ設備費を低下させるには、 nを 70以下
B
にすることが必要である。さらに nが 70よりも大きいと塔の上下における圧力差が大
B
きくなり、ジフエ二ルカーボネート精製塔 Bの長期安定運転が困難となるだけでなぐ 塔下部での温度を高くしなければならないため、副反応が起こりやすくなるので好ま しくない。より好ましい nの範囲は、 25≤n ≤55 であり、さらに好ましくは、 30≤n
B B B
≤50 である。さらに、 目的とする高純度のジフエ二ルカーボネートを長時間安定的 に得るためには、 n 、 n 、 n がそれぞれ、 5≤n ≤20, 12≤n ≤40, 3≤n
Bl B2 B3 Bl B2 B3
≤15 の範囲にあることが必要であることが判明した。より好ましい範囲は、 7≤n
Bl
≤15、 12≤n ≤30、 3≤n ≤10 である。
B2 B3
[0137] なお、本発明を実施する際、該高沸点物質分離塔 Aが、塔底温度 (T ) 185〜280
A
°C、塔頂圧力(P ) 1000〜20000Paで操作され、該ジフエニルカーボネート精製塔
A
Bが、塔底温度(T ) 185〜280°C、塔頂圧力(P ) 1000〜20000Paで操作されるこ
B B
とが好ましい。
[0138] T力 85度よりも低いと塔頂圧力をより低くしなければならないため高真空を保持 する設備にしなければならないし、また設備が大きくなるので好ましくなぐ 280°Cより 高くすると蒸留時に高沸点副生物が生成するので好ましくない。より好ましい Tは 19
A
0〜240。C、であり、さらに好ましくは 195〜230。Cの範囲である。
[0139] P力 OOOPaよりも低いと高真空を保持できる大きな設備となり好ましくなぐ 2000
A
OPaより高いと蒸留温度が高くなり副生物が増加するので好ましくない。より好ましい Pは 2000〜; 15000Paであり、さらに好ましくは 3000〜; 13000Paの範囲である。
A
[0140] T力 85度よりも低いと塔頂圧力をより低くしなければならないため高真空を保持
B
する設備にしなければならないし、また設備が大きくなるので好ましくなぐ 280°Cより 高くすると蒸留時に高沸点副生物が生成するので好ましくない。より好ましい Tは 19
B
0〜240。C、であり、さらに好ましくは 195〜230。Cの範囲である。
[0141] Pが lOOOPaよりも低いと高真空を保持できる大きな設備となり好ましくなぐ 2000
B
OPaより高いと蒸留温度が高くなり副生物が増加するので好ましくない。より好ましい Pは 2000〜; 15000Paであり、さらに好ましくは 3000〜; 13000Paの範囲である。
B
[0142] なお、高沸点物質分離塔 Aとジフエニルカーボネート精製塔 Bにおいて、 Dおよび
A
D が上記の範囲にある限り、塔の上部から下部までそれぞれ同じ内径であってもよ
B
いし、部分的に内径が異なっていてもよい。例えば、これらの連続多段蒸留塔におい て、塔上部の内径が塔下部の内径よりも小さくてもよいし、大きくてもよい。
[0143] 工程 (III)で用いる高沸点物質分離塔 Aとジフエニルカーボネート精製塔 Bは、それ ぞれインターナルとしてトレイおよび/または充填物を有する蒸留塔である。本発明 でレ、うインターナルとは、蒸留塔にぉレ、て実際に気液の接触を行わせる部分のことを 意味する。このようなトレイとしては、工程 (I)の項に記載のものが好ましい。また、「ィ ンターナルの段数」とは、前記のとおりである。
[0144] 工程 (III)の高沸点物質分離塔 Aはインターナルとして充填物を有するものが好ま しぐさらに充填物として規則充填物が好ましいことも判明した。また、ジフエ二ルカ一 ボネート精製塔 Bはインターナルとして充填物であることが好ましぐさらに 1基または 2基以上の規則充填物が好ましいことが見出された。
[0145] 工程 (II)の第 2反応蒸留塔の塔底から連続的に抜出される高沸点反応混合物に は、通常、ジアルキルカーボネートが、 0. 05〜2質量0 /0、フエノールが 1〜20質量0 /0 、アルキルフエニルエーテルが 0. 05〜2質量%、アルキルフエニルカーボネートが 1 0〜45質量%、ジフエニルカーボネートが 50〜80質量%、高沸点副生物が 0. ;!〜 5 質量%、触媒が 0. 00;!〜 5質量%含まれているので、この連続的に抜出された塔底 液を、そのまま工程 (III)の高沸点分離塔 Aに連続的に供給することが好ましい。
[0146] 該反応混合物の組成は、ジアルキルカーボネートとフエノールとのエステル交換反 応の条件、触媒の種類と量等によって変化する力 一定の条件下でエステル交換反 応が行われる限り、ほぼ一定の組成の反応混合物が製造できるので、高沸点物質分 離塔 Aに供給される反応混合物の組成はほぼ一定である。しかしながら、工程 (III) においては、反応混合物の組成が上記の範囲内であれば、それが変動しても、ほぼ 同様の分離効率で分離できる。このことは本発明の工程 (III)の特徴の 1つである。
[0147] 工程 (III)にお!/、て、工程 (II)の第 2反応蒸留塔の塔底液を高沸点物質分離塔 A 内に連続的に供給するには、該分離塔 Aの中間部より下部に設置された 1箇所また は数箇所の導入口から、液状で供給してもよいし、該分離塔 Aのリボイラーの下部に 設けた配管からリボイラーを経て塔内に供給することも好ましい方法である。高沸点 物質分離塔 Aに供給される第 2反応蒸留塔の塔底液の量は、製造すべき高純度ジ フエニルカーボネートの生産量、該反応混合物中のジフエニルカーボネートの濃度、 該分離塔 Aの分離条件等によって変化する力 S、通常約 2トン /hr以上、好ましくは約 6トン/ hr以上、さらに好ましくは約 10トン/ hr以上である。
[0148] 高沸点物質分離塔 Aに連続的に供給された第 2反応蒸留塔の高沸点反応混合物 は、ジフエニルカーボネートの大部分と未反応原料、アルキルフエニルエーテル、ァ ノレキルフエニルカーボネート等のジフエニルカーボネートよりも沸点の低い化合物の 大部分からなる塔頂成分 (A )と、少量のジフエ二ルカーボネートと触媒と高沸点副
T
生物とを含む塔底成分 (A )に分離される。塔底成分 (A )中には少量のアルキルフ
B B
ェニルカーボネートが含まれていてもよい。塔底成分中のこれらの有機物は触媒成 分を溶解させ液状に保つのに役立っている。この塔底成分 (A )の、全量または一部
B
はエステル交換反応の触媒成分として、通常そのままで工程 (II)の第 1反応蒸留塔 および/または第 2反応蒸留塔に循環再使用されるが、場合によっては触媒回収ェ 程で有機物と分離した後、触媒として再生され、循環再使用される。 [0149] 工程(III)にお!/、ては、サリチル酸フエニル、キサントン、メトキシ安息香酸フエニル、 1—フエノキシカルボニル 2—フエノキシカルボキシ一フエ二レン等のジフエ二ルカ ーボネートより高沸点の副生物と触媒成分は、この高沸点物質分離塔 Aで、ほぼ完 全に塔底成分 (A )として分離され、塔頂成分 (A )中の含有量を通常 200ppm以下
B T
、好ましくは lOOppm以下、より好ましくは 50ppm以下にすることが容易にできるのが 工程 (III)の特徴の 1つである。塔頂成分 (A )中にこれらの高沸点副生物を殆ど含
T
ませないで、しかも、導入された反応混合物中のジフエニルカーボネートの大部分を 塔頂力、ら抜き出すこと力できることも工程 (III)の特徴の 1つである。工程 (III)におい ては、高沸点物質分離塔 Aに連続的に供給された反応混合物中のジフエ二ルカ一 ボネートの 95%以上、好ましくは 96%以上、さらに好ましくは 98%以上を塔頂から抜 出すこと力 Sできる。また、工程 (III)においては、該分離塔 Aに供給される第 2反応蒸 留塔の高沸点反応混合物の組成に依存することではある力 連続的に供給された液 の通常、 90〜97質量%が塔頂成分 (A )として塔頂から連続的に抜出され、 10
T 〜3 質量%が塔底成分 (A )として塔底から連続的に抜出される。塔頂成分 (A )の組成
B T
は、通常、ジアルキルカーボネートが、 0. 05〜;!質量0 /0、フエノールが 1〜10質量0 /0 、アルキルフエニルエーテルが 0. 05〜0. 5質量%、アルキルフエニルカーボネート 力 ¾0〜40質量%、ジフエ二ルカーボネートが 50〜80質量%であり、高沸点副生物 の含有量は通常 200ppm以下、好ましくは lOOppm以下、より好ましくは 50ppmであ
[0150] 工程(III)においては、高沸点物質分離塔 Aの還流比は 0. 01〜; 10の範囲であり、 好ましくは 0. 08〜5、さらに好ましくは、 0. 1力、ら 3の範囲である。
[0151] 高沸点物質分離塔 Aの塔頂から連続的に抜出される塔頂成分 (A )の量は、前記
T
のとおり該分離塔 Aに供給された第 2反応蒸留塔の高沸点反応混合物の通常約 90 〜97%である力 S、これがそのままジフエニルカーボネート精製塔 Bの中段に設けられ た導入口 B1から該精製塔 Bに連続的に供給され、塔頂成分 (B )、サイドカット成分(
T
B )、塔底成分 (B )の 3成分に連続的に分離される。該精製塔 Bに供給された該分
S B
離塔 Aの塔頂成分 (A )に含まれていたジフエ二ルカーボネートよりも低沸点の成分
T
は全て塔頂成分 (B )として塔頂から連続的に抜出され、塔底からは、少量の液体が 連続的に抜出される。塔頂成分 (B )中には、少量のジフエ二ルカーボネートが含ま
T
れ、その量は供給されたジフエニルカーボネートに対して、通常、;!〜 9%、好ましくは 3〜8%である。この塔頂成分(B )中のジフエニルカーボネートは、塔頂成分(B )を
T T
分離する別の蒸留塔で分離され、回収されるが、この別の蒸留塔の塔底成分として 分離し、それを高沸点物質分離塔 Aまたは/およびジフエニルカーボネート精製塔 B に戻すことによって回収することも好ましい方法である。
[0152] 塔底成分 (B )はジフエ二ルカーボネートと、数%程度に濃縮された少量の高沸点
B
副生物からなっている。塔底から抜出される塔底成分 (B )の中のジフヱニルカーボ
B
ネートの量が非常に少なくてすむことも本発明の特徴の 1つであり、その量は供給さ れたジフエニルカーボネートに対して、通常、 0. 05—0. 5%である。
[0153] サイドカット抜き出し口 B2からは、高純度ジフエニルカーボネートが通常通常 1トン /hr以上、好ましくは 3トン/ hr以上、さらに好ましくは 5トン/以上の流量で連続的 に抜出され、この量は該精製塔 Bに供給されたジフエニルカーボネートの通常、約 90 〜96%に相当する。
[0154] 工程 (III)でサイドカット成分(B )として得られるジフエ二ルカーボネートの純度は、
s
通常 99. 9%以上であり、好ましくは 99. 99%以上で、より好ましくは 99. 999%以 上である。ジメチルカーボネートとフエノールを原料として工程 (II)および工程 (III)を 実施した時に得られる高純度ジフエニルカーボネート中の高沸点不純物の含有量は 、サリチル酸フエ二ルカ 30ppm以下、好ましくは lOppm以下、さらに好ましくは lpp m以下であり、キサントンが 30ppm以下、好ましくは lOppm以下、さらに好ましくは 1 ppm以下であり、メトキシ安息香酸フエニルが 30ppm以下、好ましくは lOppm以下、 さらに好ましくは lppm以下であり、 1 フエノキシカルボ二ルー 2—フエノキシカルボ キシーフヱュレンが 30ppm以下、好ましくは lOppm以下、さらに好ましくは 5ppm以 下である。そして、これら高沸点副生物の合計含有量は lOOppm以下、好ましくは 5 Oppm以下、さらに好ましくは lOppm以下である。
[0155] また、本発明では通常ハロゲンを含まない原料と触媒を使用するので、得られるジ フエニルカーボネートのハロゲン含有量は 0. lppm以下であり、好ましくは lOppb以 下であり、さらに好ましくは lppb以下である。 [0156] 工程(III)においては、ジフエニルカーボネート精製塔 Bの還流比は 0. 01— 10(7) 範囲であり、好ましくは 0. ;!〜 8、さらに好ましくは、 0. 5から 5の範囲である。
[0157] 本発明で用いられる高沸点物質分離塔 Aとジフエニルカーボネート精製塔 Bおよび 接液部を構成する材料は、主に炭素鋼、ステンレススチールなどの金属材料である 1S 製造するジフエニルカーボネートの品質の面からは、ステンレススチールが好まし い。
[0158] 続いて、工程 (IV)が実施される。すなわち、芳香族ジヒドロキシ化合物と該高純度 ジフエニルカーボネートとを反応させて芳香族ポリカーボネートの溶融プレポリマーを 製造し、該溶融プレボリマーをガイドの表面に沿って流下せしめ、その流下中に該溶 融プレポリマーの重合を行わせるガイド接触流下式重合器を用いて芳香族ポリカー ボネートを製造する工程である。
[0159] 工程 (IV)において、用いられる芳香族ジヒドロキシ化合物とは、下記一般式で示さ れる化合物である。
HO-Ar-OH
(式中、 Arは 2価の芳香族基を表す。)。
2価の芳香族基 Arは、好ましくは例えば、下記一般式で示されるものである。
-Ar'-Y-Ar2-
(式中、 Ar1及び Ar2は、各々独立に、それぞれ炭素数 5〜70を有する 2価の炭素環 式又は複素環式芳香族基を表し、 Yは炭素数 1〜30を有する 2価のアルカン基を表 す。)
[0160] 2価の芳香族基 A 、 Ar2において、 1つ以上の水素原子が、反応に悪影響を及ぼ さない他の置換基、例えば、ハロゲン原子、炭素数 1〜; 10のアルキル基、炭素数;!〜 10のァノレコキシ基、フエニル基、フエノキシ基、ビニノレ基、シァノ基、エステル基、アミ ド基、ニトロ基などによって置換されたものであってもよい。複素環式芳香族基の好ま しい具体例としては、 1ないし複数の環形成窒素原子、酸素原子又は硫黄原子を有 する芳香族基を挙げることができる。 2価の芳香族基 A 、 Ar2は、例えば、置換又は 非置換のフエ二レン、置換又は非置換のビフエ二レン、置換または非置換のピリジレ ンなどの基を表す。ここでの置換基は前述のとおりである。 2価のアルカン基 Yは、例えば、下記化 3で示される有機基である。
[0161] [化 3]
Figure imgf000057_0001
[0162] (式中、
Figure imgf000057_0002
R2、 R3、 R4は、各々独立に、水素、炭素数 1〜; 10のアルキル基、炭素数 ;!〜 10のアルコキシ基、環構成炭素数 5〜; 10のシクロアルキル基、環構成炭素数 5 〜; 10の炭素環式芳香族基、炭素数 6〜; 10の炭素環式ァラルキル基を表す。 kは 3〜 11の整数を表し、 R5および R6は、各 Xについて個々に選択され、お互いに独立に、 水素または炭素数 1〜6のアルキル基を表し、 Xは炭素を表す。また、
Figure imgf000057_0003
R2、 R3、 R4 、 R5、 R6において、一つ以上の水素原子が反応に悪影響を及ぼさない範囲で他の 置換基、例えばハロゲン原子、炭素数 1〜; 10のアルキル基、炭素数 1〜; 10のアルコ キシ基、フエニル基、フエノキシ基、ビュル基、シァノ基、エステル基、アミド基、ニトロ 基等によって置換されたものであってもよい。 )
このような 2価の芳香族基 Arとしては、例えば、下記式で示されるものが挙げられる
[0163] [化 4]
Figure imgf000058_0001
Figure imgf000058_0002
Figure imgf000058_0003
Figure imgf000058_0004
