WO2008041374A1 - Rampe commune et procédé de fabrication d'une rampe commune - Google Patents

Rampe commune et procédé de fabrication d'une rampe commune Download PDF

Info

Publication number
WO2008041374A1
WO2008041374A1 PCT/JP2007/053355 JP2007053355W WO2008041374A1 WO 2008041374 A1 WO2008041374 A1 WO 2008041374A1 JP 2007053355 W JP2007053355 W JP 2007053355W WO 2008041374 A1 WO2008041374 A1 WO 2008041374A1
Authority
WO
WIPO (PCT)
Prior art keywords
rail
edge
branch
common rail
axial direction
Prior art date
Application number
PCT/JP2007/053355
Other languages
English (en)
French (fr)
Inventor
Yozo Kutsukake
Ryomei Yawata
Kenichi Kubo
Shogo Yarita
Kiyoshi Tateda
Original Assignee
Bosch Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bosch Corporation filed Critical Bosch Corporation
Priority to EP07714826A priority Critical patent/EP2072802B1/en
Priority to US12/444,067 priority patent/US7905216B2/en
Priority to DE602007009856T priority patent/DE602007009856D1/de
Priority to CN200780031469XA priority patent/CN101506512B/zh
Publication of WO2008041374A1 publication Critical patent/WO2008041374A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • F02M55/02Conduits between injection pumps and injectors, e.g. conduits between pump and common-rail or conduits between common-rail and injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • F02M55/02Conduits between injection pumps and injectors, e.g. conduits between pump and common-rail or conduits between common-rail and injectors
    • F02M55/025Common rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L41/00Branching pipes; Joining pipes to walls
    • F16L41/02Branch units, e.g. made in one piece, welded, riveted
    • F16L41/03Branch units, e.g. made in one piece, welded, riveted comprising junction pieces for four or more pipe members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L41/00Branching pipes; Joining pipes to walls
    • F16L41/08Joining pipes to walls or pipes, the joined pipe axis being perpendicular to the plane of the wall or to the axis of another pipe
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/80Fuel injection apparatus manufacture, repair or assembly
    • F02M2200/8069Fuel injection apparatus manufacture, repair or assembly involving removal of material from the fuel apparatus, e.g. by punching, hydro-erosion or mechanical operation

