WO2008052445A1 - Catalyseur de dismutation selective de toluene - Google Patents

Catalyseur de dismutation selective de toluene Download PDF

Info

Publication number
WO2008052445A1
WO2008052445A1 PCT/CN2007/003120 CN2007003120W WO2008052445A1 WO 2008052445 A1 WO2008052445 A1 WO 2008052445A1 CN 2007003120 W CN2007003120 W CN 2007003120W WO 2008052445 A1 WO2008052445 A1 WO 2008052445A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
group
organopolysiloxane
extrudate
precursor
Prior art date
Application number
PCT/CN2007/003120
Other languages
English (en)
French (fr)
Inventor
Zaiku Xie
Dejin Kong
Zhirong Zhu
Wei Li
Qingling Chen
Rong Zhang
Original Assignee
China Petroleum & Chemical Corporation
Shanghai Research Institute Of Petrochemical Technology, Sinopec
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum & Chemical Corporation, Shanghai Research Institute Of Petrochemical Technology, Sinopec filed Critical China Petroleum & Chemical Corporation
Priority to US12/513,261 priority Critical patent/US8580702B2/en
Priority to BRPI0717996A priority patent/BRPI0717996B1/pt
Priority to CA2668488A priority patent/CA2668488C/en
Priority to KR1020097010678A priority patent/KR101479561B1/ko
Priority to JP2009535546A priority patent/JP5143844B2/ja
Publication of WO2008052445A1 publication Critical patent/WO2008052445A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/48Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing arsenic, antimony, bismuth, vanadium, niobium tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/405Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/46Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0207Pretreatment of the support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/30Ion-exchange
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/02Monocyclic hydrocarbons
    • C07C15/04Benzene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C6/00Preparation of hydrocarbons from hydrocarbons containing a different number of carbon atoms by redistribution reactions
    • C07C6/08Preparation of hydrocarbons from hydrocarbons containing a different number of carbon atoms by redistribution reactions by conversion at a saturated carbon-to-carbon bond
    • C07C6/12Preparation of hydrocarbons from hydrocarbons containing a different number of carbon atoms by redistribution reactions by conversion at a saturated carbon-to-carbon bond of exclusively hydrocarbons containing a six-membered aromatic ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/12After treatment, characterised by the effect to be obtained to alter the outside of the crystallites, e.g. selectivation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/32Reaction with silicon compounds, e.g. TEOS, siliconfluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/42Addition of matrix or binder particles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • C07C2529/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11 containing iron group metals, noble metals or copper
    • C07C2529/46Iron group metals or copper
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a toluene shape selective disproportionation catalyst, a process for its preparation and an application.
  • the benzene benzene disproportionation reaction converts toluene to higher value benzene and xylene.
  • the xylene product is typically a thermodynamic equilibrium mixture of three isomers, with the highest value of dimethylhydrazine accounting for only about 24%. Therefore, a new process of shape-disproportionation has been proposed to selectively produce p-nonylbenzene.
  • Conventional benzene benzene disproportionation catalysts have mordenite with a larger pore diameter as the main active component, so the three isomers of dinonylbenzene have no shape selectivity.
  • the ZSM-5 molecular sieve has a three-dimensional pore system composed of a 10-membered ring.
  • the pores of the ZSM-5 molecular sieve allow a rapid diffusion of p-xylene having a molecular diameter of 0.63 nm, and a diffusion coefficient of o-xylene and meta-indoylbenzene having a molecular diameter of 0.67 nm is much lower.
  • the diffusion coefficient of each species in the toluene disproportionation reaction system in the pores of the ZSM-5 molecule has the following relationship: benzene > toluene > ethylbenzene "p-quinone benzene” o-diphenylbenzene "m-xylene.
  • the catalyst is prepared by a process comprising the steps of: agglomerating a mixture comprising a crystalline molecular sieve, an organosilicon compound and an optional binder; and calcining the resulting agglomerates.
  • the catalyst can then be contacted with a mixture of a highly efficient p-benzoquinone-modified selective activator and a substituted aromatic compound under reaction conditions to convert toluene to xylene to produce a catalyst for secondary selective activation, wherein said high efficiency Selective activators for para-xylene modification include, for example, organosilicon compounds.
  • X discloses a noble metal-modified terpene selective disproportionation catalyst comprising 20 to 90 wt% of a hydrogen type ZSM-5 molecular sieve, and 0.005 to 5 wt% of an anthracene, fluorene, palladium, rhodium, At least one precious metal of platinum and gold, and 9 to 75 wt% of silica or alumina as a binder.
  • the catalyst also optionally contains at least one element selected from the group consisting of chromium, nickel, molybdenum, tungsten, rhenium and ruthenium.
  • the noble metal modified hydrogen type ZSM-5 molecular catalyst can enhance the catalytic activity of the selective disproportionation reaction of toluene, the noble metal modified molecular sieve catalyst will cause more serious hydrogenation and dealkylation side reactions of toluene, thereby reducing the The yield of the benzene product.
  • a metal modified ZSM- can be provided.
  • a 5 molecular sieve catalyst which has high catalytic activity of toluene selective disproportionation reaction and high para-xylene selectivity, and does not cause significant toluene hydrogenation and dealkylation side reactions. This completes the invention.
  • Another object of the present invention is to provide a process for the selective disproportionation of fluorene to para-xylene which comprises contacting a reactant stream comprising toluene with a toluene shape selective disproportionation catalyst of the present invention under a disproportionation condition of toluene.
  • the present invention provides a quinone selective disproportionation reaction catalyst.
  • the catalyst of the present invention comprises 45 to 95% by weight, preferably 60 to 9% by weight of ZSM-5 molecular sieve.
  • the ZSM-5 molecular sieve as it is synthesized is generally in the shape of a needle.
  • the ZSM-5 molecular sieve used in the present invention has 0.3 An average particle diameter of ⁇ 6 ⁇ m, and a Si0 2 /Al 2 0 3 molar ratio of 20 to 120, preferably 25 to 50.
  • the catalyst of the present invention comprises 0.01 to 30% by weight, preferably 0.1 to 15% by weight, selected from the group consisting of At least one metal of Group IIB of the Periodic Table of the Elements, a lanthanum, a rare earth element, and a Group VIII other than nickel or an oxide thereof.
  • Preferred lanthanide metals include zinc and cadmium.
  • Preferred lanthanide metals include lanthanum and cerium, and preferred rare earth elements include lanthanum, cerium, lanthanum, cerium and lanthanum.
  • Preferred Group VIII metals include iron and cobalt.
  • the catalyst of the present invention comprises 0 to 20% by weight, preferably 0.1 to 1%, of at least one metal selected from Group VA, Group VIB or alkaline earth metals of the Periodic Table of the Elements or an oxide thereof.
  • Preferred VA group elements include phosphorus, Arsenic, antimony and bismuth.
  • Preferred Group VIB metals include chromium, molybdenum and tungsten.
  • the catalyst of the present invention comprises from 1 to 50% by weight, preferably from 2 to 30% by weight.
  • Binder is preferably at least one selected from the group consisting of SiO 2 , A1 2 0 3 , Ti 2 2 or clay.
  • the catalyst of the present invention further comprises from 1 to 25 wt%. Preferably, from 1.5 to 20% by weight of a silica inert surface coating derived from an organopolysiloxane.
  • the organopolysiloxane is preferably selected from the group consisting of dimethylpolysiloxane, methylaminopolysiloxane, mercaptohydroxypolysiloxane, methylphenylpolysiloxane, methylethylpolysiloxane
  • the alkane, methylpropylpolysiloxane, diethylpolysiloxane and mixtures thereof are more preferably dimethylpolysiloxane.
  • the organopolysiloxane can have a degree of polymerization greater than about 4. According to a preferred embodiment, the organopolysiloxane used in the present invention has a viscosity at 20'C of from about 0.02 to 100 Pa.s, preferably from 0.03 to 10 Pa.s, more preferably from 0.05 to 1 Pa.s.
  • the catalyst of the present invention can be prepared by a process comprising the following steps:
  • the catalyst of the present invention may be passed through a step comprising Method of preparation:
  • the catalyst of the present invention can be prepared by a process comprising the steps of:
  • step i i i i) introducing all of the modifying elements into the extrudate obtained in step i i) by ion exchange or impregnation, followed by drying and optionally calcining the extrudate to give a catalyst precursor;
  • the binder precursor may be at least one of a S 2 O 2 sol, an A 1 2 3 3 sol, a 10 2 sol or an acid-treated clay (for example, a clay washed with 1 N nitric acid), and
  • the amount of binder content in the final catalyst of from 1 to 50% by weight, preferably from 2 to 30% by weight, is used.
  • the modified element precursor is any compound capable of forming a modified element oxide after being calcined in air, including but not limited to inorganic acid, salt, or the like containing the modifying element. Hydroxides, oxides and organometallic compounds.
  • water may be used in an amount of from 40 to 140% by weight based on the solid content of the mixture obtained in the step (i). Water may be added separately or in the form of a solvent or dispersion medium of other components.
  • the drying may be carried out at a temperature of from about 40 to about 200, preferably from about 50 to about 150 C, more preferably from about 60 to about 100 ° C, for from about 0.5 to about 48 hours, preferably from about 1 to about 24 hours. Drying can also be conveniently achieved by drying at room temperature.
  • the calcination may be carried out at a temperature of from about 250 to about 1100, preferably from about 300 to about 900 °; more preferably from about 350 to about 700, for from about 1 to about 24 hours, preferably from about 2 to about 12 hours.
