WO2008041634A1 - Mécanisme d'amortisseur - Google Patents

Mécanisme d'amortisseur Download PDF

Info

Publication number
WO2008041634A1
WO2008041634A1 PCT/JP2007/068991 JP2007068991W WO2008041634A1 WO 2008041634 A1 WO2008041634 A1 WO 2008041634A1 JP 2007068991 W JP2007068991 W JP 2007068991W WO 2008041634 A1 WO2008041634 A1 WO 2008041634A1
Authority
WO
WIPO (PCT)
Prior art keywords
damper mechanism
rotation direction
main body
pair
portions
Prior art date
Application number
PCT/JP2007/068991
Other languages
English (en)
French (fr)
Inventor
Tomoki Hada
Hiroshi Uehara
Original Assignee
Exedy Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exedy Corporation filed Critical Exedy Corporation
Priority to DE112007002295.7T priority Critical patent/DE112007002295B4/de
Priority to US12/440,377 priority patent/US8066574B2/en
Priority to CN2007800363709A priority patent/CN101523078B/zh
Publication of WO2008041634A1 publication Critical patent/WO2008041634A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
    • F16F15/131Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon the rotating system comprising two or more gyratory masses
    • F16F15/133Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon the rotating system comprising two or more gyratory masses using springs as elastic members, e.g. metallic springs
    • F16F15/134Wound springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
    • F16F15/121Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon using springs as elastic members, e.g. metallic springs
    • F16F15/123Wound springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D13/00Friction clutches
    • F16D13/58Details
    • F16D13/60Clutching elements
    • F16D13/64Clutch-plates; Clutch-lamellae
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D13/00Friction clutches
    • F16D13/58Details
    • F16D13/60Clutching elements
    • F16D13/64Clutch-plates; Clutch-lamellae
    • F16D13/68Attachments of plates or lamellae to their supports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/02Yielding couplings, i.e. with means permitting movement between the connected parts during the drive adapted to specific functions
    • F16D3/12Yielding couplings, i.e. with means permitting movement between the connected parts during the drive adapted to specific functions specially adapted for accumulation of energy to absorb shocks or vibration

