WO2008053903A1 - Élément coulissant, son procédé de production, et joint d'étanchéité mécanique et bague d'étanchéité mécanique utilisant l'élément - Google Patents

Élément coulissant, son procédé de production, et joint d'étanchéité mécanique et bague d'étanchéité mécanique utilisant l'élément Download PDF

Info

Publication number
WO2008053903A1
WO2008053903A1 PCT/JP2007/071155 JP2007071155W WO2008053903A1 WO 2008053903 A1 WO2008053903 A1 WO 2008053903A1 JP 2007071155 W JP2007071155 W JP 2007071155W WO 2008053903 A1 WO2008053903 A1 WO 2008053903A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon carbide
pore
pores
sliding member
sliding
Prior art date
Application number
PCT/JP2007/071155
Other languages
English (en)
French (fr)
Inventor
Yuusaku Ishimine
Kazuaki Takigawa
Original Assignee
Kyocera Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corporation filed Critical Kyocera Corporation
Priority to US12/447,649 priority Critical patent/US8916488B2/en
Priority to EP07830889.7A priority patent/EP2090558B1/en
Priority to JP2008542144A priority patent/JP5314425B2/ja
Publication of WO2008053903A1 publication Critical patent/WO2008053903A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/34Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member
    • F16J15/3496Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member use of special materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/063Preparing or treating the raw materials individually or as batches
    • C04B38/0635Compounding ingredients
    • C04B38/0645Burnable, meltable, sublimable materials
    • C04B38/067Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00241Physical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/00344Materials with friction-reduced moving parts, e.g. ceramics lubricated by impregnation with carbon
    • C04B2111/00353Sliding parts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/2084Thermal shock resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3821Boron carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides

Definitions

  • the present invention relates to a sliding member made of a silicon carbide based sintered body including a mechanical seal ring used for a mechanical seal (shaft seal device) such as a sacrifice pump, an automobile cooling water pump, and a refrigerator.
  • a mechanical seal shaft seal device
  • the present invention relates to a manufacturing method, a mechanical seal ring using the same, and a mechanical seal.
  • a sliding member using a ceramic sintered body is applied to, for example, a mechanical seal ring used for a mechanical seal of a fluid device by utilizing its wear resistance.
  • the mechanical seal is one of shaft seal devices used in the rotating parts of various machines for the purpose of complete fluid sealing.
  • the mechanical seal ring is in sliding contact with the rotating parts of various machines and consists of a rotating ring that can move in the axial direction according to the wear of the sliding surface and a stationary ring that does not move. It serves to limit fluid leakage.
  • a mechanical seal ring As a mechanical seal ring, a carbon material, a cemented carbide, a silicon carbide sintered body, and an alumina sintered body are mainly used, and in recent years, it has high hardness and high corrosion resistance, and when sliding. A (porous) silicon carbide sintered body having a small friction coefficient and excellent smoothness is often used.
  • Patent Document 1 discloses a porous silicon carbide sintered body in which independent pores having an average pore diameter of 10 to 40 111 are uniformly dispersed and the porosity is 3 to 10%. Proposed.
  • FIG. 7 is a microscopic photograph showing pores present in the porous silicon carbide sintered body proposed in Patent Document 1.
  • the sliding member using the silicon carbide based sintered body proposed in Patent Document 1 has pores such as polystyrene for forming pores in the raw material powder, although improvement to some extent is seen in wear resistance.
  • the pore-forming agent tends to aggregate. For this reason, as can be seen from FIG. 7, the ratio of long and large V shaped holes with a large maximum diameter communicating with a plurality of pores increases, and the pore diameter of 10 m or more contributes to the improvement of sliding characteristics. The ratio of continuous vents to the pores is high.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-147617
  • An object of the present invention is to provide a sliding member such as a mechanical seal ring that can maintain a good sealing property even if it is used for a long period of time.
  • Another object of the present invention is to provide a sliding member including a mechanical seal ring having excellent lubricating liquid retention performance and excellent thermal conductivity and thermal shock resistance.
  • the sliding member of the present invention has a silicon carbide based material having a main phase mainly composed of silicon carbide and a subphase comprising at least boron, silicon and carbon having a composition different from that of the main phase. Having a sliding surface made of a sintered body and having a roundness of 6 m or less and a pore diameter of 10 m or more and 60 ⁇ m or less with respect to all pores having a pore diameter of 10 m or more on the sliding surface. The ratio is over 60%.
  • the subphase in the silicon carbide based sintered body is a granular crystal phase interspersed between a plurality of the main phases.
  • the "sliding surface” in the present invention means a surface in which sliding members rub against each other.
  • the sliding surface includes not only the initial state but also a surface that newly appears due to wear during sliding.
  • the portion other than the sliding surface may be formed of a main phase mainly composed of silicon carbide and a subphase containing boron, silicon and carbon. The ingredients that form the secondary phase are different, even if they do not matter.
  • the sliding member of the present invention has a silicon carbide material having a main phase mainly composed of silicon carbide and a subphase comprising at least boron, silicon, and carbon having a composition different from that of the main phase. Having a sliding surface made of a sintered body and having a roundness of 6 m or less and a pore diameter of 10 m or more and 60 ⁇ m or less with respect to all pores having a pore diameter of 10 m or more on the sliding surface. By setting the ratio to 60% or more, the number of extremely large pores that reduce the sealing performance is reduced, and the force and continuous ventilation holes are also reduced, making it easy to maintain the sealing performance for a long period of time! It has a positive effect.
  • the subphase in the silicon carbide based sintered body is a granular crystal phase interspersed between a plurality of main phases, the movement of phonon, which is a heat conductive carrier, is hardly restricted. As a result, both the heat resistance and the thermal shock resistance can be improved. As a result, the heat generated by friction can be reduced, and the wear of the sliding surface can be reduced.
  • FIG. 1 (a) is a schematic explanatory view showing a sliding surface of a sliding member according to an embodiment of the present invention, and (b) is an enlarged view showing spherical pores on the sliding surface. It is a schematic explanatory drawing, (c), (d) is an enlarged schematic explanatory drawing which shows the continuous ventilation hole in the said sliding surface, respectively.
  • FIG. 2 is a photomicrograph showing the porosity of a silicon carbide based sintered body in a sliding member according to an embodiment of the present invention, where (a) shows a porosity of 6% and (b) shows a porosity. The cases of 10% are shown respectively.
  • FIG. 3 (a) is a partial cross-sectional view showing a mechanical double-strength seal using a mechanical seal ring that applies force to one embodiment of the present invention, and (b) is a mechanical seal of FIG. It is a perspective view which shows a ring.
  • FIG. 4 (a) is a schematic explanatory view showing a crystal structure of a silicon carbide based sintered body in a sliding member according to another embodiment of the present invention, and (b) is a diagram of (a) of FIG. It is an expansion schematic explanatory drawing which shows a subphase.
  • FIG. 5 is a graph showing the EDS measurement results of the main phase of Sample No. I-1 in Example I.
  • FIG. 6 is a graph showing the EDS measurement results of the subphase of sample No. I-1 in Example I.
  • FIG. 7 is a photomicrograph showing pores existing in a conventional porous silicon carbide sintered body.
  • FIG. 1 is a schematic explanatory view showing a sliding surface of a sliding member according to this embodiment
  • FIG. 1 (b) is an enlarged schematic explanatory view showing spherical pores in the sliding surface
  • FIG. 1 (c) is an enlarged schematic explanatory view showing a continuous air hole in the sliding surface
  • Fig. 2 is a photomicrograph showing the pores of the silicon carbide sintered body in the sliding member according to the present embodiment.
  • Fig. 2 (a) shows a porosity of 6%
  • Fig. 2 (b) shows a pore. The cases where the rate is 10% are shown.
  • FIG. 3 (a) is a partial sectional view showing a mechanical seal using a mechanical seal ring that applies force to this embodiment
  • FIG. 3 (b) is a perspective view showing the mechanical seal ring of FIG. 3 (a).
  • FIG. 3 (a) is a partial sectional view showing a mechanical seal using a mechanical seal ring that applies force to this embodiment
  • the sliding member of the present embodiment has a main phase 2 mainly composed of silicon carbide and a composition different from that of the main phase 2, and at least boron, silicon and carbon. And a sliding surface made of a silicon carbide sintered body 1 having a subphase 3 containing, and pores 4 are present on the sliding surface.
  • the ratio of Si and C (atomic%) can be measured by observing the sliding surface with a transmission electron microscope (TEM) and measuring it by energy dispersive X-ray spectroscopy (EDS). The number of measurement points is five, and the average value is the ratio of Si and C.
  • TEM transmission electron microscope
  • EDS energy dispersive X-ray spectroscopy
  • the main phase 2 and the sub-phase 3 as described above can be distinguished by each hue. That is, the main phase 2 is a black phase, and the subphase 3 is a hue showing metallic luster. Each hue can be determined using, for example, a reflected electron image of a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • subphase 3 has a composition different from that of main phase 2 and includes at least boron, silicon, and carbon.
  • each of these elements may be present alone or silicon (Si) And boron (B) combine to exist as silicides such as SiB and SiB and silicon carbide.
  • Subphase 3 is
  • this sub-phase 3 is a columnar phase or a needle-like phase that exists across a plurality of main phases 2, it is a heat-conducting carrier. Certain Huonon movements are severely constrained.
  • the non-patent document 1 described above does not disclose the firing temperature and firing time for obtaining the silicon carbide sintered body 40, and depending on the firing temperature and firing time, the secondary temperature in the silicon carbide sintered body 40 is not disclosed.
  • Phase 42 becomes columnar, and ⁇ IJ Phase 42 is included at a high rate, which prevents the movement of phonon. Therefore, it is considered that the silicon carbide sintered body 40 has low thermal conductivity and lacks thermal shock resistance.
  • the subphase 3 is a granular phase interspersed between the plurality of main phases 2, so that both thermal conductivity and thermal shock resistance are improved. As a result, heat generation due to friction can be reduced, and the wear on the sliding surface can be reduced.
  • the distinction between the granular phase and the columnar or acicular phase can be made according to the aspect ratio. Specifically, the aspect ratio of the granular phase is 1 or more and less than 4, and the aspect ratio of the columnar or acicular phase is 4 or more.
  • Subphase 3 is preferably smaller than the particle size of adjacent main phase 2. As a result, it is possible to suppress the movement of the phonon from being restricted by the sub-phase 3 having a low thermal conductivity, so that both the thermal conductivity and the thermal shock resistance are improved. As a result, the heat generation due to friction is reduced. It is possible to reduce the wear of the sliding surface. Whether or not the subphase 3 is V smaller than the particle size of the adjacent main phase 2 can be determined by observing the sliding surface with a scanning electron microscope.
  • the ratios of the main phase 2 and the subphase 3 in the silicon carbide sintered body 1 are such that the main phase 2 is 99 to 99.8% by volume and the subphase 3 is 0.2 to 1% by volume. Is preferred. This ratio can be measured using, for example, fluorescent X-ray analysis, ICP (Inductively Coupled Plasma) emission analysis, carbon analysis, or the like.
  • the pores 4 have two types of pores. Specifically, the pores remaining along the grain boundary without disappearing during the sintering process, that is, the residual pores, and the pores generated by the burning or thermal decomposition of the pore-forming agent by heating, that is, the burnout property. It is a pore. These two types of pores are distinguished by the pore diameter of the pores existing on the sliding surface of the sliding member. Residual pores are pores with a pore size less than 10 m, and burnt-out pores are pores with a pore size of 10 m or more. The pore diameter can be calculated according to the formula (2) described later. [0025] Residual pores are small and have a pore diameter of less than 10 m, so there is almost no effect on sliding characteristics and sealing properties. On the other hand, the burnout pores have a large pore diameter of 10 inches or more, so the shape and distribution of the burnout pores existing on the sliding surface has a great influence on the sliding characteristics and sealability of the sliding member.
  • the burnout pores are spherical pores 4a having a roundness of 6 in or less and a pore diameter of lO ⁇ m or more and 60 ⁇ or less shown in Fig. 1 (b), and Figs. 1 (c) and (d).
  • the plurality of pores shown are categorized as continuous vents 4b that are connected or aggregated. From the micrographs showing the pores present on the sliding surface shown in FIGS. 2 (a) and 2 (b), the sliding surface according to the present embodiment has spherical pores 4a, communication pores 4b, and residual pores 4c. I understand that.
  • the spherical pores 4a are mainly constituted by independent pores that exist independently without communicating with other pores.
  • the spherical pores 4a are substantially circular when the sliding surface is viewed in plan.
  • the roundness is 6 m or less and the pore diameter is 10 m or more and 60 ⁇ m with respect to all the pores (burnout pores) having a pore diameter of 10 m or more on the sliding surface.
  • the ratio of spherical pores 4a that are m or less is 60% or more.
  • the ratio of the spherical pores 4a By specifying the ratio of the spherical pores 4a to be 60% or more, the ratio of the spherical pores 4a that contributes to the improvement of the sliding characteristics can be maintained by maintaining a high sealing performance of the sliding member facing the sliding surface. Therefore, high sliding characteristics can be obtained.
  • the reason why the roundness of the spherical pore 4a is set to 6 in or less is that the scenery on the sliding surface can be kept high. That is, by setting the roundness to 6 in or less, the lubricating liquid is not leaked more than necessary, and it is difficult for the particles to fall out, so that the sealing performance can be improved.
  • the roundness can be calculated by equation (1) described later.
  • the pore diameter is set to 10 m or more and 60 ⁇ m or less is that the sliding surface can have both sliding characteristics and sealing properties.
  • the ratio of the spherical pores 4a is more preferably 75% or more, and this can improve the sealing performance on the sliding surface. It is preferable that the ratio of the spherical pores 4a is 100%, which is the most effective force for improving the sliding characteristics and the sliding characteristics. From the viewpoint of manufacturing cost and production efficiency, the ratio is preferably 90% or less.
  • the pore diameter ( ⁇ 2) is defined as the following formula (2).
  • the roundness of the pores decreases as it approaches the perfect circle, and becomes zero in the perfect circle, and increases as the difference between the maximum and minimum diameters of the pores increases.
  • the ratio of roundness represented by formula (1), pore diameter ( ⁇ ) and spherical pore 4a represented by formula (2) was determined by measuring the surface of the sliding member as the sliding surface with an average particle size of 3 am It can be obtained by observing the surface obtained by polishing with a diamond abrasive using an industrial microscope.
  • the maximum and minimum values of the pores are the maximum value of the diameter of the smallest circumscribed circle surrounding the pores, and the smallest value of the diameter of the largest inscribed circle surrounded by the pores. Therefore, as shown in Fig. 1 (b), the maximum value (a) of the pore diameter is the diameter a of the smallest circumscribed circle C1 surrounding the pore (spherical pore 4a), and the smallest pore diameter.
  • the value (b) is the diameter b of the largest inscribed circle C2 surrounded by the pores (spherical pores 4a).
  • the dispersibility of the spherical pores 4a on the sliding surface also affects the sealing performance.
  • the dispersion density of the spherical pores 4a on the sliding surface is preferably 60 / mm 2 or more. As a result, a proper dispersion state is achieved so that the pores hardly aggregate on the sliding surface. Can be improved. That is, the dispersed state of the spherical pores 4a on the sliding surface is a dispersed state that can maintain a high sealing property.
  • the dispersion density is more preferably 95 particles / mm 2 or more.
  • the dispersion density is the same as when the ratio of the spherical pores 4a on the sliding surface was obtained, and five areas were selected from the sliding surface where the measurement area per spot was set to 1235 111 X 926 ⁇ 111. Calculate the force S by analyzing with a magnification of 100.
  • the spherical pores 4a are preferably curved or wrinkled with a continuous contour portion forming the pore space when the sliding surface is viewed in plan.
  • the sealing performance varies depending on the maximum diameter of the pores on the sliding surface.
  • the maximum pore diameter is, for example, the maximum value a of the pore diameter in the case of a spherical pore 4a as shown in FIG. 1 (b).
  • the maximum diameter is L1
  • the maximum diameter is L2.
  • the minimum value of the pores in the continuous vent 4b as shown in FIG. 1 (c) is L3, and the minimum value of the pores in the case of the continuous vent 4b as shown in FIG. 1 (d) is L4.
  • the maximum diameter of each pore is preferably 100 m or less.
  • the measurement area per location from the sliding surface is 1235 in.
  • X 926 Find the area set at 11 m by taking out 5 points and using the industrial microscope to obtain the angle by 100 times magnification.
  • the porosity of the silicon carbide sintered body 1 constituting the sliding surface is preferably 2.5% or more and 12% or less. As a result, the retention performance of the lubricating liquid is improved, so that the sliding characteristics are good and the mechanical characteristics are easily maintained.
  • the porosity of the silicon carbide based sintered body 1 affects not only the sealing performance and sliding characteristics of the sliding member but also mechanical characteristics.
  • a high porosity improves sliding properties, but reduces sealing and mechanical properties.
  • the porosity is low, the sealing performance and mechanical characteristics of the sliding member are improved, but the sliding characteristics are deteriorated.
  • the porosity By setting the porosity to 2.5% or more and 12% or less, the ratio of the pores on the sliding surface communicating with the pores on the surface other than the sliding surface becomes low. This As a result, the lubricating liquid supplied to the sliding surface is transmitted through the pores communicating with each other and does not leak to the outside, and the lubricating liquid held in the pores easily forms a continuous fluid film on the sliding surface. It is possible to obtain the sliding characteristics and the high and / or sealing properties required for mechanical seal rings.
  • the porosity is more preferably 3% or more and 8% or less.
  • the porosity of the silicon carbide based sintered body 1 can be measured according to the Archimedes method.
  • the step of obtaining the sliding member includes a blending step, a forming step, and a firing step.
  • a blending step a blending step
  • a forming step a forming step
  • a sintering aid such as boron carbide powder and phenol resin, a pore forming agent, a pore dispersing agent for dispersing the pore forming agent, Water and the like are added and mixed to obtain a slurry (raw material).
  • the pore forming agent for example, suspension-polymerized non-crosslinkable resin beads composed of at least one of silicone beads, polystyrene, phenol resin, and acrylic styrene copolymer may be used. Since these resin beads have a low compressive strength of 1.2 MPa or less, they can easily be plastically deformed in the pressing direction during the molding process, reducing V and microcracks that are likely to occur with elastic recovery. Because it can. The pore forming agent is thermally decomposed or disappeared to form pores (burnable pores) on which the lubricant can be supplied on the sliding surface.
  • a pore dispersant is used in the present embodiment. That is, in order to obtain the spherical pores 4a having a roundness of 6 m or less and a pore diameter of 10 m or more and 60 m or less with respect to all pores having a pore diameter of 10 m or more on the sliding surface of the obtained sliding member, A pore forming agent having a roundness of 4 m or less and a diameter of 12 m to 75 m may be used.
  • this pore-forming agent is a hydrophobic substance, it cannot be dispersed in a slurry to which water has been added, and tends to aggregate.
  • the pore forming agent must be dispersed, and a pore dispersing agent that functions to disperse the pore forming agent is added.
  • the added pore dispersant is adsorbed on the pore-forming agent, so that the pore-forming agent is contained in the slurry. Since it easily wets and penetrates and re-agglomeration of the pore former is suppressed, the pore former is dispersed in the slurry without agglomeration. In this case, 0.1% by mass or more of the pore dispersant may be added to 100% by mass of the pore forming agent. As a result, regardless of the type of pore forming agent, the pore forming agent can be dispersed sufficiently and easily, and the production efficiency can be improved.
  • the pore dispersing agent for example, a carboxylate such as sodium polycarboxylate, an anionic surfactant such as sulfonate, sulfate, phosphate, etc. is preferable.
  • the anionic surfactant has a high effect of wetting and penetrating the pore forming agent into the slurry.
  • the anionic surfactant is adsorbed on the pore-forming agent, the pore-forming agent easily wets and penetrates into the slurry.
  • the repulsion of the pore former is further suppressed by the charge repulsion of the hydrophilic group of the cation surfactant, so that the pore former can be sufficiently dispersed without being aggregated in the slurry.
  • a force S or an anionic surfactant that makes the silicon carbide slurry alkaline is used to suppress aggregation of the silicon carbide powder. Even in the alkaline slurry, aggregation of the silicon carbide powder and the pore forming agent can be suppressed.
  • a molding binder is added to the obtained slurry, mixed, and then spray-dried to obtain granules, and a part of the granules are encapsulated in the pore-forming agent. Get.
  • the content of the pore dispersant may be increased.
  • the dispersion density may be 60 / mm 2 or more, it is only necessary to add 1% by mass or more of the dispersant to 100% by mass of the pore forming agent.
  • the pore-dispersing agent having a short diameter and a small diameter can be used while increasing the content of the pore dispersing agent. Good. To give a specific example, it is sufficient to add 1% by mass or more of a dispersant to 100% by mass of the pore-forming agent and use a pore-forming agent having a diameter of 40 m or less! /.
  • the porosity of the silicon carbide based sintered body 1 constituting the sliding member may be adjusted by, for example, the ratio of the pore forming agent.
  • the ratio of the pore forming agent is 1% by mass or more with respect to 100% by mass of the mixed powder of silicon carbide and boron carbide. In order to make the rate 12% or less, the ratio of the pore forming agent should be 5% by mass or less! /.
  • the molding raw material granules are filled in a predetermined molding die and molded at a molding pressure appropriately selected within a molding pressure range of 49 to 147 MPa to obtain a molded body.
  • the molded body is degreased in a nitrogen atmosphere at a temperature of 450 to 650 ° C and a holding time of 2 to 10 hours to obtain a degreased body.
  • the degreased body is put in a firing furnace, and is held in a reduced-pressure atmosphere of inert gas at a temperature of 1800 to 2100 ° C. and a holding time of 3 to 5 hours, and then fired to obtain a silicon carbide sintered body 1.
  • the pore-forming agent is uniformly dispersed, so that extremely large pores that lower the sealing performance are reduced, and the continuous ventilation holes are also reduced. , Easy to maintain the sealing performance for a long time.
  • the inert gas is not particularly limited, but argon gas is preferably used because it is easily available and handled.
  • the obtained sintered body may be subjected to processing such as polishing ij and polishing on the pressing surface as necessary.
  • processing such as polishing ij and polishing on the pressing surface as necessary.