  • the step of treating the catalyst precursor with an organopolysiloxane can be carried out by dissolving the organopolysiloxane compound in an inert organic solvent, then mixing the solution with the catalyst precursor, and then evaporating the organic solvent.
  • the organic solvent is evaporated, the mixture may be heated and/or a vacuum applied to the mixture.
  • the step of treating the catalyst precursor with an organopolysiloxane can be carried out by dissolving the organopolysiloxane compound in an inert organic solvent and then spraying the solution onto the heated catalyst precursor in a tumble dryer. Thereby forming an organopolysiloxane coating on the catalyst precursor.
  • the inert organic solvent examples include, but are not limited to, n-pentane, n-hexane, n-heptane, and cyclohexane.
  • concentration of the solution of the organopolysiloxane compound in an organic solvent is not particularly limited, but generally, the concentration of the organopolysiloxane compound is conveniently 5 to 40% by weight, preferably 10 to 30% by weight. .
  • the process can be performed one or more times.
  • the organopolysiloxane is provided in an amount of from 1 to 25 wt%, preferably from 1.5 to 20 wt%. /.
  • the amount of silica coating content of the final catalyst is used.
  • the present invention provides a parabolic disproportionation of parathylene to para-xylene ⁇ _ Method comprising contacting a reaction stream comprising toluene with a toluene shape selective disproportionation catalyst of the present invention under toluene disproportionation conditions.
  • the present invention can employ methods and conditions for the benzene benzene disproportionation known to those skilled in the art.
  • the process can be carried out in a batch reactor, or a fluidized bed or fixed bed reactor.
  • the process is carried out in a fixed bed reactor and the following reaction conditions can be employed: a reactor inlet temperature of from about 350 to about 540 Torr, preferably from about 400 to about 500 ° C; from about 0.1 to about 30 MPa.
  • a pressure of from about 0.5 to about 7 MPa; a WHSV of from about 0.1 to 20 h 1 , preferably from 1.0 to 5.01 T 1 ; and a hydrogen to hydrocarbon molar ratio of from about 0.1 to 20, preferably from about 1 to about 5.
  • the catalyst of the present invention has a high catalytic activity of a pyrene-benzene selective disproportionation reaction and a high para-xylene selectivity, and does not cause significant toluene hydrogenation and dealkylation side reactions.
  • the above catalyst precursor was added to a solution prepared by dissolving 40 ml of n-hexane and 10.0 g of dimethylpolysiloxane (having a viscosity of 0.1 Pa.s at 20 ° C), and then distilling off in an oil bath of 90 alkyl. The residue after evaporation to dryness was at 520 in a muffle furnace. C was calcined for 3 hours and then naturally cooled. Then, the above modification process was repeated to obtain a catalyst A which was subjected to two selective treatments, and the catalyst mass was increased by 22%.
  • Example 2 32 g of hydrogen-type ZSM-5 having an average particle diameter of 2.2 ⁇ m, S i0 2 /Al 2 0 3 molar ratio of 50 and 24 g of titanium sol (containing 25% by weight of Ti0 2 ), 3. 72 g of chemistry 5 ⁇ extrudate, the pure cerium nitrate [Sc (N0 3 ) 3 .5H 2 0], 0.2 liters of chemically pure nitric acid and 8 ml of water were kneaded, and then extruded, to obtain a cylindrical extrudate of 1. 7 mm diameter. The extrudate was air-dried and calcined at 520 'C for 2 hours to obtain a molded catalyst precursor.
  • the above catalyst precursor was added to a solution of 40 liters of n-hexane and 8.0 g of methylaminopolysiloxane (having a viscosity of 0. IPa.s at 20 X), followed by distillation in an oil bath of 90 Remove n-hexane. The evaporated residue was naturally cooled in a muffle furnace after baking at 520 for 3 hours. Then, the above modification process was repeated to obtain a catalyst B which was subjected to two selective treatments, and the catalyst mass was increased by 18%.
  • the above catalyst precursor was added to a solution of 40 ml of n-hexane and 4 g of methylaminopolysiloxane (having a viscosity of 0. IPa.s), followed by distillation to remove n-hexane in an oil bath at 90 °C. .
  • the residue after evaporation to dryness was naturally cooled in a muffle furnace at 520 ° C for 3 hours.
  • the above modification process was repeated to obtain a catalyst C which was subjected to two selective treatments, and the catalyst mass was increased by 8 %.
  • the above catalyst precursor was added to a solution of 40 ml of n-hexane and 2.4 g of dimercaptopolysiloxane (having a viscosity of 0.10 Pa.s at 20X), and then distilled in an oil bath at 90 ° C to remove the positive alkyl. The residue after evaporation to dryness was naturally cooled in a muffle furnace at 520 ° C for 3 hours. The above modification process was repeated to obtain a catalyst D which was subjected to two selective treatments, and the catalyst mass was increased by 5%.
  • the above catalyst precursor was added to a solution of 40 ml of n-hexane and 1.2 g of methylhydroxypolysiloxane (having a viscosity of 20 with a viscosity of 0.08 Pa-s), and then at 90.
  • the n-hexane was distilled off in an oil bath of C.
  • the residue after evaporation to dryness was naturally cooled in a muffle furnace after calcination at 520 ° C for 3 hours.
  • the above modification process was repeated to obtain a catalyst E which was subjected to two selective treatments, and the catalyst mass was increased by 2%.
  • the above catalyst precursor was added to a solution of 40 ml of n-hexane and 8 g of methylaminopolysiloxane (having a viscosity of 0. IPa-s), and then n-hexane was distilled off in an oil bath of 90. The residue after evaporation to dryness was calcined in a muffle furnace at 520 ° C for 3 hours, and then naturally cooled to obtain a catalyst precursor which was subjected to one-time selective treatment.
  • the above selected catalyst precursor was added to a solution of 40 ml of n-hexane and 14 g of methylphenylpolysiloxane (having a viscosity of 0.2 Pa.s), and then in a 90X oil bath.
  • the n-hexane was removed by distillation.
  • the residue after evaporation to dryness was naturally cooled in a muffle furnace at 520 C for 3 hours, and a catalyst F which was subjected to two selective treatments was obtained, and the catalyst mass was increased by 15%.
  • the extrudate was dried for several hours and then calcined at 520 for 2 hours to obtain a molded catalyst precursor.
  • the above catalyst precursor was added to a solution of 40 ml of n-hexane and 2 g of nonylphenylpolysiloxane (having a viscosity of 0.2 Pa.s at 20), and then distilled in an oil bath at 90 ° C to remove the positive alkyl. The residue after evaporation to dryness was naturally cooled in a muffle furnace at 520 ° C for 3 hours.
  • the above modification process was repeated to obtain a catalyst G which was subjected to two selective treatments, and the catalyst mass was increased by 2%.
  • the above catalyst precursor was added to a solution of 40 ml of n-hexane and 10 g of dimethylpolysiloxane (having a viscosity of 0.1 Pa-s at 20), and then distilled in an oil bath at 90 ° C to remove the positive alkyl. The residue after evaporation to dryness was naturally cooled in a muffle furnace at 520 ° C for 3 hours. The above modification process was repeated to obtain a catalyst H which was subjected to two selective treatments, and the catalyst mass was increased by 20%.
  • the above selected catalyst precursor was added to a solution of 40 ml of n-hexane and 0.8 g of mercaptoaminopolysiloxane (at a viscosity of 20. lPa.s), and then at 90 ° C.
  • the n-hexane was distilled off in an oil bath.
  • the residue after evaporation to dryness was naturally cooled in a muffle furnace at 520 for 3 hours to obtain a catalyst precursor which was subjected to a second selective treatment.
  • the above secondary shape-selected catalyst precursor was added to a solution of 40 ml of n-hexane and 0.8 g of mercapto hydroxypolysiloxane (having a viscosity of 0.08 Pa-s at 20C), and then at 90.
  • the n-hexane was distilled off in an oil bath of C.
  • the residue after steaming was naturally cooled in a muffle furnace at 520 Torr for 3 hours, and the catalyst I was subjected to three selective treatments, and the catalyst mass was increased by 3%.
  • the above catalyst precursor was added to a solution prepared by dissolving 40 ml of n-hexane and 6 g of dimercaptopolysiloxane (having a viscosity of 0.1 Pa.s at 20 ° C), and then distilling off in an oil bath of 90 alkyl. The residue after evaporation to dryness was at 5 2 0 in a muffle furnace. C was calcined for 3 hours and then naturally cooled. Repeat the above modification process to obtain two shape selections Catalyst J, the catalyst quality increased by 12%.
  • 0.2 ml of chemically pure nitric acid and 10 ml of water were kneaded and then extruded to obtain a cylindrical extrudate having a diameter of 1.7 mm.
  • the extrudate was air-dried and calcined at 520 C for 2 hours to obtain a molded catalyst precursor.
  • the above catalyst precursor was added to a solution of 40 ml of n-hexane and 1.2 g of dinonylpolysiloxane (having a viscosity of 0.1 gPas at 20 ° C), and then at 90.
  • the n-hexane was distilled off in an oil bath of C.
  • the residue after evaporation to dryness was naturally cooled in a muffle furnace at 520 ° C for 3 hours.
  • the above modification process was repeated to obtain a comparative catalyst 1 which was subjected to two selective treatments, and the catalyst mass was increased by 2%.
  • the above catalyst precursor was added to a solution of 40 ml of n-hexane and 8 g of dimethylsiloxane (having a viscosity of 0.1 Pa.s at 20 ° C), and then n-hexane was distilled off in an oil bath of 90 . The evaporated residue was naturally cooled in a muffle furnace after calcination at 520 for 3 hours. The above modification process was repeated to obtain a comparative catalyst 2 which was subjected to two alternative treatments, and the catalyst quality was increased by 18%. [Example 13]
  • the catalysts A to J prepared in Examples 1 to 10 were subjected to toluene disproportionation activity and selectivity evaluation on a fixed bed evaluation apparatus.
  • the catalyst loading was 0.45 g
  • the weight hourly space velocity was 4. 0 hours -
  • the reaction temperature was 425
  • the reaction pressure was 2. IMPa
  • the hydrogen hydrocarbon molar ratio was 2.
  • the reaction results are shown in Table 1. As a comparison, the results of evaluating Comparative Catalysts 1 and 2 under the same conditions are listed.
  • Toluene conversion (weight of benzene in the reactor - weight of benzene in the reactor) / (weight of toluene entering the reactor) ⁇ ⁇ ⁇ %
  • Alignment selectivity (content of p-xylene in the reaction effluent) I (content of diterpene in the reaction effluent) ⁇ 100%