Definitions

  • the present invention relates to a damper mechanism, and more particularly to a damper mechanism for damping torsional vibration in a power transmission system.
  • a damper mechanism is used in a power transmission system of a vehicle in order to attenuate torsional vibration.
  • a clutch device that transmits and shuts off torque from the engine will be described as an example.
  • the clutch device is composed of a clutch disk assembly arranged close to the flywheel and a clutch cover assembly for pressing the clutch disk assembly against the flywheel.
  • the clutch and damper functions are realized by the clutch disk assembly.
  • a clutch cover assembly includes an annular clutch cover that is fixed to a flywheel, a pressure plate that is axially movable and integrally rotatable with respect to the clutch cover, and a flyback of the pressure plate. And a diaphragm spring that urges the wheel side.
  • a clutch disk assembly includes a clutch disk sandwiched between a pressure plate and a flywheel, a pair of input-side plates on which the clutch disk is fixed and arranged to face each other, and 1 A hub flange disposed between the pair of input side plates in the axial direction, a coil spring that elastically connects the pair of input side plates and the hub flange in the rotational direction, and inertia in the rotational direction with respect to the hub flange And an output-side hub connected to the.
  • the damper mechanism is composed of a pair of input side plates, hub flanges and coil springs.
  • a stop pin is used as a member that restricts relative rotation between the input side plate and the hub flange within a range of a predetermined twist angle.
  • This stop pin connects a pair of input plates and is formed on the hub flange. It penetrates the hole.
  • the stop pin mechanism is realized by the contact between the stop pin and the hole in the rotational direction.
  • the stop pin needs to have a certain diameter in order to ensure strength, and further needs to be arranged radially inward from the outer peripheral edge of the pair of input side plates. For this reason, the relative torsion angle between the pair of input side plates and the hub flange cannot be sufficiently increased. In this case, even if a highly rigid coil spring is used, a sufficient relative twist angle cannot be obtained. Therefore, the conventional stop pin type stopper mechanism cannot make full use of the coil spring capacity.
  • Patent Document 1 JP-A-9 196078
  • a stopper mechanism is realized by a plurality of connecting portions that connect a pair of input side plates.
  • the connecting portion is a plate-like portion formed integrally with one input side plate.
  • the connecting portion extends in the axial direction from the outer peripheral edge of one input side plate toward the other input side plate, and extends radially inward from the end of the contact portion and is fixed to the other input side plate. And a fixed portion.
  • the outer periphery of the hub flange has a plurality of protrusions extending radially outward and notches formed between the rotation directions of the protrusions.
  • the contact portion of the connecting portion passes through the notch in the axial direction, and contacts the protruding portion in the rotational direction when the input side plate and the hub flange rotate relative to each other.
  • An object of the present invention is to increase the degree of freedom in designing a damper mechanism while minimizing structural changes.
  • a damper mechanism includes a pair of first rotating bodies arranged side by side in the axial direction and a pair of first rotating bodies arranged so as to be relatively rotatable between the axial directions of the pair of first rotating bodies.
  • the second rotating body includes a second main body portion and a plurality of projecting portions that extend radially outward from the outer peripheral edge of the second main body portion and are arranged corresponding to the elastic members.
  • the pair of first rotating bodies has a pair of first main body portions and a plurality of connecting portions that are arranged between the rotation directions of the plurality of protruding portions and connect the pair of first main body portions. .
  • the plurality of connecting portions are arranged so that adjacent pitches are different.
  • this damper mechanism for example, when torque is input to the first rotating body, the first rotating body and the second rotating body rotate relative to each other. At this time, the torsional vibration input to the first rotating body is absorbed and attenuated by the elastic member. When the first rotating body and the second rotating body rotate relative to each other by a predetermined twist angle, the connecting portion of the first rotating body and the protruding portion of the second rotating body come into contact with each other in the rotation direction. As a result, in this damper mechanism, it is possible to transmit the input torque of one rotating body to the other rotating body while absorbing and damping the torsional vibration at the time of torque input.
  • the size of the elastic member arranged between the connecting portions can be changed.
  • an elastic member having a large size can be arranged in a region where the pitch is large.
  • a damper mechanism according to a second aspect of the present invention is the damper mechanism according to the first aspect of the present invention. And a fixed portion that extends inward in the radial direction from an end of the contact portion and is fixed to the other first main body portion. .
  • the rotation direction center of the contact portion is different from the rotation direction center of the fixed portion.
  • a damper mechanism according to a third invention corresponds to the damper mechanism according to the second invention, wherein the center of the abutting portion in the rotational direction corresponds to a smaller adjacent pitch with respect to the corresponding connecting portion. The position in the rotational direction is deviated from the rotational direction center of the fixed part.
  • a damper mechanism according to a fourth invention is the damper mechanism according to any one of the first to third! / Shift inventions, wherein the second rotating body is disposed on the inner peripheral side of the protruding portion, and the elastic member is It further has a plurality of window holes to be accommodated.
  • the plurality of protrusions include first protrusions that are arranged in a region having a large pitch adjacent to each other with the connecting portion as a reference. Both end faces of the first protrusions facing the rotation direction are arranged on the outer side in the rotation direction with respect to both end faces of the corresponding window holes facing the rotation direction.
  • the outer side in the rotational direction means that the outer side in the rotational direction is based on the center in the rotational direction of the first protrusion or the center in the rotational direction of the corresponding window hole! /,
  • the damper mechanism according to a fifth aspect of the invention is the damper mechanism according to the fourth aspect of the invention, further comprising a second protrusion in which the plurality of protrusions are arranged in a region where the adjacent pitch is small with respect to the connecting part. Contains. Both end faces of the second protrusions facing the rotation direction are arranged on the inner side in the rotation direction with respect to both end faces of the corresponding window hole facing the rotation direction.
  • the distance between the adjacent protrusions can be increased, and the relative rotation angle between the first rotating body and the second rotating body can be increased.
  • the force S can be maintained to ensure the same or larger operating angle than the conventional one.
  • the inside in the rotational direction means that the inside of the rotational direction is based on the rotational direction center of the second protrusion or the corresponding rotational direction center of the window hole! /,
  • FIG. 1 is a schematic vertical sectional view of a clutch disk assembly.
  • FIG. 1 is a schematic longitudinal sectional view of the clutch disk assembly 1
  • FIG. 2 is a schematic plan view of the clutch disk assembly 1.
  • the O—O line in FIG. 1 is the rotational axis of the clutch disc assembly 1.
  • an engine and a flywheel are arranged on the left side of FIG. 1, and a transmission (not shown) is arranged on the right side of FIG.
  • the R1 side in FIG. 2 is the rotational direction drive side (positive side) of the clutch disk assembly 1
  • the R2 side is the opposite side (negative side).
  • the clutch disc assembly 1 is a mechanism used in a clutch device that constitutes a power transmission system of a vehicle, and has a clutch function and a damper function.
  • the clutch function is a function of transmitting and interrupting torque by pressing and releasing the clutch disk assembly 1 by a pressure plate (not shown) against a flywheel (not shown).
  • the damper function is a function that absorbs and attenuates torsional vibration input from the flywheel side by a coil spring or the like.
  • the clutch disk assembly 1 mainly absorbs and attenuates the clutch disk 23 to which torque is input from the flywheel and torsional vibration input from the clutch disk 23.
  • Damper mechanism 4 and force are configured!
  • the clutch disc 23 is a portion that is pressed against a flywheel (not shown).
  • the clutch disc 23 is mainly composed of a pair of annular friction facings 25 and a cushioning plate 24 to which the friction facings 25 are fixed. And force is composed.
  • the cushion plate 24 is composed of an annular portion 24a, eight cushioning portions 24b provided on the outer peripheral side of the annular portion 24a and arranged in the rotation direction, four fixed portions 24c extending radially inward from the annular portion 24a, and force.
  • Friction facings 25 are fixed by rivets 26 on both surfaces of each tugging portion 24b.
  • the fixed portion 24c is fixed to the outer peripheral portion of the damper mechanism 4.
  • FIG. 3 is a schematic plan view of the damper mechanism 4
  • FIG. 4 is a plan view of the hub flange 6
  • FIG. 5 is a plan view of the input rotating body 2
  • FIGS. 6 and 7 are partial sectional views of the damper mechanism 4.
  • the damper mechanism 4 mainly includes an input rotator 2 to which the clutch disk 23 is fixed, a hub flange 6 as a second rotator disposed so as to be rotatable with respect to the input rotator 2, and a hub flange 6
  • a second coil spring 8 that is inertially connected in the rotational direction, and a force.
  • the spline knob 3 is splined to the end of the input shaft of the transmission (not shown).
  • the input rotator 2 includes a clutch plate 21 and a retaining plate 22 as a pair of first rotators.
  • the clutch plate 21 and the retaining plate 22 are disc-shaped or annular members made of sheet metal, and are arranged at predetermined intervals in the axial direction.
  • the clutch plate 21 is disposed on the engine side, and the retaining plate 22 is disposed on the transmission side.
  • the clutch plate 21 and the retaining plate 22 are fixed to each other by a connecting portion 31 described later. For this reason, the clutch plate 21 and the retaining plate 22 are capable of rotating together with a predetermined interval in the axial direction.
  • a fixing portion 24 c of the clutch disk 23 is fixed to the outer peripheral portion of the clutch plate 21 by a rivet 27.
  • the clutch plate 21 and the retaining plate 22 hold the second coil spring 8. It has a function to do.
  • the clutch plate 21 and the retaining plate 22 include a pair of annular first main body portions 28 and four holding portions 35 arranged on the outer peripheral portion of the first main body portion 28 side by side in the rotational direction.
  • the four connecting portions 31 arranged between the rotation directions of the holding portion 35 and the force are configured.
  • the holding part 35 has cut-and-raised parts 35a and 35b on the inner peripheral side and the outer peripheral side.
  • the cut and raised portions 35a and 35b restrict the movement of the second coil spring 8 in the axial direction and the radial direction.
  • the dimension of the holding portion 35 in the rotation direction substantially matches the length of the second coil spring 8.
  • contact surfaces 36 that are in contact with or close to the end of the second coil spring 8 are formed.
  • the four holding portions 35 are arranged so that the adjacent pitches are different (see FIG. 5). Specifically, the left and right holding portions 35 in FIG. 5 are displaced in the rotational direction by an angle ⁇ 4 with respect to the upper and lower holding portions.
  • the connecting portion 31 is disposed on the outer peripheral side of the pair of first main body portions 28 and connects the pair of first main body portions 28. Specifically, the connecting portion 31 is connected to the other first body portion 28 (this embodiment) from the outer peripheral edge of one first body portion 28 (in this embodiment, the first body portion 28 of the retaining plate 22). Then, the contact portion 32 extending in the axial direction to the first main body portion 28) of the clutch plate 21, the fixing portion 33 extending radially inward from the end portion of the contact portion 32, and the force are also configured (see FIG. 7). ). The fixing portion 33 is fixed to the first main body portion 28 of the clutch plate 21 by a rivet 27 together with the fixing portion 24c of the clutch disk 23.
  • the hub flange 6 is disposed between the clutch plate 21 and the retaining plate 22 so as to be capable of relative rotation, and is connected to the clutch plate 21 and the retaining plate 22 by the second coil spring 8. ing.
  • the hub flange 6 includes an annular second main body 29, a pair of first window holes 41 and a pair of second window holes 42 formed on the outer periphery of the second main body 29.
  • the four notches 43 formed on the outer peripheral portion of the second main body 29 and the force are also configured.
  • the pair of first window holes 41 and the pair of second window holes 42 are arranged at positions corresponding to the four holding portions 35.
  • the pair of first window holes 41 are arranged to face each other in the radial direction, and the pair of second window holes 42 are arranged to face each other in the radial direction.
  • a second coil spring 8 is accommodated in the first window hole 41 and the second window hole 42.
  • the rotational dimension of the first window hole 41 is set longer than that of the holding part 35, and the rotation of the second window hole 42
  • the direction dimension is set to be approximately the same length as the holding portion 35.
  • a first contact surface 44 and a second contact surface 47 that are in contact with or close to the end of the second coil spring 8 are formed at both ends in the circumferential direction. Yes.
  • the spline hub 3 is disposed in the center holes 37 and 38 of the clutch plate 21 and the retaining plate 22.
  • the spline hub 3 includes a cylindrical boss 52 extending in the axial direction, a flange 54 extending radially outward from the boss 52, and a force.
  • a spline hole 53 that engages with an input shaft (not shown) of the transmission is formed in the inner peripheral portion of the boss 52.
  • the plurality of outer peripheral teeth 55 formed on the outer peripheral portion of the flange 54 mesh with the plurality of inner peripheral teeth 59 formed on the inner peripheral portion of the hub flange 6.
  • a first notch 56 and a second notch 58 in which the first coil spring 7 is accommodated are formed on the outer peripheral edge of the flange 54 and the inner peripheral edge of the flange 6.
  • a pair of spring seats is attached to the end of the first coil spring 7.
  • the second coil spring 8 is composed of a pair of coil springs arranged concentrically and having different diameters.
  • the second coil spring 8 is larger in diameter and longer than the first coil spring 7.
  • the panel constant of the second coil spring 8 is set to be much larger than the panel constant of the first coil spring 7. That is, the second coil spring 8 is much more rigid than the first coil spring 7. For this reason, when torque is input to the input rotor 2, the first coil spring 7 starts to compress between the hub flange 6 and the spline hub 3, and the hub flange 6 and the spline knob 3 rotate. Then, the second coil spring 8 starts to compress between the input rotator 2 and the nob flange 6.
  • the torque input to the input rotating body 2 is transmitted to the hub flange 6 via the second coil spring 8, and the hub flange 6 and the spline knob 3 rotate relative to each other.
  • the first coil spring 7 is compressed between the hub flange 6 and the spline knob 3.
  • the relative twist angle between the flange 6 and the spliner 3 and the flange 3 reaches a predetermined angle