[0164] (式中、 R7、 R8は、各々独立に水素原子、ハロゲン原子、炭素数 1〜; 10のアルキル基 、炭素数 1〜; 10のアルコキシ基、環構成炭素数 5〜: 10のシクロアルキル基またはフエ ニル基であって、 mおよび nは;!〜 4の整数で、 mが 2〜4の場合には、各 R7はそれぞ れ同一でも異なるものであってもよいし、 nが 2〜4の場合には R8はそれぞれ同一でも 異なるものであってもよレ、。 )
[0165] さらに、 2価の芳香族基 Arは、次式で示されるものであってもよい。
-Ατ -Ζ-Αΐ -
(式中、 Ar1及び Ar2は前述の通りで、 Zは単結合又は—O—、—CO—、—S 、 一 S 02—、 一 SO 、 一 C〇〇一、 CON (R1)—などの 2価の基を表す。ただし、 R1は前 述のとおりである。 )
このような 2価の芳香族基 Arとしては、例えば、下記式に示されるものが挙げられる
[0166] [ィ匕 5]
Figure imgf000059_0001
s
Figure imgf000059_0002
Figure imgf000059_0003
Figure imgf000059_0004
Figure imgf000059_0005
[0167] (式中、 R7、 R8、 mおよび nは、前述のとおりである。 )
さらに、 2価の芳香族基 Arの具体例としては、置換または非置換のフエ二レン、置 換または非置換のナフチレン、置換または非置換のピリジレン等が挙げられる。
[0168] 本発明で用いられる芳香族ジヒドロキシ化合物は、単一種類でも 2種類以上でもか まわなレ、。芳香族ジヒドロキシ化合物の代表的な例としてはビスフエノール Aが挙げら れる。また、本発明においては、本発明の目的を損なわない範囲で、分岐構造を導 入するための 3価の芳香族トリヒドロキシ化合物を併用してもよい。
[0169] 工程 (IV)における芳香族ジヒドロキシ化合物と高純度ジフエニルカーボネートとの 使用割合 (仕込み比率)は、用いられる芳香族ジヒドロキシ化合物とジフエ二ルカーボ ネートの種類や、重合温度その他の重合条件によって異なるが、ジフエ二ルカーボネ ートは芳香族ジヒドロキシ化合物 1モルに対して、通常 0. 9〜2. 5モル、好ましくは 0 . 95—2. 0モノレ、より好ましくは 0. 98— 1. 5モノレの害 ij合で用いられる。
[0170] 工程 (IV)における、芳香族ジヒドロキシ化合物とジフエニルカーボネートとから製造 された溶融状態のプレボリマー(以下、溶融プレボリマーと表す)とは、芳香族ジヒドロ キシ化合物とジフエ二ルカーボネートから製造される、 目的とする重合度を有する芳 香族ポリカーボネートより重合度の低い重合途中の溶融物を意味しており、もちろん オリゴマーであってもよい。工程(IV)で用いられるこのような溶融プレポリマーは、公 知のいかなる方法によって得られたものでよい。たとえば、所定量の芳香族ジヒドロキ シ化合物とジフエ二ルカーボネートとからなる溶融混合物を 1基またはそれ以上の縦 型撹拌槽を用いて、約 120°C〜約 280°Cの温度範囲で、常圧および/または減圧 下に撹拌しながら、反応によって副生するフエノールを除去することによって、製造す ること力 Sできる。直列に連結された 2基以上の縦型撹拌槽を用いて、順に重合度を上 げていく必要な重合度を有する溶融プレボリマーを連続的に製造する方法が特に好 ましい。
[0171] 工程 (IV)では、この溶融プレボリマーが、ガイド接触流下式重合器に連続的に供 給され、 目的の重合度を有する芳香族ポリカーボネートを連続的に製造する。このガ イド接触流下式重合器とは、ガイドに沿ってプレボリマーを溶融流下せしめて重合を させる重合器であって、 1時間あたり 1トン以上の芳香族ポリカーボネートを生産でき るものである。
[0172] 該ガイド接触流下式重合器は、
(1)溶融プレボリマー受給口、多孔板、該多孔板を通して該溶融プレボリマーを重合 反応ゾーンのガイドに供給するための溶融プレボリマー供給ゾーン、該多孔板と側面 ケーシングとテーパー形の底部ケーシングとに囲まれた空間に該多孔板から下方に 延びる複数のガイドが設けられた重合反応ゾーン、該重合反応ゾーンに設けられた 真空ベント口、テーパー形の底部ケーシングの最下部に設けられた芳香族ポリカー ボネート排出口、及び該排出口に接続された芳香族ポリカーボネート排出ポンプを 有するものであって、 (2)該重合反応ゾーンの側面ケーシングの水平面における内部断面積 A (m2)が、 式(28)を満足するものであって、
0. 7≤A≤300 式(28)
(3)該 A (m2)と、芳香族ポリカーボネート排出口の水平面における内部断面積 B (m2 )との比が、式(29)を満足するものであって、
20≤A/B≤1000 式(29)
(4)該重合反応ゾーンの底部を構成するテーパー形の底部ケーシンダカ 上部の側 面ケーシングに対してその内部において、角度 C度で接続されており、該角度 C度が 式(30)を満足するものであって、
120≤C≤165 式(30)
(5)該ガイドの長さ h (cm)が、式(31)を満足するものであって、
150≤h≤5000 式(31)
6)該ガイド全体の外部総表面積 S (m2)が式(32)を満足するものである、
2≤S≤50000 式(32)
ことが必要である。
[0173] 高品質'高性能の芳香族ポリカーボネートを 1時間あたり 1トン以上の工業的規模の 生産量で、分子量のバラツキなどがなぐ長期間安定的に製造するためには、種々 の条件を満足させる重合器であることが必要であり、本発明はこれらの条件を見出し たものである。なお、本発明においては、分子量のバラツキがないとは、数平均分子 量で 200以下のバラツキの場合を意味している。本発明では、数平均分子量のバラ ツキが好ましくは 150以下であり、より好ましくは 100以下の芳香族ポリカーボネート が長時間安定的に製造である。
[0174] より具体的には、概念図(図 6)に示されるような、重合反応ゾーン 5の側面ケーシン グ 10の水平面(a— a'面)における内部断面積 A (m2)が、式(28)を満足するもので あることが必要である。 Aが 0. 7m2よりも小さいと、 目的とする生産量を達成できない し、設備費を低下させつつこの生産量を達成するためには、 Aは 300m2以下にする ことが必要である。
[0175] さらに、該 A(m2)と、芳香族ポリカーボネート排出口 7の水平面(b— b'面)における 内部断面積 B (m2)との比が、式(29)を満足することも必要である。
[0176] 製造された芳香族ポリカーボネートまたは重合度の高められた芳香族ポリカーボネ ートプレポリマーの品質を低下させることなく溶融粘度の高いこれらの溶融物を排出 するためには、 A/Bは式(29)を満足していなければならない。
[0177] さらに、該重合反応ゾーン 5の底部を構成するテーパー形の底部ケーシングが、上 部の側面ケーシング 10に対してその内部において、角度 C度で設けられており、該 角度 C度が式(30)を満足することも必要である。
[0178] 設備費を低下させるためには、 Cはできるだけ 90度に近い方がいいのである力 ガ イド 4の下端から落下してくる芳香族ポリカーボネートまたは重合度の高められた芳 香族ポリカーボネートプレボリマーの品質を低下させることなく溶融粘度の高いこれら の溶融物を排出口 7に移動させるためには、 Cは式(30)を満足していなければなら ない。
[0179] さらに、該ガイドの長さ h (cm)が、式(31)を満足することも必要である。 hが 150c mより短い場合、溶融プレボリマーの重合度を高めることはできるが、その程度が十 分ではなぐまた、重合度のバラツキが数平均分子量で約 200以上大きくなり、好まし くない。 h力 S5000cmより長い場合、ガイドの上部と下部での溶融プレポリマーの溶融 粘度の違いが大きくなりすぎるため、重合度のバラツキが数平均分子量で約 300以 上 (場合によっては、約 500以上)大きくなり、得られる芳香族ポリカーボネートの物性 にバラツキがでるので好ましくない。なお、本発明において重合度のバラツキが大き いとは、例えば数平均分子量で表して、約 200以上の差があるバラツキの場合を意 味している。
[0180] さらに、該ガイド 4の総表面積 S (m2)が式(32)を満足する必要がある。 Sが 2m2より も小さいと、 目的とする生産量を達成できないし、設備費を低下させつつこの生産量 を達成し、且つ物性にバラツキをなくすためには、 Sは 50000m2以下にすることが必 要である。
[0181] 式(28)、(29)、(30)、(31)および(32)を同時に満足するガイド接触流下式重合 器を用いることによって、驚くべきことに、着色がなく機械的物性に優れた高品質-高 性能の芳香族ポリカーボネートを、 1時間あたり 1トン以上の生産量でし力、も、数 1 , 0 00時間以上、たとえば 5, 000時間以上の長期間、分子量のバラツキなどなく安定的 に製造できることが見出された。これらの条件を同時に満足していない場合には、 目 的とする生産量が得られない、分子量のバラツキが数平均分子量で表して約 200以 上の差があるバラツキがでる、安定製造が 1 , 000時間もできない、着色がしゃすくな るなどの不都合が起こる。
[0182] 工程 (IV)において、このような優れた効果を有する工業的規模での芳香族ポリ力 ーボネートの製造が可能となった理由は明らかではないが、上述の理由に加えて、 それらの条件が組み合わさった時にもたらされる複合効果が現れたためであると推定 される。例えば、式(31)および(32)を満足する高表面積のガイドを用いると、溶融プ レポリマーを比較的低温度で重合させることができ、 目的とする分子量を有する大量 の高品質の芳香族ポリカーボネートを製造できるし、また、式(30)を満足するテーパ 一形の底部ケーシングは、ガイドから落下してくるこの大量の高品質の生成芳香族ポ リカーボネートが排出口に達するの時間を短縮でき、その結果、生成芳香族ポリカー ボネートの熱履歴を減らせるためと推定される。
[0183] なお、このような工業的規模での製造技術は、大規模な製造設備を用いる長時間 運転によって初めて確立できるものである力 その際の製造設備費は考慮すべき重 要な因子であることは、論を待たない。本発明の別な効果は、工程 (IV)で用いる重 合器を、式(28) (29)、 (30)、 (31)および(32)を満足するガイド接触流下式重合器 とすることによって、工業的製造設備として設備費を低下させることができることにある
[0184] 工程 (IV)において用いられるガイド接触流下式重合器における寸法 ·角度等に要 求される範囲は、上記のとおりであるが、さらに好ましい範囲は次のとおりである。重 合反応ゾーンの側面ケーシングの水平面における内部断面積 A (m2)のより好ましい 範囲は、 0. 8≤A≤250 であり、さらに好ましくは、 1≤A≤200 である。
[0185] また、該 A (m2)と、芳香族ポリカーボネート排出口の水平面における内部断面積 B
(m2)との比のより好ましい範囲は、 25≤A/B≤900 であり、さらに好ましくは、 30 ≤A/B≤800 である。
[0186] また、重合反応ゾーンの底部を構成するテーパー形の底部ケーシングが、上部の 側面ケーシングに対してその内部においてなす角度 C度のより好ましい範囲は、 125 ≤C≤160 であり、さらに好ましくは、 135≤C≤165 である。なお、複数のガイド 接触流下式重合器を用いて順に重合度を上げていく場合には、それぞれに対応す る角度を、 Cl、 C2、 C3、 · · ·とすれば、 C1≤C2≤C3≤ · · · とすることが好ましい
[0187] また、ガイドの必要な長さ h (cm)は、原料プレボリマーの重合度、重合温度、圧力、 その重合器で製造すべき芳香族ポリカーボネートまたはプレボリマーの重合度、生 産量等の要因の違いによって異なる力 より好ましい範囲は、 200≤h≤3000 であ り、さらに好ましくは、 250≤h≤2500 である。 hが、式 (40)を満足する場合、特に 好ましい。
400<h≤2500 式(40)
[0188] また、必要なガイド全体の外部総表面積 S (m2)も、上記と同様の要因の違いによつ て異なるが、そのより好ましい範囲は、 4≤S≤40000 であり、さらに好ましくは、 10 ≤S≤30000 である。 15≤S≤ 20000 ίま、特 ίこ好ましレヽ範囲である。本発明で 言うガイド全体の外部総表面積とは、溶融プレボリマーが接触して流下するガイドの 表面積全体を意味しており、例えばパイプなどのガイドの場合、外側の表面積を意味 しており、溶融プレポリマーを流下させないパイプ内側の面の表面積は含めない。
[0189] 工程 (IV)で用いられるガイド接触流下式重合器において、重合反応ゾーンの側面 ケーシングの水平面における内部断面の形状は多角形、楕円形、円形等、どのよう な形状であってもよい。重合反応ゾーンは、通常減圧下で操作されるため、それに耐 えるものであればどのようなものでもよいが、好ましくはそれが円形または、それに近 い形状の場合である。したがって、本発明の重合反応ゾーンの側面ケーシングは、 円筒形であることが好ましい。この場合、円筒形の側面ケーシングの下部にテーパー 形の底部ケーシングが接続され、該底部ケーシングの最下部に円筒形の芳香族ポリ カーボネート排出口が設けられることが好ましい。そして、該側面ケーシングの円筒 形部の内径を D (cm)、長さを L (cm)とし、該排出口の内径を d (cm)とした時、 D、 L 、 d が式(36)、(37)、(38)および(39)を満足していることが好ましい。
100≤D≤1800 式(36) 5≤D/d≤50 式(37)
0. 5≤L/D ≤30 式(38)
h- 20≤L≤h + 300 式(39)
[0190] 該ガイド接触流下式重合器において、 D (cm)のより好ましい範囲は、 150≤D ≤ 1500 であり、さらに好ましくは、 200≤D≤1200 である。また、また、 D/d のより 好ましい範囲は、 6≤D/d≤45 であり、さらに好ましくは、 7≤ D/d≤40 であ る。また、 L/Dのより好ましい範囲は、 0. 6≤L/D≤25 であり、さらに好ましくは、 0. 7≤L/D≤20 である。 また、 L (cm)のより好ましい範囲は、 h— 10≤L≤h + 250 であり、さらに好ましくは、 h≤L≤h+ 200 である。なお、 D、 d、 L、 h がこれ らの関係を同時に満足しない場合は、本発明の課題を達成することが困難になる。
[0191] 工程 (IV)において、速い重合速度で、着色が無く機械的物性に優れた高品質-高 性能の芳香族ポリカーボネートが、工業的規模で長期間分子量のバラツキがなく安 定的に製造できる正確な理由は明らかではないが、以下のことが考えられる。すなわ ち、工程 (IV)のガイド接触流下式重合法においては、原料の溶融プレボリマーは受 給口 1から、供給ゾーン 3および多孔板 2を経由して、ガイド 4に導かれ、ガイドに沿つ て流下しながら重合度が上昇していく。この場合、溶融プレボリマーはガイドに沿って 流下しながら効果的な内部攪拌と表面更新が行われ、フエノール等の抜出しが効果 的に行われるため、速い速度で重合が進行する。重合の進行とともにその溶融粘度 が高くなつてくるために、ガイドに対する粘着力が増大し、ガイドに粘着する溶融物の 量はガイドの下部に行くに従って増えてくる。このことは、溶融プレボリマーのガイド上 での滞留時間、すなわち重合反応時間が増えることを意味している。しかも、ガイドに 支えられながら自重で流下している溶融プレボリマーは、質量当たりの表面積が非常 に広く、その表面更新が効率的に行われているので、これまでの機械的攪拌重合器 ではどうしても不可能であった重合後半の高分子量化が容易に達成できるのである 。これが工程 (IV)で用いられる重合器の持つ、優れた特徴の 1つである。