  • a double-headed grinder or a surface grinder to make the pressure surface flat and roughen it with an alumina lapping machine using diamond abrasive grains with an average grain diameter of 3 m, and then a diamond with an average grain diameter of 1 m.
  • a sliding surface may be prepared by polishing the surface with a tin lapping machine using abrasive grains so that the arithmetic average height Ra is 0.98 am or less. If the arithmetic average height Ra is set to 0.98 m or less, the sealing performance can be easily maintained.
  • the arithmetic average height Ra may be measured in accordance with JIS B 0601-2001 (corresponding ISO 4287: 1997). That is, when the measurement length and the cut-off value are 5 mm and 0.8 mm, respectively, and the measurement is performed using a stylus type surface roughness meter, for example, on the sliding surface of the sliding member, the tip of the stylus Apply a stylus with a radius of 2 ⁇ 111 and the stylus scanning speed should be 0.5 mm / sec.
  • this mechanical seal is formed on the sliding surface 15a of the fixed ring 5a, which is an annular body, on the sliding surface 15b of the rotating ring 5b, which is an annular body having a convex portion.
  • This is a device using a mechanical seal ring 5 that slides and exerts a sealing action.
  • the mechanical seal ring 5 is mounted between a rotating shaft 6 that transmits a driving force by a driving mechanism (not shown) and a casing 7 that rotatably supports the rotating shaft 6, and includes a fixed ring 5a and a rotating ring 5b.
  • the sliding surfaces 15a and 15b are formed so as to form a vertical surface with respect to the rotating shaft 6.
  • the mechanical seal ring 5 is composed of a fixed ring 5a and a rotating ring 5b that contact and slide each other's sliding surfaces 15a and 15b through a lubricating liquid, and at least of the fixing ring 5a and the rotating ring 5b.
  • One side consists of the sliding member concerning one Embodiment. As described above, the sliding member is excellent in sealing performance and lubricating fluid holding performance. Therefore, the mechanical seal ring 5 and the mechanical seal using the sliding member have high long-term reliability.
  • the rotating ring 5b is supported by the packing 8 so as to be buffered.
  • a coil spring 9 is installed on the side of the packing 8 facing the rotating ring 5b so as to wind the rotating shaft 6.
  • the sliding surface 15b of the rotating ring 5b is pressed against the sliding surface 15a of the fixed ring 5a. It is designed to slide.
  • the collar 10 is fixed to the rotating shaft 6 by a set screw 11 and is installed as a stopper for the coil spring 9.
  • the fixed ring 5a that contacts the sliding surface 15b of the rotating ring 5b via the sliding surface 15a is supported by a buffer rubber 12.
  • the buffer rubber 12 is attached to the inside of the casing 7 which is an outer frame of the mechanical seal so as to support the fixing ring 5a.
  • the fluid enters the inside of the mechanical seal surrounded by the casing 7, the force S, and the sealing action by the o (O) ring 13 provided between the packing 8 and the rotary shaft 6.
  • the sealing action of the sliding surfaces 15a and 15b of the mechanical seal ring 5 due to the sealing action of the sliding surfaces 15a and 15b of the mechanical seal ring 5, the leakage of fluid from the mechanical seal to the outside is reduced.
  • the fluid sealed by the mechanical seal is referred to as a sealing fluid 14, and a part of the fluid enters between the sliding surfaces 15a and 15b of the mechanical seal ring 5 and acts as a lubricating liquid.
  • the rotating ring 5b is buffered by the packing 8, and the buffer rubber 12 and the packing 8 also have a function of absorbing vibrations generated by the rotation of the rotating shaft 6.
  • the fixing ring 5a is an annular body
  • the rotating ring 5b is an annular body having a convex portion.
  • the fixing ring 5a is a convex portion.
  • the rotating ring 5b can also be a ring.
  • Fig. 4 (a) is a schematic explanatory diagram showing the crystal structure of the silicon carbide sintered body in the sliding member according to the present embodiment
  • Fig. 4 (b) shows the subphase of Fig. 4 (a). It is an expansion schematic explanatory drawing shown.
  • the sliding member of the present embodiment includes a main phase 17 mainly composed of silicon carbide and a subphase 18 including at least boron, silicon, and carbon.
  • the secondary phase 18 is a granular crystal phase that is independently scattered between a plurality of main phases 17.
  • the subphase 18 that is a force in the present embodiment exists only in a region surrounded by the plurality of main phases 17. It is a granular phase. If this subphase 18 is a columnar phase or a needle-like phase that extends over a plurality of main phases 17, the movement of phonon, which is a heat-conducting carrier, is greatly restricted. In the present embodiment, since the subphase 18 is a granular phase interspersed between the plurality of main phases 17, since the movement of phonon is hardly restricted, both thermal conductivity and thermal shock resistance are improved. As a result, heat generated by friction can be reduced, and the force S can be used to reduce wear on the sliding surface.
  • the distance d between adjacent subphases 18 is preferably 3 m or more. As a result, the movement of the phonon is less subject to restrictions.
  • the state in which the subphases 18 are interspersed between the plurality of main phases 17 and the distance d are determined by using a transmission electron microscope or a scanning electron microscope, and a magnification of 3000 to 10,000; This can be confirmed by observing 16 cross sections or sliding surfaces.
  • Subphase 18 contains sodium (Na), magnesium (Mg), iron (Fe), aluminum (A1), calcium (Ca) and the like which are inevitable impurities other than boron, silicon and carbon. Even if anything, it ’s okay. From the viewpoint of maintaining the mechanical characteristics, it is preferable that the total of these inevitable impurities is 0.1 volume% or less with respect to the silicon carbide sintered body 16.
  • the thermal conductivity and thermal shock resistance of the sliding member are easily affected by the shape of the subphase 18, that is, the aspect ratio.
  • the aspect ratio of the subphase 18 is the ratio of the major axis ⁇ to the minor axis ⁇ (ie, the major axis ⁇ / minor axis ⁇ ). As this ratio decreases, the movement of the phonon is less likely to be constrained, so both the thermal conductivity and thermal shock resistance of the sliding member are improved.
  • the aspect ratio of the subphase 18 is 2.5 or less (excluding 0).
  • the movement of the phonon is further restricted, so that both the thermal conductivity and the thermal shock resistance of the sliding member can be further improved.
  • heat generation due to friction can be reduced, and wear on the sliding surface can be further reduced.
  • the aspect ratio of the subphase 18 is an image obtained by using a transmission electron microscope or a scanning electron microscope on the cross-section or sliding surface of the silicon carbide sintered body 16 at a magnification of 3000 to 10,000 times. More demanding power S.
  • the subphase 18 contains at least boron, silicon, and carbon. Silicon and carbon in the subphase, as will be described in detail later, are used for the sliding member of the present invention.
  • the silicon carbide sintered body is obtained by molding and firing a raw material powder obtained by mixing boron carbide powder or the like with silicon carbide powder in the manufacturing method of a silicon carbide sintered body. It is contained as a secondary phase in the aggregate.
  • boron contained in the subphase 18 has an important function and affects the mechanical characteristics and thermal conductivity of the sliding member. If the boron content is too low, the silicon carbide crystal particles cannot be sufficiently bonded, and the mechanical properties and thermal conductivity are lowered. On the other hand, if the boron content is too high, a secondary phase having a high aspect ratio precipitates, so that the movement of phonon tends to be restricted and the thermal conductivity is lowered. In the sliding member of the present embodiment, it is preferable that the content of boron is 0.2% by mass or more and 0.3% by mass or less with respect to 100% by mass of the silicon carbide sintered body. By setting the boron content within this range, since boron acts as a sintering aid, a sliding member having both high mechanical properties and thermal conductivity can be obtained.
  • the boron content can be measured using X-ray fluorescence analysis or ICP emission analysis. Most of boron forms subphase 18 together with silicon and carbon, but there is no problem even if part of boron is dispersed in silicon carbide crystal grains.
  • the porosity of the silicon carbide sintered body 16 is preferably 2.5% or more and 12% or less for the same reason as that of the above-described one embodiment, and 3% or more 8 % Or less is more preferable.
  • a sintering aid such as a phenol resin, a pore forming agent and a pore dispersing agent are added to the silicon carbide powder, and mixed and pulverized by a ball mill to obtain a slurry (preparation step).
  • a binder is added to and mixed with the slurry, followed by spray drying to obtain silicon carbide granules, and the granules are molded to obtain a molded body (molding step).
  • the boron content in the silicon carbide based sintered body 16 is affected by the boron carbide powder to be added. To make the boron content 0.2 mass% or more and 0.3 mass% or less with respect to 100 mass% of the silicon carbide sintered body, the content of boron carbide powder is 1 mass with respect to the silicon carbide powder. % To 3% by mass! /. [0082] In order to set the porosity of the silicon carbide sintered body 16 to 2.5% or more and 12% or less, a resin bead previously pulverized as a pore forming agent that is burned out or thermally decomposed in the degreasing step or the firing step is used.
  • the mixed raw material After adding 0.5 to 10% by mass to the granule and mixing to make a mixed raw material, the mixed raw material is filled into a mold, pressed and molded to form a molded body of a predetermined shape.
  • the resin beads are the same as the resin beads exemplified in the embodiment.
  • the obtained molded body may be heated in a nitrogen atmosphere for 10 to 40 hours, 450-6 to 50 ° C for 2 to 10 hours, and then naturally cooled and degreased as necessary. . Then, the degreased molded body is held and fired at a temperature of 1800 to 2100 ° C. for 3 to 5 hours, for example, in a reduced pressure atmosphere of an inert gas to obtain a silicon carbide based sintered body 16 (firing step).
  • the aspect ratio of the subphase 18 is influenced by the firing temperature, and increases immediately when the firing temperature is increased, and decreases when the firing temperature is decreased.
  • the firing temperature may be 1800 to 2000 ° C.
  • the distance d between the adjacent subphases 18 is affected by the firing time and immediately increases the firing time, and the value d decreases when the firing time is shortened.
  • the firing time may be set to 4.5 to 5 hours.
  • the sliding member is excellent in thermal conductivity and thermal shock resistance. Therefore, the mechanical seal ring and mechanical seal that are the force of this embodiment are subject to severe use conditions that are susceptible to thermal shock due to instantaneous high-temperature frictional heat generated at the start of sliding. Can also be suitably used. Since other configurations are the same as those of the above-described embodiment, description thereof is omitted.
  • the present invention is not limited to the above-described embodiments, and the present invention is also applied to modifications and improvements within the scope of the present invention. Needless to say, you can.
  • the present invention is not limited to each sliding member according to each embodiment.
  • the sliding member according to one embodiment is combined with the sliding member according to another embodiment.
  • the sliding member may be a force or force.
  • the shape of the pores which is the force of the present invention, is as long as the roundness on the sliding surface is 6 in or less and the pore diameter is 1 O ⁇ m or more and 60 111 or less. It may be columnar.
  • a predetermined amount of boron carbide powder is added to silicon carbide powder, which is the main component, and a suspension-polymerized non-crosslinkable resin bead composed of phenol resin and polystyrene having a maximum diameter as shown in Table 1 as a pore-forming agent.
  • a pore-forming agent a sample having a roundness of 4 m or less and a diameter of 12 m to 75 m was used for all samples.
  • This pore forming agent was added at a ratio as shown in Table 1 with respect to 100% by mass of the mixed powder of silicon carbide and boron carbide.
  • sodium polycarboxylate as a pore dispersing agent was added and mixed in a ratio as shown in Table 1 with respect to 100% by mass of the pore forming agent to obtain a raw material.
  • this forming raw material was filled in a mold and pressed and formed in a thickness direction at a pressure of 98 MPa to obtain a ring-shaped formed body.
  • the obtained molded body was heated in a nitrogen atmosphere for 20 hours, held at 600 ° C. for 5 hours, then naturally cooled and degreased to obtain a degreased body.
  • the degreased body was calcined by holding at about 2000 ° C for 4 hours, and the main phase of silicon carbide and boron A silicon carbide based sintered body having a subphase containing silicon and carbon was produced.
  • each obtained silicon carbide based sintered body was ground with a surface grinder and roughly processed with an alumina lapping machine using diamond abrasive grains having an average particle diameter of 3 am. Polishing is performed with a tin lapping machine using diamond abrasive grains with an average particle diameter of 3 am so that the arithmetic average height is (Ra) 0.98 m or less to form a sliding surface, with an outer diameter of 26 mm, Sample No. I — ;! ⁇ 18, which is a mechanical seal ring with an inner diameter of 19 mm, was prepared. Each sample is a fixing ring 5a shown in FIG.
  • the sliding surface of each obtained sample was magnified 100 times, and the measurement area per location from the sliding surface of each sample was set to 1235 mX 926 m in 5 locations
  • the ratio of spherical pores having a roundness of 6 m or less and a pore diameter of 10 m or more and 60 ⁇ m or less with respect to all pores having a pore diameter of 10 m or more on the sliding surface the spherical pores The maximum density of pores on each sliding surface was determined.
  • the area ratio of the main phase and the subphase was also obtained.
  • the main phase was 95% by area
  • the secondary phase force was 3% by area with respect to the total area of the main phase and the secondary phase being 100% by mass.
  • Fig. 5 shows the measurement results of the main phase in Sample No. I-1
  • Fig. 6 shows the measurement results of the subphase.
  • the porosity of the silicon carbide sintered body constituting each sample was measured according to the V, Archimedes method.
  • a rotating ring 5b made of carbon which is an annular body having an outer diameter of 26 mm and an inner diameter of 19 mm, having a convex portion with an outer diameter of 24 mm and an inner diameter of 21 mm, was prepared.
  • the rotating ring 5b and the fixing ring 5a (Sample No. I— ;! to 18) are brought into contact with the sliding surfaces 15a and 15b through the rotating shaft 6, and the following sliding is performed.
  • the amount of leakage from the sliding surfaces 15a and 15b showing the sealing performance and the friction coefficient showing the sliding characteristics were measured.
  • the relative speed is the rotational force of the rotating ring 5b with respect to the fixed ring 5a at a position (referred to as position P hereinafter) 11.25 mm away from the outer periphery with respect to the center of the rotating shaft. It is.
  • the surface pressure is a pressure per unit area of the rotating ring 5b with respect to the fixing ring 5a, and a predetermined pressure F is applied to bring the fixing ring 5a and the rotating ring 5b into contact with each other.
  • the area is obtained by dividing by the area of 15b. Using a metal microscope equipped with a gauge for dimension measurement, the outer diameter and inner diameter of the convex part of the rotating ring 5b are measured with a gauge at a magnification of 50 times. Calculated.
  • the friction coefficient is measured by measuring the rotational torque T at the position of the rotating ring 5b during sliding using a torque meter, and applying this surface torque to the area of the sliding surface 15b.
  • the ratio of spherical pores with roundness of 6 111 or less and pore diameters of 10 m or more and 60 or 1 m or less to all pores with a pore diameter of lO ⁇ m or more is 60% or more.
  • the amount of leakage generated between the sliding surfaces 15a and 15b is smaller in the sample of the invention (No. I—4 to 20) than the sample (No. I— ;! to 3) in which the ratio of spherical pores is less than 60%.
  • the sealability was a little less than 120ml.
  • the sample (No. 1-7 to 19) in which the ratio of the spherical pores was 75% had a higher sealing performance with a leakage amount of 65 ml or less on the sliding surface.
  • the samples (No. I 8 to 19) in which the dispersion density of the spherical pores on the sliding surface is 60 pieces / mm 2 or more are all the samples in which the dispersion density is less than 60 pieces / mm 2 ( From No. I—7), it can be seen that the leakage is 54 ml or less and the sealing performance is higher.
  • the samples with the dispersion density of the spherical pores on the sliding surface of 60 / mm 2 or more No. I-8-19
  • the samples with the maximum diameter of each pore being 100 m or less all show that the leak rate is 35ml or less and the Sinore I. Life is higher than the sample (No. 1-9) where the maximum diameter of each pore exceeds 100 m. .
  • Samples with a porosity of 2.5% or more and 12% or less of the sintered silicon carbide have a coefficient of friction of 0.04 or less.
  • the four-point bending strength was as high as 201 MPa or more.
  • the sample with a porosity of less than 2.5% (No. I-12) has a coefficient of friction as high as 0.08, while the sample with a porosity of more than 12% (No. 1-17) Although the coefficient of friction was low, the 4-point bending strength was as low as 190 MPa.
  • boron carbide powder, pore-forming agent, pore-dispersing agent, and water of the addition amounts shown in Table 2 were added to silicon carbide powder, and the mixture was put into a ball mill and then mixed to form a slurry for 48 hours.
  • a binder was added to the slurry as a molding aid, mixed, and then spray-dried to obtain silicon carbide granules having an average particle size of 80 am.
  • the pore-forming agent is a suspension polymerized from pre-ground polystyrene having a roundness of 4 m or less and a diameter of 12 111 to 75 111 and having a maximum diameter as shown in Table 2.
  • Non-crosslinkable resin beads were used.
  • Sodium carboxylate was used as the pore dispersing agent.
  • the mixed raw material was filled into a mold, and pressed and molded at a pressure of 98 MPa in the thickness direction to obtain a molded body having a predetermined shape.
  • the obtained molded body was heated in a nitrogen atmosphere for 20 hours, held at 600 ° C. for 5 hours, then naturally cooled and degreased to obtain a degreased body.
  • the boron content was measured using the ICP emission spectrometry when the sintered body of each sample was 100% by mass. The measured values are shown in Table 2. In this example, all boron is contained in the subphase.
  • each sample was ground with a surface grinder to obtain a flat surface, and after roughing with an alumina lapping machine using diamond abrasive grains having an average particle diameter of 3 m, the average particle diameter 3 Using a diamond abrasive grain of am, it was mirror-finished with a tin lapping machine so that the arithmetic average height Ra was not more than 0.98 m to make a sliding surface.
  • This sliding surface was measured by observing the shape and aspect ratio of the secondary phase at a magnification of 5000 using a scanning electron microscope, and the measured values are shown in Table 2.
  • the three-point bending strength, Poisson's ratio, Young's modulus, thermal expansion coefficient at 40 to 400 ° C, and thermal conductivity of each sample were measured.
  • the three-point bending strength (S) is JIS R 1601-1995 (corresponding ISO 14704: 2000 or ICS 81.060.30)
  • Poisson's ratio) and Young's modulus (E) are JIS R 1602-1995 (corresponding ISO 17561: 2002) and 40 to 400 ° C) were measured in accordance with JIS R 1618-2002 (corresponding ISO 17562: 2001)
  • the thermal conductivity (k) was measured in accordance with JIS R 1611-1997.
  • the thermal shock resistance coefficient R was calculated by applying the thermal expansion coefficient ( ⁇ ) at 40 to 400 ° C to the following formula (3). Next, the calculated thermal shock resistance coefficient R and The thermal shock resistance coefficient R ′ was calculated by applying the obtained thermal conductivity (k) to the following equation (4).
  • thermal shock resistance coefficient R is a coefficient that serves as an index of thermal shock resistance when rapidly cooled after heating.
  • the thermal shock resistance coefficient R ′ is a coefficient that serves as an index of the thermal shock resistance when cooling relatively slowly after heating. The higher the coefficient, the higher the thermal shock resistance.
  • the measurement results of thermal conductivity k and thermal shock resistance coefficient R ′ are shown in Table 2, respectively.
  • Sample Nos. II—3 to 7, 9, and 10 having an aspect ratio of 2.5 or less had higher thermal conductivity and thermal shock resistance coefficient R ′.
  • Sample No. II-1 which is outside the scope of the present invention, has a columnar shape that is out of the composition of the subphase of the present application, and such a different phase has an aspect ratio. Since it is higher, thermal conductivity and thermal shock resistance coefficient R 'are both low, and thermal conductivity and thermal shock resistance are low.
  • the pore-forming agent is a suspension polymerized from pre-ground polystyrene having a roundness of 4 m or less and a diameter of 12 111 to 75 111 and having a maximum diameter as shown in Table 3.
  • Non-crosslinkable resin beads were used.
  • sodium polycarboxylate was used as the pore dispersing agent.
  • the mixed raw material was filled into a mold, and pressed and molded at a pressure of 98 MPa in the thickness direction to obtain a molded body having a predetermined shape.
  • the obtained molded body was heated in a nitrogen atmosphere over 20 hours, held at 600 ° C for 5 hours, then naturally cooled and degreased to obtain a degreased body.
  • the degreased body was fired by holding at 2000 ° C. for 4 hours to obtain a sample No. Ill —;!-6 as a sintered body.
  • the surface of each sample was ground with a surface grinder to obtain a flat surface, and the average particle size was 3 m.
  • the arithmetic average height Ra is below 0.98 ⁇ m with a tin lapping machine using diamond abrasive grains with an average particle diameter of 3 am.
  • the mirror surface was processed to make a sliding surface. As a result of observing the shape of the subphase on the sliding surface with a scanning electron microscope at a magnification of 5000, the columnar subphase was not observed in the sample of the deviation and the shift, and only the granular subphase was observed.
  • Example II the ratio of spherical pores and the ratio of Si and C (atomic%) in the main phase and subphase were measured.
  • Table 3 shows the measurements and measurement results.
  • Sample No. ⁇ -1 with a porosity of less than 2.5% has good thermal conductivity and thermal shock resistance coefficient R '. Is expensive. Sample No. Ill-6, which has a porosity of more than 15%, has good low coefficient of friction, but has low thermal conductivity and thermal shock resistance coefficient R '.
  • Sample No. Ill-25 with a porosity of 2.5% or more and 12% or less can be said to have a good balance of thermal conductivity, thermal shock resistance coefficient R ', and friction coefficient.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Sealing (AREA)
  • Ceramic Products (AREA)
  • Nanotechnology (AREA)

