WO2007069463A1 - 高品質芳香族ポリカーボネートを工業的に製造する方法 - Google Patents

高品質芳香族ポリカーボネートを工業的に製造する方法 Download PDF

Info

Publication number
WO2007069463A1
WO2007069463A1 PCT/JP2006/323912 JP2006323912W WO2007069463A1 WO 2007069463 A1 WO2007069463 A1 WO 2007069463A1 JP 2006323912 W JP2006323912 W JP 2006323912W WO 2007069463 A1 WO2007069463 A1 WO 2007069463A1
Authority
WO
WIPO (PCT)
Prior art keywords
tower
distillation column
column
formula
carbonate
Prior art date
Application number
PCT/JP2006/323912
Other languages
English (en)
French (fr)
Inventor
Shinsuke Fukuoka
Hironori Miyaji
Hiroshi Hachiya
Kazuhiko Matsuzaki
Original Assignee
Asahi Kasei Chemicals Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corporation filed Critical Asahi Kasei Chemicals Corporation
Priority to EP06833715A priority Critical patent/EP1961781A4/en
Priority to CN2006800467440A priority patent/CN101331168B/zh
Priority to EA200801325A priority patent/EA200801325A1/ru
Priority to US11/991,404 priority patent/US20090209724A1/en
Priority to BRPI0619058-8A priority patent/BRPI0619058A2/pt
Priority to JP2007550119A priority patent/JP5030231B2/ja
Publication of WO2007069463A1 publication Critical patent/WO2007069463A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/30General preparatory processes using carbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/009Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping in combination with chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • B01D3/32Other features of fractionating columns ; Constructional details of fractionating columns not provided for in groups B01D3/16 - B01D3/30
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C68/00Preparation of esters of carbonic or haloformic acids
    • C07C68/06Preparation of esters of carbonic or haloformic acids from organic carbonates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C68/00Preparation of esters of carbonic or haloformic acids
    • C07C68/08Purification; Separation; Stabilisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/30General preparatory processes using carbonates
    • C08G64/307General preparatory processes using carbonates and phenols
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • the present invention relates to an industrial process for producing an aromatic polycarbonate.
  • the present invention provides a high-quality, high-performance aromatic polycarbonate that is superior in mechanical properties and has no coloration and is stable from a dialkyl carbonate and an aromatic dihydroxy compound. It relates to a manufacturing method.
  • Aromatic polycarbonate is widely used in many fields as engineering plastics having excellent heat resistance, impact resistance and transparency. Various studies have been conducted on the process for producing this aromatic polycarbonate, and among them, aromatic dihydroxy compounds such as 2,2-bis (4-hydroxyphenol) propane (hereinafter referred to as bisphenol A) and The interfacial polycondensation method with phosgene has been industrialized.
  • bisphenol A 2,2-bis (4-hydroxyphenol) propane
  • Various polymerizers are known as a polymerizer for producing an aromatic polycarbonate by a melting method.
  • a method using a vertical stirring tank type polymerizer equipped with a stirrer is generally well known.
  • the vertical stirring tank type polymerizer has the advantage that the volume efficiency is small and simple on a small scale, and the polymerization can proceed efficiently.
  • the polymerization progresses. It is difficult to efficiently extract phenol as a by-product out of the system, and the polymerization rate is extremely low.
  • a large-scale vertical stirred tank type polymerizer is usually larger than the case of the ratio of the liquid volume to the evaporation area and the so-called liquid depth is large.
  • the reaction is performed at a high temperature close to 300 ° C, so that the resulting polymer is likely to be colored or deteriorated in physical properties.
  • problems to be solved in order to stably produce high-quality polycarbonate for a long period of time such as polymer coloration and deterioration of physical properties.
  • Aromatic dihydroxy compounds such as high-purity bisphenol A, are manufactured in large quantities on an industrial scale and are easy to obtain. It is impossible to obtain. It is therefore necessary to produce this.
  • the diphenol carbonate is produced by a reaction of phenol and phosgene.
  • This method was countered by the problem of phosgene use, and diphenyl carbonate produced by this method contains chlorinated impurities that are difficult to separate. It cannot be used as a raw material. This is because this chlorinated impurity significantly inhibits the polymerization reaction of the transesterification aromatic polycarbonate carried out in the presence of a very small amount of a basic catalyst. It cannot be progressed.
  • reaction systems are basically batch system force switching systems.
  • the inventors of the present invention continuously supply dialkyl carbonate and aromatic hydroxy compound to a multistage distillation column, and continuously react in the column in the presence of a catalyst to produce by-produced alcohol.
  • the low-boiling components contained are continuously extracted by distillation, and the components containing the produced alkyl phenyl carbonate are extracted from the lower part of the column (Patent Document 16), and alkyl furol carbonate is continuously supplied to the multistage distillation column.
  • Reactive distillation in which the low-boiling component containing dialkyl carbonate as a by-product is continuously withdrawn by distillation and the component containing diphenyl carbonate is withdrawn from the bottom of the tower.
  • Patent Document 17 these reactions are carried out using two continuous multistage distillation columns, and dialkyl carbonate by-product is efficiently recycled.
  • Reactive distillation method for continuously producing diphenyl carbonate Patent Document 18
  • dialkyl carbonate and aromatic hydroxy compound are continuously supplied to the multistage distillation column, and the liquid flowing down in the column is supplied.
  • the applicant of the present invention is a high-boiling point containing a catalyst component as a method for stably producing a high-purity aromatic carbonate for a long time without requiring a large amount of catalyst.
  • a method of separating the substance after reacting with the active substance and recycling the catalyst component (Patent Document 27), or the weight ratio of the polyvalent aromatic hydroxy compound in the reaction system to the catalyst metal 2.
  • Patent Document 28 We proposed a method (Patent Document 28) that is performed while keeping the value below 0.
  • the present inventors further developed a method in which 70 to 99% by weight of phenol by-produced in the polymerization process is used as a raw material, diphenol carbonate is produced by a reactive distillation method, and this is used as a polymerization raw material for aromatic polycarbonate. (Patent Document 29).
  • the production volume was only about 6.7kgZhr, which was not strong on an industrial scale.
  • Patent Document 1 Japanese Patent Publication No. 50-19600 (British Patent No. 1007302)
  • Patent Document 2 Japanese Patent Publication No. 52-36159
  • Patent Document 3 Japanese Patent Publication No. 53-5718 (US Pat. No. 3,888,826)
  • Patent Document 4 Japanese Patent Laid-Open No. 2-153923
  • Patent Document 5 JP-A-8-225641
  • Patent Document 6 Japanese Patent Laid-Open No. 8-225643
  • Patent Document 7 JP-A-8-325373
  • Patent Document 8 WO 97-22650
  • Patent Document 9 JP-A-10-81741
  • Patent Document 10 Japanese Patent Laid-Open No. 10-298279
  • Patent Document ll WO 99Z36457
  • Patent Document 12 Publication of WO 99Z64492
  • Patent Document 13 Japanese Patent Laid-Open No. 54-48732 (West German Patent Publication No. 736063, US Pat. No. 4,252,737)
  • Patent Document 14 Japanese Patent Laid-Open No. 58-185536 (US Pat. No. 410464)
  • Patent Document 15 Japanese Patent Laid-Open No. 56-123948 (US Pat. No. 4,182,726)
  • Patent Document 16 Japanese Patent Laid-Open No. 3- No.291257
  • Patent Document 17 Japanese Patent Laid-Open No. 4 9358
  • Patent Document 18 Japanese Patent Application Laid-Open No. 4-211038 (WO 91/09832 Publication, European Patent 046 1274, US Patent 5210268)
  • Patent Document 19 JP-A-4 235951
  • Patent Document 20 Japanese Patent Laid-Open No. 6-157424 (European Patent 0582931, US Patent 5334742)
  • Patent Document 21 Japanese Patent Laid-Open No. 6-184058 (European Patent 0582930, US Patent 5344954)
  • Patent Document 22 JP-A-9-40616
  • Patent Document 23 JP-A-9 59225
  • Patent Document 24 Japanese Patent Laid-Open No. 9-176094
  • Patent Document 25 WO 00Z18720 Publication (US Pat. No. 6093842)
  • Patent Document 26 JP 2001-64235 A
  • Patent Document 27 WO 97Z11049 (European Patent 0855384, US Pat. No. 5,872275)
  • Patent Document 28 JP-A-11-92429 (European Patent No. 1016648, US Patent No. 6262210)
  • Patent Document 29 Japanese Patent Laid-Open No. 9-255772 (European Patent 0892001, US Patent 5747609)
  • the problem to be solved by the present invention is that a high-quality, high-performance aromatic polycarbonate that is free from coloring and has excellent mechanical properties is obtained from a dialkyl carbonate and an aromatic dihydroxy compound.
  • the inventors of the present invention have reached the present invention as a result of repeated studies to find out a specific method capable of achieving the above-mentioned problems. That is, in the first aspect of the present invention,
  • the compound strength of dialkyl carbonate and aromatic dihydroxy compound is also an industrial production method of high-quality aromatic polycarbonate for continuously producing aromatic polycarbonate.
  • a dialkyl carbonate and phenol are used as raw materials, and this raw material is continuously fed into a first continuous multistage distillation column in which a homogeneous catalyst exists, and the reaction and distillation are simultaneously performed in the first column.
  • the first column low-boiling point reaction mixture containing the generated alcohols is continuously withdrawn in the form of a gas from the top of the first column, and the first column high-boiling point reaction mixture containing the generated alkyl phenyl carbonates is removed from the first column.
  • the liquid is continuously withdrawn from the bottom, and the high-boiling reaction mixture in the first column is continuously fed into the second continuous multi-stage distillation column in which the catalyst is present, and the reaction and distillation are simultaneously performed in the second column!
  • the second column low-boiling point reaction mixture containing dialkyl carbonates to be produced is continuously withdrawn in the form of gas from the upper part of the second column, and the second column high-boiling point reaction mixture containing diphenyl carbonates to be produced is obtained.
  • the liquid is continuously withdrawn from the bottom of the second tower in a liquid state.
  • the second tower high boiling point reaction mixture containing the diphenyl carbonate is continuously introduced into the high boiling point substance separation tower A, and the tower top component (A) containing the diphenyl carbonate and the catalyst are contained.
  • the bottom component (A) is continuously distilled and separated, and then the top component (A) is extracted from the side cut.
  • a purification step (II) for obtaining high-purity diphenyl carbonate as a side-cut component (III) The aromatic dihydroxy compound and the high-purity diphenol carbonate are reacted to produce a molten polycarbonate polybolymer, and the molten prepolymer is allowed to flow along the surface of the guide.
  • the first continuous multi-stage distillation column has a structure having a cylindrical body having a length L (cm) and an inner diameter D (cm), and having an internal number n. Gas outlet with inner diameter d (cm) at the top of the tower or near the top of the tower, inner diameter at the bottom of the tower or near the bottom of the tower
  • One or more first inlets in the section, and one or more second inlets in the middle of the column and Z or in the lower part above the liquid outlet, and L, D , L ZD, n, D-no d, D Zd force satisfy the equations (1) to (6) respectively.
  • the second continuous multistage distillation column has a cylindrical body having a length L (cm) and an inner diameter D (cm);
  • Diphenyl carbonate purification tower B force Length L (cm), inner diameter D (cm)
  • It has a terminal, and has an inlet Bl in the middle stage of the tower, a side cut outlet B2 between the inlet B1 and the bottom of the tower, and the number of internal stages on the upper side from the inlet B1 is n.
  • B2 outlet The total number of stages is n (n + n + n) when the number of internal stages below B2 is n
  • B3 Bl B2 B3 is a continuous multi-stage distillation column where n is n and satisfies the following formulas (16) to (21):
  • a molten prepolymer receiving port Surrounded by a molten prepolymer receiving port, a perforated plate, a molten prepolymer feed zone for supplying the molten prepolymer to the guide of the polymerization reaction zone through the perforated plate, the perforated plate, a side casing, and a bottom casing
  • a polymerization reaction zone provided with a plurality of guides extending downward from the perforated plate in the space, a vacuum vent port provided in the polymerization reaction zone, an aromatic polycarbonate discharge port provided at the bottom of the bottom casing, and The outlet Having an aromatic polycarbonate discharge pump connected to the
  • the tapered bottom case of the polymerization reaction zone is connected to the upper side casing at an angle C degree inside the upper side casing, and the angle C degree satisfies the equation (24).
  • the first continuous multistage distillation column is a tray-type distillation column having a tray as the internal, and the second continuous multistage distillation column has both a packing and a tray as the internal.
  • each of the trays of the first continuous multi-stage distillation column and the second continuous multi-stage distillation column is a perforated plate tray having a multi-hole plate portion and a downcomer portion.
  • the ordered packing of the second continuous multi-stage distillation column is at least one selected from a melapack, a drum pack, a techno pack, a flexi pack, a sulza packing, a good roll packing, and a glitch grid.
  • the high-boiling-point material separation column A and the difluorocarbonate purification column B are distillation columns having a tray and Z or a packing as the internal, respectively.
  • the packing is at least one type of packing selected also for mela pack, gem pack, techno bag, flexi pack, surza packing, good roll packing, and glitch grid force. Described method,
  • the side casing of the polymerization reaction zone has a cylindrical shape with an inner diameter D (cm) and a length L (cm), and the bottom casing connected to the lower part is tapered, and the tapered bottom casing has a tapered shape.
  • the lowermost discharge port has a cylindrical shape with an inner diameter d (cm), and D, L, d satisfy the equations (29), (30), (31) and (32).
  • One of the guides is a cylindrical shape having an outer diameter r (cm) or a pipe shape in which no molten prepolymer is contained inside, and r satisfies the formula (34).
  • the two or more guide contact flow type polymerizers described in the preceding paragraph 17 are two polymerizers, a guide contact flow type first polymerizer and a guide contact flow type second polymerizer.
  • the external total surface area SI (m 2 ) of the entire guide of the first polymerization vessel and the external total surface area S2 (m 2 ) of the entire guide of the second polymerization vessel satisfy the formula (35). , 1 ⁇ S1 / S2 ⁇ 20 Equation (35)
  • the content power of alkali metals and Z or alkaline earth metal compounds is 0.1 to 0. Olppm in terms of these metal elements, and the halogen content power is lppb or less.
  • Aromatic polycarbonate partially branched from the main chain via a hetero bond such as an ester bond or an ether bond, the content of the hetero bond being 0.
  • a step (I) of producing diphenyl carbonate using two reactive distillation columns having a specific structure Diphenyl carbonate purification step (11) for obtaining high-purity diphenyl carbonate using high boiling point substance separation tower A and diphenyl carbonate purification tower B having a specific structure, and then the aromatic dihydroxy compound and the high Recycled molten polymer obtained from pure diphenyl carbonate into aromatic polycarbonate using a guide-contact flow-down type polymerizer with a specific structure ( ⁇ ) and by-product phenol into step (I)
  • step (IV) high-quality and high-performance aromatics without coloring and excellent mechanical properties It has been found that polycarbonate can be produced on an industrial scale of over 1 ton per hour at high polymerization rates.
  • the present invention provides a high quality aromatic polycarbonate. This is an extremely effective method as an industrial production method of nate.
  • the step (I) of continuously producing diphenyl carbonate from a dialkyl carbonate and phenol on an industrial scale is performed.
  • the dialkyl carbonate used in the step (I) is represented by the general formula (36).
  • R a represents an alkyl group having 1 to 10 carbon atoms, an alicyclic group having 3 to 10 carbon atoms, and an aralkyl group having 6 to 10 carbon atoms.
  • Examples of such Ra include methyl, ethyl, propyl (each isomer), aryl, butyl (each isomer), butenyl (each isomer), pentyl (each isomer), and hexyl (each isomer).
  • Heptyl (each isomer), octyl (each isomer), nonyl (each isomer), decyl (each isomer), alkyl group such as cyclohexylmethyl; cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclo Examples include alicyclic groups such as heptyl; aralkyl groups such as benzyl, phenethyl (each isomer), phenylpropyl (each isomer), phenylbutyl (each isomer), and methylbenzyl (each isomer). It is done.
  • alkyl groups, alicyclic groups, and aralkyl groups may be substituted with other substituents such as a lower alkyl group, a lower alkoxy group, a cyano group, a halogen, or the like, and have an unsaturated bond. You may do it.
  • dialkyl carbonates having R a examples include dimethyl carbonate, jetyl carbonate, dipropyl carbonate (each isomer), diphenyl carbonate, dibutenyl carbonate (each isomer), Dibutyl carbonate (each isomer), dipentyl carbonate (each isomer), dihexyl carbonate (each isomer), diheptyl carbonate (each isomer), dioctyl carbonate (each isomer), dinonyl carbonate (Each isomer), didecyl carbonate (each isomer), dicyclopentyl carbonate, dicyclohexenole carbonate, dicycloheptinole carbonate, dibenzyl carbonate, diphenethyl carbonate (each isomer), di (phenol) -Rupropyl) carbonate (each isomer), di (phenol) Butyl) carbonate (each isomer) di (black benzyl carbonate, diprop
  • the one preferably used in the present invention is a dialkyl carbonate in which R a is an alkyl group containing 4 or less carbon atoms and does not contain a halogen. Particularly preferred! / Is dimethyl carbonate. . Further, among the preferred dialkyl carbonates, more preferred are dialkyl carbonates produced in a state that is substantially free of halogens, for example, alkylene carbonates substantially free of halogens. Alcohol power substantially free of halogen is also produced.
  • the phenol used in the step (I) is represented by the following general formula (37), and is a compound having a hydroxyl group directly bonded to the phenol group (Ph). Depending on the case, the phenol group may be substituted with a lower alkyl group or a lower alkoxy group.
  • Phenol substantially free of halogen is preferably used in the present invention. Accordingly, the diphenyl carbonate referred to in the present invention is represented by the general formula (38).
  • the molar ratio of the dialkyl carbonate used as a raw material in the step (I) to the phenol is preferably 0.1 to 10. Outside this range, the amount of unreacted raw material that remains is large with respect to the desired production amount of diphenyl carbonate, which is not efficient and requires a lot of energy to recover them. In this sense, the molar ratio is more preferably 0.8-5, more preferably 1-2, more preferably 1-2.
  • step (I) a force that continuously produces 1 ton or more of aromatic polycarbonate per hour.
  • a high-purity diphenyl carbonate of about 0.85 ton or more per hour is continuously produced. Need to be manufactured. Therefore, in step (I), the minimum amount of phenol fed continuously is the amount of aromatic polycarbonate to be produced (P tonnes).
  • Zhr) is usually 15 P ton Zhr, preferably 13 P ton Zhr, more preferably 1 OP ton Zhr. In a more preferred case, it can be less than 8P ton Zhr.
  • the dialkyl carbonate and phenol used as raw materials in the step (I) may be of high purity or! / May contain other compounds.
  • it may contain a compound or reaction by-product produced in the first continuous multistage distillation column and Z or the second continuous multistage distillation column.
  • these raw materials include dialkyl carbonate and phenol newly introduced into the reaction system, as well as those recovered from the first continuous multistage distillation column and Z or the second continuous multistage distillation column. Is also preferably used.
  • the top component which is a low boiling point reaction mixture in the second continuous multistage distillation column, is supplied to the first continuous multistage distillation column.
  • the second column low boiling point reaction mixture may be supplied as it is to the first continuous multistage distillation column, or may be supplied after separating a part of the components.
  • the raw materials supplied to the first continuous multistage distillation column include alcohols, alkylphenol carbonates, diphenyl carbonates, alkylphenol ethers, and the like.
  • the product is preferably used even if it contains a small amount of a high-boiling by-product such as a fries transfer product of a diphenyl carbonate or a derivative thereof.
  • a high-boiling by-product such as a fries transfer product of a diphenyl carbonate or a derivative thereof.
  • the reaction product methyl alcohol or
  • the reaction by-products such as anisole, salicylate, and methyl salicylate, contain a small amount of these high-boiling byproducts. .
  • step (I) most of the phenol used in step (I) consists of phenol by-produced in step (III) of the present invention. This by-product phenol must be circulated to step (I) by step (IV).
  • the diphenol carbonate produced in the step (I) is obtained by a transesterification reaction between a dialkyl carbonate and phenol.
  • This transesterification reaction One or two alkoxy groups of the dialkyl carbonate are exchanged with the phenol phenoxy group to leave the alcohols, and a disproportionation reaction, which is a transesterification reaction between the two alkylphenol carbonate molecules, is combined with the diphenyl carbonate. It contains a reaction that is converted to dialkyl carbonate.
  • step (I) alkylphenol carbonate is mainly obtained
  • the diphenol is mainly obtained by the disproportionation reaction of the alkyl phenol carbonate. Carbonates and dialkyl carbonates are obtained. Since the diphenyl carbonate obtained in the step (I) does not contain any halogen, it is important as a raw material for industrial production of the aromatic polycarbonate of the present invention. For example, if halogen is present in the polymerization raw material even in an amount of less than 1 ppm, the polymerization reaction is inhibited, the stable production of aromatic polycarbonate is inhibited, and the produced aromatic polycarbonate is also inhibited. This is because it causes deterioration of physical properties and coloring.
  • the following compound power is selected:
  • Lead oxides such as PbO, PbO, PbO;
  • Lead sulfides such as PbS and Pb S;
  • Lead hydroxides such as Pb (OH) and Pb 2 O (OH);
  • Lead salts such as 2 3 2 2 4 2 3 2 6 4 4 2 4 3;
  • Lead carbonates such as PbCO, 2PbCO 'Pb (OH) and their basic salts;
  • Organic lead compounds such as O (Bu represents a butyl group, Ph represents a phenyl group);
  • Alkoxyleads such as Pb (OCH), (CH 0) Pb (OPh), Pb (OPh),
  • Lead alloys such as Pb—Na, Pb—Ca, Pb—Ba, Pb—Sn, Pb—Sb; Hydrate of bell minerals such as howenite, senyanite, and their lead compounds; copper group metal compounds> CuCl, CuCl, CuBr, CuBr, Cul, Cul, Cu (OAc),
  • Alkali metal complexes such as Li (acac) and LiN (C H);
  • Zinc complex such as Zn (acac);
  • Cd complex such as Cd (acac);
  • ⁇ Iron group metal compounds > Fe (C H) (CO), Fe (CO), Fe (C H) (CO), Co (Me
  • Zirconium complexes such as Zr (acac) and zirconocene;
  • Lewis acids > A1X, TiX, TiX, VOX, VX, ZnX, FeX, SnX (here
  • X is halogen, acetoxy group, an alkoxy group, or an aryloxy group. ) And the like, and transition metal compounds that generate Lewis acids;
  • Organotin compounds such as SnO (OH);
  • a metal-containing compound such as is used as a catalyst.
  • These catalysts must be soluble catalysts (homogeneous catalysts) that dissolve in the reaction system.
  • these catalyst components react with organic compounds present in the reaction system, for example, aliphatic alcohols, phenols, alkylphenol carbonates, diphenol carbonates, dialkyl carbonates and the like. Or it may have been heat-treated with raw materials and products prior to the reaction.
  • organic compounds present in the reaction system for example, aliphatic alcohols, phenols, alkylphenol carbonates, diphenol carbonates, dialkyl carbonates and the like. Or it may have been heat-treated with raw materials and products prior to the reaction.
  • the catalyst used in the step (I) preferably has a high solubility in the reaction solution under the reaction conditions.
  • Preferred catalysts in this sense include, for example, PbO, Pb (OH), Pb ( OPh); TiCl, Ti (OMe), (MeO) Ti (OPh), (MeO) Ti (OPh), (MeO) Ti (OPh), (MeO) Ti (
  • the catalyst used in the first continuous multistage distillation column and the catalyst used in the second continuous multistage distillation column may be the same type or different types.
  • the first continuous multi-stage distillation column used in step (I) is a structure having a cylindrical body having a length L (cm) and an inner diameter D (cm) and having an internal number n.
  • the top of the tower or near the top of the tower is a gas outlet with an inner diameter d (cm), the bottom of the tower or
  • the second continuous multi-stage distillation column used in step (I) is a length L (cm), an inner diameter D
  • (cm) has a cylindrical body and has an internal structure with n steps inside.
  • the preferred L (cm) and L (cm) ranges are 2000 ⁇ L ⁇ 6000 and 200, respectively.
  • D (cm) and D (cm) are each less than 100, the target production can be achieved.
  • D and D are the above
  • the inside diameter may be the same from top to bottom of the tower,
  • the inner diameters may be different.
  • the inner diameter of the upper part of the column may be smaller or larger than the inner diameter of the lower part of the tower! /.
  • the ranges of D are 3 ⁇ L ZD ⁇ 30 and 3 ⁇ L / ⁇ ⁇ 30, respectively, more preferred
  • n is less than 20, the reaction rate decreases, so the target production amount in the first continuous multistage distillation column cannot be achieved, and the equipment cost is reduced while ensuring the reaction rate that can achieve the target production amount.
  • n In order to lower it, n must be 120 or less.
  • the pressure is larger than n force, the pressure difference between the top and bottom of the column becomes too large, so that the long-term stable operation of the first continuous multistage distillation column becomes difficult, and the temperature at the bottom of the column must be increased. The reaction tends to occur and the selectivity is lowered.
  • a more preferable range of n is 30 ⁇ n ⁇ 100, and more preferably 40 ⁇ n ⁇ 90.
  • n In order to reduce equipment costs while securing a reaction rate that can achieve the target production volume, n must be 80 or less. If n is greater than 80
  • n 15 ⁇ n ⁇ 6
  • D Zd 5 ⁇ D Zd ⁇ 18
  • the range of Zd is 7 ⁇ D 2Zd 22 ⁇ 25, more preferably
  • step (I) the d and the d satisfy the formula (27), and the d and the d satisfy the formula (28).
  • the long-term stable operation in process (I) is a steady state based on operating conditions without flooding, piping clogging or erosion, etc. for 1000 hours or more, preferably 3000 hours or more, more preferably 5000 hours or more. This means that a certain amount of diphenyl carbonate is being produced while maintaining high selectivity.
  • the step (I) is characterized in that diphenyl carbonate is stably produced at a high selectivity for a long period of time with a high productivity of preferably 1 ton or more per hour, but more preferably 1
  • the goal is to produce diphenyl carbonate of over 2 tons per hour, more preferably over 3 tons per hour.
  • the L, D, L ⁇ D, n, D Zd and D Zd forces of the first continuous multistage distillation column are 2000 ⁇ L ⁇ 6000, 150 ⁇ D ⁇ 1000,
  • diphenyl carbonate of 2.5 tons or more, more preferably 3 tons or more per hour.
  • step (I) the L, D, L ZD, n, D Zd, and DZ d forces of the first continuous multistage distillation column are 2500 ⁇ L ⁇ 5000, 200 ⁇ D ⁇ 800, 5 ⁇ L, respectively. / ⁇ ⁇ 15, 40
  • D Zd is 2500 ⁇ L ⁇
  • step (I) the selectivity of diphenyl carbonate is relative to the reacted phenol, and in step (I), the selectivity is usually higher than 95%, preferably 97%. As described above, a high selectivity of 98% or more can be achieved.
  • the first continuous multistage distillation column and the second continuous multistage distillation column used in step (I) are preferably distillation columns having trays and Z or packing as internal.
  • “internal” means a portion of the distillation column that is actually brought into contact with gas and liquid.
  • a tray for example, a foam tray, a perforated plate tray, a valve tray, a counter-flow tray, a super flack tray, a max flack tray, etc. are preferred fillings such as a Raschig ring, a lessing ring, a pole ring, Irregular packing such as Berle saddle, Interlocks saddle, Dickson packing, McMahon packing, Helipac etc.
  • n of internal stages means the number of trays in the case of trays, and the theoretical number of stages in the case of packing. Therefore, the multi-stage steaming that has the tray part and the part filled with the filler together. In the case of a tower, n is the sum of the number of trays and the number of theoretical plates.
  • the force for the reaction to produce alkylphenol carbonate mainly from dialkyl carbonate and phenol is more preferably a plate-type distillation column whose internal is a tray.
  • the force for carrying out the reaction for disproportionating the alkylphenol carbonate is mainly used. This reaction also has a small equilibrium constant and the reaction rate is slow.
  • the second continuous multistage distillation column used for the reactive distillation a distillation column in which the internal has both a packing and a tray is more preferable. Furthermore, it was also found that the second continuous multistage distillation column preferably has a packing at the top and a tray at the bottom. It has also been found that the packing of the second continuous multi-stage distillation column is particularly preferred among the regular packings for which the regular packing is preferred.
  • the trays installed in the first continuous multi-stage distillation column and the second continuous multi-stage distillation column, respectively, are particularly excellent in terms of function and equipment costs. It was found. It has also been found that it is preferred that the perforated plate tray has 100-: LOOO holes per area lm 2 of the perforated plate portion. More preferred! /, The number of pores is 120 to 900 per lm 2 , more preferably 150 to 800.
  • the cross-sectional area per hole of the perforated plate tray is preferably 0.5 to 5 cm2.
  • the cross-sectional area per hole is more preferably 0.7 to 4 cm 2 , and even more preferably 0.9 to 3 cm 2 .
  • the perforated plate tray has 100 to 1000 holes per area lm 2 of the perforated plate portion, and the cross-sectional area per hole is 0.5 to 5 cm 2.
  • step (I) dialkyl carbonate and phenol as raw materials are continuously fed into a first continuous multistage distillation column in which a catalyst is present, and the reaction and distillation are the same in the first column.
  • the first column low-boiling point reaction mixture containing the resulting alcohols is continuously withdrawn in the form of a gas from the upper part of the first column, and the first column high-boiling point reaction mixture containing the resulting alkylphenol carbonates.
  • the mixture is continuously fed into a second continuous multistage distillation column in which a catalyst is present, and the reaction and distillation are simultaneously performed in the second column, and the second column low-boiling point reaction mixture containing dialkyl carbonates to be produced is added to the second column.
  • the second column high-boiling point reaction mixture containing the diphenyl carbonate which is continuously extracted in the gaseous state from the upper part of the second column is continuously extracted in liquid form from the lower part of the second column, while the dialkyl carbonate is extracted.
  • reaction by-products such as alcohols, alkylphenol carbonates, diphenyl carbonates, alkylphenol ethers, and high-boiling compounds as reaction products are included.
  • reaction by-products such as alcohols, alkylphenol carbonates, diphenyl carbonates, alkylphenol ethers, and high-boiling compounds as reaction products are included.
  • step (I) in order to continuously supply the dialkyl carbonate and phenol as raw materials into the first continuous multistage distillation column, the lower part than the gas outlet at the upper part of the first distillation column.
  • it may be supplied in liquid and / or gaseous form from one or several inlets installed in the upper part or middle part of the column, and a raw material rich in phenol is supplied to the first distillation column.
  • Upper inlet port Power is supplied in liquid form, and the raw material containing a large amount of dialkyl carbonate is supplied in the form of an introduction locus that is located above the liquid outlet at the lower part of the first distillation column and installed at the lower part of the column. Also preferred is the method.
  • step (I) the first high-boiling point reaction mixture containing alkylphenol carbonates continuously extracted from the lower part of the first continuous multistage distillation column is continuously supplied to the second continuous multistage distillation column.
  • the supply position is lower than the gas outlet at the upper part of the second distillation column, the liquid and Z are introduced from one or several inlets installed at the upper or middle part of the column. Or it is preferable to supply in gaseous form.
  • at least one of the inlets is between the packed portion and the tray portion.
  • step (I) the components extracted from the top gas of the first continuous multistage distillation column and the second continuous multistage distillation column are condensed and then returned to the upper part of each distillation column.
  • the reflux ratio of the first continuous multistage distillation column is from 0 to 10
  • the reflux ratio of the second continuous multistage distillation column is from 0.01 to L0, preferably from 0.08 to 5, more preferably 0.
  • the range is 1-2.
  • the first continuous multi-stage distillation column is not refluxed!
  • a reflux ratio of 0 is also a preferred embodiment.
  • any method may be used in which the homogeneous catalyst is present in the first continuous multistage distillation column, but the position force above the middle portion of the first distillation column is also distilled. It is preferable to supply it into the tower.
  • the catalyst solution dissolved in the raw material or the reaction solution may be introduced together with the raw material, or this catalyst solution may be introduced from an introduction locus different from the raw material.
  • the amount of catalyst used in the first continuous multi-stage distillation column of the present invention varies depending on the type of catalyst used, the type of raw material and its ratio, reaction temperature, reaction pressure, and other reaction conditions. Expressed as a ratio to the mass, it is usually used in an amount of 0.0001 to 30% by mass, preferably 0.005 to 10% by mass, more preferably 0.001 to 1% by mass.
  • any method may be used for allowing the catalyst to be present in the second continuous multistage distillation column.
  • the second continuous multi-stage distillation column is preferably fixed in the column by a method of being installed in a stage or a method of being installed in a packed form.
  • the catalyst solution dissolved in the raw material or the reaction solution may be introduced together with the raw material, or this catalyst solution may be introduced from an inlet different from the raw material.
  • the amount of catalyst used in the second continuous multi-stage distillation column of the present invention varies depending on the type of catalyst used, the type of raw material and its ratio, the reaction temperature and the reaction pressure, but the total amount of raw materials. expressed as a percentage of mass, usually from 0.0001 to 30 mass 0/0, preferably from 0.0005 to 10 mass 0/0, more preferably in a 001-1 mass% 0.1.
  • the catalyst used in the first continuous multistage distillation column and the catalyst used in the second continuous multistage distillation column may be of the same type or different types.
  • it is preferable to use the same type of catalyst. Even more preferred is the same type
  • it is a catalyst that can be dissolved in both reaction solutions.
  • the catalyst is usually dissolved in the high-boiling reaction mixture of the first continuous multistage distillation column, and the lower force of the first distillation column is extracted together with the alkylphenol carbonate and the like, and the second continuous multistage distillation column is left as it is. This is a preferred embodiment. If necessary, a new catalyst can be added to the second continuous multi-stage distillation column.
  • the reaction time of the transesterification reaction performed in step (I) is considered to correspond to the average residence time of each reaction solution in the first continuous multistage distillation column and the second continuous multistage distillation column. This differs depending on the internal shape and number of stages of each distillation column, the amount of raw material supply, the type and amount of catalyst, reaction conditions, etc., but in each of the first continuous multistage distillation column and the second continuous multistage distillation column.
  • the reaction time is usually 0.01 to 10 hours, preferably 0.05 to 5 hours, and more preferably 0.1 to 3 hours.
  • the reaction temperature of the first continuous multistage distillation column varies depending on the type of raw material compound and the type and amount of the catalyst used, but is usually in the range of 100 to 350 ° C. In order to increase the reaction rate, it is preferable to increase the reaction temperature. However, if the reaction temperature is high, side reactions are liable to occur. For example, by-products such as alkylphenols increase, which is preferable. In this sense, the preferable reaction temperature in the first continuous multistage distillation column is 130 to 280 ° C, more preferably 150 to 260. C, more preferably 180-250. C range.
  • the reaction temperature of the second continuous multistage distillation column varies depending on the type of raw material compound and the type and amount of the catalyst used, but is usually in the range of 100 to 350 ° C. In order to increase the reaction rate, it is preferable to increase the reaction temperature. However, if the reaction temperature is high, side reactions are more likely to occur. For example, alkylphenol ethers and alkylphenols that are raw materials and products such as alkylphenols -It is not preferable because by-products such as the fleece rearrangement reaction product and its derivatives increase. In this sense, the preferred reaction temperature in the second continuous multistage distillation column is 130 to 280. C, more preferably 150-260. C, more preferably in the range of 180-250 ° C.
  • the reaction pressure of the first continuous multi-stage distillation column varies depending on the type and composition of the raw material mixture used, the reaction temperature, and the like.
  • the pressure at the top of the column is 0.1 to 2 X 10 7 Pa, preferably 10 5 to 10 7 Pa, more preferably Is performed in the range of 2 ⁇ 10 5 to 5 ⁇ 10 6 .
  • the reaction pressure of the second continuous multi-stage distillation column varies depending on the type and composition of the raw material compound used, the reaction temperature, and the like. It is performed in the range of 1 to 2 ⁇ 10 7 Pa, preferably 10 3 to 10 6 Pa, more preferably 5 ⁇ 10 3 to 10 5 .
  • Two or more distillation columns may be used as the first continuous multi-stage distillation column in step (I).
  • two or more distillation columns can be connected in series, connected in parallel, or combined in series and parallel.
  • two or more distillation towers can be used as the second continuous multistage distillation tower in the step (I). In this case, it is possible to connect two or more distillation columns in series, connect them in parallel, or connect a combination of series and parallel.
  • the materials constituting the first continuous multistage distillation column and the second continuous multistage distillation column used in the step (I) are mainly metallic materials such as carbon steel and stainless steel. From the viewpoint of quality, stainless steel is preferable.
  • the second column high boiling point reaction mixture continuously extracted in liquid form from the lower part of the second continuous multistage distillation column in step (I) is a force mainly composed of diphenyl carbonate.
  • the catalyst usually contains catalyst components, unreacted raw materials, alkyl phenyl carbonate, by-products and the like.
  • By-products such as alkylphenol ethers and other low-boiling byproducts, high-boiling byproducts such as alkylphenol carbonate diphenyl carbonate fleece transfer products and derivatives, and diphenyl carbonate metabolites, etc. There is.
  • reaction by-products anisole, methyl salicylate, phenyl salicylate, xanthone, methoxybenzoic acid phenol, 1-phenoxycarbo-roux 2-phenoloxy Carboxypherene and the like are present and usually contain a small amount of high-boiling by-products thought to have reacted further.
  • step (ii) a purification step for obtaining high-purity diphenyl carbonate from the second tower high boiling point reaction mixture.
  • a high-purity diphenyl carbonate can be obtained from the second tower high-boiling reaction mixture, for example, distillation and Among the methods such as Z or recrystallization, in the present invention, it has been found that the step ( ⁇ ) is preferably performed by a distillation method. Furthermore, in the present invention, the step (ii) is carried out by using two distillation columns, that is, a high boiling point substance separation column A and a diphenyl carbonate purification column B having a side cut extraction port, thereby increasing the amount of side cut components. It has been found that pure diphenyl carbonate can be obtained efficiently in high yield.
  • the second tower high boiling point reaction mixture is continuously introduced into the high boiling point substance separation tower A, and a tower top component (A) containing diphenyl carbonate and a tower bottom component containing a catalyst ( A) continuous
  • top component (A) is separated from the difur with a side cut outlet.
  • the bottom component (B) is continuously distilled and separated into three components.
  • the second tower high boiling point reaction mixture obtained from the step (I) usually contains 50-80% by mass of diphenyl carbonate.
  • the amount of the reaction mixture continuously introduced into the high-boiling-point substance separation column A has a force that varies depending on the diphenol carbonate content of about 1.3 to 2 tons Zhr or more. is there. Usually more than about 2 tons Zhr of reaction mixture needs to be separated and purified
  • the high boiling point substance separation column A used in the step (ii) satisfies the following formulas (13) to (15), has a length (cm), an inner diameter D (cm), and has n stages inside.
  • the diphenol carbonate purification tower B used in the step (ii) satisfies the following formulas (16) to (21), has a length L_ (cm), an inner diameter D (cm), and has an internal portion. Have Therefore, there is an inlet Bl in the middle of the tower, and a side cut outlet B2 between the inlet B1 and the bottom of the tower. The number of internal stages on the upper side from the inlet B1 is n, and the inlet B1 and side cut are removed.
  • the number of internal stages between outlet B2 is n, and the lower side from side cut outlet B2
  • L (cm) is less than 800, an internal that can be installed inside the high-boiling-point separation column A
  • L (cm) is 1000 ⁇ L ⁇ 2500, and more preferably 120
  • D In order to reduce the equipment cost while achieving the above, D must be 1000 or less.
  • the preferred range of D (cm) is 200 ⁇ D ⁇ 600, more preferably 250 ⁇ D
  • n is less than 20, the separation efficiency decreases, so the desired high purity cannot be achieved,
  • n 100 or less.
  • n is 30 ⁇ n ⁇ 70, more preferably 35 ⁇ n ⁇ 60
  • the distillation conditions of the high boiling point separation column A in the step (ii) are as follows.
  • the column bottom temperature (T) is 185 to 280 ° C.
  • the tower top pressure (P) is preferably 1000 to 20000 Pa.
  • A is 190-240 ° C
  • P is 2000 to 15000 Pa, and more preferably 3000 to 13000 Pa.
  • L (cm) is less than 1000, it can be installed inside the diphenol carbonate purification tower B.
  • L should be 5000 or less.
  • L (cm) 1500 ⁇ L ⁇ 3000.
  • 1700 ⁇ L ⁇ 2500 Preferably, 1700 ⁇ L ⁇ 2500.
  • D (cm) is smaller than 100, the target production cannot be achieved and the target production is achieved.
  • the preferred range of D (cm) is 150 ⁇ D ⁇ 500, more preferably 200 ⁇ D
  • n When n is less than 20, the separation efficiency of the entire column is lowered, so that the desired high purity is achieved. In order to reduce the equipment cost while achieving the desired separation efficiency, n must be less than 70.
  • n is greater than 70, the pressure difference between the top and bottom of the tower
  • n is 25 ⁇ n ⁇ 55, and more preferably 30 ⁇ n
  • the target high-purity diphenyl carbonate is stable for a long time.
  • N, n and n are respectively 5 ⁇ n ⁇ 20, 12 ⁇ n ⁇ 40, 3 ⁇ n
  • the pressure is 185 to 280 ° C
  • the top pressure (P) force is l000 to 20000 Pa. T force ⁇ 185
  • P is 2000 to 15000 Pa, and more preferably 3000 to 13000 Pa.
  • the same inner diameter may be used from the top to the bottom of the tower.
  • the inner diameters may be partially different.
  • the inner diameter of the upper part of the tower may be smaller or larger than the inner diameter of the lower part of the tower.
  • the high boiling point substance separation column A and the diphenyl carbonate purification column B used in the step (II) are distillation columns each having a tray and Z or a packing as internal.
  • the term “internal” as used in the present invention means a portion of the distillation column that actually makes gas-liquid contact. As such a tray, those described in the section of step (I) are preferable. Further, the “number of internal stages” is as described above.
  • the high boiling point substance separation column A in step (II) is preferably one having a packing as an internal. It has also been found that regular packing is preferred as the packing. It was also found that the diphenyl carbonate purification tower B is preferably packed as an internal, and more preferably one or more ordered packings.
  • the second reactive distillation column the high boiling point reaction mixture withdrawn in the tower underlying strength continuously in step (I), usually, the dialkyl carbonate force from 0.05 to 2 mass 0/0, phenol is 1 to 20 mass 0/0, Arukirufue - ether is from 0.05 to 2 mass 0/0, Arukirufue - Le carbonate 10-45% by weight, diphenyl We sulfonyl carbonate 50 to 80 wt%, the high boiling point by-products is 0.1 to 5 Since the mass% and the catalyst content is 0.001 to 5 mass%, the continuously extracted bottom liquid is continuously supplied to the high boiling point substance separation tower A in the step (ii). Is preferred.
  • the composition of the reaction mixture varies depending on the conditions of the transesterification reaction of dialkyl carbonate and phenol, the type and amount of the catalyst, etc., but is almost constant as long as the transesterification reaction is carried out under certain conditions. Therefore, the composition of the reaction mixture supplied to the high boiling point substance separation tower A is almost constant. However, in the step (ii), if the composition of the reaction mixture is within the above range, even if it varies, separation can be performed with substantially the same separation efficiency. This is one of the features of the process (ii) of the present invention.
  • step (II) in order to continuously supply the bottom liquid of the second reactive distillation column of step (I) into the high boiling point substance separation column A, an intermediate portion of the separation column A is used. It is also preferable to supply in liquid form from one or several inlets installed in the lower part, or to supply into the tower through a reboiler from a pipe provided in the lower part of the reboiler of the separation tower A. It is.
  • the amount of the bottom liquid of the second reactive distillation column supplied to the high boiling point substance separation column A is the amount of high-purity diphenyl carbonate to be produced, the concentration of diphenyl carbonate in the reaction mixture, and the separation. Although it varies depending on the separation conditions of the column A, it is usually about 2 tons Zhr or more, preferably about 6 tons Zhr or more, more preferably about 10 tons Zhr or more.
  • the high-boiling point reaction mixture of the second reactive distillation column continuously fed to the high-boiling-point substance separation column A is composed of a large part of diphenyl carbonate and unreacted raw materials, alkyl fur ether, alkyl phenol carbonate, etc.
  • the top component (A) which contains the majority of compounds with a lower boiling point than diphenyl carbonate, a small amount of diphenyl carbonate, catalyst and high-boiling by-products
  • bottom component (A) containing the product.
  • a small amount of alkyl fluoride is contained in the bottom component (A).
  • -Lucarbonate may be included. These organic substances in the bottom component are useful for dissolving the catalyst component and keeping it liquid. The total amount or a part of this bottom component (A)
  • a catalyst component of the transesterification reaction As a catalyst component of the transesterification reaction, it is usually recycled and reused as it is in the first reactive distillation column and Z or second reactive distillation column in step (I), but in some cases after separation from organic matter in the catalyst recovery step. Regenerated as a catalyst and recycled.
  • step (ii)! / Diphenols such as salicylic acid phenol, xanthone, methoxybenzoic acid phenol, 1-phenoxycarbonyl 2-phenoxycarboxy monophenylene, etc. -By-products and catalyst components with a higher boiling point than Bonate are separated almost completely as a bottom component (A) in this high boiling point substance separation tower A, and the content in the top component (A) is usually 200 ppm or less.
  • Diphenols such as salicylic acid phenol, xanthone, methoxybenzoic acid phenol, 1-phenoxycarbonyl 2-phenoxycarboxy monophenylene, etc.