[0192] ガイドの中間部より下部の重合の後半では、ガイドに粘着する溶融物の量が増えて くる力 S、その溶融粘度に見合った粘着保持力しかないので、複数のガイドの同じ高さ においては、ほぼ同じ溶融粘度をもつほぼ同じ量の溶融物力 それぞれのガイドに 支えられていることになる。一方ガイドには上部から溶融物が連続的に供給されてい るので、ほぼ同じ溶融粘度をもつ重合度の高められた溶融物が、ガイドの下端からテ 一パー形の底部ケーシングに連続的に落下して行くことになる。すなわちテーパー 形の底部ケーシングの底部では、ガイドを流下しながら生成したほぼ同じ重合度の 芳香族ポリカーボネートが溜まってくることになり、分子量のバラツキのない芳香族ポ リカーボネートが連続的に製造できることになる。このことは本発明の重合器の持つ 他の優れた特徴の 1つである。テーパー形の底部ケーシングの底部に溜まった芳香 族ポリカーボネートは、排出口 7を経て、排出ポンプ 8によって連続的に抜き出され、 通常は押出し機を経て連続的にペレット化される。この場合、押出し機で、安定剤、 耐候剤等の添加剤を添加することも可能である。
[0193] 工程 (IV)で用いられるガイド接触流下式重合器を構成する多孔板は、通常、平板 、波板、中心部が厚くなつた板などから選ばれ、多孔板の形状についは、通常、円状 、長円状、三角形状、多角形状などの形状力 選ばれる。多孔板の孔は、通常、円 状、長円状、三角形状、スリット状、多角形状、星形状などの形状から選ばれる。孔の 断面積は、通常、 0. 01〜; 100cm2であり、好ましくは 0. 05〜; 10cm2であり、特に好 ましくは 0. ;!〜 5cm2の範囲である。孔と孔との間隔は、孔の中心と中心の距離で通 常、 l〜500mmであり、好ましくは 25〜100mmである。多孔板の孔は、多孔板を貫 通させた孔であっても、多孔板に管を取り付けた場合でもよい。また、テーパー状に なっていてもよい。
[0194] また、工程 (IV)で用いられるガイド接触流下式重合器を構成するガイドとは、水平 方向断面の外周の平均長さに対して該断面と垂直方向の長さの比率が非常に大き い材料を表すものである。該比率は、通常、 10〜; 1 , 000, 000の範囲であり、好まし くは 50〜; 100, 000の範囲である。水平方向の断面の形状は、通常、円状、長円状 、三角形状、四角形状、多角形状、星形状などの形状から選ばれる。該断面の形状 は長さ方向に同一でもよいし異なっていてもよい。また、ガイドは中空状のものでもよ い。
[0195] ガイドは、針金状のものや細い棒状のものや内側に溶融プレポリマーが入らないよ うにした細いパイプ状のもの等の単一なものでもよいが、捩り合わせる等の方法によ つて複数組み合わせたものでもよい。また、網状のものや、パンチングプレート状のも のであってもよい。ガイドの表面は平滑であっても凹凸があるものであってもよぐ部 分的に突起等を有するものでもよい。好ましいガイドは、針金状や細い棒状等の円柱 状のもの、前記の細いパイプ状のもの網状のもの、パンチングプレート状のものであ
[0196] このガイドはそれ自身内部に熱媒ゃ電気ヒーターなどの加熱源をもって!/、てもよ!/、 ヽ加熱源を持たないガイドは、その表面におけるプレポリマーや芳香族ポリカーボ ネートの熱変性の懸念がなレ、ので、特に好ましレ、。
[0197] 工業的規模 (生産量、長期安定製造等)での高品質の芳香族ポリカーボネートの製 造を可能とする本発明のガイド接触流下式重合器において、特に好ましいのは、複 数の針金状または細!/、棒状または前記の細!/、パイプ状のガイドの上部から下部まで において横方向の支持材を用いて上下の適当な間隔で各々のガイド間を結合したタ イブのガイドである。例えば、複数の針金状または細い棒状または前記の細いパイプ 状のガイドの上部から下部までにおいて横方向の支持材を用いて上下の適当な間 隔、たとえば lcm〜200cmの間隔で固定した金網状ガイド、複数の金網状のガイド を前後に配置しそれらを横方向の支持材を用いて上下の適当な間隔、たとえば lcm 〜200cmの間隔で結合させた立体的なガイド、または複数の針金状または細!/、棒 状または前記の細いパイプ状のガイドの前後左右を横方向の支持材を用いて上下 の適当な間隔、たとえば 1 cm〜 200cmの間隔で固定したジャングルジム状の立体 的なガイドである。横方向の支持材は各ガイド間の間隔をほぼ同じに保っために役 立つだけでなぐ全体として平面状や曲面状になるガイド、あるいは立体的になるガ イドの強度の強化に役立っている。これらの支持材はガイドと同じ素材であってもよい し、異なるものであってもよい。
[0198] ガイド接触流下式重合器において、 1つのガイドが外径 r (cm)の円柱状または内 側に溶融プレボリマーがはいらないようにしたパイプ状のものである場合、 r が式 (4 1)を満足してレ、ることが好ましレ、。
0. l≤r≤l 式(41)
[0199] このガイドは、溶融プレボリマーを流下させながら、重合反応を進めるものであるが 、溶融プレボリマーをある時間保持する機能も有している。この保持時間は、重合反 応時間に関連するものであり、重合の進行とともにその溶融粘度が上昇していくため に、その保持時間および保持量は増加していくことは前記のとおりである。ガイドが溶 融プレポリマーを保持する量は、同じ溶融粘度であってもガイドの外部表面積、即ち 、円柱状またはパイプ状の場合、その外径によって異なってくる。
[0200] また、本発明の重合器に設置されたガイドは、ガイド自身の重量に加え、保持して V、る溶融プレボリマーの重量をも支えるだけの強度が必要である。このような意味に おいて、ガイドの太さは重要であり、円柱状またはパイプ状の場合、式 (41)を満足し ていることが好ましい。 rが 0. 1より小さいと、強度的な面で長時間の安定運転ができ にくくなつてくる。 rが 1よりも大きいと、ガイド自身が非常に重くなり、たとえばそれらを 重合器に保持するために多孔板の厚みを非常に厚くしなければならないなどの不都 合があるだけでなぐ溶融プレボリマーを保持する量が多くなりすぎる部分が増え、分 子量のバラツキが大きくなるなどの不都合が起こってくる。このような意味で、より好ま しい rの範囲は、 0. 15≤r≤0. 8 であり、さらに好ましいのは、 0. 2≤r≤0. 6 であ
[0201] このようなガイドの好ましい材質は、ステンレススチール、カーボンスチール、ハステ ロイ、ニッケル、チタン、クロム、アルミニウム及びその他の合金等の金属や、耐熱性 の高いポリマー材料等の中から選ばれる。特に好ましいのはステンレススチールであ る。また、ガイドの表面は、メツキ、ライニング、不働態処理、酸洗浄、フエノール洗浄 等必要に応じて種々の処理がなされてもよい。
[0202] ガイドと多孔板との位置関係及びガイドと多孔板の孔との位置関係につ!/、ては、溶 融プレポリマーのガイド接触流下が可能である限り特に限定されな!/、。ガイドと多孔 板は互いに接触していてもよいし、接触していなくてもよい。ガイドを多孔板の孔に対 応させて設置するのが好ましいがこれに限定されない。なぜならば、多孔板から落下 する溶融プレボリマーが適当な位置でガイドに接触するように設計されていてもいい 力、らである。ガイドを多孔板の孔に対応させて設置する好ましい具体例としては、 (1) ガイドの上端を重合器の上部内壁面などに固定して、ガイドが多孔板の孔の中心部 付近を貫通した状態でガイドを設ける方法や、 (2)ガイドの上端を多孔板の孔の上端 の周縁部に固定して、ガイドが多孔板の孔を貫通した状態でガイドを設ける方法や、
(3)ガイドの上端を多孔板の下側面に固定する方法、などが挙げられる。
[0203] この多孔板を通じて溶融プレボリマーをガイドに沿わせて流下させる方法としては、 液ヘッドまたは自重で流下させる方法、またはポンプなどを使って加圧にすることに より、多孔板力も溶融プレボリマーを押し出す等の方法が挙げられる。好ましいのは、 供給ポンプを用いて加圧下、所定量の原料溶融プレボリマーを重合器の供給ゾーン に供給し、多孔板を経てガイドに導かれた溶融プレボリマーが自重でガイドに沿って 流下していく方式である。該溶融プレボリマーは、通常、所定の重合温度に加熱され た状態で、ガイド接触流下式重合器に連続的に供給される。したがって、このガイド 接触流下式重合器の外壁面には、通常ジャケット等が設置されていることが好ましく 、このジャケットに熱媒等を通じて所定の温度に加熱することが好ましい。このことによ つて、溶融プレポリマーおよび、プレポリマー供給ゾーンや多孔板の加熱/および保 温と、重合反応ゾーンや側面ケーシングおよびテーパー形の底部ケーシングの保温 を行うことが好ましい。
[0204] 工程 (IV)において、芳香族ジヒドロキシ化合物とジフエニルカーボネートとから得ら れる溶融プレボリマーをガイド接触流下式重合器で重合させて芳香族ポリカーボネ ートを製造する反応の温度は、通常 80〜350°Cの範囲である。し力もながら、本発明 の重合器では内部攪拌を伴う効率的な表面更新が行われてレ、るので、比較的低温 で重合反応を進行させることができる。したがって、好ましい反応温度は、 100〜290 °Cであり、さらに好ましいのは、 150〜270°Cである。従来の重合器である横型 2軸撹 拌式超高粘度ポリマー用リアクターでは、通常 300°C以上の高温下で、 133Pa以下 の高真空下で長時間撹拌する必要があった。しかも撹拌軸シール部からの空気の漏 れこみによる黄変や、異物の混入がさけられなかった。本発明の重合器は機械的攪 拌がないので、攪拌機のシール部もないので空気等の漏れこみが非常に少ない。し かも、従来の横型 2軸撹拌式超高粘度ポリマー用リアクターの場合よりも約 20〜50 °Cも低温で十分に重合を進めることができるの力 本発明の特徴である。このことも、 本発明におレ、て、着色や物性低下のなレ、高品質の芳香族ポリカーボネートを製造す ることができる大きな原因である。 [0205] また、従来の横型 2軸撹拌式超高粘度ポリマー用リアクターを用いても、中粘度グ レード以上の芳香族ポリカーボネートを製造することは、その超高粘性のため、不可 能であるが、本発明のガイド接触流下式重合器では、高粘度グレードの芳香族ポリ力 ーボネートも容易に製造することができる。すなわち、本発明のガイド接触流下式重 合器では、分子量の比較的低いディスクグレードから、高粘度グレードまでの全ての グレードの芳香族ポリカーボネートを製造することだできる。このことも本発明の大き な特徴である。
[0206] 工程 (IV)では、重合反応の進行にともなって、フエノールが生成してくる力 これを 反応系外へ除去する事によって反応速度が高められる。したがって、窒素、アルゴン 、ヘリウム、二酸化炭素や低級炭化水素ガスなど反応に悪影響を及ぼさない不活性 なガスを重合器に導入して、生成してくるフエノールをこれらのガスに同伴させて除去 する方法や、減圧下に反応を行う方法などが好ましく用いられる。あるいはこれらを併 用した方法も好ましく用いられる力 S、これらの場合も重合器に大量の不活性ガスを導 入する必要はなぐ内部を不活性ガス雰囲気に保持する程度でもよい。
[0207] なお、溶融プレボリマーをガイド接触流下式重合器に供給するに先立って、前記不 活性ガスを吸収させ、次!/、で該不活性ガス吸収溶融プレボリマーを重合させることも 好ましい方法である。
[0208] 工程 (IV)の重合器内の好ましい反応圧力は、製造する芳香族ポリカーボネートの 種類や分子量、重合温度等によっても異なる力 例えばビスフエノール Aとジフエ二 ルカーボネートからの溶融プレボリマーから芳香族ポリカーボネートを製造する場合 、数平均分子量が 5, 000以下の範囲では、 400〜3, OOOPa範囲力 S好ましく、数平 均分子量が 5, 000—10, 000の場合は、 50〜500Paの範囲が好ましい。数平均分 子量が 10, 000以上の場合は、 300Pa以下が好ましぐ特に 20〜250Paの範囲力 S 好ましく用いられる。
[0209] 工程 (IV)を実施するにあたり、ガイド接触流下式重合器 1基だけで、 目的とする重 合度を有する芳香族ポリカーボネートを製造することも可能であるが、原料とする溶 融プレポリマーの重合度や芳香族ポリカーボネートの生産量などに応じて、 2基以上 の複数のガイド接触流下式重合器を連結して、順に重合度をあげて!/、く方式も好ま しい。この場合、それぞれの重合器において、製造すべきプレボリマーまたは芳香族 ポリカーボネートの重合度に適したガイドや反応条件を別々に採用することができる ので、好ましい方式である。例えば、ガイド接触流下式第 1重合器、ガイド接触流下 式第 2重合器、ガイド接触流下式第 3重合器、ガイド接触流下式第 4重合器 · · · ·を用 い、この順に重合度を上げていく方式の場合、それぞれの重合器がもつガイド全体 の外部総表面積を Sl、 S2、 S3、 S4—'とすれば、 S1≥S2≥S3≥S4≥'— と すること力 Sできる。また、重合温度も、それぞれの重合器において同じ温度でもよいし 、順に上げていくことも可能である。重合圧力も、それぞれの重合器で、順に下げて いくことも可能である。
[0210] このような意味において、例えば、ガイド接触流下式第 1重合器、ガイド接触流下式 第 2重合器の 2基の重合器を用いてこの順に重合度を上げていく場合、該第 1重合 器のガイド全体の外部総表面積 SI (m2)と該第 2重合器のガイド全体の外部総表面 積 S2 (m2)とが式 (42)を満足するようなガイドを用いることが好ましい。
1≤S1/S2≤20 式(42)
[0211] S1/S2が 1よりも小さいと、分子量のバラツキが大きくなり長期間安定製造が困難 になる、所定の生産量が得にくい、などの不都合が起こり、 S 1/S2が 20よりも大きい と、第 2重合器でのガイドを流下する溶融プレボリマーの流量が多くなり、その結果、 溶融プレボリマーの滞留時間が少なくなり必要とする分子量の芳香族ポリカーボネー トが得られに《なる、などの不都合が生じてくる。このような意味でさらに好ましい範 囲 (ま、 1. 5≤S 1/S2≤15 である。
[0212] 工程 (IV)においては、 1時間当り 1トン以上の芳香族ポリカーボネートが製造する のであるが、重合反応によって副生したフエノールは系外に排出されるので、 1時間 当り 1トンよりも多量の溶融プレボリマー力 S、重合器に供給される必要がある。したがつ て、供給される溶融プレボリマーの量は、その重合度および製造すべき芳香族ポリ力 ーボネートの重合度によって変化するが、通常、芳香族ポリカーボネートの生産量 1ト ン/ hr当り、 10〜500kg/hr多い、 1. 01〜; 1. 5トン/ hrの範囲である。
[0213] 工程 (IV)における芳香族ジヒドロキシ化合物とジフエニルカーボネートから芳香族 ポリカーボネートを製造する反応は触媒を加えずに実施する事ができる力 重合速 度を高めるため、必要に応じて触媒の存在下で行われる。触媒としては、この分野で 用いられているものであれば特に制限はないが、水酸化リチウム、水酸化ナトリウム、 水酸化カリウム、水酸化カルシウムなどのアルカリ金属及びアルカリ土類金属の水酸 化物類;水素化アルミニウムリチウム、水素化ホウ素ナトリウム、水素化ホウ素テトラメ チルアンモニゥムなどのホウ素やアルミニウムの水素化物のアルカリ金属塩、アルカリ 土類金属塩、第四級アンモユウム塩類;水素化リチウム、水素化ナトリウム、水素化力 ルシゥムなどのアルカリ金属及びアルカリ土類金属の水素化合物類;リチウムメトキシ ド、ナトリウムエトキシド、カルシウムメトキシドなどのアルカリ金属及びアルカリ土類金 属のアルコキシド類;リチウムフエノキシド、ナトリウムフエノキシド、マグネシウムフエノ キシド、 LiO— Ar— OLi、 NaO— Ar— ONa (Arはァリール基)などのアルカリ金属 及びアルカリ土類金属のァリ一口キシド類;酢酸リチウム、酢酸カルシウム、安息香酸 ナトリウムなどのアルカリ金属及びアルカリ土類金属の有機酸塩類;酸化亜鉛、酢酸 亜鉛、亜鉛フエノキシドなどの亜鉛化合物類;酸化ホウ素、ホウ酸、ホウ酸ナトリウム、 ホウ酸トリメチル、ホウ酸トリブチル、ホウ酸トリフエニル、(I^I^I^I^ NB