Description

明 細 書
摺動部材とその製造方法およびこれを用いたメカニカルシールリングなら びにメカ二カノレシ一ノレ 技術分野
[0001] 本発明は、生け簀用ポンプ、 自動車冷却水ポンプ、冷凍機等のメカニカルシール( 軸封装置)に用いられるメカニカルシールリングを始めとする炭化珪素質焼結体から なる摺動部材とその製造方法、およびこれを用いたメカニカルシールリングならびに メカニカルシールに関する。
背景技術
[0002] セラミック焼結体を用いた摺動部材は、その耐摩耗性を利用して、例えば流体機器 のメカニカルシールに用いられるメカニカルシールリング等に応用されている。メカ二 カルシールは、流体の完全密封を目的として、各種機械の回転部に用いられる軸封 装置の一つである。メカニカルシールリングは各種機械の回転部に摺接して、摺動 面の摩耗に従い軸方向に動くことができる回転リングと動かない固定リングとからなり 、相対的に回転する軸にほぼ垂直な端面において、流体の漏れを制限する働きをす るものである。
[0003] ここで、メカニカルシールリングとしては、カーボン材、超硬合金、炭化珪素質焼結 体、アルミナ質焼結体が主として用いられ、近年では高硬度で高耐食性を有し、摺動 時の摩擦係数が小さく平滑性にも優れる(多孔質)炭化珪素質焼結体が多用されて いる。
[0004] 特許文献 1には、平均気孔径 10〜40 111の独立気孔が均一に分散配置されてお り、且つ気孔率が 3〜; 10%である多孔質な炭化珪素質焼結体が提案されている。図 7は、特許文献 1で提案された多孔質な炭化珪素質焼結体に存在する気孔を示す顕 微鏡写真である。
[0005] 特許文献 1で提案された炭化珪素質焼結体を用いた摺動部材は、耐摩耗性にある 程度の改善は見られるものの、原料粉末に気孔を形成するためのポリスチレン等の 気孔形成剤を添加して V、る。 [0006] しかしながら、前記気孔形成剤は凝集しやすい。そのため、図 7からもわかるように 、複数の気孔が連通した最大径の大きな長細 V、形状をした連通気孔の比率が高くな り、摺動特性の向上に寄与する気孔径 10 m以上の気孔に対して、連通気孔の比 率が高くなる。その結果、前記摺動部材を長期間使用し続けると、摺動時に連通気 孔を形成する輪郭の周辺部に応力が集中し、脱粒しやすくなるため、シール性が急 激に低下するという問題があった。
[0007] 特許文献 1:特開 2002— 147617号公報
発明の開示
発明が解決しょうとする課題
[0008] 本発明の課題は、長期間使用を続けても良好なシール性を維持することができるメ 力二カルシールリング等の摺動部材を提供することである。
本発明の他の課題は、潤滑液の保持性能に優れるとともに熱伝導性や耐熱衝撃 性に優れたメカニカルシールリングを始めとする摺動部材を提供することにある。 課題を解決するための手段
[0009] 本発明の摺動部材は、炭化珪素を主成分とする主相と、該主相とは異なる組成で、 少なくとも硼素、珪素および炭素を含有して成る副相とを有する炭化珪素質焼結体 から成る摺動面を有し、該摺動面における気孔径 10 m以上の全気孔に対する、真 円度 6 m以下、且つ気孔径 10 ,1 m以上 60 μ m以下である気孔の比率が 60%以 上であることを特徴とする。
[0010] 前記炭化珪素質焼結体における前記副相は複数の前記主相間に点在する粒状の 結晶相であるのが好ましレ、。
[0011] なお、本発明における前記「摺動面」とは、摺動部材同士が対峙して擦り合う面を意 味する。該摺動面は、初期状態はもちろんのこと、摺動中、摩耗して新たに出現した 面も含む。摺動面以外の部分は、摺動面と同様、炭化珪素を主成分とする主相と、 硼素、珪素および炭素を含有して成る副相とから形成されていてもよいが、主相や副 相を形成する成分が異なってレ、ても何等差し支えなレ、。
発明の効果 [0012] 本発明の摺動部材は、炭化珪素を主成分とする主相と、該主相とは異なる組成で、 少なくとも硼素、珪素および炭素を含有して成る副相とを有する炭化珪素質焼結体 から成る摺動面を有し、該摺動面における気孔径 10 m以上の全気孔に対する、真 円度 6 m以下、且つ気孔径 10 ,1 m以上 60 μ m以下である気孔の比率を 60%以 上とすることで、シール性を低下させる極端に大きい気孔が少なくなり、し力、も連通気 孔も減少するので、シール性を長期間維持しやす!/、と!/、う効果を有する。
[0013] 特に、前記炭化珪素質焼結体における前記副相を複数の前記主相間に点在する 粒状の結晶相にすると、熱伝導の担体であるフオノンの動きがほとんど制約されない ため、熱伝導性、耐熱衝撃性とも向上することとなり、その結果、摩擦による発熱を低 下させること力 Sでき、摺動面の摩耗を低減することができる。
図面の簡単な説明
[0014] [図 l] (a)は、本発明の一実施形態にかかる摺動部材の摺動面を示す概略説明図で あり、(b)は、前記摺動面における球状気孔を示す拡大概略説明図であり、(c) , (d) は、それぞれ前記摺動面における連通気孔を示す拡大概略説明図である。
[図 2]本発明の一実施形態にかかる摺動部材における炭化珪素質焼結体の気孔の 様子を示す顕微鏡写真であり、(a)は気孔率が 6%、(b)は気孔率が 10%の場合を それぞれ示す。
[図 3] (a)は、本発明の一実施形態に力、かるメカニカルシールリングを用いたメカ二力 ルシールを示す部分断面図であり、(b)は、同図(a)のメカニカルシールリングを示す 斜視図である。
[図 4] (a)は、本発明の他の実施形態にかかる摺動部材における炭化珪素質焼結体 の結晶構造を示す概略説明図であり、(b)は、同図(a)の副相を示す拡大概略説明 図である。
[図 5]実施例 Iにおける試料 No. I— 1の主相の EDS測定結果を示すグラフである。
[図 6]実施例 Iにおける試料 No. I— 1の副相の EDS測定結果を示すグラフである。
[図 7]従来の多孔質な炭化珪素質焼結体に存在する気孔を示す顕微鏡写真である。 発明を実施するための最良の形態
[0015] 以下、本発明の一実施形態について図面を参照して詳細に説明する。図 1 (a)は、 本実施形態にかかる摺動部材の摺動面を示す概略説明図であり、図 1(b)は、前記 摺動面における球状気孔を示す拡大概略説明図であり、図 1(c), (d)は、それぞれ 前記摺動面における連通気孔を示す拡大概略説明図である。図 2は、本実施形態 にかかる摺動部材における炭化珪素質焼結体の気孔の様子を示す顕微鏡写真であ り、図 2 (a)は気孔率が 6%、図 2(b)は気孔率が 10%の場合をそれぞれ示す。図 3( a)は、本実施形態に力、かるメカニカルシールリングを用いたメカニカルシールを示す 部分断面図であり、図 3(b)は、同図(a)のメカニカルシールリングを示す斜視図であ
[0016] 図 1 (a)に示すように、本実施形態の摺動部材は、炭化珪素を主成分とする主相 2 と、該主相 2とは異なる組成で、少なくとも硼素、珪素および炭素を含有して成る副相 3とを有する炭化珪素質焼結体 1から成る摺動面を有し、該摺動面には気孔 4が存在 する。
[0017] 主相 2とは、珪素(Si)と炭素(C)との比率(原子%)が、 Si:C = 35:65〜65:35で ある相を意味する。畐 IJ相 3とは、 Siと Cとの比率(原子%)が、 Si:C = 0:100~34:66 である相を意味する。前記 Siおよび Cの比率 (原子%)は、透過型電子顕微鏡 (TE M)で前記摺動面を組織観察してエネルギー分散型 X線分光分析 (EDS)により測 定すること力 Sできる。測定箇所は 5箇所とし、その平均値を Siおよび Cの比率とする。 具体例を挙げると、後述する実施例 Iにおける試料 No. I— 1において、主相の EDS 測定結果は、図 5のようになり、 Si:C = 44:56であり、副相の EDS測定結果は、図 6 のようになり、 Si:C = 7:93である。
[0018] 上記のような主相 2および副相 3は、各色相で判別することができる。即ち、主相 2 は、黒色相であり、副相 3は、金属光沢を示す色相である。各色相は、例えば走査型 電子顕微鏡(SEM)の反射電子像を使用して判別することができる。
[0019] ここで、副相 3とは、主相 2とは異なる組成で、少なくとも硼素、珪素および炭素を含 有して成り、例えば、これら各元素が単独で存在したり、珪素(Si)と硼素(B)が化合 して SiB , SiB等の珪化物や炭化珪素として存在したりするものである。副相 3は、
4 6
複数の主相 2で囲まれた領域にのみ存在する粒状の相である。この副相 3が複数の 主相 2にまたがって存在する柱状の相あるいは針状の相であると、熱伝導の担体で あるフオノンの動きが大きな制約を受ける。ここで、前記した非特許文献 1では、炭化 珪素質焼結体 40を得るための焼成温度や焼成時間は開示されておらず、焼成温度 や焼成時間によっては炭化珪素質焼結体 40における副相 42は柱状となり、さらに畐 IJ 相 42が高い比率で含まれることから、フオノンの動きが妨げられる。そのために炭化 珪素質焼結体 40は熱伝導が低ぐ耐熱衝撃性が不足すると考えられる。
[0020] 本実施形態では、副相 3が複数の主相 2間に点在する粒状の相であることから、フ オノンの動きがほとんど制約されないため、熱伝導性、耐熱衝撃性とも向上することと なり、その結果、摩擦による発熱を低下させることができ、摺動面の摩耗を低減するこ と力 Sできる。
[0021] 粒状の相と、柱状または針状の相との区別は、アスペクト比によって区別することが できる。具体的には、粒状の相のアスペクト比は 1以上 4未満であり、柱状または針状 の相のアスペクト比は 4以上である。
[0022] また、副相 3は、隣接する主相 2の粒径よりも小さいのが好ましい。これにより、熱伝 導性の低い副相 3によりフオノンの動きが制約を受けるのを抑制することができるので 、熱伝導性、耐熱衝撃性とも向上することとなり、その結果、摩擦による発熱を低下さ せること力 Sでき、摺動面の摩耗を低減することができる。副相 3が、隣接する主相 2の 粒径よりも小さ V、か否かは、走査型電子顕微鏡で前記摺動面を観察して判定するこ と力 Sできる。
[0023] 炭化珪素質焼結体 1における主相 2および副相 3の各比率は、主相 2が 99〜99. 8 体積%、副相 3が 0. 2〜1体積%であることが好適である。この比率は、例えば蛍光 X線分析法、 ICP (Inductively Coupled Plasma)発光分析法、炭素分析法等を 用いて測定することができる。
[0024] 気孔 4は、 2種類の気孔を有している。具体的には、焼結の過程で消滅することなく 、粒界に沿って残留した気孔、即ち残留気孔と、気孔形成剤が加熱により焼失また は熱分解することによって生じた気孔、即ち焼失性気孔である。これら 2種類の気孔 は、摺動部材の摺動面に存在する気孔の気孔径で区別される。残留気孔は気孔径 力 S 10 m未満の気孔であり、焼失性気孔は気孔径が 10 m以上の気孔である。な お、前記気孔径は後述する式(2)により算出することができる。 [0025] 残留気孔は気孔径が 10 m未満と小さ!/、ため、摺動特性やシール性にほとんど影 響することはない。これに対し、焼失性気孔は気孔径が 10 in以上と大きいため、摺 動面上に存在する焼失性気孔の形状や分布は、摺動部材の摺動特性やシール性 に与える影響が大きい。
[0026] 前記焼失性気孔は、図 1 (b)に示す真円度 6 in以下、且つ気孔径 lO ^ m以上 60 πι以下である球状気孔 4aと、図 1 (c) , (d)に示す複数の気孔が連結または凝集し て存在する連通気孔 4bとに分類される。なお、図 2 (a) , (b)に示す摺動面に存在す る気孔を示す顕微鏡写真から、本実施形態にかかる摺動面は、球状気孔 4a、連通 気孔 4b、残留気孔 4cを有することが判る。
[0027] 球状気孔 4aは、他の気孔と連通することなぐ独立に存在する独立気孔により主に 構成される。該球状気孔 4aは、摺動面を平面視したときに、略円形になる。
[0028] ここで、実施形態の摺動部材では、摺動面における気孔径 10 m以上の全ての気 孔 (焼失性気孔)に対する、真円度 6 m以下、且つ気孔径 10 m以上 60 μ m以下 である球状気孔 4aの比率が 60%以上となっている。
[0029] 球状気孔 4aの比率を 60%以上に特定することで、摺動面において対峙する摺動 部材のシール性を高いものに保持でき、摺動特性の向上に寄与する球状気孔 4aの 比率を高くできるため、高い摺動特性を得ることができる。
[0030] 球状気孔 4aにおいて、その真円度を 6 in以下としたのは、摺動面におけるシー ノレ性を高いものに保持できるからである。即ち、真円度を 6 in以下とすることによつ て、潤滑液を必要以上に漏えいさせず、脱粒しづらいのでシール性を高くすることが できる。前記真円度は後述する式(1)により算出することができる。
[0031] また、気孔径を 10 m以上 60 μ m以下としたのは、摺動面における摺動特性とシ 一ル性を兼ね備えたものにできるからである。特に、球状気孔 4aの比率は 75%以上 にすることがより好ましぐこれにより摺動面におけるシール性をさらに高いものにする こと力 Sできる。球状気孔 4aの比率は 100%にすることがシール性ゃ摺動特性の向上 にとつて最も効果的である力 製造コスト、生産効率からその比率は 90%以下にする ことが好ましい。
[0032] 一方、真円度が 6 ,1 mを超える気孔や、気孔径が 60 μ mを超える気孔の比率が高 くなるとシール性が低下する。また、気孔径 10 in未満の気孔の比率が高くなると摺 動特性の向上に寄与しない気孔が増えるため、摺動特性が低下する。
[0033] 前記真円度は以下の式(1 )のように定義される。
國 真円度 = (気孔径の最大値 (a ) —気孔径の最小値 (b ) ) X 1 Z 2 - - · ( 1 )
[0034] 前記気孔径(φ )については、以下の式(2)のように定義される。