  • -By-products and catalyst components with a higher boiling point than Bonate are separated almost completely as a bottom component (A) in this high boiling point substance separation tower A, and the content in the top component (A) is usually 200 ppm or less.
  • step (ii) One feature of the step (ii) is that it can be easily reduced to preferably 10 ppm or less, more preferably 50 ppm or less. Most of these high-boiling byproducts are contained in the top component (A).
  • step (ii) it is one of the characteristics of the step (ii) that shika-zu can extract most of the diphenyl carbonate in the introduced reaction mixture from the top.
  • step (ii) 95% or more, preferably 96% or more, more preferably 98% or more of the diphenyl carbonate in the reaction mixture continuously fed to the high boiling point substance separation tower A has a column top force. Can be extracted.
  • the liquid supplied continuously is usually 90 to 97. Mass% is continuously extracted as the top component (A), and the top force is also extracted continuously.
  • the composition of the tower top component (A) is
  • a dialkyl carbonate force from 0.05 to 1 mass 0/0, phenol is 1 to 10 mass 0/0, Arukirufue - ether is from 0.05 to 0 5 weight 0/0, Arukirufue -.
  • Le carbonate 20-40 The content of high boiling point by-products is usually 200 ppm or less, preferably lOO ppm or less, more preferably 50 ppm.
  • the reflux ratio of the high boiling point substance separation column A is in the range of 0.01 to 10, preferably 0.08 to 5, more preferably 0.1 to 3. .
  • the tower top component (B) contains a small amount of diphenyl carbonate.
  • the amount is usually 1 to 9%, preferably 3 to 8%, based on the diphenyl carbonate supplied.
  • the diphenyl carbonate in the top component (B) is converted to the top component (B).
  • the bottom component (B) is Zif-Luka
  • high-purity diphenyl carbonate is usually continuously extracted at a flow rate of usually 1 ton Zhr or more, preferably 3 ton Zhr or more, more preferably 5 ton Z or more.
  • the amount usually corresponds to about 90 to 96% of the diphenyl carbonate fed to the purification tower B.
  • the purity of diphenyl carbonate is usually 99.9% or higher, preferably 99.99% or higher, more preferably 99.999% or higher.
  • the content of high-boiling impurities in the high-purity diphenyl carbonate obtained by carrying out step (I) and step (II) using dimethyl carbonate and phenol as raw materials is 30 ppm or less, preferably 1 Oppm salicylic acid. Or less, more preferably lppm or less, xanthone is 30ppm or less, preferably lOppm or less, more preferably lppm or less, and methoxybenzoic acid phenol is 30ppm or less, preferably lOppm or less, more preferably lppm or less.
  • 1-phenoxycarbole 2 phenoxycarboxy monophenol is 30 ppm or less, preferably ⁇ m or less, more preferably 5 ppm or less.
  • the total content of these high-boiling byproducts is 10 ppm or less, preferably 50 ppm or less, and more preferably 10 ppm or less.
  • the halogen content of the resulting diphenyl carbonate is 0.1 ppm or less, preferably 10 ppm or less, and more preferably Is lppb or less (outside the limit of detection by ion chromatography).
  • the reflux ratio of the diphenyl carbonate purification column B is in the range of 0.01 to 10, preferably 0.1 to 8, and more preferably 0.5 to 5. It is.
  • the high boiling point substance separation tower A and diphenyl carbonate purification tower B used in the present invention and the material constituting the wetted part are mainly metal materials such as carbon steel and stainless steel. From the viewpoint of the quality of the carbonate, stainless steel is preferable.
  • step (III) is performed. That is, an aromatic dihydroxy compound and the high-purity diphenyl carbonate are reacted to produce an aromatic polycarbonate molten prepolymer, and the molten prepolymer is allowed to flow along the surface of the guide, and the molten prepolymer is allowed to flow down the flow.
  • This is a process for producing an aromatic polycarbonate using a guide contact flow type polymerization reactor for carrying out the polymerization.
  • step (III) the aromatic dihydroxy compound used is a compound represented by the general formula (39).
  • Ar represents a divalent aromatic group.
  • the divalent aromatic group Ar is preferably one represented by, for example, the general formula (40).
  • Ar 1 and Ar 2 each independently represent a divalent carbocyclic or heterocyclic aromatic group having 5 to 70 carbon atoms, and Y represents a divalent carbocyclic or heterocyclic aromatic group having 1 to 30 carbon atoms. Represents an alkylene group.
  • the heterocyclic aromatic group include aromatic groups having one or more ring-forming nitrogen atoms, oxygen atoms or sulfur atoms.
  • the divalent aromatic group Ar 1 Ar 2 represents a group such as substituted or unsubstituted fullerene, substituted or unsubstituted bifluoro-lene, substituted or unsubstituted pyridylene.
  • the substituents here are as described above.
  • the divalent alkylene group Y is, for example, an organic group represented by the following formula.
  • RR 2 , R 3 and R 4 are each independently hydrogen, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, or a cycloalkyl having 5 to 10 carbon atoms in the ring structure
  • k represents an integer of 3 to 11
  • R 5 and R 6 are each Each independently selected for X, independently of each other, represents hydrogen or an alkyl group having 1 to 6 carbon atoms, X represents carbon,
  • R 2 , R 3 , R 4 , R £ , R 6 other substituents, for example, halogen atoms, alkyl groups having 1 to 10 carbon atoms, carbon, as long as one or more hydrogen atoms do not adversely affect the reaction It may be substituted by an alkoxy group, a phenol
  • Examples of such a divalent aromatic group Ar include those represented by the following formulae:
  • R 7 and R 8 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, or a cyclohexane having 5 to 10 carbon atoms.
  • An alkyl group or a phenyl group, and m and n are integers of 1 to 4, and when m is 2 to 4, each R 7 may be the same or different. And when n is 2 to 4, R 8 may be the same or different.
  • divalent aromatic group Ar may be represented by the following formula.
  • Examples of such a divalent aromatic group Ar include those represented by the following formulae:
  • divalent aromatic group Ar examples include substituted or unsubstituted phenols, substituted Alternatively, unsubstituted naphthylene, substituted or unsubstituted pyridylene and the like can be mentioned.
  • the aromatic dihydroxy compound used in the present invention may be a single type or two or more types.
  • a typical example of an aromatic dihydroxy compound is bisphenol A.
  • a trivalent aromatic trihydroxy compound for introducing a branched structure may be used in combination as long as the object of the present invention is not impaired.
  • the use ratio (feed ratio) of the aromatic dihydroxy compound and high-purity diphenol carbonate in step (III) depends on the type of aromatic dihydroxy compound and diphenyl carbonate used, Depending on the polymerization temperature and other polymerization conditions, difluorocarbonate is usually 0.9 to 2.5 moles, preferably 0.95 to 2.0 moles per mole of aromatic dihydroxy compound. More preferably, it is used in a ratio of 0.98 to L 5 mol.
  • a molten state prepolymer produced from an aromatic dihydroxy compound and diphenyl carbonate (hereinafter referred to as a molten prepolymer) is an aromatic dihydroxy compound and diphenyl carbonate.
  • a melt in the middle of polymerization having a lower degree of polymerization than an aromatic polycarbonate having the desired degree of polymerization and may of course be an oligomer.
  • Such a molten prepolymer used in step (ii) may be obtained by any known method.
  • a molten mixture composed of a predetermined amount of an aromatic dihydroxy compound and diphenol carbonate is usually used in a temperature range of about 120 ° C. to about 280 ° C.
  • a method of continuously producing a molten polymer having a required degree of polymerization by increasing the degree of polymerization in order using two or more vertical stirring tanks connected in series is particularly preferred.
  • the molten polymer is continuously supplied to the guide contact flow type polymerization apparatus to continuously produce an aromatic polycarbonate having a desired degree of polymerization.
  • This guide contact flow type polymerizer is a polymerizer in which a polymer is melted and flowed along a guide, and can produce an aromatic polycarbonate of 1 ton or more per hour.
  • the guide contact flow type polymerizer is:
  • a melt pre-bolimer supply zone for supplying to the guide of the reaction zone, a plurality of guides extending downward from the perforated plate in a space surrounded by the perforated plate, the side casing and the tapered bottom casing.
  • the tapered bottom case of the polymerization reaction zone is connected to the upper side casing at an angle C degree inside the upper side casing, and the angle C degree satisfies the equation (24).
  • Polymerizers that satisfy various conditions in order to produce high-quality, high-performance aromatic polycarbonate at an industrial scale production of 1 ton or more per hour with no molecular weight variation.
  • the present invention has found these conditions.
  • “there is no variation in molecular weight” means a variation in number average molecular weight of 200 or less.
  • an aromatic polycarbonate having a number average molecular weight variation of preferably 150 or less, more preferably 100 or less, can be produced stably over a long period of time. More specifically, as shown in the conceptual diagram (FIG. 4), the internal cross-sectional area A (m 2 ) in the horizontal plane (a—a ′ plane) of the side casing 10 of the polymerization reaction zone 5 is It is necessary to satisfy equation (22).
  • A is smaller than 0.7 m 2 , the target production volume cannot be achieved, and in order to reduce the equipment cost and achieve this production volume, A must be 300 m 2 or less. It is.
  • AZB is represented by the formula ( 23) Satisfied! / I must speak! / ⁇ .
  • a tapered bottom casing 11 constituting the bottom of the polymerization reaction zone 5 is provided at an angle C degrees with respect to the upper side casing 10 at an angle C degrees. It is also necessary to satisfy (24). To reduce equipment costs, C should be as close to 90 ° as possible. Reduce the quality of aromatic polycarbonate falling from the lower end of force guide 4 or aromatic polycarbonate prepolymers with increased degree of polymerization. In order to move these melts having a high melt viscosity to the discharge port 7 without causing them, C must satisfy the formula (24)! / ⁇ ! / ⁇ .
  • the length Mem) of the guide satisfies the formula (25).
  • the ability to increase the degree of polymerization of the melted polymer is not sufficient, and the variation in the degree of polymerization increases by about 200 or more in terms of number average molecular weight.
  • the variation in the degree of polymerization is about 300 or more in number average molecular weight (in some cases, about 500 or more ) This is not preferable because the properties of the resulting aromatic polycarbonate vary and the physical properties of the resulting aromatic polycarbonate vary.
  • the fact that the variation in the degree of polymerization is large means the case where there is a difference of about 200 or more, for example, expressed by the number average molecular weight.
  • the total external surface area S (m 2 ) of the guide 4 needs to satisfy the formula (26). If S is less than 2m2, the target production volume cannot be achieved, and this In order to achieve production and eliminate variations in physical properties, S must be 50000m 2 or less.
  • the tapered bottom casing which can be manufactured and satisfies equation (24), can reduce the time for this large amount of high quality product aromatic polycarbonate falling from the guide to reach the outlet, This is presumed to reduce the thermal history of the resulting aromatic polycarbonate.
  • the polymerization reactor used in the step (III) is a guided contact flow type polymerization reactor satisfying the equations (22), (23), (24), (25) and (26). Therefore, the facility cost can be reduced as an industrial production facility.
  • the range required for the size, angle, etc. in the guide contact flow type polymerization reactor used in the step (III) is as described above. Further preferable ranges are as follows. A more preferable range of the internal cross-sectional area A (m 2 ) in the horizontal plane of the side casing of the polymerization reaction zone is 0.8 ⁇ A ⁇ 250, more preferably 1 ⁇ A ⁇ 200. [0134] Further, the more preferable range of the ratio of the A (m 2 ) and the internal cross-sectional area B (m 2 ) in the horizontal plane of the aromatic polycarbonate outlet is 25 ⁇ AZB ⁇ 900, more preferably 30 ⁇ A / B ⁇ 800.
  • a more preferable range of the angle C degrees formed inside the side casing of the upper part of the tapered bottom case of the bottom part of the polymerization reaction zone is 125 ⁇ C ⁇ 160, more preferably 135 ⁇ C ⁇ 165.
  • the corresponding angles are Cl, C2, C3, ⁇ ", C1 ⁇ C2 ⁇ C3 ⁇ ⁇ ⁇ ⁇ ⁇ ⁇
  • the required length h (cm) of the guide depends on factors such as the degree of polymerization of the raw material prepolymer, the polymerization temperature and pressure, the degree of polymerization of the aromatic polycarbonate or prepolymer to be produced in the polymerization vessel, and the production amount. More preferable range depending on difference is 200 ⁇ h ⁇ 3000, more preferably 250 ⁇ h ⁇ 2500. Especially preferred when satisfying the h-force equation (33):
  • the total external surface area S (m 2 ) of the required guide as a whole varies depending on the same factors as above, but the more preferable range is 4 ⁇ S ⁇ 40000, and more preferably Is 10 ⁇ S ⁇ 30000. 15 ⁇ S ⁇ 20000, especially in the preferred range.
  • V the total external surface area of the entire guide means the entire surface area of the guide that flows in contact with the molten polymer.
  • a guide such as a pipe
  • it means the outer surface area.
  • the surface area of the inner surface of the pipe that does not allow molten molten polymer to flow down is not included.
  • the shape of the internal cross-section of the side casing of the side surface of the polymerization reaction zone in the horizontal plane of the polymerization reaction zone is any shape such as a polygon, an ellipse, or a circle over the guide contact flow type polymerization reactor used in step (III). May be. Since the polymerization reaction zone is usually operated under reduced pressure, it can be anything that can withstand it, but it is preferably in the form of a circle or a shape close thereto. Therefore, the side casing of the polymerization reaction zone of the present invention is preferably cylindrical. In this case, a tapered bottom casing is connected to the bottom of the cylindrical side casing, and a cylindrical aromatic polycarbonate is connected to the bottom of the bottom casing.
  • a bonate outlet is provided.
  • D (cm) the inner diameter of the cylindrical portion of the side casing is D (cm)
  • L (cm) the length
  • d (cm) the inner diameter of the discharge port
  • D, L, d are expressed by the formula (29) , (30), (31) and (32) are preferably satisfied;
  • a more preferable range of D (cm) is 150 ⁇ D ⁇ 1500, and further preferably 200 ⁇ D ⁇ 1200.
  • the more preferable range of DZd is 6 ⁇ DZd ⁇ 45, and more preferably 7 ⁇ D / d ⁇ 40.
  • a more preferable range of LZD is 0.6 ⁇ L / D ⁇ 25, and more preferably 0.7 ⁇ L / D ⁇ 20.
  • a more preferable range of L (cm) is h—10 ⁇ L ⁇ h + 250, and more preferably h ⁇ L ⁇ h + 200.
  • the melt viscosity increases, so that the adhesive strength to the guide increases, and the amount of the melt sticking to the guide increases as it goes to the bottom of the guide.
  • the residence time of the molten prepolymer on the guide that is, the polymerization reaction time is increased.
  • the melted prepolymer that is flowing down under its own weight while being supported by the guide has a very large surface area per weight and its surface is renewed efficiently. A high molecular weight in the latter half of the polymerization, which was impossible, can be easily achieved. This is one of the excellent features of the polymerization vessel used in step (III).
  • aromatic polycarbonate having almost the same degree of polymerization produced while flowing down the guide accumulates, and it is possible to continuously produce aromatic polycarbonate with no variation in molecular weight. Become.
  • the aromatic polycarbonate collected at the bottom of the casing is continuously extracted by the discharge pump 8 through the discharge port 7 and is usually pelletized continuously through an extruder.
  • additives such as stabilizers and weathering agents can be added by an extruder.
  • the perforated plate constituting the guide contact flow type polymerization reactor used in the step (III) is usually selected from a force such as a flat plate, a corrugated plate, a plate with a thick central portion, and the shape of the perforated plate is usually A shape force such as circular, oval, triangular or polygonal is selected.
  • the holes of the perforated plate are usually selected from shapes such as a circle, an ellipse, a triangle, a slit, a polygon, and a star. Cross-sectional area of the hole is usually 0. 01 ⁇ 100cm 2, is preferably from 0. 05 ⁇ 10cm 2, range of 0. l ⁇ 5cm 2 particularly good Mashiku.
  • the distance between the holes is usually 1 to 500 mm, preferably 25 to LOO mm, in terms of the distance between the centers of the holes.
  • the hole in the perforated plate may be a hole penetrating the perforated plate or may be a case where a tube is attached to the perforated plate. Further, it may be tapered.
  • the guide constituting the guide contact flow type polymerization reactor used in the step (III) has a very large ratio of the length in the vertical direction to the average length of the outer periphery of the horizontal cross section. It represents a large material.
  • the ratio is usually in the range of 10 to: L, 000,000, and preferably in the range of 50 to: L00,000.
  • the shape of the cross section in the horizontal direction is usually selected from shapes such as a circle, an ellipse, a triangle, a quadrangle, a polygon, and a star.
  • the shape of the cross section may be the same or different in the length direction.
  • the guide may be hollow. Yes.
  • the guide may be a single piece such as a wire-like shape, a thin rod-like shape, or a thin, pipe-like shape that prevents molten preformer from entering inside, but it may be twisted. It may be a combination of two or more. Further, a net-like one or a punching plate-like one may be used. The surface of the guide may be smooth or uneven, or may have a projection or the like partially.
  • Preferred guides are a cylindrical shape such as a wire shape or a thin rod shape, a net shape such as the above-mentioned thin pipe shape, or a punching plate shape.
  • This guide has its own heat source such as an electric heater! / ⁇ Power!
  • a guide without a heat source is a thermal denaturation of prepolymers and aromatic polycarbonates on its surface. U, especially, because there is no concern.
  • the guided contact flow type polymerizer of the present invention that enables the production of high-quality aromatic polycarbonate on an industrial scale (production amount, long-term stable production, etc.), it is particularly preferable to use a plurality of wires.
  • Type, or rod-shaped, or the above-mentioned narrow, pipe-type guides that are connected to each other at appropriate intervals in the upper and lower sides using horizontal support materials from the top to the bottom. It is a guide. For example, from the top to the bottom of a plurality of wire-shaped or thin rod-shaped guides or the above-mentioned thin pipe-shaped guides!
  • lcm to 200 cm Wire mesh guide a three-dimensional guide in which a plurality of wire mesh guides are arranged at the front and back, and they are joined at an appropriate distance above and below, for example, 1 cm to 200 cm using a lateral support material, or Multiple wire-like or thin! ⁇ Bar shape or the above-mentioned thin !, jungle gym fixed at appropriate intervals above and below, for example, lcm to 200cm using front and back, left and right sides of pipe-shaped guide It is a three-dimensional guide.
  • the lateral support material not only helps to keep the distance between the guides approximately the same, but also helps to strengthen the strength of the guides that are flat or curved as a whole, or three-dimensional guides. These supporting materials may be the same material as the guide, or may be different.
  • one guide is a cylindrical shape with an outer diameter r (cm) or a pipe shape in which no molten prepolymer is inserted inside the guide contact flow type polymerization reactor, (34) Satisfied and preferred to ⁇ ;
  • This guide advances the polymerization reaction while allowing the molten prepolymer to flow down, but also has a function of holding the molten prepolymer for a certain period of time.
  • This holding time is related to the polymerization reaction time, and as described above, the holding time and the holding amount increase as the melt viscosity increases as the polymerization proceeds.
  • the amount that the guide retains the melted prepolymer varies depending on the external surface area of the guide, that is, the outer diameter of the guide in the form of a cylinder or pipe, even if the melt viscosity is the same.
  • the guide installed in the polymerization vessel of the present invention needs to be strong enough to hold and support the weight of the molten prepolymer.
  • the thickness of the guide is important.
  • the formula (34) is satisfied. If r is smaller than 0.1, it will be difficult to perform stable operation for a long time in terms of strength. If r is greater than 1, the guide itself becomes very heavy, for example, the perforated plates must be made very thick to hold them in the combiner. There will be an increase in the number of parts that hold too much, resulting in inconveniences such as large variations in molecular weight. In this sense, the more preferred range of r is 0.15 ⁇ r ⁇ 0.8, and even more preferred is 0.2 ⁇ r ⁇ 0.6.
  • the positional relationship between the guide and the porous plate and the positional relationship between the guide and the hole of the porous plate are not particularly limited as long as the prepolymer guide contact flow is possible.
  • the guide and the perforated plate may or may not be in contact with each other.
  • the present invention is not limited to this. Because it is designed so that the molten pre-bolimer falling from the perforated plate contacts the guide at an appropriate position. It is.
  • a method of flowing the molten prepolymer through the perforated plate along the guide a method of flowing down by a liquid head or its own weight, or by applying pressure using a pump or the like, the perforated plate force is also applied to the molten prepolymer.
  • a method such as extrusion is exemplified. It is preferable to supply a predetermined amount of the raw molten polymer to the polymerizer supply zone under pressure using a supply pump, and the molten polymer delivered to the guide through the perforated plate flows down along the guide under its own weight. It is a method.
  • the molten prepolymer is usually continuously supplied to the guide contact flow type polymerization reactor while being heated to a predetermined polymerization temperature.
  • a jacket or the like is usually provided on the outer wall surface of the guide contact flow type polymerization reactor, and it is preferable to heat the jacket to a predetermined temperature through a heating medium or the like. In this way, it is preferable to perform heat Z heat retention of the molten prepolymer and the prepolymer feed zone and the perforated plate, and heat retention of the polymerization reaction zone, the side casing and the tapered bottom casing.
  • an aromatic dihydroxy compound, diphenyl carbonate, and a molten prepolymer obtained with sufficient strength are polymerized in a guide contact flow type polymerization reactor to produce an aromatic polycarbonate.
  • the temperature is usually in the range of 80-350 ° C.
  • efficient surface renewal with internal stirring is performed, so that the polymerization reaction can proceed at a relatively low temperature. Therefore, the preferred reaction temperature is 100 to 290 ° C, and more preferred is 150 to 270 ° C.
  • the reaction rate can be increased by removing the force generated by the phenol as the polymerization reaction proceeds. Therefore, an inert gas that does not adversely influence the reaction, such as nitrogen, argon, helium, carbon dioxide and lower hydrocarbon gas, is introduced into the polymerization reactor, and the generated phenol is accompanied by these gases.
  • an inert gas that does not adversely influence the reaction such as nitrogen, argon, helium, carbon dioxide and lower hydrocarbon gas
  • nitrogen, argon, helium, carbon dioxide and lower hydrocarbon gas is introduced into the polymerization reactor, and the generated phenol is accompanied by these gases.
  • a method in which the reaction is performed and a method in which the reaction is performed under reduced pressure are preferably used.
  • a method using these in combination is also preferably used. In these cases, it is not necessary to introduce a large amount of inert gas into the polymerization vessel, and the inside may be maintained in an inert gas atmosphere.
  • the preferred reaction pressure in the polymerization vessel in step (ii) varies depending on the type, molecular weight, polymerization temperature, etc. of the aromatic polycarbonate to be produced. For example, molten prepolymer force from bisphenol A and diphenol carbonate.
  • the number average molecular weight is in the range of 5,000 or less, the range of 400 to 3, OOOPa is preferable.
  • the number average molecular weight is 5,000 to 10,000, the range of 50 to 500 Pa is used. preferable.
  • the number average molecular weight is 10,000 or more, 300 Pa or less is preferable, and the range of 20 to 250 Pa is particularly preferably used.
  • step (III) In carrying out the step (III), only one guided contact flow type polymerization reactor is used. It is also possible to produce aromatic polycarbonates having the same degree, but depending on the degree of polymerization of the melted prepolymer used as a raw material, the production amount of aromatic polycarbonates, etc., two or more guide contact flow-down type polymerizers It is also preferable to connect the two and increase the degree of polymerization in order. In this case, it is a preferable method because guides and reaction conditions suitable for the polymerization degree of the prepolymer or aromatic polycarbonate to be produced can be separately adopted in each polymerization vessel.
  • a guide contact flow type first polymerizer For example, use a guide contact flow type first polymerizer, a guide contact flow type second polymerizer, a guide contact flow type third polymerizer, and a guide contact flow type fourth polymerizer. If the total external surface area of the entire guide with each polymerizer force is Sl, S2, S3, S4 '"', then S1 ⁇ S2 ⁇ S3 ⁇ S4 ⁇ '"' Monkey.
  • the polymerization temperature may also be the same for each polymerization vessel, and may be increased in order. It is also possible to lower the polymerization pressure in each polymerization vessel in order.
  • S1ZS2 is less than 1, there will be inconveniences such as large variations in molecular weight, making stable production difficult for a long period of time, and difficulty in obtaining a predetermined production amount. If S1ZS2 is greater than 20, As a result, the flow rate of the molten polymer flowing down the guide increases, and as a result, the residence time of the molten prepolymer decreases, resulting in the disadvantage that an aromatic polycarbonate having the required molecular weight can be obtained. In this sense, a more preferable range is 1.5 ⁇ S1 / S2 ⁇ 15.
  • step (III) 1 ton or more of aromatic polycarbonate is produced per hour, but the phenol produced as a by-product of the polymerization reaction is discharged out of the system, so it is more than 1 ton per hour.
  • a large amount of molten prepolymer needs to be fed to the polymerization vessel.
  • the amount of molten preformomer supplied depends on the degree of polymerization and the aromatic poly force to be produced. -The force that varies depending on the degree of polymerization of the bonate.
  • the production amount of aromatic polycarbonate per ton Zhr is in the range of ⁇ : ton Zhr.
  • the reaction for producing an aromatic polycarbonate from an aromatic dihydroxy compound and diphenol carbonate in the process can be carried out without adding a catalyst, but in the presence of a catalyst, if necessary, to increase the polymerization rate.
  • Done in The catalyst is not particularly limited as long as it is used in this field, but alkali metals and alkaline earths such as lithium hydroxide, sodium hydroxide, potassium hydroxide, and calcium hydroxide are used.
  • Alkali metal salts, alkaline earth metal salts, quaternary ammonium salts of boron and aluminum hydrides such as lithium aluminum hydride, sodium borohydride, tetramethyl ammonium borohydride Lithium salts, lithium hydride, sodium hydride, hydrogenating power
  • Alkali metal and alkaline earth metal hydrides such as lithium; alkali metal and alkaline earth metals such as lithium methoxide, sodium ethoxide and calcium methoxide Alkoxides of lithium; lithium phenoxide, sodium phenoxide, magnesium pheno Sid, alkali metal and alkaline earth metal alkoxides such as LiO—Ar—OLi, NaO—Ar—ONa (Ar is aryl); alkali metals and alkalis such as lithium acetate, calcium acetate, sodium benzoate Organic acid salts of earth metals; zinc compounds such as acid zinc, zinc acetate, zinc phenoxide; acid boron
  • Boron compounds such as) Oxide, sodium silicate, tetraalkyl, tetraaryl and diphenyl ethoxysilanes; germanium oxide, germanium tetrachloride , Germanium ethoxide, germanium phenoxide, and other germanium compounds; tin bonded to alkoxy or aryloxy groups such as tin oxide, dialkyltin oxide, dialkyltin carboxylate, tin acetate, ethyltin tributoxide Compounds, tin compounds such as organic tin compounds; lead compounds such as acid lead, lead acetate, lead carbonate, basic carbonates, lead and organic lead alkoxides or aliquots; quaternary Forms such as ammonium salt, quaternary phosphonium salt, quaternary arsenic salt, etc.
  • Antimony compounds such as antimony oxide and antimony acetate
  • Manganese compounds such as manganese acetate, manganese carbonate, and manganese borate
  • Titanium compounds such as titanium oxide, titanium alkoxides, and aryl-toxides
  • catalysts such as zirconium acetate, zirconium oxide, zirconium alkoxides or aryloxides, zirconium compounds such as zirconium acetylsetone.
  • these catalysts may be used alone or in combination of two or more.
  • the amount of these catalysts, the aromatic dihydroxy I spoon compounds of the raw materials usually 10 _1 to 1 wt%, preferably from 10 one 9-Iotaomikuron _1 wt%, rather more preferably from 10 _8 ⁇ 10_ selected in the range of 2 wt%.
  • the polymerization catalyst used is the force remaining in the aromatic polycarbonate of the product.
  • These polymerization catalysts usually have an adverse effect on the physical properties of the polymer. Therefore, it is preferable to reduce the amount of catalyst used as much as possible. In the method of the present invention, since the polymerization can be carried out efficiently, the amount of catalyst used can be reduced. This is also one of the features of the present invention that can produce high-quality aromatic polycarbonate.
  • step (III) There are no particular restrictions on the material of the guide contact flow type polymerizer and piping used in step (III). Usually stainless steel, carbon steel, hastelloy, nickel, titanium, chromium, and other alloys Medium strength such as manufactured metal and polymer materials with high heat resistance are selected. In addition, the surface of these materials may be subjected to various treatments such as plating, lining, passivation treatment, acid washing, and phenol washing as necessary. Particularly preferred are stainless steel, nickel, glass lining and the like.
  • By-product phenol produced as a by-product in (III) and recovered usually contains a part of diphenyl carbonate, but its purity is high, so it is recycled as it is to diphenyl carbonate production process (I). Rings can be reused.
  • a diphenol carbonate production process It is preferable to circulate and reuse in I).
  • the aromatic polycarbonate produced by carrying out the system of the present invention has a repeating unit represented by the following formula.
  • aromatic polycarbonate containing 85 mol% or more of a repeating unit represented by the following formula among all repeating units.
  • the terminal group of the aromatic polycarbonate produced by carrying out the method of the present invention is usually composed of hydroxy group and Z or a phenyl carbonate group (or a substituted vinyl carbonate group)! /
  • the ratio of the hydroxy group and the phenolic carbonate group (or the substituted phenolic carbonate group) is not particularly limited, but is usually in the range of 95: 5 to 5:95, preferably 90:10 to: L0: 90 More preferably, it is in the range of 80:20 to 20:80.
  • Particularly preferred is an aromatic polycarbonate in which the proportion of the phenolic carbonate group (or substituted phenolic carbonate group) in the terminal group is 60 mol% or more.
  • the aromatic polycarbonate produced by carrying out the method of the present invention may be partially branched from the main chain via a hetero bond such as an ester bond or an ether bond.
  • a hetero bond such as an ester bond or an ether bond.
  • the amount of the heterologous binding to carbonate bonds is usually 0.005 to 2 mol%, good Mashiku is 0.01 to 1 Monore 0/0, a, more preferred, 0.1 05 ⁇ 0.5 Monore is 0/0.
  • This amount of heterogeneous bonds improves flow properties during melt molding without compromising other polymer properties, making it suitable for precision molding and molding even at relatively low temperatures, providing excellent performance. Can be produced.
  • the molding cycle can be shortened, contributing to energy saving during molding.
  • the aromatic polycarbonate produced by carrying out the method of the present invention contains almost no impurities, but alkali metal and Z or alkaline earth metal as their metal elements, 0.001 to lppm.
  • the containing aromatic polycarbonate can be manufactured.
  • the content strength is preferably 0.005 to 0.5 ppm, more preferably 0.1 to 0.1 ppm.
  • a metal element is 1 ppm or less, preferably 0.5 ppm or less, more preferably 0.1 ppm, it does not affect the physical properties of the product aromatic polycarbonate, so the aromatic polycarbonate produced in the present invention. Is high quality.
  • aromatic polycarbonates produced by carrying out the method of the present invention particularly preferred are those produced by using an aromatic dihydroxy compound and diphenyl carbonate that do not contain halogen.
  • the halogen content is usually less than or equal to lOppb.
  • a halogen content of 5 ppb or less can be produced, and more preferably, an aromatic polycarbonate having a halogen content of 1 ppb or less can be produced. Will be obtained.
  • the reason why the aromatic polycarbonate having no molecular weight fluctuation can be stably produced for a long time by the method of the present invention is that a specific polymerizer is used, according to Examples. it is obvious.
  • M is the molecular weight of the aromatic polycarbonate and M is the molecular weight of polystyrene.
  • the first continuous multistage distillation column 101 and the second continuous multistage distillation column 201 as shown in FIG. 3 are connected. Reactive distillation was carried out using the obtained apparatus to produce diphenyl carbonate.
  • the catalyst is Pb (OPh)
  • the reaction solution was about lOOppm.
  • the reactive distillation was continuously performed under the conditions that the temperature at the bottom of the column was 225 ° C, the pressure at the top of the column was S7 X 10 5 Pa, and the reflux ratio was 0.
  • the first tower low boiling point reaction mixture containing methyl alcohol, dimethyl carbonate, phenol, etc. is continuously withdrawn in the form of a gas from the top 13 of the first tower, passed through the heat exchanger 14, and 3-4 tons from the outlet 16 Extracted at a Zhr flow rate.
  • the first tower high boiling point reaction mixture containing methyl phenol carbonate, dimethyl carbonate, phenol, diphenol carbonate, catalyst and the like was continuously extracted in liquid form from the bottom 17 of the first tower.
  • the raw material installed between the melapack and the perforated plate tray of the second continuous multistage distillation column 201 was introduced as it was. It was continuously supplied from the port 21 at a flow rate of 66 tons Zhr.
  • the liquid fed to the second continuous multi-stage distillation column 201 Mechirufue - Le carbonate 18.2 weight 0/0, Jifue - Rukabo titanate was contained 8 wt% 0.1.
  • the reaction distillation was continuously performed under the conditions that the temperature at the bottom of the column was 210 ° C, the pressure at the top of the column was 3 ⁇ 10 4 Pa, and the reflux ratio was 0.3.
  • the second column low boiling point reaction mixture containing 35% by mass of dimethyl carbonate and 56% by mass of phenol was continuously extracted from the top 23 of the second column, and the flow rate at the extraction port 26 was 55.6 tons Zhr. from the second column bottoms 2 7 Mechirufue - Le carbonate 38.4 weight 0/0, Jifue - Le carbonate 55.
  • the second column high boiling point reaction mixture containing 6 mass% was continuously withdrawn.
  • the second column low boiling point reaction mixture was continuously supplied from the inlet 11 to the first continuous multistage distillation column 101.
  • the new The amount of dimethyl carbonate and phenol supplied to the standard was adjusted so as to maintain the composition and amount of raw material 1 and raw material 2 in consideration of the composition and amount of the second tower low boiling point reaction mixture.
  • Diphenyl carbonate production was found to be 5.74 tons per hour.
  • the selectivity for diphenol carbonate with respect to the reacted phenol was 98%.
  • a long-term continuous operation was performed under these conditions. After 500 hours, 2000 hours, 4000 hours, 5000 hours, and 6000 hours, the production amount of diphenyl carbonate (excluding diphenyl carbonate contained in the raw material) is 5.74 tons per hour. 5.75 tons, 5.74 tons, 5.74 tons, 5.75 tons, the selectivity is 98%, 98%, 98%, 98%, 98%, and was very stable .
  • the produced aromatic carbonate contained substantially no halogen (lppb or less).
  • a continuous multi-stage distillation column equipped with a melapack was used as the separation column A.
  • the high boiling point reaction mixture of the second reactive distillation tower obtained in the above step (I) is introduced into the inlet A1.
  • To the separation column A was continuously introduced at 13.1 ton Zhr.
  • the temperature (T) at the bottom of the column is 206 ° C
  • the pressure (P) at the top of the tower is 3800 Pa
  • the reflux ratio is 0.6.
  • the top component (A) was continuously withdrawn at 12.5 tons Zhr through conduit 16.
  • the bottom component (A) was continuously withdrawn through the conduit 11 at 0.6 ton Zhr.
  • the bottom temperature (T) is 213 ° C
  • the top pressure (P) is 5000 Pa
  • the reflux ratio is 1.
  • composition of each component 24 hours after the system was completely stabilized was as follows.
  • High-boiling substances containing by-products and catalyst components with higher boiling points than diphenyl carbonate such as benzoic acid phenol, 1-phenoxycarbole-2-phenol carboxy-phenol, etc.
  • the content of phenyl salicylate, xanthone, and phenyl methoxybenzoate in the side-cut component was less than 1 ppm, and 1 phenol 2-phenoloxy-phenylene was 4 ppm.
  • the halogen content was lppb or less. From this, it was found that the purity of diphenyl carbonate obtained from the side cut was 99.999% or more. The production amount of this high-purity diphenyl carbonate was 7.17 tons per hour.
  • the high-purity diphenyl carbonate thus obtained was stored in a molten state in a storage tank.
  • Aromatic polycarbonate was produced using a guide contact flow type polymerizer as shown in Fig. 6.
  • the material of this polymerization vessel is all stainless steel.
  • the molten polymer supplied from the supply port 1 is uniformly distributed to each guide 4 by the perforated plate 2.
  • An inert gas supply port 9 is provided at the lower part of the polymerization vessel, and a vacuum vent port 6 is provided at the upper part.
  • the outside of the polymerization vessel is a jacket and is heated by a heat medium.
  • Aromatic polycarbonate maintained at 260 ° C with bisphenol A and the high-purity diphenyl carbonate produced in steps (1) and (II) (molar ratio of bisphenol A to 1.05).
  • the molten prepolymer (number average molecular weight Mn is 4,000) was continuously fed from the feed port 1 to the feed zone 3 by a feed pump.
  • the molten polymer that was continuously supplied to the polymerization reaction zone 5 through the perforated plate 2 in the polymerization vessel was allowed to flow along the guide 4 while the polymerization reaction proceeded.
  • the polymerization reaction zone 5 is held at 80 Pa through the vacuum vent 6.
  • the produced aromatic polycarbonate that has entered the bottom 11 of the polymerization vessel from the lower part of the guide 4 is discharged from the outlet 7 to 5.5 ton Zhr by the discharge pump 8 so that the amount of residence in the bottom is almost constant. It was continuously extracted at a flow rate.
  • the number average molecular weight Mn of the aromatic polycarbonate extracted from the extraction port 12 after 50 hours from the start of operation was 10,500, which was a good color (b * value 3.2). .
  • the tensile elongation was 98%. 60 hours, 100 hours, 500 hours, 1,000 hours, 2,000 hours, 3,000 hours, 4,000 hours, 5,000 hours and 5,000 hours after starting operation
  • the Mn values of the extracted aromatic polycarbonates are 10, 500, 10, 550, 10, 500, 10, 550, 10, 500, 10, 500, 10, 550, and 10, 500, respectively. there were.
  • the aromatic polycarbonate produced in this way has an alkali metal and Z or alkali earth metal compound content of 0.04 to 0.05 ppm in terms of these metal elements, and a chlorine content.
  • lppb lower the detection limit
  • containing Yuryou heterologous binding was 0.12 to 0.15 mol 0/0.
  • the temperature at the bottom of the tower is 185 ° C, the pressure at the top of the tower is 2000Pa Distillation was continuously carried out at a reflux ratio of 0.9.
  • the phenol recovered from the top of the column was once stored in a tank and then recycled to step (I).
  • the difluorocarbonate recovered from the side cut part was supplied to the high boiling point substance separation tower in the step (ii) and recovered as high purity diphenyl carbonate.
  • the catalyst is Pb (OPh)
  • the reaction solution was about 250 ppm.
  • the reactive distillation was continuously carried out under the conditions that the temperature at the bottom of the column was 235 ° C, the pressure at the top of the column was S9 X 10 5 Pa, and the reflux ratio was 0.
  • the first tower low boiling point reaction mixture containing methyl alcohol, dimethyl carbonate, phenol, etc. is continuously withdrawn in the form of a gas from the top 13 of the first tower, passed through the heat exchanger 14, and from the outlet 16 to 43 tons. Extracted at a Zhr flow rate.
  • the first tower high boiling point reaction mixture containing methyl phenol carbonate, dimethyl carbonate, phenol, diphenol carbonate, catalyst and the like was continuously extracted in liquid form from the bottom 17 of the first tower.
  • the temperature at the bottom of the column is 205 ° C
  • the pressure at the top of the column is 2 X 10 4 Pa
  • the reflux ratio is 0.5.
  • the second tower low boiling point reaction mixture was continuously withdrawn from the second tower top 23, and from the second tower bottom 27, 36.2% by weight of methylphenol carbonate and 60.8% by weight of diphenyl carbonate were obtained.
  • the second tower containing high boiling point reaction mixture was continuously withdrawn.
  • the second column low boiling point reaction mixture was continuously supplied to the first continuous multistage distillation column 101 from the inlet 11.
  • the amount of dimethyl carbonate and phenol to be newly supplied should be such that the composition and amount of the above raw material 1 and raw material 2 are maintained in consideration of the composition and amount of the second tower low boiling point reaction mixture. It was adjusted. Production of diphenyl carbonate was found to be 4.03 tonnes per hour. The selectivity for diphenol carbonate was 97% with respect to the reacted phenol.
  • Mn of discharged aromatic polycarbonate was 7,600, 7,600, 7, 6 50 7,600, 7,650, 7,650, 7,600, 7,600, respectively, and was stable .
  • the aromatic polycarbonate thus produced has an alkali metal and z or alkali earth metal compound content of 0.03 to 0.04 ppm in terms of these metal elements.
  • the chlorine content was lppb or less (below the detection limit).
  • the content of heterogeneous bonds was 0.08 to 0.1 mol%.
  • Reactive distillation was performed under the following conditions using the same apparatus as in Example 1 except that the cross-sectional area per hole of the perforated plate tray in the second continuous multistage distillation column 201 was about 1.8 cm 2 .
  • the catalyst is Pb (OPh)
  • the reaction solution was about 150 ppm.
  • the reaction distillation was continuously performed under the conditions that the temperature at the bottom of the column was 220 ° C, the pressure at the top of the column was S8 X 10 5 Pa, and the reflux ratio was 0.
  • First column low-boiling point reaction mixture containing methyl alcohol, dimethyl carbonate, phenol, etc. is continuously withdrawn in the form of gas from the top 13 of the first column, passed through the heat exchanger 14, and from the outlet 16 to 8 2 tons. Extracted at a Zhr flow rate.
  • the first tower high boiling point reaction mixture containing methyl phenol carbonate, dimethyl carbonate, phenol, diphenol carbonate, catalyst and the like was continuously extracted in liquid form from the bottom 17 of the first tower.
  • Aromatic polycarbonate was produced using a polymerization apparatus in which two guided contact flow type polymerization reactors as shown in Fig. 6 were arranged in series.
  • the material of these polymerization vessels is all stainless steel.
  • the second polymerization vessel is the same as that used in Example 1.
  • Bisphenol A and high-purity diphenyl carbonate produced in steps (I) and (II) (molar ratio of bisphenol A to 1.06) and force Melt prepolymer (number average molecular weight) of produced aromatic polycarbonate 2,500) was continuously fed to feed zone 3 from feed port 1 of the first polymerization vessel by a feed pump.
  • the molten polymer continuously supplied to the polymerization reaction zone through the perforated plate 2 in the first polymerization vessel flows down along the guide 4.
  • the polymerization reaction proceeded.
  • the polymerization reaction zone of the first polymerization vessel is maintained at a pressure of 800 Pa through the vacuum vent port 6.
  • the aromatic polycarbonate melted polymer (number average molecular weight Mn is 5,500) that has entered the bottom 11 of the polymerization vessel from the bottom of the guide 4 so that the residence amount at the bottom is almost constant. Then, it was continuously extracted from the discharge port 7 by the discharge pump 8 at a constant flow rate.
  • This molten prepolymer was continuously fed to feed zone 3 from feed port 1 of the second polymerization vessel by a feed pump.
  • the molten polymer which was continuously supplied to the polymerization reaction zone through the multi-hole plate 2 in the second polymerization vessel, proceeded with the polymerization reaction while flowing down along the guide 4.
  • the polymerization reaction zone of the second polymerization vessel is maintained at a pressure of 50 Pa through the vacuum vent port 6.
  • the generated aromatic polycarbonate that has entered the bottom 11 of the second polymerizer at the bottom force of the guide 4 is also discharged from the discharge port 7 at a flow rate of 6 tons Zhr by the discharge pump 8 so that the amount of residence at the bottom is almost constant. It was extracted continuously.
  • the number average molecular weight Mn of the aromatic polycarbonate extracted from the outlet 12 of the second polymerization vessel 50 hours after the start of operation was 11,500, indicating a good color (b * value 3.2). It was.
  • the tensile elongation was 99%. 60 hours, 100 hours, 500 hours, 1,000 hours, 2,000 hours, 3,000 hours, 4,000 hours, 5,000 hours and 5,000 hours after the start of operation
  • the extracted aromatic polycarbonate Mn is 11, 500, 11, 550, 11, 500, 11, 550, 11, 500, 11, 500, 11, 550, 11, 500, and is stable. Met.
  • the aromatic polycarbonate thus produced has a content of alkali metal and Z or alkali earth metal compound of 0.03 to 0.05 ppm in terms of these metal elements, and a chlorine content.
  • a content of alkali metal and Z or alkali earth metal compound of 0.03 to 0.05 ppm in terms of these metal elements, and a chlorine content.
  • lppb lower the detection limit
  • the content of heterogeneous bonds was 0.11 to 0.16 mol%.
  • diphenyl carbonate is used with two reactive distillation columns having a specific structure.
  • a step of producing an aromatic polycarbonate from a molten polymer obtained from an aromatic dihydroxy compound and the high-purity diphenyl carbonate by using a guide contact flow-down polymerizer having a specific structure (III) By carrying out the method of the present invention including the step (IV) of recycling the produced phenol to the step (I), a high-quality and high-performance aromatic polycarbonate having no mechanical properties and no coloration is obtained. It has been found that at high polymerization rates, it can be produced on an industrial scale of over 1 ton per hour.
  • a high-quality aromatic polycarbonate can be stably produced for a long period of time with little variation in molecular weight, such as 2000 hours or more, preferably 300 hours or more, more preferably 5000 hours or more. Therefore, the present invention is an extremely effective method as an industrial production method for high-quality aromatic polycarbonate.
  • FIG. 1 is a schematic view of a first continuous reaction distillation column preferable for carrying out the present invention.
  • An internal is installed inside the torso.
  • FIG. 2 is a schematic view of a second continuous reaction distillation column preferable for carrying out the present invention. Inside the barrel, there is an internal packing with regular packing at the top and a perforated plate tray at the bottom.
  • FIG. 3 is a schematic view of an apparatus in which a first continuous reaction distillation column and a second continuous reaction distillation column are connected, which is preferable for carrying out the present invention.
  • FIG. 4 is a schematic view of an apparatus in which a high boiling point substance separation tower A and a diphenyl carbonate purification tower B are connected, which is preferable for carrying out the present invention.
  • FIG. 5 is a schematic view of a guide contact flow type polymerization reactor preferable for carrying out the present invention.
  • FIG. 6 is a schematic view of a guide contact flow type polymerizer having a cylindrical side casing and a tapered bottom casing that are preferable for carrying out the present invention.
  • the description of the symbols used in each figure is as follows: (Fig. 1, Fig. 2 and Fig. 3) 1: Gas outlet, 2: Liquid outlet, 3: Inlet, 4: Inlet, 5: End plate, L, L: Body length ( cm), D