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

甲苯择形歧化反应催化剂 相关申请的交叉参考
本申请要求 2006 年 11 月 2 日提交的中国专利申请 200610117849. 2 的优先权, 通过引用并且为了所有的目的将该 文件整体结合在本申请中。
技术领域
本发明涉及一种甲苯择形歧化反应催化剂, 其制备方法和应 用。
背景技术
曱苯歧化反应能将甲苯转化成价值更高的苯和二甲苯。 所述 二甲苯产物通常是三种异构体的热力学平衡混合物,价值最高的 对二甲莩仅占约 24%。 因此有人提出择形歧化的新工艺, 以选择 性地生成对二曱苯。常规的曱苯歧化反应催化剂以孔道直径较大 的丝光沸石为主活性组分,因此对二曱苯的三种异构体没有择形 性。 ZSM-5分子筛具有 10元环构成的三维孔道体系。 已发现, ZSM-5分子筛的孔道允许分子直径为 0. 63纳米的对二甲苯迅速 扩散, 而分子直径为 0. 69纳米的邻二甲苯和间二曱苯扩散系数 低得多。在甲苯歧化反应体系中的各物种在 ZSM-5分子歸的孔道 中的扩散系数存在如下关系:苯>甲苯 >乙苯《对二曱苯〉邻二 曱苯《间二甲苯。这一事实意味着存在择形催化曱苯歧化反应以 获得远高于热力学平衡浓度的二曱苯产物中对二曱苯异构体含 量的可能性。但是, 由于从分子筛孔道内扩散出来的富对二曱苯 的产物将在分子筛外表面的酸性位上发生异构化反应,并且所述 异构化反应的速度远快于所述歧化反应的速度,所述产物将很快 达到热力学平衡组成。 虽然有研究表明,在高空速及低转化率的 条件下,采用大晶粒的 ZSM- 5也能得到一定的择形性,但是这样 的方法没有工业实用价值。
美国专利 US5367099、 US5607888和 US5476823中公开了对 ZSM-5分子筛结构的修饰, 即减小孔口尺寸和屏蔽外表面的酸性 位, 以制备选择性曱苯歧化催化剂。 在所述催化剂的制备中, 将 具有热分解性质的大分子化合物沉积在分子^外表面,再通过高 温处理将这些大分子化合物热分解, 以转化为惰性涂层,屏蔽分 子筛外表面的酸性位, 同时也一定程度地缩小了孔口尺寸。这样 的表面改性处理大大地提高了催化剂的对二甲苯选择性。
在美国专利 US5365003 中公开了择形性烃转化方法和催化 剂。所述催化剂通过包括如下步驟的方法制备: 使包含晶态分子 筛、有机硅化合物和任选的粘接剂的混合物附聚; 焙烧得到的附 聚物。所述催化剂随后可以与高效对二曱苯修饰性选择活化剂和 取代的芳族化合物的混合物在将甲苯转化为二甲苯的反应条件 下接触, 以产生二次选择活化的催化剂, 其中所述高效对二甲苯 修饰性选择活化剂包括例如有机硅化合物。
中国专利申请 00119772. X公开了贵金属改性的曱苯选择性 歧化催化剂, 其包含 20 ~ 90wt%的氢型 ZSM-5分子筛, 0. 005 ~ 5wt%的选自钌、 铑、 钯、 铼、 铂和金的至少一种贵金属, 和 9 ~ 75 wt %的作为粘结剂的二氧化硅或氧化铝。 所述催化剂还任选 地含有选自铬、 镍、 钼、 钨、 锑和铋的至少一种元素。 虽然贵金 属改性的氢型 ZSM-5 分子 催化剂可以提高甲苯选择性歧化反 应的催化活性,但贵金属改性的分子筛催化剂会造成较严重的甲 苯加氢和脱烷基副反应, 从而降低对二曱苯产物的收率。
尽管人们已经在择形催化甲苯歧化反应方面进行了一些研 究,仍然需要具有高的催化活性, 同时不会或较少造成甲苯加氢 和脱烷基副反应的甲苯择形歧化反应催化剂。
发明概述 本发明人进行了勤勉的研究, 结果发现, 通过选择合适的改 性元素或其氧化物并控制它们的用量,结合二氧化硅惰性表面涂 层的使用,可以提供一种金属改性的 ZSM-5分子筛催化剂,该催 化剂具有高的甲苯选择性歧化反应的催化活性和高的对二甲苯 选择性, 并且不会造成明显的甲苯加氢和脱烷基副反应。这样完 成了本发明。
本发明的一个目的是提供一种曱苯择形歧化反应催化剂, 其 包含:
a) 45~95wt%的平均粒径为 0.3~6微米、 Si02/Al203摩尔比 为 20~ 120的 ZSM- 5分子筛;
b) 0.01 ~ 30wt%的选自元素周期表 IIB族、 IIIB族、 稀土元 素和除镍以外的 VIII族中的至少一种金属或其氧化物;
c) 0~20wt%的选自元素周期表 VA族、 VIB族或碱土金属中 的至少一种金属或其氧化物;
d) 1 - 25wt%的衍生自有机聚硅氧烷的二氧化硅惰性表面涂 层; 和
e) l~50wt%的粘结剂。
本发明的另一个目的是提供一种曱苯择形歧化成对二甲苯 的方法,该方法包括使包含甲苯的反应物流在曱苯歧化条件下与 本发明的甲苯择形歧化反应催化剂接触。
优选实施方案的详细描述
在第一方面, 本发明提供了一种曱苯择形歧化反应催化剂。 本发明的催化剂包含 45~95wt%, 优选 60~9(^1%的 ZSM-5 分子筛。合成后原样的 ZSM-5分子筛的外形通常为针形。本发明 中使用的 ZSM-5 分子筛具有 0.3~6微米的平均粒径, 和 20~ 120、 优选 25 ~ 50的 Si02/Al203摩尔比。
本发明的催化剂包含 0.01 ~ 30wt%, 优选 0.1 ~ 15wt%的选自 元素周期表 IIB族、 ΙΠΒ族、 稀土元素和除镍以外的 VIII族中 的至少一种金属或其氧化物。优选的 ΠΒ族金属包括锌和镉。优 选的 ΙΙΙΒ 族金属包括 钪和钇, 优选的稀土元素包括镧、 铈、 镨、 钕和钐。 优选的 VIII族金属包括铁和钴。
本发明的催化剂包含 0~ 20wt%, 优选 0.1 ~ 1(^ 。的选自元 素周期表 VA族、 VIB族或碱土金属中的至少一种金属或其氧化 物。 优选的 VA族元素包括磷、 砷、 锑和铋。 优选的 VIB族金属 包括铬、 钼和钨。
本发明的催化剂包含 l~50wt%, 优选 2~ 30wt°/。的粘结剂。 所述粘结剂优选是选自 Si02、 A1203、 Ti02或粘土中的至少一种。
本发明的催化剂还包含 l~25wt°/。, 优选 1.5~20wt%的衍生 自有机聚硅氧烷的二氧化硅惰性表面涂层。所述有机聚硅氧烷优 选选自二甲基聚硅氧烷、甲基氨基聚硅氧烷、曱基羟基聚硅氧烷、 甲基苯基聚硅氧烷、 甲基乙基聚硅氧烷、 甲基丙基聚硅氧烷、 二 乙基聚硅氧烷和它们的混合物, 更优选是二甲基聚硅氧烷。 所述 有机聚硅氧烷可以具有大于约 4的聚合度。按照一个优选的实施 方案,用于本发明的所述有机聚硅氧烷在 20'C具有约 0.02-100 Pa.s, 优选 0.03~ 10 Pa.s, 更优选 0.05- lPa.s的粘度。
按照一个实施方案, 本发明催化剂可以通过包括如下步骤的 方法制备:
i)混合 ZSM-5分子 、 粘结剂前体、 全部的改性元素前体和 水以提供一种混合物, 并将该混合物挤出以给出一种挤出物; ii)干燥并任选地焙烧该挤出物, 以给出一种催化剂母体; iii)用有机聚硅氧烷处理所述催化剂母体; 和
iv)焙烧所述有机聚硅氧烷处理过的催化剂母体, 以给出一 种催化剂。
按照另一个实施方案, 本发明催化剂可以通过包括如卞步骤 的方法制备:
i)混合 ZSM- 5分子筛、 粘结剂前体、 部分改性元素前体和水 以提供一种混合物, 并将该混合物挤出以给出一种挤出物;
i i)干燥并任选地焙烧该挤出物;
i i i)通过离子交换或浸渍方法, 将其余部分的改性元素引入 到步骤 Π)得到的挤出物中, 然后干燥并任选地焙烧该挤出物, 以给出一种催化剂母体;
iv)用有机聚硅氧烷处理所述催化剂母体; 和
V)焙烧所述有机聚硅氧烷处理过的催化剂母体, 以给出一种 催化剂。
按照又一个实施方案, 本发明催化剂可以通过包括如下步骤 的方法制备:
i)混合 ZSM-5分子 、 粘结剂前体和水以提供一种混合物, 并将该混合物挤出以给出一种挤出物;
i i)千燥并任选地焙烧该挤出物;
i i i)通过离子交换或浸渍方法, 将全部的改性元素引入到步 骤 i i)得到的挤出物中, 然后干燥并任选地焙烧该挤出物, 以给 出一种催化剂母体;
i v)用有机聚硅氧烷处理所述催化剂母体; 和
V)焙烧所述有机聚硅氧烷处理过的催化剂母体, 以给出一种 催化剂。
所述粘结剂前体可以是 S i02溶胶、 A1203溶胶、 1 02溶胶或经 酸处理的粘土 (例如用 1N硝酸洗涤过的粘土) 中的至少一种, 并且其以提供 l ~ 50wt%, 优选 2-30\^%的最终催化剂中粘结剂 含量的量使用。
所述改性元素前体是在空气中焙烧后能形成改性元素氧化 物的任何化合物,包括但不限于包含所述改性元素的无机酸、盐、 氢氧化物、 氧化物和有机金属化合物。
在上述方法中, 水的用量可以为步骤(i)所得混合物的固体 含量的 40 ~ 140重量%。 水可以单独加入, 或者以其它组分的溶 剂或分散介质的形式加入。
通过离子交换或浸溃方法将改性元素引入分子筛催化剂中 的程序和条件本质上是本领域技术人员已知的。
千燥和焙烧的条件是本领域技术人员公知的。 例如, 干燥可 以在约 40 ~约 200 , 优选约 50 ~约 150 C 更优选约 60 ~约 100 'C的温度进行约 0. 5 ~约 48小时, 优选约 1 ~约 24小时。 干燥也可以方便地通过在室温下晾千实现。 所述焙烧可以在约 250 ~约 1100 , 优选约 300 ~约 900 ^;, 更优选约 350 ~约 700 的温度下进行約 1 ~约 24小时, 优选约 2 ~约 12小时。
用有机聚硅氧烷处理所迷催化剂母体的步驟可以如下进行: 将有机聚硅氧烷化合物溶解在惰性有机溶剂中,然后将该溶液与 所述催化剂母体混合, 然后蒸发掉所述有机溶剂。 任选地, 在蒸 发有机溶剂时,可以加热所述混合物和 /或对该混合物施加真空。
或者, 用有机聚硅氧烷处理所述催化剂母体的步骤可以如下 进行: 将有机聚硅氧烷化合物溶解在惰性有机溶剂中, 然后在转 鼓干燥器中将该溶液喷雾到加热的催化剂母体上,从而在催化剂 母体上形成有机聚硅氧烷涂层。
所述惰性有机溶剂的实例包括但不限于正戊烷、 正己烷、 正 庚烷、环己烷。对所述有机聚硅氧烷化合物在有机溶剂中的溶液 的浓度没有特别的限制,但是一般地, 所述有机聚硅氧烷化合物 的浓度方便地为 5 ~ 40wt%, 优选为 10 ~ 30wt%。 所述处理可以 进行一次或多次。 所述有机聚硅氧烷以提供 l ~ 25wt%, 优选 1. 5 - 20wt。/。的最终催化剂的二氧化硅涂层含量的量使用。
在第二方面, 本发明提供了一种曱苯择形歧化成对二甲苯的 ― _ 方法,该方法包括使包含甲苯的反应物流在甲苯歧化条件下与本 明的甲苯择形歧化反应催化剂接触。
本发明可以釆用本领域技术人员已知的曱苯歧化方法和条 件。所述方法可以在间歇反应器, 或者流化床或固定床反应器中 进行。
按照一个优选的实施方案, 所述方法在固定床反应器中进 行,并且可以采用如下反应条件: 约 350 -约 540Ό,优选约 400 -约 500°C的反应器入口温度; 约 0.1 -约 30MPa, 优选约 0.5 -约 7MPa的压力; 约 0.1 - 20 h 1, 优选 1.0- 5.01T 1的 WHSV; 和约 0.1 - 20, 优选约 1 - 5的氢与烃摩尔比。
本发明的催化剂具有高的曱苯选择性歧化反应的催化活性 和高的对二甲苯选择性,并且不会造成明显的甲苯加氢和脱烷基 副反应。
下面通过实施例对本发明作进一步的阐述。
具体实施方式
【实施例 1】
将 36克平均粒径为 1.7微米、 Si02/Al203摩尔比为 31 的氢 型 ZSM-5与 33.2克硅溶胶(含 12重量%的 Si02 ) 、 0.8克化学 纯硝酸锌 [Zn(N03)2.6H20]和 2毫升水捏合,然后挤出,得到 1.7mm 直径的圆柱形挤出物。将所述挤出物晾干后在 520 在空气中焙 烧 2小时, 得到成型催化剂母体。
将以上催化剂母体加入到 40毫升正己烷和 10.0克二甲基聚 硅氧烷 (在 20°C具有 0. lPa.s 的粘度) 配成的溶液中, 然后在 90 的油浴中蒸馏除去正己烷。 蒸干后的剩余物在马弗炉中在 520。C焙烧 3小时后自然冷却。 然后重复上述改性过程, 得到经 两次择形化处理的催化剂 A, 催化剂质量增加 22%。
【实施例 2】 将 32克平均粒径为 2. 2微米、 S i02/Al203摩尔比为 50的氢 型 ZSM- 5与 24克钛溶胶(含 25重量%的 Ti02 ) 、 3. 72克化学纯 硝酸钪 [Sc (N03) 3.5H20]、 0. 2亳升化学纯硝酸和 8毫升水捏合, 然后挤出,得到 1. 7mm直径的圆柱形挤出物。将所述挤出物晾干 后在 520 'C焙烧 2小时, 得到成型催化剂母体。
将以上催化剂母体加入到 40亳升正己烷和 8. 0克甲基氨基 聚硅氧烷 (在 20 X具有 0. IPa.s 的粘度) 配成的溶液中, 然后 在 90 的油浴中蒸馏除去正己烷。 蒸干后的剩余物在马弗炉中 在 520 焙烧 3小对后自然冷却。 然后重复上述改性过程, 得到 经两次择形化处理的催化剂 B, 催化剂质量增加 18 %。
【实施例 3】