  • the outer peripheral teeth 55 and the inner peripheral teeth 59 come into contact with each other and the members 6 and 3 rotate together, and the input rotating body 2 and the hub flange 6 and relative rotation.
  • the second coil spring 8 is compressed between the input rotating body 2 and the hub flange 6.
  • the first coil spring 7 acts in parallel and the second coil spring 8 acts in parallel.
  • damper mechanism 4 is provided with a first stopper 9 and a second stopper 10 as stopper mechanisms in order to directly transmit the torque input to the input rotating body 2.
  • the first stopper 9 is a mechanism for restricting the relative rotation between the hub flange 6 and the spline hub 3 within a certain range.
  • the outer peripheral teeth 55 of the spline hub 3 and the inner peripheral teeth of the hub flange 6 59 and force are also composed.
  • the first stopper 9 allows the relative rotation between the hub flange 6 and the spline hub 3 within the range of the clearance angles ⁇ lp and ⁇ In!
  • the second stopper 10 is a mechanism for limiting the relative rotation between the input rotating body 2 and the hub flange 6 within a certain range.
  • the first projecting portion 49 and the second projecting portion 57 and the force are also configured.
  • first projecting portions 49 and a pair of second projecting portions 57 are formed on the outer peripheral edge of the second main body portion 29 as projecting portions extending radially outward.
  • the first protrusion 49 and the second protrusion 57 are disposed on the outer peripheral side of the first window hole 41 and the second window hole 42, and stopper surfaces 50 and 51 are formed at both ends in the rotation direction. .
  • the stopper surfaces 50 and 51 can come into contact with the stopper surface 39 of the connecting portion 31.
  • a gap is secured between the rotation direction of the connecting portion 31, the first protruding portion 49, and the second protruding portion 57.
  • the torsion angle corresponding to this gap is the gap angle ⁇ 3p or ⁇ 3n.
  • the gap formed on the R1 side of the connecting portion 31 corresponds to the gap angle ⁇ 3p, and the gap formed on the R2 side of the connecting portion 31 corresponds to the gap angle ⁇ 3n.
  • the second stopper 10 allows relative rotation between the input rotating body 2 and the spline hub 3 within the range of the gap angles ⁇ 3p and ⁇ 3n.
  • the damper mechanism 4 is provided with a friction generating mechanism 5 that generates a hysteresis torque using frictional resistance in order to more effectively absorb and attenuate torsional vibration.
  • the friction generating mechanism 5 includes a first friction washer 79, a second friction washer 72, and a third friction washer 85.
  • the first friction washer 79 is disposed between the flange 54 of the spline hub 3 and the inner peripheral portion of the retaining plate 22 in the axial direction, and is disposed on the outer peripheral side of the boss 52.
  • the first friction washer 79 is made of resin.
  • the first friction washer 79 is mainly composed of an annular main body 81 and a plurality of protrusions 82 extending radially outward from the main body 81.
  • the main body 81 is in contact with the transmission side surface of the flange 54, and a first cone spring 80 is disposed between the main body 81 and the retaining plate 22.
  • the first cone spring 80 is compressed in the axial direction between the main body 81 and the retaining plate 22. For this reason, the friction surface of the first friction washer 79 is pressed against the flange 54 by the first cone spring 80. Further, the plurality of protrusions 82 are engaged with recesses 77 (described later) of the second friction washer 72. As a result, the first friction washer 79 and the second friction washer 72 can rotate together.
  • the second friction washer 72 is disposed between the inner peripheral part of the hub flange 6 and the inner peripheral part of the retaining plate 22, and is disposed on the outer peripheral side of the first friction washer 79.
  • the second friction washer 72 is mainly formed on an annular main body 74, a plurality of engaging portions 76 extending from the inner peripheral portion of the main body 74 to the transmission side, and the transmission side of the inner peripheral portion of the main body 74.
  • a recess 7 7 and a force are also configured.
  • the second friction washer 72 is made of resin, for example.
  • the main body 74 is in contact with the transmission side surface of the hub flange 6, and a second cone spring 73 is disposed between the main body 74 and the retaining plate 22.
  • the second cone spring 73 is compressed between the main body 74 and the retaining plate 22.
  • the friction surface of the second friction washer 72 is pressed against the hub flange 6 by the second cone spring 73.
  • the engaging portion 76 passes through the hole portion of the retaining plate 22.
  • the second friction washer 72 and the retaining plate 22 can rotate together.
  • the protrusion 82 of the first friction washer 79 is engaged with the recess 77. For this reason, the first friction bush 79 can rotate integrally with the retaining plate 22 via the second friction bush 72.
  • the urging force of the first corn spring 80 is designed to be smaller than the urging force of the second corn spring 73.
  • the first friction washer 79 has a lower coefficient of friction than the second friction washer 72. For this reason, the friction (hysteresis torque) generated by the first friction bush 79 is much smaller than the friction (hysteresis torque) generated by the second friction bush 72.
  • the third friction washer 85 is disposed between the flange 54 and the inner peripheral portion of the clutch plate 21, and is disposed on the outer peripheral side of the boss 52.
  • the third friction washer 85 is made of resin, for example.
  • the third friction washer 85 mainly includes an annular main body 87, a plurality of engaging portions 88 extending from the main body 87 to the engine side, and a force.
  • the main body 87 is in contact with the engine side surfaces of the flange 54 and the hub flange 6, and is in contact with the transmission side surface of the clutch plate 21.
  • the engaging portion 88 passes through a hole formed in the clutch plate 21.
  • the third friction washer 85 can rotate integrally with the clutch plate 21 by the engaging portion 88.
  • the main body 87 is engaged with the central hole 37 of the clutch plate 21 so as not to be relatively rotatable, and the inner peripheral surface thereof is slidably in contact with the outer peripheral surface of the boss 52. That is, the clutch plate 21 is positioned in the radial direction by the boss 52 via the third friction washer 85.
  • the first friction washer 79 and the third friction washer 85 constitute the large friction generating mechanism 14, and the second friction washer 72 and the third friction washer 85 constitute the small friction generating mechanism 15. It is configured.
  • the hub flange 6 and the spline hub 3 rotate relative to each other, a hysteresis torque is generated by the large friction generating mechanism 14 and the small friction generating mechanism 15, and the damper mechanism 4 further attenuates and absorbs the torsional vibration. It can be done effectively.
  • This damper mechanism 4 is mainly characterized by the arrangement of the connecting portions 31.
  • the four plurality of connecting portions 31 are not arranged at the same pitch, but are arranged so that adjacent pitches are different.
  • the rotation direction center of the fixed portion 33 of the connecting portion 31 is arranged so that the adjacent pitches are different.
  • the first protrusion 49 The first angle Al formed by the two connecting portions 31 arranged on both sides in the rotation direction is larger than the second angle A2 formed by the two connecting portions 31 arranged on both sides in the rotation direction of the second protrusion 57.
  • the reference (pitch reference) of the first angle A1 and the second angle A2 is the rotation direction center of the rivet 27 that fixes the fixing portion 33 of the connecting portion 31 or the rotation direction of the hole 33a through which the rivet 27 passes. Center).
  • the two connecting portions 31 arranged on the R1 side of the two first projecting portions 49 are arranged at positions facing each other with the rotation axis O therebetween. Further, the two connecting portions 31 arranged on the R2 side of the two first projecting portions 49 are arranged at positions facing each other with the rotation axis O therebetween.
  • the arrangement of the notches 43 in the hub flange 6 is different from the conventional one.
  • the shape of the notch 43 is complementary to the shape of the corresponding fixing portion 33 and is slightly larger than the fixing portion 33. This is because the fixing portion 33 allows the notch 43 to pass in the axial direction during assembly. Therefore, when the connecting portions 31 are arranged so that the adjacent pitches are different as described above, the notches 43 are also arranged so that the adjacent pitches are different.
  • the direction force of the first window hole 41 arranged in the region formed by the first angle A1 where the pitch of the connecting portion 31 is large is arranged in the region formed by the second angle A2 where the pitch force of the connecting portion 31 is small. It is measured by the force that makes the dimension in the rotational direction larger than the second window hole 42.
  • the four second coil springs 8 have the same force S, and the first window hole 41 can have a larger size in the rotational direction than the second window hole 42. For this reason, a gap can be secured between the first contact surface 44 of the first window hole 41 and the end of the second coil spring 8 in the rotational direction.
  • the twist angles corresponding to this gap are the gap angles ⁇ 2p and ⁇ 2n.
  • the gap formed on the R1 side of the end of the second coil spring 8 corresponds to the gap angle ⁇ 2p
  • the gap formed on the R2 side of the end of the second coil spring 8 has a gap angle ⁇ 2n It corresponds to.
  • the gap angle ⁇ 2p is set smaller than the gap angle ⁇ 2n.
  • this damper mechanism 4 can realize two-stage torsional characteristics by using the second coil spring 8 as described later. .
  • the rotational direction center of the contact portion 32 and the rotational direction center of the fixed portion 33 are different in the rotational direction position. Specifically, the central force in the rotation direction of the contact portion 32 is determined so that the adjacent pitch is based on the connection portion 31 corresponding to the contact portion 32. The position in the rotational direction is shifted from the rotational direction center of the fixed portion 33 corresponding to the contact portion 32 toward the smaller side. For example, as shown in FIG. 3, when considering the connecting portion 31 disposed on the R1 side of the first protrusion 49, the rotation direction center of the abutment portion 32 is on the R1 side with respect to the rotation direction center of the fixing portion 33. Has been placed.
  • the positional relationship between the stubber surface 50 and the first projecting portion 49 is different from the conventional one by shifting the position of the contact portion 32 with respect to the fixed portion 33 in the rotational direction.
  • the two staggered surfaces 50 formed on the first protrusion 49 are arranged on the outer side in the rotational direction than the two first contact surfaces 44 formed on the first window hole 41.
  • the stopper surface 50 on the R1 side is arranged on the R1 side from the first contact surface 44 on the R1 side, and the stopper surface 50 on the R2 side is on the R2 side than the first contact surface 44 on the R2 side. Is arranged. Accordingly, the length of the first protrusion 49 in the rotational direction is longer than the length of the first window hole 41 in the rotational direction.
  • the two stopper surfaces 51 formed in the second protrusion 57 rotate more than the two second contact surfaces 47 formed in the second window hole 42.
  • the stopper surface 51 on the R1 side is arranged on the R2 side with respect to the second contact surface 47 on the R1 side, and the staggered surface 51 on the R2 side is more than the second contact surface 47 on the R2 side. Is also located on the R1 side. Therefore, the rotational length of the second protrusion 57 is shorter than the rotational length of the second window hole 42.
  • the radial dimension of the first window hole 41 can be increased, and the diameter of the second coil spring 8 corresponding to the first window hole 41 can be further increased.
  • the outer side in the rotational direction means the outer side in the rotational direction with reference to the center in the rotational direction of the first protrusion 49 or the center in the rotational direction of the corresponding first window hole 41.
  • the inside in the rotational direction means that the inside of the rotational direction is based on the rotational center of the second protrusion 57 or the rotational center of the corresponding second window hole 42. .
  • FIG. 8 shows the damper mechanism 4 as described above in a mechanical circuit diagram. This machine times The road map is a schematic drawing of the relationship of the rotational direction of each member in the damper mechanism. Therefore, the integrally rotating member is handled as the same member.
  • the hub flange 6 is disposed between the rotation direction of the input rotating body 2 and the spline hub 3.
  • the hub flange 6 is elastically connected to the spline knob 3 via the first coil spring 7 in the rotational direction.
  • a first stagger 9 is formed between the hub flange 6 and the spline hub 3.
  • the first coil spring 7 can be compressed within the range of the first clearance angles ⁇ lp and ⁇ In in the first stagger 9.
  • the hub flange 6 is inertially connected to the input rotating body 2 through the second coil spring 8 in the rotational direction.
  • a second stopper 10 is formed between the hub flange 6 and the input rotating body 2.
  • the second coil spring 8 can be compressed within the range of the clearance angles ⁇ 3p and ⁇ 3n in the second stopper 10. As described above, the input rotating body 2 and the spline knob 3 are inertialy coupled in the rotational direction by the first coil spring 7 and the second coil spring 8 arranged in series via the hub flange 6. Has been.
  • the hub flange 6 functions as an intermediate member disposed between the two types of coil springs.
  • the structure described above includes a first damper composed of a plurality of first coil springs 7 and a first stopper 9 arranged in parallel, and a plurality of second coil springs 8 and second arranged in parallel.
  • the second damper composed of the stagger 10 is arranged in series.
  • the rigidity of the entire first coil spring 7 is set to be much smaller than the rigidity of the entire second coil spring 8. Therefore, the second coil spring 8 is hardly compressed in the rotational direction within the range of torsional angles up to the first clearance angle ⁇ 1 and ⁇ In.
  • FIGS. Figures 9 to 11 show mechanical circuit diagrams during operation
  • Fig. 12 shows torsional characteristic diagrams.
  • the input rotating body 2 is twisted to the R1 side with respect to the spline hub 3 from the neutral state shown in FIG. 8 !, and the positive side torsion characteristics are explained. Since it is the same, description is abbreviate
  • this damper mechanism realizes three-stage torsional characteristics, and the torsion angle is ⁇ 1 ⁇ + ⁇
  • the input rotator 2 the hub flange 6 and the spline hub 3 rotate together, and the torque input to the input rotator 2 is output from the spline hub 3.
  • the first coil spring 7, the second coil spring 8, and the clearance angles ⁇ 1 ⁇ , ⁇ 2 ⁇ , ⁇ 3 ⁇ realize three-stage torsional characteristics.
  • the adjacent pitches of the connecting portions 31 are different, so that the periphery of the first window hole 41 of the hub flange 6 can be enlarged.
  • the first window hole 41 of the hub flange 6 can be enlarged, or the second coil spring 8 accommodated in the first window hole 41 can be enlarged.
  • the gap angles ⁇ 2p and ⁇ 2n are ensured between the first window hole 41 and the second coil spring 8, or the second coil spring 8 is not provided with no gap angle. Can be increased in size. Also, the force S is used to secure only one of the gap angles ⁇ 2p and ⁇ 2n.
  • the force described by taking the clutch disk assembly 1 on which the damper mechanism 4 is mounted as an example is not limited to this.
  • this damper mechanism can be applied to other power transmission devices such as a two-mass flywheel and a lock-up device for a fluid torque transmission device.
  • the degree of freedom in design can be increased while minimizing structural changes.
  • damper mechanism according to the present invention is useful in the field of power transmission devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Operated Clutches (AREA)