Figure imgf000072_0001
または(R1R2R3R4) PB (RR'R'R'R4)で表されるアンモニゥムボレート類またはホス ホニゥムボレート類
Figure imgf000072_0002
R2、 R3、 R4は前記式の説明通りである。)などのホウ素の化 合物類;酸化ケィ素、ケィ酸ナトリウム、テトラアルキルケィ素、テトラァリールケィ素、 ジフエニル-ェチル-ェトキシケィ素などのケィ素の化合物類;酸化ゲルマニウム、四 塩化ゲノレマニウム、ゲノレマニウムェトキシド、ゲノレマニウムフエノキシドなどのゲノレマ二 ゥムの化合物類;酸化スズ、ジアルキルスズォキシド、ジアルキルスズカルボキシレー ト、酢酸スズ、ェチルスズトリブトキシドなどのアルコキシ基またはァリーロキシ基と結 合したスズ化合物、有機スズ化合物などのスズの化合物類;酸化鉛、酢酸鉛、炭酸 鉛、塩基性炭酸塩、鉛及び有機鉛のアルコキシドまたはァリ一口キシドなどの鉛の化 合物;第四級アンモニゥム塩、第四級ホスホニゥム塩、第四級アルソニゥム塩などの ォニゥム化合物類;酸化アンチモン、酢酸アンチモンなどのアンチモンの化合物類; 酢酸マンガン、炭酸マンガン、ホウ酸マンガンなどのマンガンの化合物類;酸化チタ ン、チタンのアルコキシドまたはァリ一口キシドなどのチタンの化合物類;酢酸ジルコ 二ゥム、酸化ジルコニウム、ジルコニウムのアルコキシド又はァリーロキシド、ジルコ二 ゥムァセチルアセトンなどのジルコニウムの化合物類などの触媒を挙げることができる 。好ましい重合触媒は、上記のアルカリ金属化合物およびアルカリ土類金属化合物 である。特に好ましい重合触媒は、アルカリ金属またはアルカリ土類金属の水酸化物 、アルコキシド類、ァリ一口キシド類である。
[0214] 触媒を用いる場合、これらの触媒は 1種だけで用いてもよいし、 2種以上を組み合 わせて用いてもよい。また、これらの触媒の使用量は、原料の芳香族ジヒドロキシ化 合物に対して、通常 10— 1Q〜;!質量%、好ましくは 10— 9〜10— 1質量%、さらに好ましくは 10— 8〜10— 2質量%の範囲で選ばれる。溶融エステル交換法の場合、使用した重合触 媒は、製品の芳香族ポリカーボネート中に残存している力、これらの重合触媒は通常 ポリマー物性に悪影響を及ぼすものが多い。したがって、触媒の使用量はできるだけ 、下げることが好ましい。本発明の方法では、重合が効率的に行えるので触媒の使 用量を少なくできる。このことも高品質の芳香族ポリカーボネートを製造できる本発明 の特徴の 1つである。
[0215] 工程 (IV)で用いられるガイド接触流下式重合器や配管の材質に特に制限はなぐ 通常ステンレススチール製、カーボンスチール製、ハステロィ製、ニッケル製、チタン 製、クロム製、及びその他の合金製等の金属や、耐熱性の高いポリマー材料等の中 力、ら選ばれる。また、これらの材質の表面は、メツキ、ライニング、不働態処理、酸洗 浄、フエノール洗浄等必要に応じて種々の処理がなされてもよい。特に好ましいのは 、ステンレススチールやニッケル、グラスライニング等である。
[0216] 工程 (IV)のプレボリマー製造時と、ガイド接触流下式重合器での重合時、反応に よって副生する大量のフエノールは通常、ガス状で連続的に抜き出され、液状に凝 縮されて回収される。本発明においては、工程 (IV)で副生するフエノールをジフエ二 ルカーボネート製造工程 (II)に循環するフエノールのリサイクル工程 (V)を行うことが 必要である。工業的製造方法においては、副生するフエノールを全量、またはできる だけロスを少なくして回収し、これを循環'再使用することが重要である。本発明のェ 程(IV)で副生し、回収された副生フエノールには、通常ジフエニルカーボネートが一 部含まれる力 S、純度が高いのでそのままで、ジフエ二ルカーボネート製造工程 (II)に 循環、再使用することも可能である。なお、回収されたフエノール中に少量の芳香族 ジヒドロキシ化合物や、微量のオリゴマーが混在する場合には、さらに蒸留を行ってこ れらの高沸点物質を除去した後に、ジフエ二ルカーボネート製造工程 (II)に循環、再 使用することが好ましい。
[0217] 本発明のシステムを実施することによって製造される芳香族ポリカーボネートは、下 記式で示される繰り返し単位を有する。
[0218] [化 6]
Figure imgf000074_0001
[0219] (式中、 Arは前述と同じである。)
特に好ましいのは、全繰り返し単位中、下記式で示される繰り返し単位が 85モル% 以上含まれる芳香族ポリカーボネートである。
[0220] [化 7]
Figure imgf000074_0002
[0221] また、本発明の方法を実施して製造される芳香族ポリカーボネートの末端基は、通 常ヒドロキシ基および/またはフエニルカーボネート基ほたは置換フエニルカーボネ ート基)からなつている。
[0222] ヒドロキシ基とフエニルカーボネート基(または置換フエニルカーボネート基)の比率 に特に制限はなレ、が、通常 95: 5〜5: 95の範囲であり、好ましくは 90: 10〜; 10: 90 の範囲であり、さらに好ましくは 80 : 20〜20: 80の範囲である。特に好ましいのは、 末端基中のフエ二ルカーボネート基(または置換フエ二ルカーボネート基)の占める 割合が 85モル%以上の芳香族ポリカーボネートである。
[0223] 本発明の方法を実施して製造される芳香族ポリカーボネートは、主鎖に対してエス テル結合やエーテル結合等の異種結合を介して部分的に分岐したものであってもよ い。該異種結合の量はカーボネート結合に対して、通常 0. 005〜2モル%であり、好 ましくは、 0. 01〜;!モノレ0 /0、であり、さらに好ましいのは、 0. 05—0. 5モノレ0 /0である 。このような量の異種結合は、他のポリマー物性を悪化させることなぐ溶融成形時の 流れ特性を向上させるので、精密成形に適しているし、比較的低温でも成形でき、性 能の優れた成形物を製造することができる。成形サイクルを短縮することもでき成形 時の省エネルギーにも貢献できる。
[0224] 本発明の方法を実施して製造される芳香族ポリカーボネート中には、不純物は殆ど 含まれないが、アルカリ金属および/またはアルカリ土類金属をそれらの金属元素と して、 0. 00;! lppm含有する芳香族ポリカーボネートを製造することができる。好ま しく (ま、この含有量力 0. 005—0. 5ppm、より好ましく (ま、 0. 01—0. lppmである。 このような金属元素が lppm以下、好ましくは、 0. 5ppm以下、より好ましくは、 0. lp pm以下である場合、製品芳香族ポリカーボネートの物性に悪影響を与えないので、 本発明で製造される芳香族ポリカーボネートは高品質である。
[0225] 本発明の方法を実施して製造される芳香族ポリカーボネートの中で特に好ましいの は、ハロゲンを含まない芳香族ジヒドロキシ化合物とジフエニルカーボネートを用いる ことにより製造されたものであって、ハロゲン含有量が通常、 lOppb以下である。本発 明の方法では、ハロゲン含有量が 5ppb以下のものも製造できるし、さらに好ましくは ハロゲン含有量が lppb以下の芳香族ポリカーボネートを製造することができるので、 非常に高品質の製品が得られることになる。
[0226] 本発明の方法で、分子量のバラツキのない芳香族ポリカーボネートを長時間安定 的に製造できるのは、特定の重合器を用いているためであることは、実施例によって 明らかである。
[0227] 以下、実施例により本発明をさらに具体的に説明する力 本発明は以下の実施例 に限定されるものではない。
'数平均分子量 (Mn):テトラヒドロフランを搬送溶媒として用い、ゲルパーミエーショ ンクロマトグラフィー(GPC)法で測定し、標準単分散ポリスチレンを用いて得た下式 による換算分子量較正曲線を用いて数平均分子量 (Mn)を求めた。
M =0. 3591M
PC PS
(式中、 M は芳香族ポリカーボネートの分子量、 M はポリスチレンの分子量を示す
PC PS
o ) 'カラー:射出成形機を用い、芳香族ポリカーボネートをシリンダー温度 290°C、金型 温度 90°Cで、縦 50mm X横 50mm X厚さ 3. 2mmの試験片を連続成形した。得ら れた試験片の色調は CIELAB法(Commission Internationale de l'Eclairag e 1976 Lab Diagram)により測定し、黄色度を b*値で示した。
'引張伸度:射出成形機を用レ、、芳香族ポリカーボネ一トをシリンダー温度 290°C、 金型温度 90°Cで射出成形した。得られた厚み 3. 2mmの試験片の引張伸度(%)は 、ASTM D638に準じて測定した。
'異種結合の量は、 W097/32916号公報記載の方法で測定され、アルカリ金属/ アルカリ土類金属は ICP法により、ハロゲンはイオンクロマト法でそれぞれ測定された
[実施例 1]
( 1 )ジメチルカーボネートとエチレングリコールを連続的に製造する工程 (I)
<連続多段蒸留塔 T >
0
図 1に示されるような L = 3300cm、 D = 300cm, L /Ό = 1 1、 η = 60、 D /ά
0 0 0 0 0 0 01
= 7. 5、D /d = 12 である連続多段蒸留塔を用いた。なお、この実施例では、ィ
0 02
ンターナルとして、多孔板部の孔 1個あたりの断面積 =約 1.
Figure imgf000076_0001
孔数 =約 180〜 320個/ m2を有する多孔板トレイを用いた。
<反応蒸留〉
液状のエチレンカーボネート 3. 27トン/ hrが下から 55段目に設置された導入口( 3— a)から蒸留塔 Tに連続的に導入された。ガス状のメタノール (ジメチルカーボネ
0
ートを 8. 96質量0 /0含む) 3. 238トン/ hrと液状のメタノール(ジメチルカーボネート を 6. 66質量%含む) 7. 489トン/ hrが、下から 31段目に設置された導入口(3— b および 3— c)から蒸留塔 Tに連続的に導入された。蒸留塔 Tに導入された原料のモ
0 0
ル比は、メタノール/エチレンカーボネート = 8 · 36であった。
触媒は 〇^1 (48質量%の水溶液) 2. 5トンにエチレングリコール 4. 8トンを加え、 約 130°Cに加熱し、徐々に減圧にし、約 1300Paで約 3時間加熱処理し、均一溶液 にしたものを用いた。この触媒溶液を、下から 54段目に設けられた導入口(3— e)か ら、蒸留塔 Tに連続的に導入した (K濃度:供給エチレンカーボネートに対して 0. 1 質量%)。塔底部の温度が 98°Cで、塔頂部の圧力が約 1. 1 18 X 105Pa、還流比が 0 . 42の条件下で連続的に反応蒸留が行われた。
[0229] 24時間後には安定的な定常運転が達成できた。塔頂部 1からガス状で抜き出され た低沸点反応混合物は熱交換器で冷却され液体にされた。蒸留塔から 10. 678トン /hrで連続的に抜き出された液状の低沸点反応混合物中のジメチルカーボネート は 4. 129卜ン/ hrで、メタノーノレは 6. 549卜ン/ hrであった。塔底咅 力、ら 3. 382卜 ン/ hrで連続的に抜出された液中の、エチレングリコールは、 2. 356トン/ hrで、メ タノールは 1. 014トン/ hr、未反応エチレンカーボネート 4kg/hrであった。原料に 含まれるジメチルカーボネートを除いた、ジメチルカーボネートの 1時間あたりの実質 生産量は 3. 340トン、触媒溶液に含まれるエチレングリコールを除いた、エチレング リコールの 1時間あたりの実質生産量は 2. 301トンであった。エチレンカーボネート の反応率は 99. 88 %で、ジメチルカーボネートの選択率は 99. 99%以上で、ェチレ ングリコールの選択率は 99. 99%以上であった。
[0230] この条件で長期間の連続運転を行った。 500時間後、 2000時間後、 4000時間後 、 5000時間後、 6000時間後の 1時間あたりの実質生産量は、ジメチルカーボネート 力 3. 340卜ン、 3. 340卜ン、 3. 340卜ン、 3. 340卜ン、 3. 340卜ン、 mチレングジ 一 ノレ力 2. 301トン、 2. 301トン、 2. 301トン、 2. 301トン、 2. 301トンであり、ェチレ ンカーボネー卜の反応率は 99. 90%、 99. 89%、 99. 89%、 99. 88 %、 99. 88 % 、で、ジメチルカーボネートの選択率は 99. 99%以上、 99. 99%以上、 99. 99%以 上、 99. 99%以上、 99. 99%以上で、エチレングリコールの選択率は 99. 99%以 上、 99. 99%以上、 99. 99%以上、 99. 99%以上、 99. 99%以上であった。
[0231] (2)ジフエ二ルカーボネートを連続的に製造する工程 (II)
<第 1連続多段蒸留塔 101〉
図 2に示されるような L = 3300cm、 D = 500cm, L /Ό = 6. 6、 η = 80、 D /ά
1 1 1 1 1 1
= 17、D /d = 9 である連続多段蒸留塔を用いた。なお、この実施例では、イン
11 1 12
ターナルとして、孔 1個あたりの断面積 =約 1 . 5cm2、孔数 =約 250個/ m2 を有す る多孔板トレイを用いた。
<第 2連続多段蒸留塔 201〉 図 3に示されるような L = 3100cm、 D = 500cm, L /D = 6. 2、 n = 30、 D /d = 3. 85、 D /d = 11. 1 である連続多段蒸留塔を用いた。なお、この実施例で
21 2 22
は、インターナルとして、上部にメラパック 2基 (合計理論段数 11段)を設置し、下部 に孔 1個あたりの断面積 =約 1. 3cm2、孔数 =約 250個/ m2 を有する多孔板トレイ を用いた。
[0232] <反応蒸留〉
図 4に示されるような第 1連続多段蒸留塔 101と第 2連続多段蒸留塔 201が接続さ れた装置を用いて反応蒸留を行い、ジフエ二ルカーボネートを製造した。
フエノール/ジメチルカーボネート = 1. 9 (重量比)からなる原料 1を第 1連続多段 蒸留塔 101の上部導入口 11から液状で 50トン/ hrの流量で連続的に導入した。一 方、ジメチルカーボネート/フエノール = 3. 6 (重量比)からなる原料 2を第 1連続多 段蒸留塔 101の下部導入口 12からガス状で 50トン/ hrの流量で連続的に導入した 。第 1連続多段蒸留塔 101に導入された原料のモル比は、ジメチルカーボネート/フ ェノール = 1. 35であった。この原料にはハロゲンは実質的に含まれていなかった(ィ オンクロマトグラフィーでの検出限界外で lppb以下)。触媒は Pb (OPh) として、反 応液中に約 lOOppmとなるように第 1連続多段蒸留塔 101の上部導入口 11から導 入された。第 1連続多段蒸留塔 101では塔底部の温度が 225°Cで、塔頂部の圧力 力 S7 X 105Paの条件下で連続的に反応蒸留が行われた。メチルアルコール、ジメチ ルカーボネート、フエノール等を含む第 1塔低沸点反応混合物を第 1塔の塔頂部 13 よりガス状で連続的に抜き出し、熱交換器 14を経て、抜出し口 16から 34トン/ hrの 流量で抜出した。一方、メチルフエ二ルカーボネート、ジメチルカーボネート、フエノー ノレ、ジフエ二ルカーボネート、触媒等を含む第 1塔高沸点反応混合物を第 1塔底部 1 7より液状で連続的に抜き出した。