将 28克平均粒径为 4微米、 S i02/Al203摩尔比为 60氢型的 ZSM-5与 22. 4克钛溶胶 (含 27重量%的 Ti 02 ) 、 4. 6克经酸处 理的粘土 (将 1重量份的粘土在 3重量份的 1N硝酸水溶液中在 常温下浸泡 6小时, 然后过滤并用水洗涤至接近中性, 然后将固 体物在 550 焙烧 4 小时 ) 、 0. 11 克化学纯硝酸铈 [Ce (N03) 3.6H20]、 7. 36克化学纯硝酸铬 [Cr (N03) 3.9H20]、 0. 2 毫 升化学纯硝酸和 5毫升水捏合, 然后挤出,得到 1. 7mm直径的圆 柱形挤出物。 将所述挤出物晾干后在 520 'C焙烧 2小时, 得到成 型催化剂母体。
将以上催化剂母体加入到 40毫升正己烷和 4克甲基氨基聚 硅氧烷 (在 具有 0. IPa.s 的粘度) 配成的溶液中, 然后在 90 °C的油浴中蒸馏除去正己烷。 蒸干后的剩余物在马弗炉中在 520 °C焙烧 3小时后自然冷却。 重复上述改性过程, 得到经两次 择形化处理的催化剂 C, 催化剂质量增加 8 %。
【实施例 4】
将 24克平均粒径为 3微米、 S i02/Al203摩尔比为 25的氢型 ZSM-5与 10克硅溶胶(含 40重量%的 Si02) 、 6.0克经酸处理 的粘土 (将 1重量份的粘土在 3重量份的 1N硝酸水溶液中在常 温下浸泡 6小时, 然后过滤并用水洗涤至接近中性, 然后将固体 物在 550 °C焙烧 4小时)、 14.14克化学纯硝酸铁 [Fe (Ν03) 3·9Η20]、 4.28克化学纯鉬酸铵 [(ΝΗ4)6Μο7024·6Η20]、 0.2毫升化学纯硝酸 和 26毫升水捏合, 然后挤出,得到 1.7匪直径的圆柱形挤出物。 将所述挤出物晾干后在 520°C焙烧 2小时,得到成型催化剂母体。
将以上催化剂母体加入到 40毫升正己烷和 2.4克二曱基聚 硅氧烷 (在 20X具有 0. lPa.s 的粘度) 配成的溶液中, 然后在 90°C的油浴中蒸馏除去正己烷。 蒸干后的剩余物在马弗炉中在 520°C焙烧 3小时后自然冷却。 重复上述改性过程, 得到经两次 择形化处理的催化剂 D, 催化剂质量增加 5%。
【实施例 5】
将 19.2克平均粒径为 3微米、 Si02/Al203摩尔比为 112的氢 型 ZSM-5与 6.8克经酸处理的粘土(将 1重量份的粘土在 3重量 份的 IN硝酸水溶液中在常温下浸泡 6小时, 然后过滤并用水洗 涤至接近中性, 然后将固体物在 550 C焙烧 4小时) 、 11.55克 化学純硝酸镉 [Cd(N03)2.4H20] 、 8.43 克化学纯硝酸镨 [ΡΓ(Ν03)3·6Η20]、 29.48 克化学纯硝酸铬 [Cr (N03) 3.9H20]、 1.68 克化学纯硝酸钙 [Ca (Ν03) 2·4Η20]、 0.2毫升化学纯硝酸和 24毫升 水捏合, 然后挤出, 得到 1.7匪直径的圆柱形挤出物。 将挤出物 晾干后在 520 下焙烧 2小时, 得到成型催化剂母体。
将以上催化剂母体加入到 40毫升正己烷和 1.2克甲基羟基 聚硅氧烷 (在 20 具有 0.08 Pa-s 的粘度) 配成的溶液中, 然 后在 90。C的油浴中蒸馏除去正己烷。 蒸干后的剩余物在马弗炉 中在 520°C煅烧 3小时后自然冷却。 重复上述改性过程, 得到经 两次择形化处理的催化剂 E, 催化剂质量增加 2%。 【实施例 6】
将 26克平均粒径为 1.8微米、 Si02/Al203摩尔比为 100的氢 型 ZSM-5与 15克硅溶胶(含 40重量%的 Si02) 、 11.70克化学 纯硝酸锌 [Zn (N03) 2·6Η20]、 10.88克化学纯硝酸钴 [CoN03] 2.6H20]、 1.60克化学纯钼酸铵 [(NH4)6Mo7024.6H20〗、 0.68克化学纯硝酸钡 [Ba(N03)2]、 0.46克化学纯磷酸和 26毫升水捏合, 然后挤出, 得到 1.7腿直径的圆柱形挤出物。将挤出物晾干后在 520。C下焙 烧 2小时, 得到成型催化剂母体。
将以上催化剂母体加入到 40毫升正己烷和 8克甲基氨基聚 硅氧烷 (在 具有 0. IPa-s 的粘度) 配成的溶液中, 然后在 90 的油浴中蒸馏除去正己烷。 蒸干后的剩余物在马弗炉中在 520°C下焙烧 3小时后自然冷却, 得到经一次择形化处理的催化 剂母体。
将以上经一次择形化处理的催化剂母体加入到 40 毫升正己 烷和 14克甲基苯基聚硅氧烷 (在 具有 0.2Pa.s的粘度) 配 成的溶液中, 然后在 90X 的油浴中蒸馏除去正己烷。 蒸干后的 剩余物在马弗炉中在 520 C焙烧 3小时后自然冷却,得到经两次 择形化处理的催化剂 F, 催化剂质量共增加 15%。
【实施例 7】
将 22克平均粒径为 5微米、 3102 1203摩尔比为 90的氢型 ZSM-5与 8克硅溶胶(含 20重量。/。的 Si02 ) 、 0.46克化学纯硝 酸钯 [Pb (N03)2.H20]、19.57克化学纯硝酸铌 [Nb (N03) 3.XH20]、 8· 76 克化学纯硝酸锌 [Ζη(Ν03)2·6Η20] 、 12.85 克化学纯醋酸锑 [Sb (CH3COO) 3] , 5.08克化学纯硝酸镁^8(103)2.61120]、 0.5毫升 化学纯硝酸和 26毫升水捏合, 然后挤出, 得到 1.7讓直径的圆 柱形挤出物。 将挤出物晾千后在 520 下焙烧 2小时, 得到成型 催化剂母体。 将以上催化剂母体加入到 40毫升正己烷和 2克曱基苯基聚 硅氧烷(在 20 具有 0.2Pa.s 的粘度) 配成的溶液中, 然后在 90°C的油浴中蒸馏除去正己烷。 蒸干后的剩余物在马弗炉中在 520°C焙烧 3小时后自然冷却。 重复上述改性过程, 得到经两次 择形化处理的催化剂 G, 催化剂质量共增加 2%。
【实施例 8】
将 30克平均粒径为 4.5微米、 Si02/Al203摩尔比为 42的氢 型 ZSM-5与 30克硅溶胶(含 20重量%的 Si02) 、 13.16克化学 纯硝酸锌 [Zn (N03) 2.6H20]和 1.06克化学纯硝酸铈 [Ce (Ν03) 3·6Η20] 捏合, 然后挤出, 得到 1.7mm直径的圓柱形挤出物。 将挤出物晾 干后在 520'C焙烧 2小时, 得到成型催化剂母体。
将以上催化剂母体加入到 40毫升正己烷和 10克二甲基聚硅 氧烷 (在 20 具有 0. lPa-s的粘度) 配成的溶液中, 然后在 90 °C的油浴中蒸馏除去正己烷。 蒸干后的剩余物在马弗炉中在 520 °C焙烧 3小时后自然冷却。重复上述改性过程,得到经两次择形 化处理的催化剂 H, 催化剂质量共增加 20%。
【实施例 9】