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 本発明が解決しようとする課題は、ジアルキルカーボネートと芳香族ジヒドロキシ化合物から、着色がなく機械的物性に優れた高品質・高性能の芳香族ポリカーボネートを、工業的に大量(例えば、1時間あたり1トン以上)に長期間(例えば、1000時間以上、好ましくは3000時間以上、より好ましくは5000時間以上)、安定的に製造できる具体的な方法を提供することにある。ジアルキルカーボネートと芳香族ジヒドロキシ化合物から芳香族ポリカーボネートを製造するにあたり、特定の構造を有する2基の反応蒸留塔を用いてジフェニルカーボネートを製造する工程(I)、これを特定の構造を有する高沸点物質分離塔Aとジフェニルカーボネート精製塔Bを用いて高純度ジフェニルカーボネートを取得する工程(II)、次いで、芳香族ジヒドロキシ化合物と該高純度ジフェニルカーボネートとから得られる溶融プレポリマーを、特定の構造を有するガイド接触流下式重合器を用いて芳香族ポリカーボネートを製造する工程(III)、副生するフェノールを工程(I)にリサイクルする工程(IV)を含む本発明の方法を実施することによって、上記課題が達成できる。

Description

明 細 書
高品質芳香族ポリカーボネートを工業的に製造する方法
技術分野
[0001] 本発明は、芳香族ポリカーボネートの工業的製造法に関する。更に詳しくは、本発 明は、ジアルキルカーボネートと芳香族ジヒドロキシィ匕合物から、着色がなく機械的 物性に優れた高品質 ·高性能の芳香族ポリカーボネートを、工業的に大量に長期間 安定的に製造する方法に関する。
背景技術
[0002] 芳香族ポリカーボネートは、耐熱性、耐衝撃性、透明性などに優れたエンジニアリ ングプラスチックスとして、多くの分野において幅広く用いられている。この芳香族ポリ カーボネートの製造方法については、従来種々の研究が行われ、その中で、芳香族 ジヒドロキシ化合物、例えば 2, 2—ビス(4ーヒドロキシフエ-ル)プロパン(以下、ビス フエノール Aという)とホスゲンとの界面重縮合法が工業ィ匕されている。しかしながら、 この界面重縮合法においては、有毒なホスゲンを用いなければならないこと、健康や 環境に問題のある塩化メチレンを重合溶媒としてポリカーボネートあたり 10倍以上も の大量使用しなければならないこと、副生する塩化水素や塩化ナトリウム及び、塩ィ匕 メチレンなどの含塩素化合物により装置が腐食すること、ポリマー物性に悪影響を及 ぼす塩ィ匕ナトリウム、塩化メチレンなどの塩素系残留不純物の分離が困難なこと、塩 化メチレンや未反応ビスフエノール Aなどを含む大量のプロセス廃水の処理が必要 なこと等、多くの課題がある。
[0003] 一方、芳香族ジヒドロキシィ匕合物とジフエ二ルカーボネートとから、芳香族ポリカー ボネートを製造する方法としては、例えば、ビスフエノール Aとジフエ-ルカーボネート を溶融状態でエステル交換し、副生するフエノールを抜き出しながら重合する溶融法 が以前力も知られて 、る。このエステル交換反応は平衡反応であってし力もその平 衡定数が小さいので、フ ノールを溶融物の表面力 効率的に抜き出さない限り重 合が進行しない。溶融法は、界面重縮合法と異なり、溶媒を使用しないなどの利点が ある一方、重合がある程度進行するとポリマーの粘度が急上昇し、副生するフエノー ルなどを効率よく系外に抜き出す事が困難になり、実質的に重合度を上げることがで きなくなるという芳香族ポリカーボネートそのものに基づく本質的な問題があった。す なわち、芳香族ポリカーボネートの場合、ポリアミドやポリエステルなど他の縮合系ポ リマーの溶融重縮合の場合と異なり、低分子量状態、例えば重合度 (n)が 15— 20程 度であっても、その溶融粘度が極端に高くなり、通常の攪拌では表面更新が非常に 困難になる。そして、ポリマー表面からのフ ノールの抜出しが実質的に起こらなくな り、製品として必要な重合度 (n= 35— 65程度)のポリマーを製造することができない 。このことは、当業界ではよく知られていることである。
[0004] 芳香族ポリカーボネートを溶融法で製造するための重合器としては、種々の重合器 が知られて ヽる。攪拌機を備えた縦型の攪拌槽型重合器を用いる方法は一般に広く 知られている。しかしながら、縦型の撹拌槽型重合器は小スケールでは容積効率が 高ぐシンプルであるという利点を有し、効率的に重合を進められるが、工業的規模 では、上述したように重合の進行と共に副生するフエノールを効率的に系外に抜き出 す事が困難となり重合速度が極めて低くなるという問題を有している。さらに、大スケ 一ルの縦型の撹拌槽型重合器は、通常、蒸発面積に対する液容量の比率力 ヽスケ ールの場合に比べて大きくなり、いわゆる液深が大きな状態となる。このため、重合 度を高めるために真空度を高めていっても、撹拌槽の下部は液深があるために、上 部の空間部よりも液深に相当する高い圧力で重合される事になり、フ ノール等は効 率的に抜き出すことが困難になってしまう。従って、大スケールの縦型の撹拌槽型重 合器は、プレボリマーを製造する場合のみにし力使用することができない。必要な重 合度を達成するためには、このプレボリマーからさらに重縮合反応を進行させるため の重合器が必須である。
[0005] この問題を解決しょうと、高粘度状態のポリマーからフ ノール等を効率的に抜き出 すための種々の工夫がなされている。これらの工夫の大部分は、機械的攪拌の改良 に関するものであり、例えば、ベント部を有するスクリュー型重合器を用いる方法 (特 許文献 1)、嚙合型 2軸押出機を用いる方法 (特許文献 2)、また、薄膜蒸発型反応器 、例えばスクリュー蒸発器や遠心薄膜蒸発器等を用いる方法 (特許文献 3)が記載さ れており、さらに、遠心薄膜型蒸発装置と横型 2軸撹拌式重合器を組み合わせて用 いる方法 (特許文献 4)が具体的に開示されている。これらの方法は、いずれも機械 的攪拌を行うことを技術の根幹としているため、自ずと限界があり、この問題を解決す るには至っていない。
[0006] すなわち、超高溶融粘度に対応できる機械的攪拌そのものに限界があるため、芳 香族ポリカーボネートの超高溶融粘度にかかわる種々の問題を解決することができ ないままである。これらの方法では、温度を上げその溶融粘度を少しでも下げること で解決していこうとしている。すなわち、 300°C近くの高温、高真空下で溶融プレポリ マーを機械的攪拌で表面更新を図りながら重合を行うのがこれらの方法であるが、こ の温度でもなおその溶融粘度が非常に高いため、その表面更新の程度を高くするこ とができない。従ってこれらの方法では製造できるポリカーボネートの重合度に制限 があり、高分子量グレードの製品を製造することは困難である。さらに、これらの方法 では 300°C近くの高温で反応させるため、得られるポリマーの着色や物性低下が起 こり易いことに加え、攪拌装置の真空シール部力もの空気や異物の漏れこみなどに よるポリマーの着色や物性低下も起こり易いことなど、高品質のポリカーボネートを長 期間安定的に製造するためには、なお多くの解決すべき多くの課題がある。
[0007] 本発明者らは、機械的攪拌を行わな!/、で、溶融プレボリマーをワイヤーなどのガイ ドに沿わせて自重で落下させながら重合させるガイド接触流下式重合器を用いる方 法を開発することによってこれらの課題を完全に解決できることを見出し、先に出願し た。(特許文献 5〜12)し力しながら、これらの方法には、芳香族ポリカーボネートを 1 時間あたり 1トン以上生産できるような工業的製造法に関する具体的な方法の開示や 示唆はなされてヽなかった。
[0008] さらに、エステル交換反応による芳香族ポリカーボネートを工業的規模で製造する ためには、高純度ジフヱ-ルカーボネートを工業的規模で大量に入手することが必 要である。芳香族ジヒドロキシィ匕合物、例えば、高純度ビスフエノール Aは、工業的に 大量に製造されており、これを入手することは容易である力 高純度ジフヱ二ルカ一 ボネートを工業的規模で大量に入手することは、不可能である。従って、これを製造 する必要がある。
[0009] ジフエ-ルカーボネートの製法としては、フエノールとホスゲンとの反応による方法 が古くから知られており、最近も種々検討されている。し力しながら、この方法はホス ゲン使用の問題にカ卩え、この方法によって製造されたジフエ二ルカーボネートには分 離が困難な塩素系不純物が存在しており、そのままでは芳香族ポリカーボネートの 原料として用いることはできない。なぜならば、この塩素系不純物は、極微量の塩基 性触媒の存在下で行うエステル交換法芳香族ポリカーボネートの重合反応を著しく 阻害し、たとえば、 lppmでもこのような塩素系不純物が存在すると殆ど重合を進行さ せることができない。そのため、エステル交換法芳香族ポリカーボネートの原料とする には、希アルカリ水溶液と温水による十分な洗浄と油水分離、蒸留などの多段階の 面倒な分離 ·精製工程が必要であり、さらにこのような分離 ·精製工程での加水分解 ロスや蒸留ロスのため収率が低下するなど、この方法を経済的に見合った工業的規 模で実施するには多くの課題がある。
[0010] 一方、ジアルキルカーボネートとフエノールとのエステル交換反応による芳香族力 ーボネートの製造方法も知られている。しかしながら、これらのエステル交換反応は 全て平衡反応であって、しカゝもその平衡が原系に極端に偏って ヽることに加えて反 応速度が遅いことから、この方法によって芳香族カーボネート類を工業的に大量に 製造するのは多大な困難を伴っていた。
[0011] これを改良するためにいくつかの提案がなされているが、その大部分は、反応速度 を高めるための触媒開発に関するものである。このタイプのエステル交換反応用触媒 として数多くの金属化合物が提案されている。し力しながら、触媒開発だけでは、不 利な平衡の問題を解決できないので、大量生産を目的とする工業的製造法にするた めには、反応方式の検討を含め、非常に多くの検討課題がある。
[0012] 一方、反応方式を工夫することによって平衡をできるだけ生成系側にずらし、芳香 族カーボネート類の収率を向上させる試みもなされている。例えば、ジメチルカーボ ネートとフエノールの反応において、副生してくるメタノールを共沸形成剤とともに共 沸によって留去する方法 (特許文献 13)、副生してくるメタノールをモレキュラーシー ブで吸着させて除去する方法 (特許文献 14)が提案されている。また、反応器の上部 に蒸留塔を設けた装置によって、反応で副生してくるアルコール類を反応混合物か ら分離させながら同時に蒸発してくる未反応原料との蒸留分離を行う方法も提案され ている(特許文献 15)。
[0013] し力しながら、これらの反応方式は基本的にはバッチ方式力 切り替え方式である。
触媒開発による反応速度の改良もこれらのエステル交換反応に対しては限度があり 、反応速度が遅いことから、連続方式よりもバッチ方式の方が好ましいと考えられてい たからである。これらのなかには、連続方式として蒸留塔を反応器の上部に備えた連 続攪拌槽型反応器 (CSTR)方式も提案されて!ヽるが、反応速度が遅!ヽことや反応 器の気液界面が液容量に対して小さいことから反応率を高くできないなどの問題が ある。従って、これらの方法で芳香族カーボネートを連続的に大量に、長期間安定的 に製造するという目的を達成することは困難であり、経済的に見合う工業的実施にい たるには、なお多くの解決すべき課題が残されている。
[0014] 本発明者等はジアルキルカーボネートと芳香族ヒドロキシィ匕合物を連続的に多段 蒸留塔に供給し、触媒を存在させた該塔内で連続的に反応させ、副生するアルコー ルを含む低沸点成分を蒸留によって連続的に抜き出すと共に、生成したアルキルフ ェニルカーボネートを含む成分を塔下部より抜き出す反応蒸留法 (特許文献 16)、ァ ルキルフ -ルカーボネートを連続的に多段蒸留塔に供給し、触媒を存在させた該 塔内で連続的に反応させ、副生するジアルキルカーボネートを含む低沸成分を蒸留 によって連続的に抜き出すと共に、生成したジフエニルカーボネートを含む成分を塔 下部より抜き出す反応蒸留法 (特許文献 17)、これらの反応を 2基の連続多段蒸留 塔を用いて行 、、副生するジアルキルカーボネートを効率的にリサイクルさせながら ジフエ二ルカーボネートを連続的に製造する反応蒸留法 (特許文献 18)、ジアルキル カーボネートと芳香族ヒドロキシィ匕合物等を連続的に多段蒸留塔に供給し、塔内を 流下する液を蒸留塔の途中段及び Z又は最下段に設けられたサイド抜き出し口より 抜き出し、蒸留塔の外部に設けられた反応器へ導入して反応させた後に、該抜き出 し口のある段よりも上部の段に設けられた循環用導入口へ導入することによって、該 反応器内と該蒸留塔内の両方で反応を行う反応蒸留法 (特許文献 19)等、これらの エステル交換反応を連続多段蒸留塔内で反応と蒸留分離とを同時に行う反応蒸留 法を開発し、これらのエステル交換反応に対して反応蒸留方式が有用であることを世 界で初めて開示した。 [0015] 本発明者等が提案したこれらの反応蒸留法は、芳香族カーボネート類を効率よぐ かつ連続的に製造することを可能とする初めてのものであり、その後これらの開示に 基づ!/、て、 2基の連続多段蒸留塔を用いてジアルキルカーボネートからジフエ-ルカ ーボネートを製造する方法が提案されて!ヽる (特許文献 20〜26)。
[0016] また、本出願人は、反応蒸留方式にお!、て、多量の触媒を必要とせずに高純度芳 香族カーボネートを長時間、安定に製造できる方法として、触媒成分を含む高沸点 物質を作用物質と反応させた上で分離し、触媒成分をリサイクルする方法 (特許文献 27)や、反応系内の多価芳香族ヒドロキシィ匕合物を触媒金属に対して重量比で 2. 0 以下に保ちながら行う方法 (特許文献 28)を提案した。本発明者等はさらに、重合ェ 程で副生するフエノールの 70〜99重量%を原料として用いて、反応蒸留法でジフエ -ルカーボネートを製造しこれを芳香族ポリカーボネートの重合原料とする方法をも 提案した (特許文献 29)。
[0017] し力しながら、これら反応蒸留法による芳香族カーボネート類の製造を提案する全 ての先行文献には、工業的規模の大量生産 (例えば、 1時間あたり 1トン)を可能とす る具体的な方法や装置の開示は全くなぐまたそれらを示唆する記述もない。例えば 、ジメチルカーボネートとフエノールから主としてジフエ-ルカーボネート(DPC)を製 造するために開示された 2基の反応蒸留塔の高さ (H及び H: cm)、直径 (D及び
1 2 1
D: cm)、段数 (n及び n )と反応原料液導入量 (Q及び Q: kgZhr)に関する記述
2 1 2 1 2
は、表 1のとおりである。
[0018] [表 1]
Di Qi H2 D2 n2 Q2 特許 文献
600 25 20 66 600 25 20 23 18
350 2.8 一 0.2 305 5〜10 15+ 0.6 21
充填物
500 5 50 0.6 400 8 50 0.6 22
100 4 - 1.4 200 4 - 0.8 23
300 5 40 1.5 - 5 25 0.7 24
1200 20 40 86 600 25 20 31 27
28
600 - 20 66 600 - 20 22 29 すなわち、この反応を反応蒸留方式で実施するにあたり用いられた 2基の連続多段 蒸留塔の最大のものは、本出願人が特許文献 27、 28において開示したものである。 このようにこの反応用に開示されている連続多段蒸留塔における各条件の最大値は 、H = 1200cm, H = 600cm, D =20cm、D =25cm、n =n =50(この条件の み特許文献 22)、(^ = ジフエ-ルカーボネート
Figure imgf000009_0001
の生産量は約 6.7kgZhrに過ぎず、工業的規模の生産量ではな力 た。
特許文献 1:特公昭 50— 19600号公報 (英国特許第 1007302号明細書) 特許文献 2:特公昭 52— 36159号公報
特許文献 3:特公昭 53— 5718号公報 (米国特許第 3, 888, 826号明細書) 特許文献 4:特開平 2— 153923号公報
特許文献 5:特開平 8— 225641号公報
特許文献 6:特開平 8 - 225643号公報
特許文献 7:特開平 8— 325373号公報
特許文献 8:WO 97— 22650号公報
特許文献 9:特開平 10— 81741号
特許文献 10:特開平 10— 298279号公報
特許文献 ll:WO 99Z36457号公報
特許文献 12: WO 99Z64492号広報 特許文献 13 :特開昭 54— 48732号公報 (西独特許公開公報第 736063号明細書、 米国特許第 4252737号明細書)
特許文献 14:特開昭 58— 185536号公報 (米国特許第 410464号明細書) 特許文献 15:特開昭 56— 123948号公報 (米国特許第 4182726号明細書) 特許文献 16 :特開平 3— 291257号公報
特許文献 17:特開平 4 9358号公報
特許文献 18 :特開平 4— 211038号公報 (WO 91/09832号公報、欧州特許 046 1274号明細書、米国特許第 5210268号明細書)
特許文献 19 :特開平 4 235951号公報
特許文献 20 :特開平 6— 157424号公報 (欧州特許 0582931号明細書、米国特許 第 5334742号明細書)
特許文献 21 :特開平 6— 184058号公報 (欧州特許 0582930号明細書、米国特許 第 5344954号明細書)
特許文献 22 :特開平 9— 40616号公報
特許文献 23:特開平 9 59225号公報
特許文献 24:特開平 9 - 176094号公報
特許文献 25: WO 00Z18720公報 (米国特許第 6093842号明細書)
特許文献 26:特開 2001— 64235号公報
特許文献 27 :WO 97Z11049公報 (欧州特許 0855384号明細書、米国特許第 5 872275号明細書)
特許文献 28:特開平 11— 92429号公報 (欧州特許 1016648号明細書、米国特許 第 6262210号明細書)
特許文献 29:特開平 9— 255772号公報 (欧州特許 0892001号明細書、米国特許 第 5747609号明細書)
発明の開示
発明が解決しょうとする課題
本発明が解決しょうとする課題は、ジアルキルカーボネートと芳香族ジヒドロキシィ匕 合物から、着色がなく機械的物性に優れた高品質 ·高性能の芳香族ポリカーボネー トを、工業的に大量 (例えば、 1時間あたり 1トン以上)に長期間 (例えば、 1000時間 以上、好ましくは 3000時間以上、より好ましくは 5000時間以上)、安定的に製造で きる具体的な方法を提供することにある。
課題を解決するための手段
本発明者等は、上記の課題を達成できる具体的な方法を見出すべき検討を重ねた 結果、本発明に到達した。すなわち、本発明の第 1の態様では、
1. ジアルキルカーボネートと芳香族ジヒドロキシィ匕合物力も芳香族ポリカーボネー トを連続的に製造する高品質芳香族ポリカーボネートの工業的な製造方法であって
(I)ジアルキルカーボネートとフエノールとを原料とし、この原料を均一系触媒が存在 する第 1連続多段蒸留塔内に連続的に供給し、該第 1塔内で反応と蒸留を同時に行 Vヽ、生成するアルコール類を含む第 1塔低沸点反応混合物を該第 1塔上部よりガス 状で連続的に抜出し、生成するアルキルフエニルカーボネート類を含む第 1塔高沸 点反応混合物を該第 1塔下部より液状で連続的に抜出し、該第 1塔高沸点反応混合 物を触媒が存在する第 2連続多段蒸留塔内に連続的に供給し、該第 2塔内で反応と 蒸留を同時に行!、、生成するジアルキルカーボネート類を含む第 2塔低沸点反応混 合物を該第 2塔上部よりガス状で連続的に抜出し、生成するジフエ二ルカーボネート 類を含む第 2塔高沸点反応混合物を該第 2塔下部より液状で連続的に抜出し、一方 、ジアルキルカーボネート類を含む第 2塔低沸点反応混合物を第 1連続多段蒸留塔 内に連続的に供給することによって、ジフヱ-ルカーボネートを連続的に製造するェ 程 (I)と、
(II)該ジフ ニルカーボネートを含む第 2塔高沸点反応混合物を高沸点物質分離塔 Aに連続的に導入し、ジフエ-ルカーボネートを含む塔頂成分 (A )と触媒を含む塔
T
底成分 (A )に連続的に蒸留分離し、次いで該塔頂成分 (A )を、サイドカット抜き出
B T
し口を有するジフエ-ルカーボネート精製塔 Bに連続的に導入し、塔頂成分 (B )、
T
サイドカット成分 (B )、塔底成分 (B )の 3つの成分に連続的に蒸留分離することによ
S B
つて、サイドカット成分として高純度ジフヱ-ルカーボネートを取得する精製工程 (II) と、 (III)該芳香族ジヒドロキシィ匕合物と該高純度ジフエ-ルカーボネートとを反応させて 芳香族ポリカーボネートの溶融プレボリマーを製造し、該溶融プレボリマーをガイドの 表面に沿って流下せしめ、その流下中に該溶融プレボリマーの重合を行わせるガイ ド接触流下式重合器を用いて芳香族ポリカーボネートを製造する工程 (III)と、
(IV)工程 (III)で副生するフエノールをジフエ-ルカーボネート製造工程 (I)に循環 するフエノールのリサイクル工程(IV)と、
を含み、
(a)該第 1連続多段蒸留塔が、長さ L (cm)、内径 D (cm)の円筒形の胴部を有し、 内部に段数 nをもつインターナルを有する構造をしており、塔頂部又はそれに近い 塔の上部に内径 d (cm)のガス抜出し口、塔底部又はそれに近い塔の下部に内径
11
d (cm)の液抜出し口、該ガス抜出し口より下部であって塔の上部及び Z又は中間
12
部に 1つ以上の第 1の導入口、該液抜出し口より上部であって塔の中間部及び Z又 は下部に 1つ以上の第 2の導入口を有するものであって、 L、 D、 L ZD、 n、 Dノ d 、D Zd 力 それぞれ式(1)〜(6)を満足するものであり、
1500 < L ≤ 8000 (1)
1 式
100 < D ≤ 2000 式 (2)
1
2 < L /Ό ≤ 40 式 (3)
1 1
20 < n ≤ 120 式 (4)
1
5 < D /ά ≤ 30 式 (5)
1 11
3 < D /ά ≤ 20 式 (6)
1 12
(b)該第 2連続多段蒸留塔が、長さ L (cm)、内径 D (cm)の円筒形の胴部を有し、
2 2
内部に段数 nをもつインターナルを有する構造をしており、塔頂部又はそれに近い
2
塔の上部に内径 d (cm)のガス抜出し口、塔底部又はそれに近い塔の下部に内径
21
d (cm)の液抜出し口、該ガス抜出し口より下部であって塔の上部及び Z又は中間
22
部に 1つ以上の第 3の導入口、該液抜出し口より上部であって塔の中間部及び Z又 は下部に 1つ以上の第 4の導入口を有するものであって、 L、 D、 L ZD、 n、 D Z
2 2 2 2 2 2 d 、D Zd 力 それぞれ式(7)〜(12)を満足するものであり、
21 2 22
1500 ≤ L ≤ 8000 式(7) 100 ≤ D ≤ 2000 式 (8)
2
2 ≤ L /D ≤ 40 式 (9)
2 2
10 ≤ n ≤ 80 式(10)
2 ≤ Ό /d ≤ 15 式 (11)
2 21
5 ≤ D /d ≤ 30 式(12)
(c)該高沸点物質分離塔 Aが、下記式 (13)〜(15)を満足する、長さ L (cm) ,内径
A
D (cm)で、内部に段数 nのインターナルを有する連続多段蒸留塔であり、
800 ≤ L ≤ 3000 式(13)
A
100 ≤ D ≤ 1000 式 (14)
A
20 ≤ n ≤ 100 式(15)
該ジフエ-ルカーボネート精製塔 B力 長さ L (cm)、内径 D (cm)で、内部にイン
B B
ターナルを有するものであって、塔の中段に導入口 Bl、該導入口 B1と塔底との間に サイドカット抜き出し口 B2を有し、導入口 B1から上部のインターナルの段数が n
B1、 導入口 B1とサイドカット抜き出し口 B2との間のインターナルの段数が n 、サイドカツ
B2 ト抜き出し口 B2から下部のインターナルの段数が n で、段数の合計 (n +n +n )
B3 Bl B2 B3 が nである連続多段蒸留塔であり、下記式(16)〜(21)を満足し、
1000 < L < 5000 式(16)
B
100 < D < 1000 式 (17)
B
5 < n < 20 式(18)
Bl
12 < n < 40 式(19)
B2
3 < n < 15 式(20)
B3
20 < n < 70 式(21)
(d)該ガイド接触流下式重合器が、
(1)溶融プレボリマー受給口、多孔板、該溶融プレボリマーを多孔板を通して重合反 応ゾーンのガイドに供給するための溶融プレボリマー供給ゾーン、該多孔板と側面ケ 一シングと底部ケーシングとに囲まれた空間に該多孔板から下方に延びる複数のガ イドが設けられた重合反応ゾーン、該重合反応ゾーンに設けられた真空ベント口、底 部ケーシングの最下部に設けられた芳香族ポリカーボネート排出口、及び該排出口 に接続された芳香族ポリカーボネート排出ポンプを有するものであって、
(2)該重合反応ゾーンの側面ケーシングの水平面における内部断面積 A (m2)が、 式(22)を満足するものであって、
0. 7 ≤ A ≤ 300 式(22)
(3)該 A (m2)と、芳香族ポリカーボネート排出口の水平面における内部断面積 B (m2 )との比が、式(23)を満足するものであって、
20 ≤ A/B ≤ 1000 式(23)
(4)該重合反応ゾーンの底部を構成するテーパー形の底部ケーシンダカ 上部の側 面ケーシングに対してその内部において、角度 C度で接続されており、該角度 C度が 式(24)を満足するものであって、
120 ≤ C ≤ 165 式(24)
(5)該ガイドの長さ h (cm)力 式(25)を満足するものであって、
150 ≤ h ≤ 5000 式(25)
(6)該ガイド全体の外部総表面積 S (m2)が式 (26)を満足するものである、
2 ≤ S ≤ 50000 式(26)
ことを特徴とする高品質芳香族ポリカーボネートの工業的な製造方法、
2. 製造される芳香族ポリカーボネートが 1時間あたり 1トン以上であることを特徴と する前項 1に記載の方法、
3. 該 d と該 d が式(27)を満足し、且つ該 d と該 d が式(28)を満足する、
11 12 21 22
1 ≤ d /d ≤ 5 式(27)
12 11
1 ≤ d /d ≤ 6 式(28)
21 22
ことを特徴とする前項 1又は 2に記載の方法、
4. 該第 1連続多段蒸留塔の L、 D、 L ZD、 n、 D Zd 、 D Zd がそれぞれ
1 1 1 1 1 1 11 1 12
、 2000≤L ≤6000、 150≤D ≤1000、 3≤L /Ό ≤30、 30≤n ≤100、 8≤D /d ≤25、 5≤D /d ≤ 18であり、且つ、該第 2連続多段蒸留塔の L、D
1 11 1 12 2
、 L ZD、 n、 D Zd 、 D Zd 力 sそれぞれ、 2000≤L ≤6000、 150≤D ≤
2 2 2 2 2 21 2 22 2 2
1000、 3≤L ZD ≤30、 15≤n ≤60、 2. 5≤D /d ≤12、 7≤D /d
2 2 2 2 21 2 22
≤ 25であることを特徴とする前項 1ないし 3のうち何れか一項に記載の方法、 5. 該第 1連続多段蒸留塔の L、 D、 L ZD、 n、 D Zd 、 D Zd がそれぞれ
1 1 1 1 1 1 11 1 12
, 2500≤L ≤5000, 200≤D ≤800, 5≤L /Ό ≤15, 40≤n ≤90, 10 ≤D /d ≤25、 7≤D /d ≤ 15であり、且つ、該第 2連続多段蒸留塔の L、D
1 11 1 12 2 2
、 L ZD、 n、 D Zd 、 D Zd 力 sそれぞれ、 2500≤L ≤5000、 200≤D ≤8
2 2 2 2 21 2 22 2 2
00、 5≤L /Ό ≤15, 20≤n ≤50, 3≤D /d ≤10、 9≤D /d ≤20で
2 2 2 2 21 2 22 あることを特徴とする前項 1ないし 4のうち何れか一項に記載の方法、
6. 該第 1連続多段蒸留塔及び該第 2連続多段蒸留塔が、それぞれ該インターナ ルとしてトレイ及び Z又は充填物を有する蒸留塔であることを特徴とする前項 1ないし
5のうち何れか一項に記載の方法、
7. 該第 1連続多段蒸留塔が、該インターナルとしてトレィを有する棚段式蒸留塔で あり、該第 2連続多段蒸留塔が、該インターナルとして充填物及びトレイの両方を有 する蒸留塔であることを特徴とする前項 6記載の方法、
8. 該第 1連続多段蒸留塔及び該第 2連続多段蒸留塔の該トレイのそれぞれが、多 孔板部とダウンカマー部を有する多孔板トレイであることを特徴とする前項 6又は 7記 載の方法、
9. 該多孔板トレイが該多孔板部の面積 lm2あたり 100〜: L000個の孔を有するも のであることを特徴とする前項 8記載の方法、
10. 該多孔板トレイの孔 1個あたりの断面積が 0. 5〜5cm2であることを特徴とする 前項 8又は 9記載の方法、
11. 該第 2連続多段蒸留塔が、該インターナルとして充填物を上部に、トレィを下 部に有する蒸留塔であることを特徴とする前項 6又は 7に記載の方法、
12. 該第 2連続多段蒸留塔の該インターナルの該充填物が、 1基又は 2基以上の 規則充填物であることを特徴とする前項 6ないし 11のうち何れか一項に記載の方法、
13. 該第 2連続多段蒸留塔の該規則充填物が、メラパック、ジヱムパック、テクノバ ック、フレキシパック、スルザ一パッキング、グッドロールパッキング、グリッチグリッドか ら選ばれた少なくとも一種であることを特徴とする前項 12に記載の方法、
14. 該高沸点物質分離塔 A及び該ジフ 二ルカーボネート精製塔 Bが、それぞれ 該インターナルとしてトレイ及び Z又は充填物を有する蒸留塔であることを特徴とす る前項 1ないし 13のうち何れか一項に記載の方法、
15. 該高沸点物質分離塔 A及び該ジフエ二ルカーボネート精製塔 Bのインターナ ルカ それぞれ充填物であることを特徴とする前項 14に記載の方法、
16. 該充填物が、メラパック、ジェムパック、テクノバック、フレキシパック、スルザ一 パッキング、グッドロールパッキング、グリッチグリッド力も選ばれた少なくとも 1種の規 則充填物であることを特徴とする前項 15に記載の方法、
17. 重合反応ゾーンの側面ケーシングが内径 D (cm)、長さ L (cm)の円筒形であ つて、その下部に接続された底部のケーシングがテーパー形であり、該テーパー形 の底部ケーシングの最下部の排出口が内径 d (cm)の円筒形であって、 D、 L、 d が 式(29)、 (30)、 (31)及び(32)を満足する、
100 ≤ D ≤ 1800 式(29)
5 ≤ D/d ≤ 50 式(30)
0. 5 ≤ L/D ≤ 30 式(31) h- 20 ≤ L ≤ h+ 300 式(32)
ことを特徴とする前項 1ないし 16のうち何れか一項に記載の方法、
18. 該 hが式(33)を満足する、
400 < h ≤ 2500 式(33)
ことを特徴とする前項 1ないし 17のうち何れか一項に記載の方法、
19. 1つの該ガイドが外径 r (cm)の円柱状又は内側に溶融プレボリマーが入らな いようにしたパイプ状のものであって、 r が式(34)を満足する、
0. 1 ≤ r ≤ 1 式(34)
ことを特徴とする前項 1ないし 18のうち何れか一項に記載の方法、
20. 該ガイド接触流下式重合器 2基以上を連結して重合を行うこと特徴とする前項 1ないし 19のうち何れか一項に記載の方法、
21. 前項 17記載の 2基以上のガイド接触流下式重合器が、ガイド接触流下式第 1 重合器、ガイド接触流下式第 2重合器の 2基の重合器であって、この順に重合度を 上げていく方法において、該第 1重合器のガイド全体の外部総表面積 SI (m2)と該 第 2重合器のガイド全体の外部総表面積 S2 (m2)とが式 (35)を満足する、 1 ≤ S1/S2 ≤ 20 式(35)
ことを特徴とする前項 1ないし 20のうち何れか一項に記載の方法、
を提供する。
[0022] また、本発明の第 2の態様では、
22. 前項 1〜21のいずれかの方法によって 1時間あたり 1トン以上製造された高品 質芳香族ポリカーボネート、
23. アルカリ金属及び Z又はアルカリ土類金属化合物の含有量力 をこれらの金 属元素に換算して、 0. 1〜0. Olppmであり、且つ、ハロゲン含有量力 lppb以下 であることを特徴とする前項 22記載の高品質芳香族ポリカーボネート、