[0233] 24時間後には安定した定常状態に達したので、第 1塔高沸点反応混合物をそのま ま第 2連続多段蒸留塔 201のメラパックと多孔板トレイとの間に設置されている原料 導入口 21から、 66トン /hrの流量で連続的に供給した。第 2連続多段蒸留塔 201に 供給された液には、メチルフエニルカーボネートが 18. 2質量%、ジフエニルカーボ ネートが 0. 8質量%含まれていた。第 2連続多段蒸留塔 201では塔底部の温度が 2 10°Cで、塔頂部の圧力が 3 X 104Pa、還流比が 0. 3の条件下で連続的に反応蒸留 が行われた。 24時間後には安定的な定常運転が達成できた。第 2塔塔頂部 23から ジメチルカーボネート 35質量%、フエノール 56質量%を含む第 2塔低沸点反応混合 物が連続的に抜き出され、抜出し口 26での流量は 55. 6トン/ hrで、第 2塔塔底部 2 7からはメチルフエニルカーボネート 38. 4質量%、ジフエニルカーボネート 55. 6質 量%を含む第 2塔高沸点反応混合物が連続的に抜出された。第 2塔低沸点反応混 合物は、導入口 11から第 1連続多段蒸留塔 101に連続的に供給された。この際、新 規に供給されるジメチルカーボネートとフエノールの量は、第 2塔低沸点反応混合物 の組成、量を勘案した上で、上記原料 1および原料 2の組成、量を維持するように調 整した。ジフエニルカーボネートの生産量は 1時間あたり 5. 74トンであることがわかつ た。反応したフエノールに対して、ジフエニルカーボネートの選択率は 98%であった
[0234] この条件で長期間の連続運転を行った。 500時間後、 2000時間後、 4000時間後 、 5000時間後、 6000時間後のジフエニルカーボネートの生産量(原料中に含まれ るジフエニルカーボネートを除く)は、 1時間あたり 5· 74トン、 5. 75トン、 5. 74トン、 5 . 74トン、 5. 75トンであり、選択率は 98%、 98%、 98%、 98%、 98%、であり、非常 に安定していた。また、製造された芳香族カーボネートには、ハロゲンは実質的に含 まれて!/、なかった(lppb以下)。
[0235] (3)高純度ジフエニルカーボネートを取得する工程 (III)
<高沸点物質分離塔 A〉
図 5に示されるような L = 1700cm, D = 340cmで、インターナルとして、 n = 30
A A A
のメラパックを設置した連続多段蒸留塔を該分離塔 Aとして用いた。
<ジフエ二ノレカーボネート精製塔 B〉
図 5に示されるような L = 2200cm、 D = 280cm、インターナルとして、 n = 12、
B B B1 n = 18、 n = 5である 3基のメラパックを設置した連続多段蒸留塔を該精製塔 Bとし
B2 B3
て用いた。
図 5に示される高沸点物質分離塔 Aとジフエニルカーボネート精製塔 Bからなる装 置を用いて、上記の工程 (II)で得られた第 2反応蒸留塔の高沸点反応混合物を導 入口 Alから該分離塔 Aに 13. 1トン/ hrで連続的に導入した。該分離塔 Aにおいて 塔底部の温度 (T )を 206°C、塔頂部の圧力(P )を 3800Paとし、還流比 0. 6で連
A A
続的に蒸留を行い、導管 16を通して塔頂成分 (A )を 12. 5トン /hrで連続的に抜き
T
出し、導管 11を通して塔底成分 (A )を 0. 6トン /hrで連続的に抜き出した。該塔頂
B
成分 (A )は、そのまま導入口 B1から該精製塔 Bに連続的に導入された。該精製塔
T
Bにおいて塔底部の温度 (T )を 213°C、塔頂部の圧力(P )を 5000Paとし、還流比
B B
1. 5で連続的に蒸留を行い、導管 26を通して塔頂成分 (B )を 5. 3トン/ hrで連続
T
的に抜き出し、導管 31を通して塔底成分 (B )を 0. 03トン /hrで連続的に抜き出し
B
、導管 33を通してサイドカット成分 (B )を 7. 17トン/ hrで連続的に抜き出した。
S
[0236] 系が完全に安定した 24時間後の各成分の組成は次のとおりであった。
A :メチルフエニルカーボネートより低沸点物質 6. 8質量% (ジメチルカーボネート: 0 τ
. 1質量%、ァニソール:0. 1質量%、フエノール: 6. 6質量%)、メチルフエ二ルカ一 ボネート 33. 8質量%、ジフエニルカーボネート 59. 4質量0 /0
A :ジフエニルカーボネート 41 · 0質量%、サリチル酸フエニル、キサントン、メトキ
B
シ安息香酸フエニル、 1 フエノキシカルボ二ルー 2—フエノキシカルボキシ一フエ二 レン等のジフヱニルカーボネートより高沸点の副生物および、触媒成分を含む高沸 点物質 59. 0質量%。
B :ジメチルカーボネート 0· 25質量0 /0、ァニソール 0· 25質量0 /0、フエノーノレ 15. 6 τ
質量%、メチルフエニルカーボネート 79. 6質量%、ジフエニルカーボネート 4. 3質 量0 /0
B :ジフエニルカーボネート 95. 0質量%、高沸点物質 5. 0質量%。
B
サイドカット成分(B )中のサリチル酸フエニル、キサントン、メトキシ安息香酸フエ二
s
ルの含有量はいずれも lppm以下であり、 1 フエノキシカルボ二ルー 2—フエノキシ カルボキシ一フエ二レンは 4ppmであった。また、ハロゲンの含有量は lppb以下であ つた。このこと力、ら、サイドカットから得られたジフエニルカーボネートの純度は 99. 99 9%以上であることがわかった。また、この高純度ジフエニルカーボネートの生産量は 、 1時間あたり 7· 17トンであった。
[0237] この条件で長期間の連続運転を行った。 500時間後、 2000時間後、 4000時間後 、 5000時間後、 6000時間後のジフエ二ルカーボネートの生産量および純度は実質 的に全く変わっていなかった。このようにして取得された高純度ジフエ二ルカーボネ ートは、一旦貯蔵タンクに溶融状態で貯蔵された。
[0238] (4)高品質芳香族ポリカーボネートを製造する工程 (IV)
図 7に示すようなガイド接触流下式重合器を用いて芳香族ポリカーボネートの製造 を行なった。この重合器の材質は、すべてステンレススチールである。この重合器は 円筒形側面ケーシングとテーパー形の底部ケーシングを有するものであって、 L= 1 , 000cm、 h = 900cm、 D = 500cm、 d = 40cm、 C = 155度 、 S = 250m2 である 。供給口 1から供給された溶融ポリマーは多孔板 2により各ガイド 4に均一に分配され る。重合器下部には不活性ガス供給口 9が備えられており、上部には真空ベント口 6 が備えられている。重合器の外側はジャケットになっており、熱媒で加温されている。
[0239] ビスフエノール Aと該高純度ジフエニルカーボネート(対ビスフエノール Aモル比 1.
05)とから製造された 260°Cに保たれた芳香族ポリカーボネートの溶融プレボリマー( 数平均分子量 Mnは 4, 000)が、供給ポンプによって供給口 1より供給ゾーン 3に連 続的に供給された。重合器内の多孔板 2を通して重合反応ゾーンに連続的に供給さ れた、溶融プレボリマーは、ガイド 4に沿って流下しながら重合反応が進められた。重 合反応ゾーンは真空ベント口 6を通して 80Paに保持されている。ガイド 4の下部から 重合器の底部 11に入ってきた生成芳香族ポリカーボネートは、該底部での量が一定 となるように排出ポンプ 8によって排出口 7から 5. 5トン/ hrの流量で連続的に抜き出 された。
[0240] 運転を開始してから 50時間後に抜き出し口 12から抜き出された芳香族ポリカーボ ネートの数平均分子量 Mnは 10, 500であり、良好なカラー(b*値 3. 2)であった。ま た、引張伸度は 98%であった。運転開始から、 60時間後、 100時間後、 500時間後 、 1 , 000時間後、 2, 000時間後、 3, 000時間後、 4, 000時間後、 5, 000時間後 に抜き出し口 12から抜き出された芳香族ポリカーボネートの Mnは、それぞれ、 10, 500、 10, 550、 10, 500、 10, 550、 10, 500、 10, 500、 10, 550、 10, 500であ り、安定であった。
このようにして製造された芳香族ポリカーボネートは、アルカリ金属および/または アルカリ土類金属化合物の含有量はこれらの金属元素に換算して、 0. 04-0. 05p pmであり、塩素の含有量は lppb以下であった。また、異種結合の含有量は 0. 12〜 0. 15モノレ%であった。
[0241] (5)フエノールのリサイクル工程 (V)
工程(IV)で副生し、液状で回収された約 10%のジフエニルカーボネートと微量の ビスフエノール Aを含むフエノール溶液力 フエノール精製塔(長さ 1500cm、内径 2 70cm, 9段)に連続的に供給された。塔底部の温度 185°C、塔頂部の圧力 2000Pa 、還流比 0. 9で連続的に蒸留が行われた。塔頂部から回収されたフエノールは、一 且、タンクに貯蔵された後、工程 (II)にリサイクルされた。サイドカット部から回収され たジフエニルカーボネートは、工程 (III)の高沸点物質分離塔 Aに供給され、高純度 ジフエニルカーボネートとして回収された。
[0242] [実施例 2]
[0243] (1)ジメチルカーボネートとエチレングリコールを連続的に製造する工程 (I)
実施例 1と同じ連続多段蒸留塔を用いて、下記の条件で反応蒸留を行った。
液状のエチレンカーボネート 2. 61トン/ hrが下から 55段目に設置された導入口( 3— a)から蒸留塔に連続的に導入された。ガス状のメタノール (ジメチルカーボネート を 2. 41質量0 /0含む) 4. 233トン/ hrと液状のメタノール(ジメチルカーボネートを 1. 46質量%含む) 4. 227トン/ hrが、下から 31段目に設置された導入口(3— bおよ び 3— c)から蒸留塔に連続的に導入された。蒸留塔に導入された原料のモル比は、 メタノール/エチレンカーボネート = 8. 73であった。触媒は実施例 1と同様にして、 蒸留塔に連続的に供給された。塔底部の温度が 93°Cで、塔頂部の圧力が約 1. 04 6 X 105Pa、還流比が 0. 48の条件下で連続的に反応蒸留が行われた。
[0244] 24時間後には安定的な定常運転が達成できた。塔頂部 1からガス状で抜き出され た低沸点反応混合物は熱交換器で冷却され液体にされた。蒸留塔から 8. 17トン/ hrで連続的に抜き出された液状の低沸点反応混合物中のジメチルカーボネートは 2 . 84トン/ hrで、メタノーノレは 5. 33トン/ hrであった。塔底咅 力、ら 2. 937トン/ hr で連続的に抜出された液中の、エチレングリコールは、 1. 865トン/ hrで、メタノー ルは 1 · 062トン/ hr、未反応エチレンカーボネート 0· 2kg/hrであった。原料に含ま れるジメチルカーボネートを除いた、ジメチルカーボネートの 1時間あたりの実質生産 量は 2· 669トン、触媒溶液に含まれるエチレングリコールを除いた、エチレングリコー ルの 1時間あたりの実質生産量は 1. 839トンであった。エチレンカーボネートの反応 率は 99. 99%で、ジメチルカーボネートの選択率は 99. 99%以上で、エチレングリ コールの選択率は 99. 99%以上であった。
[0245] この条件で長期間の連続運転を行った。 1000時間後、 2000時間後、 3000時間 後、 5000時間後の 1時間あたりの実質生産量は、ジメチルカーボネートが 2. 669ト ン、 2. 669卜ン、 2. 669卜ン、 2. 669卜ンであり、エチレング!;コーノレ力 1. 839卜ン、 1. 839トン、 1. 839トン、 1. 839トンであり、エチレンカーボネー卜の反応率は 99. 9 9%, 99. 99%, 99. 99%, 99. 990/0で、ジメチノレカーボネートの選択率 (ま 99. 99 %以上、 99. 99%以上、 99. 99%以上、 99. 99%以上で、エチレングリコールの選 択率は 99· 99%以上、 99. 99%以上、 99. 99%以上、 99. 99%以上であった。
[0246] (2)ジフエニルカーボネートを連続的に製造する工程 (II)
実施例 1と同じ装置を用いて、下記の条件で反応蒸留を行った。
フエノール/ジメチルカーボネート = 1. 1 (重量比)からなる原料 1を第 1連続多段 蒸留塔 101の上部導入口 11から液状で 40トン/ hrの流量で連続的に導入した。一 方、ジメチルカーボネート/フエノール = 3. 9 (重量比)からなる原料 2を第 1連続多 段蒸留塔 101の下部導入口 12からガス状で 43トン/ hrの流量で連続的に導入した 。第 1連続多段蒸留塔 101に導入された原料のモル比は、ジメチルカーボネート/フ ェノール = 1. 87であった。この原料にはハロゲンは実質的に含まれていなかった(ィ オンクロマトグラフィーでの検出限界外で lppb以下)。触媒は Pb (OPh) として、反 応液中に約 250ppmとなるように第 1連続多段蒸留塔 101の上部導入口 11から導 入された。第 1連続多段蒸留塔 101では塔底部の温度が 235°Cで、塔頂部の圧力 力 S9 X 105Paの条件下で連続的に反応蒸留が行われた。メチルアルコール、ジメチ ルカーボネート、フエノール等を含む第 1塔低沸点反応混合物を第 1塔の塔頂部 13 よりガス状で連続的に抜き出し、熱交換器 14を経て、抜出し口 16から 43トン/ hrの 流量で抜出した。一方、メチルフエ二ルカーボネート、ジメチルカーボネート、フエノー ノレ、ジフエ二ルカーボネート、触媒等を含む第 1塔高沸点反応混合物を第 1塔底部 1 7より液状で連続的に抜き出した。
[0247] 24時間後には安定した定常状態に達したので、第 1塔高沸点反応混合物をそのま ま第 2連続多段蒸留塔 201のメラパックと多孔板トレイとの間に設置されている原料 導入口 21から、 40トン /hrの流量で連続的に供給した。第 2連続多段蒸留塔 201に 供給された液には、メチルフエニルカーボネートが 20. 7質量%、ジフエニルカーボ ネートが 1. 0質量%含まれていた。第 2連続多段蒸留塔 201では塔底部の温度が 2 05°Cで、塔頂部の圧力が 2 X 104Pa、還流比が 0. 5の条件下で連続的に反応蒸留 が行われた。 24時間後には安定的な定常運転が達成できた。第 2塔塔頂部 23から 第 2塔低沸点反応混合物が連続的に抜き出され、第 2塔塔底部 27からはメチルフエ ニルカーボネート 36. 2質量%、ジフエニルカーボネート 60. 8質量%を含む第 2塔 高沸点反応混合物が連続的に抜出された。第 2塔低沸点反応混合物は、導入口 11 から第 1連続多段蒸留塔 101に連続的に供給された。この際、新規に供給されるジメ チルカーボネートとフエノールの量は、第 2塔低沸点反応混合物の組成、量を勘案し た上で、上記原料 1および原料 2の組成、量を維持するように調整した。ジフエ二ルカ ーボネートの生産量は 1時間あたり 4. 03トンであることがわかった。反応したフエノー ルに対して、ジフエニルカーボネートの選択率は 97%であった。
[0248] この条件で長期間の連続運転を行った。 500時間後、 1000時間後、 2000時間後 のジフエ二ノレカーボネー卜の 1時間あたりの生産量は 4. 03卜ン、 4. 03卜ン、 4. 04卜ン であり、反応したフエノールに対して選択率は 97%、 97%、 97%であり、非常に安定 していた。また、製造されたジフエニルカーボネートには、ハロゲンは実質的に含まれ ていなかった(lppb以下)。