Description

技術分野
[0001] 本発明は、ダンパー機構、特に、動力伝達系において捩り振動を減衰するための ダンパー機構に関する。
背景技術
[0002] 車両の動力伝達系には、捩り振動を減衰するためにダンパー機構が用いられてい る。ここでは、エンジンからのトルクを伝達および遮断するクラッチ装置を例に説明す
[0003] クラッチ装置は、フライホイールに近接して配置されたクラッチディスク組立体と、ク ラッチディスク組立体をフライホイールに押圧するためのクラッチカバー組立体とから 構成されている。クラッチディスク組立体により、クラッチ機能およびダンパー機能が 実現されている。
[0004] クラッチカバー組立体は、フライホイールに固定される環状のクラッチカバーと、クラ ツチカバーに対して軸方向に移動可能にかつ一体回転可能に設けられたプレツシャ プレートと、プレツシャプレートをフライホイール側へ付勢するダイヤフラムスプリングと を有している。
[0005] クラッチディスク組立体は、プレツシャプレートとフライホイールとの間に狭持されるク ラッチディスクと、クラッチディスクが固定され互いに対向して配置された 1対の入力 側プレートと、 1対の入力側プレートの軸方向間に配置されたハブフランジと、 1対の 入力側プレートとハブフランジとを回転方向に弹性的に連結するコイルスプリングと、 ハブフランジに対して回転方向に弹性的に連結される出力側ハブとから構成されて いる。 1対の入力側プレート、ハブフランジおよびコイルスプリングにより、ダンパー機 構が構成されている。
[0006] 従来のクラッチディスク組立体では、所定の捩り角度の範囲内で入力側プレートと ハブフランジとの相対回転を規制する部材として、ストップピンが用いられている。こ のストップピンは、 1対の入力側プレートを連結しており、ハブフランジに形成された 孔部を貫通している。ストップピンと孔部とが回転方向に当接することで、ストツバ機 構が実現されている。
[0007] しかし、ストップピンは、強度を確保するために一定の径が必要であり、また 1対の 入力側プレートの外周縁からさらに半径方向内側に配置する必要がある。このため、 1対の入力側プレートとハブフランジとの相対捩り角度を充分に大きくできない。この 場合、剛性が高いコイルスプリングを用いたとしても、充分な相対捩り角度が得られな い。したがって、従来のストップピンタイプのストッパ機構では、コイルスプリングの能 力を最大限に利用することができない。
[0008] そこで、ストップピンを用いな!/、ストツバ機構が採用されたダンパー機構が提案され ている(例えば、特許文献 1を参照。)。
特許文献 1:特開平 9 196078号公報
発明の開示
[0009] このダンパー機構では、 1対の入力側プレートを連結する複数の連結部によりストツ パ機構が実現されている。具体的には、連結部は一方の入力側プレートに一体成形 された板状の部分である。連結部は、一方の入力側プレートの外周縁から他方の入 力側プレートに向かって軸方向に延びる当接部と、当接部の端部から半径方向内側 へ延び他方の入力側プレートに固定される固定部と、を有している。また、ハブフラン ジの外周部には、半径方向外側へ延びる複数の突出部と、突出部の回転方向間に 形成された切欠きと、を有している。連結部の当接部は、切欠きを軸方向に貫通して おり、入力側プレートとハブフランジとが相対回転すると突出部と回転方向に当接す る。これにより、このダンパー機構では、ストップピンを用いることなぐ簡素な構造によ りストツバ機構を実現することができる。
[0010] しかし、このダンパー機構では、連結部の回転方向間(ノ、ブフランジの切欠きの回 転方向間)にコイルスプリングが配置されており、また複数の連結部が回転方向に同 じピッチで(等間隔で)配置されている。このため、基本的には全てのコイルスプリング の寸法は同じにするのが好ましい。言い換えると、このダンパー機構では、例えば一 部のコイルスプリングを小さくすることはできたとしても、一部のコイルスプリングをさら に大きくすることは、配置上、極めて困難であると言える。すなわち、従来のダンパー 機構では、コイルスプリングが配置の制限を受けやすぐ捩り特性のバリエーションを 増やしにくい構造となって!/、る。
[0011] 一方で、コストダウンを考慮して、構造の変更を最小限に抑えつつ、様々な捩り特 性を実現できるダンパー機構が求められている。
[0012] 本発明の課題は、構造の変更を最小限に抑えつつ、ダンパー機構の設計の自由 度を高めることにある。
[0013] 第 1の発明に係るダンパー機構は、軸方向に並んで配置された 1対の第 1回転体と 、 1対の第 1回転体の軸方向間に相対回転可能に配置された第 2回転体と、第 1およ び第 2回転体を回転方向に弹性的に連結する少なくとも 1つの弾性部材と、を備えて いる。第 2回転体は、第 2本体部と、第 2本体部の外周縁から半径方向外側へ延び弾 性部材に対応して配置される複数の突出部と、を有している。 1対の第 1回転体は、 1 対の第 1本体部と、複数の突出部の回転方向間に配置され 1対の第 1本体部を連結 する複数の連結部と、を有している。複数の連結部は、隣り合うピッチが異なるように 配置されている。
[0014] このダンパー機構では、例えば第 1回転体にトルクが入力されると、第 1回転体と第 2回転体とが相対回転する。このとき、第 1回転体に入力された捩り振動が弾性部材 により吸収 ·減衰される。そして、第 1回転体と第 2回転体とが所定の捩り角度だけ相 対回転すると、第 1回転体の連結部と第 2回転体の突出部とが回転方向に当接する 。これにより、このダンパー機構では、トルク入力時の捩り振動を吸収および減衰しつ つ、一方の回転体の入力されたトルクを他方の回転体に伝達することができる。
[0015] そして、この場合、隣り合うピッチが異なるように複数の連結部が配置されているた め、連結部の間に配置される弾性部材の大きさを変えることができる。例えば、ピッチ が大きい領域には、寸法の大きな弾性部材を配置することができる。この結果、構造 の変更を最小限に抑えつつ、弾性部材の種類や配置のバリエーションが増やすこと ができ、ダンパー機構の捩り特性のノ リエーシヨンを増やすことができる。すなわち、 このダンパー機構では、構造の変更を最小限に抑えつつ、設計の自由度を高めるこ と力 Sできる。
[0016] 第 2の発明に係るダンパー機構は、第 1の発明に係るダンパー機構において、連結 部が、一方の第 1本体部から軸方向に延びる当接部と、当接部の端部から半径方向 内側へ延び他方の第 1本体部に固定される固定部と、を有している。当接部の回転 方向中心と固定部の回転方向中心とは、回転方向の位置が異なっている。
[0017] 第 3の発明に係るダンパー機構は、第 2の発明に係るダンパー機構において、当接 部の回転方向中心が、対応する連結部を基準として隣り合うピッチが小さい方へ、対 応する固定部の回転方向中心に対して回転方向の位置がずれている。
[0018] 第 4の発明に係るダンパー機構は、第 1から第 3の!/、ずれかの発明に係るダンパー 機構において、第 2回転体が、突出部の内周側に配置され弾性部材が収容される複 数の窓孔をさらに有している。複数の突出部は、連結部を基準として隣り合うピッチが 大きい領域に配置された第 1突出部を含んでいる。第 1突出部の回転方向を向く両 端面は、対応する窓孔の回転方向を向く両端面に対して回転方向外側に配置され ている。
[0019] この場合、連結部における隣り合うピッチが大きい領域には、従来よりも大きな窓孔 を形成すること力できる。この結果、従来よりも大きな弾性部材を配置することができ、 捩り特性のノ リエーシヨンの増加を容易に実現できる。
[0020] ここで、回転方向外側とは、第 1突出部の回転方向中心または対応する窓孔の回 転方向中心を基準として回転方向の外側、とレ、うことを意味して!/、る。
[0021] 第 5の発明に係るダンパー機構は、第 4の発明に係るダンパー機構において、複数 の突出部が、連結部を基準として隣り合うピッチが小さい領域に配置された第 2突出 部をさらに含んでいる。第 2突出部の回転方向を向く両端面は、対応する窓孔の回 転方向を向く両端面に対して回転方向内側に配置されている。
[0022] この場合、隣り合う突出部の距離を大きくとることができ、第 1回転体と第 2回転体と の相対回転角度を大きくとることができる。すなわち、このダンパー機構では、従来と 同じ、あるいは従来よりも大きレ、作動角を確保すること力 Sできる。
[0023] ここで、回転方向内側とは、第 2突出部の回転方向中心または対応する窓孔の回 転方向中心を基準として回転方向の内側、とレ、うことを意味して!/、る。
図面の簡単な説明
[0024] [図 1]クラッチディスク組立体の縦断面概略図 園 組立体の平面概略図 園 一機構の平面概略図 園 4] 平面図
[図 5]入力回転体の平面図
[図 6]ダンパー機構の部分断面図
[図 7]ダンパー機構の部分断面図
[図 8]ダンパー機構の機械回路図
[図 9]ダンパー機構の機械回路図
[図 10]ダンパー機構の機械回路図
[図 11]ダンパー機構の機械回路図
[図 12]ダンパー機構の捩り特性線図 符号の説明
1 クラッチディスク組立体
2 入力回転体(1対の第 1回転体)
3
4 ミー機構
5 I
6 〔第 2回転体)
7 '。リング
8 第 2コイルスプリング(弾性部材)
9
10
28 第 1本体部
29 第 2本体部
35 保持部
31 連結部
32 当接部
33 固定部 43 切欠き
41 第 1窓孔
42 第 2窓孔
44 第 1当接面 (端面)
47 第 2当接面 (端面)
50, 51 ストッパ面(端面)
49 第 1突出部(突出部)
57 第 2突出部(突出部)
発明を実施するための最良の形態
[0026] 以下、図面に基づいて、本発明に係るダンパー機構の実施形態について説明する 。ここでは、ダンパー機構が搭載されたクラッチディスク組立体を例に説明する。