Definitions

  • the present invention relates to a common rail used for a fuel injection system of an internal combustion engine and a method for manufacturing the common rail.
  • the present invention relates to a common rail provided with a branch pipe portion protruding from a rail body portion and integrally formed, and a method for manufacturing such a common rail.
  • FIG. 14 shows an example of such a common rail, which is arranged along the rail body 312 and the axial direction (X direction) of the rail body 312 and formed integrally with the rail body 312. And a plurality of branch pipe portions 314 (five in the example of FIG. 14) projecting outward in the circumferential direction of the rail body portion 312.
  • the rail body portion 312 has a flow passage 318 formed therein along the axial direction, and a branch passage 316 branched from the flow passage 318 is formed inside the branch pipe portion 314. Further, a fuel pipe (not shown) is connected to the branch pipe part 314, and the other end side of the fuel pipe (not shown) connected to the injection branch pipes 314a to 314d of the branch pipe part 314 is the fuel. The other end of the fuel pipe (not shown) connected to the injection valve (not shown) and connected to the inflow branch pipe 314e is connected to a fuel supply pump (not shown).
  • the cross-sectional shape of the pressure accumulating chamber 302 for accumulating high-pressure fuel supplied from the fuel supply pump is made elliptical, so that the pressure accumulating chamber 302 and each second fuel passage hole are formed.
  • 306 accumulator with a circular cross section Disclosed is a common rail housing in which the stress value at the intersection (stress concentration portion) 309 can be reduced by arranging it so as to intersect in the orthogonal direction at a position where the curvature is larger than that of a true circular tube having a chamber. (For example, see Patent Document 1).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2001-295723 (Claims Fig. 1)
  • the stress value in the axial direction of the housing among the stresses acting on the intersection between the pressure accumulating chamber and the second fuel passage hole, and the axial direction may not be sufficiently reduced. That is, as shown in FIG. 16, in the vicinity of the intersection 417 between the flow passage 418 and the branch passage 416, the axial direction (X direction) thickness of the rail body 412 is perpendicular to the axial direction ( Since the wall thickness in the Y direction is thin, deformation in the Y direction is more likely to occur than in the X direction.
  • the stress in the Y direction acting on the edge in the X direction at the entrance of the branch 416 is greater than the stress in the X direction acting on the edge in the Y direction. Therefore, there was a possibility that the durability of the common rail might be lowered due to a crack at the edge in the X direction at the entrance of the intersection 417.
  • common rails are internally polished by the fluid polishing method, etc., for the purpose of removing internal grind and inner surfaces at the manufacturing stage.
  • the edge of the part is chamfered.
  • the axial direction of the rail body 312 The edge E2 in the direction perpendicular to the axial direction (Y direction) is polished more than the edge El in the direction (X direction).
  • the curvature of the edge E1 in the X direction is immediately smaller than the curvature of the edge E2 in the Y direction. (See Figures 17 (b) and (c)). Therefore, there is a problem that it is difficult to relax the stress concentration acting on the edge E1 in the X direction at the entrance of the branch 316.
  • the object of the present invention is to prevent the occurrence of local stress concentration at the intersection between the flow path and the branch path, and to reduce the occurrence of breakage such as cracks and the like.
  • a common rail manufacturing method is to prevent the occurrence of local stress concentration at the intersection between the flow path and the branch path, and to reduce the occurrence of breakage such as cracks and the like.
  • a common rail used in a fuel injection system for an internal combustion engine the rail main body having a flow passage inside along the axial direction, and the rail main body arranged along the axial direction of the rail main body.
  • the main body of the rail and a branch pipe portion that is integrally formed by projecting and has a branch passage that branches off from the flow passage, and is provided at the branch passage entrance at the intersection of the flow passage and the branch passage.
  • the common rail is characterized in that the edge is chamfered and the curvature of the edge of the rail body in the axial direction is larger than the curvature of the edge in the direction orthogonal to the axial direction of the rail body.
  • the edge of the branch path entrance is subjected to a blasting process that is performed by allowing the abrasive to pass through the flow path while swirling from the respective end sides. It is preferable that it is chamfered.
  • the diameter of the flow path is set to a value in the range of 8 to 12 mm.
  • another aspect of the present invention is used in a fuel injection system for an internal combustion engine, and is arranged along the axial direction of a rail main body having a flow passage therein along the axial direction. Projecting from the rail body and molded integrally, and separated from the flow path inside each A common rail manufacturing method comprising a branch pipe section having a branching path that branches off, and performs a blasting process by passing abrasive material through the flow path while swirling from the respective end side of the flow path.
  • the common rail manufacturing method includes a step of chamfering the edge of the branch path entrance at the intersection of the flow path and the branch path.
  • the common rail of the present invention it is possible to increase the curvature of the edge in the axial direction, where stress concentration is likely to occur at the intersection between the flow path and the branch path. Therefore, among the edges of the branch path entrance, the curvature of the edge in the axial direction is larger than the curvature of the edge in the direction orthogonal to the axial direction, and the edge in the direction orthogonal to the axial direction and the edge in the direction orthogonal to the axial direction respectively.
  • the minimum required curvature can be formed. As a result, it is possible to reduce stress concentration at a predetermined location at the intersection, to suppress damage such as cracks, and to improve the durability of the common rail.
  • the edge of the branch path entrance is chamfered by performing a predetermined blasting process so that the curvature of the edge of the branch path easily satisfies a predetermined relationship. It can be constituted as follows.
  • the common rail of the present invention by setting the diameter of the flow passage of the rail body within a predetermined range, it is possible to easily polish the inside of the flow passage while preventing the common rail from being enlarged. Therefore, it is possible to easily check so that the edge of the intersection between the flow path and the branch path has a predetermined curvature.
  • the inside of the flow path is polished using a predetermined blasting method, and the edge of the branch path entrance is chamfered, whereby the curvature of the edge is predetermined. It can be processed easily so as to satisfy the relationship. Therefore, it is possible to efficiently manufacture a common rail having excellent durability that is difficult to cause damage such as cracks due to stress concentration due to internal pressure.
  • FIG. 1 is a perspective view of a common rail that is applied to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of a common rail that is applied to the embodiment of the present invention.
  • FIG. 3 is a view showing an example of a pressure accumulation type fuel injection device provided with a common rail.
  • FIG. 4 is a diagram for explaining the shape of the edge of a branch path entrance.
  • FIG. 5 is a diagram for explaining a blasting method involving a swirling flow.
  • FIG. 6 is a diagram showing a configuration example of a blast processing apparatus.
  • FIG. 7 is a diagram for explaining the curvature relationship of the edge of the branch path entrance formed by the blast processing method of the present embodiment.
  • FIG. 8 is a perspective view of a common rail having a thick portion.
  • FIG. 9 is a diagram showing an example of a method for forming a thick portion.
  • FIG. 10 is a diagram showing another example of a method for forming a thick portion.
  • FIG. 11 is a diagram for explaining an arrangement configuration of thick portions.
  • FIG. 12 is a diagram showing an example in which the thickness of the thick part is varied (part 1).
  • FIG. 13 is a diagram showing an example in which the thickness of the thick part is varied (part 2).
  • FIG. 14 is a diagram for explaining the configuration of a conventional common rail (part 1).
  • FIG. 15 is a diagram for explaining the configuration of a conventional common rail (part 2).
  • FIG. 16 is a diagram for explaining the action of tensile stress in a common rail having a conventional configuration.
  • FIG. 17 is a view for explaining the shape of the edge of the branch path entrance in the conventional common rail.
  • the common rail includes a rail main body portion having a flow passage inside along the axial direction and an axial direction of the rail main body portion.
  • a branch pipe portion having a branch passage branched from the flow passage, and an edge of the branch passage entrance at the intersection of the flow passage and the branch passage is chamfered.
  • the curvature of the edge in the axial direction of the rail body is larger than the curvature of the edge in the direction orthogonal to the axial direction of the rail body.
  • FIG. 1 and 2 (a) to 2 (b) show the common rail 10 of the present embodiment.
  • Fig. 1 is a perspective view of the common rail 10
  • Fig. 2 (a) is a cross-sectional view of the common rail 10 cut along the axial direction
  • Fig. 2 (b) is a branch from the flow path.
  • 2 is a cross-sectional view of a portion to be cut in a direction perpendicular to the axial direction of the common rail 10.
  • the common rail 10 of the present embodiment shown in Figs. 1 and 2 (a) to (b) is configured by using a steel material such as a conventionally used alloy steel or pig iron, and the rail main body 12 And a plurality of branch pipe portions 14 (five in the figure) that are arranged along the axial direction (X direction) of the rail body portion 12 and project from the rail body portion 12 and are integrally formed. ing.
  • the rail main body 12 has a flow passage 18 opened at both ends 10a and 10b along the axial direction.
  • four injection branch pipes 14a to 14d internally have injection branch paths 16a to 16d branched from the flow passage 18 and opened at the other end side.
  • the inflow branch pipe 14e in the branch section 14 has an inflow branch path 16e branched from the flow path 18 and opened at the other end side.
  • each branch pipe portion 14 and one end portion 10a in the axial direction of the rail body 12 is connected to an electromagnetic controller 54 that controls the amount of fuel discharged from the discharge passage 15 to control the pressure in the rail.
  • Each of the injection branch pipes 14a to 14d is connected to a fuel pipe (not shown) that leads to a fuel injection valve (not shown) that injects fuel into a cylinder of an internal combustion engine (not shown).
  • the inflow branch pipe 14e is connected to a fuel pipe (not shown) that leads to a discharge valve (not shown) of a fuel supply pump (not shown) (see FIG. 3).