[0249] (3)高純度ジフエニルカーボネートを取得する工程 (III)
実施例 1と同様な方法で行われた。
[0250] (4)高品質芳香族ポリカーボネートを製造する工程 (IV)
実施例 1と同じ重合器に、ビスフエノール Aと高純度ジフエ二ルカーボネート(対ビス フエノール Aモル比 1 · 05)とから製造された芳香族ポリカーボネートの溶融プレポリ マー(数平均分子量 Mnは 3, 500) 1S 供給ポンプによって供給口 1より供給ゾーン 3 に連続的に供給された。重合反応ゾーンの圧力が lOOPaに保持されている以外は 実施例 1と同様な方法により重合させて芳香族ポリカーボネートを製造した。運転開 台力、ら、 50日寺間後、 100日寺間後、 500日寺間後、 1 , 000日寺間後、 2, 000日寺間後、 3, 0 00時間後、 4, 000時間後、 5, 000時間後に排出口 19から排出された芳香族ポリ力 ーボネートの Mnは、それぞれ、 7, 600、 7, 600、 7 , 650 7, 600、 7, 650、 7, 65 0、 7, 600、 7, 600であり、安定であった。
このようにして製造された芳香族ポリカーボネートは、アルカリ金属および/または アルカリ土類金属化合物の含有量はこれらの金属元素に換算して、 0. 03力、ら 0. 04 ppmであり、塩素の含有量は lppb以下であった。また、異種結合の含有量は 0. 08 〜0· 1モノレ%であった。
[0251] (5)フエノールのリサイクル工程 (V)
実施例 1と同様な方法で行われた。
[0252] [実施例 3]
( 1 )ジメチルカーボネートとエチレングリコールを連続的に製造する工程 (I)
図 1に示されるような L = 3300cm、 D = 300cm, L /Ό = 1 1、 η = 60、 D /ά
0 0 0 0 0 0 01
= 7. 5、D /d = 12 である連続多段蒸留塔 Τを用いた。なお、この実施例では、
0 02 0
インターナルとして、多孔板部の孔 1個あたりの断面積 =約 1. 3cm2 ,孔数 =約 220 〜340個/ m2を有する多孔板トレイを用いた。
液状のエチレンカーボネート 3. 773トン/ hrが下から 55段目に設置された導入口 (3— a)から蒸留塔 Tに連続的に導入された。ガス状のメタノール (ジメチルカーボネ
0
ートを 8. 97質量0 /0含む) 3. 736トン/ hrと液状のメタノール(ジメチルカーボネート を 6. 65質量%含む) 8. 641トン/ hrが、下から 31段目に設置された導入口(3— b および 3— c)から蒸留塔 Tに連続的に導入された。蒸留塔 Tに導入された原料のモ
0 0
ル比は、メタノール/エチレンカーボネート = 8. 73であった。触媒は実施例 1と同様 にして、蒸留塔 Tに連続的に供給された。塔底部の温度が 98°Cで、塔頂部の圧力
0
が約 1. 1 18 X 105Pa、還流比が 0. 42の条件下で連続的に反応蒸留が行われた。
[0253] 24時間後には安定的な定常運転が達成できた。塔頂部からガス状で抜き出された 低沸点反応混合物は熱交換器で冷却され液体にされた。蒸留塔から 12. 32トン/ h rで連続的に抜き出された液状の低沸点反応混合物中のジメチルカーボネートは 4. 764トン/ hrで、メタノーノレは 7. 556トン/ hrであった。塔底咅力、ら 3. 902トン/ hr で連続的に抜出された液中の、エチレングリコールは、 2. 718トン/ hrで、メタノー ノレは 1 · 17トン/ hr、未反応エチレンカーボネート 4· 6kg/hrであった。原料に含ま れるジメチルカーボネートを除いた、ジメチルカーボネートの 1時間あたりの実質生産 量は 3· 854トン、触媒溶液に含まれるエチレングリコールを除いた、エチレングリコー ルの 1時間あたりの実質生産量は 2. 655トンであった。エチレンカーボネートの反応 率は 99. 88%で、ジメチルカーボネートの選択率は 99. 99%以上で、エチレングリ コールの選択率は 99. 99%以上であった。
[0254] この条件で長期間の連続運転を行った。 1000時間後、 2000時間後、 3000時間 後、 5000時間後の 1時間あたりの実質生産量は、ジメチルカーボネートが 3. 854ト ン、 3. 854卜ン、 3. 854卜ン、 3. 854卜ンであり、エチレングリコーノレ力 2. 655卜ン、 2. 655卜ン、 2. 655卜ン、 2. 655卜ンであり、エチレンカーボネー卜の反応率は 99. 9 9% , 99. 99% , 99. 99% , 99. 990/0で、ジメチノレカーボネートの選択率 (ま 99. 99 %以上、 99. 99%以上、 99. 99%以上、 99. 99%以上で、エチレングリコールの選 択率は 99· 99%以上、 99. 99%以上、 99. 99%以上、 99. 99%以上であった。
[0255] (2)ジフエニルカーボネートを連続的に製造する工程 (II)
第 2連続多段蒸留塔 201における多孔板トレイの孔 1個あたりの断面積 =約 1. 8c m2とする以外は実施例 1と同じ装置を用いて、下記の条件で反応蒸留を行った。 フエノール/ジメチルカーボネート = 1. 7 (重量比)からなる原料 1を第 1連続多段 蒸留塔 101の上部導入口 11から液状で 86トン/ hrの流量で連続的に導入した。一 方、ジメチルカーボネート/フエノール = 3. 5 (重量比)からなる原料 2を第 1連続多 段蒸留塔 101の下部導入口 12からガス状で 90トン/ hrの流量で連続的に導入した 。第 1連続多段蒸留塔 101に導入された原料のモル比は、ジメチルカーボネート/フ ェノール = 1. 44であった。この原料にはハロゲンは実質的に含まれていなかった(ィ オンクロマトグラフィーでの検出限界外で lppb以下)。触媒は Pb (OPh) として、反 応液中に約 150ppmとなるように第 1連続多段蒸留塔 101の上部導入口 11から導 入された。第 1連続多段蒸留塔 101では塔底部の温度が 220°Cで、塔頂部の圧力 力 S8 X 105Paの条件下で連続的に反応蒸留が行われた。メチルアルコール、ジメチ ルカーボネート、フエノール等を含む第 1塔低沸点反応混合物を第 1塔の塔頂部 13 よりガス状で連続的に抜き出し、熱交換器 14を経て、抜出し口 16から 82トン/ hrの 流量で抜出した。一方、メチルフエ二ルカーボネート、ジメチルカーボネート、フエノー ノレ、ジフエ二ルカーボネート、触媒等を含む第 1塔高沸点反応混合物を第 1塔底部 1 7より液状で連続的に抜き出した。
[0256] 24時間後には安定した定常状態に達したので、第 1塔高沸点反応混合物をそのま ま第 2連続多段蒸留塔 201のメラパックと多孔板トレイとの間に設置されている原料 導入口 21から、 94トン /hrの流量で連続的に供給した。第 2連続多段蒸留塔 201に 供給された液には、メチルフエニルカーボネートが 16. 0質量%、ジフエニルカーボ ネートが 0. 5質量%含まれていた。第 2連続多段蒸留塔 201では塔底部の温度が 2 15°Cで、塔頂部の圧力が 2. 5 X 104Pa、還流比が 0. 4の条件下で連続的に反応蒸 留が行われた。 24時間後には安定的な定常運転が達成できた。第 2塔塔頂部 23か ら第 2塔低沸点反応混合物が連続的に抜き出され、第 2塔塔底部 27からはメチルフ ェニルカーボネート 35. 5質量%、ジフエニルカーボネート 59. 5質量%を含む第 2塔 高沸点反応混合物が連続的に抜出された。第 2塔低沸点反応混合物は、導入口 11 から第 1連続多段蒸留塔 101に連続的に供給された。この際、新規に供給されるジメ チルカーボネートとフエノールの量は、第 2塔低沸点反応混合物の組成、量を勘案し た上で、上記原料 1および原料 2の組成、量を維持するように調整した。ジフエ二ルカ ーボネートの生産量は 1時間あたり 7. 28トンであることがわかった。反応したフエノー ルに対して、ジフエニルカーボネートの選択率は 98%であった。
[0257] この条件で長期間の連続運転を行った。 500時間後、 1000時間後、 2000時間後 のジフエニルカーボネー卜の 1時間あたりの生産量は 7. 28卜ン、 7. 29卜ン、 7. 29卜ン であり、反応したフエノールに対して選択率は 98%、 98%、 98%であり、非常に安定 していた。また、製造された芳香族カーボネートには、ハロゲンは実質的に含まれて いなかった(lppb以下)。
[0258] (3)高純度ジフエニルカーボネートを取得する工程 (III)
実施例 1と同様な方法で行われた。
(4)高品質芳香族ポリカーボネートを製造する工程 (IV) 図 7に示すようなガイド接触流下式重合器 2基を直列に配置した重合装置を用いて 芳香族ポリカーボネートの製造を行なった。これらの重合器の材質は、すべてステン レススチールである。ガイド接触流下式第 1重合器は円筒形側面ケーシングとテーパ 一形の底部ケーシングを有するものであって、 L = 950cm、 h = 850cm、 D = 400c m、 d = 20cm、 C = 150度 、 S = 750m2 である。第 2重合器は実施例 1で用いた ものと同じものである。
[0259] ビスフエノーノレ Aとジフエニルカーボネート(対ビスフエノーノレ Aモル比 1 · 06)と力、ら 製造された芳香族ポリカーボネートの溶融プレボリマー(数平均分子量 Mnは 2, 500 )が、供給ポンプによって第 1重合器の供給口 1より供給ゾーン 3に連続的に供給され た。第 1重合器内の多孔板 2を通して重合反応ゾーンに連続的に供給された、該溶 融プレポリマーは、ガイド 4に沿って流下しながら重合反応が進められた。第 1重合器 の重合反応ゾーンは真空ベント口 6を通して 800Paの圧力に保持されている。ガイド 4の下部から重合器の底部 11に入ってきた重合度の高められた芳香族ポリカーボネ ートの溶融プレポリマー(数平均分子量 Mnは 5, 500)は、該底部での量が一定とな るように排出ポンプ 8によって排出口 7から一定の流量で連続的に抜き出された。この 溶融プレボリマーが、供給ポンプによって第 2重合器の供給口 1より供給ゾーン 3に 連続的に供給された。第 2重合器内の多孔板 2を通して重合反応ゾーンに連続的に 供給された、該溶融プレボリマーは、ガイド 4に沿って流下しながら重合反応が進め られた。第 2重合器の重合反応ゾーンは真空ベント口 6を通して 50Paの圧力に保持 されて!/、る。ガイド 4の下部から第 2重合器の底部 11に入ってきた生成芳香族ポリ力 ーボネートは、該底部での量が一定となるように排出ポンプ 8によって排出口 7から 6 トン/ hrの流量で連続的に抜き出された。
[0260] 運転を開始してから 50時間後に第 2重合器の抜き出し口 12から抜き出された芳香 族ポリカーボネートの数平均分子量 Mnは 11 , 500であり、良好なカラー(b*値 3. 2) であった。また、引張伸度は 99%であった。運転開始から、 60時間後、 100時間後、 500時間後、 1 , 000時間後、 2, 000時間後、 3, 000時間後、 4, 000時間後、 5, 0 00時間後に抜き出し口 12から抜き出された芳香族ポリカーボネートの Mnは、それ ぞれ、 11 , 500、 1 1 , 550、 11 , 500、 11 , 550、 11 , 500、 11 , 500、 11 , 550、 11 , 500であり、安定であった。
このようにして製造された芳香族ポリカーボネートは、アルカリ金属および/または アルカリ土類金属化合物の含有量はこれらの金属元素に換算して、 0. 03力、ら 0. 05 ppmであり、塩素の含有量は lppb以下であった。また、異種結合の含有量は 0. 11 〜0· 16モノレ%であった。
[0261] (5)フエノールのリサイクル工程 (V)
実施例 1と同様な方法で行われた。
産業上の利用可能性
[0262] 本発明によれば、本発明の方法を実施することによって、環状カーボネートと芳香 族ジヒドロキシ化合物から、着色がなく機械的物性に優れた高品質 ·高性能の芳香 族ポリカーボネートが、高い重合速度で、 1時間当り 1トン以上の工業的規模で製造 できること力 S見出された。しかも分子量のバラツキが少なぐ長期間、たとえば 2000時 間以上、好ましくは 3000時間以上、さらに好ましくは 5000時間以上、安定的に高品 質芳香族ポリカーボネートが製造できることも見出された。したがって、本発明は高品 質芳香族ポリカーボネートの工業的製造方法として極めて優れた効果のある方法で ある。
図面の簡単な説明
[0263] [図 1]本発明を実施するのに好ましい連続反応蒸留塔 Τの概略図である。胴部内部
0
には多孔板トレイからなるインターナルが設置されている。
[図 2]本発明を実施するのに好ましい第 1連続反応蒸留塔の概略図である。胴部内 部にはインターナルが設置されている。
[図 3]本発明を実施するのに好ましい第 2連続反応蒸留塔の概略図である。胴部内 部には上部に規則充填物、下部に多孔板トレイからなるインターナルが設置されて いる。
[図 4]本発明を実施するのに好ましい、第 1連続反応蒸留塔と第 2連続反応蒸留塔と を連結した装置の概略図である。
[図 5]本発明を実施するのに好ましい、高沸点物質分離塔 Αとジフエニルカーボネー ト精製塔 Bを連結した装置の概略図である。 園 6]本発明を実施するのに好ましいガイド接触流下式重合器の概略図である。 園 7]本発明を実施するのに好ましい円筒形の側面ケーシングおよびテーパー形の 底部ケーシングを有するガイド接触流下式重合器の概略図である
符号の説明
(図 1)
1:ガス抜出し口、 2:液抜出し口、 3— aから 3— e:導入口、 4— aから 4— b:導入口、 5 :鏡板部、 6:インターナル、 10:連続多段蒸留塔、 L:胴部長さ(cm)、 D:胴部内径
0 0
(cm)、d :ガス抜出し口の内径(cm)、 d :液抜出し口の内径(cm)
01 02
(図 2、図 3および図 4)
1:ガス抜出し口、 2:液抜出し口、 3:導入口、4:導入口、 5:鏡板部、 L、L:胴部長
1 2 さ(cm)、D、D:胴部内径(cm)、d 、 d :ガス抜出し口内径(cm)、 d 、 d :液抜出
1 2 11 21 12 22 し口内径 (cm)、 101:第 1連続多段蒸留塔、 201:第 2連続多段蒸留塔、 11、 12、 2 1:導入口、 13、 23:塔頂ガス抜出し口、 14、 24、 18, 28:熱交換器、 17、 27:塔底 液抜出し口、 16、 26:塔頂成分抜出し口、 31:第 2連続多段蒸留塔塔底成分抜出し P
(図 5)
Al、 B1:導入口、 B2:サイドカット抜出し口、 11:高沸点物質分離塔 Aの塔底成分 抜出し口、 13、 23:塔頂ガス抜出し口、 14、 24、 18、 28、 38:熱交換器、 15、 25:還 流液導入口、 16:高沸点物質分離塔 Aの塔頂成分抜出し口、 17、 27:塔底液抜出 し口、 26:ジフエニルカーボネート精製塔 Bの塔頂成分抜出し口、 31:ジフエ二ルカ ーボネート精製塔 Bの塔底成分抜出し口、 33:ジフエニルカーボネート精製塔 Bのサ イドカット成分抜出し口、
(図 6および図 7)
1:溶融プレボリマー受給口、 2:多孔板、 3:溶融プレボリマー供給ゾーン、 4:ガイド、 5:重合反応ゾーン、 6:真空ベント口、 7:芳香族ポリカーボネート排出口、 8:芳香族 ポリカーボネート排出ポンプ、 9:所望により使用される不活性ガス供給口、 10:重合 反応ゾーンの側面ケーシング、 11:重合反応ゾーンのテーパー形の底部ケーシング 、 12:芳香族ポリカーボネートの抜き出し口