24. 主鎖に対してエステル結合やエーテル結合等の異種結合を介して部分的に 分岐している芳香族ポリカーボネートであって、該異種結合の含有量が、カーボネー ト結合に対して、 0. 05〜0. 5モル%であることを特徴とする前項 22又は 23記載の 高品質芳香族ポリカーボネート、
を提供する。
発明の効果
[0023] ジアルキルカーボネートと芳香族ジヒドロキシィ匕合物から芳香族ポリカーボネートを 製造するにあたり、特定の構造を有する 2基の反応蒸留塔を用いてジフエ二ルカーボ ネートを製造する工程 (I)、これを特定の構造を有する高沸点物質分離塔 Aとジフ -ルカーボネート精製塔 Bを用いて高純度ジフエ-ルカーボネートを取得するジフエ -ルカーボネート精製工程 (11)、次いで、芳香族ジヒドロキシ化合物と該高純度ジフ ェニルカーボネートとから得られる溶融プレボリマーを、特定の構造を有するガイド接 触流下式重合器を用いて芳香族ポリカーボネートを製造する工程 (ΠΙ)、副生するフ ェノールを工程 (I)にリサイクルする工程 (IV)を含む本発明の方法を実施することに よって、着色がなく機械的物性に優れた高品質 ·高性能の芳香族ポリカーボネートが 、高い重合速度で、 1時間当り 1トン以上の工業的規模で製造できることが見出され た。し力も分子量のバラツキが少なぐ長期間、たとえば 2000時間以上、好ましくは 3 000時間以上、さらに好ましくは 5000時間以上、安定的に高品質芳香族ポリカーボ ネートが製造できることも見出された。したがって、本発明は高品質芳香族ポリカーボ ネートの工業的製造方法として極めて優れた効果のある方法である。
発明を実施するための最良の形態
[0024] 以下、本発明について具体的に説明する。
本発明では、先ず、ジアルキルカーボネートとフエノールからジフエ-ルカーボネー トを工業的規模で連続的に製造する工程 (I)が行われる。
工程 (I)で用いられるジアルキルカーボネートとは、一般式(36)で表されるもので ある。
RaOCOORa 式(36)
[0025] ここで、 Raは炭素数 1〜10のアルキル基、炭素数 3〜10の脂環族基、炭素数 6〜1 0のアラールキル基を表す。このような Raとしては、例えばメチル、ェチル、プロピル( 各異性体)、ァリル、ブチル (各異性体)、ブテニル (各異性体)、ペンチル (各異性体 )、へキシル (各異性体)、ヘプチル (各異性体)、ォクチル (各異性体)、ノニル (各異 性体)、デシル(各異性体)、シクロへキシルメチル等のアルキル基;シクロプロピル、 シクロブチル、シクロペンチル、シクロへキシル、シクロへプチル等の脂環族基;ベン ジル、フ ネチル(各異性体)、フ ニルプロピル(各異性体)、フ ニルブチル(各異 性体)、メチルベンジル (各異性体)等のアラールキル基が挙げられる。なお、これら のアルキル基、脂環族基、アラールキル基において、他の置換基、例えば低級アル キル基、低級アルコキシ基、シァノ基、ハロゲン等で置換されていてもよいし、不飽和 結合を有していてもよい。
[0026] このような Raを有するジアルキルカーボネートとしては、例えば、ジメチルカーボネ ート、ジェチルカーボネート、ジプロピルカーボネート(各異性体)、ジフエ-ルカーボ ネート、ジブテニルカーボネート(各異性体)、ジブチルカーボネート (各異性体)、ジ ペンチルカーボネート(各異性体)、ジへキシルカーボネート(各異性体)、ジへプチ ルカーボネート (各異性体)、ジォクチルカーボネート(各異性体)、ジノニルカーボネ ート(各異性体)、ジデシルカーボネート (各異性体)、ジシクロペンチルカーボネート 、ジシクロへキシノレカーボネート、ジシクロへプチノレカーボネート、ジベンジルカーボ ネート、ジフエネチルカーボネート(各異性体)、ジ(フエ-ルプロピル)カーボネート( 各異性体)、ジ(フエ-ルブチル)カーボネート(各異性体)ジ(クロ口ベンジル)カーボ ネート (各異性体)、ジ (メトキシベンジル)カーボネート (各異性体)、ジ (メトキシメチル )カーボネート、ジ (メトキシェチル)カーボネート (各異性体)、ジ (クロロェチル)カー ボネート (各異性体)、ジ (シァノエチル)カーボネート (各異性体)等が挙げられる。
[0027] これらの中で、本発明において好ましく用いられるのは、 Raがハロゲンを含まない炭 素数 4以下のアルキル基からなるジアルキルカーボネートであり、特に好まし!/、のは ジメチルカーボネートである。また、好ましいジアルキルカーボネートのなかで、さらに 好ま 、のは、ハロゲンを実質的に含まな!/、状態で製造されたジアルキルカーボネ ートであって、例えばハロゲンを実質的に含まないアルキレンカーボネートとハロゲン を実質的に含まないアルコール力も製造されたものである。
[0028] 工程 (I)で用いられるフ ノールとは、下記一般式(37)で表されるものであり、フエ -ル基 (Ph)に直接ヒドロキシル基が結合している化合物である力 場合によっては、 フエ-ル基が低級アルキル基又は低級アルコキシ基で置換された置換フ ノールを 用いることちでさる。
PhOH 式(37)
[0029] 本発明において好ましく用いられるのは、ハロゲンを実質的に含まないフエノール である。したがって、本発明でいうジフエ-ルカーボネートとは、一般式(38)で表され るものである。
PhOCOOPh 式(38)
[0030] 工程 (I)で原料として用いられるジアルキルカーボネートのフエノールに対する量比 はモル比で、 0. 1〜10であることが好ましい。この範囲外では、 目的とするジフエ- ルカーボネートの所定生産量に対して、残存する未反応の原料が多くなり、効率的 でないし、またそれらを回収するために多くのエネルギーを要する。この意味で、この モル比は、 0. 5〜5がより好ましぐより好ましくは 0. 8〜3であり、さらに好ましくは、 1 〜2である。
[0031] 本発明においては、 1時間あたり 1トン以上の芳香族ポリカーボネートを連続的に製 造するのである力 そのためには 1時間あたり約 0. 85トン以上の高純度ジフエ-ルカ ーボネートを連続的に製造する必要がある。したがって、工程 (I)において、連続的 に供給されるフエノールの最低量は、製造すべき芳香族ポリカーボネートの量 (Pトン Zhr)に対して、通常 15Pトン Zhrであり、好ましくは、 13Pトン Zhr、より好ましくは 1 OPトン Zhrである。さらに好ましい場合は、 8Pトン Zhrよりも少なくできる。
[0032] なお、工程(I)にお!/、て原料として用いられるジアルキルカーボネートとフエノール はそれぞれ純度の高 、ものであっても!/ 、が、他の化合物を含むものであってもよく 、例えば、第 1連続多段蒸留塔及び Z又は第 2連続多段蒸留塔で生成する化合物 や反応副生物を含むものであってもよい。工業的に実施する場合、これらの原料とし て、新規に反応系に導入されるジアルキルカーボネートとフエノールに加え、第 1連 続多段蒸留塔及び Z又は第 2連続多段蒸留塔から回収されたものをも使用すること が好ましい。本発明の方法では、第 2連続多段蒸留塔での低沸点反応混合物である 塔頂成分が第 1連続多段蒸留塔に供給される。この場合、第 2塔低沸点反応混合物 はそのままで第 1連続多段蒸留塔に供給してもよいし、成分の一部を分離した後に 供給してちょい。
[0033] したがって、工業的に実施する本発明においては、第 1連続多段蒸留塔に供給さ れる原料中には、アルコール類、アルキルフエ-ルカーボネート、ジフエ-ルカーボ ネート、アルキルフエ-ルエーテルなどが含まれているものが好ましぐさらには生成 物であるアルキルフエ-ルカ一ボーネートゃジフエ-ルカーボネートのフリース転移 生成物やその誘導体などの高沸点副生物を少量含むものであっても好ましく用いら れる。本発明において、例えば、ジアルキルカーボネートとしてジメチルカーボネート を、フエノールとして非置換フエノールを原料にして、メチルフエ-ルカーボネート及 びジフエ二ルカーボネートを製造する場合、その原料中に反応生成物であるメチル アルコールや、メチルフエ-ルカーボネート及びジフエ-ルカーボネートを含んで ヽ ることが好ましぐさらには反応副生物であるァニソールゃサリチル酸フエニル、サリチ ル酸メチルゃこれら力 誘導される高沸点副生物を少量含んで 、てもよ 、。
[0034] さらに、工程 (I)で使用されるフエノールの大部分は、本発明の工程 (III)で副生す るフエノールから成っている。この副生フエノールは工程(IV)によって、工程(I)に循 環されることが必要である。
[0035] 工程(I)にお!/、て製造されるジフエ-ルカーボネートは、ジアルキルカーボネートと フエノールとのエステル交換反応によって得られるが、このエステル交換反応には、 ジアルキルカーボネートの 1つ又は 2つのアルコキシ基がフエノールのフエノキシ基と 交換されアルコール類を離脱する反応と、生成したアルキルフヱ-ルカーボネート 2 分子間のエステル交換反応である不均化反応によってジフエニルカーボネートとジァ ルキルカーボネートに変換される反応が含まれている。工程 (I)の第 1連続多段蒸留 塔においては主としてアルキルフエ二ルカーボネートが得られ、第 2連続多段蒸留塔 にお ヽては主としてこのアルキルフエ-ルカーボネートの不均化反応よつて、ジフエ -ルカーボネートとジアルキルカーボネートが得られる。工程 (I)で得られたジフエ- ルカーボネートは、ハロゲンを全く含まないため、本発明の芳香族ポリカーボネートを 工業的に製造するときの原料として重要である。なぜならば、重合原料中にハロゲン がたとえば lppmよりも少ない量であっても存在しておれば、重合反応を阻害するし、 芳香族ポリカーボネートの安定製造を阻害するし、しかも生成した芳香族ポリカーボ ネートの物性低下や、着色の原因となるからである。
工程 (I)の第 1連続多段蒸留塔及び Z又は第 2連続多段蒸留塔で使用される触媒 としては、例えば下記の化合物力 選択される:
く鉛化合物〉 PbO、 PbO、 Pb O等の酸化鉛類;
2 3 4
PbS、Pb S等の硫化鉛類;
2
Pb (OH)、 Pb O (OH)等の水酸化鉛類;
2 2 2 2
Na PbO、 K PbO、 NaHPbO、 KHPbO等の亜ナマリ酸塩類;
2 2 2 2 2 2
Na PbO、 Na H PbO、 K PbO、 K [Pb (OH) ]、 K PbO、 Ca PbO、 CaPbO
2 3 2 2 4 2 3 2 6 4 4 2 4 3 等の鉛酸塩類;
PbCO、 2PbCO 'Pb (OH)等の鉛の炭酸塩及びその塩基性塩類;
3 3 2
Pb (OCOCH ) 、Pb (OCOCH ) 、Pb (OCOCH ) -PbO ' 3H O等の有機酸の
3 2 3 4 3 2 2 鉛塩及びその炭酸塩や塩基性塩類;
Bu Pb、 Ph Pb、 Bu PbCl、 Ph PbBr、 Ph Pb (又は Ph Pb ) , Bu PbOH、 Ph Pb
4 4 3 3 3 6 2 3 3
O等の有機鉛ィ匕合物類 (Buはブチル基、 Phはフエ二ル基を示す。 );
Pb (OCH ) 、(CH 0) Pb (OPh)、 Pb (OPh)等のアルコキシ鉛類、ァリールォキ
3 2 3 2
シ鉛類;
Pb— Na、 Pb— Ca、 Pb— Ba、 Pb— Sn、 Pb— Sb等の鉛の合金類; ホウェン鉱、センァェン鉱等の鈴鉱物類、及びこれらの鉛ィ匕合物の水和物; く銅族金属の化合物〉 CuCl、 CuCl、 CuBr、 CuBr、 Cul、 Cul、 Cu (OAc) 、
2 2 2 2
Cu(acac) 、ォレイン酸銅、 Bu Cu、 (CH O) Cu、 AgNO、 AgBr、ピクリン酸銀、 A
2 2 3 2 3
gC H CIO、 [AuC≡C-C (CH ) ]n、 [Cu (C H ) C1]等の銅族金属の塩及び錯
6 6 4 3 3 7 8 4
体(acacはァセチルアセトンキレート配位子を表す。);
くアルカリ金属の錯体〉 Li (acac)、 LiN (C H )等のアルカリ金属の錯体;
4 9 2
く亜鉛の錯体〉 Zn (acac)等の亜鉛の錯体;
2
<カドミウムの錯体〉 Cd (acac)等のカドミウムの錯体;
2
く鉄族金属の化合物〉 Fe (C H ) (CO) 、 Fe (CO)、 Fe (C H ) (CO)、 Co (メ
10 8 5 5 4 6 3 シチレン) (PEt Ph) 、 CoC F (CO)、 Ni- π— C H NO、フエ口セン等の鉄族金
2 2 2 5 5 7 5 5
属の錯体;
くジルコニウム錯体〉 Zr (acac) ,ジルコノセン等のジルコニウムの錯体;
4
くルイス酸類化合物 >A1X、 TiX、 TiX、 VOX、 VX、 ZnX、 FeX、 SnX (ここ
3 3 4 3 5 2 3 4 で Xはハロゲン、ァセトキシ基、アルコキシ基、ァリールォキシ基である。)等のルイス 酸及びルイス酸を発生する遷移金属化合物;
く有機スズ化合物〉(CH ) SnOCOCH、(C H ) SnOCOC H、 Bu SnOCO
3 3 3 2 5 3 6 5 3
CH、 Ph SnOCOCH、 Bu Sn(OCOCH ) 、 Bu Sn (OCOC H ) , Ph SnOC
3 3 3 2 3 2 2 11 23 2 3
H、(C H ) SnOPh、 Bu Sn(OCH ) 、 Bu Sn(OC H ) , Bu Sn (OPh)、 Ph Sn
3 2 5 3 2 3 2 2 2 5 2 2 2 2
(OCH )、(C H ) SnOH、 Ph SnOH、 Bu SnO、 (C H ) SnO、 Bu SnCl、 Bu
3 2 2 5 3 3 2 8 17 2 2 2
SnO (OH)等の有機スズ化合物;
等の金属含有化合物が触媒として用いられる。これらの触媒は、反応系に溶解する 可溶性触媒 (均一系触媒)である必要がある。
[0037] もちろん、これらの触媒成分が反応系中に存在する有機化合物、例えば、脂肪族 アルコール類、フエノール類、アルキルフエ-ルカーボネート類、ジフエ-ルカーボネ ート類、ジアルキルカーボネート類等と反応したものであってもよいし、反応に先立つ て原料や生成物で加熱処理されたものであってもょ ヽ。
[0038] 工程 (I)で使用する触媒は、反応条件にお!、て反応液への溶解度の高!、ものであ ることが好ましい。この意味で好ましい触媒としては、例えば、 PbO、 Pb (OH)、 Pb ( OPh) ; TiCl、Ti (OMe) 、 (MeO) Ti (OPh) 、(MeO) Ti (OPh) 、(MeO) Ti (
2 4 4 3 2 2 3
OPh) , Ti (OPh) ; SnCl、 Sn (OPh)、 Bu SnO、 Bu Sn (OPh) ; FeCl、 Fe (OH
4 4 4 2 2 2 3
) 、Fe (OPh)等、又はこれらをフ ノール又は反応液等で処理したもの等が挙げら
3 3
れる。第 1連続多段蒸留塔で用いられる触媒と第 2連続多段蒸留塔で用いられる触 媒は同じ種類であっても、異なる種類のものであってもよい。
工程 (I)において用いられる該第 1連続多段蒸留塔とは、長さ L (cm)、内径 D (c m)の円筒形の胴部を有し、内部に段数 nをもつインターナルを有する構造をしてお り、塔頂部又はそれに近い塔の上部に内径 d (cm)のガス抜出し口、塔底部又はそ
11
れに近い塔の下部に内径 d (cm)の液抜出し口、該ガス抜出し口より下部であって
12
塔の上部及び Z又は中間部に 1つ以上の第 1の導入口、該液抜出し口より上部であ つて塔の中間部及び Z又は下部に 1つ以上の第 2の導入口を有するものであって、 L、 D、 L ZD、 n、 D Zd 、 D Zd 力 それぞれ式(1)〜(6)を満足するもの
1 1 1 1 1 1 11 1 12
であることが必要である:
1500 < L ≤ 8000
1 式 (1)
100 < D ≤ 2000 式 (2)
1
2 < L /Ό ≤ 40 式 (3)
1 1
20 < n ≤ 120 式 (4)
1
5 < D /ά ≤ 30 式 (5)
1 11
3 < D /ά ≤ 20 式 (6)。
1 12
また、工程 (I)において用いられる第 2連続多段蒸留塔とは、長さ L (cm) ,内径 D
2 2
(cm)の円筒形の胴部を有し、内部に段数 nをもつインターナルを有する構造をして
2
おり、塔頂部又はそれに近い塔の上部に内径 d (cm)のガス抜出し口、塔底部又は
21
それに近い塔の下部に内径 d (cm)の液抜出し口、該ガス抜出し口より下部であつ
22
て塔の上部及び Z又は中間部に 1つ以上の第 3の導入口、該液抜出し口より上部で あって塔の中間部及び Z又は下部に 1つ以上の第 4の導入口を有するものであって 、 L、 D、 L ZD、 n、 D Zd 、 D Zd 力 それぞれ式(7)〜(12)を満足するも
2 2 2 2 2 2 21 2 22
のであることが必要である;
1500 ≤ L ≤ 8000 式(7) 100 D ≤ 2000 式 (8)
2
2 L /D ≤ 40 式 (9)
2 2
10 n ≤ 80 式(10)
2
2 D /d ≤ 15
2 21 式 (11)
5 D /d ≤ 30 式(12)。
[0041] 式(1)〜(12)の全てを同時に満足する第 1連続多段蒸留塔及び第 2連続多段蒸 留塔を用いることによって、ジアルキルカーボネートとフエノールとから、ジフエ二ルカ ーボネートを 1時間あたり約 0. 85トン以上、好ましくは 1トン以上の工業的規模で、高 選択率'高生産性で、例えば 2000時間以上、好ましくは 3000時間以上、さらに好ま しくは 5000時間以上の長期間、安定的に製造できることが見出されたのである。本 発明の方法を実施することによって、このような優れた効果を有する工業的規模での 芳香族カーボネートの製造が可能になった理由は明らかではないが、式(1)〜(12) の条件が組み合わさった時にもたらされる複合効果のためであると推定される。なお 、工程 (I)で用いる連続多段蒸留塔を構成する各々の要因の好ま U、範囲は下記に 示される。
[0042] L (cm)及び L (cm)がそれぞれ 1500より小さいと、反応率が低下するため目的と
1 2
する生産量を達成できないし、目的の生産量を達成できる反応率を確保しつつ設備 費を低下させるには、 L及び Lをそれぞれ 8000以下にすることが必要である。より
1 2
好ましい L (cm)及び L (cm)の範囲は、それぞれ、 2000≤L ≤6000 及び 200
1 2 1
0≤L≤6000 であり、さらに好ましくは、 2500≤L≤5000 及び 2500≤L≤50
2 1 2
00 である。
[0043] D (cm)及び D (cm)がそれぞれ 100よりも小さいと、目的とする生産量を達成でき
1 2
ないし、目的の生産量を達成しつつ設備費を低下させるには、 D及び Dをそれぞれ
1 2
2000以下にすることが必要である。より好ましい D (cm)及び D (cm)の範囲は、そ
1 2
れぞれ 150≤D≤1000 及び 150≤D≤1000 であり、さらに好ましくは、それぞ
1 2
れ 200≤D≤800 及び 200≤D≤ 800である。
1 2
[0044] なお、第 1連続多段蒸留塔及び第 2連続多段蒸留塔において、 D及び D が上記
1 2 の範囲にある限り、塔の上部から下部までそれぞれ同じ内径であってもよいし、部分 的に内径が異なっていてもよい。例えば、これらの連続多段蒸留塔において、塔上 部の内径が塔下部の内径よりも小さくてもよ 、し、大きくてもよ!/、。
[0045] L /Ό 及び L /Ό がそれぞれ 2より小さい時や 40より大きい時は安定運転が
1 1 2 2
困難となり、特に 40より大きいと塔の上下における圧力差が大きくなりすぎるため、長 期安定運転が困難となるだけでなぐ塔下部での温度を高くしなければならないため 、副反応が起こりやすくなり選択率の低下をもたらす。より好ましい L ZD 及び L /
1 1 2
D の範囲はそれぞれ、 3≤L ZD ≤30 及び 3≤L /Ό ≤30 であり、さらに好ま
2 1 1 2 2
しくは、 5≤L /Ό ≤15 及び 5≤L /Ό ≤ 15である。
1 1 2 2
[0046] nが 20より小さいと反応率が低下するため第 1連続多段蒸留塔での目的とする生 産量を達成できないし、目的の生産量を達成できる反応率を確保しつつ設備費を低 下させるには、 nを 120以下にすることが必要である。さらに n力 よりも大きいと 塔の上下における圧力差が大きくなりすぎるため、第 1連続多段蒸留塔の長期安定 運転が困難となるだけでなぐ塔下部での温度を高くしなければならないため、副反 応が起こりやすくなり選択率の低下をもたらす。より好ましい nの範囲は、 30≤n≤1 00 であり、さらに好ましくは、 40≤n≤90 である。
[0047] また、 nが 10より小さいと反応率が低下するため第 2連続多段蒸留塔での目的とす
2
る生産量を達成できないし、目的の生産量を達成できる反応率を確保しつつ設備費 を低下させるには、 nを 80以下にすることが必要である。さらに nが 80よりも大きいと
2 2
塔の上下における圧力差が大きくなりすぎるため、第 2連続多段蒸留塔の長期安定 運転が困難となるだけでなぐ塔下部での温度を高くしなければならないため、副反 応が起こりやすくなり選択率の低下をもたらす。より好ましい nの範囲は、 15≤n≤6
2 2
0 であり、さらに好ましくは、 20≤n≤50 である。
2
[0048] D /ά 力 より小さいと第 1連続多段蒸留塔の設備費が高くなるだけでなく大量の
1 11
ガス成分が系外に出やすくなるため、第 1連続多段蒸留塔の安定運転が困難になり 、 30よりも大きいとガス成分の抜出し量が相対的に小さくなり、安定運転が困難にな るだけでなぐ反応率の低下をもたらす。より好ましい D /ά の範囲は、 8≤D /ά
1 11 1
≤25 であり、さらに好ましくは、 10≤D Zd ≤20 である。また、 D Zd 力 ¾より
11 1 11 2 21 小さいと第 2連続多段蒸留塔の設備費が高くなるだけでなく大量のガス成分が系外 に出やすくなるため、第 2連続多段蒸留塔の安定運転が困難になり、 15よりも大きい とガス成分の抜出し量が相対的に小さくなり、安定運転が困難になるだけでなぐ反 応率の低下をもたらす。より好ましい D 2Zd の範囲は、
21 5≤D 2Zd 21≤12 であり、 さらに好ましくは、 3≤D Zd ≤10 である。
2 21
[0049] D Zd 力^より小さいと第 1連続多段蒸留塔の設備費が高くなるだけでなく液抜出
1 12
し量が相対的に多くなり、第 1連続多段蒸留塔の安定運転が困難になり、 20よりも大 きいと液抜出し口や配管での流速が急激に速くなりエロージョンを起こしやすくなり装 置の腐食をもたらす。より好ましい D Zd の範囲は、 5≤D Zd ≤18 であり、さら
1 12 1 12
に好ましくは、 7≤D Zd ≤15 である。また、 D Zd 力 より小さいと第
1 12 2 22 2連続多 段蒸留塔の設備費が高くなるだけでなく液抜出し量が相対的に多くなり、第 2連続多 段蒸留塔の安定運転が困難になり、 30よりも大きいと液抜出し口や配管での流速が 急激に速くなりエロ—ジョンを起こしやすくなり装置の腐食をもたらす。より好ましい D
2
Zd の範囲は、 7≤D 2Zd 22≤25 であり、さらに好ましくは、
22 9≤D 2 Zd 22≤20 で ある。
[0050] さらに、工程 (I)では、該 d と該 d が式(27)を満足し、且つ該 d と該 d が式(28
11 12 21 22
)を満足する場合、さらに好ましいことがわ力つた。
l≤d /ά ≤5 式(27)
12 11
l≤d /ά ≤6 式(28)
21 22
工程 (I)でいう長期安定運転とは、 1000時間以上、好ましくは 3000時間以上、さら に好ましくは 5000時間以上、フラッデイングや、配管のつまりやエロージョンなどがな ぐ運転条件に基づいた定常状態で運転が継続でき、高選択率を維持しながら、所 定量のジフエ-ルカーボネートが製造されていることを意味する。
[0051] 工程 (I)では、 1時間あたり好ましくは 1トン以上の高生産性でジフエ-ルカーボネ 一トを高選択率で長期間安定的に生産することを特徴としているが、より好ましくは 1 時間あたり 2トン以上、さらに好ましくは 1時間あたり 3トン以上のジフエ二ルカーボネ ートを生産することにある。また、工程 (I)では、第 1連続多段蒸留塔の L、 D、 L Ζ D、 n、 D Zd 、 D Zd 力それぞれ、 2000≤L≤6000、 150≤D≤1000、
1 1 1 11 1 12 1 1
3≤L ZD≤30、 30≤n≤100、 8≤D /d ≤25、 5≤D /d ≤18であ つて、第 2連続多段蒸留塔の L、 D、 L ZD、 n、 D Zd 、 D Zd がそれぞれ、
2 2 2 2 2 2 21 2 22
2000≤L ≤6000、 150≤D ≤1000、 3≤L /Ό ≤30、 15≤n ≤60、 2.
2 2 2 2 2
5≤D /d ≤12、 7≤D /d ≤ 25の場合は、 1時間あたり 2トン以上、好ましくは
2 21 2 22
1時間あたり 2. 5トン以上、さらに好ましくは 1時間あたり 3トン以上のジフエ二ルカ一 ボネートを製造することを特徴とするものである。
[0052] さらに、工程 (I)では、第 1連続多段蒸留塔の L、 D、 L ZD、 n、 D Zd 、 D Z d 力それぞれ、 2500≤L ≤ 5000、 200≤D ≤800, 5≤L /Ό ≤15, 40
12 1 1 1 1
≤n ≤90、 10≤D /d ≤25、 7≤D /d ≤ 15であって、第 2連続多段蒸留
1 1 11 1 12
塔の L、 D、 L ZD、 n
2 2 2 2 2、 D Zd がそれぞれ、 2500≤L ≤
2 21、 D Zd 5000
2 22 2 、 2
00≤D ≤800、 5≤L /Ό ≤10、 20≤n ≤50、 3≤D /d ≤10、 9≤D
2 2 2 2 2 21 2
Zd ≤ 20の場合は、 1時間あたり 3トン以上、好ましくは 1時間あたり 3. 5トン以上、さ
22
らに好ましくは 1時間あたり 4トン以上のジフエ二ルカーボネートを製造することを特徴 とするちのである。
[0053] 工程 (I)で!、うジフヱ-ルカーボネートの選択率とは、反応したフエノールに対する ものであって、工程 (I)では通常 95%以上の高選択率であり、好ましくは 97%以上、 さらに好ましくは 98%以上の高選択率を達成することができる。
[0054] 工程 (I)で用いられる第 1連続多段蒸留塔及び第 2連続多段蒸留塔は、インターナ ルとしてトレイ及び Z又は充填物を有する蒸留塔であることが好まし 、。本発明で 、う インターナルとは、蒸留塔において実際に気液の接触を行わせる部分のことを意味 する。このようなトレイとしては、例えば泡鍾トレイ、多孔板トレイ、バルブトレイ、向流ト レイ、スーパーフラックトレイ、マックスフラックトレイ等が好ましぐ充填物としては、ラ シヒリング、レッシングリング、ポールリング、ベルルサドル、インタロックスサドル、ディ クソンパッキング、マクマホンパッキング、ヘリパック等の不規則充填物やメラパック、 ジェムパック、テクノバック、フレキシパック、スノレザーパッキング、グッドロールパツキ ング、グリッチグリッド等の規則充填物が好ましい。トレイ部と充填物の充填された部 分とを合わせ持つ多段蒸留塔も用いることができる。なお、本発明でいう「インターナ ルの段数 n」とは、トレイの場合はトレイの数を意味し、充填物の場合は、理論段数を 意味する。したがって、トレイ部と充填物の充填された部分とを合わせてもつ多段蒸 留塔の場合、 nはトレイの数と理論段数の合計である。
[0055] 工程 (I)の第 1連続多段蒸留塔においては、主としてジアルキルカーボネートとフエ ノールからアルキルフエ-ルカーボネートを生成させる反応が行われる力 この反応 は平衡定数が極端に小さぐし力も反応速度が遅いので、反応蒸留に用いる第 1連 続多段蒸留塔としては、インターナルがトレイである棚段式蒸留塔がより好ましいこと が見出された。また、第 2連続多段蒸留塔においては、主として、該アルキルフエ- ルカーボネートを不均化させる反応が行われる力 この反応も平衡定数が小さぐし 力も反応速度が遅い。し力しながら、反応蒸留に用いる第 2連続多段蒸留塔としては 、インターナルが充填物及びトレイの両方を有する蒸留塔がより好ましいことが見出さ れた。さらに第 2連続多段蒸留塔としては、上部に充填物、下部にトレィを設置したも のが好ましいことも見出された。第 2連続多段蒸留塔の該充填物は規則充填物が好 ましぐ規則充填物のなかでもメラパックが特に好ましいことも見出された。
[0056] さらに第 1連続多段蒸留塔及び第 2連続多段蒸留塔にそれぞれ設置される該トレイ が多孔板部とダウンカマー部を有する多孔板トレイが機能と設備費との関係で特に 優れていることが見出された。そして、該多孔板トレイが該多孔板部の面積 lm2あた り 100〜: LOOO個の孔を有して 、ることが好ま 、ことも見出された。より好まし!/、孔数 は該面積 lm2あたり 120〜900個であり、さらに好ましくは、 150〜800個である。
[0057] また、該多孔板トレイの孔 1個あたりの断面積が 0. 5〜5cm2であることが好ましいこ とも見出された。より好ましい孔 1個あたりの断面積は、 0. 7〜4cm2であり、さらに好 ましくは 0. 9〜3cm2である。さらには、該多孔板トレイが該多孔板部の面積 lm2あた り 100〜1000個の孔を有しており、且つ、孔 1個あたりの断面積が 0. 5〜5cm2であ る場合、特に好ましいことが見出された。連続多段蒸留塔に上記の条件を付加する ことによって、本発明の課題が、より容易に達成されることが判明したのである。
[0058] 工程 (I)を実施する場合、原料であるジアルキルカーボネートとフエノールとを触媒 が存在する第 1連続多段蒸留塔内に連続的に供給し、該第 1塔内で反応と蒸留を同 時に行!、、生成するアルコール類を含む第 1塔低沸点反応混合物を該第 1塔上部よ りガス状で連続的に抜出し、生成するアルキルフエ-ルカーボネート類を含む第 1塔 高沸点反応混合物を該第 1塔下部より液状で連続的に抜出し、該第 1塔高沸点反応 混合物を触媒が存在する第 2連続多段蒸留塔内に連続的に供給し、該第 2塔内で 反応と蒸留を同時に行 、、生成するジアルキルカーボネート類を含む第 2塔低沸点 反応混合物を該第 2塔上部よりガス状で連続的に抜出し、生成するジフ 二ルカ一 ボネート類を含む第 2塔高沸点反応混合物を該第 2塔下部より液状で連続的に抜出 し、一方、ジアルキルカーボネート類を含む第 2塔低沸点反応混合物を第 1連続多 段蒸留塔内に連続的に供給することによって、ジフ -ルカーボネートが連続的に製 造される。
[0059] この原料中には、反応生成物であるアルコール類、アルキルフエ-ルカーボネート 、ジフヱ-ルカーボネートやアルキルフエ-ルエーテルや高沸点化合物などの反応 副生物が含まれて 、ても 、 、ことは前述のとおりである。他の工程での分離'精製に かかる設備、費用のことを考慮すれば、実際に工業的に実施する本発明の場合は、 これらの化合物を少量含んで 、ることが好まし 、。
[0060] 工程 (I)にお 、て、原料であるジアルキルカーボネートとフエノールを第 1連続多段 蒸留塔内に連続的に供給するには、該第 1蒸留塔の上部のガス抜出し口よりも下部 であるが塔の上部又は中間部に設置された 1箇所又は数箇所の導入口から、液状 及び/又はガス状で供給してもよ 、し、フエノールを多く含む原料を該第 1蒸留塔の 上部の導入口力 液状で供給し、ジアルキルカーボネートを多く含む原料を該第 1 蒸留塔の下部の液抜出し口よりも上部であって塔の下部に設置された導入ロカ ガ ス状で供給することも好まし 、方法である。
[0061] また、工程 (I)においては、第 1連続多段蒸留塔下部より連続的に抜き出されるァ ルキルフエ二ルカーボネート類を含む第 1塔高沸点反応混合物が第 2連続多段蒸留 塔に連続的に供給されるが、その供給位置は第 2蒸留塔の上部のガス抜出し口より も下部であるが塔の上部又は中間部に設置された 1箇所又は数箇所の導入口から、 液状及び Z又はガス状で供給することが好ましい。また、本発明の好ましい実施態 様である上部に充填物部、下部にトレィ部を有する第 2連続多段蒸留塔を用いる場 合、導入口の少なくとも 1箇所は充填物部とトレィ部との間に設置されることが好まし い。また、充填物が 2基以上の複数の規則充填物からなっている場合は、これらの複 数の規則充填物を構成する間隔に導入口を設置することも好ま 、方法である。 [0062] また、工程 (I)にお 、て第 1連続多段蒸留塔及び第 2連続多段蒸留塔の塔頂ガス 抜き出し成分をそれぞれ凝縮した後、その一部をそれぞれの蒸留塔上部にもどす還 流操作を実施することも好ましい方法である。この場合、第 1連続多段蒸留塔の還流 比は 0〜10、であり、第 2連続多段蒸留塔の還流比は 0. 01〜: L0の範囲、好ましくは 0. 08〜5、さらに好ましくは 0. 1〜2の範囲である。第 1連続多段蒸留塔では還流操 作をしな!、還流比 0も好まし ヽ実施態様である。