[0027] [1.クラッチディスク組立体の全体構成〕
図 1または図 2を用いて、本発明に係るダンパー機構 4が搭載されたクラッチデイス ク組立体 1について説明する。図 1にクラッチディスク組立体 1の縦断面概略図、図 2 にクラッチディスク組立体 1の平面概略図を示す。図 1の O— O線は、クラッチディスク 組立体 1の回転軸線である。また、図 1の左側にエンジンおよびフライホイール(図示 せず)が配置されており、図 1の右側にトランスミッション(図示せず)が配置されてい る。さらに、図 2の R1側がクラッチディスク組立体 1の回転方向駆動側(正側)であり、 R2側がその反対側 (負側)である。
[0028] クラッチディスク組立体 1は、車両の動力伝達系を構成するクラッチ装置に用いられ る機構であり、クラッチ機能とダンパー機能とを有している。クラッチ機能とは、フライ ホイール(図示せず)に対してプレツシャプレート(図示せず)によりクラッチディスク組 立体 1が押圧および押圧解除されることによってトルクの伝達および遮断をする機能 である。ダンパー機能とは、コイルスプリング等によりフライホイール側から入力される 捩り振動を吸収および減衰する機能である。
[0029] 図 1および図 2に示すように、クラッチディスク組立体 1は主に、フライホイールからト ルクが入力されるクラッチディスク 23と、クラッチディスク 23から入力される捩り振動を 吸収および減衰するダンパー機構 4と、力 構成されて!/、る。 [0030] クラッチディスク 23は、フライホイール(図示せず)に押し付けられる部分であり、主 に、環状の 1対の摩擦フエ一シング 25と、摩擦フエ一シング 25が固定されるクッショニ ングプレート 24と、力、ら構成されている。クッショユングプレート 24は、環状部 24aと、 環状部 24aの外周側に設けられ回転方向に並ぶ 8つのクッショユング部 24bと、環状 部 24aから半径方向内側に延びる 4つの固定部 24cと、力も構成されている。各タツ ショユング部 24bの両面には、摩擦フエ一シング 25がリベット 26により固定されている 。固定部 24cはダンパー機構 4の外周部に固定されている。
[0031] [2.ダンパー機構の構成〕
ここで、図 3〜図 7を用いてダンパー機構 4を構成する各部材について詳細に説明 する。図 3にダンパー機構 4の平面概略図、図 4にハブフランジ 6の平面図、図 5に入 力回転体 2の平面図、図 6および図 7にダンパー機構 4の部分断面図を示す。
[0032] ダンパー機構 4は主に、クラッチディスク 23が固定される入力回転体 2と、入力回転 体 2に対して回転可能に配置された第 2回転体としてのハブフランジ 6と、ハブフラン ジ 6に対して回転可能に配置されたスプラインノ、ブ 3と、ハブフランジ 6とスプラインノ、 ブ 3とを回転方向に弹性的に連結する第 1コイルスプリング 7と、入力回転体 2とハブ フランジ 6とを回転方向に弹性的に連結する第 2コイルスプリング 8と、力、ら構成されて いる。スプラインノヽブ 3はトランスミッション(図示せず)の入力シャフトの端部にスプラ イン係合している。
[0033] 入力回転体 2は、 1対の第 1回転体としてのクラッチプレート 21およびリテーユング プレート 22から構成されている。クラッチプレート 21およびリテーユングプレート 22は 、板金製の円板状または環状の部材であり、軸方向に所定の間隔をあけて配置され ている。クラッチプレート 21はエンジン側に配置され、リテーユングプレート 22はトラ ンスミッション側に配置されている。クラッチプレート 21とリテーユングプレート 22は後 述する連結部 31により互いに固定されている。このため、クラッチプレート 21およびリ テーユングプレート 22は、軸方向に所定の間隔を保った状態で一体回転可能となつ ている。また、クラッチプレート 21の外周部には、クラッチディスク 23の固定部 24cが リベット 27により固定されている。
[0034] クラッチプレート 21およびリテーユングプレート 22は、第 2コイルスプリング 8を保持 する機能を有している。具体的には、クラッチプレート 21およびリテーユングプレート 22は、環状の 1対の第 1本体部 28と、第 1本体部 28の外周部に回転方向に並んで 配置された 4つの保持部 35と、保持部 35の回転方向間に配置された 4つの連結部 3 1と、力 構成されている。
[0035] 保持部 35は、内周側および外周側に切り起こし部 35a, 35bを有している。切り起 こし部 35a,35bは第 2コイルスプリング 8の軸方向および半径方向への移動を規制し ている。また、保持部 35の回転方向寸法は、第 2コイルスプリング 8の長さとほぼ一致 している。保持部 35の円周方向両端には、第 2コイルスプリング 8の端部と当接また は近接する当接面 36が形成されている。なお、 4つの保持部 35は、隣り合うピッチが 異なるように配置されている(図 5参照)。具体的には、図 5の左右の保持部 35は上 下の保持部に対して角度 Θ 4だけ回転方向にずれている。
[0036] 連結部 31は、 1対の第 1本体部 28の外周側に配置されており、 1対の第 1本体部 2 8を連結している。具体的には、連結部 31は、一方の第 1本体部 28 (本実施形態で は、リテーユングプレート 22の第 1本体部 28)の外周縁から他方の第 1本体部 28 (本 実施形態では、クラッチプレート 21の第 1本体部 28)へ軸方向に延びる当接部 32と 、当接部 32の端部から半径方向内側へ延びる固定部 33と、力も構成されている(図 7参照)。固定部 33は、クラッチディスク 23の固定部 24cとともに、リベット 27によりクラ ツチプレート 21の第 1本体部 28に固定されている。
[0037] ハブフランジ 6は、クラッチプレート 21およびリテーユングプレート 22の間に相対回 転可能に配置されており、第 2コイルスプリング 8によりクラッチプレート 21およびリテ 一ユングプレート 22に弹性的に連結されている。具体的には、ハブフランジ 6は、環 状の第 2本体部 29と、第 2本体部 29の外周部に形成された 1対の第 1窓孔 41および 1対の第 2窓孔 42と、第 2本体部 29の外周部に形成された 4つの切欠き 43と、力も構 成されている。 1対の第 1窓孔 41および 1対の第 2窓孔 42は、 4つの保持部 35に対 応する位置に配置されている。 1対の第 1窓孔 41は半径方向に対向して配置されて おり、 1対の第 2窓孔 42は半径方向に対向して配置されている。
[0038] 第 1窓孔 41および第 2窓孔 42には、第 2コイルスプリング 8が収容されている。第 1 窓孔 41の回転方向寸法は保持部 35よりも長く設定されており、第 2窓孔 42の回転 方向寸法は保持部 35とほぼ同じ長さに設定されている。第 1窓孔 41および第 2窓孔 42には、第 2コイルスプリング 8の端部と当接または近接する第 1当接面 44および第 2当接面 47が円周方向両端に形成されている。
[0039] また、クラッチプレート 21およびリテーユングプレート 22の中心孔 37, 38内には、ス プラインハブ 3が配置されている。スプラインハブ 3は、軸方向に延びる筒状のボス 52 と、ボス 52から半径方向外側に延びるフランジ 54と、力も構成されている。ボス 52の 内周部には、トランスミッションの入力シャフト(図示せず)に係合するスプライン孔 53 が形成されている。
[0040] 図 3に示すように、フランジ 54の外周部に形成された複数の外周歯 55は、ハブフラ ンジ 6の内周部に形成された複数の内周歯 59と嚙み合っている。フランジ 54の外周 縁およびノ、ブフランジ 6の内周縁には、第 1コイルスプリング 7が収容される第 1切欠 き 56および第 2切欠き 58が形成されている。第 1コイルスプリング 7の端部には 1対の スプリングシートが装着されている。第 1コイルスプリング 7が圧縮されていない状態で は、外周歯 55と内周歯 59との回転方向間に隙間が形成されている。この隙間に対 応する捩り角度は、第 1隙間角度 θ lpおよび Θ Inである。外周歯 55の R1側に形成 された隙間は、隙間角度 Θ lpに対応しており、外周歯 55の R2側に形成された隙間 は、隙間角度 Θ Inに対応している。
[0041] また、第 2コイルスプリング 8は、同心上に配置され径が異なる 1対のコイルスプリン グから構成されてレ、る。第 2コイルスプリング 8は第 1コイルスプリング 7に比べて径が 大きく長さが長い。第 2コイルスプリング 8のパネ定数は第 1コイルスプリング 7のパネ 定数に比べてはるかに大きい値に設定されている。すなわち、第 2コイルスプリング 8 は第 1コイルスプリング 7よりもはるかに剛性が高い。このため、入力回転体 2にトルク が入力されると、ハブフランジ 6とスプラインハブ 3との間で第 1コイルスプリング 7が圧 縮を開始し、ハブフランジ 6およびスプラインノヽブ 3がー体回転すると、入力回転体 2 およびノヽブフランジ 6との間で第 2コイルスプリング 8が圧縮を開始する。
[0042] 以上のように、入力回転体 2に入力されたトルクは第 2コイルスプリング 8を介してハ ブフランジ 6に伝達され、ハブフランジ 6とスプラインノヽブ 3とが相対回転する。この結 果、ハブフランジ 6とスプラインノヽブ 3との間で第 1コイルスプリング 7が圧縮される。ハ ブフランジ 6とスプラインノ、ブ 3との相対捩り角度が所定の角度に達すると、外周歯 55 および内周歯 59が当接して両部材 6, 3は一体回転し、入力回転体 2とハブフランジ 6とが相対回転する。この結果、入力回転体 2とハブフランジ 6との間で第 2コイルスプ リング 8は圧縮される。これにより、クラッチディスク 23から入力回転体 2に入力された 捩り振動が吸収 '減衰される。なお、第 1コイルスプリング 7は並列に作用し、第 2コィ ノレスプリング 8は並列に作用する。
[0043] (2. 2 :ストッパ機構)
また、ダンパー機構 4には、入力回転体 2に入力されたトルクを直接伝達するため に、ストッパ機構としての第 1ストッパ 9および第 2ストッパ 10が設けられている。
[0044] 第 1ストッパ 9は、ハブフランジ 6とスプラインハブ 3との相対回転を一定の範囲内で 制限するための機構であり、スプラインハブ 3の外周歯 55と、ハブフランジ 6の内周歯 59と、力も構成されている。第 1ストッパ 9は、隙間角度 θ lpおよび Θ Inの範囲内に お!/、て、ハブフランジ 6とスプラインハブ 3との相対回転を許容して!/、る。
[0045] 第 2ストッパ 10は、入力回転体 2とハブフランジ 6との相対回転を一定の範囲内で制 限するための機構であり、入力回転体 2の連結部 31と、ハブフランジ 6の第 1突出部 49および第 2突出部 57と、力も構成されている。
[0046] 具体的には、第 2本体部 29の外周縁には、半径方向外側へ延びる突出部としての 1対の第 1突出部 49および 1対の第 2突出部 57が形成されている。第 1突出部 49お よび第 2突出部 57は、第 1窓孔 41および第 2窓孔 42の外周側に配置されており、回 転方向両端にはストッパ面 50, 51が形成されている。ストッパ面 50, 51は連結部 31 のストッパ面 39と当接可能である。
[0047] また、図 3に示す中立状態において、連結部 31と第 1突出部 49および第 2突出部 5 7との回転方向間には、隙間が確保されている。この隙間に対応する捩り角度は、隙 間角度 θ 3pまたは θ 3nである。連結部 31の R1側に形成された隙間は、隙間角度 θ 3pに対応しており、連結部 31の R2側に形成された隙間は、隙間角度 θ 3nに対 応している。これにより、第 2ストッパ 10は、隙間角度 θ 3pおよび θ 3nの範囲内にお いて、入力回転体 2とスプラインハブ 3との相対回転を許容している。
[0048] (2. 3 :摩擦発生機構) さらに、ダンパー機構 4には、捩り振動をより効果的に吸収 ·減衰させるために、摩 擦抵抗を利用してヒステリシストルクを発生させる摩擦発生機構 5が設けられている。 具体的には、摩擦発生機構 5は、第 1摩擦ヮッシャ 79と、第 2摩擦ヮッシャ 72と、第 3 摩擦ヮッシャ 85と、を有している。
[0049] 第 1摩擦ヮッシャ 79は、スプラインハブ 3のフランジ 54とリテーユングプレート 22の 内周部との軸方向間に配置されており、ボス 52の外周側に配置されている。第 1摩 擦ヮッシャ 79は樹脂製である。第 1摩擦ヮッシャ 79は主に、環状の本体 81と、本体 8 1から半径方向外側へ延びる複数の突起 82と、から構成されて!/、る。
[0050] 本体 81はフランジ 54のトランスミッション側の面に当接しており、本体 81とリテ一二 ングプレート 22との間には第 1コーンスプリング 80が配置されている。第 1コーンスプ リング 80は本体 81とリテーユングプレート 22との間で軸方向に圧縮されている。この ため、第 1摩擦ヮッシャ 79の摩擦面は第 1コーンスプリング 80によりフランジ 54に圧 接されている。また、複数の突起 82は第 2摩擦ヮッシャ 72の凹部 77 (後述)に係合し ている。これにより、第 1摩擦ヮッシャ 79と第 2摩擦ヮッシャ 72とは一体回転可能であ
[0051] 第 2摩擦ヮッシャ 72は、ハブフランジ 6の内周部とリテーユングプレート 22の内周部 との間に配置されており、第 1摩擦ヮッシャ 79の外周側に配置されている。第 2摩擦 ヮッシャ 72は主に、環状の本体 74と、本体 74の内周部からトランスミッション側へ延 びる複数の係合部 76と、本体 74の内周部のトランスミツション側に形成された凹部 7 7と、力も構成されている。第 2摩擦ヮッシャ 72は例えば樹脂製である。
[0052] 本体 74はハブフランジ 6のトランスミッション側面に当接しており、本体 74とリテ一二 ングプレート 22との間には第 2コーンスプリング 73が配置されている。第 2コーンスプ リング 73は、本体 74とリテーユングプレート 22との間で圧縮されている。これにより、 第 2摩擦ヮッシャ 72の摩擦面は第 2コーンスプリング 73によりハブフランジ 6に圧接さ れている。また、係合部 76はリテーユングプレート 22の孔部を貫通している。これに より、第 2摩擦ヮッシャ 72とリテーユングプレート 22とは一体回転可能である。さらに、 凹部 77には第 1摩擦ヮッシャ 79の突起 82が係合している。このため、第 1摩擦ヮッシ ャ 79は第 2摩擦ヮッシャ 72を介してリテーユングプレート 22と一体回転可能である。 [0053] なお、第 1コーンスプリング 80の付勢力は第 2コーンスプリング 73の付勢力より小さ くなるように設計されている。また、第 1摩擦ヮッシャ 79は第 2摩擦ヮッシャ 72に比べ て摩擦係数が低い。このため、第 1摩擦ヮッシャ 79によって発生する摩擦(ヒステリシ ストルク)は第 2摩擦ヮッシャ 72で発生する摩擦 (ヒステリシストルク)より大幅に小さく なっている。
[0054] 第 3摩擦ヮッシャ 85は、フランジ 54とクラッチプレート 21の内周部との間に配置され ており、ボス 52の外周側に配置されている。第 3摩擦ヮッシャ 85は例えば樹脂製であ る。第 3摩擦ヮッシャ 85は主に、環状の本体 87と、本体 87からエンジン側に延びる複 数の係合部 88と、力、ら構成されている。
[0055] 本体 87は、フランジ 54およびハブフランジ 6のエンジン側の面に当接しており、クラ ツチプレート 21のトランスミッション側の面に当接している。係合部 88はクラッチプレ ート 21に形成された孔部を貫通している。第 3摩擦ヮッシャ 85は係合部 88によりクラ ツチプレート 21に一体回転可能である。また、本体 87は、クラッチプレート 21の中心 孔 37に相対回転不能に係合し、その内周面はボス 52の外周面に摺動可能に当接 している。すなわち、クラッチプレート 21は第 3摩擦ヮッシャ 85を介してボス 52により 半径方向に位置決めされている。
[0056] 以上のように、第 1摩擦ヮッシャ 79および第 3摩擦ヮッシャ 85により大摩擦発生機 構 14が構成されており、第 2摩擦ヮッシャ 72および第 3摩擦ヮッシャ 85により小摩擦 発生機構 15が構成されている。そして、入力回転体 2、ハブフランジ 6およびスプライ ンハブ 3が相対回転すると、大摩擦発生機構 14および小摩擦発生機構 15によりヒス テリシストルクが発生し、ダンパー機構 4による捩り振動の減衰および吸収をより効果 的に行うことができる。
[0057] [3.本発明の特徴的な構成〕
ここで、本発明に係るダンパー機構 4の特徴的な構成について詳細に説明する。 このダンパー機構 4では、主に連結部 31の配置に特徴を有している。具体的には図 3に示すように、 4つの複数の連結部 31は同じピッチでは配置されておらず、隣り合う ピッチが異なるように配置されている。言い換えると、連結部 31の固定部 33の回転 方向中心は隣り合うピッチが異なるように配置されている。例えば、第 1突出部 49の 回転方向両側に配置された 2つの連結部 31がなす第 1角度 Alは、第 2突出部 57の 回転方向両側に配置された 2つの連結部 31がなす第 2角度 A2よりも大きい。ここで 、第 1角度 A1および第 2角度 A2の基準(ピッチの基準)は、連結部 31の固定部 33を 固定するリベット 27の回転方向中心ほたはリベット 27が貫通する孔 33aの回転方向 中心)である。 2つの第 1突出部 49の R1側に配置される 2つの連結部 31は、回転軸 Oを挟んで対向する位置に配置されている。また、 2つの第 1突出部 49の R2側に配 置される 2つの連結部 31は、回転軸 Oを挟んで対向する位置に配置されている。
[0058] これらの構成により、ハブフランジ 6の切欠き 43の配置が従来と異なってくる。具体 的には図 3に示すように、切欠き 43の形状は、対応する固定部 33の形状と相補的で あり、かつ、固定部 33よりも若干大きく形成されている。これは、組み付け時に、固定 部 33が切欠き 43を軸方向に通過可能にするためである。したがって、上記のように 隣り合うピッチが異なるように連結部 31が配置された場合、それに応じて切欠き 43も 隣り合うピッチが異なるように配置される。この結果、連結部 31のピッチが大きい第 1 角度 A1により形成される領域に配置された第 1窓孔 41の方力 連結部 31のピッチ 力小さい第 2角度 A2により形成される領域に配置された第 2窓孔 42よりも、回転方向 寸法を大さくとること力でさる。
[0059] 例えば、図 3に示すように、 4つの第 2コイルスプリング 8は同じ大きさである力 S、第 2 窓孔 42よりも第 1窓孔 41の方が回転方向寸法を大きくできる。このため、第 1窓孔 41 の第 1当接面 44と第 2コイルスプリング 8の端部との回転方向間に隙間を確保するこ とが可能となる。この隙間に対応する捩り角度は、隙間角度 θ 2pおよび θ 2nである。 第 2コイルスプリング 8の端部の R1側に形成された隙間は、隙間角度 θ 2pに対応し ており、第 2コイルスプリング 8の端部の R2側に形成された隙間は、隙間角度 θ 2nに 対応している。隙間角度 θ 2pは、隙間角度 θ 2nよりも小さく設定されている。
[0060] 以上のように、第 1窓孔 41にのみ隙間を確保しているため、このダンパー機構 4で は後述するように第 2コイルスプリング 8を利用して 2段階の捩り特性を実現できる。
[0061] また図 3に示すように、上記の構成に加えて、当接部 32の回転方向中心と固定部 3 3の回転方向中心とは回転方向の位置が異なっている。具体的には、当接部 32の 回転方向中心力 その当接部 32に対応する連結部 31を基準として隣り合うピッチが 小さい方へ、その当接部 32に対応する固定部 33の回転方向中心に対して回転方 向の位置がずれている。例えば図 3に示すように、第 1突出部 49の R1側に配置され た連結部 31について考えると、固定部 33の回転方向中心に対して当接部 32の回 転方向中心が R1側に配置されている。そして、この連結部 31を基準とした場合、連 結部 31のピッチが小さい第 2角度 A2により形成される領域内へ(第 2角度 A2側へ) 当接部 32の回転方向中心がずれている。これは、他の 3つの連結部 31についても 同様である。
[0062] 以上のように、固定部 33に対する当接部 32の位置を回転方向にずらすことで、スト ツバ面 50と第 1突出部 49との位置関係が従来と異なる。具体的には、このダンパー 機構 4では、第 1突出部 49に形成される 2つのストツバ面 50が第 1窓孔 41に形成さ れる 2つの第 1当接面 44よりも回転方向外側に配置されている。 R1側のストッパ面 5 0は、 R1側の第 1当接面 44よりも R1側に配置されており、 R2側のストッパ面 50は、 R 2側の第 1当接面 44よりも R2側に配置されている。したがって、第 1突出部 49の回転 方向長さは、第 1窓孔 41の回転方向長さよりも長い。
一方で、隙間角度 θ 3pを確保するために、第 2突出部 57に形成される 2つのストッ パ面 51は、第 2窓孔 42に形成される 2つの第 2当接面 47よりも回転方向内側に配置 されている。具体的には、 R1側のストッパ面 51は、 R1側の第 2当接面 47よりも R2側 に配置されており、 R2側のストツバ面 51は、 R2側の第 2当接面 47よりも R1側に配置 されている。したがって、第 2突出部 57の回転方向長さは、第 2窓孔 42の回転方向 長さよりも短い。
[0063] 以上の構成により、第 1窓孔 41の半径方向寸法を大きくとることができ、第 1窓孔 41 に対応する第 2コイルスプリング 8の径をより大きくすることができる。
[0064] ここで、回転方向外側とは、第 1突出部 49の回転方向中心または対応する第 1窓 孔 41の回転方向中心を基準として回転方向の外側、ということを意味している。また 、回転方向内側とは、第 2突出部 57の回転方向中心または対応する第 2窓孔 42の 回転方向中心を基準として回転方向の内側、とレ、うことを意味して!/、る。
[0065] [3.機械回路図〕
以上のようなダンパー機構 4を機械回路図で示すと、図 8のようになる。この機械回 路図は、ダンパー機構における各部材の回転方向の関係を模式的に描!/、たもので ある。したがって一体回転する部材は同一の部材として取り扱つている。
[0066] 図 8に示すように、ハブフランジ 6は入力回転体 2とスプラインハブ 3との回転方向間 に配置されている。ハブフランジ 6はスプラインノヽブ 3に第 1コイルスプリング 7を介し て回転方向に弹性的に連結されている。また、ハブフランジ 6とスプラインハブ 3との 間には第 1ストツバ 9が形成されている。第 1ストツバ 9における第 1隙間角度 θ lpおよ び Θ Inの範囲内で第 1コイルスプリング 7は圧縮可能である。ハブフランジ 6は入力 回転体 2に対して第 2コイルスプリング 8を介して回転方向に弹性的に連結されてい る。また、ハブフランジ 6と入力回転体 2との間には第 2ストツバ 10が形成されている。 第 2ストッパ 10における隙間角度 θ 3pおよび θ 3nの範囲内で第 2コイルスプリング 8 は圧縮可能となっている。以上に述べたように、入力回転体 2およびスプラインノヽブ 3 は、ハブフランジ 6を介して、直列に配置された第 1コイルスプリング 7および第 2コィ ノレスプリング 8により回転方向に弹性的に連結されている。
[0067] ここでは、ハブフランジ 6は 2種類のコイルスプリングの間に配置された中間部材とし て機能している。また、以上に述べた構造は、並列に配置された複数の第 1コイルス プリング 7と第 1ストツバ 9とからなる第 1ダンパーと、並列に配置された複数の第 2コィ ノレスプリング 8と第 2ストツバ 10とからなる第 2ダンパーとが、直列に配置された構造と 考えることもできる。なお、第 1コイルスプリング 7全体の剛性は第 2コイルスプリング 8 全体の剛性よりはるかに小さく設定されている。そのため、第 1隙間角度 Θ 1および Θ Inまでの捩り角度の範囲で第 2コイルスプリング 8はほとんど回転方向に圧縮されな い。
[0068] [4.動作〕
次に、図 8〜図 12を用いてクラッチディスク組立体 1のダンパー機構の動作および 捩り特性について説明する。図 9〜図 11に動作中の機械回路図、図 12に捩り特性 線図を示す。なお、以下の説明は、図 8に示す中立状態からスプラインハブ 3に対し て入力回転体 2を R1側に捩つて!/、く正側捩り特性を説明しており、負側捩り特性に ついては同様であるため説明は省略する。
[0069] 図 8の中立状態からスプラインノ、ブ 3に対して入力回転体 2が R1側すなわち回転方 向駆動側に捩られる。このとき、第 2コイルスプリング 8のパネ定数よりも第 1コイルスプ リング 7のパネ定数の方が小さいため、第 2コイルスプリング 8は圧縮されず、第 1コィ ノレスプリング 7がスプラインノヽブ 3とハブフランジ 6との間で回転方向に圧縮される。ま た、スプラインノ、ブ 3とハブフランジ 6との相対回転により、小摩擦発生機構 15で滑り 力 S生じる。この結果、図 12に示すように、捩り角度 0から捩り角度 θ lpの範囲内にお いては、低剛性および低ヒステリシストルクの特性が得られる。図 9の状態では、フラ ンジ 54の外周歯 55とハブフランジ 6の内周歯 59とが回転方向に当接して、第 1ストッ ノ 9が作動する。このため、図 9の状態からさらに入力回転体 2の捩り角度が大きくな ると、スプラインノヽブ 3とハブフランジ 6とは一体回転する。
[0070] 図 9の状態からさらに入力回転体 2が R1側に捩られると、ハブフランジ 6と入力回転 体 2との間で第 2コイルスプリング 8が回転方向に圧縮される。このとき、第 1窓孔 41の 第 1当接面 44と第 2コイルスプリング 8の端部との間には、隙間角度 θ 2pが確保され ている。このため、図 10に示すように、捩り角度 Θ lpから捩り角度 θ 1ρ+ θ 2pの範 囲内においては、第 2窓孔 42に収容された 2つの第 2コイルスプリング 8のみが圧縮 される。このとき、小摩擦発生機構 15に加えて大摩擦発生機構 14においても摩擦抵 杭が発生する。
[0071] また、図 10の状態からさらに入力回転体 2が R1側に捩られると、第 2窓孔 42に収 容された 2つの第 2コイルスプリング 8に加えて第 1窓孔 41に収容された 2つの第 2コ ィルスプリング 8が圧縮される。そして、捩り角度が θ 1ρ + θ 3pに達すると、連結部 3 1と第 1突出部 49および連結部 31と第 2突出部 57が回転方向に当接して、第 2ストッ ノ 10が作動する。すなわち、図 12に示すように、捩り角度 θ 1ρ + θ 2pから捩り角度 θ 1ρ + θ 3pの範囲内においては、このダンパー機構では 3段階の捩り特性が実現 され、捩り角度が θ 1ρ + θ 3pに達すると、入力回転体 2、ハブフランジ 6およびスプ ラインハブ 3は一体回転し、入力回転体 2に入力されたトルクはスプラインハブ 3から 出力される。
[0072] 以上に説明したように、このクラッチディスク組立体 1では、第 1コイルスプリング 7、 第 2コイルスプリング 8、そして隙間角度 θ 1ρ、 θ 2ρ、 θ 3ρにより、 3段階の捩り特性 が実現されている。 〔5·作用効果〕 このように、このクラッチディスク組立体 1では、連結部 31の隣り合うピッチが異なつ ているため、ハブフランジ 6の第 1窓孔 41周辺を大きくできる。この結果、ハブフラン ジ 6の第 1窓孔 41を大きくしたり、あるいは第 1窓孔 41に収容される第 2コイルスプリン グ 8を大きくしたりできる。
[0073] この場合、例えば、前述のように第 1窓孔 41と第 2コイルスプリング 8との間に隙間 角度 θ 2pおよび θ 2nを確保したり、隙間角度を設けずに第 2コイルスプリング 8の寸 法を大きくしたりできる。また、隙間角度 θ 2pおよび θ 2nのうち一方のみを確保する こと力 Sでさる。
[0074] このように、このダンパー機構 4では、構造の変更を最小限に抑えつつ、様々な捩り 特性を実現することができる、すなわち設計の自由度を飛躍的に高めることが可能と なる。
[0075] [6.その他の実施形態〕
本発明の具体的な構成は、前述の実施形態に限られるものではなぐ発明の要旨 を逸脱しな!/、範囲で種々の変更および修正が可能である。
[0076] 本発明の具体的な構成は、前述の実施形態に限られるものではなぐ発明の要旨 を逸脱しな!/、範囲で種々の変更および修正が可能である。
[0077] 前述の実施形態では、ダンパー機構 4が搭載されたクラッチディスク組立体 1を例 に説明している力 これに限定されない。例えば、このダンパー機構は 2マスフライホ ィールや流体式トルク伝達装置のロックアップ装置などの他の動力伝達装置にも適 用可能である。
産業上の利用可能性
[0078] 本発明に係るダンパー機構では、構造の変更を最小限に抑えつつ設計の自由度 を高めることができる。
このため、本発明に係るダンパー機構は動力伝達装置の分野において有用である。