Claims

請求の範囲 環状カーボネートと芳香族ジヒドロキシ化合物から高品質芳香族ポリカーボネートを 工業的規模で連続的に製造する方法であって、 (I)環状カーボネートと脂肪族 1価アルコールとを触媒が存在する連続多段蒸留塔 T内に連続的に供給し、該塔内で反応と蒸留を同時に行い、生成するジアルキル力0 ーボネートを含む低沸点反応混合物を塔上部よりガス状で連続的に抜出し、ジォー ル類を含む高沸点反応混合物を塔下部より液状で連続的に抜出す反応蒸留方式に よって、ジアルキルカーボネートとジオール類を連続的に製造する工程 (I)と、 (II)該ジアルキルカーボネートとフエノールとを原料とし、この原料を均一系触媒が 存在する第 1連続多段蒸留塔内に連続的に供給し、該第 1塔内で反応と蒸留を同時 に行い、生成するアルコール類を含む第 1塔低沸点反応混合物を該第 1塔上部より ガス状で連続的に抜出し、生成するアルキルフエ二ルカーボネート類を含む第 1塔高 沸点反応混合物を該第 1塔下部より液状で連続的に抜出し、該第 1塔高沸点反応混 合物を触媒が存在する第 2連続多段蒸留塔内に連続的に供給し、該第 2塔内で反 応と蒸留を同時に行い、生成するジアルキルカーボネート類を含む第 2塔低沸点反 応混合物を該第 2塔上部よりガス状で連続的に抜出し、生成するジフエニルカーボネ 一ト類を含む第 2塔高沸点反応混合物を該第 2塔下部より液状で連続的に抜出し、 一方、ジアルキルカーボネート類を含む第 2塔低沸点反応混合物を第 1連続多段蒸 留塔内に連続的に供給することによって、ジフエ二ルカーボネートを連続的に製造す る工程 (II)と、 (III)該ジフエ二ルカーボネートを含む第 2塔高沸点反応混合物を高沸点物質分離 塔 Aに連続的に導入し、ジフエニルカーボネートを含む塔頂成分 (A )と触媒を含む T 塔底成分 (A )に連続的に蒸留分離し、次いで該塔頂成分 (A )を、サイドカット抜き B T 出し口を有するジフエ二ルカーボネート精製塔 Bに連続的に導入し、塔頂成分 (B ) T 、サイドカット成分 (B )、塔底成分 (B )の 3つの成分に連続的に蒸留分離することに S B よって、サイドカット成分として高純度ジフエニルカーボネートを取得する精製工程 (II I)と、 (IV)該芳香族ジヒドロキシ化合物と該高純度ジフエ二ルカーボネートとを反応させ て芳香族ポリカーボネートの溶融プレボリマーを製造し、該溶融プレボリマーをガイド の表面に沿って流下せしめ、その流下中に該溶融プレボリマーの重合を行わせるガ イド接触流下式重合器を用いて芳香族ポリカーボネートを製造する工程 (IV)と、(V)工程 (IV)で副生するフエノールをジフエニルカーボネート製造工程 (II)に循環 するフエノールのリサイクル工程 (V)と、 を含み、 (a)該連続多段蒸留塔 T 、長さし (cm) ,内径 D (cm)の円筒形の胴部を有し、 0 0 0 内部に段数 nをもつインターナルを有する構造をしており、塔頂部またはそれに近い 0 塔の上部に内径 d (cm)のガス抜出し口、塔底部またはそれに近い塔の下部に内 01 径 d (cm)の液抜出し口、該ガス抜出し口より下部であって塔の上部および/または02 中間部に 1つ以上の第 1の導入口、該液抜出し口より上部であって塔の中間部およ び/または下部に 1つ以上の第 2の導入口を有するものであって、 L、 D、 L /D、 0 0 0 0 n、D /d 、D /d 力 それぞれ式(1)〜(6)を満足するものであり、 01 0 02 2100 < L < 8000 式 (1) 0 180 < D < 2000 式 (2) 0 4 < ) ≤ 40 式 (3) 0 0 10 < n < 120 式 (4) 0 3 < D , Zd ≤ 20 式 (5) 0 01 5 < D , Zd ≤ 30 式 (6) (b)該第 1連続多段蒸留塔が、長さ L (cm) ,内径 D (cm)の円筒形の胴部を有し 1 1 、内部に段数 nをもつインターナルを有する構造をしており、塔頂部またはそれに近 1 い塔の上部に内径 d (cm)のガス抜出し口、塔底部またはそれに近い塔の下部に内 11 径 d (cm)の液抜出し口、該ガス抜出し口より下部であって塔の上部および/または12 中間部に 1つ以上の第 3の導入口、該液抜出し口より上部であって塔の中間部およ び/または下部に 1つ以上の第 4の導入口を有するものであって、 L、 D、 L /D、 1 1 1 1 n、D /d 、D /d 力 S、それぞれ式(7)〜(; 12)を満足するものであり、 1 1 11 1 12 1500 ≤ L ≤ 8000 式(7) 1 100 ≤ D ≤ 2000 式(8) 2 ≤ L /D ≤ 40 式(9) 1 1 20 ≤ n ≤ 120 式(10) 1 5 ≤ D /d ≤ 30 式(11) 1 11 3 ≤ D /d ≤ 20 式(12) (c)該第 2連続多段蒸留塔が、長さ L2 (cm)、内径 (cm)の円筒形の胴部を有し、 内部に段数 nをもつインターナルを有する構造をしており、塔頂部またはそれに近い 塔の上部に内径 d (cm)のガス抜出し口、塔底部またはそれに近い塔の下部に内 21 径 d (cm)の液抜出し口、該ガス抜出し口より下部であって塔の上部および/または22 中間部に 1つ以上の第 5の導入口、該液抜出し口より上部であって塔の中間部およ び/または下部に 1つ以上の第 6の導入口を有するものであって、 L、 D、 L /D、 n、D /d 、D /d 力 S、それぞれ式(13)〜(; 18)を満足するものであり、 21 2 22 1500 < L ≤ 8000 式(13) 2 100 < D ≤ 2000 式(14) 2 2 < ,D ≤ 40 式(15) 2 2 10 < n ≤ 80 式(16) 2 2 < D , Zd ≤ 15 式(17) 2 21 5 < D , Zd ≤ 30 式(18) 2 22 (d)該高沸点物質分離塔 Aが、下記式(19)〜(21)を満足する、長さし (cm) ,内 A 径 D (cm)で、内部に段数 nのインターナルを有する連続多段蒸留塔であり、 A A 800 ≤ L ≤ 3000 式(19) A 100 ≤ D ≤ 1000 式(20) A 20 ≤ n ≤ 100 式(21) A 該ジフエニルカーボネート精製塔 B力 下記式(22)〜(27)を満足する、長さし (cm B )、内径 D (cm)で、内部にインターナルを有するものであって、塔の中段に導入口 B B
1、該導入口 B1と塔底との間にサイドカット抜き出し口 B2を有し、導入口 B1から上部 のインターナルの段数が n 、導入口 B1とサイドカット抜き出し口 B2との間のインター
B1
ナルの段数が n 、サイドカット抜き出し口 B2から下部のインターナルの段数が n で
B2 B3
、段数の合計 (n +n +n )が1 である連続多段蒸留塔であり、 1000 < L < 5000 式(22)
B
100 < D < 1000 式(23)
B
5 < n < 20 式(24)
Bl
12 < n < 40 式(25)
B2
3 < n < 15 式(26)
B3
20 < n < 70 式(27)
(e)該ガイド接触流下式重合器が、
(1)溶融プレボリマー受給口、多孔板、該多孔板を通して該溶融プレボリマーを重 合反応ゾーンのガイドに供給するための溶融プレボリマー供給ゾーン、該多孔板と側 面ケーシングとテーパー形の底部ケーシングとに囲まれた空間に該多孔板から下方 に延びる複数のガイドが設けられた重合反応ゾーン、該重合反応ゾーンに設けられ た真空ベント口、テーパー形の底部ケーシングの最下部に設けられた芳香族ポリ力 ーボネート排出口、及び該排出口に接続された芳香族ポリカーボネート排出ポンプ を有するものであって、
(2)該重合反応ゾーンの側面ケーシングの水平面における内部断面積 A (m2)が、 式(28)を満足するものであって、
0. 7 ≤ A ≤ 300 式(28)
(3)該 A (m2)と、芳香族ポリカーボネート排出口の水平面における内部断面積 B (m2 )との比が、式(29)を満足するものであって、
20 ≤ A/B ≤ 1000 式(29)
(4)該重合反応ゾーンの底部を構成するテーパー形の底部ケーシンダカ 上部の側 面ケーシングに対してその内部において、角度 C度で接続されており、該角度 C度が 式(30)を満足するものであって、
120 ≤ C ≤ 165 式(30)
(5)該ガイドの長さ h (cm)が、式(31)を満足するものであって、
150 ≤ h ≤ 5000 式(31)
(6)該ガイド全体の外部総表面積 S (m2)が式(32)を満足するものである、
2 ≤ S ≤ 50000 式(32) ことを特徴とする高品質芳香族ポリカーボネートを工業的規模で製造する方法。
[2] 製造される芳香族ポリカーボネートが 1時間あたり 1トン以上であることを特徴とす る請求項 1に記載の方法。
[3] 工程 (I)で用いられる該連続多段蒸留塔 Tの該 d と該 d が式(33)を満足すること
0 01 02
を特徴とする請求項 1または 2に記載の方法
1 ≤ d /d ≤ 5 式(33)。
01 02
[4] 該連続多段蒸留塔 Tの L、 D、 L /D、 n、 D /d 、 D /d がそれぞれ、 23
0 0 0 0 0 0 0 01 0 02
00≤L ≤6000、 200≤D ≤1000、 5≤L /Ό ≤30、 30≤η ≤100、 4≤D
0 0 0 0 0
/ά ≤15、 7≤D /ά ≤25であることを特徴とする請求項 1〜3のうち何れいず
0 01 0 02
れか一項に記載の方法。
[5] 該連続多段蒸留塔 Τの L、 D、 L /D、 n、 D /d 、 D /d がそれぞれ、 25
0 0 0 0 0 0 0 01 0 02
00≤L ≤5000、 210≤D ≤800、 7≤L /Ό ≤20、 40≤η ≤90、 5≤D /
0 0 0 0 0 0 d ≤13、 9≤D /ά ≤20であることを特徴とする請求項 1〜4のうち何れいずれか
01 0 02
一項に記載の方法。
[6] 該連続多段蒸留塔 τ 、該インターナルとしてトレイおよび/または充填物を有す
0
る蒸留塔であることを特徴とする請求項 1〜5のうち何れいずれか一項に記載の方法
[7] 該連続多段蒸留塔 Τ ヽ該インターナルとしてトレィを有する棚段式蒸留塔である
0
ことを特徴とする請求項 6記載の方法。
[8] 該連続多段蒸留塔 Τの該トレイが多孔板部とダウンカマー部を有する多孔板トレイ
0
であることを特徴とする請求項項 6または 7記載の方法。
[9] 該連続多段蒸留塔 Τの該多孔板トレイが該多孔板部の面積 lm2あたり 100〜; 100
0
0個の孔を有するものであることを特徴とする請求項 8記載の方法。
[10] 該連続多段蒸留塔 Tの該多孔板トレイの孔 1個あたりの断面積が 0. 5〜5cm2であ
0
ることを特徴とする請求項 8または 9記載の方法。
[11] 該連続多段蒸留塔 Tの該多孔板トレイの開口率(多孔板部の面積に対する全孔断
0
面積の割合)が 1. 5〜; 15%であることを特徴とする請求項 8〜; 10のうち何れか一項 に記載の方法。 [12] 工程 (II)で用いられる該第 1連続多段蒸留塔の該 d と該 d が式(34)を満足し、且
11 12
っ該第 1連続多段蒸留塔の該 d と該 d が式(35)を満足することを特徴とする請求
21 22
項;!〜 11のうち何れか一項に記載の方法
1 ≤ d /d ≤ 5 式(34)
12 11
1 ≤ d /d ≤ 6 式(35)。
21 22
[13] 工程 (II)で用いられる該第 1連続多段蒸留塔の L、 D、 L /D、 n、 D /d 、 D
1 1 1 1 1 1 11 1
/d 力 Sそれぞれ、 2000≤L≤6000、 150≤D≤1000, 3≤L /D≤30,
12 1 1 1 1
30≤n≤100, 8≤D /d ≤25, 5≤D /d ≤ 18であり、且つ、該第 2連続多
1 1 11 1 12
段蒸留塔の L、 D、 L /D、 n、 D /d 、 D /d がそれぞれ、 2000≤L2≤600
2 2 2 2 2 2 21 2 22
0、 150≤D≤1000, 3≤L /D≤30, 15≤n≤60, 2. 5≤D /d ≤12, 7≤D /d ≤25であることを特徴とする請求項 1ないし 12のうち何れか一項に記
2 22
載の方法。
[14] 該第 1連続多段蒸留塔の L、 D、 L /D、 n、 D /d 、 D /d がそれぞれ、 25
1 1 1 1 1 1 11 1 12
00≤L≤5000、 200≤D≤800、 5≤L /D≤15、 40≤n≤90、 10≤D
1 1 1 1 1 1
/d ≤25, 7≤D /d ≤ 15であり、且つ、該第 2連続多段蒸留塔の L、 D、L /
11 1 12 2 2 2
D、 n、 D /d 、 D /d カそれぞれ、 2500≤L≤5000、 200≤D≤800、 5
2 2 2 21 2 22 2 2
≤L /D≤15, 20≤n≤50, 3≤D /d ≤10、 9≤D /d ≤20であることを
2 2 2 2 21 2 22
特徴とする請求項 1ないし 13のうち何れか一項に記載の方法。
[15] 該第 1連続多段蒸留塔および該第 2連続多段蒸留塔が、それぞれ該インターナル としてトレイおよび/または充填物を有する蒸留塔であることを特徴とする請求項 1な V、し 14のうち何れか一項に記載の方法。
[16] 該第 1連続多段蒸留塔が、該インターナルとしてトレィを有する棚段式蒸留塔であ り、該第 2連続多段蒸留塔が、該インターナルとして充填物およびトレイの両方を有 する蒸留塔であることを特徴とする請求項 15記載の方法。
[17] 該第 1連続多段蒸留塔および該第 2連続多段蒸留塔の該トレイそれぞれが、多孔 板部とダウンカマー部を有する多孔板トレイであることを特徴とする請求項 15または 1 6記載の方法。
[18] 該第 1連続多段蒸留塔および該第 2連続多段蒸留塔の該多孔板トレイが該多孔板 部の面積 lm2あたり 100〜1000個の孔を有するものであることを特徴とする請求項 1 7記載の方法。
[19] 該第 1連続多段蒸留塔および該第 2連続多段蒸留塔の該多孔板トレイの孔 1個あ たりの断面積が 0. 5〜5cm2であることを特徴とする請求項 17または 18記載の方法。
[20] 該第 2連続多段蒸留塔が、該インターナルとして充填物を上部に、トレィを下部に 有する蒸留塔であることを特徴とする請求項 15または 16に記載の方法。
[21] 該第 2連続多段蒸留塔の該インターナルの該充填物が 1基または 2基以上の規則 充填物であることを特徴とする請求項 15な!/、し 20のうち何れか一項に記載の方法。
[22] 該第 2連続多段蒸留塔の該規則充填物が、メラパック、ジェムパック、テクノバック、 フレキシパック、スルザ一パッキング、グッドロールパッキング、グリッチグリッドから選 ばれた少なくとも一種であることを特徴とする請求項 21に記載の方法。
[23] 該高沸点物質分離塔 Aおよび該ジフエニルカーボネート精製塔 B力 S、それぞれ該ィ ンターナルとしてトレイおよび/または充填物を有する蒸留塔であることを特徴とする 請求項 1ないし 22のうち何れか一項に記載の方法。
[24] 該高沸点物質分離塔 Aおよび該ジフヱニルカーボネート精製塔 Bのインターナル 力 それぞれ充填物であることを特徴とする請求項 23に記載の方法。
[25] 該充填物が、メラパック、ジェムパック、テクノバック、フレキシパック、スルザーパツキ ング、グッドロールパッキング、グリッチグリッドから選ばれた少なくとも一種の規則充 填物であることを特徴とする請求項 24に記載の方法。
[26] 工程 (IV)で用いられる該ガイド接触流下式重合器にお!/、て、重合反応ゾーンの側 面ケーシングが内径 D (cm)、長さ L (cm)の円筒形であって、その下部に接続された 底部のケーシングがテーパー形であり、該テーパー形の底部ケーシングの最下部の 排出口が内径 d (cm)の円筒形であって、 D、 L、 d が式(36)、(37)、(38)および(
39)を満足する、
100 ≤ D ≤ 1800 式(36)
5 ≤ D/d ≤ 50 式(37)
0. 5 ≤ L/D ≤ 30 式(38) h- 20 ≤ L ≤ h+ 300 式(39) ことを特徴とする請求項 1〜25のうち何れか一項に記載の方法。
[27] ガイドの該 hが式 (40)を満足する、
400 < h ≤ 2500 式(40)
ことを特徴とする請求項 1〜26のうち何れか一項に記載の方法。
[28] 1つの該ガイドが外径 r (cm)の円柱状または内側に溶融プレボリマーが入らない ようにしたパイプ状のものであって、 r が式 (41)を満足する、
0. 1 ≤ r ≤ 1 式(41)
ことを特徴とする請求項 1ないし 27のうち何れか一項に記載の方法。
[29] 工程 (IV)において、該ガイド接触流下式重合器 2基以上を連結して重合を行うこと 特徴とする請求項 1〜28のうち何れか一項に記載の方法。
[30] 請求項 29記載の 2基以上のガイド接触流下式重合器が、ガイド接触流下式第 1重 合器、ガイド接触流下式第 2重合器の 2基の重合器であって、この順に重合度を上げ ていく方法において、該第 1重合器のガイド全体の外部総表面積 S I (m2)と該第 2重 合器のガイド全体の外部総表面積 S2 (m2)とが式 (42)を満足する、
1 ≤ S1/S2 ≤ 20 式(42) ことを特徴とする請求項 29に記載の方法。
[31] 請求項 1〜30のいずれかの方法によって 1時間あたり 1トン以上製造される高品質 芳香族ポリカーボネート。
[32] アルカリ金属および/またはアルカリ土類金属化合物の含有量力 をこれらの金属 元素に換算して、 0.;!〜 0. Olppmであり、且つ、ハロゲン含有量が、 lppb以下であ ることを特徴とする請求項 31記載の高品質芳香族ポリカーボネート。
[33] 主鎖に対してエステル結合やエーテル結合等の異種結合を介して部分的に分岐 している芳香族ポリカーボネートであって、該異種結合の含有量が、カーボネート結 合に対して、 0. 05-0. 5モル%であることを特徴とする請求項 31または 32記載の 高品質芳香族ポリカーボネート。
PCT/JP2007/071911 2006-11-28 2007-11-12 Procédé de fabrication d'un polycarbonate aromatique de qualité élevée à l'échelle industrielle WO2008065874A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008546932A JP5344927B2 (ja) 2006-11-28 2007-11-12 高品質芳香族ポリカーボネートを工業的規模で製造する方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006320361 2006-11-28
JP2006-320361 2006-11-28