  • the other end portion 10b of the rail body 12 is formed with a thread groove on the inner peripheral surface, and a pressure sensor 52 for detecting the pressure in the rail is connected (see FIG. 3).
  • Fig. 3 shows an example of the configuration of an accumulator fuel injection device 50 using such a common rail 10.
  • the fuel in the fuel tank 82 is pumped up by the feed pump 84 of the fuel supply pump 60 and passes through the metering valve 68 for adjusting the injection amount.
  • the pressure is increased in the pressurizing chamber (not shown) and fed to the common rail 10.
  • the high-pressure fuel pumped to the common rail 10 flows into the common rail 10 via an inflow branch path (not shown) in the inflow branch pipe 14e.
  • the high-pressure fuel is accumulated in the common rail 10 and is supplied to each fuel injection valve 56 at an equal pressure through the injection branch passages (not shown) in the injection branch pipes 14a to 14b. .
  • the pressure in the common rail 10 is controlled by discharging a considerable amount of fuel by the electromagnetic control unit 54 while being detected by a pressure sensor 52 connected to the common rail 10.
  • the nozzle-dollar 101 of the fuel injection valve 56 is urged in the direction to close the injection hole 64 by the high-pressure fuel supplied to the pressure control chamber 67 in the fuel injection valve 56, and is controlled by the valve 71.
  • the urging force of the nozzle-dollar 101 is weakened.
  • the fuel is injected from the injection hole 64 into the cylinder of the internal combustion engine.
  • high-pressure fuel can be supplied to each fuel injection valve 56 without the injection pressure being affected by fluctuations in the engine speed, and fuel can be injected into the internal combustion engine at a desired timing. . Therefore, noise can be reduced and the content of environmental pollutants can be reduced.
  • the common rail 10 of the present invention has an X-direction edge E2 curvature that is larger than the curvature of the Y-direction edge E2 among the entrance edges of the branch path 16, thereby increasing the X-direction edge E2.
  • This is a reduction in the tensile stress acting in the Y direction at the edge.
  • the tensile stress acting in the X direction and the tensile stress acting in the Y direction are balanced around the intersection, using high-strength materials and increasing production costs. It is possible to prevent the occurrence of damage such as cracks by locally concentrating stress on the X-direction edge of the entrance of the branching path 16.
  • the curvature configuration satisfying such a relationship is a blasting process in which the abrasive 31 is passed through the inside of the flow path 18 while swirling. It can be formed by performing from each end side.
  • the abrasive can move in the axial direction while turning, and the abrasive can be efficiently collided with the edge in the axial direction among the edges of the branch channel entrance. .
  • the collision occurs with a bias toward one side of the axial edge, so the other end side force is also applied.
  • the edge in the axial direction can be sufficiently polished rather than the edge in the direction orthogonal to the axial direction, and a predetermined curvature configuration can be easily formed.
  • FIG. 1 An example of the configuration of a blast processing apparatus suitable for such blast processing is shown in FIG.
  • This blast treatment device 30 is mounted on the abrasive tank 33 containing the abrasive 31 and the end 10A of the common rail 10, and is introduced into the common rail 10 while turning the abrasive 31 supplied from the abrasive tank 33.
  • the polishing process performed using the powerful blast processing apparatus 30 is performed as follows.
  • one end 10A of the common rail 10 is connected to the swirl flow introducing portion 35, and the other end 10B is connected to the receiver box 39.
  • the suction blower 37 is operated to suck the air inside the common rail 10 and generate negative pressure.
  • the abrasive 31 in the abrasive tank 33 is put into the swirl flow introducing portion 35.
  • the abrasive 31 flows into the common rail 10 while turning by passing through the swirling flow introducing portion 35, proceeds to the other end 10B side while polishing the inner surface of the flow path 18, and enters the receiver box 39. Discharged.
  • the conditions for performing the blast treatment at this time are, for example, that the air pressure is 0.5 to 1. Ok, the amount of abrasives to be fed is 3 to 5 kg per minute, and the treatment time is 30 to 60 seconds. wear.
  • various materials such as iron, stainless steel, and a hard resin material can be used, and the size thereof is, for example, 0.2 to 1.0 mm in diameter. Can be within range.
  • the inner surface of the flow path in the common rail and the edge of the branch path entrance are evenly polished, and the edge of the branch path entrance is perpendicular to the axial edge and the axial direction. It is possible to form the minimum curvature required for each edge in the direction.
  • FIG. 7 (a) shows a brass rail according to the present embodiment for a common rail having a flow passage 18 having a diameter of 8 mm and four branch passages 16 each having a diameter of 3 mm branched from the flow passage 18. This shows the magnitude of the curvature of the edge of each branch path when the inner surface treatment is performed by the second treatment.
  • Fig. 7 (b) shows the magnitude of the curvature of the edge of each branch path when the same common rail is internally treated by the conventional fluid polishing method.
  • the curvature shown in each figure indicates the size of the radius, and its unit is mm (millimeter).
  • the curvature force of the edge E1 in the axial direction is perpendicular to the axial direction at the edge of any branch path entrance.
  • the curvature of the edge E2 is smaller than the curvature of the edge E1
  • the curvature of the edge E1 in the axial direction is larger than the curvature of the edge E2 in the direction orthogonal to the axial direction.
  • stress concentration on the axial edge which has been liable to crack in the past, is alleviated and the durability of the common rail can be improved.
  • the curvature relationship of the formed edge differs between the conventional fluid polishing method and the blasting method of the present embodiment.
  • the configuration and processing conditions of the blast processing apparatus can be changed as appropriate by applying known apparatuses and processing conditions. Furthermore, in order to form a curvature structure that satisfies a predetermined relationship, any method other than the blasting method described above can be adopted as appropriate.
  • the intersection of the flow path (not shown) and the branch path 16 (see FIG. (Not shown)
  • a thin portion 21 having a thickness around the flow passage thinner than a thickness around the flow passage in the vicinity of the intersection can be provided in a portion other than the intersection. That is, the thickness of the rail main body 12 at a portion other than the intersection of the flow passage of the rail main body 12 and the branch passage 16 of the branch pipe 14 is relatively thin compared to the vicinity of the intersection.
  • the rail body 12 is easily deformed in the direction intersecting the axial direction of the rail body 12 (Y direction).
  • the condition can be relaxed. Therefore, in combination with the above-described edge curvature configuration, stress concentration at a specific location can be prevented.
  • high-pressure fuel is always accumulated in the common rail, and internal pressure is generated on the inner surface of the flow passage and the inner surface of the branch passage.
  • stress tends to concentrate on the edge of the branch path entrance.
  • the thickness of the rail body in the axial direction (X direction) is relatively thick compared to the thickness in the direction perpendicular to the axial direction (Y direction). Is also deformed in the Y direction.
  • the stress in the ⁇ direction concentrates on the edge in the X direction among the edges of the entrance of the branch road at the intersection, which is one of the factors that cause damage such as cracks.
  • the thickness of the portion other than the portion to be the thick portion 20 is removed from the conventional common rail.
  • the thin-walled portion 21 may be formed by forming the thick-walled portion 20 by adding the thickness near the intersection 17 to the conventional common rail as shown in FIG. 9 (b).
  • Fig. 9 (a) when it is configured by reducing the thickness of the portion other than the thick portion 20, the amount of raw materials can be reduced and the manufacturing cost can be reduced. Since the common rail can be reduced in weight, this is a more preferable aspect.
  • the intersection portion 17 between the flow passage 18 and the branch passage 16 is the center. It is preferable to provide them evenly on both sides.
  • the stress values on both sides along the axial direction (X direction) of the tensile stress acting on the intersecting portion 17 can be made equal. Therefore, branch It is possible to reduce damage to the common rail where stress does not concentrate on one edge in the axial direction among the edges of the entrance portion of the road 16.
  • the wall thickness t2 on the branch direction side (upper side in the figure) of the branch path 16 is set on the side opposite to the branch direction (lower side in the figure). It is preferable to make it thicker than the wall thickness tl.
  • Figs. 12 (a) to 12 (b) show an example in which the outer peripheral surface of the branch path 16 opposite to the branch direction is a curved surface
  • Fig. 12 (a) shows an example in which the outer peripheral surface of the branch path 16 opposite to the branch direction is a flat surface
  • FIG. 12B shows an example in which the position of the flow path 18 in the rail body 12 is offset to the side opposite to the branch direction of the branch path 16.
  • the compressive stress can be efficiently applied to the intersecting portion 17 in the Y direction, and as shown in FIG. 11, the thick portion 20 extends along the direction perpendicular to the axial direction. It is preferable that the curvature force of the outer periphery of the rail body 12 on the branching direction side of the branch path 16 is smaller than the curvature of the outer periphery of the rail body 12 on the side opposite to the branching direction of the branch path 16 in the cross section cut by cutting.
  • the curvature force on the outer periphery of the rail body 12 on the branch direction side is smaller than the curvature on the outer periphery of the rail body 12 on the opposite side to the branch direction.
  • the outer periphery of the rail body 12 on the opposite side to the direction is linear, and this configuration also has a predetermined cross section 17 compared to the conventional circular cross-sectional configuration. Compressive stress can be applied in the direction.
  • the thickness on the branch direction side of the branch path 16 (upper side in the figure) It is not essential to make it thicker than the wall thickness on the opposite side (lower side in the figure).
  • the wall around the flow path 18 in the thick wall portion 20 Even when the thickness is made uniform, deformation in the direction intersecting the axial direction can be reduced as compared with the conventional common rail, and damage to the common rail can be reduced.
  • the common rail may be made of a material stronger than the conventional material, or heat treatment may be performed. In such a configuration, it is possible to more effectively prevent damage such as cracks due to stress acting on the internal pressure at the intersection of the flow path and the branch path.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Branch Pipes, Bends, And The Like (AREA)