[0063] 工程 (I)において、第 1連続多段蒸留塔内に均一系触媒を存在させる方法はどの ようなものであってもよいが、該第 1蒸留塔の中間部より上部の位置力も蒸留塔内に 供給することが好ましい。この場合、原料又は反応液に溶解させた触媒液を原料と一 緒に導入してもよいし、原料とは別の導入ロカゝらこの触媒液を導入してもよい。本発 明の第 1連続多段蒸留塔で用いる触媒の量は、使用する触媒の種類、原料の種類 やその量比、反応温度並びに反応圧力などの反応条件の違いによっても異なるが、 原料の合計質量に対する割合で表して、通常 0. 0001〜30質量%、好ましくは 0. 0 005〜10質量%、より好ましくは 0. 001〜1質量%で使用される。
[0064] また、工程 (I)において、第 2連続多段蒸留塔内に触媒を存在させる方法はどのよ うなものであってもよいが、触媒が反応液に不溶解性の固体状の場合は、第 2連続 多段蒸留塔内の段に設置する方法や、充填物状にして設置する方法などによって 塔内に固定させることが好ましい。また、原料や反応液に溶解する触媒の場合は、該 第 2蒸留塔の中間部より上部の位置力 蒸留塔内に供給することが好ましい。この場 合、原料又は反応液に溶解させた触媒液を原料と一緒に導入してもよいし、原料と は別の導入口カゝらこの触媒液を導入してもよ ヽ。本発明の第 2連続多段蒸留塔で用 いる触媒の量は、使用する触媒の種類、原料の種類やその量比、反応温度並びに 反応圧力などの反応条件の違いによっても異なるが、原料の合計質量に対する割合 で表して、通常 0. 0001〜30質量0 /0、好ましくは 0. 0005〜10質量0 /0、より好ましく は 0. 001〜1質量%で使用される。
[0065] 工程 (I)においては、第 1連続多段蒸留塔で用いる触媒と第 2連続多段蒸留塔で 用いる触媒は、同じ種類のものであってもよいし、異なる種類のものであってもよいが 、好ましくは、同じ種類の触媒を用いることである。さらに好ましいのは、同じ種類であ つて、両方の反応液に溶解することのできる触媒である。この場合、触媒は通常第 1 連続多段蒸留塔の高沸点反応混合物中に溶解した状態で、アルキルフエ二ルカ一 ボネート等とともに該第 1蒸留塔の下部力 抜き出され、そのまま第 2連続多段蒸留 塔に供給されるので、好ましい実施態様である。なお、必要に応じて第 2連続多段蒸 留塔に新たに触媒を追加することも可能である。
[0066] 工程 (I)で行われるエステル交換反応の反応時間は第 1連続多段蒸留塔内及び第 2連続多段蒸留塔内でのそれぞれの反応液の平均滞留時間に相当すると考えられ るが、これはそれぞれの該蒸留塔のインターナルの形状や段数、原料供給量、触媒 の種類や量、反応条件などによって異なるが、第 1連続多段蒸留塔内及び第 2連続 多段蒸留塔内のそれぞれにおいて、通常 0. 01〜10時間、好ましくは 0. 05〜5時 間、より好ましくは 0. 1〜3時間である。
[0067] 第 1連続多段蒸留塔の反応温度は、用いる原料化合物の種類や触媒の種類や量 によって異なるが、通常 100〜350°Cの範囲である。反応速度を高めるためには反 応温度を高くすることが好ましいが、反応温度が高いと副反応も起こりやすくなり、例 えばアルキルフエ-ルエーテルなどの副生が増えるので好ましくな 、。このような意 味で、第 1連続多段蒸留塔での好ましい反応温度は 130〜280°C、より好ましくは 15 0〜260。C、さらに好ましくは、 180〜250。Cの範囲である。
[0068] 第 2連続多段蒸留塔の反応温度は、用いる原料化合物の種類や触媒の種類や量 によって異なるが、通常 100〜350°Cの範囲である。反応速度を高めるためには反 応温度を高くすることが好ましいが、反応温度が高いと副反応も起こりやすくなり、例 えばアルキルフエ-ルエーテルや、原料や生成物であるアルキルフエ-ルカーボネ 一トゃジフエ-ルカーボネートのフリース転移反応生成物やその誘導体などの副生 が増えるので好ましくない。このような意味で、第 2連続多段蒸留塔での好ましい反 応温度は 130〜280。C、より好ましくは 150〜260。C、さらに好ましくは、 180〜250 °Cの範囲である。
[0069] また、第 1連続多段蒸留塔の反応圧力は、用いる原料ィ匕合物の種類や組成、反応 温度などにより異なるが、第 1連続多段蒸留塔では減圧、常圧、加圧のいずれであつ てもよく、通常塔頂圧力が 0. 1〜2 X 107Pa、好ましくは、 105〜107 Pa、より好ましく は 2 X 105〜5 X 106の範囲で行われる。
[0070] 第 2連続多段蒸留塔の反応圧力は、用いる原料化合物の種類や組成、反応温度 などにより異なる力 減圧、常圧、加圧のいずれであってもよぐ通常塔頂圧力が 0. 1 〜2 X 107Pa、好ましくは、 103〜106 Pa、より好ましくは 5 X 103〜105の範囲で行わ れる。
[0071] なお、工程 (I)における第 1連続多段蒸留塔として、 2基以上の蒸留塔を用いること もできる。この場合、 2基以上の蒸留塔を直列に連結することも、並列に連結すること も、さらに直列と並列を組み合わせて連結することも可能である。また、工程 (I)にお ける第 2連続多段蒸留塔として、 2基以上の蒸留塔を用いることもできる。この場合、 2 基以上の蒸留塔を直列に連結することも、並列に連結することも、さらに直列と並列 を組み合わせて連結することも可能である。
[0072] 工程 (I)で用いられる第 1連続多段蒸留塔及び第 2連続多段蒸留塔を構成する材 料は、主に炭素鋼、ステンレススチールなどの金属材料である力 製造する芳香族力 ーボネートの品質の面からは、ステンレススチールが好ましい。
[0073] 工程 (I)の第 2連続多段蒸留塔の塔下部より液状で連続的に抜出された第 2塔高 沸点反応混合物は、ジフエ二ルカーボネートが主成分である力 ジフエ二ルカーボネ ートの他に、通常、触媒成分、未反応原料、アルキルフエニルカーボネート、副生物 等が含まれている。副生物としては、アルキルフエ-ルエーテル等の比較的沸点の 低い副生物と、アルキルフエ-ルカーボネートゃジフエ-ルカーボネートのフリース転 移生成物やその誘導体、ジフ ニルカーボネートの変生物などの高沸点副生物があ る。例えば、ジメチルカーボネートとフエノールを原料にして、ジフエニルカーボネート を製造する場合、反応副生物としてァニソール、サリチル酸メチル、サリチル酸フエ二 ル、キサントン、メトキシ安息香酸フエ-ル、 1—フエノキシカルボ-ルー 2—フエノキシ カルボキシーフエ-レン等が存在しており、通常、これらがさらに反応したと考えられ る高沸点副生物が少量含まれて ヽる。
[0074] したがって、第 2塔高沸点反応混合物から、高純度ジフ 二ルカーボネートを取得 するための精製工程 (Π)を実施することが必要である。工程 (Π)は、第 2塔高沸点反 応混合物から高純度ジフエニルカーボネートが取得できる方法、たとえば、蒸留及び Z又は再結晶などの方法であるが、このなかで、本発明では、工程 (π)を蒸留法で 行うことが好ましいことが見出された。さらに、本発明では、工程 (Π)を 2基の蒸留塔、 すなわち、高沸点物質分離塔 A、サイドカット抜き出し口を有するジフエ-ルカーボネ ート精製塔 Bを用いることによって、サイドカット成分として高純度ジフエ-ルカーボネ 一トが高収率で効率的に取得できることが見出された。
[0075] 工程 (II)では、第 2塔高沸点反応混合物を高沸点物質分離塔 Aに連続的に導入し 、ジフ 二ルカーボネートを含む塔頂成分 (A )と触媒を含む塔底成分 (A )に連続
T B
的に分離し、次いで該塔頂成分 (A )を、サイドカット抜き出し口を有するジフ -ル
T
カーボネート精製塔 Bに連続的に導入し、塔頂成分 (B )、サイドカット成分 (B )、塔
T S
底成分 (B )の 3つの成分に連続的に蒸留分離し、高純度ジフ 二ルカーボネートを
B
サイドカット成分 (B )として連続的に、 1時間あたり 0. 85トン以上、好ましくは 1トン以
S
上得るのである。そのためには該高沸点物質分離塔 Aと該ジフエ二ルカーボネート精 製塔 Bをそれぞれ特定の構造を有する連続多段蒸留塔とし、それらを組み合わせて 用いることが必要である。
[0076] 工程 (I)から得られる第 2塔高沸点反応混合物中には、ジフヱ-ルカーボネートが 通常、 50〜80質量%含まれているので、 1時間あたり 1トン以上の高純度ジフエ-ル カーボネートを得るためには、高沸点物質分離塔 Aに連続的に導入される反応混合 物の量は、ジフエ-ルカーボネートの含有量によって変化する力 約 1. 3〜2トン Zh r以上である。通常は約 2トン Zhrより多くの反応混合物を分離'精製する必要がある
[0077] 工程 (Π)で用いる該高沸点物質分離塔 Aは、下記式(13)〜(15)を満足する、長 さし (cm) ,内径 D (cm)で、内部に段数 nのインターナルを有する連続多段蒸留
A A A
塔であることが必要である。
800 ≤ L ≤ 3000 式(13)
A
100 ≤ D ≤ 1000 式 (14)
A
20 ≤ n ≤ 100 式(15)
また、工程 (Π)で用いる該ジフエ-ルカーボネート精製塔 Bは、下記式(16)〜(21 )を満足する、長さ L_ (cm)、内径 D (cm)で、内部にインターナルを有するものであ つて、塔の中段に導入口 Bl、該導入口 B1と塔底との間にサイドカット抜き出し口 B2 を有し、導入口 B1から上部のインターナルの段数が n 、導入口 B1とサイドカット抜
B1
き出し口 B2との間のインターナルの段数が n 、サイドカット抜き出し口 B2から下部
B2
のインターナルの段数が n で、段数の合計 (n +n +n )が11である連続多段蒸留
B3 Bl B2 B3 B
塔であることが必要である。
1000 < L < 5000 式(16)
B
100 < D < 1000 式 (17)
B
5 < n < 20 式(18)
Bl
12 < n < 40 式(19)
B2
3 < n < 15 式(20)
B3
20 < n < 70 式(21)
[0079] これらの条件の全てを同時に満足する高沸点物質分離塔 Aとジフエ二ルカーボネ ート精製塔 Bを用いることによって、均一系触媒の存在下にジアルキルカーボネート とフエノールを原料とするエステル交換反応で得られたジフエ-ルカーボネートを含 む反応混合物(工程 Iの第 2塔高沸点反応混合物)力 高純度ジフエニルカーボネー トを、 1時間あたり 1トン以上の工業的規模で、例えば 2000時間以上、好ましくは 300 0時間以上、さらに好ましくは 5000時間以上の長期間、安定的に製造できることが見 出されたのである。本発明の方法を実施することによって、このような優れた効果を有 する工業的規模での高純度ジフエ-ルカーボネートの製造が可能になった理由は明 らかではないが、式(13)〜(21)の条件が組み合わさった時にもたらされる複合効果 のためであると推定される。なお、各々の要因の好ましい範囲は下記に示される。
[0080] L (cm)が 800より小さいと、高沸点物質分離塔 Aの内部に設置できるインターナ
A
ルの高さに制限ができるため分離効率が低下するため好ましくないし、目的の分離 効率を達成しつつ設備費を低下させるには、 Lを 3000以下にすることが必要である
A
。より好ましい L (cm)の範囲は、 1000≤L ≤2500 であり、さらに好ましくは、 120
A A
0≤L ≤2000 である。
A
[0081] D (cm)が 100よりも小さいと、目的とする生産量を達成できないし、目的の生産量
A
を達成しつつ設備費を低下させるには、 Dを 1000以下にすることが必要である。よ り好ましい D (cm)の範囲は、 200≤D ≤600 であり、さらに好ましくは、 250≤D
A A A
≤450 である。
[0082] nが 20より小さいと分離効率が低下するため目的とする高純度を達成できないし、
A
目的の分離効率を達成しつつ設備費を低下させるには、 nを 100以下にすることが
A
必要である。さらに n力 よりも大きいと塔の上下における圧力差が大きくなりすぎ
A
るため、高沸点物質分離塔 Aの長期安定運転が困難となるだけでなぐ塔下部での 温度を高くしなければならないため、副反応が起こりやすくなるので好ましくない。より 好ましい n の範囲は、 30≤n ≤70 であり、さらに好ましくは、 35≤n ≤60 である
A A A
[0083] 工程 (Π)の該高沸点分離塔 Aの蒸留条件としては、塔底温度 (T )が 185〜280°C
A
、塔頂圧力(P )が 1000〜20000Paであることが好ましい。 T力 Sl85°Cよりも低いと
A A
塔頂圧力をより低くしなければならないため高真空を保持する設備にしなければなら ないし、また設備が大きくなるので好ましくない。また、 280°Cより高くすると蒸留時に 高沸点副生物が生成するので好ましくない。より好ましい T
Aは 190〜240°C、であり
、さらに好ましくは 195〜230°Cの範囲である。
[0084] Pが lOOOPaよりも低いと高真空を保持できる大きな設備となり好ましくなぐ 2000
A
OPaより高いと蒸留温度が高くなり副生物が増加するので好ましくない。より好ましい P は 2000〜15000Paであり、さらに好ましくは 3000〜13000Paの範囲である。
A
[0085] L (cm)が 1000より小さいと、ジフエ-ルカーボネート精製塔 Bの内部に設置でき
B
るインターナルの高さに制限ができるため分離効率が低下するため好ましくないし、 目的の分離効率を達成しつつ設備費を低下させるには、 Lを 5000以下にすること
B
が必要である。より好ましい L (cm)の範囲は、 1500≤L ≤3000 であり、さらに好
B B
ましくは、 1700≤L ≤2500 である。
B
[0086] D (cm)が 100よりも小さいと、目的とする生産量を達成できないし、目的の生産量
B
を達成しつつ設備費を低下させるには、 Dを 1000以下にすることが必要である。よ
B
り好ましい D (cm)の範囲は、 150≤D ≤500 であり、さらに好ましくは、 200≤D
B B B
≤400 である。
[0087] nが 20より小さ 、と塔全体としての分離効率が低下するため目的とする高純度を 達成できないし、目的の分離効率を達成しつつ設備費を低下させるには、 nを 70以
B
下にすることが必要である。さらに nが 70よりも大きいと塔の上下における圧力差が
B
大きくなり、ジフエ二ルカーボネート精製塔 Bの長期安定運転が困難となるだけでなく 、塔下部での温度を高くしなければならないため、副反応が起こりやすくなるので好 ましくない。より好ましい nの範囲は、 25≤n ≤55 であり、さらに好ましくは、 30≤n
B B
≤50 である。さらに、目的とする高純度のジフエ-ルカーボネートを長時間安定的
B
に得るためには、 n 、n 、n がそれぞれ、 5≤n ≤20、 12≤n ≤40、 3≤n
Bl B2 B3 Bl B2 B
≤15 の範囲にあることが必要であることが判明した。より好ましい範囲は、 7≤n
3 Bl
≤15、 12≤n ≤30、 3≤n ≤10 である。
B2 B3
[0088] 工程 (II)のジフヱ二ルカーボネート精製塔 Bの蒸留条件としては、塔底温度 (T )が
B
185〜280°C、塔頂圧力(P )力 l000〜20000Paであることが好ましい。 T力 ^185
B B
°Cよりも低いと塔頂圧力をより低くしなければならないため高真空を保持する設備に しなければならないし、また設備が大きくなるので好ましくない。また、 280°Cより高く すると蒸留時に高沸点副生物が生成するので好ましくない。より好ましい T
Bは 190〜
240°C、であり、さらに好ましくは 195〜230°Cの範囲である。
[0089] Pが lOOOPaよりも低いと高真空を保持できる大きな設備となり好ましくなぐ 2000
B
OPaより高いと蒸留温度が高くなり副生物が増加するので好ましくない。より好ましい Pは 2000〜15000Paであり、さらに好ましくは 3000〜13000Paの範囲である。
B
[0090] なお、高沸点物質分離塔 Aとジフエ二ルカーボネート精製塔 Bにおいて、 D及び D
A
が上記の範囲にある限り、塔の上部から下部までそれぞれ同じ内径であってもよい
B
し、部分的に内径が異なっていてもよい。例えば、これらの連続多段蒸留塔において 、塔上部の内径が塔下部の内径よりも小さくてもよいし、大きくてもよい。
[0091] 工程 (II)で用いる高沸点物質分離塔 Aとジフエニルカーボネート精製塔 Bは、それ ぞれ、インターナルとしてトレイ及び Z又は充填物を有する蒸留塔である。本発明で いうインターナルとは、蒸留塔において実際に気液の接触を行わせる部分のことを意 味する。このようなトレイとしては、工程 (I)の項に記載のものが好ましい。また、「イン ターナルの段数」とは、前記のとおりである。
[0092] 工程 (II)の高沸点物質分離塔 Aは、インターナルとして充填物を有するものが好ま しぐさらに充填物として規則充填物が好ましいことも判明した。また、ジフ 二ルカ一 ボネート精製塔 Bはインターナルとして充填物であることが好ましぐさらに 1基又は 2 基以上の規則充填物が好ましいことが見出された。
[0093] 工程 (I)の第 2反応蒸留塔の塔底力 連続的に抜出される高沸点反応混合物には 、通常、ジアルキルカーボネート力 0. 05〜2質量0 /0、フエノールが 1〜20質量0 /0、 アルキルフエ-ルエーテルが 0. 05〜2質量0 /0、アルキルフエ-ルカーボネートが 10 〜45質量%、ジフヱニルカーボネートが 50〜80質量%、高沸点副生物が 0. 1〜5 質量%、触媒が 0. 001〜5質量%含まれているので、この連続的に抜出された塔底 液を、そのまま工程 (Π)の高沸点物質分離塔 Aに連続的に供給することが好ましい。
[0094] 該反応混合物の組成は、ジアルキルカーボネートとフエノールとのエステル交換反 応の条件、触媒の種類と量等によって変化するが、一定の条件下でエステル交換反 応が行われる限り、ほぼ一定の組成の反応混合物が製造できるので、高沸点物質分 離塔 Aに供給される反応混合物の組成はほぼ一定である。しカゝしながら、工程 (Π)に おいては、反応混合物の組成が上記の範囲内であれば、それが変動しても、ほぼ同 様の分離効率で分離できる。このことは本発明の工程 (Π)の特徴の 1つである。
[0095] 工程 (II)にお 、て、工程 (I)の第 2反応蒸留塔の塔底液を高沸点物質分離塔 A内 に連続的に供給するには、該分離塔 Aの中間部より下部に設置された 1箇所又は数 箇所の導入口から、液状で供給してもよいし、該分離塔 Aのリボイラーの下部に設け た配管からリボイラーを経て塔内に供給することも好ましい方法である。高沸点物質 分離塔 Aに供給される第 2反応蒸留塔の塔底液の量は、製造すべき高純度ジフエ二 ルカーボネートの生産量、該反応混合物中のジフエニルカーボネートの濃度、該分 離塔 Aの分離条件等によって変化するが、通常約 2トン Zhr以上、好ましくは約 6トン Zhr以上、さらに好ましくは約 10トン Zhr以上である。
[0096] 高沸点物質分離塔 Aに連続的に供給された第 2反応蒸留塔の高沸点反応混合物 は、ジフヱ-ルカーボネートの大部分と未反応原料、アルキルフ -ルエーテル、ァ ルキルフエ-ルカーボネート等のジフエ-ルカーボネートよりも沸点の低い化合物の 大部分を含む塔頂成分 (A )と、少量のジフ 二ルカーボネートと触媒と高沸点副生
T
物とを含む塔底成分 (A )に分離される。塔底成分 (A )中には少量のアルキルフ -ルカーボネートが含まれていてもよい。塔底成分中のこれらの有機物は触媒成分 を溶解させ液状に保つのに役立っている。この塔底成分 (A )の、全量又は一部は
B
エステル交換反応の触媒成分として、通常そのままで工程 (I)の第 1反応蒸留塔及 び Z又は第 2反応蒸留塔に循環再使用されるが、場合によっては触媒回収工程で 有機物と分離した後、触媒として再生され、循環再使用される。
[0097] 工程 (Π)にお!/、ては、サリチル酸フエ-ル、キサントン、メトキシ安息香酸フエ-ル、 1—フエノキシカルボニル 2—フエノキシカルボキシ一フエ二レン等のジフエ二ルカ ーボネートより高沸点の副生物と触媒成分は、この高沸点物質分離塔 Aで、ほぼ完 全に塔底成分 (A )として分離され、塔頂成分 (A )中の含有量を通常 200ppm以下
B T
、好ましくは lOOppm以下、より好ましくは 50ppm以下にすることが容易にできるのが 工程 (Π)の特徴の 1つである。塔頂成分 (A )中にこれらの高沸点副生物を殆ど含ま
T
せないで、しカゝも、導入された反応混合物中のジフエ二ルカーボネートの大部分を塔 頂力も抜き出すことができることも工程 (Π)の特徴の 1つである。工程 (Π)においては 、高沸点物質分離塔 Aに連続的に供給された反応混合物中のジフエ二ルカーボネ ートの 95%以上、好ましくは 96%以上、さらに好ましくは 98%以上を塔頂力も抜出 すことができる。また、工程 (Π)においては、該分離塔 Aに供給される第 2反応蒸留 塔の高沸点反応混合物の組成に依存することではあるが、連続的に供給された液の 通常、 90〜97質量%が塔頂成分 (A )として塔頂力も連続的に抜出され、 10〜3質
T
量%が塔底成分 (A )として塔底から連続的に抜出される。塔頂成分 (A )の組成は
B T
、通常、ジアルキルカーボネート力 0. 05〜1質量0 /0、フエノールが 1〜10質量0 /0、 アルキルフエ-ルエーテルが 0. 05〜0. 5質量0 /0、アルキルフエ-ルカーボネートが 20〜40質量%、ジフエニルカーボネートが 50〜80質量%であり、高沸点副生物の 含有量は、通常 200ppm以下、好ましくは lOOppm以下、より好ましくは 50ppmであ る。
[0098] 工程 (Π)においては、高沸点物質分離塔 Aの還流比は 0. 01〜10の範囲であり、 好ましくは 0. 08〜5、さらに好ましくは 0. 1〜3の範囲である。
[0099] 高沸点物質分離塔 Aの塔頂から連続的に抜出される塔頂成分 (A )の量は、前記
T
のとおり該分離塔 Aに供給された第 2反応蒸留塔の高沸点反応混合物の通常約 90 〜97%である力 これがそのままジフエ二ルカーボネート精製塔 Bの中段に設けられ た導入口 B1から該精製塔 Bに連続的に供給され、塔頂成分 (B )、サイドカット成分(
T
B )、塔底成分 (B )の 3成分に連続的に分離される。該精製塔 Bに供給された該分
S B
離塔 Aの塔頂成分 (A )に含まれていたジフエ二ルカーボネートよりも低沸点の成分
T
は全て塔頂成分 (B )として塔頂力 連続的に抜出され、塔底からは、少量の液体が
T
連続的に抜出される。塔頂成分 (B )中には、少量のジフヱ-ルカーボネートが含ま
T
れ、その量は供給されたジフエニルカーボネートに対して、通常、 1〜9%、好ましくは 3〜8%である。この塔頂成分(B )中のジフ -ルカーボネートは、塔頂成分(B )を
T T
分離する別の蒸留塔で分離され、回収されるが、この別の蒸留塔の塔底成分として 分離し、それを高沸点物質分離塔 A及び Z又はジフエ二ルカーボネート精製塔 B〖こ 戻すことによって回収することも好ましい方法である。塔底成分 (B )はジフ -ルカ
B
ーボネートと数%程度に濃縮された少量の高沸点副生物から成っている。塔底から 抜き出される塔底成分 (B )の中のジフ -ルカーボネートの量が非常に少なくてす
B
むことも工程 (Π)の特徴のひとつであり、その量は供給されたジフエ-ルカーボネート に対して、通常 0. 05〜0. 5%である。
[0100] サイドカット抜き出し口 B2からは、高純度ジフエ-ルカーボネートが通常通常 1トン Zhr以上、好ましくは 3トン Zhr以上、さらに好ましくは 5トン Z以上の流量で連続的 に抜出され、この量は該精製塔 Bに供給されたジフエ二ルカーボネートの通常、約 90 〜96%に相当する。
[0101] 工程 (II)のジフエ-ルカーボネート精製塔 Bのサイドカット成分 (B )として得られる s
ジフエ-ルカーボネートの純度は、通常 99. 9%以上であり、好ましくは 99. 99%以 上で、より好ましくは 99. 999%以上である。ジメチルカーボネートとフエノールを原 料として工程 (I)及び工程 (II)を実施した時に得られる高純度ジフエ二ルカーボネー ト中の高沸点不純物の含有量は、サリチル酸フエ-ルカ 30ppm以下、好ましくは 1 Oppm以下、さらに好ましくは lppm以下であり、キサントンが 30ppm以下、好ましく は lOppm以下、さらに好ましくは lppm以下であり、メトキシ安息香酸フエ-ルが 30p pm以下、好ましくは lOppm以下、さらに好ましくは lppm以下であり、 1—フ ノキシ カルボ-ル 2 フエノキシカルボキシ一フエ-レンが 30ppm以下、好ましくは ΙΟρρ m以下、さらに好ましくは 5ppm以下である。そして、これら高沸点副生物の合計含有 量は、 lOOppm以下、好ましくは 50ppm以下、さらに好ましくは lOppm以下である。
[0102] また、本発明では通常ハロゲンを含まない原料と触媒を使用するので、得られるジ フエ-ルカーボネートのハロゲン含有量は 0. lppm以下であり、好ましくは lOppb以 下であり、さらに好ましくは lppb以下 (イオンクロマトグラフィーによる検出限界外)で ある。
[0103] 工程(Π)においては、ジフエ-ルカーボネート精製塔 Bの還流比は 0. 01〜10の範 囲であり、好ましくは 0. 1〜8、さらに好ましくは 0. 5〜5の範囲である。
[0104] 本発明で用いられる高沸点物質分離塔 Aとジフエ-ルカーボネート精製塔 B及び接 液部を構成する材料は、主に炭素鋼、ステンレススチールなどの金属材料である力 製造するジフエ-ルカーボネートの品質の面からは、ステンレススチールが好ましい。
[0105] 続いて、工程 (III)が実施される。すなわち、芳香族ジヒドロキシ化合物と該高純度 ジフエニルカーボネートとを反応させて芳香族ポリカーボネートの溶融プレボリマーを 製造し、該溶融プレボリマーをガイドの表面に沿って流下せしめ、その流下中に該溶 融プレポリマーの重合を行わせるガイド接触流下式重合器を用いて芳香族ポリカー ボネートを製造する工程である。
[0106] 工程 (III)において、用いられる芳香族ジヒドロキシィ匕合物とは、一般式(39)で示さ れる化合物である。
HO-Ar-OH 式(39)
(式 39中、 Arは 2価の芳香族基を表す。 )0
2価の芳香族基 Arは、好ましくは例えば、一般式 (40)式で示されるものである。
Ar1 - Y - Ar2 - 式(40)
(式中、 Ar1及び Ar2は、各々独立にそれぞれ炭素数 5〜70を有する 2価の炭素環式 又は複素環式芳香族基を表し、 Yは炭素数 1〜30を有する 2価のアルキレン基を表 す。)
[0107] 2価の芳香族基 Ai^ Ar2において、 1つ以上の水素原子が、反応に悪影響を及ぼ さない他の置換基、例えば、ハロゲン原子、炭素数 1〜: L0のアルキル基、炭素数 1〜 10のアルコキシ基、フエ-ル基、フエノキシ基、ビュル基、シァノ基、エステル基、アミ ド基、ニトロ基などによって置換されたものであっても良い。複素環式芳香族基の好 ましい具体例としては、 1ないし複数の環形成窒素原子、酸素原子又は硫黄原子を 有する芳香族基を挙げる事ができる。 2価の芳香族基 Ar1 Ar2は、例えば、置換又 は非置換のフ -レン、置換又は非置換のビフヱ-レン、置換又は非置換のピリジレ ンなどの基を表す。ここでの置換基は前述のとおりである。
[0108] 2価のアルキレン基 Yは、例えば、下記式で示される有機基である。
[0109] [化 1]
Figure imgf000041_0001
[0110] (式中、 R R2、 R3、 R4は、各々独立に水素、炭素数 1〜10のアルキル基、炭素数 1 〜 10のアルコキシ基、環構成炭素数 5〜 10のシクロアルキル基、環構成炭素数 5〜 10の炭素環式芳香族基、炭素数 6〜10の炭素環式ァラルキル基を表す。 kは 3〜1 1の整数を表し、 R5及び R6は、各 Xについて個々に選択され、お互いに独立に、水 素又は炭素数 1〜6のアルキル基を表し、 Xは炭素を表す。また、
Figure imgf000041_0002
R2、 R3、 R4、 R£ 、 R6において、一つ以上の水素原子が反応に悪影響を及ぼさない範囲で他の置換 基、例えばハロゲン原子、炭素数 1〜10のアルキル基、炭素数 1〜10のアルコキシ 基、フエ-ル基、フエノキシ基、ビュル基、シァノ基、エステル基、アミド基、ニトロ基等 によって置換されたものであってもよい。 )
[0111] このような 2価の芳香族基 Arとしては、例えば、下記式で示されるものが挙げられる
[0112] [化 2]
Figure imgf000042_0001
Figure imgf000042_0002
Figure imgf000042_0003
[0113] (式中、 R7、 R8は、各々独立に水素原子、ハロゲン原子、炭素数 1〜10のアルキル 基、炭素数 1〜10のアルコキシ基、環構成炭素数 5〜 10のシクロアルキル基又はフ ェ-ル基であって、 m及び nは、 1〜4の整数で、 mが 2〜4の場合には、各 R7はそれ ぞれ同一でも異なるものであってもよいし、 nが 2〜4の場合には、 R8はそれぞれ同一 でも異なるものであってもよい。 )
[0114] さらに、 2価の芳香族基 Arは、次式で示されるものであってもよい。
— Ar1— Z— Ar2— (式中、 Ar1及び Ar2は前述の通りで、 Zは単結合又は—O—、—CO—、—S—、—S O―、— SO—、— COO—、— CON (R1)—などの 2価の基を表す。ただし、 R1は前
2
述のとおりである。 )
このような 2価の芳香族基 Arとしては、例えば、下記式に示されるものが挙げられる
[0116] [化 3]
Figure imgf000043_0001
so
( i
普 :〉 n ( .
Figure imgf000043_0002
Figure imgf000043_0003
[0117] (式中、 R7、 R8、 m及び nは、前述のとおりである。 )
さらに、 2価の芳香族基 Arの具体例としては、置換又は非置換のフエ-レン、置換 又は非置換のナフチレン、置換又は非置換のピリジレン等が挙げられる。
[0118] 本発明で用いられる芳香族ジヒドロキシ化合物は、単一種類でも 2種類以上でもか まわな 、。芳香族ジヒドロキシィ匕合物の代表的な例としてはビスフエノール Aが挙げら れる。また、本発明においては、本発明の目的を損なわない範囲で、分岐構造を導 入するための 3価の芳香族トリヒドロキシィ匕合物を併用してもよい。
[0119] 工程 (III)における芳香族ジヒドロキシィ匕合物と高純度ジフエ-ルカーボネートとの 使用割合 (仕込み比率)は、用いられる芳香族ジヒドロキシィ匕合物とジフエ二ルカーボ ネートの種類や、重合温度その他の重合条件によって異なるが、ジフ -ルカーボネ ートは芳香族ジヒドロキシィ匕合物 1モルに対して、通常 0. 9〜2. 5モル、好ましくは 0 . 95〜2. 0モル、より好ましくは 0. 98〜: L 5モルの割合で用いられる。
[0120] 工程 (III)における、芳香族ジヒドロキシ化合物とジフエ-ルカーボネートとから製造 された溶融状態のプレボリマー(以下、溶融プレボリマーと表す)とは、芳香族ジヒドロ キシィ匕合物とジフヱニルカーボネートから製造される、 目的とする重合度を有する芳 香族ポリカーボネートより重合度の低い重合途中の溶融物を意味しており、もちろん オリゴマーであってもよい。工程 (ΠΙ)で用いられるこのような溶融プレボリマーは、公 知のいかなる方法によって得られたものでよい。たとえば、所定量の芳香族ジヒドロキ シ化合物とジフエ-ルカーボネートとからなる溶融混合物を 1基又はそれ以上の縦型 撹拌槽を用いて、約 120°C〜約 280°Cの温度範囲で、常圧及び Z又は減圧下に撹 拌しながら、反応によって副生するフエノールを除去することによって、製造すること ができる。直列に連結された 2基以上の縦型撹拌槽を用いて、順に重合度を上げて いく必要な重合度を有する溶融プレボリマーを連続的に製造する方法が特に好まし い。