将 24克平均粒径为 2.5微米、 Si02/Al203摩尔比为 34的氢 型 ZSM-5与 5.6克酸处理的粘土(将 1重量份的粘土在 3重量份 的 1N硝酸水溶液中在常温下浸泡 6小时, 然后过滤并用水洗涤 至接近中性, 然后将固体物在 550 焙烧 4小时) 、 20.17克化 学 纯醋酸镧 [La (CH3COO) 3] 、 0.01 克化学 纯仲钨酸铵 [ (肌) 10H2 (W207) 6.H20]、 0.02克化学纯硝酸铋 [Bi (N03) 3.6H20]、 0.4 毫升硝酸和 24克水捏合, 然后挤出, 得到 1.7mm直径的圆柱形 挤出物。 将挤出物晾干后在 520Ό焙烧 2小时, 得到成型催化剂 母体。
将以上催化剂母体加入到 40毫升正己烷和 0.8克二甲基聚 2007/003120 硅氧烷 (在 20°C具有 O. lPa.s 的粘度) 配成的溶液中, 然后在 90 的油浴中蒸馏除去正己烷。 蒸干后的剩余物在马弗炉中在 520°C焙烧 3小时后自然冷却, 得到经一次择形化处理的催化剂 母体。
将以上经一次择形化处理的催化剂母体加入到 40 毫升正己 烷和 0.8克曱基氨基聚硅氧烷 (在 20 具有 0. lPa.s 的粘度) 配成的溶液中, 然后在 90°C的油浴中蒸馏除去正己烷。 蒸干后 的剩余物在马弗炉中在 520 焙烧 3小时后自然冷却,得到经二 次择形化处理的催化剂母体。
将以上经二次择形化处理的催化剂母体加入到 40 毫升正己 烷和 0.8克曱基羟聚硅氧烷(在 20C具有 0.08Pa-s的粘度) 配 成的溶液中, 然后在 90。C的油浴中蒸馏除去正己烷。 蒸千后的 剩余物在马弗炉中在 520Ό焙烧 3小时后自然冷却,得到经三次 择形化处理的催化剂 I, 催化剂质量共增加 3%。
【实施例 10】
将 28克平均粒径为 2.8微米、 Si02/Al203摩尔比为 34的氢 型 ZSM-5与 14克硅溶胶(含 20重量%的 Si02 ) 、 16.19克化学 纯硝酸铁 [Fe (N03) 3·9Η20] >4.23克化学纯硝酸铈 [Ce (Ν03) 3·6Η20]、 1.02 克化学纯硝酸钐 [Sm(N03)3.6H20]、 7.77 克化学纯硝酸铋 [Bi(N03)3.6H20〗、 1.27克化学纯硝酸镁 [Mg(N03)2.6H20]、 1.06克 化学纯硝酸铬 [Cr(N03)3.9H20]、 0.4毫升硝酸和 24克水捏合, 然 后挤出, 得到 1.7讓 直径的圆柱形挤出物。 将挤出物晾千后在 520 下焙烧 2小时, 得到成型催化剂母体。
将以上催化剂母体加入到 40毫升正己烷和 6克二曱基聚硅 氧烷 (在 20°C具有 0. lPa.s的粘度) 配成的溶液中, 然后在 90 的油浴中蒸馏除去正己烷。 蒸干后的剩余物在马弗炉中在 520 。C焙烧 3小时后自然冷却。 重复上述改性过程,得到经两次择形 化处理的催化剂 J, 催化剂质量共增加 12%。
【对比例 1】
将 24克平均粒径为 3微米、 Si02/Al203摩尔比为 25的氢型 ZSM-5与 20克硅溶胶(含 40重量%的 Si02) 、 7.6克经酸处理 的粘土 (将 1重量份的粘土在 3重量份的 1N硝酸水溶液中在常 温下浸泡 6小时, 然后过滤并用水洗涤至接近中性, 然后将固体 物在 550 焙烧 4小时) 、 0.66克化学纯硝酸钯 [Pb(N03)3.H20]、
0.2 毫升化学纯硝酸和 10毫升水捏合, 然后挤出, 得到 1.7mm 直径的圆柱形挤出物。 将挤出物晾干后在 520C下焙烧 2小时, 得到成型催化剂母体。
将以上催化剂母体加入到 40毫升正己烷和 1.2克二曱基聚 硅氧烷 (在 20°C具有 O. lPa.s 的粘度) 配成的溶液中, 然后在 90。C的油浴中蒸馏除去正己烷。 蒸干后的剩余物在马弗炉中在 520°C焙烧 3小时后自然冷却。 重复上述改性过程, 得到经两次 择形化处理的对比催化剂 1, 催化剂质量共增加 2%。
【对比例 2】
将 36克平均粒径为 11微米、 Si02/Al203摩尔比为 31的氢型 ZSM-5与 26.5克硅溶胶(含 40重量%的 Si02 ) , 0.0.8克化学 纯硝酸锌 [Ζη(Ν03)2·6Η20]、 0.04克化学纯 85%磷酸、 0.02克化 学纯钼酸铵 [(ΝΗ4)6Μο7024.6Η20]和 8毫升水捏合, 然后挤出, 得到
1.7麵直径的圆柱形挤出物。 将挤出物晾干后在 520 下焙烧 2 小时, 得到成型催化剂母体。
将以上催化剂母体加入到 40毫升正己烷和 8克二甲基硅氧 烷 (在 20°C具有 0. lPa.s的粘度) 配成的溶液中, 然后在 90 的油浴中蒸馏除去正己烷。蒸干后的剩余物在马弗炉中在 520 焙烧 3小时后自然冷却。 重复上述改性过程,得到经两次择形化 处理的对比催化剂 2, 催化剂质量共增加 18%。 【实施例 13】
将实施例 1 ~ 10制得的催化剂 A ~ J在固定床评价装置上进 行甲苯歧化反应活性和选择性评价。催化剂装填量为 5. 0克, 重 时空速为 4. 0小时— 反应温度为 425 , 反应压力为 2. IMPa , 氢烃摩尔比为 2。 反应结果列于表 1。 作为比较, 列出了在同样 条件下评价对比催化剂 1和 2的结果。
甲苯转化率 = (进反应器曱苯的重量 -出反应器曱苯的重 量) / (进反应器甲苯的重量) χ ΐ οο%
对位选择性 = (反应流出物中对二甲苯的含量) I (反应流 出物中二曱苯的含量) χ 100%
表 1催化剂评价结果
催化剂 笨与对二曱苯摩尔比 曱苯转化率% 对二曱苯选择性%
A 1. 53 30. 1 93. 2
B 1. 30 27. 8 93. 5
C 1. 45 26. 0 92. 0
D 1. 28 31. 5 94. 5
E 1. 15 15. 0 95. 4
F 1. 43 19. 3 96. 2
G 1. 50 20. 2 96. 0
H 1. 32 28. 5 90. 1
I 、 1. 25 30. 2 94. 5
J 1. 35 31. 6 95. 3 对比催化剂 1 1. 53 29. 5 89. 3 对比催化剂 2 1. 60 27. 1 92. 0 下表 2总结了实施例 1 - 10和比较例 1 - 2。
虽然参考示例性实施方案描述了本发明, 但本领域技术人员 将理解,在不偏离本发明的精神和范围的情况下,可以做出各种 改变和修改。 因此, 本发明不限于作为实施本发明的最佳方式公 开的特定实施方案,而是包括落入所附权利要求书范围内的所有 实施方案。 实施例 1 - 10和比较例 1 - 2的总结
Figure imgf000017_0001
'以择形化处理前的催化剂母体重量为 100 %计。 *是指催化剂母体在择形化处理后的%重量增加<