Description

明 細 書
コモンレール及びコモンレールの製造方法
技術分野
[0001] 本発明は、内燃機関の燃料噴射システムに用いられるコモンレール及びコモンレ ールの製造方法に関する。特に、レール本体部から突設して一体成形された分岐管 部を備えたコモンレール及びそのようなコモンレールの製造方法に関する。
背景技術
[0002] 従来、高圧ポンプ力 圧送される燃料を蓄圧器としてのコモンレールに蓄えるととも に、このコモンレール力 複数の燃料噴射弁に対して均等な圧力の燃料が分配され る蓄圧式燃料噴射装置が知られている。図 14は、このようなコモンレールの一例を示 しており、レール本体部 312と、当該レール本体部 312の軸方向(X方向)に沿って 配列され、レール本体部 312と一体的に形成され、レール本体部 312の周方向外側 に向けて突設された複数の分岐管部 314 (図 14の例では 5本)とを備えている。レー ル本体部 312は、軸方向に沿って内部に流通路 318が形成され、分岐管部 314の 内部には、流通路 318から分岐する分岐路 316が形成されている。また、分岐管部 3 14には燃料配管(図示せず)が接続され、分岐管部 314のうち噴射用分岐管 314a 〜314dに接続された燃料配管(図示せず)の他端側は燃料噴射弁 (図示せず)に接 続され、流入用分岐管 314eに接続された燃料配管(図示せず)の他端側は燃料供 給用ポンプ(図示せず)に接続されている。
[0003] このようなコモンレールでは、流通路及び分岐路の内面に対して、高圧燃料による 内圧が作用する。そして、流通路から分岐路が分岐する交差部においては応力が集 中しやすぐ他の部分よりも大きな応力が作用するため、より高圧の燃料を噴射する システムとなった場合には亀裂等の破損が生じるリスクが高くなる。
そこで、応力集中部の応力値を低減して耐圧性を大幅に向上させることができるコ モンレールノヽウジングが提案されている。より詳細には、図 15に示すように、燃料供 給用ポンプより供給された高圧燃料を蓄圧する蓄圧室 302の断面形状を楕円形状と することにより、蓄圧室 302と各第 2燃料通路穴 306を、断面形状が真円形状の蓄圧 室を有する真円管の時よりも曲率の大きい位置で直交方向に交差するように配置す ることにより、交差部 (応力集中部) 309の応力値を低減できるようにしたコモンレール ハウジングが開示されている (例えば、特許文献 1参照)。
[0004] 特許文献 1 :特開 2001— 295723号公報 (特許請求の範囲 図 1)
発明の開示
発明が解決しょうとする課題
[0005] し力しながら、特許文献 1に開示されたコモンレールノヽウジングでは、蓄圧室と第 2 燃料通路穴との交差部に作用する応力のうち、ハウジングの軸方向の応力値と、軸 方向と直交する方向の応力値とに差が生じる場合があり、応力集中を充分に低減で きない場合がある。すなわち、図 16に示すように、流通路 418と分岐路 416との交差 部 417の近傍では、レール本体部 412の軸方向(X方向)の肉厚に対して、軸方向と 直交する方向(Y方向)の肉厚が薄くなつているため、 X方向よりも Y方向への変形が 生じやすくなつている。その結果、分岐路 416の入口部分の X方向のエッジに作用 する Y方向の応力が、 Y方向のエッジに作用する X方向の応力よりも大きくなる。した がって、交差部 417の入口部分の X方向のエッジに亀裂が生じるなどして、コモンレ ールの耐久性が低下するおそれがあった。
[0006] このような流通路と分岐路との交差部のエッジへの応力集中を緩和するためには、 エッジを面取りして曲率を大きくすることが有効である力 X方向及び Y方向すベての エッジの曲率を大きく面取り加工するには、製造時間が長くかかったり、製造コストが 増大したりするという問題がある。そのため、製造時間をかけずに、かつ、製造コスト の増大を抑えて、効率的に応力集中を緩和するためには、亀裂等を生じやすい X方 向のエッジの曲率が、 Y方向のエッジの曲率よりも大きくなるように加工し、 X方向及 ひ Ύ方向それぞれのエッジにとって必要最低限の曲率を形成することが望ましい。 通常、コモンレールは、製造段階において、内部のノ リ取りや内面の研磨を目的と して流体研磨法などによる内部研磨処理が行われており、これによつて、流通路と分 岐路との交差部のエッジが面取りされている。しかしながら、従来の流体研磨法によ る研磨処理では、流通路の内面と分岐路の内面とがなす角度の関係もあり、図 17 (a ;)〜(c)〖こ示すように、分岐路 316の入口のエッジのうち、レール本体部 312の軸方 向(X方向)のエッジ Elよりも軸方向と直交する方向(Y方向)のエッジ E2が研磨され やすぐ X方向のエッジ E1の曲率が、 Y方向のエッジ E2の曲率よりも小さく加工され ている(図 17 (b)及び (c)を参照)。したがって、分岐路 316の入口部分の X方向のェ ッジ E1に作用する応力集中を緩和しづら ヽと 、う問題があった。
[0007] そこで、本発明の発明者らは鋭意努力し、コモンレールにおいて、レール本体部の 流通路と分岐管部の分岐路との交差部における分岐路入口のエッジの曲率を、所定 の関係を満足するように構成することにより、上述した問題を解決できることを見出し 、本発明を完成させたものである。
すなわち、本発明の目的は、流通路と分岐路との交差部に対して局所的に応力集 中が生じることを防ぎ、亀裂等の破損が生じることを低減することができるコモンレー ル及びそのようなコモンレールの製造方法を提供することである。
課題を解決するための手段
[0008] 本発明によれば、内燃機関の燃料噴射システムに用いられるコモンレールであって 、軸方向に沿って内部に流通路を有するレール本体部と、レール本体部の軸方向に 沿って配列し、レール本体部力 突設して一体的に成形され、それぞれ内部に流通 路から分岐する分岐路を有する分岐管部と、を備え、流通路と分岐路との交差部に おける分岐路入口のエッジは面取りされており、エッジのうち、レール本体部の軸方 向のエッジの曲率を、レール本体部の軸方向と直交する方向のエッジの曲率よりも大 きくしたことを特徴とするコモンレールが提供され、上述した問題を解決することがで きる。
[0009] また、本発明のコモンレールを構成するにあたり、分岐路入口のエッジは、研磨材 を、流通路内を旋回させながら通過させて行われるブラスト処理を、それぞれの端部 側から行うことにより面取りされていることが好ましい。
[0010] また、本発明のコモンレールを構成するにあたり、流通路の直径を 8〜 12mmの範 囲内の値とすることが好ましい。
[0011] また、本発明の別の態様は、内燃機関の燃料噴射システムに用いられ、軸方向に 沿って内部に流通路を有するレール本体部と、レール本体部の軸方向に沿って配 列し、レール本体部から突設して一体的に成形され、それぞれ内部に流通路から分 岐する分岐路を有する分岐管部と、を備えたコモンレールの製造方法であって、流 通路のそれぞれの端部側から、研磨材を流通路内を旋回させながら通過させてブラ スト処理を行うことにより、流通路と分岐路との交差部における分岐路入口のエッジを 面取りする工程を含むコモンレールの製造方法である。
発明の効果
[0012] 本発明のコモンレールによれば、流通路と分岐路との交差部において、応力集中 が生じやすい、軸方向のエッジの曲率を大きくすることができる。したがって、分岐路 入口のエッジのうち、軸方向のエッジの曲率が軸方向と直交する方向のエッジの曲 率よりも大きくなり、軸方向のエッジ及び軸方向と直交する方向のエッジそれぞれにと つて必要最低限の曲率を形成することができる。その結果、交差部における所定箇 所への応力集中を低減させることができ、亀裂等の損傷を抑えられ、コモンレールの 耐久性を向上させることができる。
[0013] また、本発明のコモンレールにおいて、分岐路入口のエッジを、所定のブラスト処 理を行うことによって面取りすることにより、分岐路入口のエッジの曲率を、容易に所 定の関係を満足するように構成することができる。
[0014] また、本発明のコモンレールにおいて、レール本体の流通路の直径を所定の範囲 内にすることにより、コモンレールの大型化を防ぎつつ、流通路内部の研磨処理を行 いやすくすることができるため、流通路と分岐路との交差部のエッジが所定の曲率と なるように容易にカ卩ェすることができる。
[0015] また、本発明のコモンレールの製造方法によれば、所定のブラスト処理工法を用い て流通路内部の研磨を行い、分岐路入口のエッジを面取りすることにより、当該エツ ジの曲率が所定の関係を満足するように、容易に加工することができる。したがって、 内圧による応力集中に起因した亀裂等の損傷を生じにくぐ耐久性に優れたコモンレ ールを効率的に製造することができる。
図面の簡単な説明
[0016] [図 1]本発明の実施の形態に力かるコモンレールの斜視図である。
[図 2]本発明の実施の形態に力かるコモンレールの断面図である。
[図 3]コモンレールを備えた蓄圧式燃料噴射装置の例を示す図である。 [図 4]分岐路入口のエッジの形状を説明するための図である。
[図 5]旋回流を伴うブラスト処理法を説明するための図である。
[図 6]ブラスト処理装置の構成例を示す図である。
[図 7]本実施形態のブラスト処理法によって形成される分岐路入口のエッジの曲率関 係について説明するための図である。
[図 8]厚肉部を備えたコモンレールの斜視図である。
[図 9]厚肉部の形成方法の一例を示す図である。
[図 10]厚肉部の形成方法の別の例を示す図である。