[数 2] 気孔径 (Φ ) = (気孔径の最大値 (a ) +気孔径の最小値 (b ) ) X l / 2 - - · ( 2 )
[0035] 前記式(1)より気孔の真円度は、真円に近づくほど小さくなり、真円では 0となるもの であり、気孔の最大径と最小径の差が大きいほど大きな値となる。式(1)で示される 真円度、式(2)で示される気孔径(φ )および球状気孔 4aの比率の測定は、摺動部 材の摺動面となる面を平均粒径 3 a mのダイヤモンド砥粒を用いて研磨して得られる 面を工業顕微鏡を用いて観察することより求めることができる。
[0036] より具体的には、工業顕微鏡を用い、倍率を 100倍とし、前記摺動面から 1箇所当 たりの測定面積を 1235 m X 926 mに設定した範囲を 5箇所抜き取って解析する ことにより求めること力 Sできる。気孔の最大値、最小値とは、気孔を囲繞する最小の外 接円の径が最大値、気孔に囲繞される最大の内接円の径が最小値となる。したがつ て、図 1 (b)に示すように、気孔径の最大値 (a)は、気孔(球状気孔 4a)を囲繞する最 小の外接円 C1の径 aであり、気孔径の最小値 (b)は、気孔(球状気孔 4a)に囲繞され る最大の内接円 C2の径 bである。
[0037] なお、倍率 100倍では連通気孔 4bを形成する輪郭には少なくとも 1個の変曲点 4d が観察され、球状気孔 4aを形成する輪郭には変曲点は観察されない。
[0038] 本実施形態の摺動部材では、摺動面における前記球状気孔 4aの分散性もシール 性に影響を及ぼす。球状気孔 4aの分散性が高いほど、シール性が高くなり、分散性 が低い、即ち凝集性が高いほど、シール性は低くなる。本実施形態では、摺動面に おける球状気孔 4aの分散密度を 60個/ mm2以上とすることが好ましい。これにより、 摺動面上で気孔がほとんど凝集することなぐ適正な分散状態になるので、さらにシ 一ル性を向上させることができる。即ち、摺動面上での球状気孔 4aの分散状態が、 シール性を高いものに保持できる分散状態となる。特に、前記分散密度を 95個/ m m2以上とすることがより好ましい。分散密度は、摺動面における球状気孔 4aの比率を 求めたときと同様、摺動面から 1箇所当たりの測定面積を 1235 111 X 926 ^ 111に設 定した範囲を 5箇所抜き取って、工業顕微鏡を用いて倍率 100倍で解析することによ り求めること力 Sでさる。
[0039] 球状気孔 4aは、摺動面を平面視した場合、気孔の空間を形成する輪郭部が連続 した曲,锒であることが好ましい。
[0040] 本実施形態の摺動部材では、摺動面における気孔の最大径によってもシール性が 異なる。気孔の最大径とは、例えば、図 1 (b)に示すような球状気孔 4aの場合には、 気孔径の最大値 aである。図 1 (c)に示すような連通気孔 4bの場合には、最大径は L 1であり、図 1 (d)に示すように凝集した連通気孔 4bの場合には、最大径は L2である 。なお、図 1 (c)に示すような連通気孔 4bにおける気孔の最小値は L3であり、図 l (d )に示すような連通気孔 4bの場合における気孔の最小値は L4である。
[0041] これら各気孔の最大径は、 100 m以下とすることが好ましい。これにより、シール 性を低下させる極端な形状を成す凝集性が高 V、連通気孔や、極端に径の大き V、球 状気孔を有することがなぐシール性をより高いものにすることができる。
[0042] なお、気孔の最大径についても、摺動面から 1箇所当たりの測定面積を 1235 in
X 926 11 mに設定した範囲を 5箇所抜き取って、工業顕微鏡を用いて倍率 100倍で 角早析することにより求めること力 Sでさる。
[0043] 本実施形態の摺動部材では、摺動面を成す炭化珪素質焼結体 1の気孔率を 2. 5 %以上 12%以下とすることが好ましい。これにより、潤滑液の保持性能が優れたもの になるので摺動特性が良好になり、機械的特性も維持し易くなる。
[0044] 即ち、炭化珪素質焼結体 1の気孔率は、摺動部材のシール性、摺動特性に加え、 機械的特性にも影響を及ぼす。気孔率が高いと摺動特性は向上するが、シール性と 機械的特性は、低下する。一方、気孔率が低いと、摺動部材のシール性と機械的特 性は向上するが、摺動特性が低下する。気孔率を 2. 5%以上 12%以下とすることで 、摺動面上にある気孔が摺動面以外の面にある気孔と連通する比率が低くなる。こ れにより、摺動面に供給された潤滑液が連通した気孔を伝わり外部に漏れなくなり、 気孔内に保持されていた潤滑液は摺動面に連続した流体膜を形成しやすくなつて、 高レ、摺動特性や、例えばメカニカルシールリングで要求される高!/、シール性を得るこ と力 Sできる。
[0045] 特に、気孔率を 3%以上 8%以下とすることがより好ましい。なお、炭化珪素質焼結 体 1の気孔率は、アルキメデス法に準拠して測定することができる。
[0046] 次に、前記で説明した一実施形態にかかる摺動部材の製造方法を説明する。
前記摺動部材を得る工程は、調合工程と、成形工程と、焼成工程とを含む。以下、 各工程につ V、て順に説明する。
[0047] 先ず、調合工程では、主成分を成す炭化珪素粉末に、炭化硼素粉末、フエノール 樹脂等の焼結助剤、気孔形成剤、該気孔形成剤を分散させるための気孔分散剤と、 さらに水等を添加混合してスラリー(原料)を得る。
[0048] 前記気孔形成剤としては、例えばシリコーンビーズ、ポリスチレン、フエノール樹脂 およびアクリル スチレン共重合体の少なくとも 1種からなる懸濁重合された非架橋 性の樹脂ビーズ等を用いればよい。これら樹脂ビーズは、その圧縮強度が 1. 2MPa 以下と低いために、成形工程で加圧方向に容易に塑性変形して、弾性回復に伴つ て発生しやす V、マイクロクラックを低減することができるからである。前記気孔形成剤 は熱分解または消失することにより、摺動面上に潤滑剤を供給することができる気孔 (焼失性気孔)を形成する。
[0049] ここで、本実施形態では気孔分散剤を用いている。即ち、得られた摺動部材の摺 動面における気孔径 10 m以上の全気孔に対する、真円度 6 m以下、且つ気孔 径 10 m以上 60 m以下である球状気孔 4aを得るには、前記気孔形成剤として真 円度 4 m以下、且つ直径 12 m以上 75 m以下のものを用いればよい。しかしな がら、この気孔形成剤は、疎水性物質のため水を添加したスラリーに分散できず、凝 集しやすい。このため、摺動面上で形成された気孔同士が連結するおそれが高ぐ 場合によってはシール性を低下させてしまう。そのため、気孔形成剤を分散させなけ ればならず、この気孔形成剤を分散させる作用を成す気孔分散剤を添加する。添加 された気孔分散剤は気孔形成剤に吸着し、これにより気孔形成剤はスラリー中に容 易に湿潤、浸透し、気孔形成剤の再凝集が抑制されるため、気孔形成剤はスラリー 中に凝集することなく分散する。この場合、気孔形成剤 100質量%に対し、前記気孔 分散剤を 0. 1質量%以上添加すればよい。これにより、気孔形成剤の種類に係わら ず、気孔形成剤を十分に、容易に分散でき、製造効率を向上させることができる。
[0050] 前記気孔分散剤としては、例えばポリカルボン酸ナトリウム等のカルボン酸塩、スル ホン酸塩、硫酸エステル塩、リン酸エステル塩等のァニオン界面活性剤が好ましい。 ァニオン界面活性剤は、気孔形成剤をスラリーに湿潤、浸透させる効果が高い。ァニ オン界面活性剤が気孔形成剤に吸着することで気孔形成剤はスラリー中に容易に湿 潤、浸透する。さらにァユオン界面活性剤が有する親水基の電荷反発により、気孔形 成剤の再凝集がさらに抑制されるため、気孔形成剤をスラリー中に凝集させることな く十分に分散させ易い。また、主成分である炭化珪素粉末を水と混合してスラリーを 作製する際、炭化珪素粉末の凝集を抑制するために炭化珪素スラリーをアルカリ性 にしている力 S、ァニオン界面活性剤を用いることでアルカリ性スラリー中でも炭化珪素 粉末や気孔形成剤の凝集を抑制することができる。このようにスラリー中の気孔形成 剤が分散されることで、得られる摺動部材の摺動面における気孔は独立した状態の 球状気孔 4aとして存在する比率が高くなるとともに、シール性を低下させる極端に大 きレ、気孔も少な!/、ため、シール性を長期間維持することができる。
[0051] 成形工程では、得られたスラリーに成形用バインダーを添加、混合した後、噴霧乾 燥することで顆粒を得、一部の顆粒が前記気孔形成剤に内包された状態の成形用 原料を得る。
[0052] なお、得られた摺動部材の摺動面における前記球状気孔 4aの分散密度を上げる には、気孔分散剤の含有量を多くすればよい。例えば分散密度を 60個/ mm2以上 にするには、気孔形成剤 100質量%に対し、分散剤を 1質量%以上添加すればよい
[0053] 同様に、得られた摺動部材の摺動面における気孔の最大径を 100 m以下とする には、気孔分散剤の含有量を多くするとともに、直径が短い気孔形成剤を用いれば よい。具体例を挙げると、気孔形成剤 100質量%に対し、分散剤を 1質量%以上添 加し、かつ直径 40 m以下の気孔形成剤を用いればよ!/、。 [0054] 摺動部材を構成する炭化珪素質焼結体 1の気孔率の調整については、例えば、前 記気孔形成剤の比率で調整すればよい。具体例を挙げると、気孔率を 2. 5%以上と するには、気孔形成剤の比率を炭化珪素および炭化硼素の混合粉末 100質量%に 対して、 1質量%以上とすればよぐ気孔率を 12%以下とするには、気孔形成剤の比 率を 5質量%以下とすればよ!/、。
[0055] 前記成形用原料の顆粒を所定の成形型に充填し、成形圧力 49〜; 147MPaの範 囲で適宜選択される成形圧力で成形して成形体を得る。
[0056] 焼成工程では、成形体を窒素雰囲気中、温度 450〜650°C、保持時間 2〜; 10時 間で脱脂して、脱脂体とする。この脱脂体を焼成炉に入れ、不活性ガスの減圧雰囲 気中、温度 1800〜2100°C、保持時間 3〜5時間で保持し、焼成することで炭化珪 素質焼結体 1を得る。このような調合工程、成形工程および焼成工程を含むことによ つて、気孔形成剤が均一に分散されるため、シール性を低下させる極端に大きい気 孔が少なくなり、しかも連通気孔も減少するので、シール性を長期間維持し易い。な お、前記不活性ガスについては特に限定されるものではないが、入手や取り扱いが 容易であることから、アルゴンガスを用いることが好適である。
[0057] 得られた焼結体は、必要に応じて加圧面に研肖 ij、研磨等の加工を施してもよい。例 えば、両頭研削盤や平面研削盤等で加圧面を平面とし、平均粒径 3 mのダイヤモ ンド砥粒を用いてアルミナ製のラップ盤で粗加工した後、平均粒径 1 mのダイヤモ ンド砥粒を用いて錫製のラップ盤で算術平均高さ Raが 0. 98 a m以下となるように鏡 面加工して摺動面としてもよい。算術平均高さ Raを 0. 98 m以下とすれば、シール 性を維持し易くなる。
[0058] 算術平均高さ Raは、 JIS B 0601— 2001 (対応 ISO 4287: 1997)に準拠して測定 すればよい。即ち、測定長さおよびカットオフ値をそれぞれ 5mmおよび 0. 8mmとし 、触針式の表面粗さ計を用いて測定する場合であれば、例えば、摺動部材の摺動面 に、触針先端半径が 2 ^ 111の触針を当て、触針の走査速度は 0. 5mm/秒とすれば よい。
[0059] このように焼結体の表面を研磨することで、メカニカルシールリングとすることができ る。上述のような製造方法によれば、潤滑液の保持性能に優れるとともに熱伝導性や 耐熱衝撃性に優れたメカニカルシールリングを始めとする摺動部材を安価に得ること ができる。
[0060] 次に、前記で説明した一実施形態に力、かる摺動部材を用いたメカニカルシールリン グおよびメカニカルシールにつ!/、て説明する。
[0061] 図 3 (a)に示すように、このメカニカルシールは、環状体である固定リング 5aの摺動 面 15a上で、凸状部を有する環状体である回転リング 5bの摺動面 15bを摺動させて シール作用を及ぼすメカニカルシールリング 5を用いた装置である。メカ二カルシー ノレリング 5は、駆動機構(不図示)による駆動力を伝達させる回転軸 6と、この回転軸 6 を回転可動に支承するケーシング 7との間に取り付けられ、固定リング 5aと回転リング 5bとの互いの摺動面 15a, 15bが回転軸 6に対して垂直面を形成するように設置され ている。
[0062] メカニカルシールリング 5は、潤滑液を介して互いの摺動面 15a, 15bを当接し摺動 させる固定リング 5aと回転リング 5bとからなり、これら固定リング 5aおよび回転リング 5 bの少なくとも一方が一実施形態にかかる摺動部材からなる。該摺動部材は、前記し た通り、シール性および潤滑液の保持性能に優れている。そのため、該摺動部材を 用いたメカニカルシールリング 5およびメカニカルシールは長期信頼性が高い。
[0063] 回転リング 5bはパッキング 8によって緩衝的に支持されている。このパッキング 8の 回転リング 5bと相対する側には回転軸 6を巻回するようにコイルスプリング 9が設置さ れている。このコイルスプリング 9の弹発カ(予め設定されたコイルスプリング 9の力) により、パッキング 8を押圧することによって、回転リング 5bの摺動面 15bが固定リング 5aの摺動面 15aに押圧されて摺動するようにしてある。また、コイルスプリング 9がパ ッキング 8を押圧する側と相対する側には、カラー 10がセットスクリュー 1 1により回転 軸 6に固定され、コイルスプリング 9のストッパーとして設置されている。
[0064] 回転リング 5bの摺動面 15bと摺動面 15aを介して接する固定リング 5aは緩衝ゴム 1 2によって支持されている。緩衝ゴム 12はこのメカニカルシールの外枠となるケーシ ング 7の内側に取り付けられて固定リング 5aを支持するようにしてある。そして、回転 軸 6が回転するとカラー 10がともに回転し、コイルスプリング 9の弹発力によって押圧 されるパッキング 8と、このパッキング 8によって支持されている回転リング 5bの摺動面 15bとが押圧されながら回転することによって、固定リング 5aの摺動面 15aとの間でシ ール作用が働くようにしてある。このようなメカニカルシールを流体機器 (不図示)に取 り付ける場合には、メカニカルシールリング 5に対してカラー 10の側の延長上に、流 体機器が配置されるように取り付けて用いられる。