[0121] 工程 (III)では、この溶融プレボリマーが、ガイド接触流下式重合器に連続的に供 給され、 目的の重合度を有する芳香族ポリカーボネートを連続的に製造する。このガ イド接触流下式重合器とは、ガイドに沿ってプレボリマーを溶融流下せしめて重合を させる重合器であって、 1時間あたり 1トン以上の芳香族ポリカーボネートを生産でき るものである。該ガイド接触流下式重合器は、
( 1)溶融プレボリマー受給口、多孔板、該溶融プレボリマーが多孔板を通して重合反 応ゾーンのガイドに供給するための溶融プレボリマー供給ゾーン、該多孔板と側面ケ 一シングとテーパー形の底部ケーシングとに囲まれた空間に該多孔板から下方に延 びる複数のガイドが設けられた重合反応ゾーン、該重合反応ゾーンに設けられた真 空ベント口、テーパー形の底部ケーシングの最下部に設けられた芳香族ポリカーボ ネート排出口、及び該排出口に接続された芳香族ポリカーボネート排出ポンプを有 するタイプのものであって、
(2)該重合反応ゾーンの側面ケーシングの水平面における内部断面積 A (m2)が、 式(22)を満足するものであって、
0. 7≤A≤300 式(22)
(3)該 A (m2)と、芳香族ポリカーボネート排出口の水平面における内部断面積 B (m2 )との比が、式(23)を満足するものであって、
20≤A/B≤1000 式(23)
(4)該重合反応ゾーンの底部を構成するテーパー形の底部ケーシンダカ 上部の側 面ケーシングに対してその内部において、角度 C度で接続されており、該角度 C度が 式(24)を満足するものであって、
120≤C≤165 式(24)
(5)該ガイドの長さ h (cm)力 式(25)を満足するものであって、
150≤h≤5000 式(25)
(6)該ガイド全体の外部総表面積 S (m2)が式 (26)を満足するものである、
2≤S≤ 50000 式(26)
ことが必要である。
高品質 ·高性能の芳香族ポリカーボネートを 1時間あたり 1トン以上の工業的規模の 生産量で、分子量のバラツキなどがなぐ長期間安定的に製造するためには、種々 の条件を満足させる重合器であることが必要であり、本発明はこれらの条件を見出し たものである。なお、本発明においては、分子量のバラツキがないとは、数平均分子 量で 200以下のバラツキの場合を意味している。本発明では、数平均分子量のバラ ツキが好ましくは 150以下、より好ましくは 100以下の芳香族ポリカーボーネートが長 期間安定的に製造できる。 [0123] より具体的には、概念図(図 4)に示されるような、重合反応ゾーン 5の側面ケーシン グ 10の水平面 (a— a'面)における内部断面積 A (m2)が、式(22)を満足するもので あることが必要である。
[0124] Aが 0. 7m2よりも小さいと、目的とする生産量を達成できないし、設備費を低下させ つっこの生産量を達成するためには、 Aは 300m2以下にすることが必要である。
[0125] さらに、該 A (m2)と、芳香族ポリカーボネート排出口 7の水平面 (b— b'面)における 内部断面積 B (m2)との比が、式 (23)を満足することも必要である。
[0126] 製造された芳香族ポリカーボネート又は重合度の高められた芳香族ポリカーボネー トプレポリマーの品質を低下させることなく溶融粘度の高いこれらの溶融物を排出す るためには、 AZBは式(23)を満足して!/ヽなければならな!/ヽ。
[0127] さらに、該重合反応ゾーン 5の底部を構成するテーパー形の底部ケーシング 11が、 上部の側面ケーシング 10に対してその内部において、角度 C度で設けられており、 該角度 C度が式 (24)を満足することも必要である。設備費を低下させるためには、 C はできるだけ 90度に近い方がいいのである力 ガイド 4の下端から落下してくる芳香 族ポリカーボネート又は重合度の高められた芳香族ポリカーボネートプレボリマーの 品質を低下させることなく溶融粘度の高いこれらの溶融物を排出口 7に移動させるた めには、 Cは式(24)を満足して!/ヽなければならな!/ヽ。
[0128] さらに、該ガイドの長さ Mem)が、式(25)を満足することも必要である。 hが 150c mより短い場合、溶融プレボリマーの重合度を高めることはできる力 その程度が十 分ではなぐまた、重合度のバラツキが数平均分子量で約 200以上大きくなり、好まし くない。 hが 5000cmより長い場合、ガイド 4の上部と下部での溶融プレポリマーの溶 融粘度の違いが大きくなりすぎるため、重合度のバラツキが数平均分子量で約 300 以上 (場合によっては、約 500以上)大きくなり、得られる芳香族ポリカーボネートの物 性にバラツキがでるので好ましくない。なお、本発明において重合度のバラツキが大 きいとは、例えば数平均分子量で表して、約 200以上の差があるバラツキの場合を 意味している。
[0129] さらに、該ガイド 4の外部総表面積 S (m2)が式(26)を満足する必要がある。 Sが 2m 2よりも小さいと、目的とする生産量を達成できないし、設備費を低下させつつこの生 産量を達成し、且つ物性にバラツキをなくすためには、 Sは 50000m2以下にすること が必要である。
[0130] 式(22)、 (23)、 (24)、 (25)及び(26)を同時に満足するガイド接触流下式重合器 を用いることによって、驚くべきことに、着色がなく機械的物性に優れた高品質 ·高性 能の芳香族ポリカーボネートを、 1時間あたり 1トン以上の生産量でし力も、数 1, 000 時間以上、たとえば 5, 000時間以上の長期間、分子量のバラツキなどなく安定的に 製造できることが見出された。これらの条件を同時に満足していない場合には、目的 とする生産量が得られな!/、、分子量のバラツキが数平均分子量で表して約 200以上 の差があるバラツキがでる、安定製造が 1, 000時間もできない、着色がしゃすくなる などの不都合が起こる。
[0131] 工程 (ΠΙ)において、このような優れた効果を有する工業的規模での芳香族ポリ力 ーボネートの製造が可能となった理由は明らかではないが、上述の理由にカ卩えて、 それらの条件が組み合わさった時にもたらされる複合効果が現れたためであると推定 される。例えば式(25)及び(26)を満足する高表面積のガイドを用いると、溶融プレ ポリマーを比較的低温度で重合させることができ、目的とする分子量を有する大量の 高品質の芳香族ポリカーボネートを製造できるし、また、式 (24)を満足するテーパー 形の底部ケーシングは、ガイドから落下してくるこの大量の高品質の生成芳香族ポリ カーボネートが排出口に達する時間を短縮でき、その結果、生成芳香族ポリカーボ ネートの熱履歴を減らせるためと推定される。
[0132] なお、このような工業的規模での製造技術は、大規模な製造設備を用いる長時間 運転によって初めて確立できるものであるが、その際の製造設備費は考慮すべき重 要な因子であることは、論を待たない。本発明の別な効果は、工程 (III)で用いる重 合器を式 (22)、(23)、(24)、(25)及び (26)を満足するガイド接触流下式重合器と することによって、工業的製造設備として設備費を低下させることができることにある。
[0133] 工程 (III)において用いられるガイド接触流下式重合器における寸法 ·角度等に要 求される範囲は、上記のとおりである力 さらに好ましい範囲は次のとおりである。重 合反応ゾーンの側面ケーシングの水平面における内部断面積 A (m2)のより好ましい 範囲は、 0. 8≤A≤250 であり、さらに好ましくは、 1≤A≤ 200 である。 [0134] また、該 A (m2)と、芳香族ポリカーボネート排出口の水平面における内部断面積 B (m2)との比のより好ましい範囲は、 25≤AZB≤900 であり、さらに好ましくは、 30 ≤A/B≤800 である。
[0135] また、重合反応ゾーンの底部を構成するテーパー形の底部ケーシンダカ 上部の 側面ケーシングに対してその内部においてなす角度 C度のより好ましい範囲は、 125 ≤C≤160 であり、さらに好ましくは、 135≤C≤165 である。なお、複数のガイド 接触流下式重合器を用いて順に重合度を上げていく場合には、それぞれに対応す る角度を、 Cl、 C2、 C3、 · "とすれば、 C1≤C2≤C3≤ · · · とすることが好ましい
[0136] また、ガイドの必要な長さ h (cm)は、原料プレボリマーの重合度、重合温度、圧力、 その重合器で製造すべき芳香族ポリカーボネート又はプレボリマーの重合度、生産 量等の要因の違いによって異なる力 より好ましい範囲は、 200≤h≤3000 であり 、さらに好ましくは、 250≤h≤2500 である。 h力 式(33)を満足する場合、特に好 ましい:
400<h≤2500 式(33)。
[0137] また、必要なガイド全体の外部総表面積 S (m2)も、上記と同様の要因の違いによつ て異なるが、そのより好ましい範囲は、 4≤S≤40000 であり、さらに好ましくは、 10 ≤S≤ 30000 である。 15≤S≤ 20000 〖ま、特【こ好まし ヽ範囲である。本発明で V、うガイド全体の外部総表面積とは、溶融プレボリマーが接触して流下するガイドの 表面積全体を意味しており、例えばパイプなどのガイドの場合、外側の表面積を意味 しており、溶融プレボリマーを流下させないパイプ内側の面の表面積は含めない。
[0138] 工程 (III)で用いられるガイド接触流下式重合器にぉ ヽて、重合反応ゾーンの側面 ケーシングの水平面における内部断面の形状は多角形、楕円形、円形等、どのよう な形状であってもよい。重合反応ゾーンは、通常減圧下で操作されるため、それに耐 えるものであればどのようなものでもよいが、好ましくはそれが円形又はそれに近い形 状の場合である。したがって、本発明の重合反応ゾーンの側面ケーシングは、円筒 形であることが好ましい。この場合、円筒形の側面ケーシングの下部にテーパー形の 底部ケーシングが接続され、該底部ケーシングの最下部に円筒形の芳香族ポリカー ボネート排出口が設けられることが好ましい。そして、該側面ケーシングの円筒形部 の内径を D (cm)、長さを L (cm)とし、該排出口の内径を d (cm)とした時、 D、 L、 d が式(29)、(30)、(31)及び(32)を満足していることが好ましい;
100≤D≤1800 式(29)
5≤D/d≤50 式(30)
0. 5≤L/D ≤30 式(31)
h- 20≤L≤h+ 300 式(32)。
[0139] 該ガイド接触流下式重合器において、 D (cm)のより好ましい範囲は、 150≤D ≤ 1500 であり、さらに好ましくは、 200≤D≤1200 である。また、 DZd のより好ま しい範囲は、 6≤DZd≤45 であり、さらに好ましくは、 7≤ D/d≤40 である。 また、 LZDのより好ましい範囲は、 0. 6≤L/D≤25 であり、さらに好ましくは、 0. 7≤L/D≤20 である。 また、 L (cm)のより好ましい範囲は、 h— 10≤L≤h+ 25 0 であり、さらに好ましくは、 h≤L≤h+ 200 である。
[0140] 工程 (ΠΙ)において、速い重合速度で、着色が無く機械的物性に優れた高品質 ·高 性能の芳香族ポリカーボネートが、工業的規模で長期間分子量のバラツキがなく安 定的に製造できる正確な理由は明らかではないが、以下のことが考えられる。すなわ ち、工程 (III)のガイド接触流下式重合法においては、原料の溶融プレボリマーは受 給口 1から、供給ゾーン 3及び多孔板 2を経由して、ガイド 4に導かれ、ガイドに沿って 流下しながら重合度が上昇していく。この場合、溶融プレボリマーはガイドに沿って 流下しながら効果的な内部攪拌と表面更新が行われ、フ ノール等の抜出しが効果 的に行われるため、速い速度で重合が進行する。重合の進行とともにその溶融粘度 が高くなつてくるために、ガイドに対する粘着力が増大し、ガイドに粘着する溶融物の 量はガイドの下部に行くに従って増えてくる。このことは、溶融プレボリマーのガイド上 での滞留時間、すなわち重合反応時間が増えることを意味している。し力も、ガイドに 支えられながら自重で流下している溶融プレボリマーは、重量当たりの表面積が非常 に広く、その表面更新が効率的に行われているので、これまでの機械的攪拌重合器 ではどうしても不可能であった重合後半の高分子量ィヒが容易に達成できるのである 。これが工程 (III)で用いられる重合器の持つ、優れた特徴の 1つである。 [0141] ガイドの中間部より下部の重合の後半では、ガイドに粘着する溶融物の量が増えて くるが、その溶融粘度に見合った粘着保持力し力ないので、複数のガイドの同じ高さ においては、ほぼ同じ溶融粘度をもつほぼ同じ量の溶融物が、それぞれのガイドに 支えられていることになる。一方、ガイドには上部力 溶融物が連続的に供給されて いるので、ほぼ同じ溶融粘度をもつ重合度の高められた溶融物力 ガイドの下端から テーパー形のケーシングの底部に連続的に落下して行くことになる。すなわちテーパ 一形のケーシングの底部では、ガイドを流下しながら生成したほぼ同じ重合度の芳 香族ポリカーボネートが溜まってくることになり、分子量のバラツキのない芳香族ポリ カーボネートが連続的に製造できることになる。このことは本発明の重合器の持つ他 の優れた特徴の 1つである。ケーシングの底部に溜まった芳香族ポリカーボネートは 、排出口 7を経て、排出ポンプ 8によって連続的に抜き出され、通常は押出し機を経 て連続的にペレット化される。この場合、押出し機で、安定剤、耐候剤等の添加剤を 添加することも可能である。
[0142] 工程 (III)で用いられるガイド接触流下式重合器を構成する多孔板は、通常、平板 、波板、中心部が厚くなつた板など力 選ばれ、多孔板の形状についは、通常、円状 、長円状、三角形状、多角形状などの形状力 選ばれる。多孔板の孔は、通常、円 状、長円状、三角形状、スリット状、多角形状、星形状などの形状から選ばれる。孔の 断面積は、通常、 0. 01〜100cm2であり、好ましくは 0. 05〜10cm2であり、特に好 ましくは 0. l〜5cm2の範囲である。孔と孔との間隔は、孔の中心と中心の距離で通 常、 l〜500mmであり、好ましくは 25〜: LOOmmである。多孔板の孔は、多孔板を貫 通させた孔であっても、多孔板に管を取り付けた場合でもよい。また、テーパー状に なっていてもよい。
[0143] また、工程 (III)で用いられるガイド接触流下式重合器を構成するガイドとは、水平 方向断面の外周の平均長さに対して該断面と垂直方向の長さの比率が非常に大き い材料を表すものである。該比率は、通常、 10〜: L, 000, 000の範囲であり、好まし くは 50〜: L00, 000の範囲である。水平方向の断面の形状は、通常、円状、長円状 、三角形状、四角形状、多角形状、星形状などの形状から選ばれる。該断面の形状 は長さ方向に同一でもよいし異なっていてもよい。また、ガイドは中空状のものでもよ い。
[0144] ガイドは、針金状のものや細い棒状のものや内側に溶融プレボリマーが入らないよ うにした細 、パイプ状のもの等の単一なものでもよ 、が、捩り合わせる等の方法によ つて複数組み合わせたものでもよい。また、網状のものや、パンチングプレート状のも のであっても良い。ガイドの表面は平滑であっても凹凸があるものであってもよぐ部 分的に突起等を有するものでもよい。好ましいガイドは、針金状や細い棒状等の円柱 状のもの、前記の細いパイプ状のもの網状のもの、パンチングプレート状のものであ る。
[0145] このガイドはそれ自身内部に熱媒ゃ電気ヒーターなどの加熱源をもって!/ヽてもよ!/ヽ 力 加熱源を持たないガイドは、その表面におけるプレボリマーや芳香族ポリカーボ ネートの熱変性の懸念がな 、ので、特に好ま U、。
[0146] 工業的規模 (生産量、長期安定製造等)での高品質の芳香族ポリカーボネートの製 造を可能とする本発明のガイド接触流下式重合器において、特に好ましいのは、複 数の針金状又は細 、棒状、あるいは前記の細!、パイプ状のガイドの上部から下部ま でにお 、て横方向の支持材を用いて上下の適当な間隔で各々のガイド間を結合し たタイプのガイドである。例えば、複数の針金状又は細い棒状、あるいは前記の細い パイプ状のガイドの上部から下部までにお!、て横方向の支持材を用いて上下の適当 な間隔、たとえば lcm〜200cmの間隔で固定した金網状ガイド、複数の金網状のガ イドを前後に配置しそれらを横方向の支持材を用いて上下の適当な間隔、たとえば 1 cm〜200cmの間隔で結合させた立体的なガイド、あるいは複数の針金状又は細!ヽ 棒状、あるいは前記の細!、パイプ状のガイドの前後左右を横方向の支持材を用 ヽて 上下の適当な間隔、たとえば lcm〜200cmの間隔で固定したジャングルジム状の 立体的なガイドである。横方向の支持材は、各ガイド間の間隔をほぼ同じに保っため に役立つだけでなぐ全体として平面状や曲面状になるガイド、あるいは立体的にな るガイドの強度の強化に役立っている。これらの支持材はガイドと同じ素材であっても よいし、異なるものであってもよい。
[0147] ガイド接触流下式重合器にぉ ヽて、 1つのガイドが外径 r (cm)の円柱状又は内側 に溶融プレポリマーがはいらないようにしたパイプ状のものである場合、 r が式(34) を満足して 、ることが好まし ヽ;
0. l≤r≤l 式(34)。
[0148] このガイドは、溶融プレボリマーを流下させながら、重合反応を進めるものであるが 、溶融プレボリマーをある時間保持する機能も有している。この保持時間は、重合反 応時間に関連するものであり、重合の進行とともにその溶融粘度が上昇していくため に、その保持時間及び保持量は増加していくことは前記のとおりである。ガイドが溶 融プレポリマーを保持する量は、同じ溶融粘度であってもガイドの外部表面積、即ち 、円柱状又はパイプ状の場合、その外径によって異なってくる。
[0149] また、本発明の重合器に設置されたガイドは、ガイド自身の重量に加え、保持して V、る溶融プレボリマーの重量をも支えるだけの強度が必要である。このような意味に おいて、ガイドの太さは重要であり、円柱状又はパイプ状の場合、式(34)を満足して いることが好ましい。 rが 0. 1より小さいと、強度的な面で長時間の安定運転ができに くくなつてくる。 rが 1よりも大きいと、ガイド自身が非常に重くなり、たとえばそれらを重 合器に保持するために多孔板の厚みを非常に厚くしなければならないなどの不都合 力 Sあるだけでなぐ溶融プレボリマーを保持する量が多くなりすぎる部分が増え、分子 量のバラツキが大きくなるなどの不都合が起こってくる。このような意味で、より好まし い rの範囲は、 0. 15≤r≤0. 8 であり、さらに好ましいのは、 0. 2≤r≤0. 6 である
[0150] このようなガイドの好まし!/、材質は、ステンレススチール、カーボンスチール、ハステ ロイ、ニッケル、チタン、クロム、アルミニウム及びその他の合金等の金属や、耐熱性 の高いポリマー材料等の中力 選ばれる。特に好ましいのはステンレススチールであ る。また、ガイドの表面は、メツキ、ライニング、不働態処理、酸洗浄、フエノール洗浄 等必要に応じて種々の処理がなされてもよ!/、。
[0151] ガイドと多孔板との位置関係及びガイドと多孔板の孔との位置関係については、プ レポリマーのガイド接触流下が可能である限り特に限定されない。ガイドと多孔板は 互いに接触していてもよいし、接触していなくてもよい。ガイドを多孔板の孔に対応さ せて設置するのが好ましいがこれに限定されない。なぜならば、多孔板から落下する 溶融プレボリマーが適当な位置でガイドに接触するように設計されて 、ても ヽから である。ガイドを多孔板の孔に対応させて設置する好ましい具体例としては、(1)ガイ ドの上端を重合器の上部内壁面などに固定して、ガイドが多孔板の孔の中心部付近 を貫通した状態でガイドを設ける方法や、 (2)ガイドの上端を多孔板の孔の上端の周 縁部に固定して、ガイドが多孔板の孔を貫通した状態でガイドを設ける方法や、(3) ガイドの上端を多孔板の下側面に固定する方法、などが挙げられる。
[0152] この多孔板を通じて溶融プレボリマーをガイドに沿わせて流下させる方法としては、 液ヘッド若しくは自重で流下させる方法、又はポンプなどを使って加圧にすることに より、多孔板力も溶融プレボリマーを押し出す等の方法が挙げられる。好ましいのは、 供給ポンプを用いて加圧下、所定量の原料溶融プレボリマーを重合器の供給ゾーン に供給し、多孔板を経てガイドに導かれた溶融プレボリマーが自重でガイドに沿って 流下していく方式である。該溶融プレボリマーは、通常、所定の重合温度に加熱され た状態で、ガイド接触流下式重合器に連続的に供給される。したがって、このガイド 接触流下式重合器の外壁面には、通常ジャケット等が設置されていることが好ましく 、このジャケットに熱媒等を通じて所定の温度に加熱することが好ましい。このことによ つて、溶融プレボリマー及びプレボリマー供給ゾーンや多孔板の加熱 Z保温と、重合 反応ゾーンや側面ケーシング及びテーパー形の底部ケーシングの保温を行うことが 好ましい。
[0153] 工程 (III)にお!/、て、芳香族ジヒドロキシ化合物とジフエ-ルカーボネートと力も得ら れる溶融プレボリマーをガイド接触流下式重合器で重合させて芳香族ポリカーボネ ートを製造する反応の温度は、通常 80〜350°Cの範囲である。し力しながら、本発明 の重合器では内部攪拌を伴う効率的な表面更新が行われて 、るので、比較的低温 で重合反応を進行させることができる。したがって、好ましい反応温度は、 100〜290 °Cであり、さらに好ましいのは、 150〜270°Cである。従来の重合器である横型 2軸撹 拌式超高粘度ポリマー用リアクターでは、通常 300°C以上の高温下で、 133Pa以下 の高真空下で長時間撹拌する必要があった。しかも撹拌軸シール部力もの空気の漏 れこみによる黄変や、異物の混入がさけられなカゝつた。本発明の重合器は機械的攪 拌がないので、攪拌機のシール部もないので空気等の漏れこみが非常に少ない。し 力も、従来の横型 2軸撹拌式超高粘度ポリマー用リアクターの場合よりも約 20〜50 °cも低温で十分に重合を進めることができるの力 本発明の特徴である。このことも、 本発明にお 、て、着色や物性低下のな!、高品質の芳香族ポリカーボネートを製造す ることができる大きな原因である。
[0154] また、従来の横型 2軸撹拌式超高粘度ポリマー用リアクターを用いても、中粘度グ レード以上の芳香族ポリカーボネートを製造することは、その超高粘性のため、不可 能であるが、本発明のガイド接触流下式重合器では、高粘度グレードの芳香族ポリ力 ーボネートも容易に製造することができる。すなわち、本発明のガイド接触流下式重 合器では、分子量の比較的低いディスクグレードから、高粘度グレードまでの全ての グレードの芳香族ポリカーボネートを製造することできる。このことも本発明の大きな 特徴である。
[0155] 工程 (ΠΙ)では、重合反応の進行にともなって、フ ノールが生成してくる力 これを 反応系外へ除去することによって反応速度が高められる。したがって、窒素、ァルゴ ン、ヘリウム、二酸ィ匕炭素や低級炭化水素ガスなど反応に悪影響を及ぼさない不活 性なガスを重合器に導入して、生成してくるフエノールをこれらのガスに同伴させて除 去する方法や、減圧下に反応を行う方法などが好ましく用いられる。あるいはこれらを 併用した方法も好ましく用いられるが、これらの場合も重合器に大量の不活性ガスを 導入する必要はなぐ内部を不活性ガス雰囲気に保持する程度でもよい。
[0156] なお、溶融プレボリマーをガイド接触流下式重合器に供給するに先立って、前期不 活性ガスを吸収させ、次 ヽで該不活性ガス吸収溶融プレボリマーを重合させることも 好ましい方法である。
[0157] 工程 (ΠΙ)の重合器内の好ましい反応圧力は、製造する芳香族ポリカーボネートの 種類や分子量、重合温度等によっても異なる力 例えばビスフエノール Aとジフエ- ルカーボネートからの溶融プレボリマー力 芳香族ポリカーボネートを製造する場合 、数平均分子量が 5, 000以下の範囲では、 400〜3, OOOPa範囲が好ましぐ数平 均分子量が 5, 000〜10, 000の場合は、 50〜500Paの範囲が好ましい。数平均分 子量が 10, 000以上の場合は、 300Pa以下が好ましぐ特に 20〜250Paの範囲が 好ましく用いられる。
[0158] 工程 (III)を実施するにあたり、ガイド接触流下式重合器 1基だけで、 目的とする重 合度を有する芳香族ポリカーボネートを製造することも可能であるが、原料とする溶 融プレポリマーの重合度や芳香族ポリカーボネートの生産量などに応じて、 2基以上 の複数のガイド接触流下式重合器を連結して、順に重合度をあげて ヽく方式も好ま しい。この場合、それぞれの重合器において、製造すべきプレボリマー又は芳香族ポ リカーボネートの重合度に適したガイドや反応条件を別々に採用することができるの で、好ましい方式である。例えば、ガイド接触流下式第 1重合器、ガイド接触流下式 第 2重合器、ガイド接触流下式第 3重合器、ガイド接触流下式第 4重合器 · · · ·を用い 、この順に重合度を上げていく方式の場合、それぞれの重合器力もつガイド全体の 外部総表面積を Sl、 S2、 S3、 S4 ' " 'とすれば、 S1≥S2≥S3≥S4≥' " ' とす ることがでさる。
[0159] また、重合温度も、それぞれの重合器にぉ 、て同じ温度でもよ 、し、順に上げて ヽ くことも可能である。重合圧力も、それぞれの重合器で、順に下げていくことも可能で ある。
このような意味において、例えば、ガイド接触流下式第 1重合器、ガイド接触流下式 第 2重合器の 2基の重合器を用いてこの順に重合度を上げていく場合、該第 1重合 器のガイド全体の外部総表面積 SI (m2)と該第 2重合器のガイド全体の外部総表面 積 S2 (m2)とが式(35)を満足するようなガイドを用いることが好ま ヽ;
1≤S1/S2≤20 式(35)。
S1ZS2が 1よりも小さいと、分子量のバラツキが大きくなり長期間安定製造が困難に なる、所定の生産量が得にくい、などの不都合が起こり、 S1ZS2が 20よりも大きいと 、第 2重合器でのガイドを流下する溶融プレボリマーの流量が多くなり、その結果、溶 融プレポリマーの滞留時間が少なくなり必要とする分子量の芳香族ポリカーボネート が得られに《なる、などの不都合が生じてくる。このような意味でさらに好ましい範囲 は、 1. 5≤S1/S2≤15 である。
[0160] 工程 (III)においては、 1時間当り 1トン以上の芳香族ポリカーボネートが製造する のであるが、重合反応によって副生したフエノールは系外に排出されるので、 1時間 当り 1トンよりも多量の溶融プレボリマーが、重合器に供給される必要がある。したがつ て、供給される溶融プレボリマーの量は、その重合度及び製造すべき芳香族ポリ力 ーボネートの重合度によって変化する力 通常、芳香族ポリカーボネートの生産量 ト ン Zhr当り、 〜: トン Zhrの範囲である。
工程 における芳香族ジヒドロキシィ匕合物とジフエ-ルカーボネートから芳香族 ポリカーボネートを製造する反応は触媒を加えずに実施することができるが、重合速 度を高めるため、必要に応じて触媒の存在下で行われる。触媒としては、この分野で 用いられているものであれば特に制限はないが、水酸化リチウム、水酸ィ匕ナトリウム、 水酸ィ匕カリウム、水酸ィ匕カルシウムなどのアルカリ金属及びアルカリ土類金属の水酸 化物類;水素化アルミニウムリチウム、水素化ホウ素ナトリウム、水素化ホウ素テトラメ チルアンモ -ゥムなどのホウ素やアルミニウムの水素化物のアルカリ金属塩、アルカリ 土類金属塩、第四級アンモ-ゥム塩類;水素化リチウム、水素化ナトリウム、水素化力 ルシゥムなどのアルカリ金属及びアルカリ土類金属の水素化合物類;リチウムメトキシ ド、ナトリウムエトキシド、カルシウムメトキシドなどのアルカリ金属及びアルカリ土類金 属のアルコキシド類;リチウムフエノキシド、ナトリウムフエノキシド、マグネシウムフエノ キシド、 LiO— Ar— OLi、 NaO— Ar— ONa (Arはァリール基)などのアルカリ金属 及びアルカリ土類金属のァリ一口キシド類;酢酸リチウム、酢酸カルシウム、安息香酸 ナトリウムなどのアルカリ金属及びアルカリ土類金属の有機酸塩類;酸ィ匕亜鉛、酢酸 亜鉛、亜鉛フエノキシドなどの亜鉛ィ匕合物類;酸ィ匕ホウ素、ホウ酸、ホウ酸ナトリウム、 ホウ酸トリメチル、ホウ酸トリブチル、ホウ酸トリフエ-ル、 O O 又は O 4)で表されるアンモ-ゥムボレート類又はホスホ-ゥ ムボレート類 、 、 は前記の説明通りである。)などのホウ素の化合物類; 酸化ケィ素、ケィ酸ナトリウム、テトラアルキルケィ素、テトラァリールケィ素、ジフエ二 ルーェチルーエトキシケィ素などのケィ素の化合物類;酸化ゲルマニウム、四塩化ゲ ルマニウム、ゲルマニウムエトキシド、ゲルマニウムフエノキシドなどのゲルマニウムの 化合物類;酸化スズ、ジアルキルスズォキシド、ジアルキルスズカルボキシレート、酢 酸スズ、ェチルスズトリブトキシドなどのアルコキシ基又はァリーロキシ基と結合したス ズ化合物、有機スズィ匕合物などのスズの化合物類;酸ィ匕鉛、酢酸鉛、炭酸鉛、塩基 性炭酸塩、鉛及び有機鉛のアルコキシド又はァリ一口キシドなどの鉛の化合物;第四 級アンモ-ゥム塩、第四級ホスホ-ゥム塩、第四級アルソ-ゥム塩などのォ-ゥム化 合物類;酸化アンチモン、酢酸アンチモンなどのアンチモンの化合物類;酢酸マンガ ン、炭酸マンガン、ホウ酸マンガンなどのマンガンの化合物類;酸化チタン、チタンの アルコキシド又はァリ一口キシドなどのチタンの化合物類;酢酸ジルコニウム、酸化ジ ルコ-ゥム、ジルコニウムのアルコキシド又はァリーロキシド、ジルコニウムァセチルァ セトンなどのジルコニウムの化合物類などの触媒を挙げることができる。
[0162] 触媒を用いる場合、これらの触媒は 1種だけで用いてもよいし、 2種以上を組み合 わせて用いてもよい。また、これらの触媒の使用量は、原料の芳香族ジヒドロキシィ匕 合物に対して、通常 10_1〜1重量%、好ましくは 10一9〜 ιο_1重量%、さらに好まし くは 10_8〜10_2重量%の範囲で選ばれる。溶融エステル交換法の場合、使用した 重合触媒は、製品の芳香族ポリカーボネート中に残存している力 これらの重合触媒 は通常ポリマー物性に悪影響を及ぼすものが多い。したがって、触媒の使用量はで きるだけ下げることが好ましい。本発明の方法では、重合が効率的に行えるので触媒 の使用量を少なくできる。このことも高品質の芳香族ポリカーボネートを製造できる本 発明の特徴の 1つである。
[0163] 工程 (III)で用いられるガイド接触流下式重合器や配管の材質に特に制限はなぐ 通常ステンレススチール製、カーボンスチール製、ハステロィ製、ニッケル製、チタン 製、クロム製、及びその他の合金製等の金属や、耐熱性の高いポリマー材料等の中 力 選ばれる。また、これらの材質の表面は、メツキ、ライニング、不働態処理、酸洗 浄、フ ノール洗浄等必要に応じて種々の処理がなされてもよい。特に好ましいのは 、ステンレススチールやニッケル、グラスライニング等である。
[0164] 工程 (III)のプレボリマー製造時と、ガイド接触流下式重合器での重合時、反応に よって副生する大量のフ ノールは通常、ガス状で連続的に抜き出され、液状に凝 縮されて回収される。本発明においては、工程 (III)で副生するフエノールをジフエ- ルカーボネート製造工程 (I)に循環するフエノールのリサイクル工程 (IV)を行うことが 必要である。工業的製造方法においては、副生するフエノールを全量、又はできるだ けロスを少なくして回収し、これを循環 ·再使用することが重要である。本発明の工程
(III)で副生し、回収された副生フエノールには、通常ジフエ二ルカーボネートが一部 含まれるが、純度が高いのでそのままで、ジフヱ二ルカーボネート製造工程 (I)に循 環、再使用することも可能である。なお、回収された該フエノールに少量の芳香族ジヒ ドロキシ化合物や、微量のオリゴマーが混在する場合には、さらに蒸留を行ってこれ らの高沸点物質を除去した後に、ジフエ-ルカーボネート製造工程 (I)に循環、再使 用することが好ましい。
[0165] 本発明のシステムを実施することによって製造される芳香族ポリカーボネートは、下 記式で示される繰り返し単位を有する。
[0166] [化 4]
O
I
- O C O A r
[0167] (式中、 Arは前述と同じである。 )