Claims

权 利 要 求
1. 一种曱苯择形歧化反应催化剂, 其包含:
a) 45~95wt%的平均粒径为 0.3~6微米、 Si02/Al203摩尔比 为 20~ 120的 ZSM- 5分子筛;
b) 0.01 ~ 30wt%的选自元素周期表 IIB族、 IIIB族、 稀土 元素和除镍以外的 VIII族中的至少一种金属或其氧化物;
c) 0~ 20wt%的选自元素周期表 VA族、 VIB族或碱土金属中 的至少一种金属或其氧化物;
d) 1 ~ 25wt%的衍生自有机聚硅氧烷的二氧化硅惰性表面涂 层; 和
e) l~ 50wt%的粘结剂。
2. 权利要求 1所述的催化剂, 其中所述粘结剂是选自 Si02、 A 1203、 Ti02或粘土中的至少一种。
3. 权利要求 1 所述的催化剂, 其中所述 ZSM-5 分子筛的 Si02/Al203摩尔比为 25~ 50ο
4. 权利要求 1所述的催化剂,其中所述 ZSM-5分子筛的含量 为 60~ 95wt%。
5. 权利要求 1所述的催化剂, 其中所述选自元素周期表 I IB 族、 IIIB族、 稀土元素和除镍以外的 Vlir族中的至少一种金属 或其氧化物的含量为 0.1~ 15 wt %0
6. 权利要求 1 所述的催化剂, 其中所述选自元素周期表 VA 族、 VIB 族或碱土金属中的至少一种金属或其氧化物的含量为 0.1 ~ 10wt %。
7. 权利要求 1所述的催化剂,其中所述 I IB元素是锌和镉中 的至少一种; 所述 II IB族金属是钪和钇中的至少一种; 所述稀 土元素是镧、 铈、 镨、 钕和钐中的至少一种; 所述第 VIII元素 是铁和钴中的至少一种; 所述 VA元素是磷、 砷、 锑和铋中的至 少一种; 和所述 VIB元素是铬、 钼和钨中的至少一种。
8. 权利要求 1所述的催化剂,其中所述有机聚硅氧烷选自二 曱基聚硅氧烷、 曱基氨基聚硅氧烷、 曱基羟基聚硅氧烷、 甲基苯 基聚硅氧烷、 曱基乙基聚硅氧烷、 曱基丙基聚硅氧烷、 二乙基聚 硅氧烷和它们的混合物。
9. 权利要求 8所述的催化剂,其中所述有机聚硅氧烷为二曱 基聚硅氧烷。
10. 制备权利要求 1 所述的甲苯择形歧化反应催化剂的方 法, 该方法包括:
i)混合 ZSM- 5分子筛、粘结剂前体、全部的改性元素前体和 水以提供一种混合物, 并将该混合物挤出以给出一种挤出物; i i)干燥并任选地焙烧该挤出物, 以给出一种催化剂母体; i i i)用有机聚硅氧烷处理所述催化剂母体; 和
i v)焙烧所述有机聚硅氧烷处理过的催化剂母体, 以给出一 种催化剂;
或者, 该方法包括:
i)混合 ZSM-5分子筛、粘结剂前体、部分改性元素前体和水 以提供一种混合物, 并将该混合物挤出以给出一种挤出物; i i)干燥并任选地焙烧该挤出物;
i i i)通过离子交换或浸渍方法,将其余部分的改性元素引入 到步骤 i i)得到的挤出物中, 然后干燥并任选地焙烧该挤出物, 以给出一种催化剂母体;
iv)用有机聚硅氧烷处理所述催化剂母体; 和
V)焙烧所述有机聚硅氧烷处理过的催化剂母体,以给出一种 催化剂;
或者, 该方法包括: i)混合 ZSM-5分子筛、 粘结剂前体和水以提供一种混合物, 并将该混合物挤出以给出一种挤出物;
i i)干燥并任选地焙烧该挤出物;
i i i)通过离子交换或浸渍方法,将全部的改性元素引入到步 骤 i i)得到的挤出物中, 然后干燥并任选地焙烧该挤出物, 以给 出一种催化剂母体;
i v)用有机聚硅氧烷处理所述催化剂母体; 和
V)焙烧所述有机聚硅氧烷处理过的催化剂母体,以给出一种 催化剂。
11. 权利要求 1 0 所述的方法, 其中所述粘结剂前体是 S i02 溶胶、 A 1203溶胶、 T i02溶胶或经酸处理的粘土中的至少一种, 并且其以提供 1 ~ 5 (^1%的最终催化剂中粘结剂含量的量使用。
12. 权利要求 10所述的方法, 其中所述水的用量为步骤(i) 所得混合物的固体含量的 40 ~ 140重量%, 并且所述水单独加入 或者以其它组分的溶剂或分散介质的形式加入。
13. 权利要求 1 0所述的方法,其中所述用有机聚硅氧烷处理 所述催化剂母体的步骤如下进行:将有机聚硅氧烷化合物溶解在 惰性有机溶剂中,将得到的溶液与所述催化剂母体混合, 然后任 选在加热所述混合物和 /或对所述混合物施加真空的条件下, 蒸 发掉所述有机溶剂;或者将有机聚硅氧烷化合物溶解在惰性有机 溶剂中,然后在转鼓干燥器中将该溶液喷雾到加热的催化剂母体 上, 从而在催化剂母体上形成有机聚硅氧烷涂层。
14. 一种甲苯择形歧化成对二甲苯的方法, 该方法包括使包 含曱苯的反应物流在甲苯歧化条件下与权利要求 1 的曱苯择形 歧化反应催化剂接触。
PCT/CN2007/003120 2006-11-02 2007-11-02 Catalyseur de dismutation selective de toluene WO2008052445A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US12/513,261 US8580702B2 (en) 2006-11-02 2007-11-02 Toluene selective disproportionation catalyst
BRPI0717996A BRPI0717996B1 (pt) 2006-11-02 2007-11-02 catalisador para desproporcionamento com seletividade de forma de tolueno, processos para preparar o mesmo, e, para desproporcionar com seletividade de forma tolueno em p-xileno.
CA2668488A CA2668488C (en) 2006-11-02 2007-11-02 A toluene selective disproportionation catalyst
KR1020097010678A KR101479561B1 (ko) 2006-11-02 2007-11-02 톨루엔 선택적 불균등화 촉매
JP2009535546A JP5143844B2 (ja) 2006-11-02 2007-11-02 トルエンを選択的に不均化する触媒

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200610117849.2 2006-11-02
CN2006101178492A CN101172245B (zh) 2006-11-02 2006-11-02 甲苯择形歧化反应催化剂

Publications (1)

Publication Number Publication Date
WO2008052445A1 true WO2008052445A1 (fr) 2008-05-08

Family

ID=39343820

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/003120 WO2008052445A1 (fr) 2006-11-02 2007-11-02 Catalyseur de dismutation selective de toluene

Country Status (7)