[図 11]厚肉部の配置構成を説明するための図である。
[図 12]厚肉部の肉厚を異ならせた例を示す図である(その 1)。
[図 13]厚肉部の肉厚を異ならせた例を示す図である(その 2)。
[図 14]従来のコモンレールの構成を説明するための図である(その 1)。
[図 15]従来のコモンレールの構成を説明するための図である(その 2)。
[図 16]従来の構成のコモンレールにおける引張応力の作用について説明するため の図である。
[図 17]従来のコモンレールにおける分岐路入口のエッジの形状を説明するための図 である。
発明を実施するための最良の形態
[0017] 以下、適宜図面を参照しながら、本実施形態のコモンレール及びその製造方法に ついて具体的に説明する。ただし、力かる実施形態は、本発明の一態様を示すもの であり、この発明を限定するものではなぐ本発明の範囲内で任意に変更することが 可能である。
なお、それぞれの図中、同じ符号を付してあるものについては同一の部材を示して おり、適宜説明が省略されている。
[0018] 本発明に力かる実施の形態のコモンレールは、軸方向に沿って内部に流通路を有 するレール本体部と、レール本体部の軸方向に沿って配列し、レール本体部力 突 設して一体的に成形され、それぞれ内部に流通路から分岐する分岐路を有する分 岐管部と、を備え、流通路と分岐路との交差部における分岐路入口のエッジは面取り されており、エッジのうち、レール本体部の軸方向のエッジの曲率を、レール本体部 の軸方向と直交する方向のエッジの曲率よりも大きくしたことを特徴とする。
[0019] 1.全体構成
図 1及び図 2 (a)〜(b)は、本実施形態のコモンレール 10を示している。図 1は、コ モンレール 10の斜視図であり、図 2 (a)は、コモンレール 10を軸方向に沿って切断し た断面図であり、図 2 (b)は、流通路から分岐路が分岐する箇所をコモンレール 10の 軸方向と直交する方向に切断した断面図である。
[0020] 図 1及び図 2 (a)〜(b)に示す本実施形態のコモンレール 10は、従来用いられてい る合金鋼ゃ铸鉄等の鋼材を用いて構成されており、レール本体部 12と、このレール 本体部 12の軸方向(X方向)に沿って配列され、レール本体部 12から突設して一体 的に形成された複数の分岐管部 14 (図中では 5本)を備えている。このうち、レール 本体部 12は、軸方向に沿って、両端部 10a、 10bで開口した流通路 18を内部に有し ている。また、複数の分岐管部 14のうち、 4本の噴射用分岐管 14a〜14dは、流通路 18から分岐し他端側が開口した噴射用分岐路 16a〜16dを内部に有し、複数の分 岐管部 14のうちの流入用分岐管 14eも同様に、流通路 18から分岐し他端側が開口 した流入用分岐路 16eを内部に有して 、る。
[0021] また、各分岐管部 14及びレール本体 12の軸方向の一方側の端部 10aの外周面に はネジ溝が形成されている。そして、レール本体部 12の端部 10aには、排出路 15か ら排出する燃料量を制御して、レール内の圧力を制御する電磁制御部 54が接続さ れている。また、各噴射用分岐管 14a〜14dには、内燃機関(図示せず)の気筒内に 燃料を噴射する燃料噴射弁 (図示せず)に通じる燃料配管(図示せず)が接続され、 さらに、流入用分岐管 14eには、燃料供給ポンプ(図示せず)の吐出弁(図示せず) に通じる燃料配管(図示せず)が接続されている(図 3参照)。一方、レール本体部 12 の他方の端部 10bは、内周面にネジ溝が形成され、レール内の圧力を検知するため の圧力センサ 52が接続されている(図 3参照)。
[0022] このようなコモンレール 10を用いた蓄圧式燃料噴射装置 50の構成例を図 3に示す 。この蓄圧式燃料噴射装置 50の例では、燃料タンク 82内の燃料が、燃料供給ボン プ 60のフィードポンプ 84で汲み上げられ、噴射量調整を行う調量弁 68を経由した後 、加圧室(図示せず)に供給された後、加圧室(図示せず)内で高圧化されてコモンレ ール 10に圧送される。また、コモンレール 10に圧送された高圧燃料は、流入用分岐 管 14e内の流入用分岐路(図示せず)を介してコモンレール 10内部に流入する。そ して、高圧燃料はコモンレール 10内に蓄積され、各燃料噴射弁 56に対して噴射用 分岐管 14a〜14b内の噴射用分岐路(図示せず)を介して均等な圧力で供給される 。このコモンレール 10内の圧力は、コモンレール 10に接続された圧力センサ 52で検 知しつつ、電磁制御部 54によって相当量の燃料を排出させることによって制御され ている。
[0023] また、燃料噴射弁 56のノズル-一ドル 101は、燃料噴射弁 56内の圧力制御室 67 に供給される高圧燃料によって噴射孔 64を閉じる方向に付勢されており、バルブ 71 制御により圧力制御室 67内の高圧燃料の一部を放出することによりノズル-一ドル 1 01の付勢力が弱められ、その結果、噴射孔 64から内燃機関の気筒内に燃料が噴射 される。これによつて、エンジンの回転数の変動に噴射圧が影響されることなぐ各燃 料噴射弁 56に対して高圧燃料を供給できるとともに、所望のタイミングで内燃機関に 燃料を噴射することができる。したがって、騒音を低減したり、環境汚染物質の含有 量を低下させたりすることができる。
[0024] 2.曲率構成
本実施形態のコモンレール 10では、図 4 (a)〜(b)に示すように、レール本体部 12 の流通路 18と分岐管部 14の分岐路 16との交差部 17において、分岐路 16の入口の エッジが面取りされており、このエッジのうち、レール本体部 12の軸方向(X方向)の エッジ E 1の曲率(図 4 (b)を参照)が、レール本体部 12の軸方向と直交する方向( Y 方向)のエッジ E2の曲率(図 4 (c)を参照)よりも大きくされて!/、る。
[0025] すなわち、従来のコモンレールの製造工程で内部の研磨処理を施した場合、コモ ンレールの分岐路の内面と流通路の内面とがなす角度の関係上、分岐路入口のェ ッジのうち、レール本体部の軸方向のエッジの曲率が、レール本体の軸方向と直交 する方向のエッジの曲率よりも小さくなりやすい。そうすると、レール本体部の分岐路 入口周囲の肉厚のうち、レール本体部の軸方向の肉厚力 軸方向と直交する方向の 肉厚よりも厚ぐ軸方向と直交する方向に変形しやすいことと相俟って、コモンレール 内に内圧が発生した場合に、レール本体の軸方向側のエッジに、引っ張りによる応 力が集中しやすくなつている。
[0026] そこで、本発明のコモンレール 10は、分岐路 16の入口のエッジのうち、 X方向のェ ッジ E1の曲率を、 Y方向のエッジ E2の曲率よりも大きくすることによって、 X方向のェ ッジにおいて Y方向に作用する引張応力を低減させたものである。これによつて、交 差部を中心に、 X方向に作用する引張応力と、 Y方向に作用する引張応力とのバラ ンスがとられ、高強度材料を用いたり生産コストの増加を伴ったりすることなぐ分岐 路 16の入口の X方向のエッジに対して局所的に応力が集中することによって亀裂等 の損傷が発生することを防ぐことができる。
[0027] このような関係を満足する曲率構成は、例えば、図 5に示すように、研磨材 31を、流 通路 18の内部を旋回させながら通過させて行われるブラスト処理を、流通路 18のそ れぞれの端部側から行うことによって形成することができる。
すなわち、このようにブラスト処理を行うことによって、研磨材が旋回しながら軸方向 に進行し、分岐路入口のエッジのうち軸方向のエッジに対して研磨材を効率的に衝 突させることができる。また、一方の端部側力も行うだけでは、軸方向のエッジの一方 側に偏って衝突することになるため、他方側の端部側力もも行われる。このようにして 、軸方向と直交する方向のエッジよりも軸方向のエッジを充分に研磨することができ、 所定の曲率構成を容易に形成することができる。
[0028] このようなブラスト処理に適したブラスト処理装置の構成の一例を図 6に示す。この ブラスト処理装置 30は、研磨材 31が収容された研磨材タンク 33と、コモンレール 10 の端部 10Aに装着され、研磨材タンク 33から供給される研磨材 31を旋回させながら コモンレール 10内に導入するための旋回流導入部 35と、コモンレール 10の他方側 の端部 10B力もエアを吸引するための吸引ブロワ 37と、コモンレール 10内を通過さ せた研磨材 31を回収するレシーバボックス 39と、回収された研磨材 31から塵埃を分 離するためのサイクロン 41と、サイクロン 41によって分離された塵埃を捕集する塵埃 捕集部 43と、塵埃が分離された研磨材を研磨材タンク 33へ還流させる循環路 45と、 カゝら構成されている。また、このブラスト処理装置 30では、ブラスト処理を行う際に、コ モンレール 10の分岐管部 14の分岐路 16の開口を閉じる蓋部材 47が用いられてい る。
[0029] 力かるブラスト処理装置 30を用いて行われる研磨処理は、以下のように行われる。