特に好ましいのは、全繰り返し単位中、下記式で示される繰り返し単位が 85モル% 以上含まれる芳香族ポリカーボネートである。
[0168] [化 5]
Figure imgf000058_0001
[0169] また、本発明の方法を実施して製造される芳香族ポリカーボネートの末端基は、通 常ヒドロキシ基及び Z又はフエ-ルカーボネート基(又は置換フエ-ルカーボネート 基)力らなって!/、る。ヒドロキシ基とフエ-ルカーボネート基(又は置換フエ-ルカーボ ネート基)の比率に特に制限はないが、通常 95 : 5〜5: 95の範囲であり、好ましくは 9 0 : 10〜: L0 : 90の範囲であり、さらに好ましくは 80 : 20〜20 : 80の範囲である。特に 好ましいのは、末端基中のフエ-ルカーボネート基(又は置換フエ-ルカーボネート 基)の占める割合が 60モル%以上の芳香族ポリカーボネートである。
[0170] 本発明の方法を実施して製造される芳香族ポリカーボネートは、主鎖に対してエス テル結合やエーテル結合等の異種結合を介して部分的に分岐したものであってもよ い。該異種結合の量はカーボネート結合に対して、通常 0. 005〜2モル%であり、好 ましくは、 0. 01〜1モノレ0 /0、であり、さらに好ましいのは、 0. 05〜0. 5モノレ0 /0である 。このような量の異種結合は、他のポリマー物性を悪ィ匕させることなぐ溶融成形時の 流れ特性を向上させるので、精密成形に適しているし、比較的低温でも成形でき、性 能の優れた成形物を製造することができる。成形サイクルを短縮することもでき成形 時の省エネルギーにも貢献できる。
[0171] 本発明の方法を実施して製造される芳香族ポリカーボネート中には、不純物は殆ど 含まれないが、アルカリ金属及び Z又はアルカリ土類金属をそれらの金属元素として 、 0. 001〜lppm含有する芳香族ポリカーボネートを製造することができる。好ましく ίま、この含有量力 ^0. 005〜0. 5ppm、より好ましく ίま、 0. 01〜0. lppmである。この ような金属元素が lppm以下、好ましくは、 0. 5ppm以下、より好ましくは、 0. lppm である場合、製品芳香族ポリカーボネートの物性に影響を与えないので、本発明で 製造される芳香族ポリカーボネートは高品質である。
[0172] 本発明の方法を実施して製造される芳香族ポリカーボネートの中で特に好ましいの は、ハロゲンを含まな 、芳香族ジヒドロキシィ匕合物とジフエ-ルカーボネートを用いる ことにより製造されたものであって、ハロゲン含有量が通常、 lOppb以下である。本発 明の方法では、ハロゲン含有量が 5ppb以下のものも製造できるし、さらに好ましくは ノ、ロゲン含有量が lppb以下の芳香族ポリカーボネートを製造することができるので、 非常に高品質の製品が得られることになる。
[0173] 本発明の方法により、分子量のノ ツキのない芳香族ポリカーボネートを長時間安 定的に製造できるのは、特定の重合器を用いているためであることは、実施例によつ て明らかである。
[0174] 実施例
以下、実施例により本発明をさらに具体的に説明するが、本発明は以下の実施例 に限定されるものではない。
'数平均分子量 (Mn):テトラヒドロフランを搬送溶媒として用い、ゲルパーミエーショ ンクロマトグラフィー(GPC)法で測定し、標準単分散ポリスチレンを用いて得た下式 による換算分子量較正曲線を用いて数平均分子量 (Mn)を求めた。 M =0. 3591M
PC PS
(式中、 M は芳香族ポリカーボネートの分子量、 M はポリスチレンの分子量を示
PC PS
す。)
'カラー:射出成形機を用い、芳香族ポリカーボネートをシリンダー温度 290°C、金型 温度 90°Cで、縦 50mm X横 50mm X厚さ 3. 2mmの試験片を連続成形した。得ら れた試験片の色調は CIELAB法(Commission Internationale de l 'Eclairag e 1976 L*a*b* Diagram)により測定し、黄色度を b*値で示した。
•引張伸度:射出成形機を用い、芳香族ポリカーボネートをシリンダー温度 290°C、 金型温度 90°Cで射出成形した。得られた厚み 3. 2mmの試験片の引張伸度(%)は 、 ASTM D638に準じて測定した。
•異種結合の量は、 W097Z32916号公報記載の方法で測定され、アルカリ金属 Z アルカリ土類金属は ICP法により、ハロゲンはイオンクロマト法でそれぞれ測定された 実施例 1
(1)ジフ ニルカーボネートを連続的に製造する工程 (I)
<第 1連続多段蒸留塔 101 >
図 1に示されるような L = 3300cm, D = 500cm, L /Ό = 6. 6、 η = 80、 D Ζ dl = 17、 D /ά = 9 である連続多段蒸留塔を用いた。なお、この実施例では、ィ
1 1 12
ンターナルとして、孔 1個あたりの断面積 =約 1. 5cm2,孔数 =約 250個 Zm2を有 する多孔板トレイを用いた。
<第 2連続多段蒸留塔 201 >
図 2に示されるような L = 3100cm, D = 500cm, L /Ό = 6. 2、 η = 30、 D /
2 2 2 2 2 2 d = 3. 85、D Zd = 11. 1 である連続多段蒸留塔を用いた。なお、この実施例
21 2 22
では、インターナルとして、上部にメラパック 2基 (合計理論段数 11段)を設置し、下 部に孔 1個あたりの断面積 =約 1. 3cm2,孔数 =約 250個 Zm2を有する多孔板トレ ィを用いた。
<反応蒸留 >
図 3に示されるような第 1連続多段蒸留塔 101と第 2連続多段蒸留塔 201が接続さ れた装置を用いて反応蒸留を行 、、ジフエニルカーボネートを製造した。
[0176] フエノール Zジメチルカーボネート = 1. 9 (重量比)からなる原料 1を第 1連続多段 蒸留塔 101の上部導入口 11から液状で 50トン Zhrの流量で連続的に導入した。一 方、ジメチルカーボネート Zフエノール = 3. 6 (重量比)からなる原料 2を第 1連続多 段蒸留塔 101の下部導入口 12からガス状で 50トン Zhrの流量で連続的に導入した 。第 1連続多段蒸留塔 101に導入された原料のモル比は、ジメチルカーボネート Zフ ェノール = 1. 35であった。この原料にはハロゲンは実質的に含まれていなかった (ィ オンクロマトグラフィーでの検出限界外で lppb以下)。触媒は Pb (OPh) として、反
2 応液中に約 lOOppmとなるように第 1連続多段蒸留塔 101の上部導入口 11から導 入された。第 1連続多段蒸留塔 101では塔底部の温度が 225°Cで、塔頂部の圧力 力 S7 X 105Pa、還流比が 0の条件下で連続的に反応蒸留が行われた。メチルアルコ ール、ジメチルカーボネート、フエノール等を含む第 1塔低沸点反応混合物を第 1塔 の塔頂部 13よりガス状で連続的に抜き出し、熱交換器 14を経て、抜出し口 16から 3 4トン Zhrの流量で抜出した。一方、メチルフエ-ルカーボネート、ジメチルカーボネ ート、フエノール、ジフヱ-ルカーボネート、触媒等を含む第 1塔高沸点反応混合物 を第 1塔底部 17より液状で連続的に抜き出した。
[0177] 24時間後には安定した定常状態に達したので、第 1塔高沸点反応混合物をそのま ま第 2連続多段蒸留塔 201のメラパックと多孔板トレイとの間に設置されている原料 導入口 21から、 66トン Zhrの流量で連続的に供給した。第 2連続多段蒸留塔 201に 供給された液には、メチルフエ-ルカーボネートが 18. 2質量0 /0、ジフエ-ルカーボ ネートが 0. 8質量%含まれていた。第 2連続多段蒸留塔 201では塔底部の温度が 2 10°Cで、塔頂部の圧力が 3 X 104Pa、還流比が 0. 3の条件下で連続的に反応蒸留 が行われた。 24時間後には安定的な定常運転が達成できた。第 2塔塔頂部 23から ジメチルカーボネート 35質量%、フ ノール 56質量%を含む第 2塔低沸点反応混合 物が連続的に抜き出され、抜出し口 26での流量は 55. 6トン Zhrで、第 2塔塔底部 2 7からはメチルフエ-ルカーボネート 38. 4質量0 /0、ジフエ-ルカーボネート 55. 6質 量%を含む第 2塔高沸点反応混合物が連続的に抜出された。第 2塔低沸点反応混 合物は、導入口 11から第 1連続多段蒸留塔 101に連続的に供給された。この際、新 規に供給されるジメチルカーボネートとフエノールの量は、第 2塔低沸点反応混合物 の組成、量を勘案した上で、上記原料 1及び原料 2の組成、量を維持するように調整 した。ジフエ-ルカーボネートの生産量は 1時間あたり 5. 74トンであることがわかった 。反応したフエノールに対して、ジフエ-ルカーボネートの選択率は 98%であった。
[0178] この条件で長期間の連続運転を行った。 500時間後、 2000時間後、 4000時間後 、 5000時間後、 6000時間後のジフエ-ルカーボネートの生産量 (原料中に含まれ るジフエ-ルカーボネートを除く)は、 1時間あたり 5. 74トン、 5. 75トン、 5. 74トン、 5 . 74トン、 5. 75トンであり、選択率は 98%、 98%、 98%、 98%、 98%、であり、非常 に安定していた。また、製造された芳香族カーボネートには、ハロゲンは実質的に含 まれて 、なかった(lppb以下)。
[0179] (2)高純度ジフ 二ルカーボネートを取得する工程 (Π)
<高沸点物質分離塔 A >
図 4に示されるような L = 1700cm, D = 340cmで、インターナルとして、 n = 30
A A A
のメラパックを設置した連続多段蒸留塔を該分離塔 Aとして用いた。
<ジフエ-ルカーボネート精製塔 B >
図 4に示されるような L = 2200cm, D = 280cm、インターナルとして、 n = 12、
B B B1 n = 18、 n = 5である 3基のメラパックを設置した連続多段蒸留塔を該精製塔 Bと
B2 B3
して用いた。
図 4に示される高沸点物質分離塔 Aとジフエ二ルカーボネート精製塔 Bからなる装 置を用いて、上記工程 (I)で得られた第 2反応蒸留塔の高沸点反応混合物を導入口 A1から該分離塔 Aに 13. 1トン Zhrで連続的に導入した。該分離塔 Aにおいて塔底 部の温度 (T )を 206°C、塔頂部の圧力(P )を 3800Paとし、還流比 0. 6で連続的
A A
に蒸留を行い、導管 16を通して塔頂成分 (A )を 12. 5トン Zhrで連続的に抜き出し
T
、導管 11を通して塔底成分 (A )を 0. 6トン Zhrで連続的に抜き出した。該塔頂成分
B
(A )は、そのまま導入口 B1から該精製塔 Bに連続的に導入された。該精製塔 Bに
T
おいて塔底部の温度 (T )を 213°C、塔頂部の圧力(P )を 5000Paとし、還流比 1.
B B
5で連続的に蒸留を行い、導管 26を通して塔頂成分 (B )を 5. 3トン Zhrで連続的
T
に抜き出し、導管 31を通して塔底成分 (B )を 0. 03トン Zhrで連続的に抜き出し、 導管 33を通してサイドカット成分 (B )を 7. 17トン Zhrで連続的に抜き出した。
S
[0180] 系が完全に安定した 24時間後の各成分の組成は次のとおりであった。
A :メチルフヱ-ルカーボネートより低沸点物質 6. 8質量% (ジメチルカーボネート:
T
0. 1質量0 /0、ァ-ソール: 0. 1質量0 /0、フエノール: 6. 6質量0 /0、メチルフエ-ルカ一 ボネート 33. 8質量0 /0、ジフエ-ルカーボネート 59. 4質量0 /0
A :ジフエ-ルカーボネート 41. 0質量0 /0、サリチル酸フエ-ル、キサントン、メトキシ
B
安息香酸フエ-ル、 1 フエノキシカルボ-ル— 2—フエノキシカルボキシ—フエ-レ ン等のジフエ二ルカーボネートより高沸点の副生物及び触媒成分を含む高沸点物質
59. 0質量0 /0
B :ジメチルカーボネート 0. 25質量0 /0、ァ-ソール 0. 25質量0 /0、フエノール 15. 6
T
質量0 /0、メチルフエ-ルカーボネート 79. 6質量0 /0、ジフエ-ルカーボネート 4. 3質 B :ジフエ-ルカーボネート 95. 0質量%、高沸点物質 5. 0質量0 /0
B
サイドカット成分中のサリチル酸フエニル、キサントン、メトキシ安息香酸フエ二ルの含 有量は 、ずれも lppm以下であり、 1 フエノキシカルボ-ル 2—フエノキシカルボ キシ—フエ-レンは 4ppmであった。また、ハロゲンの含有量は lppb以下であった。 このことから、サイドカットから得られたジフエ-ルカーボネートの純度は 99. 999% 以上であることがわかった。また、この高純度ジフエ-ルカーボネートの生産量は、 1 時間あたり 7. 17トンであった。
この条件で長期間の連続運転を行った。 500時間後、 2000時間後、 4000時間後 、 5000時間後、 6000時間後のジフ -ルカーボネートの生産量及び純度は実質的 に全く変わっていなかった。
このようにして取得された高純度ジフエ-ルカーボネートは、ー且貯蔵タンクに溶融 状態で貯蔵された。
[0181] (3)高品質ポリカーボネートを製造する工程 (III)
図 6に示すようなガイド接触流下式重合器を用いて芳香族ポリカーボネートの製造 をおこなった。この重合器の材質は、すべてステンレススチールである。この重合器 は円筒形ケーシングとテーパー形の底部ケーシングを有するものであって、 L= l, 0 00cm、 h= 900cm, D = 500cm, d=40cm、 C= 155度 、 S = 250m2 である。 供給口 1から供給された溶融ポリマーは多孔板 2により各ガイド 4に均一に分配される 。重合器下部には不活性ガス供給口 9が備えられており、上部には真空ベント口 6が 備えられている。重合器の外側はジャケットになっており、熱媒で加温されている。 ビスフ ノール Aと工程(1)、 (II)で製造された該高純度ジフエ二ルカーボネート ( 対ビスフエノール Aモル比 1. 05)と力も製造され、 260°Cに保たれた芳香族ポリカー ボネートの溶融プレポリマー(数平均分子量 Mnは 4, 000)力 供給ポンプによって 供給口 1より供給ゾーン 3に連続的に供給された。重合器内の多孔板 2を通して重合 反応ゾーン 5に連続的に供給された、溶融プレボリマーは、ガイド 4に沿って流下しな がら重合反応が進められた。重合反応ゾーン 5は真空ベント口 6を通して 80Paに保 持されて!、る。ガイド 4の下部カゝら重合器の底部 11に入ってきた生成芳香族ポリカー ボネートは、該底部での滞留量がほぼ一定となるように排出ポンプ 8によって排出口 7から 5. 5トン Zhrの流量で連続的に抜き出された。
[0182] 運転を開始してから 50時間後に抜き出し口 12から抜き出された芳香族ポリカーボ ネートの数平均分子量 Mnは 10, 500であり、良好なカラー(b*値 3. 2)であった。ま た、引張伸度は 98%であった。運転開始から、 60時間後、 100時間後、 500時間後 、 1, 000時間後、 2, 000時間後、 3, 000時間後、 4, 000時間後、 5, 000時間後 に抜き出し口 12から抜き出された芳香族ポリカーボネートの Mnは、それぞれ、 10, 500、 10, 550、 10, 500、 10, 550、 10, 500、 10, 500、 10, 550、 10, 500であ り、安定であった。
このようにして製造された芳香族ポリカーボネートは、アルカリ金属及び Z又はアル カリ土類金属化合物の含有量はこれらの金属元素に換算して、 0. 04〜0. 05ppm であり、塩素の含有量は lppb以下 (検出限界以下)であった。また、異種結合の含 有量は 0. 12〜0. 15モル0 /0であった。
[0183] (4)フエノールのリサイクル工程(IV)
工程 (III)で副生し、液状で回収された約 10%のジフエ-ルカーボネートと微量の ビスフエノール Aを含むフエノール溶液力 フエノール精製塔(長さ 1500cm、内径 2 70cm, 9段)に連続的に供給された。塔底部の温度 185°C、塔頂部の圧力 2000Pa 、還流比 0. 9で連続的に蒸留が行われた。塔頂部から回収されたフエノールは、一 且、タンクに貯蔵された後、工程 (I)にリサイクルされた。サイドカット部から回収され たジフ -ルカーボネートは、工程 (Π)の高沸点物質分離塔に供給され、高純度ジ フエニルカーボネートとして回収された。
[0184] 実施例 2
(1)ジフ ニルカーボネートを連続的に製造する工程 (I)
実施例 1と同じ装置を用いて、下記の条件で反応蒸留を行った。
フエノール Zジメチルカーボネート = 1. 1 (重量比)からなる原料 1を第 1連続多段 蒸留塔 101の上部導入口 11から液状で 40トン Zhrの流量で連続的に導入した。一 方、ジメチルカーボネート Zフエノール = 3. 9 (重量比)からなる原料 2を第 1連続多 段蒸留塔 101の下部導入口 12からガス状で 43トン Zhrの流量で連続的に導入した 。第 1連続多段蒸留塔 101に導入された原料のモル比は、ジメチルカーボネート Zフ ェノール = 1. 87であった。この原料にはハロゲンは実質的に含まれていなかった (ィ オンクロマトグラフィーでの検出限界外で lppb以下)。触媒は Pb (OPh) として、反
2 応液中に約 250ppmとなるように第 1連続多段蒸留塔 101の上部導入口 11から導 入された。第 1連続多段蒸留塔 101では塔底部の温度が 235°Cで、塔頂部の圧力 力 S9 X 105Pa、還流比が 0の条件下で連続的に反応蒸留が行われた。メチルアルコ ール、ジメチルカーボネート、フエノール等を含む第 1塔低沸点反応混合物を第 1塔 の塔頂部 13よりガス状で連続的に抜き出し、熱交換器 14を経て、抜出し口 16から 4 3トン Zhrの流量で抜出した。一方、メチルフエ-ルカーボネート、ジメチルカーボネ ート、フエノール、ジフヱ-ルカーボネート、触媒等を含む第 1塔高沸点反応混合物 を第 1塔底部 17より液状で連続的に抜き出した。
[0185] 24時間後には安定した定常状態に達したので、第 1塔高沸点反応混合物をそのま ま第 2連続多段蒸留塔 201のメラパックと多孔板トレイとの間に設置されている原料 導入口 21から、 40トン Zhrの流量で連続的に供給した。第 2連続多段蒸留塔 201に 供給された液には、メチルフエ-ルカーボネートが 20. 7質量0 /0、ジフエ-ルカーボ ネートが 1. 0質量%含まれていた。第 2連続多段蒸留塔 201では塔底部の温度が 2 05°Cで、塔頂部の圧力が 2 X 104Pa、還流比が 0. 5の条件下で連続的に反応蒸留 が行われた。 24時間後には安定的な定常運転が達成できた。第 2塔塔頂部 23から 第 2塔低沸点反応混合物が連続的に抜き出され、第 2塔塔底部 27からはメチルフ -ルカーボネート 36. 2質量%、ジフエ-ルカーボネート 60. 8質量%を含む第 2塔 高沸点反応混合物が連続的に抜出された。第 2塔低沸点反応混合物は、導入口 11 から第 1連続多段蒸留塔 101に連続的に供給された。この際、新規に供給されるジメ チルカーボネートとフエノールの量は、第 2塔低沸点反応混合物の組成、量を勘案し た上で、上記原料 1及び原料 2の組成、量を維持するように調整した。ジフエ二ルカ ーボネートの生産量は 1時間あたり 4. 03トンであることがわかった。反応したフエノー ルに対して、ジフエ-ルカーボネートの選択率は 97%であった。
この条件で長期間の連続運転を行った。 500時間後、 1000時間後、 2000時間後 のジフエ-ルカーボネー卜の 1時間あたりの生産量は 4. 03卜ン、 4. 03卜ン、 4. 04卜ン であり、反応したフエノールに対して選択率は 97%、 97%、 97%であり、非常に安定 していた。また、製造された芳香族カーボネートには、ハロゲンは実質的に含まれて いなかった(lppb以下)。
[0186] (2)高純度ジフ 二ルカーボネートを取得する工程 (II)
実施例 1と同様な方法で行われた。
[0187] (3)高品質ポリカーボネートを製造する工程 (III)
実施例 1と同じ重合器に、ビスフエノール Aと工程 (1)、(Π)で製造された高純度ジフ ェ-ルカーボネート(対ビスフエノール Aモル比 1. 05)とから製造された芳香族ポリ力 ーボネートの溶融プレポリマー(数平均分子量 Mnは 3, 500)力 供給ポンプによつ て供給口 1より供給ゾーン 3に連続的に供給された。重合反応ゾーンの圧力が 100P aに保持されている以外は実施例 1と同様な方法により重合させて芳香族ポリカーボ ネートを製造した。運転開始から、 50時間後、 100時間後、 500時間後、 1, 000時 間後、 2, 000時間後、 3, 000時間後、 4, 000時間後、 5, 000時間後に排出口 12 力も排出された芳香族ポリカーボネートの Mnは、それぞれ、 7, 600、 7, 600、 7, 6 50 7, 600、 7, 650、 7, 650、 7, 600、 7, 600であり、安定であった。
このようにして製造された芳香族ポリカーボネートは、アルカリ金属及び z又はアル カリ土類金属化合物の含有量はこれらの金属元素に換算して、 0. 03から 0. 04ppm であり、塩素の含有量は lppb以下 (検出限界以下)であった。また、異種結合の含 有量は 0. 08〜0. 1モル%であった。
[0188] (4)フエノールのリサイクル工程(IV)
実施例 1と同様な方法で行われた。
[0189] 実施例 3
第 2連続多段蒸留塔 201における多孔板トレイの孔 1個あたりの断面積 =約 1. 8c m2とする以外は実施例 1と同じ装置を用いて、下記の条件で反応蒸留を行った。 フエノール Zジメチルカーボネート = 1. 7 (重量比)からなる原料 1を第 1連続多段 蒸留塔 101の上部導入口 11から液状で 86トン Zhrの流量で連続的に導入した。一 方、ジメチルカーボネート Zフエノール = 3. 5 (重量比)からなる原料 2を第 1連続多 段蒸留塔 101の下部導入口 12からガス状で 90トン Zhrの流量で連続的に導入した 。第 1連続多段蒸留塔 101に導入された原料のモル比は、ジメチルカーボネート Zフ ェノール = 1. 44であった。この原料にはハロゲンは実質的に含まれていなかった (ィ オンクロマトグラフィーでの検出限界外で lppb以下)。触媒は Pb (OPh) として、反
2 応液中に約 150ppmとなるように第 1連続多段蒸留塔 101の上部導入口 11から導 入された。第 1連続多段蒸留塔 101では塔底部の温度が 220°Cで、塔頂部の圧力 力 S8 X 105Pa、還流比が 0の条件下で連続的に反応蒸留が行われた。メチルアルコ ール、ジメチルカーボネート、フエノール等を含む第 1塔低沸点反応混合物を第 1塔 の塔頂部 13よりガス状で連続的に抜き出し、熱交換器 14を経て、抜出し口 16から 8 2トン Zhrの流量で抜出した。一方、メチルフエ-ルカーボネート、ジメチルカーボネ ート、フエノール、ジフヱ-ルカーボネート、触媒等を含む第 1塔高沸点反応混合物 を第 1塔底部 17より液状で連続的に抜き出した。
[0190] 24時間後には安定した定常状態に達したので、第 1塔高沸点反応混合物をそのま ま第 2連続多段蒸留塔 201のメラパックと多孔板トレイとの間に設置されている原料 導入口 21から、 94トン Zhrの流量で連続的に供給した。第 2連続多段蒸留塔 201に 供給された液には、メチルフエ-ルカーボネートが 16. 0質量0 /0、ジフエ-ルカーボ ネートが 0. 5質量%含まれていた。第 2連続多段蒸留塔 201では塔底部の温度が 2 15°Cで、塔頂部の圧力が 2. 5 X 104Pa、還流比が 0. 4の条件下で連続的に反応蒸 留が行われた。 24時間後には安定的な定常運転が達成できた。第 2塔塔頂部 23か ら第 2塔低沸点反応混合物が連続的に抜き出され、第 2塔塔底部 27からはメチルフ ェ-ルカーボネート 35. 5質量0 /0、ジフエ-ルカーボネート 59. 5質量%を含む第 2塔 高沸点反応混合物が連続的に抜出された。第 2塔低沸点反応混合物は、導入口 11 から第 1連続多段蒸留塔 101に連続的に供給された。この際、新規に供給されるジメ チルカーボネートとフエノールの量は、第 2塔低沸点反応混合物の組成、量を勘案し た上で、上記原料 1及び原料 2の組成、量を維持するように調整した。ジフエ二ルカ ーボネートの生産量は 1時間あたり 7. 28トンであることがわかった。反応したフエノー ルに対して、ジフエ-ルカーボネートの選択率は 98%であった。
この条件で長期間の連続運転を行った。 500時間後、 1000時間後、 2000時間後 のジフエ-ルカーボネー卜の 1時間あたりの生産量は 7. 28卜ン、 7. 29卜ン、 7. 29卜ン であり、反応したフエノールに対して選択率は 98%、 98%、 98%であり、非常に安定 していた。また、製造された芳香族カーボネートには、ハロゲンは実質的に含まれて いなかった(lppb以下)。
[0191] (2)高純度ジフ 二ルカーボネートを取得する工程 (Π)
実施例 1と同様な方法で行われた。
[0192] (3)高品質ポリカーボネートを製造する工程 (III)
図 6に示すようなガイド接触流下式重合器 2基を直列に配置した重合装置を用いて 芳香族ポリカーボネートの製造をおこなった。これらの重合器の材質は、すべてステ ンレススチールである。ガイド接触流下式第 1重合器は円筒形側面ケーシングとテ一 パー形の底部ケーシングを有するものであって、 L = 950cm、 h=850cm、 D=400 cm、 d= 20cm、 C= 150度 、 S = 750m2 である。第 2重合器は実施例 1で用いた ものと同じちのである。
ビスフエノール Aと工程 (I)、 (II)で製造された高純度ジフヱ-ルカーボネート (対ビ スフェノール Aモル比 1. 06)と力 製造された芳香族ポリカーボネートの溶融プレボ リマー (数平均分子量 Mnは 2, 500)が、供給ポンプによって第 1重合器の供給口 1 より供給ゾーン 3に連続的に供給された。第 1重合器内の多孔板 2を通して重合反応 ゾーンに連続的に供給された、該溶融プレボリマーは、ガイド 4に沿って流下しながら 重合反応が進められた。第 1重合器の重合反応ゾーンは真空ベント口 6を通して 800 Paの圧力に保持されて 、る。ガイド 4の下部から重合器の底部 11に入ってきた重合 度の高められた芳香族ポリカーボネートの溶融プレボリマー (数平均分子量 Mnは 5, 500)は、該底部での滞留量がほぼ一定となるように排出ポンプ 8によって排出口 7か ら一定の流量で連続的に抜き出された。この溶融プレボリマーが、供給ポンプによつ て第 2重合器の供給口 1より供給ゾーン 3に連続的に供給された。第 2重合器内の多 孔板 2を通して重合反応ゾーンに連続的に供給された、該溶融プレボリマーは、ガイ ド 4に沿って流下しながら重合反応が進められた。第 2重合器の重合反応ゾーンは真 空ベント口 6を通して 50Paの圧力に保持されて 、る。ガイド 4の下部力も第 2重合器 の底部 11に入ってきた生成芳香族ポリカーボネートは、該底部での滞留量がほぼ一 定となるように排出ポンプ 8によって排出口 7から 6トン Zhrの流量で連続的に抜き出 された。
運転を開始してから 50時間後に第 2重合器の抜き出し口 12から抜き出された芳香 族ポリカーボネートの数平均分子量 Mnは 11, 500であり、良好なカラー(b*値 3. 2) であった。また、引張伸度は 99%であった。運転開始から、 60時間後、 100時間後、 500時間後、 1, 000時間後、 2, 000時間後、 3, 000時間後、 4, 000時間後、 5, 0 00時間後に抜き出し口 12から抜き出された芳香族ポリカーボネートの Mnは、それ ぞれ、 11, 500、 11, 550、 11, 500、 11, 550、 11, 500、 11, 500、 11, 550、 11 , 500であり、安定であった。
このようにして製造された芳香族ポリカーボネートは、アルカリ金属及び Z又はアル カリ土類金属化合物の含有量はこれらの金属元素に換算して、 0. 03から 0. 05ppm であり、塩素の含有量は lppb以下 (検出限界以下)であった。また、異種結合の含 有量は 0. 11〜0. 16モル%であった。
[0193] (4)フエノールのリサイクル工程(IV)
実施例 1と同様な方法で行われた。
産業上の利用可能性
[0194] ジアルキルカーボネートと芳香族ジヒドロキシィ匕合物から芳香族ポリカーボネートを製 造するにあたり、特定の構造を有する 2基の反応蒸留塔を用いてジフエ二ルカーボネ ートを製造する工程 (I)、これを特定の構造を有する高沸点物質分離塔 Aとジフエ二 ルカーボネート精製塔 Bを用いて高純度ジフエニルカーボネートを取得するジフエ- ルカーボネート精製工程 (11)、次いで、芳香族ジヒドロキシ化合物と該高純度ジフ -ルカーボネートとから得られる溶融プレボリマーを、特定の構造を有するガイド接触 流下式重合器を用いて芳香族ポリカーボネートを製造する工程 (III)、副生するフエ ノールを工程 (I)にリサイクルする工程 (IV)を含む本発明の方法を実施することによ つて、着色がなく機械的物性に優れた高品質 ·高性能の芳香族ポリカーボネートが、 高 、重合速度で、 1時間当り 1トン以上の工業的規模で製造できることが見出された 。し力も分子量のバラツキが少なぐ長期間、たとえば 2000時間以上、好ましくは 30 00時間以上、さらに好ましくは 5000時間以上、安定的に高品質芳香族ポリカーボネ ートが製造できることも見出された。したがって、本発明は高品質芳香族ポリカーボネ ートの工業的製造方法として極めて優れた効果のある方法である。
図面の簡単な説明
[図 1]本発明を実施するのに好ましい第 1連続反応蒸留塔の概略図である。胴部内 部にはインターナルが設置されている。
[図 2]本発明を実施するのに好ましい第 2連続反応蒸留塔の概略図である。胴部内 部には上部に規則充填物、下部に多孔板トレイカ なるインターナルが設置されて いる。
[図 3]本発明を実施するのに好ましい、第 1連続反応蒸留塔と第 2連続反応蒸留塔と を連結した装置の概略図である。
[図 4]本発明を実施するのに好ましい、高沸点物質分離塔 Aとジフエ二ルカーボネー ト精製塔 Bとを連結した装置の概略図である。
[図 5]本発明を実施するのに好ましいガイド接触流下式重合器の概略図である。
[図 6]本発明を実施するのに好ましい円筒形の側面ケーシングとテーパー形の底部 ケーシングを有するガイド接触流下式重合器の概略図である なお、各図にて使用 した符号の説明は、以下のとおりである、(図 1、図 2及び図 3) 1 :ガス抜出し口、 2 :液抜出し口、 3 :導入口、 4 :導入口、 5 :鏡板部、 L 、L :胴部長さ(cm)、D
1 2 1
、D:胴部内径 (cm)、d 、d :ガス抜出し口内径 (cm)、d 、d :液抜出し口 内径 (cm)、 101 :第 1連続多段蒸留塔、 201 :第 2連続多段蒸留塔、 11、 12、 21 :導 入口、 13、 23 :塔頂ガス抜出し口、 14、 24、 18, 28 :熱交 、 17、 27 :塔底液抜 出し口、 16、 26 :塔頂成分抜出し口、 31 :第 2連続多段蒸留塔塔底成分抜出し口 、(図 4)A1、B1 :導入口、 B2 :抜出し口、 11 :高沸点物質分離塔 Aの塔底成分 抜出し口、 13、 23 :塔頂ガス抜出し口、 14、 24、 18、 28、 38 :熱交 、 15、 25 :還 流液導入口、 16 :高沸点物質分離塔 Aの塔頂成分抜出し口、 17、 27 :塔底液抜出 し口、 26 :ジフエ-ルカーボネート精製塔 Bの塔頂成分抜出し口、 31 :ジフエ-ル カーボネート精製塔 Bの塔底成分抜出し口、 33 :ジフエ-ルカーボネート精製塔 B のサイドカット成分抜出し口、(図 5及び図 6) 1 :溶融プレボリマー受給口、 2 :多孔 板、 3 :溶融プレボリマー供給ゾーン、 4 :ガイド、 5 :重合反応ゾーン、 6 :真空べ ントロ、 7 :芳香族ポリカーボネート排出口、 8 :芳香族ポリカーボネート排出ポンプ 、 9 :所望により使用される不活性ガス供給口、 10 :重合反応ゾーンの側面ケーシ ング、 11 :重合反応ゾーンの底部ケーシング、 12 :芳香族ポリカーボネートの抜き 出し口