[0065] このとき、流体は、メカニカルシールのケーシング 7で囲まれた内部にまで浸入する 力 S、パッキング 8と回転軸 6との間に設けられたォー(O)リング 13によるシール作用と 、メカニカルシールリング 5の摺動面 15a, 15bのシール作用によって、流体がメカ二 カルシールより外部に漏洩することを低減している。なお、このときメカニカルシール によって密封された流体を、密封流体 14と称し、その一部がメカニカルシールリング 5の摺動面 15a, 15bの間に入り込み潤滑液として作用する。一方、回転リング 5bは パッキング 8によって緩衝的に支持され、緩衝ゴム 12およびパッキング 8は回転軸 6 の回転で発生する振動を吸収する機能も有する。
[0066] 回転リング 5bが摺動を開始すると、摺動面 15a, 15bで空気の流れによる動圧が先 ず発生し、続いて前記球状気孔 4a上ではその動圧より低い負圧が球状気孔 4a内で 保持されていた潤滑液に対し働く。この球状気孔 4a上で発生する負圧によって球状 気孔 4a内に保持されていた潤滑液を摺動面 15a, 15bに適切に供給することができ るので、高強度で摺動特性の高レ、メカニカルシールリング 5とすることができる。
[0067] なお、図 3 (a)に示すメカニカルシールでは、固定リング 5aを環状体、回転リング 5b を凸状部を有する環状体としたが、これとは逆に固定リング 5aを凸状部を有する環状 体とし、回転リング 5bを環状体とすることもできる。
[0068] 次に、本発明の他の実施形態について図面を参照して詳細に説明する。図 4 (a) は、本実施形態にかかる摺動部材における炭化珪素質焼結体の結晶構造を示す概 略説明図であり、図 4 (b)は、図 4 (a)の副相を示す拡大概略説明図である。
[0069] 図 4 (a)に示すように、本実施形態の摺動部材は、炭化珪素を主成分とする主相 17 と、少なくとも硼素、珪素および炭素を含有して成る副相 18とを有する炭化珪素質焼 結体 16からなる摺動面を有し、副相 18は複数の主相 17間に独立して点在する粒状 の結晶相であることを特徴とする。
[0070] 即ち、本実施形態に力、かる副相 18は、複数の主相 17で囲まれた領域にのみ存在 する粒状の相である。この副相 18が複数の主相 17にまたがって存在する柱状の相 あるいは針状の相であると、熱伝導の担体であるフオノンの動きが大きな制約を受け る。本実施形態では、副相 18が複数の主相 17間に点在する粒状の相であることから 、フオノンの動きがほとんど制約されないため、熱伝導性、耐熱衝撃性とも向上するこ ととなり、その結果、摩擦による発熱を低下させることができ、摺動面の摩耗を低減す ること力 Sでさる。
[0071] 特に、隣り合う副相 18間の距離 dを 3 m以上とすることが好ましい。これにより、さ らにフオノンの動きが制約を受けずらくなる。
[0072] 副相 18が複数の主相 17間に点在する状態および距離 dは、透過型電子顕微鏡や 走査型電子顕微鏡を用い、倍率を 3000〜; 10000倍にして炭化珪素質焼結体 16の 断面または摺動面を観察することによって確認することができる。
[0073] なお、副相 18は硼素、珪素および炭素以外の不可避不純物であるナトリウム(Na) ,マグネシウム(Mg) ,鉄(Fe) ,アルミニウム (A1)およびカルシウム(Ca)等が含まれ てレ、ても何等差し支えなレ、。機械的特性を維持するとレ、う観点から炭化珪素質焼結 体 16に対し、これら不可避不純物はその合計が 0. 1体積%以下であることが好適で ある。
[0074] また、摺動部材の熱伝導性や耐熱衝撃性は、副相 18の形状、即ちアスペクト比の 影響を受けやすい。図 4 (b)に示すように、副相 18のアスペクト比とは、短軸 αに対 する長軸 βの比率(即ち、長軸 β /短軸 α )である。この比率が小さくなるほど、フォ ノンの動きが制約されにくくなるため、摺動部材の熱伝導性、耐熱衝撃性とも向上す
[0075] 本実施形態では、副相 18のアスペクト比を 2. 5以下 (但し、 0を除く)とすることが好 適である。これにより、フオノンの動きがさらに制約されに《なるため、摺動部材の熱 伝導性、耐熱衝撃性ともさらに向上させることができる。その結果、摩擦による発熱を 低下させることができ、摺動面の摩耗をさらに低減することができる。
[0076] なお、副相 18のアスペクト比は、炭化珪素質焼結体 16の断面または摺動面を透過 型電子顕微鏡や走査型電子顕微鏡を用い、倍率 3000〜; 10000倍で得られた画像 より求めること力 Sできる。 [0077] また、上述のように副相 18は、少なくとも硼素、珪素および炭素を含有して成るが、 副相中の珪素や炭素は、詳細を後述するように、本発明の摺動部材を成す炭化珪 素質焼結体の製造方法にお V、て、炭化珪素粉末に炭化硼素粉末等を混合して得ら れる原料粉末を成形、焼成して得られるものであるため、炭化珪素質焼結体中の副 相として含有されるものである。特に、本実施形態では副相 18に含まれる硼素が重 要な作用を成し、摺動部材の機械的特性や熱伝導性に影響を及ぼす。硼素の含有 量が低過ぎると、炭化珪素の結晶粒子を十分結合することができないため、機械的 特性と熱伝導性が低下する。一方、硼素の含有量が高過ぎると、アスペクト比の高い 副相が析出する結果、フオノンの動きが制約され易くなり、熱伝導性が低下する。本 実施形態の摺動部材では、前記硼素の含有量を前記炭化珪素質焼結体 100質量 %に対し、 0. 2質量%以上 0. 3質量%以下とすることが好適である。硼素の含有量 をこの範囲にすることで、硼素は焼結助剤として作用するため、高い機械的特性と熱 伝導性を兼ね備えた摺動部材とすることができる。
[0078] 硼素の含有量は、蛍光 X線分析法や ICP発光分析法を用いて測定することができ る。なお、硼素の大部分は珪素、炭素とともに副相 18を形成するが、炭化珪素の結 晶粒子内に一部の硼素が分散しても何等差し支えない。
[0079] また、本実施形態においても、前記した一実施形態と同様の理由から、炭化珪素 質焼結体 16の気孔率は 2. 5%以上 12%以下が好適であり、 3%以上 8%以下がよ り好適である。
[0080] 次に、本実施形態にかかる摺動部材の製造方法を説明する。
先ず、炭化珪素粉末に水、分散剤および炭化硼素粉末、フエノール樹脂等の焼結 助剤、気孔形成剤および気孔分散剤を加え、ボールミルで混合、粉砕してスラリーを 得る(調合工程)。このスラリーにバインダーを添加、混合した後、噴霧乾燥して炭化 珪素の顆粒を得、この顆粒を成形して成形体を得る(成形工程)。
[0081] 炭化珪素質焼結体 16に対する硼素の含有量は、添加する炭化硼素粉末の影響を 受ける。炭化珪素質焼結体 100質量%に対し、硼素の含有量を 0. 2質量%以上 0. 3質量%以下とするには、炭化硼素粉末の含有量を炭化珪素粉末に対して、 1質量 %以上 3質量%以下とすればよ!/、。 [0082] 炭化珪素質燒結体 16の気孔率を 2. 5%以上 12%以下とするには、脱脂工程また は焼成工程において焼失または熱分解する気孔形成剤として予め粉砕した樹脂ビ ーズを顆粒に対して 0. 5〜; 10質量%添加、混合して混合原料とした後、この混合原 料を成形型に充填し、加圧、成形して所定形状の成形体とすればよい。前記樹脂ビ ーズとしては、前記一実施形態において例示した樹脂ビーズと同じものが例示される
[0083] 得られた成形体は必要に応じて、窒素雰囲気中、 10〜40時間で昇温し、 450-6 50°Cで 2〜; 10時間保持後、自然冷却して脱脂すればよい。そして、脱脂した成形体 を、たとえば、不活性ガスの減圧雰囲気下、温度 1800〜2100°Cで、 3〜5時間保持 し焼成することで炭化珪素質焼結体 16を得る (焼成工程)。
[0084] 特に、副相 18のアスペクト比は、焼成温度の影響を受けやすぐ焼成温度を高くす ると、その値が大きくなり、焼成温度を低くすると、その値が小さくなる。副相 18のァス ぺクト比を 2· 5以下(但し、 0を除く)とするには、焼成温度を 1800〜2000°Cとすれ ばよい。
[0085] また、隣り合う副相 18間の距離 dは、焼成時間の影響を受けやすぐ焼成時間を長 くすると、その値が大きくなり、焼成時間を短くすると、その値力 S小さくなる。隣り合う副 相 18間の距離 dを 3 m以上とするには、焼成時間を 4. 5〜5時間とすればよい。
[0086] 上述のような製造方法によれば、潤滑液の保持性能に優れるとともに熱伝導性や 耐熱衝撃性に優れたメカニカルシールリングを始めとする摺動部材を安価に得ること ができる。
[0087] 次に、本実施形態に力、かる摺動部材を用いたメカニカルシールリングおよびメカ二 カルシールについて説明する。本実施形態に力、かるメカニカルシールリングおよびメ 力二カルシールは、固定リング 5aおよび回転リング 5bの少なくとも一方が本実施形態 にかかる摺動部材からなる(図 3参照)。
[0088] 該摺動部材は、前記した通り、熱伝導性および耐熱衝撃性に優れている。したがつ て、本実施形態に力、かるメカニカルシールリングおよびメカニカルシールは、摺動開 始時に瞬間的に高温の摩擦熱が発生して、熱衝撃を受けやすい過酷な使用状況下 であっても、好適に使用することができる。 なお、その他の構成は、前記した一実施形態と同様であるので、説明を省略する。
[0089] 以上、本発明にかかるいくつかの実施形態について示した力、本発明は上述した 実施形態に限定されるものではなぐ本発明の要旨を逸脱しない範囲で変更や改良 したものにも適用できることは言うまでもない。例えば、本発明は、各実施形態にかか るそれぞれの摺動部材に限定されるものではなぐ例えば一実施形態にかかる摺動 部材と、他の実施形態に力、かる摺動部材とを組み合わせた実施形態に力、かる摺動 部材であってもよい。
[0090] 本発明に力、かる気孔の形状は、摺動面において真円度 6 in以下、且つ気孔径 1 O ^ m以上 60 111以下である限りにおいては、前記した球状気孔 4a以外に、柱状で あってもよい。
[0091] 以下、実施例を挙げて本発明を詳細に説明するが、本発明は以下の実施例のみ に限定されるものではない。
[0092] [実施例 I]
<試料の作製〉
先ず、主成分を成す炭化珪素粉末に所定量の炭化硼素粉末を添加し、気孔形成 剤として表 1に示す如く最大径を有するフエノール樹脂およびポリスチレンからなる懸 濁重合された非架橋性の樹脂ビーズを添加した。なお、前記気孔形成剤はいずれ の試料も真円度 4 m以下、且つ直径 12 m以上 75 m以下のものを用いた。この 気孔形成剤を炭化珪素および炭化硼素の混合粉末 100質量%に対して表 1に示す 如く比率で添加した。さらに、気孔分散剤としてポリカルボン酸ナトリウムを気孔形成 剤 100質量%に対して表 1に示す如く比率として添加混合して原料を得た。
[0093] 得られた原料をボールミルに投入した後、 48時間混合してスラリー化した。このスラ リーに成形助剤としてバインダーを添加、混合した後、噴霧乾燥することにより平均粒 径 80 11 mの炭化珪素の顆粒からなる成形用原料を得た。
[0094] 次に、この成形用原料を成形型に充填し、厚み方向に 98MPaの圧力で加圧、成 形してリング形状の成形体とした。得られた成形体は窒素雰囲気中、 20時間で昇温 し、 600°Cで 5時間保持後、自然冷却して脱脂し、脱脂体とした。
[0095] 最後に、脱脂体を約 2000°Cにて 4時間保持して焼成し、炭化珪素の主相と、硼素 、珪素および炭素を含有して成る副相とを有する炭化珪素質焼結体を作製した。
[0096] 得られた各炭化珪素質焼結体の表面を平面研削盤にて研削加工し、平均粒径 3 a mのダイヤモンド砥粒を用いたアルミナ製のラップ盤にて粗加工した後、同じく平 均粒径 3 a mのダイヤモンド砥粒を用いた錫製のラップ盤にて算術平均高さが(Ra) 0. 98 m以下となるように研磨加工して摺動面とし、外径 26mm、内径 19mmのメ 力二カルシールリングである試料 No. I—;!〜 18を作製した。各試料はいずれも図 3 に示す固定リング 5aである。
[0097] 得られた各試料の摺動面を工業顕微鏡を用いて、倍率を 100倍とし、各試料の摺 動面から 1箇所当たりの測定面積を 1235 mX 926 mに設定した範囲を 5箇所抜 き取って解析することにより、摺動面における気孔径 10 m以上の全気孔に対する 、真円度 6 m以下、且つ気孔径 10 m以上 60 μ m以下である球状気孔の比率、 前記球状気孔の分散密度および前記各摺動面における気孔の最大径を求めた。こ のとき、主相および副相の面積比率も併せて求めた。その結果、主相および副相の 合計面積 100質量%に対して、主相が 95面積%、副相力 ¾面積%であった。
[0098] 主相および副相における Siおよび Cの比率(原子%)は、 TEMで前記摺動面を組 織観察してエネルギー分散型 X線分光分析 (EDS)により測定した。測定箇所は 5箇 所とし、その平均値を Siおよび Cの比率とした。そして、 Siおよび Cの比率が、主相に おいては、 Si : C = 35 : 65〜65 : 35の範囲内にある力、否力、、副相においては、 Si : C =0 : 100〜34: 66の範囲内にあるか否かをそれぞれ評価した。エネルギー分散型 X 線分光分析 (EDS)による測定結果の一例として、試料 No. I— 1における主相の測 定結果を図 5に、副相の測定結果を図 6にそれぞれ示す。なお、試料 No. I— 1にお ける主相は、 Si : C = 44 : 56であり、副相は、 Si : C = 7 : 93であった。
各試料を構成する炭化珪素質焼結体の気孔率につ V、ては、アルキメデス法に準拠 して測定した。
[0099] <特性評価〉
外径 24mm、内径 21mmの凸状部を有する外径 26mm、内径 19mmの環状体で あって、炭素からなる回転リング 5bを準備した。この回転リング 5bと、固定リング 5a ( 試料 No. I—;!〜 18)とを回転軸 6を通して摺動面 15a, 15bで当接させ、以下の摺 動条件で摺動させ、シール性を示す摺動面 15a, 15bからの漏れ量および摺動特性 を示す摩擦係数を測定した。
[0100] (摺動条件)
•相対速度: 8m/s
•面圧 : 500kPa
-潤滑液 :水
-摺動時間: 100時間
[0101] なお、相対速度は、回転軸の中心を基準として外周側に向力、い、 11. 25mm離れ た位置(以下、位置 Pという。)における固定リング 5aに対する回転リング 5bの回転速 度である。面圧は、固定リング 5aに対する回転リング 5bの単位面積当たりの圧力で あり、固定リング 5aと回転リング 5bとを当接させるのに予め設定された加圧力 Fを回 転リング 5bの摺動面 15bの面積で除すことで求められ、面積は、寸法測定用のゲー ジを備えた金属顕微鏡を用い、倍率 50倍で回転リング 5bの凸状部の外径および内 径をゲージで測定し、算出した。
[0102] 摩擦係数 については、トルクメーターを用いて摺動中の回転リング 5bの位置 に おける回転トルク Tを測定し、この回転トルク Tを、摺動面 15bの面積に面圧を掛ける ことで得られる加圧力 Fおよび回転軸の中心から位置 Pまでの距離 11. 25mmで除 した値とした。即ち摩擦係数 は、式: =T/11. 25Fで算出される値とし、その値 を表 1に示した。
[0103] 機械的特性を示す 4点曲げ強度については、抗折試験片からなる試料を別途作製 し、 JIS R 1601— 1995 (対応 ISO 14704: 2000または ICS 81.060.30)に準拠して 測定し、その値を表 1に示した。
[0104] なお、表 1では、摺動面における気孔径 10 in以上の全気孔に対する、真円度 6 a m以下、且つ気孔径 10 m以上 60 μ m以下である球状気孔の比率および前記 球状気孔の分散密度は、簡便のため、単に球状気孔の比率、球状気孔の分散密度 とした。
[0105] [表 1]
Figure imgf000022_0001
表 1から明らかなように、気孔径 lO^ m以上の全気孔に対する、真円度 6 111以下 、且つ気孔径 10 m以上 60 ,1 m以下である球状気孔の比率が 60%以上である本 発明の試料(No. I— 4〜20)は、球状気孔の比率が 60%未満である試料(No. I— ;!〜 3)に比べて摺動面 15a, 15b間より発生する漏れ量が 120ml以下と少なぐシー ル性が高いものであった。特に、前記球状気孔の比率が 75%である試料(No. 1- 7 〜; 19)は、摺動面における漏れ量が 65ml以下とシール性がより高いものであった。
[0107] 球状気孔の比率が 75%である試料(No. I— 7〜; 19)において、摺動面における前 記球状気孔の分散密度、気孔の最大径、炭化珪素質焼結体の気孔率をそれぞれ変 化させた試料を比較した場合は以下の結果となった。
[0108] 即ち、摺動面における前記球状気孔の分散密度が 60個/ mm2以上である試料( No. I 8〜19)は、いずれも分散密度が 60個/ mm2未満である試料(No. I— 7)よ り漏れ量が 54ml以下と少なくシール性がより高いことがわかる。摺動面における前記 球状気孔の分散密度が 60個/ mm2以上である試料(No. I— 8〜19)を比較した場 合、各気孔の最大径が 100 m以下である試料(No. 1- 8, 10〜19)は、いずれも 各気孔の最大径が 100 mを超える試料(No. 1— 9)より、漏れ量が 35ml以下と少 なくシーノレ I·生がより高いことがわかる。
[0109] 炭化珪素質焼結体の気孔率が 2. 5%以上 12%以下である試料 (No. I— 8〜11 , 13- 16, 18, 19)は、摩擦係数が 0. 04以下と低ぐし力、も 4点曲げ強度が 201MP a以上と高いものであった。これに対し、前記気孔率が 2. 5%未満である試料(No. I — 12)は摩擦係数が 0. 08と高ぐ一方、気孔率が 12%を超える試料 (No. 1- 17) は摩擦係数が低いものの、 4点曲げ強度が 190MPaと低いものであった。
[0110] [実施例 Π]
<試料の作製〉
先ず、炭化珪素粉末に表 2に示す添加量の炭化硼素粉末、気孔形成剤、気孔分 散剤および水を加えボールミルに投入した後、 48時間混合してスラリー化した。この スラリーに成形助剤としてバインダーを添加、混合した後、噴霧乾燥することにより平 均粒径 80 a mの炭化珪素の顆粒を得た。
[0111] なお、前記気孔形成剤としては、真円度 4 m以下、且つ直径 12 111以上 75 111 以下であり、表 2に示す如く最大径を有する予め粉砕されたポリスチレンからなる懸 濁重合された非架橋性の樹脂ビーズを用いた。また、前記気孔分散剤としては、ポリ カルボン酸ナトリウムを用いた。
[0112] 次に、この混合原料を成形型に充填し、厚み方向に 98MPaの圧力で加圧、成形し て所定形状の成形体とした。得られた成形体は窒素雰囲気中、 20時間で昇温し、 6 00°Cで 5時間保持した後、自然冷却して脱脂して脱脂体とした。
[0113] そして、前記で得た脱脂体を表 2に示す焼成温度で 4時間保持し焼成し、炭化珪 素の主相と、硼素、珪素および炭素を含有して成る副相とを有する炭化珪素質焼結 体である試料 No. II—;!〜 10を作製した。
[0114] 得られた各試料について、 ICP発光分析法を用いて各試料の焼結体を 100質量 %としたときの硼素の含有量を測定し、その測定値を表 2に示した。なお、本実施例 では硼素は全て副相中に含有されるものである。
[0115] また、上記各試料の表面を平面研削盤で研削して平面とし、平均粒径 3 mのダイ ャモンド砥粒を用いてアルミナ製のラップ盤で粗加工した後、同じく平均粒径 3 a m のダイヤモンド砥粒を用いて錫製のラップ盤で算術平均高さ Raが 0. 98 m以下と なるように鏡面加工して摺動面とした。この摺動面を、走査型電子顕微鏡を用い倍率 5000倍で副相の形状およびアスペクト比を観察して測定し、その測定値を表 2に示 した。
[0116] また、前記実施例 Iと同様にして、球状気孔の比率、主相および副相における Siお よび Cの比率 (原子%)を測定した。その測定 および測定結果を表 2に示した。
[0117] <評価〉
別途各試料の 3点曲げ強度、ポアソン比、ヤング率、 40〜400°Cにおける熱膨張 係数および熱伝導率を測定した。具体的には、 3点曲げ強度(S)は JIS R 1601 - 1995 (対応 ISO 14704: 2000または ICS 81.060.30)、ポアソン比 )およびヤング率 (E)は、 JIS R 1602— 1995 (対応 ISO 17561: 2002)、 40〜400°Cにおける熱膨 張係数 )は JIS R 1618— 2002 (対応 ISO 17562: 2001)、熱伝導率(k)は JIS R 1611— 1997にそれぞれ準拠して測定した。
[0118] そして、測定して得られた 3点曲げ強度(S)、ポアソン比 )、ヤング率 (E)および
40〜400°Cにおける熱膨張係数( α )をそれぞれ以下の式(3)に当てはめて熱衝撃 抵抗係数 Rを算出した。ついで、算出された熱衝撃抵抗係数 Rと、前記で測定して得 られた熱伝導率 (k)とを以下の式 (4)に当てはめて熱衝撃抵抗係数 R'算出した。
[0119] [数 3]
R = S X ( 1 - V ) / ( E X α ) · · · ( 3 )
但し S : 3点曲げ強度 (P a )
V : ポアソン比
E :ヤング率 (P a )
α : 4 0〜4 0 0 ¾における熱膨張係数 (X 1 0— 6 / K )
[0120] 圖
R ' = R X k · - · ( 4 )
但し k :熱伝導率 (WZ (m · K ) )
[0121] ここで、熱衝撃抵抗係数 Rは加熱後、急冷した場合の耐熱衝撃性の指標となる係 数である。熱衝撃抵抗係数 R'は、加熱後、比較的緩やかに冷却した場合の耐熱衝 撃性の指標となる係数である。いずれの係数も高いほど、耐熱衝撃性が高いと言え 熱伝導率 k、熱衝撃抵抗係数 R'の測定結果は、それぞれ表 2に示す通りである。
[0122] 各試料を構成する炭化珪素質焼結体の気孔率については、アルキメデス法に準拠 して測定した。
[0123] また、別途リング形状をなす成形体を作製した後、脱脂、焼成を行って焼結体とし、 表面を平面研削盤で研削して平面とした後、アルミナ製のラップ盤で粗加工し、錫製 のラップ盤で算術平均高さ Raが 0. 98 m以下となるように鏡面加工して、外径 26m m、内径 19mmの環状体である試料 No. II— ;!〜 10を得た。これらの試料はいずれ も固定リング 5aである。
[0124] つ!/、で、上記実施例 Iで準備した回転リング 5bと、上記で得た固定リング 5a (試料 N o. II—;!〜 10)とを回転軸 6を通して摺動面 15a, 15bで当接させ、これらを上記実施 例 Iと同様の摺動条件で摺動させて摩擦係数を測定し、その値を表 2に示した。
[0125] [表 2]
Figure imgf000026_0001
印を付した試料は本発明の範囲外で る。
[0126] 表 2から明らかなように、本発明の試料 No. II— 2〜; 10は、その副相が粒状であつ て、アスペクト比も高いことから、熱伝導率、熱衝撃抵抗係数 R'とも高ぐ熱伝導性お よび耐熱衝撃性は高!/、ものであった。
[0127] 特に、アスペクト比が 2. 5以下である試料 No. II— 3〜7, 9, 10は、その熱伝導率 および熱衝撃抵抗係数 R 'はさらに高いものであった。
[0128] また、硼素の含有量が異なる試料 No. II— 4〜8を比べると、硼素の含有量が 0. 2 質量%以上 0. 3質量%である試料 No. II— 5〜7は、この範囲外である試料 No. II 4, 8よりもその熱伝導率、熱衝撃抵抗係数 R'ともに高いものであった。
[0129] これに対し、本発明の範囲外である試料 No. II— 1は、本願の副相の組成から外れ た異相が発生して柱状となっており、このような異相はアスペクト比がさらに高いこと から、熱伝導率、熱衝撃抵抗係数 R'とも低ぐ熱伝導性および耐熱衝撃性は低いも のであった。
[0130] [実施例 ΙΠ]
<試料の作製〉
まず、炭化珪素粉末に 2. 5質量%の炭化硼素粉末と、表 3に示す添加量の気孔形 成剤、気孔分散剤および水を加えボールミルに投入した後、 48時間混合してスラリ 一化した。このスラリーに成形助剤としてバインダーを添加、混合した後、噴霧乾燥 することにより平均粒径 80 μ mの炭化珪素の顆粒を準備した。
[0131] なお、前記気孔形成剤としては、真円度 4 m以下、且つ直径 12 111以上 75 111 以下であり、表 3に示す如く最大径を有する予め粉砕されたポリスチレンからなる懸 濁重合された非架橋性の樹脂ビーズを用いた。また、前記気孔分散剤としては、ポリ カルボン酸ナトリウムを用いた。
次に、この混合原料を成形型に充填し、厚み方向に 98MPaの圧力で加圧、成形し て所定形状の成形体とした。
[0132] 得られた成形体を窒素雰囲気中、 20時間で昇温し、 600°Cで 5時間保持後、自然 冷却して脱脂し、脱脂体とした。そして、脱脂体を 2000°Cで、 4時間保持して焼成し 、焼結体である試料 No. Ill—;!〜 6を得た。
[0133] その後、上記各試料の表面を平面研削盤で研削して平面とし、平均粒径 3 mの ダイヤモンド砥粒を用いてアルミナ製のラップ盤で粗加工した後、同じく平均粒径 3 a mのダイヤモンド砥粒を用いて錫製のラップ盤で算術平均高さ Raが 0. 98 μ m以 下となるように鏡面加工して摺動面とした。この摺動面を、走査型電子顕微鏡を用い 倍率 5000倍で副相の形状を観察した結果、レ、ずれの試料も柱状の副相は観察され ず、粒状の副相のみが観察された。
[0134] また、前記実施例 Iと同様にして、球状気孔の比率、主相および副相における Siお よび Cの比率 (原子%)を測定した。その測定 および測定結果を表 3に示した。また 、各試料の気孔率は、アルキメデス法に準拠して求めた。
[0135] 各試料の 3点曲げ強度、ポアソン比、ヤング率、 40〜400°Cにおける熱膨張係数 および熱伝導率については、実施例 IIに示した方法と同様の方法で測定し、式 (4) で規定される熱衝撃抵抗係数 R'を求めた。
[0136] また、別途リング形状をなす成形体を作製した後、脱脂、焼成を行って焼結体とし、 表面を平面研削盤で研削して平面とした後、アルミナ製のラップ盤で粗加工し、錫製 のラップ盤で算術平均高さ Raが 0. 98 m以下となるように鏡面加工して、外径 26m m、内径 19mmの環状体である試料を得た。この試料はいずれも固定リング 5aであ
[0137] その後、実施例 IIで示した条件と同じ条件で摺動させ、摺動中の摩擦係数を測定し
、その値を表 3に示した。
[0138] [表 3]
R
Ό
Figure imgf000029_0001
[0139] 表 3から明らかなように、気孔率が 2. 5%未満の試料 No. ΙΠ— 1は、熱伝導率、耐 熱衝撃抵抗係数 R'がともに高ぐ良好であるが、摩擦係数が高い。また、気孔率が 1 5%を超える試料 No. Ill— 6は摩擦係数が低ぐ良好であるが、熱伝導率、耐熱衝撃 抵抗係数 R'とも低い。
[0140] 一方、気孔率が 2. 5%以上 12%以下である試料 No. Ill— 2 5は熱伝導率、耐熱 衝撃抵抗係数 R'および摩擦係数のバランスがよぐ好適であるといえる。

Claims

請求の範囲
[1] 炭化珪素を主成分とする主相と、
該主相とは異なる組成で、少なくとも硼素、珪素および炭素を含有して成る副相とを 有する炭化珪素質焼結体から成る摺動面を有し、
該摺動面における気孔径 10 m以上の全気孔に対する、真円度 6 m以下、且つ 気孔径 10 ,1 m以上 60 ,1 m以下である気孔の比率が 60%以上であることを特徴とす る摺動部材。
[2] 前記摺動面における前記気孔の比率が 75%以上である請求項 1に記載の摺動部 材。
[3] 前記摺動面における前記気孔の分散密度が 60個/ mm2以上である請求項 1に記 載の摺動部材。
[4] 前記炭化珪素質焼結体の気孔率は、 2. 5%以上 12%以下である請求項 1に記載 の摺動部材。
[5] 前記摺動面における各気孔の最大径が 100 m以下である請求項 1に記載の摺 動部材。
[6] 前記炭化珪素質焼結体における前記副相は、隣接する主相の粒径よりも小さい請 求項 1に記載の摺動部材。
[7] 前記炭化珪素質焼結体における前記副相は、複数の前記主相間に点在する粒状 の結晶相である請求項 1に記載の摺動部材。
[8] 前記副相のアスペクト比が 2. 5以下 (但し、 0を除く)である請求項 7に記載の摺動 部材。
[9] 前記硼素の含有量が前記炭化珪素質焼結体 100質量%に対し、 0. 2質量%以上
0. 3質量%以下である請求項 7に記載の摺動部材。
[10] 請求項 1に記載の摺動部材の製造方法であって、
主成分を成す炭化珪素粉末に、気孔形成剤、該気孔形成剤を分散させる気孔分散 剤を添加混合して原料を得る調合工程と、
前記原料にバインダーを添加して成形用原料を得、該成形用原料を所定形状に成 形し成形体を得る成形工程と、 前記成形体を焼成して炭化珪素質焼結体を得る焼成工程と、を含むことを特徴とす る摺動部材の製造方法。
[11] 前記気孔分散剤は、ァユオン界面活性剤である請求項 10に記載の摺動部材の製 造方法。
[12] 請求項 1に記載の摺動部材を用いたことを特徴とするメカニカルシールリング。
[13] 請求項 12に記載のメカニカルシールリングを用いたことを特徴とするメカ二カルシ 一ノレ。
PCT/JP2007/071155 2006-10-30 2007-10-30 Élément coulissant, son procédé de production, et joint d'étanchéité mécanique et bague d'étanchéité mécanique utilisant l'élément WO2008053903A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/447,649 US8916488B2 (en) 2006-10-30 2007-10-30 Sliding member, manufacturing method thereof, mechanical seal ring using sliding member and mechanical seal using mechanical seal ring
EP07830889.7A EP2090558B1 (en) 2006-10-30 2007-10-30 Slide member
JP2008542144A JP5314425B2 (ja) 2006-10-30 2007-10-30 摺動部材とその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-293577 2006-10-30
JP2006293577 2006-10-30

Publications (1)

Publication Number Publication Date
WO2008053903A1 true WO2008053903A1 (fr) 2008-05-08

Family

ID=39344244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/071155 WO2008053903A1 (fr) 2006-10-30 2007-10-30 Élément coulissant, son procédé de production, et joint d'étanchéité mécanique et bague d'étanchéité mécanique utilisant l'élément

Country Status (4)

Country Link
US (1) US8916488B2 (ja)
EP (1) EP2090558B1 (ja)
JP (1) JP5314425B2 (ja)
WO (1) WO2008053903A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2216571A4 (en) * 2007-11-29 2013-01-02 Kyocera Corp SLIDING ELEMENT, MECHANICAL SEAL RING, MECHANICAL SEAL AND SHUTTER
WO2020067306A1 (ja) * 2018-09-28 2020-04-02 イーグル工業株式会社 摺動体の表面評価方法及び摺動体の表面評価装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2575008T3 (es) * 2008-07-11 2016-06-23 Nstitut National De La Recherche Agronomique (Inra) Nuevas cepas de levadura mutantes capaces de acumular una gran cantidad de lípidos
JP5551778B2 (ja) * 2009-07-24 2014-07-16 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド 乾湿低摩擦炭化ケイ素シール
KR101189392B1 (ko) * 2010-07-30 2012-10-10 엘지이노텍 주식회사 볼을 사용한 탄화규소 소결체 제조 방법
CN106838323B (zh) * 2017-03-30 2018-05-04 浙江工业大学 一种仿鲨鱼皮表面三维形貌的端面机械密封结构
FR3120073B1 (fr) * 2021-02-23 2024-06-28 Saint Gobain Ct Recherches Blindage ceramique a dispersion de taille de pores controlee

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS574710A (en) * 1980-06-13 1982-01-11 Mitsubishi Mining & Cement Co Manufacture of ceramic porous body
EP0578408A2 (en) 1992-07-08 1994-01-12 The Carborundum Company Silicon carbide with controlled porosity
JPH09132479A (ja) * 1995-11-07 1997-05-20 Eagle Ind Co Ltd 多孔質炭化珪素焼結体の製造方法
JPH09132478A (ja) * 1995-11-07 1997-05-20 Eagle Ind Co Ltd 多孔質炭化珪素焼結体及びその製造方法
JP2002147617A (ja) 2000-11-09 2002-05-22 Nippon Pillar Packing Co Ltd メカニカルシール用密封環及びこれを使用したメカニカルシール
JP2002201070A (ja) * 2000-12-27 2002-07-16 Kyocera Corp 炭化珪素質焼結体及びその製造方法
JP2005179100A (ja) * 2003-12-17 2005-07-07 Kyocera Corp 摺動部材用多孔質セラミック焼結体の製造方法とこれにより得られた摺動部材用多孔質セラミック焼結体並びにこれを用いたシールリング
JP2006036624A (ja) * 2004-06-23 2006-02-09 Kyocera Corp 摺動部材用多孔質セラミックスとその製造方法及びこれを用いたメカニカルシールリング

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60255671A (ja) * 1984-05-29 1985-12-17 イビデン株式会社 高強度多孔質炭化ケイ素焼結体とその製造方法
US4777153A (en) * 1986-05-06 1988-10-11 Washington Research Foundation Process for the production of porous ceramics using decomposable polymeric microspheres and the resultant product
JPS63260863A (ja) * 1987-04-17 1988-10-27 三井東圧化学株式会社 炭化ケイ素質焼結体向け生成形体用原料組成物
US5034355A (en) * 1987-10-28 1991-07-23 Kabushiki Kaisha Toyota Chuo Kenkyusho Tough silicon carbide composite material containing fibrous boride
JPH0255273A (ja) * 1988-08-18 1990-02-23 Showa Denko Kk メカニカルシール用炭化珪素焼結体およびそれを用いたメカニカルシール
DE4419243A1 (de) * 1994-06-01 1995-12-07 Kempten Elektroschmelz Gmbh Gleitwerkstoff aus porösem SiC mit trimodaler Porenzusammensetzung
JP3999468B2 (ja) 2001-03-16 2007-10-31 日本ピラー工業株式会社 摺動体及びその製造方法並びにメカニカルシール
DE10241265A1 (de) * 2002-09-06 2004-03-18 Ceram Tec Ag Innovative Ceramic Engineering Gesinterte Siliciumcarbidkörper mit optimierten tribologischen Eigenschaften ihrer Gleitbeziehungsweise Dichtfläche
JP4563711B2 (ja) * 2004-03-30 2010-10-13 グンゼ株式会社 ダイシング用基体フイルム
JP4494912B2 (ja) * 2004-09-13 2010-06-30 日東電工株式会社 半導体装置、ならびに半導体装置の製法
JP2007084368A (ja) 2005-09-21 2007-04-05 Kyocera Corp セラミックス摺動部材とその製造方法およびこれを用いたメカニカルシールリング用部材並びにメカニカルシールリング
JP2007223890A (ja) 2006-01-30 2007-09-06 Kyocera Corp 炭化けい素質焼結体とこれを用いた摺動部材およびメカニカルシールリング、並びにメカニカルシール

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS574710A (en) * 1980-06-13 1982-01-11 Mitsubishi Mining & Cement Co Manufacture of ceramic porous body
EP0578408A2 (en) 1992-07-08 1994-01-12 The Carborundum Company Silicon carbide with controlled porosity
JPH09132479A (ja) * 1995-11-07 1997-05-20 Eagle Ind Co Ltd 多孔質炭化珪素焼結体の製造方法
JPH09132478A (ja) * 1995-11-07 1997-05-20 Eagle Ind Co Ltd 多孔質炭化珪素焼結体及びその製造方法
JP2002147617A (ja) 2000-11-09 2002-05-22 Nippon Pillar Packing Co Ltd メカニカルシール用密封環及びこれを使用したメカニカルシール
JP2002201070A (ja) * 2000-12-27 2002-07-16 Kyocera Corp 炭化珪素質焼結体及びその製造方法
JP2005179100A (ja) * 2003-12-17 2005-07-07 Kyocera Corp 摺動部材用多孔質セラミック焼結体の製造方法とこれにより得られた摺動部材用多孔質セラミック焼結体並びにこれを用いたシールリング
JP2006036624A (ja) * 2004-06-23 2006-02-09 Kyocera Corp 摺動部材用多孔質セラミックスとその製造方法及びこれを用いたメカニカルシールリング

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2090558A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2216571A4 (en) * 2007-11-29 2013-01-02 Kyocera Corp SLIDING ELEMENT, MECHANICAL SEAL RING, MECHANICAL SEAL AND SHUTTER
WO2020067306A1 (ja) * 2018-09-28 2020-04-02 イーグル工業株式会社 摺動体の表面評価方法及び摺動体の表面評価装置
JPWO2020067306A1 (ja) * 2018-09-28 2021-08-30 イーグル工業株式会社 摺動体の表面評価方法及び摺動体の表面評価装置
US11719640B2 (en) 2018-09-28 2023-08-08 Eagle Industry Co., Ltd. Sliding body surface evaluation method and sliding body surface evaluation apparatus
JP7383358B2 (ja) 2018-09-28 2023-11-20 イーグル工業株式会社 摺動体の表面評価方法及び摺動体の表面評価装置

Also Published As

Publication number Publication date
JPWO2008053903A1 (ja) 2010-02-25
JP5314425B2 (ja) 2013-10-16
US20100004115A1 (en) 2010-01-07
EP2090558B1 (en) 2017-01-11
EP2090558A4 (en) 2013-01-02
US8916488B2 (en) 2014-12-23
EP2090558A1 (en) 2009-08-19

Similar Documents

Publication Publication Date Title
WO2008053903A1 (fr) Élément coulissant, son procédé de production, et joint d&#39;étanchéité mécanique et bague d&#39;étanchéité mécanique utilisant l&#39;élément
JP4845419B2 (ja) 摺動部材用セラミックスとその製造方法及びこれを用いたメカニカルシールリング
JP5289464B2 (ja) 摺動部品およびこれを備えたメカニカルシール,フォーセットバルブならびに転がり支持装置
WO2006117897A1 (ja) 摺動部材用多孔質セラミックス、その製造方法及びメカニカルシールリング
JP5020334B2 (ja) 摺動部材、メカニカルシールリング、メカニカルシールおよびフォーセットバルブ
JP5597693B2 (ja) 炭化珪素質焼結体およびこれを用いた摺動部品ならびに対飛翔体用防護体
KR102331061B1 (ko) 경질 재료 및 절삭 공구
WO2020090725A1 (ja) 焼結摩擦材及び焼結摩擦材の製造方法
Hsieh et al. Pressureless sintering of metal-bonded diamond particle composite blocks
JP3517711B2 (ja) メカニカルシール用密封環及びこれを使用したメカニカルシール
JP2007084368A (ja) セラミックス摺動部材とその製造方法およびこれを用いたメカニカルシールリング用部材並びにメカニカルシールリング
WO2007097402A1 (ja) セラミック焼結体及びこれを用いた摺動部品、並びに、セラミック焼結体の製造方法
JP4741421B2 (ja) 摺動部材およびこれを用いたメカニカルシールリング
JP2007223890A (ja) 炭化けい素質焼結体とこれを用いた摺動部材およびメカニカルシールリング、並びにメカニカルシール
JP2007107067A (ja) 銅系焼結摩擦材
JP2007126738A (ja) 焼結摩擦材
CN112811907A (zh) 一种热压烧结用碳化硼微纳混合粉料的制备方法
JP2010202488A (ja) 炭化硼素・炭化珪素・シリコン複合材料
CN115485253B (zh) 耐磨损性构件以及使用了该耐磨损性构件的龙头阀、活塞-工作缸单元
JP7401233B2 (ja) 焼結摩擦材及び焼結摩擦材の製造方法
JP2543093B2 (ja) シ−ル用摺動部品
Ali Effect of nano-copper metal (NCM) particles on the mechanical properties and porosity of alumina ceramic composites (ACCS)
JP3483056B2 (ja) 摺動部材用窒化ケイ素焼結体
JP2002338358A (ja) 炭化珪素焼結部品並びにその炭化珪素焼結部品を用いたメカニカルシール及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07830889

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008542144

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12447649

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2007830889

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007830889

Country of ref document: EP