まず、コモンレール 10の一端 10Aを旋回流導入部 35に接続し、他端 10Bをレシ一 バボックス 39に接続する。次いで、コモンレール 10の分岐管部 12の開放端に蓋部 材 47を配置して閉じた状態で、吸引ブロワ 37を作動させることによって、コモンレー ル 10の内部の空気を吸引し、負圧を発生させる。この状態で、研磨材タンク 33内の 研磨材 31を旋回流導入部 35に投入する。そうすると、研磨材 31は旋回流導入部 35 を通過することによって旋回しながらコモンレール 10の内部に流入し、流通路 18の 内面を研磨しながら他端 10B側へ進行して、レシーバボックス 39内に排出される。 このときのブラスト処理を行う際の条件としては、例えば、エアの圧力を 0. 5〜1. Ok 研磨材投入量を 1分間当たり 3〜5kg、処理時間を 30〜60秒とすることがで きる。また、用いられる研磨材としては、鉄やステンレス、硬度の高い榭脂材料等、種 々のものを用いることができ、また、その大きさは、例えば、直径を 0. 2〜1. 0mmの 範囲内とすることができる。
[0030] その後、コモンレール 10の配置方向を入れ替え、先のブラスト処理時に、旋回流導 入部 35に接続されていた端部 10Aをレシーバボックス 39に接続し、レシーバボック ス 39に接続されていた端部 10Bを旋回流導入部 35に接続した後、上述した処理方 法と同様にブラスト処理が行われる。
このように両端側からブラスト処理を行うことによって、コモンレール内の流通路の内 面や分岐路入口のエッジが均等に研磨され、分岐路入口のエッジのうち、軸方向の エッジ及び軸方向と直交する方向のエッジそれぞれにとって必要最低限の曲率を形 成することができる。
[0031] ここで、図 6に示すような構成のブラスト処理装置を用いて流通路の両端部側から ブラスト処理を行ったコモンレールにおける、分岐路入口のエッジの曲率関係と、従 来の流体研磨法により内面処理を行ったコモンレールにおける、分岐路入口のエツ ジの曲率関係との違いにっ 、て説明する。
図 7 (a)は、直径が 8mmの流通路 18と、この流通路 18から分岐した、それぞれ直 径が 3mmの 4つの分岐路 16とを有するコモンレールに対して、本実施形態のブラス ト処理によって内面処理を行った場合の、それぞれの分岐路入口のエッジの曲率の 大きさを示している。一方、図 7 (b)は、同一のコモンレールに対して、従来の流体研 磨法によって内面処理を行った場合の、それぞれの分岐路入口のエッジの曲率の大 きさを示している。それぞれの図中に示す曲率は、半径の大きさを示しており、その 単位は mm (ミリメートル)である。
このブラスト処理は、直径 0. 6mmの鉄製の研磨材を用い、エアの圧力を 0. 7kg/ 研磨材投入量を 4kgZ分で、流通路のそれぞれの端部側力も 60秒間研磨材を 投入して行った。また、流体研磨は、 AFM法で流通路の両端部側から同時に流体 を投入して分岐路力 流出させて行われ、これを 80秒間行った。
[0032] この図 7 (a)〜(b)に示すように、従来の流体研磨法では、いずれの分岐路入口の エッジにおいても、軸方向のエッジ E1の曲率力 軸方向と直交する方向のエッジ E2 の曲率よりも小さくなつているのに対して、本実施形態のブラスト処理法では、軸方向 のエッジ E 1の曲率が、軸方向と直交する方向のエッジ E2の曲率よりも大きくなつて いる。したがって、従来亀裂等が生じやす力つた軸方向のエッジに対する応力集中 が緩和され、コモンレールの耐久性を向上させることができる。このように、従来の流 体研磨法と、本実施形態のブラスト処理法とでは、形成されるエッジの曲率関係が異 なることが、明確に理解される。
[0033] なお、ブラスト処理装置の構成や処理条件につ!、ては、公知の装置や処理条件を 応用して適宜変更することができる。さらに、所定の関係を満足する曲率構成を形成 するには、上述したようなブラスト処理法以外であっても、適宜採用することができる。
[0034] 3.厚肉部
また、流通路と分岐路との交差部のエッジの曲率構成を上述のように構成した場合 において、図 8に示すように、流通路(図示せず)と分岐路 16との交差部(図示せず) に、流通路の周囲の肉厚が、それ以外の部分の流通路の周囲の肉厚よりも厚い厚肉 部 20を備えることもできる。換言すれば、交差部以外の部分に、流通路の周囲の肉 厚が交差部近傍の流通路の周囲の肉厚よりも薄い薄肉部 21を備えることができる。 すなわち、レール本体部 12の流通路と分岐管部 14の分岐路 16との交差部の以外 の部分のレール本体部 12の肉厚を、交差部の近傍と比較して相対的に薄くすること により、レール本体部 12の肉厚が全体的に均一になっている場合と比較して、交差 部を中心に、レール本体部 12の軸方向と交差する方向(Y方向)に変形しやすい状 態を緩和することができる。したがって、上述のエッジの曲率構成と相俟って、特定箇 所への応力集中を防ぐことができる。
[0035] より詳細には、上述したように、コモンレールの内部には常に高圧の燃料が蓄積さ れており、流通路の内面や分岐路の内面に内圧が生じている。特に、流通路と分岐 路との交差部においては、分岐路入口のエッジに応力が集中しやすくなつている。こ のとき、交差部では、レール本体部の軸方向(X方向)の肉厚力 軸方向と直交する 方向(Y方向)の肉厚と比較して相対的に厚くなつており、 X方向よりも Y方向に変形 しゃすくなっている。その結果、交差部における分岐路の入口部分のエッジのうち、 X方向のエッジに対して γ方向の応力が集中し、亀裂等の損傷が生じる要因の一つ になっている。
そこで、図 8に示すように、流通路と分岐路 16との交差部に厚肉部 20を設けること により、交差部を中心として Y方向に作用する応力を低減させ、特定箇所への応力 集中が抑えられるように構成されている。
[0036] このような厚肉部 20を備えたコモンレールを構成するにあたり、図 9 (a)に示すよう に、従来のコモンレールから、厚肉部 20とする部分以外の部分の肉厚をぬすむこと によって薄肉部 21を形成してもよぐあるいは、図 9 (b)に示すように、従来のコモンレ ールに対して、交差部 17の近傍の肉厚を付加して厚肉部 20を形成することもできる 中でも、図 9 (a)に示すように、厚肉部 20以外の部分の肉厚をぬすむことによって 構成した場合には、原材料量を減らして製造コストを低下させることができるとともに、 コモンレールの軽量ィ匕を図ることができることから、より好適な態様である。
[0037] また、厚肉部 20を構成するにあたり、図 10に示すように、流通路 18と分岐路 16と の交差部 17を中心として、レール本体部 12の軸方向(X方向)に沿って両側に均等 に設けることが好ましい。
このように構成された厚肉部 20であれば、交差部 17に作用する引張応力のうち、 軸方向(X方向)に沿った両側の応力値を均等にすることができる。したがって、分岐 路 16の入口部分のエッジのうち、軸方向の一方側のエッジに対して応力が集中する ことがなぐコモンレールの損傷を低減することができる。
[0038] また、厚肉部 20を構成するにあたり、図 11に示すように、分岐路 16の分岐方向側( 図中上側)の肉厚 t2を、分岐方向とは反対側(図中下側)の肉厚 tlよりも厚くすること が好ましい。
このように構成された厚肉部 20であれば、図 11に示すように、コモンレール 100内 に内圧が生じた際に、分岐方向とは反対側を積極的に変形させ、その結果、交差部 17に対して、軸方向と直交する方向(Y方向)に圧縮応力を作用させることができる。 したがって、内圧によって、交差部 17に対して Y方向に作用する引張応力の一部が 相殺され、 Y方向に作用する引張応力が低減されることにより応力集中を抑えること ができる。その結果、コモンレールの損傷を低減させることができる。
[0039] 分岐路 16の分岐方向側(図中上側)の肉厚を、分岐方向とは反対側(図中下側)の 肉厚よりも厚くした厚肉部の例としては、図 11以外にも、図 12 (a)〜(b)のように構成 することもできる。図 11は、分岐路 16の分岐方向とは反対側の外周面を曲面とした 例であり、図 12 (a)は、分岐路 16の分岐方向とは反対側の外周面を平面とした例で あり、図 12 (b)は、レール本体部 12内の流通路 18の位置を、分岐路 16の分岐方向 とは反対側にオフセットさせて配置した例である。
[0040] 中でも、交差部 17に対して、 Y方向に圧縮応力を効率的に作用させることができる こと力ら、図 11に示すように、厚肉部 20を軸方向と直行する方向に沿って切断した 断面における、分岐路 16の分岐方向側のレール本体部 12の外周の曲率力 分岐 路 16の分岐方向とは反対側のレール本体部 12の外周の曲率よりも小さいことが好ま しい。
なお、分岐方向側のレール本体部 12の外周の曲率力 分岐方向とは反対側のレ ール本体部 12の外周の曲率よりも小さい状態には、図 12 (a)に示すように、分岐方 向とは反対側のレール本体部 12の外周が直線状になって 、るものも含まれ、かかる 構成によっても、従来の断面円形の構成と比較して、交差部 17に対して、所定方向 に圧縮応力を作用させることができる。
[0041] ただし、厚肉部 20において分岐路 16の分岐方向側(図中上側)の肉厚を、分岐方 向とは反対側(図中下側)の肉厚よりも厚くすることは必須ではなぐ図 13 (a)〜 (b) に示すように、厚肉部 20における、流通路 18の周囲の肉厚を均等にした場合であつ ても、従来のコモンレールと比較して、軸方向と交差する方向への変形を低減するこ とができ、コモンレールの損傷を低減することができる。
また、言うまでもなぐ生産コストの上昇や生産加工性の低下を考慮しないのであれ ば、従来の材料よりも高強度の材料を用いてコモンレールを構成したり、熱処理を施 したりしてもよく、このように構成した場合には、流通路と分岐路との交差部における、 内圧によって作用する応力に起因した亀裂等の損傷をさらに効果的に防止すること ができる。