Country Link
US (1) US8580702B2 (zh)
JP (1) JP5143844B2 (zh)
KR (1) KR101479561B1 (zh)
CN (1) CN101172245B (zh)
BR (1) BRPI0717996B1 (zh)
CA (1) CA2668488C (zh)
WO (1) WO2008052445A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101966467B (zh) * 2010-09-27 2012-05-23 同济大学 用于碳八芳烃异构化反应工艺的催化剂及其制备方法
CN102451750A (zh) * 2010-10-21 2012-05-16 中国石油化工股份有限公司 烷基芳烃选择性脱烷基催化剂
CN103121914B (zh) * 2011-11-18 2016-01-13 中国石油化工股份有限公司 甲苯歧化与烷基转移催化剂及其制备方法
CN104107714B (zh) * 2013-04-16 2017-10-27 中国石油化工股份有限公司 二甲苯高选择性的甲苯歧化催化剂及其应用
US10661258B2 (en) 2013-06-13 2020-05-26 Exxonmobil Chemical Patents Inc. In-situ trim coke selectivation of toluene disproportionation catalyst
GB201311594D0 (en) * 2013-06-28 2013-08-14 Johnson Matthey Plc Water-resistant composition
CN106563492B (zh) * 2016-11-10 2019-10-11 常州大学 一种氧化钛改性微孔分子筛择形催化剂在合成对二甲苯中的应用
CN106582787B (zh) * 2016-12-06 2019-10-11 常州大学 一种氧化钛改性微孔分子筛择形催化剂的制备方法
CN106694054A (zh) * 2016-12-16 2017-05-24 东至绿洲环保化工有限公司 一种甲苯选择性歧化制备二甲苯用负载型树脂催化剂
CN109092346B (zh) * 2017-06-20 2023-03-10 高化学株式会社 用于使乙二醇单甲醚与异丁烯反应制备甲氧基乙基叔丁基醚的催化剂及其制备方法和用途
CN108946759A (zh) * 2018-08-22 2018-12-07 中国科学院青岛生物能源与过程研究所 纳米FeZSM-5分子筛的制备方法及由其制备的催化剂及其应用
CN111072444B (zh) * 2018-10-18 2022-10-11 中国石油化工股份有限公司 甲苯择形歧化生产对二甲苯的方法
CN111068749B (zh) * 2018-10-18 2023-01-24 中国石油化工股份有限公司 甲苯对位烷基化分子筛催化剂及其应用
CN112517054A (zh) * 2019-09-19 2021-03-19 中国石油化工股份有限公司 高甲苯转化的选择性歧化催化剂及其制备方法和应用
JP7345995B2 (ja) * 2020-06-19 2023-09-19 信越化学工業株式会社 酸化チタン組成物、分散液、酸化チタン組成物を表面層に有する部材
WO2023182906A1 (ru) * 2022-03-23 2023-09-28 Публичное акционерное общество "Газпром нефть" Высококремнистый цеолитсодержащий катализатор

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4472518A (en) * 1981-11-04 1984-09-18 Mobil Oil Corporation Shape selective reactions with zeolite catalysts modified with iron and/or cobalt
US20010002383A1 (en) * 1999-11-29 2001-05-31 Toshio Hidaka Molded catalysts
CN1340487A (zh) * 2000-08-29 2002-03-20 中国石油化工集团公司 贵金属改性的甲苯选择性歧化催化剂
CN1340488A (zh) * 2000-08-29 2002-03-20 中国石油化工集团公司 碱土金属改性的甲苯选择性歧化催化剂
CN1340485A (zh) * 2000-08-29 2002-03-20 中国石油化工集团公司 甲苯选择性歧化催化剂的制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4477583A (en) * 1983-06-09 1984-10-16 Mobil Oil Corporation Silica-modified catalyst and use for selective production of para-dialkyl substituted benzenes
US5243117A (en) * 1990-06-05 1993-09-07 Mobil Oil Corp. Catalyst and process for the selective production of para-dialkyl substituted benzenes
US5371312A (en) * 1993-04-05 1994-12-06 Mobil Oil Corp. Shape selective hydrocarbon conversions over modified catalyst
JP3763484B2 (ja) * 1995-08-31 2006-04-05 東レ・ダウコーニング株式会社 ヒドロシリル化反応用微粒子触媒およびこれを含有してなる加熱硬化性シリコーン組成物
US6486373B1 (en) * 1996-11-05 2002-11-26 Mobil Oil Corporation Shape selective zeolite catalyst and its use in aromatic compound conversion
AU1620299A (en) * 1997-12-03 1999-06-16 Exxon Chemical Patents Inc. Catalyst comprising a zeolite partially coated with a second zeolite, its use for hydrocarbon conversion
CN1123553C (zh) * 2001-01-03 2003-10-08 中国石油化工股份有限公司 甲苯选择性歧化改性催化剂
FR2875419B1 (fr) * 2004-09-22 2007-02-23 Inst Francais Du Petrole Catalyseur alumino-silicate dope et procede ameliore de traitement de charges hydrocarbonees
EP1661858A1 (en) * 2004-11-26 2006-05-31 Total France Zeolite compositions and preparation and use thereof
US7709692B2 (en) * 2005-01-17 2010-05-04 Indian Petrochemicals Corporation Limited Process for the production of para-diethylbenzene

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4472518A (en) * 1981-11-04 1984-09-18 Mobil Oil Corporation Shape selective reactions with zeolite catalysts modified with iron and/or cobalt
US20010002383A1 (en) * 1999-11-29 2001-05-31 Toshio Hidaka Molded catalysts
CN1340487A (zh) * 2000-08-29 2002-03-20 中国石油化工集团公司 贵金属改性的甲苯选择性歧化催化剂
CN1340488A (zh) * 2000-08-29 2002-03-20 中国石油化工集团公司 碱土金属改性的甲苯选择性歧化催化剂
CN1340485A (zh) * 2000-08-29 2002-03-20 中国石油化工集团公司 甲苯选择性歧化催化剂的制备方法

Also Published As

Publication number Publication date
CN101172245A (zh) 2008-05-07
JP5143844B2 (ja) 2013-02-13
CA2668488C (en) 2015-01-06
US20100048382A1 (en) 2010-02-25
CA2668488A1 (en) 2008-05-08
BRPI0717996A2 (pt) 2013-12-03
BRPI0717996B1 (pt) 2017-02-21
US8580702B2 (en) 2013-11-12
KR20090079962A (ko) 2009-07-22
CN101172245B (zh) 2010-10-27
KR101479561B1 (ko) 2015-01-07
JP2010508146A (ja) 2010-03-18

Similar Documents

Publication Publication Date Title
WO2008052445A1 (fr) Catalyseur de dismutation selective de toluene
TWI332495B (en) Process for isomerizing non-equilibrium xylene-containing feed streams
JP4595105B2 (ja) 構造化剤の前駆体を用いるeuo構造型ゼオライトの調製方法およびc8芳香族化合物の異性化触媒としてのその使用
TWI303997B (en) Catalyst treatment useful for aromatics conversion process
ES2259844T3 (es) Catalizador para la desproporcionacion/transalquilacion de hidrocarburos aromaticos y metodo para preparar el mismo.
EP0923989B1 (en) A process for producing a shape-selective, metal-containing catalyst and use thereof in hydrocarbon conversion processes
TWI378824B (en) Aromatic isomerization catalyst and a process of use thereof
JP2000300987A (ja) 低炭素数の脂肪族炭化水素をより高い炭素数の炭化水素へ転化する方法及び触媒
TWI377983B (en) Aromatic isomerization catalyst
KR102479697B1 (ko) 알킬방향족 전환 촉매
US5625103A (en) Continuous toluene disproportionation process
CN110961143B (zh) 分子筛催化剂、其制备方法及其在乙苯脱烷基反应和二甲苯异构化反应中的应用
TW555593B (en) Process for preparation of an EUO-structural-type zeolite, the zeolite that is obtained and its use as catalyst for isomerization of C8-aromatic compounds
TW200940495A (en) Ethylbenzene conversion and xylene isomerization processes and catalysts therefor
CN112299433B (zh) 一种氢型zsm-5/eu-1共晶沸石、芳烃异构化催化剂及制备方法和应用
TWI271216B (en) EUO-structural-type zeolite and its use
CN104275208A (zh) 甲苯择形歧化催化剂的制备方法
JP2016502928A (ja) 構造型mtwを有する改変型触媒、その調製方法および芳香族c8留分の異性化方法におけるその使用
JP3849169B2 (ja) キシレンの製造方法
RU2233260C2 (ru) Селективная изомеризация ксилолов и конверсия этилбензола
RU2585289C1 (ru) Катализатор ароматизации метана, способ его получения и способ конверсии метана с получением ароматических углеводородов
CN112299435B (zh) 一种氢型zsm-35/eu-1共晶沸石、芳烃异构化催化剂及制备方法和应用
JPH09313945A (ja) エチルベンゼン異性化用触媒及びその製造方法
KR920000586B1 (ko) 알킬방향족류의 이성체화 방법
CN114929383A (zh) 具有低碱金属含量的izm-2沸石催化剂及其用于芳族c8馏分的异构化的用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07816733

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2668488

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2009535546

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020097010678

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 12513261

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 07816733

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: PI0717996

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20090430