Publications (1)

Publication Number Publication Date
WO2008065874A1 true WO2008065874A1 (fr) 2008-06-05

Family

ID=39467669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/071911 WO2008065874A1 (fr) 2006-11-28 2007-11-12 Procédé de fabrication d'un polycarbonate aromatique de qualité élevée à l'échelle industrielle

Country Status (3)

Country Link
JP (1) JP5344927B2 (ja)
TW (1) TW200846389A (ja)
WO (1) WO2008065874A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI455923B (zh) * 2008-06-21 2014-10-11 Bayer Materialscience Ag 自二烷基碳酸酯類製備二芳基碳酸酯類之方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5700595B2 (ja) 2012-01-25 2015-04-15 旭化成ケミカルズ株式会社 分離方法
WO2018153711A1 (en) 2017-02-22 2018-08-30 Asml Netherlands B.V. Computational metrology

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09165443A (ja) * 1995-12-15 1997-06-24 Jiemu P C Kk ポリカーボネートの製造方法
JPH09255772A (ja) * 1996-01-17 1997-09-30 Asahi Chem Ind Co Ltd 芳香族ポリカーボネートの製造方法
JP2002226573A (ja) * 2001-01-05 2002-08-14 Bayer Ag ポリカーボネートを製造する方法
JP2004211107A (ja) * 1998-06-05 2004-07-29 Asahi Kasei Chemicals Corp 芳香族ポリカーボネートを製造するためのシステム
JP2005146050A (ja) * 2003-11-12 2005-06-09 Mitsubishi Chemicals Corp 芳香族ポリカーボネートの製造方法
WO2005121210A1 (ja) * 2004-06-14 2005-12-22 Asahi Kasei Chemicals Corporation 芳香族ポリカーボネートの改良された製造方法
WO2005121211A1 (ja) * 2004-06-14 2005-12-22 Asahi Kasei Chemicals Corporation 芳香族ポリカーボネートを効率的に製造する方法
WO2007069463A1 (ja) * 2005-12-12 2007-06-21 Asahi Kasei Chemicals Corporation 高品質芳香族ポリカーボネートを工業的に製造する方法
WO2007072705A1 (ja) * 2005-12-19 2007-06-28 Asahi Kasei Chemicals Corporation 高純度ジフェニルカーボネートを工業的規模で製造する方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09165443A (ja) * 1995-12-15 1997-06-24 Jiemu P C Kk ポリカーボネートの製造方法
JPH09255772A (ja) * 1996-01-17 1997-09-30 Asahi Chem Ind Co Ltd 芳香族ポリカーボネートの製造方法
JP2004211107A (ja) * 1998-06-05 2004-07-29 Asahi Kasei Chemicals Corp 芳香族ポリカーボネートを製造するためのシステム
JP2002226573A (ja) * 2001-01-05 2002-08-14 Bayer Ag ポリカーボネートを製造する方法
JP2005146050A (ja) * 2003-11-12 2005-06-09 Mitsubishi Chemicals Corp 芳香族ポリカーボネートの製造方法
WO2005121210A1 (ja) * 2004-06-14 2005-12-22 Asahi Kasei Chemicals Corporation 芳香族ポリカーボネートの改良された製造方法
WO2005121211A1 (ja) * 2004-06-14 2005-12-22 Asahi Kasei Chemicals Corporation 芳香族ポリカーボネートを効率的に製造する方法
WO2007069463A1 (ja) * 2005-12-12 2007-06-21 Asahi Kasei Chemicals Corporation 高品質芳香族ポリカーボネートを工業的に製造する方法
WO2007072705A1 (ja) * 2005-12-19 2007-06-28 Asahi Kasei Chemicals Corporation 高純度ジフェニルカーボネートを工業的規模で製造する方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI455923B (zh) * 2008-06-21 2014-10-11 Bayer Materialscience Ag 自二烷基碳酸酯類製備二芳基碳酸酯類之方法

Also Published As

Publication number Publication date
TW200846389A (en) 2008-12-01
JPWO2008065874A1 (ja) 2010-03-04
JP5344927B2 (ja) 2013-11-20

Similar Documents

Publication Publication Date Title
JP5030788B2 (ja) 高品質芳香族ポリカーボネートの工業的製造方法
JP5362223B2 (ja) 高純度ジフェニルカーボネートを工業的規模で製造する方法
JP3967009B2 (ja) 芳香族ポリカーボネートの製造方法
JP5030231B2 (ja) 高品質芳香族ポリカーボネートを工業的に製造する方法
TWI436977B (zh) 製備碳酸二芳酯之方法
CN104411738A (zh) 制备聚碳酸酯的方法和设备
WO1995003351A1 (fr) Procede de production de polycarbonate aromatique
JP3724905B2 (ja) 芳香族ポリカーボネートの製造方法
WO2005121211A1 (ja) 芳香族ポリカーボネートを効率的に製造する方法
WO2005123805A1 (ja) 芳香族ポリカーボネートを製造するための重合装置
JP4936555B2 (ja) 高純度ジアリールカーボネートの工業的製造法
JP4936556B2 (ja) 芳香族カーボネートの工業的製造法
WO2008065874A1 (fr) Procédé de fabrication d&#39;un polycarbonate aromatique de qualité élevée à l&#39;échelle industrielle
JP2004523635A (ja) オリゴカーボネートの製造方法
CN108586254B (zh) 碳酸二芳基酯的制造方法和芳香族聚碳酸酯的制造方法
JP5320071B2 (ja) 高品質芳香族ポリカーボネートの工業的製造法
JP3684282B2 (ja) 芳香族ポリカーボネートの製造方法
JPH10251396A (ja) 芳香族ポリカーボネートの製造方法
JP2002105192A (ja) 芳香族ポリカーボネートの製造法
JP2002105193A (ja) 芳香族ポリカーボネートの製造法
JP2002037873A (ja) 芳香族ポリカーボネートの製造法
JP2002037875A (ja) 芳香族ポリカーボネートの製造法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07831641

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008546932

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07831641

Country of ref document: EP

Kind code of ref document: A1