Claims

請求の範囲
[1] 内燃機関の燃料噴射システムに用いられるコモンレールにぉ ヽて、
軸方向に沿って内部に流通路を有するレール本体部と、
前記レール本体部の前記軸方向に沿って配列し、前記レール本体部から突設して 一体的に成形され、それぞれ内部に前記流通路から分岐する分岐路を有する分岐 管部と、を備え、
前記流通路と前記分岐路との交差部における前記分岐路入口のエッジは面取りさ れており、
前記エッジのうち、前記レール本体部の前記軸方向のエッジの曲率を、前記レール 本体部の前記軸方向と直交する方向のエッジの曲率よりも大きくしたことを特徴とす るコモンレーノレ。
[2] 前記分岐路入口のエッジは、研磨材を、前記流通路内を旋回させながら通過させ て行われるブラスト処理を、それぞれの端部側力も行うことにより面取りされていること を特徴とする請求の範囲第 1項に記載のコモンレール。
[3] 前記流通路の直径を 8〜 12mmの範囲内の値とすることを特徴とする請求の範囲 第 1項又は第 2項に記載のコモンレール。
[4] 内燃機関の燃料噴射システムに用いられ、軸方向に沿って内部に流通路を有する レール本体部と、前記レール本体部の前記軸方向に沿って配列し、前記レール本体 部から突設して一体的に成形され、それぞれ内部に前記流通路から分岐する分岐 路を有する分岐管部と、を備えたコモンレールの製造方法にぉ 、て、
前記流通路のそれぞれの端部側から、研磨材を前記流通路内を旋回させながら通 過させてブラスト処理を行うことにより、前記流通路と前記分岐路との交差部における 前記分岐路入口のエッジを面取りする工程を含むことを特徴とするコモンレールの製 造方法。
PCT/JP2007/053355 2006-10-02 2007-02-23 Rampe commune et procédé de fabrication d'une rampe commune WO2008041374A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP07714826A EP2072802B1 (en) 2006-10-02 2007-02-23 Common rail and method of manufacturing common rail
US12/444,067 US7905216B2 (en) 2006-10-02 2007-02-23 Common rail and method of manufacturing common rail
DE602007009856T DE602007009856D1 (de) 2006-10-02 2007-02-23 Verteilerleitung und verfahren zur herstellung einer verteilerleitung
CN200780031469XA CN101506512B (zh) 2006-10-02 2007-02-23 共轨及共轨的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-270448 2006-10-02
JP2006270448A JP4484227B2 (ja) 2006-10-02 2006-10-02 コモンレール

Publications (1)

Publication Number Publication Date
WO2008041374A1 true WO2008041374A1 (fr) 2008-04-10

Family

ID=39268240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/053355 WO2008041374A1 (fr) 2006-10-02 2007-02-23 Rampe commune et procédé de fabrication d'une rampe commune

Country Status (7)

Country Link
US (1) US7905216B2 (ja)
EP (1) EP2072802B1 (ja)
JP (1) JP4484227B2 (ja)
KR (1) KR101076215B1 (ja)
CN (1) CN101506512B (ja)
DE (1) DE602007009856D1 (ja)
WO (1) WO2008041374A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010072651A2 (en) * 2008-12-23 2010-07-01 Delphi Technologies, Inc. Fuel injection system
WO2016042897A1 (ja) * 2014-09-17 2016-03-24 日立オートモティブシステムズ株式会社 燃料レール