Claims

請求の範囲
[1] 軸方向に並んで配置された 1対の第 1回転体と、
前記 1対の第 1回転体の軸方向間に相対回転可能に配置された第 2回転体と、 前記第 1および第 2回転体を回転方向に弾性的に連結する少なくとも 1つの弾性部 材と、を備え、
前記第 2回転体は、第 2本体部と、前記第 2本体部の外周縁から半径方向外側へ 延び前記弾性部材に対応して配置される複数の突出部と、を有しており、
前記 1対の第 1回転体は、 1対の第 1本体部と、前記複数の突出部の回転方向間に 配置され前記 1対の第 1本体部を連結する複数の連結部と、を有しており、
前記複数の連結部は、隣り合うピッチが異なるように配置されている、
ダンパー機構。
[2] 前記連結部は、一方の前記第 1本体部から軸方向に延びる当接部と、前記当接部 の端部から半径方向内側へ延び他方の前記第 1本体部に固定される固定部と、を有 しており、
前記当接部の回転方向中心と前記固定部の回転方向中心とは、回転方向の位置 が異なっている、
請求項 1に記載のダンパー機構。
[3] 前記当接部の回転方向中心は、対応する前記連結部を基準として隣り合うピッチ が小さい方へ、対応する前記固定部の回転方向中心に対して回転方向の位置がず れている、
請求項 2に記載のダンパー機構。
[4] 前記第 2回転体は、前記突出部の内周側に配置され前記弾性部材が収容される 複数の窓孔をさらに有しており、
前記複数の突出部は、前記連結部を基準として隣り合うピッチが大きい領域に配置 された第 1突出部を含んでおり、
前記第 1突出部の回転方向を向く両端面は、対応する前記窓孔の回転方向を向く 両端面に対して回転方向外側に配置されている、
請求項 1から 3のいずれかに記載のダンパー機構。 [5] 前記複数の突出部は、前記連結部を基準として隣り合うピッチが小さい領域に配置 された第 2突出部をさらに含んでおり、
前記第 2突出部の回転方向を向く両端面は、対応する前記窓孔の回転方向を向く 両端面に対して回転方向内側に配置されている、
請求項 4に記載のダンパー機構。
PCT/JP2007/068991 2006-10-02 2007-09-28 Mécanisme d'amortisseur WO2008041634A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112007002295.7T DE112007002295B4 (de) 2006-10-02 2007-09-28 Dämpfungsmechanismus
US12/440,377 US8066574B2 (en) 2006-10-02 2007-09-28 Damper mechanism
CN2007800363709A CN101523078B (zh) 2006-10-02 2007-09-28 减震机构

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006271112A JP4385045B2 (ja) 2006-10-02 2006-10-02 ダンパー機構
JP2006-271112 2006-10-02

Publications (1)

Publication Number Publication Date
WO2008041634A1 true WO2008041634A1 (fr) 2008-04-10

Family

ID=39268493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/068991 WO2008041634A1 (fr) 2006-10-02 2007-09-28 Mécanisme d'amortisseur

Country Status (6)

Country Link
US (1) US8066574B2 (ja)
JP (1) JP4385045B2 (ja)
KR (1) KR101080103B1 (ja)
CN (1) CN101523078B (ja)
DE (1) DE112007002295B4 (ja)
WO (1) WO2008041634A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8454446B2 (en) 2008-10-24 2013-06-04 Exedy Corporation Damper mechanism

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100973153B1 (ko) * 2008-07-02 2010-07-30 주식회사평화발레오 토션댐퍼플라이휠
KR101048135B1 (ko) 2008-12-03 2011-07-08 현대자동차주식회사 자동차 클러치의 토셔널 댐퍼
DE102011102821B4 (de) * 2010-06-17 2019-05-23 Schaeffler Technologies AG & Co. KG Drehmomentübertragungsvorrichtung
DE102011014243A1 (de) * 2011-03-17 2012-09-20 Borgwarner Inc. Torsionsschwingungsdämpfer mit Gleitschuh
JP5805704B2 (ja) * 2013-05-16 2015-11-04 株式会社エクセディ トルクコンバータのロックアップ装置
JP6422352B2 (ja) * 2015-01-21 2018-11-14 株式会社エクセディ 自動車用の動吸振装置
DE102016210740A1 (de) * 2016-06-16 2017-12-21 Zf Friedrichshafen Ag Torsionsdämpfer mit einer schwingwinkelabhängigen Reibeinrichtung
JP6965566B2 (ja) * 2016-12-14 2021-11-10 株式会社アイシン トルク変動吸収装置
EP3336380B1 (en) * 2016-12-14 2020-04-15 Aisin Seiki Kabushiki Kaisha Torque fluctuation absorbing apparatus
JP6756645B2 (ja) * 2017-03-10 2020-09-16 株式会社エクセディ ダンパディスク組立体
CN106881727B (zh) * 2017-03-29 2020-05-19 广东工业大学 一种机器人关节及其弹性机构
JP7236889B2 (ja) * 2019-03-15 2023-03-10 株式会社エクセディ ダンパ装置
US20210190172A1 (en) * 2019-12-19 2021-06-24 Schaeffler Technologies AG & Co. KG Torsional vibration damper with a friction plate
JP2023059235A (ja) * 2021-10-14 2023-04-26 ヤンマーホールディングス株式会社 駆動装置及び作業機械

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6117722A (ja) * 1984-06-22 1986-01-25 バレオ ねじれ減衰装置
JPH11241731A (ja) * 1998-02-25 1999-09-07 Exedy Corp ダンパー機構
JP2003184957A (ja) * 2001-12-19 2003-07-03 Exedy Corp ダンパー機構

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5161660A (en) * 1990-11-15 1992-11-10 Luk Lamellen Und Kupplungsbau Gmbh Clutch plate with plural dampers
JP3434391B2 (ja) * 1995-06-30 2003-08-04 株式会社エクセディ ダンパーディスク組立体
DE19629497B4 (de) * 1995-07-24 2004-05-19 Exedy Corp., Neyagawa Scheibenanordnung mit Dämpfer
JP3489927B2 (ja) * 1996-01-11 2004-01-26 株式会社エクセディ クラッチディスク組立体
US6168526B1 (en) 1996-12-31 2001-01-02 Exedy Corporation Damper disk assembly having integral retaining plate connecting means
DE19912970A1 (de) * 1998-03-25 1999-09-30 Luk Lamellen & Kupplungsbau Drehschwingungsdämpfer sowie Schraubendruckfeder für einen Drehschwingungsdämpfer
US6241614B1 (en) * 1998-03-30 2001-06-05 Exedy Corporation Clutch disk assembly having a two stage dampening mechanism having a further vibration dampening mechanism that functions in both stages of dampening
US6270417B1 (en) * 1998-07-17 2001-08-07 Exedy Corporation Damper mechanism
JP3943849B2 (ja) * 2001-03-09 2007-07-11 株式会社エクセディ ダンパー機構
JP4298992B2 (ja) * 2002-06-07 2009-07-22 株式会社エクセディ ダンパーディスク組立体
EP1691107B1 (de) * 2005-02-11 2015-10-14 Schaeffler Technologies AG & Co. KG Torsionsschwingungsdämpfer
EP1698798B1 (de) * 2005-03-04 2008-10-29 LuK Lamellen und Kupplungsbau Beteiligungs KG Torsionsschwingungsdämpfer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6117722A (ja) * 1984-06-22 1986-01-25 バレオ ねじれ減衰装置
JPH11241731A (ja) * 1998-02-25 1999-09-07 Exedy Corp ダンパー機構
JP2003184957A (ja) * 2001-12-19 2003-07-03 Exedy Corp ダンパー機構

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8454446B2 (en) 2008-10-24 2013-06-04 Exedy Corporation Damper mechanism

Also Published As

Publication number Publication date
DE112007002295B4 (de) 2016-08-04
KR20090045379A (ko) 2009-05-07
CN101523078B (zh) 2010-12-08
KR101080103B1 (ko) 2011-11-04
US20100178991A1 (en) 2010-07-15
JP2008089089A (ja) 2008-04-17
CN101523078A (zh) 2009-09-02
DE112007002295T5 (de) 2009-09-10
JP4385045B2 (ja) 2009-12-16
US8066574B2 (en) 2011-11-29

Similar Documents

Publication Publication Date Title
WO2008041634A1 (fr) Mécanisme d'amortisseur
JP4463263B2 (ja) ダンパー機構
JP4451914B1 (ja) ダンパー機構
JP4495936B2 (ja) クラッチディスク組立体
JP3797814B2 (ja) ダンパーディスク組立体
WO2011125404A1 (ja) フライホイール組立体
WO2016129182A1 (ja) ダンパーディスク組立体
WO2013093980A1 (ja) 捩り振動減衰装置
WO2016129183A1 (ja) ダンパーディスク組立体
JP5565473B2 (ja) 捩り振動減衰装置
JP5388628B2 (ja) ダンパー機構
JP5652084B2 (ja) トルク変動吸収装置
JP4527134B2 (ja) ダンパー機構
JP3777263B2 (ja) ダンパーディスク組立体
JP5525435B2 (ja) トルクリミッタ付き軸継手
JP6545972B2 (ja) ダンパーディスク組立体
JP2021134835A (ja) スプリングシート及びダンパ装置
US20070099710A1 (en) Flexible flywheel
WO2005028912A1 (ja) フライホイール組立体
JP2000310282A (ja) ダンパーディスク組立体
JP4280553B2 (ja) ダンパーディスク組立体のヒステリシストルク機構
JPH0989026A (ja) ダンパーディスク組立体
JPH11173380A (ja) ダンパーディスク組立体
JP4221416B2 (ja) 動力伝達装置
JP2011241918A (ja) 捩り振動減衰装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780036370.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07828732

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12440377

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: KR

Ref document number: 1020097006046

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1120070022957

Country of ref document: DE

RET De translation (de og part 6b)

Ref document number: 112007002295

Country of ref document: DE

Date of ref document: 20090910

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 07828732

Country of ref document: EP

Kind code of ref document: A1