Claims

請求の範囲 ジアルキルカーボネートと芳香族ジヒドロキシィ匕合物から芳香族ポリカーボネートを 連続的に製造する高品質芳香族ポリカーボネートの工業的な製造方法であって、(I)ジアルキルカーボネートとフヱノールとを原料とし、この原料を均一系触媒が存在 する第 1連続多段蒸留塔内に連続的に供給し、該第 1塔内で反応と蒸留を同時に行 Vヽ、生成するアルコール類を含む第 1塔低沸点反応混合物を該第 1塔上部よりガス 状で連続的に抜出し、生成するアルキルフエニルカーボネート類を含む第 1塔高沸 点反応混合物を該第 1塔下部より液状で連続的に抜出し、該第 1塔高沸点反応混合 物を触媒が存在する第 2連続多段蒸留塔内に連続的に供給し、該第 2塔内で反応と 蒸留を同時に行!、、生成するジアルキルカーボネート類を含む第 2塔低沸点反応混 合物を該第 2塔上部よりガス状で連続的に抜出し、生成するジフエ二ルカーボネート 類を含む第 2塔高沸点反応混合物を該第 2塔下部より液状で連続的に抜出し、一方 、ジアルキルカーボネート類を含む第 2塔低沸点反応混合物を第 1連続多段蒸留塔 内に連続的に供給することによって、ジフヱ-ルカーボネートを連続的に製造するェ 程 (I)と、 (II)該ジフ ニルカーボネートを含む第 2塔高沸点反応混合物を高沸点物質分離塔 Aに連続的に導入し、ジフエ-ルカーボネートを含む塔頂成分 (A )と触媒を含む塔 T 底成分 (A )に連続的に蒸留分離し、次いで該塔頂成分 (A )を、サイドカット抜き出 B T し口を有するジフエ-ルカーボネート精製塔 Bに連続的に導入し、塔頂成分 (B )、 T サイドカット成分 (B )、塔底成分 (B )の 3つの成分に連続的に蒸留分離することによ S B つて、サイドカット成分として高純度ジフヱ-ルカーボネートを取得する精製工程 (II) と、 (III)該芳香族ジヒドロキシィ匕合物と該高純度ジフエ-ルカーボネートとを反応させて 芳香族ポリカーボネートの溶融プレボリマーを製造し、該溶融プレボリマーをガイドの 表面に沿って流下せしめ、その流下中に該溶融プレボリマーの重合を行わせるガイ ド接触流下式重合器を用いて芳香族ポリカーボネートを製造する工程 (III)と、 (IV)工程 (III)で副生するフエノールをジフエ-ルカーボネート製造工程 (I)に循環 するフエノールのリサイクル工程(IV)と、 を含み、 (a)該第 1連続多段蒸留塔が、長さ L^cm) 内径 (cm)の円筒形の胴部を有し、 内部に段数 nをもつインターナルを有する構造をしており、塔頂部又はそれに近い 塔の上部に内径 d (cm)のガス抜出し口、塔底部又はそれに近い塔の下部に内径 11 d (cm) 12 の液抜出し口、該ガス抜出し口より下部であって塔の上部及び Z又は中間 部に 1つ以上の第 1の導入口、該液抜出し口より上部であって塔の中間部及び Z又 は下部に 1つ以上の第 2の導入口を有するものであって、 L、 D、 L ZD、 n、 D Z d 、D Zd 力 それぞれ式(1)〜(6)を満足するものであり、 1500 < L ≤ 8000 1 式 (1) 100 < D ≤ 2000 式 (2) 1 2 < L /Ό ≤ 40 式 (3) 1 1 20 < n ≤ 120 式 (4) 1 5 < D /ά ≤ 30 式 (5) 1 11 3 < D /ά ≤ 20 式 (6) 1 12 (b)該第 2連続多段蒸留塔が、長さ L (cm)、内径 D (cm)の円筒形の胴部を有し、 2 2 内部に段数 nをもつインターナルを有する構造をしており、塔頂部又はそれに近い 2 塔の上部に内径 d (cm)のガス抜出し口、塔底部又はそれに近い塔の下部に内径 21 d (cm) 22 の液抜出し口、該ガス抜出し口より下部であって塔の上部及び Z又は中間 部に 1つ以上の第 3の導入口、該液抜出し口より上部であって塔の中間部及び Z又 は下部に 1つ以上の第 4の導入口を有するものであって、 L、 D、 L ZD、 n、 D Z 2 2 2 2 2 2 d 、D Zd 力 それぞれ式(7)〜(12)を満足するものであり、 1500 ≤ L ≤ 8000 式(7) 2 100 ≤ D ≤ 2000 式(8) 2 2 ≤ L /Ό ≤ 40 式(9) 2 2 10 ≤ n ≤ 80 式(10) 2 2 ≤ Ό /d ≤ 15 式(11) 2 21 5 ≤ D /d ≤ 30 式(12) (c)該高沸点物質分離塔 Aが、下記式 (13)〜(15)を満足する、長さ L (cm) ,内径 D (cm)で、内部に段数 nのインターナルを有する連続多段蒸留塔であり、 A A 800 ≤ L ≤ 3000 式(13) A 100 ≤ D ≤ 1000 式(14) A 20 ≤ n ≤ 100 式(15) A 該ジフエ-ルカーボネート精製塔 B力 長さ L (cm)、内径 D (cm)で、内部にイン B B ターナルを有するものであって、塔の中段に導入口 Bl、該導入口 B1と塔底との間に サイドカット抜き出し口 B2を有し、導入口 B1から上部のインターナルの段数が n B1、 導入口 B1とサイドカット抜き出し口 B2との間のインターナルの段数が n 、サイドカツ B2 ト抜き出し口 B2から下部のインターナルの段数が n で、段数の合計 (n +n +n ) B3 Bl B2 B3 が nである連続多段蒸留塔であり、下記式(16)〜(21)を満足し、 1000 < L < 5000 式(16) B 100 < D < 1000 式 (17) B 5 < n < 20 式(18) Bl 12 < n < 40 式(19) B2 3 < n < 15 式(20) B3 20 < n < 70 式(21) (d)該ガイド接触流下式重合器が、
(1)溶融プレボリマー受給口、多孔板、該溶融プレボリマーが多孔板を通して重合反 応ゾーンのガイドに供給するための溶融プレボリマー供給ゾーン、該多孔板と側面ケ 一シングとテーパー形の底部ケーシングとに囲まれた空間に該多孔板から下方に延 びる複数のガイドが設けられた重合反応ゾーン、該重合反応ゾーンに設けられた真 空ベント口、テーパー形の底部ケーシングの最下部に設けられた芳香族ポリカーボ ネート排出口、及び該排出口に接続された芳香族ポリカーボネート排出ポンプを有 するものであって、
(2)該重合反応ゾーンの側面ケーシングの水平面における内部断面積 A (m2)が、 式(22)を満足するものであって、
0. 7 ≤ A ≤ 300 式(22)
(3)該 A (m2)と、芳香族ポリカーボネート排出口の水平面における内部断面積 B (m2 )との比が、式(23)を満足するものであって、
20 ≤ A/B ≤ 1000 式(23)
(4)該重合反応ゾーンの底部を構成するテーパー形の底部ケーシンダカ 上部の側 面ケーシングに対してその内部において、角度 C度で接続されており、該角度 C度が 式(24)を満足するものであって、
120 ≤ C ≤ 165 式(24)
(5)該ガイドの長さ h (cm)力 式(25)を満足するものであって、
150 ≤ h ≤ 5000 式(25)
(6)該ガイド全体の外部総表面積 S (m2)が式 (26)を満足するものである、
2 ≤ S ≤ 50000 式(26)
ことを特徴とする高品質芳香族ポリカーボネートの工業的な製造方法。
[2] 製造される芳香族ポリカーボネートが 1時間あたり 1トン以上であることを特徴とする 請求項 1に記載の方法。
[3] 該 d と該 d が式(27)を満足し、且つ該 d と該 d が式(28)を満足する、
11 12 21 22
1 ≤ d /d ≤ 5 式(27)
12 11
1 ≤ d /d ≤ 6 式(28)
21 22
ことを特徴とする請求項 1又は 2に記載の方法。
[4] 該第 1連続多段蒸留塔の L、 D、 L ZD、 n、 D Zd 、 D Zd
1 1 1 1 1 1 11 1 12 がそれぞれ、 2
000≤L ≤6000, 150≤D ≤1000, 3≤L /Ό ≤30, 30≤n≤100, 8 ≤D /d ≤25、 5≤D /d ≤ 18であり、且つ、該第 2連続多段蒸留塔の L、D
1 11 1 12 2 2
、 L ZD、 n、 D
2 2 2 2 Zd 、 D ≤6000、 150≤D ≤1
21 2 Zd 力 sそれぞれ、 2000≤L
22 2 2
000、 3≤L ZD ≤30、 15≤n ≤60、 2. 5≤D /d ≤12、 7≤D /d
2 2 2 2 21 2 22
≤ 25であることを特徴とする請求項 1ないし 3のうち何れか一項に記載の方法。
[5] 該第 1連続多段蒸留塔の L、 D、 L ZD、 n、 D Zd 、 D Zd がそれぞれ、 2
1 1 1 1 1 1 11 1 12
500≤L ≤5000, 200≤D ≤800, 5≤L /Ό ≤15, 40≤n≤90, 10≤ D /d ≤25、 7≤D /d ≤ 15であり、且つ、該第 2連続多段蒸留塔の L、D、L
1 11 1 12 2 2
ZD、 n、 D Zd 、 D Zd 力 sそれぞれ、 2500≤L ≤5000、 200≤D ≤800
2 2 2 2 21 2 22 2 2
、 5≤L /D ≤15, 20≤n ≤50, 3≤D /d ≤10、 9≤D /d ≤20であ
2 2 2 2 21 2 22 ることを特徴とする請求項 1ないし 4のうち何れか一項に記載の方法。
[6] 該第 1連続多段蒸留塔及び該第 2連続多段蒸留塔が、それぞれ該インターナルと してトレィ及び Z又は充填物を有する蒸留塔であることを特徴とする請求項 1ないし 5 のうち何れか一項に記載の方法。
[7] 該第 1連続多段蒸留塔が、該インターナルとしてトレィを有する棚段式蒸留塔であ り、該第 2連続多段蒸留塔が、該インターナルとして充填物及びトレイの両方を有す る蒸留塔であることを特徴とする請求項 6記載の方法。
[8] 該第 1連続多段蒸留塔及び該第 2連続多段蒸留塔の該トレイのそれぞれが、多孔 板部とダウンカマー部を有する多孔板トレイであることを特徴とする請求項 6又は 7記 載の方法。
[9] 該多孔板トレイが該多孔板部の面積 lm2あたり 100〜: LOOO個の孔を有するもので あることを特徴とする請求項 8記載の方法。
[10] 該多孔板トレイの孔 1個あたりの断面積が 0. 5〜5cm2であることを特徴とする請求 項 8又は 9記載の方法。
[11] 該第 2連続多段蒸留塔が、該インターナルとして充填物を上部に、トレィを下部に 有する蒸留塔であることを特徴とする請求項 6又は 7に記載の方法。
[12] 該第 2連続多段蒸留塔の該インターナルの該充填物が、 1基又は 2基以上の規則 充填物であることを特徴とする請求項 6ないし 11のうち何れか一項に記載の方法。
[13] 該第 2連続多段蒸留塔の該規則充填物が、メラパック、ジェムパック、テクノバック、 フレキシパック、スルザ一パッキング、グッドロールパッキング、グリッチグリッドから選 ばれた少なくとも一種であることを特徴とする請求項 12に記載の方法。
[14] 該高沸点物質分離塔 A及び該ジフ -ルカーボネート精製塔 Bが、それぞれ該ィ ンターナルとしてトレイ及び z又は充填物を有する蒸留塔であることを特徴とする請 求項 1ないし 13のうち何れか一項に記載の方法。
[15] 該高沸点物質分離塔 A及び該ジフエ-ルカーボネート精製塔 Bのインターナルが、 それぞれ充填物であることを特徴とする請求項 14に記載の方法。
[16] 該充填物が、メラパック、ジェムパック、テクノバック、フレキシパック、スルザーパツキ ング、グッドロールパッキング、グリッチグリッドから選ばれた少なくとも 1種の規則充填 物であることを特徴とする請求項 15に記載の方法。
[17] 重合反応ゾーンの側面ケーシングが内径 D (cm)、長さ L (cm)の円筒形であって、 その下部に接続された底部のケーシングがテーパー形であり、該テーパー形の底部 ケーシングの最下部の排出口が内径 d (cm)の円筒形であって、 D、 L、 d が式(29) 、 (30)、 (31)及び (32)を満足する、
100 ≤ D ≤ 1800 式(29)
5 ≤ D/d ≤ 50 式(30)
0. 5 ≤ L/D ≤ 30 式(31)
h- 20 ≤ L ≤ h+ 300 式(32)
ことを特徴とする請求項 1ないし 16のうち何れか一項に記載の方法。
[18] 該 hが式 (33)を満足する、
400 < h ≤ 2500 式(33)
ことを特徴とする請求項 1ないし 17のうち何れか一項に記載の方法。
[19] 1つの該ガイドが外径 r (cm)の円柱状又は内側に溶融プレボリマーが入らないよ うにしたパイプ状のものであって、 r が式(34)を満足する、
0. 1 ≤ r ≤ 1 式(34) ことを特徴とする請求項 1ないし 18のうち何れか一項に記載の方法。
[20] 該ガイド接触流下式重合器 2基以上を連結して重合を行うこと特徴とする請求項 1 ないし 19のうち何れか一項に記載の方法。
[21] 請求項 17記載の 2基以上のガイド接触流下式重合器が、ガイド接触流下式第 1重 合器、ガイド接触流下式第 2重合器の 2基の重合器であって、この順に重合度を上げ ていく方法において、該第 1重合器のガイド全体の外部総表面積 SI (m2)と該第 2重 合器のガイド全体の外部総表面積 S2 (m2)とが式 (35)を満足する、
1 ≤ S1/S2 ≤ 20 式(35)
ことを特徴とする請求項 1ないし 20のうち何れか一項に記載の方法。
[22] 請求項 1〜21のいずれかの方法によって 1時間あたり 1トン以上製造された高品質 芳香族ポリカーボネート。
[23] アルカリ金属及び Z又はアルカリ土類金属化合物の含有量力 をこれらの金属元 素に換算して、 0. 1〜0. Olppmであり、且つ、ハロゲン含有量力 lppb以下である ことを特徴とする請求項 22記載の高品質芳香族ポリカーボネート。
主鎖に対してエステル結合やエーテル結合等の異種結合を介して部分的に分岐 している芳香族ポリカーボネートであって、該異種結合の含有量が、カーボネート結 合に対して、 0. 05〜0. 5モル%であることを特徴とする請求項 22又は 23記載の高 品質芳香族ポリカーボネート。
PCT/JP2006/323912 2005-12-12 2006-11-30 高品質芳香族ポリカーボネートを工業的に製造する方法 WO2007069463A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP06833715A EP1961781A4 (en) 2005-12-12 2006-11-30 METHOD FOR THE INDUSTRIAL MANUFACTURE OF HIGHLY QUALITATIVE, AROMATIC POLYCARBONATE
CN2006800467440A CN101331168B (zh) 2005-12-12 2006-11-30 芳香族聚碳酸酯的工业制备方法
EA200801325A EA200801325A1 (ru) 2005-12-12 2006-11-30 Способ промышленного получения высококачественного ароматического поликарбоната
US11/991,404 US20090209724A1 (en) 2005-12-12 2006-11-30 Process for industrially producing high-quality aromatic polycarbonate
BRPI0619058-8A BRPI0619058A2 (pt) 2005-12-12 2006-11-30 processo industrial para a produção de um policarbonato aromático de alta qualidade, e, policarbonato aromático de alta qualidade
JP2007550119A JP5030231B2 (ja) 2005-12-12 2006-11-30 高品質芳香族ポリカーボネートを工業的に製造する方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-357705 2005-12-12
JP2005357705 2005-12-12

Publications (1)

Publication Number Publication Date
WO2007069463A1 true WO2007069463A1 (ja) 2007-06-21

Family

ID=38162774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/323912 WO2007069463A1 (ja) 2005-12-12 2006-11-30 高品質芳香族ポリカーボネートを工業的に製造する方法

Country Status (9)

Country Link
US (1) US20090209724A1 (ja)
EP (1) EP1961781A4 (ja)
JP (1) JP5030231B2 (ja)
KR (1) KR20080067380A (ja)
CN (1) CN101331168B (ja)
BR (1) BRPI0619058A2 (ja)
EA (1) EA200801325A1 (ja)
TW (1) TW200738781A (ja)
WO (1) WO2007069463A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008065776A1 (fr) * 2006-11-27 2008-06-05 Asahi Kasei Chemicals Corporation Procédé de fabrication industrielle de polycarbonate aromatique haute qualité
WO2008065874A1 (fr) * 2006-11-28 2008-06-05 Asahi Kasei Chemicals Corporation Procédé de fabrication d'un polycarbonate aromatique de qualité élevée à l'échelle industrielle
WO2023068288A1 (ja) * 2021-10-21 2023-04-27 旭化成株式会社 ジフェニルカーボネートの製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2679573B1 (en) * 2012-06-29 2017-12-27 SABIC Global Technologies B.V. Method and apparatus for the separation of dialkyl carbonate, water and alkanol
EP2711353B1 (en) 2012-09-20 2018-10-31 SABIC Global Technologies B.V. Process for the continuous manufacture of aryl alkyl carbonate and diaryl carbonate using vapor recompression
WO2015141501A1 (ja) * 2014-03-19 2015-09-24 旭化成ケミカルズ株式会社 縮重合反応性ポリマー及びその製造装置
CN113577814B (zh) * 2021-08-16 2022-10-18 四川中蓝国塑新材料科技有限公司 一种用于聚碳酸酯工业化生产的碳酸二苯酯回收装置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09165443A (ja) * 1995-12-15 1997-06-24 Jiemu P C Kk ポリカーボネートの製造方法
JPH09255772A (ja) * 1996-01-17 1997-09-30 Asahi Chem Ind Co Ltd 芳香族ポリカーボネートの製造方法
JP2002226573A (ja) * 2001-01-05 2002-08-14 Bayer Ag ポリカーボネートを製造する方法
JP2004211107A (ja) * 1998-06-05 2004-07-29 Asahi Kasei Chemicals Corp 芳香族ポリカーボネートを製造するためのシステム
JP2005146050A (ja) * 2003-11-12 2005-06-09 Mitsubishi Chemicals Corp 芳香族ポリカーボネートの製造方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3888826A (en) * 1972-07-10 1975-06-10 Mitsubishi Gas Chemical Co Process for preparing aromatic polycarbonates
US4182726A (en) * 1974-06-25 1980-01-08 Snamprogetti, S.P.A. Process for the preparation of aromatic carbonates
DE2736063A1 (de) * 1977-08-10 1979-02-22 Bayer Ag Verfahren zur herstellung aromatischer kohlensaeureester
DE3146142A1 (de) * 1981-11-21 1983-06-01 Henkel KGaA, 4000 Düsseldorf Reaktionskolonne und dessen verwendung
US4410464A (en) * 1982-03-15 1983-10-18 General Electric Company Diaryl carbonate process
FR2611704B1 (fr) * 1987-02-23 1989-06-09 Bp Chimie Sa Procede de fabrication en continu d'acetates
US5210268A (en) * 1989-12-28 1993-05-11 Asahi Kasei Kogyo Kabushiki Kaisha Process for continuously producing an aromatic carbonate
DE4226756A1 (de) * 1992-08-13 1994-02-17 Bayer Ag Verfahren zur Herstellung von Dicarbonaten
DE4226755A1 (de) * 1992-08-13 1994-02-17 Bayer Ag Verfahren zur kontinuierlichen Herstellung von Diarylcarbonaten aus Dialkylcarbonaten
WO1997011049A1 (fr) * 1995-09-22 1997-03-27 Asahi Kasei Kogyo Kabushiki Kaisha Procede de preparation de carbonate aromatique
DE69631836T3 (de) * 1995-12-15 2008-06-12 Asahi Kasei Chemicals Corporation Verfahren zur herstellung von aromatischem polycarbonat
SG52906A1 (en) * 1996-01-17 1998-09-28 Asahi Chemical Ind Method for producing an aromatic polycarbonate having improved melt stability
JP3249825B2 (ja) * 1996-03-05 2002-01-21 旭化成株式会社 異種結合単位を含有するポリカーボネート及びその製造方法
JP4112048B2 (ja) * 1997-09-16 2008-07-02 旭化成ケミカルズ株式会社 芳香族カーボネート類の製法
ES2249880T3 (es) * 1998-01-14 2006-04-01 Asahi Kasei Chemicals Corporation Metodo y aparato polimerizador para producir un policarbonato aromatico.
TW396174B (en) * 1998-06-05 2000-07-01 Asahi Chemical Ind Method for producing an aromatic polycarbonate
AU4166999A (en) * 1998-06-16 2000-01-05 Asahi Kasei Kogyo Kabushiki Kaisha System and process for producing polycondensation polymer
US6093842A (en) * 1998-09-25 2000-07-25 General Electric Company Process for continuous production of carbonate esters
US20040104108A1 (en) * 2002-12-03 2004-06-03 Mason Robert Michael High capacity purification of thermally unstable compounds
US20070260084A1 (en) * 2004-10-22 2007-11-08 Shinsuke Fukuoka Industrial Process for Production of High-Purity Diaryl Carbonate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09165443A (ja) * 1995-12-15 1997-06-24 Jiemu P C Kk ポリカーボネートの製造方法
JPH09255772A (ja) * 1996-01-17 1997-09-30 Asahi Chem Ind Co Ltd 芳香族ポリカーボネートの製造方法
JP2004211107A (ja) * 1998-06-05 2004-07-29 Asahi Kasei Chemicals Corp 芳香族ポリカーボネートを製造するためのシステム
JP2002226573A (ja) * 2001-01-05 2002-08-14 Bayer Ag ポリカーボネートを製造する方法
JP2005146050A (ja) * 2003-11-12 2005-06-09 Mitsubishi Chemicals Corp 芳香族ポリカーボネートの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1961781A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008065776A1 (fr) * 2006-11-27 2008-06-05 Asahi Kasei Chemicals Corporation Procédé de fabrication industrielle de polycarbonate aromatique haute qualité
WO2008065874A1 (fr) * 2006-11-28 2008-06-05 Asahi Kasei Chemicals Corporation Procédé de fabrication d'un polycarbonate aromatique de qualité élevée à l'échelle industrielle
JP5344927B2 (ja) * 2006-11-28 2013-11-20 旭化成ケミカルズ株式会社 高品質芳香族ポリカーボネートを工業的規模で製造する方法
WO2023068288A1 (ja) * 2021-10-21 2023-04-27 旭化成株式会社 ジフェニルカーボネートの製造方法

Also Published As

Publication number Publication date
EP1961781A1 (en) 2008-08-27
JP5030231B2 (ja) 2012-09-19
EA200801325A1 (ru) 2009-02-27
US20090209724A1 (en) 2009-08-20
KR20080067380A (ko) 2008-07-18
BRPI0619058A2 (pt) 2011-09-20
TW200738781A (en) 2007-10-16
CN101331168A (zh) 2008-12-24
JPWO2007069463A1 (ja) 2009-05-21
CN101331168B (zh) 2011-08-31
EP1961781A4 (en) 2010-04-28

Similar Documents

Publication Publication Date Title
JP5030788B2 (ja) 高品質芳香族ポリカーボネートの工業的製造方法
JP4224103B2 (ja) 芳香族カーボネート類を工業的に製造する方法
WO2007069463A1 (ja) 高品質芳香族ポリカーボネートを工業的に製造する方法
JP5362223B2 (ja) 高純度ジフェニルカーボネートを工業的規模で製造する方法
KR100871306B1 (ko) 부생 알코올류를 공업적으로 분리하는 방법
WO2006006568A1 (ja) 芳香族カーボネート類を工業的に製造する方法
WO2006006588A1 (ja) 芳香族カーボネート類を工業的に製造する方法
AU2005254858B2 (en) Polymerization apparatus for producing aromatic polycarbonate
WO2005121211A1 (ja) 芳香族ポリカーボネートを効率的に製造する方法
JP3724905B2 (ja) 芳香族ポリカーボネートの製造方法
WO1995003351A1 (fr) Procede de production de polycarbonate aromatique
KR100799034B1 (ko) 올리고카르보네이트의 제조 방법
JP5344927B2 (ja) 高品質芳香族ポリカーボネートを工業的規模で製造する方法
CN108586254B (zh) 碳酸二芳基酯的制造方法和芳香族聚碳酸酯的制造方法
EP0892001B1 (en) Method for producing an aromatic polycarbonate having improved melt stability
JP5320071B2 (ja) 高品質芳香族ポリカーボネートの工業的製造法
JP2000128975A (ja) 芳香族ポリカーボネートの製造方法
JPH10251396A (ja) 芳香族ポリカーボネートの製造方法
JP2002105193A (ja) 芳香族ポリカーボネートの製造法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680046744.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007550119

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2006833715

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 902/KOLNP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 200801325

Country of ref document: EA

Ref document number: 1020087014040

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11991404

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0619058

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20080528