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007018471A1 (de) * 2007-04-19 2008-10-23 Robert Bosch Gmbh Verschneidungsbereich zwischen einer Hochdruckkammer und einem Hochdruckkanal
JP2010024961A (ja) * 2008-07-18 2010-02-04 Bosch Corp ノズルボディの製造方法及び内面研磨用治具並びにノズルボディ
EP2299102A1 (en) * 2009-09-07 2011-03-23 OMT Officine Meccaniche Torino S.p.A. High-pressure fuel accumulator for common-rail injection systems
DE102010064021A1 (de) 2010-12-23 2012-06-28 Robert Bosch Gmbh Rohrförmiger Druckspeicher, insbesondere für gemischverdichtende, fremdgezündete Brennkraftmaschinen
FR2989122B1 (fr) * 2012-04-10 2016-02-05 Coutier Moulage Gen Ind Rampe d'injection de carburant pour moteur a combustion interne
GB201411598D0 (en) 2014-06-30 2014-08-13 Delphi International Operations Luxembourg S.�.R.L. Pressure limiting valve
CN104863769A (zh) * 2015-05-28 2015-08-26 上海臼井发动机零部件有限公司 一种缸内直喷汽油机高压燃油分配管的制造方法
DE102015009153A1 (de) * 2015-07-14 2017-01-19 Liebherr-Aerospace Lindenberg Gmbh Herstellungsverfahren eines Leitungsbauteils
EP3587788B1 (en) * 2018-06-25 2021-05-19 Delphi Technologies IP Limited Method for manufacturing a common rail
EP3636912A1 (en) * 2018-10-08 2020-04-15 Continental Automotive GmbH Fuel rail for a fuel injection system for an internal combustion engine and method for manufacturing a fuel rail
CN111590004B (zh) * 2020-05-26 2022-01-11 江苏龙城精锻集团有限公司 一种制造整体式不锈钢油轨锻件的制造工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5577470A (en) 1978-11-25 1980-06-11 Atsuji Tekko Kk Pipe internal abrasive and cleaning device
JPS6214981A (ja) 1985-07-11 1987-01-23 株式会社荏原製作所 配管清掃方法
JPH10213045A (ja) * 1996-11-30 1998-08-11 Usui Internatl Ind Co Ltd コモンレールにおける分岐接続体の接続構造
JP2001200773A (ja) 1999-11-08 2001-07-27 Otics Corp コモンレール及びその強化処理方法
JP2003056428A (ja) * 2001-08-10 2003-02-26 Otics Corp コモンレールとインジェクションパイプアッシーとの接続構造及びその形成方法
US20040168494A1 (en) 2001-09-06 2004-09-02 Christian Taudt Method for producing a high pressure fuel reservoir

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5616029A (en) 1979-07-20 1981-02-16 Matsushita Electric Ind Co Ltd Combusting apparatus of petroleum
JPH06214981A (ja) 1993-01-13 1994-08-05 Dainippon Printing Co Ltd 時刻表データ入力方法及び時刻表データ入力装置
JP2000356428A (ja) 1999-06-11 2000-12-26 Tohoku Electric Power Co Inc 蓄熱式空気調和機
JP2001295723A (ja) 2000-04-13 2001-10-26 Denso Corp 蓄圧式燃料噴射装置
US6503126B1 (en) * 2000-09-12 2003-01-07 Extrude Hone Corporation Method and apparatus for abrading the region of intersection between a branch outlet and a passageway in a body
US6739956B2 (en) * 2001-10-30 2004-05-25 Valiant Corporation Apparatus for cleaning engine block passages
JP3681714B2 (ja) * 2002-06-18 2005-08-10 株式会社不二精機製造所 部材内部の長孔交差部のブラスト加工方法
US20050127205A1 (en) * 2002-07-04 2005-06-16 Siemens Aktiengesellschaft Method and device for the hydro-erosive rounding of an edge of a component
JP2004092551A (ja) * 2002-09-02 2004-03-25 Usui Kokusai Sangyo Kaisha Ltd ディーゼルエンジン用コモンレール
DE10260302A1 (de) * 2002-12-20 2004-07-15 Siemens Ag Verfahren zum Bearbeiten einer Kante eines hochdruckfesten Bauteils , insbesondere zum hydro-erosiven Verrunden einer Kante sowie und Vorrichtung hierzu
JP5616029B2 (ja) 2009-03-17 2014-10-29 株式会社フジキン 調整弁装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5577470A (en) 1978-11-25 1980-06-11 Atsuji Tekko Kk Pipe internal abrasive and cleaning device
JPS5616029B2 (ja) * 1978-11-25 1981-04-14
JPS6214981A (ja) 1985-07-11 1987-01-23 株式会社荏原製作所 配管清掃方法
JPH10213045A (ja) * 1996-11-30 1998-08-11 Usui Internatl Ind Co Ltd コモンレールにおける分岐接続体の接続構造
JP2001200773A (ja) 1999-11-08 2001-07-27 Otics Corp コモンレール及びその強化処理方法
JP2003056428A (ja) * 2001-08-10 2003-02-26 Otics Corp コモンレールとインジェクションパイプアッシーとの接続構造及びその形成方法
US20040168494A1 (en) 2001-09-06 2004-09-02 Christian Taudt Method for producing a high pressure fuel reservoir
JP2005500916A (ja) * 2001-09-06 2005-01-13 シーメンス アクチエンゲゼルシヤフト 燃料高圧アキュムレータを製造するための方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010072651A2 (en) * 2008-12-23 2010-07-01 Delphi Technologies, Inc. Fuel injection system
EP2204574A1 (en) * 2008-12-23 2010-07-07 Delphi Technologies Holding S.à.r.l. Fuel injection system
WO2010072651A3 (en) * 2008-12-23 2010-10-21 Delphi Technologies Holding S.A.R.L. Fuel injection system
CN102265022A (zh) * 2008-12-23 2011-11-30 德尔福技术控股有限公司 燃料喷射系统
US8720418B2 (en) 2008-12-23 2014-05-13 Delphi International Operations Luxembourg, S.A.R.L. Fuel injection system
WO2016042897A1 (ja) * 2014-09-17 2016-03-24 日立オートモティブシステムズ株式会社 燃料レール
JPWO2016042897A1 (ja) * 2014-09-17 2017-04-27 日立オートモティブシステムズ株式会社 燃料レール

Also Published As

Publication number Publication date
US20100108036A1 (en) 2010-05-06
KR101076215B1 (ko) 2011-10-26
DE602007009856D1 (de) 2010-11-25
CN101506512A (zh) 2009-08-12
JP4484227B2 (ja) 2010-06-16
JP2008088887A (ja) 2008-04-17
EP2072802B1 (en) 2010-10-13
CN101506512B (zh) 2013-01-02
EP2072802A1 (en) 2009-06-24
EP2072802A4 (en) 2009-09-09
US7905216B2 (en) 2011-03-15
KR20090036601A (ko) 2009-04-14

Similar Documents

Publication Publication Date Title
WO2008041374A1 (fr) Rampe commune et procédé de fabrication d'une rampe commune
JP2008088887A5 (ja)
RU2470763C2 (ru) Устройство и способ образования направленных вбок струй текучих сред
CN1299879C (zh) 用于除去外物的装置和方法
TWI616281B (zh) 高壓流體噴射系統之流體分配元件
US7300336B1 (en) Media control valve
CN101837567A (zh) 水射流装置
CN107636314A (zh) 压缩机、废气涡轮增压器和内燃机
JP2010046770A (ja) 複層噴流式ノズル装置
WO2008044343A1 (fr) Rail commun
US6939205B2 (en) Device for processing component part contours
KR200410941Y1 (ko) 쇼트 블라스트기용 쇼트볼 공급밸브
CN109869218A (zh) 紧凑型废气净化和再循环装置
US20070050977A1 (en) Method for rounding the edges of parts
CN100366387C (zh) 去除布置在工件内的材料的装置和方法
JP2010120138A (ja) 粒子噴射ノズル
JP2010064194A (ja) 穴内面照射用噴射ノズル
CN103206273A (zh) 用于燃气涡轮机的扩压器
JP2008223635A (ja) 燃料噴射弁の製造方法
JP4575011B2 (ja) 線材表面研削装置
US20190143484A1 (en) Method For Treating A Surface Of A Fibre Composite Component
JP2005003034A (ja) 逆止弁
JP2005007552A (ja) ブラスト用ノズル
JP6850637B2 (ja) 燃料噴射装置の加工方法
KR20180052668A (ko) 연료 펌프 하우징

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780031469.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07714826

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007714826

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020097004148

Country of ref document: KR

Ref document number: KR

WWE Wipo information: entry into national phase

Ref document number: 12444067

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE