WO2008038519A1 - Élément de conversion thermoélectrique, module de conversion thermoélectrique et procédé de production d'élément de conversion thermoélectrique - Google Patents

Élément de conversion thermoélectrique, module de conversion thermoélectrique et procédé de production d'élément de conversion thermoélectrique Download PDF

Info

Publication number
WO2008038519A1
WO2008038519A1 PCT/JP2007/067728 JP2007067728W WO2008038519A1 WO 2008038519 A1 WO2008038519 A1 WO 2008038519A1 JP 2007067728 W JP2007067728 W JP 2007067728W WO 2008038519 A1 WO2008038519 A1 WO 2008038519A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoelectric conversion
type thermoelectric
conversion material
composition formula
elements
Prior art date
Application number
PCT/JP2007/067728
Other languages
English (en)
French (fr)
Inventor
Sachiko Fujii
Takanori Nakamura
Original Assignee
Murata Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co., Ltd. filed Critical Murata Manufacturing Co., Ltd.
Publication of WO2008038519A1 publication Critical patent/WO2008038519A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • C01G3/006Compounds containing, besides copper, two or more other elements, with the exception of oxygen or hydrogen
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/81Structural details of the junction
    • H10N10/817Structural details of the junction the junction being non-separable, e.g. being cemented, sintered or soldered
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/855Thermoelectric active materials comprising inorganic compositions comprising compounds containing boron, carbon, oxygen or nitrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/32Three-dimensional structures spinel-type (AB2O4)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/34Three-dimensional structures perovskite-type (ABO3)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties

Definitions

  • thermoelectric conversion element thermoelectric conversion module, and method of manufacturing thermoelectric conversion element
  • the present invention relates to a thermoelectric conversion element, a thermoelectric conversion module, and a method for manufacturing a thermoelectric conversion element, for example, a thermoelectric conversion element that can reduce contact resistance, a thermoelectric conversion module, and a method for manufacturing a thermoelectric conversion element.
  • thermoelectric conversion elements that can directly convert heat into electricity are expected to be put to practical use from the viewpoint of effective use of waste heat.
  • a conventional thermoelectric conversion element 100 includes two types of thermoelectric materials 101 and 102, a low temperature side electrode 106, and a high temperature side electrode 108.
  • the two types of thermoelectric materials 101 and 102 are heat and electricity energy conversion materials.
  • the thermoelectric materials 101 and 102 are respectively connected to the low temperature side electrode 106 at the low temperature side joint portion 103b which is the end surface on the low temperature side.
  • the thermoelectric materials 101 and 102 are connected via a high temperature side electrode 108 to a high temperature side joint 103a which is an end surface on the high temperature side.
  • thermoelectric materials 101 and 102 include oxide-based thermoelectric conversion films disclosed in JP-A-2005-223307 (Patent Document 1).
  • thermoelectric materials 101 and 102 include the thermoelectric conversion materials disclosed in JP-A No. 64-5911 (Patent Document 2).
  • the thermoelectric conversion material disclosed in Patent Document 2 is characterized by comprising a rare earth element / transition element oxide having a perovskite structure.
  • thermoelectric conversion element 100 for example, JP-A-8-306967 (patent text)
  • the thermoelectric power generation element of 3 can be mentioned.
  • the thermoelectric power generation element disclosed in Patent Document 3 is characterized in that a part of two kinds of porous thermoelectric materials are directly joined to each other via a joint surface. It is disclosed that the two types of porous materials are composed of, for example, alumel and chromel, respectively. Since such a material has high thermal conductivity, it was necessary to intentionally reduce the thermal conductivity as a porous material, and to make a temperature difference in the thermoelectric conversion element.
  • Patent Document 1 Japanese Patent Laid-Open No. 2005-223307
  • Patent Document 2 JP-A-64-5911
  • Patent Document 3 JP-A-8-306967
  • thermoelectric materials disclosed in Patent Documents 1 and 2 are made of a semiconductor material, the characteristics of the material can be used effectively, but the thermoelectric conversion of the structure shown in Fig. 9 using these thermoelectric materials.
  • the element has a problem that the contact resistance between the electrode and the thermoelectric material is high.
  • thermoelectric generator disclosed in Patent Document 3
  • two kinds of porous materials are used for the thermoelectric material. Therefore, there is a problem that the contact resistance of the joint part of the two types of thermoelectric materials is still high.
  • thermoelectric conversion that can reduce contact resistance associated with joining of a p-type thermoelectric conversion material and an n-type thermoelectric conversion material. It is providing the element, the thermoelectric conversion module, and the manufacturing method of a thermoelectric conversion element.
  • thermoelectric conversion element of the present invention has a composition formula A BO (A and B are one or more elements)
  • thermoelectric conversion material having a layered perovskite structure represented by the formula D EO (D
  • thermoelectric conversion materials 2 4 and E are n-type thermoelectric conversion materials having a layered perovskite structure represented by one or more elements). A part of the p-type thermoelectric conversion material and a part of the n-type thermoelectric conversion material are directly joined.
  • thermoelectric conversion element of the present invention the p-type thermoelectric conversion material and the n-type thermoelectric conversion material made of the same crystal structure material are directly joined! /.
  • Type thermoelectric conversion Contact resistance with the material can be reduced.
  • thermoelectric conversion element D in A and formula D 2 EO in formula A 2 B_ ⁇ 4 comprises at least one rare earth element, B in formula A BO Oh
  • the contact resistance between the p-type thermoelectric conversion material and the n-type thermoelectric conversion material can be further reduced.
  • thermoelectric conversion element in the composition formula A BO preferably includes lanthanum.
  • D is praseodymium, neodymium, samarium, and gadolini.
  • the contact resistance with the thermoelectric conversion material can be further reduced.
  • thermoelectric conversion module of the present invention includes a plurality of the thermoelectric conversion elements. Because it has a thermoelectric conversion element that can reduce the contact resistance that accompanies the joining of the p-type thermoelectric conversion material and the n-type thermoelectric conversion material !, the thermoelectric conversion module is also connected between the p-type thermoelectric conversion material and the n-type thermoelectric conversion material. Contact resistance accompanying joining can be reduced.
  • thermoelectric conversion element of the present invention includes a composition formula A BO (A and
  • a step of preparing a raw material of a p-type thermoelectric conversion material having a layered perovskite structure represented by B is one or more elements, and a composition formula D EO (D and E are one or more elements)
  • P-type heat by co-sintering the raw material of the n-type thermoelectric conversion material with the step of preparing the raw material of the n-type thermoelectric conversion material having the layered perovskite structure shown in FIG. A step of directly joining the electroconversion material and the n-type thermoelectric conversion material.
  • thermoelectric conversion element in one aspect of the present invention, a p-type thermoelectric conversion material and an n-type thermoelectric conversion material having the same crystal structure material force can be directly bonded. Therefore, a thermoelectric conversion element that can reduce the contact resistance between the p-type thermoelectric conversion material and the n-type thermoelectric conversion material can be manufactured.
  • N-type thermoelectric conversion material having a layered perovskite structure represented by one or more elements) Preparing a raw material for the material and forming it into a sheet, laminating a sheet of p-type thermoelectric conversion material and a sheet of n-type thermoelectric conversion material to obtain a laminate, and co-sintering the laminate And a step of directly joining the p-type thermoelectric conversion material and the n-type thermoelectric conversion material by cutting the joint.
  • thermoelectric conversion element in another aspect of the present invention, a p-type thermoelectric conversion material and an n-type thermoelectric conversion material having the same crystal structure material force can be directly bonded. Therefore, a thermoelectric conversion element that can reduce the contact resistance between the p-type thermoelectric conversion material and the n-type thermoelectric conversion material can be manufactured.
  • the thickness can be easily designed, for example, by increasing the thickness of the sheet of high-resistance material.
  • thermoelectric conversion element thermoelectric conversion module, and thermoelectric conversion element manufacturing method of the present invention
  • the p-type thermoelectric conversion material and the n-type thermoelectric conversion material made of the same crystal structure material are directly joined. Therefore, the contact resistance associated with the joining of the P-type thermoelectric conversion material and the n-type thermoelectric conversion material can be reduced.
  • FIG. 1 is a schematic cross-sectional view showing a thermoelectric conversion element according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing a thermoelectric conversion module according to Embodiment 2 of the present invention.
  • FIG. 3 is a diagram showing an XRD chart in an example.
  • FIG. 4 is a schematic perspective view showing a thermoelectric conversion element of Example 13;
  • FIG. 5 is a schematic cross-sectional view showing a method for measuring thermoelectric conversion elements in Examples
  • FIG. 6 is a diagram showing the relationship between the electromotive force of the thermoelectric conversion element and the temperature difference in Example 13
  • FIG. 7 is a graph showing the relationship between the current of the thermoelectric conversion element and the temperature difference in Example 13;
  • FIG. 8 is a graph showing the relationship between the output of the thermoelectric conversion element and the temperature difference in Examples.
  • FIG. 9 is a schematic cross-sectional view showing a conventional thermoelectric conversion element.
  • thermoelectric conversion element 11 p-type thermoelectric conversion material, 12 n-type thermoelectric conversion material, 13a high-temperature side junction, 13b low-temperature side junction, 16 electrodes, 17 separation unit, 30 thermoelectric conversion module, 31 heating member.
  • FIG. 1 is a schematic cross-sectional view showing a thermoelectric conversion element according to Embodiment 1 of the present invention.
  • a thermoelectric conversion element according to Embodiment 1 of the present invention will be described with reference to FIG.
  • the thermoelectric conversion element 10 in Embodiment 1 includes a p-type thermoelectric conversion material 11 and an n-type thermoelectric conversion material 12.
  • the p-type thermoelectric material 11 has the composition formula A BO (A and B
  • the n-type thermoelectric conversion material 12 is represented by the composition formula D EO (D and E are one or more elements)
  • thermoelectric conversion material 11 has a layered perovskite structure.
  • a part of the p-type thermoelectric conversion material 11 and a part of the n-type thermoelectric conversion material 12 are directly joined.
  • direct bonding means that the p-type thermoelectric conversion material 11 and the n-type thermoelectric conversion material 12 are directly bonded without interposing electrodes.
  • thermoelectric conversion element 10 includes one p-type thermoelectric conversion material 11, one n-type thermoelectric conversion material 12, and two electrodes 16.
  • the p-type thermoelectric conversion material 11 and the n-type thermoelectric conversion material 12 are directly joined to each other at the high-temperature side joint 13a.
  • the high temperature side joint 13a is the high temperature side
  • the joint that is connected to the electrode 16 is the low temperature side.
  • thermoelectric conversion element 10 includes a portion other than a portion where the p-type thermoelectric conversion material 11 and the n-type thermoelectric conversion material 12 are joined (in the first embodiment, a portion other than the high-temperature side joining portion 13a). Separate from each other! /, Opposite each other through the separating part 17! /, Ru.
  • thermoelectric conversion material 11 has the composition formula A BO (A and B are one or more elements).
  • a in composition formula A BO is at least
  • a BO does not contain at least one transition metal.
  • That power s is preferred. Further, it is particularly preferable that copper is contained as one kind of transition metal.
  • the n-type thermoelectric conversion material 12 has the composition formula D EO (D and E are one or more elements).
  • D in the composition formula D EO is at least
  • D EO is at least 1
  • It preferably contains a species of transition metal. Further, it is particularly preferable that copper is contained as one kind of transition metal.
  • composition formula A BO and the composition formula D EO, A, B, D and E are one or
  • Formula D EO means that the total number ratio of A and D in EO is 2. Also,
  • the total number ratio of B and E in Thread and Formula A BO and Thread and Formula D EO is 1.
  • O means oxygen
  • the p-type thermoelectric conversion material 11 and the n-type thermoelectric conversion material 12 have a layered perovskite structure and have the same crystal structure.
  • the electrode 16 is a terminal electrode. Therefore, the P-type thermoelectric conversion material 11 and the n-type thermoelectric conversion material 12 disposed at the end portion of the thermoelectric conversion element 10 are connected to the low-temperature side end portions of the thermoelectric conversion material 11.
  • the electrode 16 is connected to the end portion on the low temperature side, but is not particularly limited thereto, and may be connected to the high temperature side, or connected to the low temperature side and the high temperature side. It may be.
  • thermoelectric conversion element 10 in the embodiment will be described.
  • a layered perovskite represented by the composition formula A BO (A and B are one or more elements)
  • Is an element of n-type thermoelectric conversion material having a layered perovskite structure The process of preparing the charge is carried out.
  • at least one selected from the group consisting of La, Pr, Nd, Sm, Gd, and Cu is preferred to contain at least one rare earth element and at least one transition metal. It is more preferable to contain seed elements.
  • a in the composition formula A BO contains at least one rare earth element, and B is
  • thermoelectric material 11 containing at least one transition metal and composition formula D EO
  • a starting material is prepared to produce an n-type thermoelectric conversion material 12 containing at least one rare earth element and D containing at least one transition metal.
  • a starting material containing a rare earth element such as La, Pr, Nd, Sm, and Gd and a transition element such as Cu is prepared.
  • a starting material containing a rare earth element such as La, Pr, Nd, Sm, and Gd and a transition element such as Cu is prepared.
  • a starting material containing a rare earth element such as La, Pr, Nd, Sm, and Gd and a transition element such as Cu is prepared.
  • Pr, Cu, Ni and Fe for example, oxides are used, and for Ca, Sr, Ba and Mn, for example, carbonates are preferably used.
  • These starting materials are appropriately selected depending on conditions necessary for thermoelectric characteristics, power generation characteristics, and co-sintering. Further, for co-sintering described later, other elements may be added as necessary.
  • the metal oxide can be formed by firing, and for example, other inorganic compounds such as a hydroxide or an organometallic compound such as an alkoxide may be used.
  • the powder used as a starting material is not particularly limited in particle size, but preferably has a particle size that can be mixed uniformly! /.
  • the above-mentioned starting materials are weighed so as to give a desired composition ratio, and then pulverized and mixed.
  • a wet ball mill using a dispersion medium as water is used for this pulverization and mixing treatment.
  • the time for performing the ball mill is not particularly limited, and it is preferable to set the time for uniform mixing. Thereby, the mixed powder of a starting material is obtained.
  • an operation for evaporating the water is then performed.
  • the mixed powder of the starting material is calcined, for example, in the atmosphere.
  • the temperature is set to 800 ° C to 1100 ° C. By setting this temperature range, the reaction is promoted. As a result, the desired p-type thermoelectric conversion material powder and n-type thermoelectric conversion material powder can be obtained.
  • an unreacted portion may remain in the powder.
  • the p-type thermoelectric conversion material powder and the n-type thermoelectric conversion material powder are pulverized by a Bonore mill or the like as described above, and pure water, a binder, or the like is added to form a slurry.
  • the obtained slurry is formed into a sheet by, for example, a doctor blade method. As a result, a sheet-like p-type thermoelectric conversion material and n-type thermoelectric conversion material are obtained.
  • the particle size of the powder obtained when pulverizing after calcination is not particularly limited! /, But from the viewpoint of reducing the thermal conductivity, it is more preferable!
  • thermoelectric conversion element 10 according to Embodiment 1 of the present invention shown in FIG. 1 can be obtained.
  • the obtained sheet-like p-type thermoelectric conversion material 11 and n-type thermoelectric conversion material 12 are adjusted to have a predetermined thickness, and P-type thermoelectric conversion material 11 and n-type thermoelectric conversion material are adjusted.
  • the conversion material 12 is laminated to form a laminate.
  • the obtained laminate is subjected to pressure bonding by, for example, an isotropic isostatic pressing method to produce a molded body.
  • the obtained molded body is degreased at, for example, 300 ° C. to 600 ° C., and then fired, for example, in the atmosphere. At this time, it is preferable to perform firing in a temperature range in which the relative density is 90% or more. By setting this temperature, the sintering easily proceeds.
  • the method of baking is not specifically limited, It can carry out by a generally well-known method. As a result, the p-type thermoelectric conversion material 11 and the n-type thermoelectric conversion material 12 can be directly joined.
  • thermoelectric conversion element 10 shown in FIG. 1 can be formed by forming it into a predetermined shape.
  • the force S for cutting the portions other than the high-temperature side joint portion 13a after co-sintering the laminated body is not particularly limited.
  • the p-type thermoelectric conversion material 11 and the n-type thermoelectric conversion material 12 may be directly joined by co-sintering after cutting the laminated body (forming the separation part 17).
  • thermoelectric conversion element 10 shown in FIG. 1 manufactured as described above is not particularly limited in a method for providing a temperature difference between the high temperature part and the low temperature part, but waste heat may be used or a heating member may be used. (Shown ) Or a cooling member (not shown).
  • thermoelectric conversion element 10 in Embodiment 1 of the present invention the layered perovskite represented by the composition formula A BO (A and B are one or more elements)
  • thermoelectric conversion material 11 having a structure and a composition formula D EO (where D and E are one or more
  • thermoelectric conversion material 12 having a layered perovskite structure represented by the above-mentioned element
  • a contact resistance is generated for the following reason.
  • the thermoelectric materials 101 and 102 are made of a semiconductor, the semiconductor's phenolic level differs from the metal Fermi level (n-type semiconductor Fermi level) metal Fermi level. P-type semiconductor Fermi level of metal and Fermi level of metal).
  • the Fermi levels of the metal and semiconductor match (the height of the n-type semiconductor barrier is The barrier height of the p-type semiconductor depends on the electron affinity of the p-type semiconductor, the energy gap of the p-type semiconductor, and the work function of the metal. To do.) If the Fermi level of the metal and the semiconductor are almost the same, no barrier is created, but the position of the Fermi level depends on the polarity of the semiconductor. The Fermi level of n-type semiconductors is close to the conduction band! /, and the Fermi level of p-type semiconductors is close to the valence band.
  • thermoelectric conversion elements that use semiconductors as thermoelectric materials always use the p-type and n-type semiconductor polarities, so contact resistance between the electrode and the thermoelectric material is generated with either V or any polarity.
  • the thermoelectric conversion element 10 according to Embodiment 1 of the present invention the p-type thermoelectric conversion material 11 and the n-type thermoelectric conversion material 12 made of the same crystal structure material are directly joined. It is not necessary to provide an electrode between the conversion material 11 and the n-type thermoelectric conversion material 12. Therefore, it is possible to eliminate the contact resistance generated at the junction between the electrode and the p-type thermoelectric conversion material and the n-type thermoelectric conversion material.
  • thermoelectric conversion material 11 and the n-type thermoelectric conversion material 12 are made of the same crystal structure, the contact resistance of the high-temperature side junction 13a can be further reduced.
  • co-firing must be performed without special firing such as hot pressing, high temperature isostatic pressing, or spark plasma sintering. Since it is hard to tie, it is not preferable.
  • thermoelectric conversion element 10 since it is not necessary to provide an electrode between the p-type thermoelectric conversion material 11 and the n-type thermoelectric conversion material 12, oxidation due to metal occurs at the high-temperature side joining portion 13a and does not deteriorate. Therefore, the high temperature side of the thermoelectric conversion element 10 can be made higher. Further, since the gap between the p-type thermoelectric conversion material 11 and the n-type thermoelectric conversion material 12 can be narrowed, the density can be increased. In addition, downsizing can be achieved.
  • thermoelectric conversion element 10 A in the composition formula A BO and the composition formula are preferable.
  • D in D EO contains at least one rare earth element and B in composition formula A BO
  • the contact resistance between the p-type thermoelectric conversion material 11 and the n-type thermoelectric conversion material 12 can be further reduced.
  • thermoelectric conversion element 10 in the composition formula A BO preferably represents lanthanum.
  • D represents praseodymium, neodymium, samarium, and gadolin
  • thermoelectric conversion material 1 E in 2 4 and the composition formula D EO contains copper.
  • p-type thermoelectric conversion material 1 p-type thermoelectric conversion material 1
  • the contact resistance between 1 and the n-type thermoelectric conversion material 12 can be further reduced.
  • thermoelectric conversion element 10 includes a layered perovskite structure represented by a composition formula A BO (A and B are one or more elements).
  • thermoelectric conversion element 10 Is a step of preparing a raw material of n-type thermoelectric conversion material 12 having a layered perovskite structure represented by one or a plurality of elements), a raw material of p-type thermoelectric conversion material 11 and a raw material of n-type thermoelectric conversion material 12 A step of co-sintering the raw material and directly joining the p-type thermoelectric conversion material 11 and the n-type thermoelectric conversion material 12.
  • the force S for directly bonding the P-type thermoelectric conversion material 11 and the n-type thermoelectric conversion material 12 that have the same crystal structure material force can be achieved. Therefore, the thermoelectric conversion element 10 that can reduce the contact resistance between the p-type thermoelectric conversion material 11 and the n-type thermoelectric conversion material 12 can be manufactured.
  • thermoelectric conversion element 10 can be easily manufactured.
  • the electrode is produced when the thermoelectric conversion element 10 is manufactured. No process is required.
  • thermoelectric conversion element 10 since the raw material of the p-type thermoelectric conversion material 11 and the raw material of the n-type thermoelectric conversion material 12 are bonded together, the p-type thermoelectric conversion material 11 and the n-type thermoelectric conversion material 12 are bonded together. A process only for joining is not required. Therefore, since the number of steps for manufacturing the thermoelectric conversion element 10 can be reduced, the cost can be reduced and the manufacturing can be simplified.
  • thermoelectric conversion material 11 and the n-type thermoelectric conversion material 12 include a carrier element
  • the carrier is compared with the thermoelectric conversion element including an electrode at the high-temperature side junction 13a. Since elements are difficult to diffuse, loss of carrier elements can be reduced.
  • thermoelectric conversion element according to another aspect of Embodiment 1 of the present invention has a layered perovskite structure represented by a composition formula A BO (A and B are one or more elements).
  • D EO layered perovskite structure represented by the composition formula D EO (where D and E are one or more elements).
  • thermoelectric conversion element 10 Preparing a raw material for the n-type thermoelectric conversion material 12 and forming it into a sheet, and a step for laminating the sheet of the p-type thermoelectric conversion material 11 and the sheet of the n-type thermoelectric conversion material 12 to obtain a laminate. Co-sintering the laminated body, cutting the joint (forming the separation part 17), and directly joining the p-type thermoelectric conversion material 11 and the n-type thermoelectric conversion material 12 Yes. This facilitates the thickness design, for example, by increasing the thickness of the high-resistance material sheet among the p-type thermoelectric conversion material 11 sheet and the n-type thermoelectric conversion material 12 sheet. Therefore, the thermoelectric conversion element 10 can be manufactured more easily.
  • FIG. 2 is a schematic cross-sectional view showing a thermoelectric conversion module according to Embodiment 2 of the present invention.
  • a thermoelectric conversion module according to Embodiment 2 of the present invention will be described with reference to FIG.
  • the thermoelectric conversion module 30 in the second embodiment includes a plurality of thermoelectric conversion elements 10 in the first embodiment.
  • the thermoelectric conversion module 30 includes two thermoelectric conversion elements 10 having two p-type thermoelectric conversion materials 11 and one n-type thermoelectric conversion material 12, and two electrodes 16. ing. heat In each thermoelectric conversion element 10 constituting the electric conversion module 30, the p-type thermoelectric conversion material 11 and the n-type thermoelectric conversion material 12 are directly bonded to each other at the high-temperature side bonding portion 13a. The p-type thermoelectric conversion material 11 of one thermoelectric conversion element 10 and the n-type thermoelectric conversion material 12 of the other thermoelectric conversion element 10 are directly bonded to each other at the low-temperature side joint 13b. . In the second embodiment, in FIG. 2, the high-temperature side joint 13a is the high temperature side, and the low-temperature side joint 13b is the low temperature side.
  • thermoelectric conversion element 10 constituting the thermoelectric conversion module 30 has a part other than the part where the p-type thermoelectric conversion material 11 and the n-type thermoelectric conversion material 12 are joined!
  • the high-temperature side joint portion 13a and the low-temperature side joint portion 13b are opposed to each other via a separation portion 17 separated from each other.
  • thermoelectric conversion module 30 in the second embodiment is manufactured by manufacturing a plurality of thermoelectric conversion elements 10 in the first embodiment. Specifically, a plurality of elements can be obtained by directly joining a plurality (two in Embodiment 2) of p-type thermoelectric conversion material 11 and n-type thermoelectric conversion material 12.
  • thermoelectric conversion module 30 shown in FIG. 2 can be formed by forming it into a predetermined shape.
  • thermoelectric conversion module 30 in the second embodiment is not particularly limited as long as it includes two or more force thermoelectric conversion elements 10 having two thermoelectric conversion elements 10.
  • the thermoelectric conversion module 30 according to Embodiment 2 of the present invention includes the plurality of thermoelectric conversion elements 10 according to Embodiment 1.
  • the thermoelectric conversion module 30 can reduce the contact resistance associated with the joining of the p-type thermoelectric conversion material 11 and the n-type thermoelectric conversion material 12.
  • the conversion efficiency can be improved.
  • the gap can be narrowed, and thus the size can be reduced.
  • thermoelectric conversion elements in! To 3 were produced according to the method for producing a thermoelectric conversion element in Embodiment 1. Specifically, LaO, SrCO, and CuO were first prepared as raw material powders for p-type thermoelectric conversion materials. Also used as raw material powder for n-type thermoelectric conversion material
  • PrO, CeO and CuO were prepared. These raw material powders are listed in Table 1 below.
  • the composition was weighed to obtain a composition.
  • the weighed raw material powder was pulverized and mixed in a ball mill for 16 hours using pure water as a solvent. Pure water and a binder were added to the pulverized raw material powder and mixed, and the resulting slurry was formed into a sheet by the doctor blade method. The obtained sheet was baked and adjusted to have a thickness of 1.5 mm to prepare a p-type sheet and an n-type sheet. Then, an n-type sheet was laminated on the p-type sheet to obtain a laminate.
  • the laminate was subjected to pressure bonding at 200 MPa by an isotropic isostatic pressing method to obtain a molded body.
  • the obtained molded body was degreased at 480 ° C and then fired at 1025 ° C in an air atmosphere.
  • XRD X-ray diffraction
  • FIG. 3 shows an XRD chart in the example. In Fig. 3, “a. U.” Is immediately 1 il ⁇ arbitrary unit).
  • thermoelectric conversion elements in the examples shown in FIG. FIG. 4 is a schematic perspective view showing the thermoelectric conversion elements of Examples;!
  • thermoelectric conversion elements of Comparative Examples 1 to 8 were basically manufactured in the same manner as the thermoelectric conversion elements of Examples;! To 3, but the electrodes shown in Table 2 for p-type thermoelectric conversion materials and n-type thermoelectric conversion materials. Joined with It differs from the thermoelectric conversion element of Examples 1-3 only in the point.
  • a binder was added to the obtained mixed powder, and pulverization and mixing were performed in a ball mill for 16 hours using pure water as a solvent.
  • the obtained slurry was dried, and thereafter molded at 1000 kg / cm 2 using a press to obtain a molded body.
  • the obtained molded body was degreased at 400 ° C, and then fired at 1025 ° C in an air atmosphere.
  • thermoelectric conversion material in Comparative Example;!-8 was obtained.
  • thermoelectric conversion elements in Examples 1 to 3 the joint obtained by directly joining the p-type thermoelectric conversion material 11 and the n-type thermoelectric conversion material 12 is referred to as a high-temperature side joint 13a, and the high-temperature side joint 13a
  • the terminal electrode 16 made of Ag was connected with the end surface opposite to the low temperature side.
  • the joint part joined with the Cu electrode or the Ag electrode is the high temperature side joint part, and the end surface opposite to the high temperature side joint part is the low temperature side.
  • a terminal electrode 16 was connected.
  • FIG. 5 is a schematic cross-sectional view showing a method for measuring thermoelectric conversion elements in Examples 1 to 3.
  • the bonding portion on the high temperature side was heated by the heating member.
  • the joint on the low temperature side was fixed at 20 ° C using a water-cooled plate. 50 Calorie fever so that the hot joint is hotter than the cold joint.
  • C 100. C, 150. C, 200. C, 250. C, 300. C, 350. C, and heated to 400 ° C.
  • a resistance heating type cartridge heater was used as the heating member.
  • the electromotive force and current generated in the thermoelectric conversion elements in Examples;! To 3 and Comparative Examples;! To 8 were measured, and the output was calculated. The results are shown in Figs. However, as shown in Fig. 6 to Fig.
  • FIG. 6 is a graph showing the relationship between the electromotive force of the thermoelectric conversion element and the temperature difference in Examples;!
  • FIG. 7 is a graph showing the relationship between the current of the thermoelectric conversion element and the temperature difference in Examples;!
  • FIG. 8 is a diagram showing the relationship between the output of the thermoelectric conversion element and the temperature difference in Examples;!
  • thermoelectric conversion elements in Examples 1 to 3 and Comparative Examples 1 to 8 the element resistance R13a (Q) of the high-temperature side joint part 13a was measured as follows.
  • R16 is the resistance of the electrode 16
  • R11 is the resistance of the p-type thermoelectric conversion material 11
  • R13a is the resistance of the high-temperature side junction 13a
  • R12 is the resistance of the n-type thermoelectric conversion material 12.
  • R11 and R12 were measured by the four probe method, and samples (R16 + R11 + R16) and (R16 + R12 + R16) were prepared and their resistances were measured.
  • the resistance of (R11 + R16) and (R12 + R16) was determined.
  • thermoelectric conversion elements of Examples As shown in Table 2, it was confirmed that the thermoelectric conversion elements of Examples;! To 3 can reduce the element resistance as compared with the thermoelectric conversion elements of Comparative Examples;
  • thermoelectric elements of Examples 1 to 3 had higher electromotive force, current, and output as the temperature difference was higher. From these results, it was confirmed that the thermoelectric conversion elements of Examples;! To 3 were provided with electrodes, so that no problem occurred even when the high temperature side of the thermoelectric conversion element was heated to a high temperature. In addition, it was found that only Pr and La diffused in the joint, and that the carrier additive elements Ce and Sr did not diffuse and carrier loss was small.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

明 細 書
熱電変換素子、熱電変換モジュール、および熱電変換素子の製造方法 技術分野
[0001] 本発明は、熱電変換素子、熱電変換モジュール、および熱電変換素子の製造方 法に関し、たとえば接触抵抗を減少できる熱電変換素子、熱電変換モジュール、お よび熱電変換素子の製造方法に関する。
背景技術
[0002] 近年、二酸化炭素の削減をはじめとする環境問題が重要な課題となってきている。
特に、熱を直接電気に変換できる熱電変換素子は、廃熱の有効利用の観点からそ の実用化が期待されている。
[0003] 図 9に示すように、従来の熱電変換素子 100は、 2種の熱電材料 101 , 102と、低 温側電極 106と、高温側電極 108とを備えている。 2種の熱電材料 101 , 102は、熱 と電気とのエネルギー変換材料である。熱電材料 101 , 102は、低温側の端面であ る低温側接合部 103bにおいて低温側電極 106とそれぞれ接続されている。また、熱 電材料 101 , 102は、高温側の端面である高温側接合部 103aにお!/、て高温側電極 108を介して接続されている。熱電変換素子 100は、高温側接合部 103aと低温側 接合部 103bとに温度差を与えられると、ゼーベック効果により起電力が生じ、電力を 取り出すこと力 Sでさる。
[0004] また、上記熱電材料 101 , 102として、たとえば特開 2005— 223307号公報(特許 文献 1)の酸化物系熱電変換膜が挙げられる。特許文献 1に開示の酸化物系熱電変 換膜は、基板上に RE M CuO (RE = La, Pr, Nd, Sm, Euおよび Gdより選ば
2 - x x 4-y
れる一種の希土類元素、 M = Ce, Ba, Srおよび Caから選ばれる少なくとも一種の元 素、 0<X< 2, 0≤Y< 4)なる組成を有することを特徴としている。
[0005] また、上記熱電材料 101 , 102として、たとえば特開昭 64— 5911号公報(特許文 献 2)の熱電変換材料が挙げられる。特許文献 2に開示の熱電変換材料は、ぺロブス カイト構造の希土類元素 ·遷移元素酸化物からなることを特徴としている。
[0006] また、上記熱電変換素子 100として、たとえば特開平 8— 306967号公報(特許文 献 3)の熱電発電素子が挙げられる。特許文献 3に開示の熱電発電素子は、 2種類の 多孔質の熱電材料の一部を互いに接合面を介して直接接合してなることを特徴とし ている。 2種類の多孔質材料は、たとえばそれぞれアルメルとクロメルとからなることが 開示されている。このような材料は熱伝導率が高いので、故意に多孔として熱伝導率 を低下させて、熱電変換素子に温度差をつける必要があった。
特許文献 1 :特開 2005— 223307号公報
特許文献 2:特開昭 64— 5911号公報
特許文献 3 :特開平 8— 306967号公報
発明の開示
発明が解決しょうとする課題
[0007] しかしながら、上記特許文献 1および 2に開示の熱電材料は半導体材料からなるの で、材料の特性を有効に利用できるものの、これらの熱電材料を用いた図 9に示す構 造の熱電変換素子は、電極と熱電材料との接触抵抗が高いという問題がある。
[0008] また、上記特許文献 3に開示の熱電発電素子では、 2種の多孔質材料を熱電材料 に用いている。そのため、 2種の熱電材料の接合部分の接触抵抗がまだ高いという 問題がある。
[0009] それゆえ本発明の目的は、上記のような課題を解決するためになされたものであり 、 p型熱電変換材料と n型熱電変換材料との接合に伴う接触抵抗を低減できる熱電 変換素子、熱電変換モジュール、および熱電変換素子の製造方法を提供することで ある。
課題を解決するための手段
[0010] 本発明の熱電変換素子は、組成式 A BO (Aおよび Bは 1個または複数個の元素)
2 4
で示される層状ぺロブスカイト構造を有する p型熱電変換材料と、組成式 D EO (D
2 4 および Eは 1個または複数個の元素)で示される層状ぺロブスカイト構造を有する n型 熱電変換材料とを備えている。 p型熱電変換材料の一部と、 n型熱電変換材料の一 部とは直接接合されている。
[0011] 本発明の熱電変換素子によれば、同じ結晶構造の材料からなる p型熱電変換材料 と n型熱電変換材料とが直接接合されて!/、るので、 p型熱電変換材料と n型熱電変換 材料との接触抵抗を低減できる。
[0012] 上記熱電変換素子にお!/、て好ましくは、組成式 A2B〇4における Aおよび組成式 D2 EOにおける Dは、少なくとも 1種の希土類元素を含み、組成式 A BOにおける Bお
4 2 4 よび組成式 D EOにおける Eは、少なくとも 1種の遷移金属を含んでいる。これにより
2 4
、 p型熱電変換材料と n型熱電変換材料との接触抵抗をより低減できる。
[0013] 上記熱電変換素子において好ましくは、組成式 A BOにおける Aは、ランタンを含
2 4
み、組成式 D EOにおける Dは、プラセオジム、ネオジム、サマリウム、およびガドリニ
2 4
ゥムからなる群より選ばれる少なくとも 1種の元素を含み、組成式 A BOにおける Bお
2 4
よび組成式 D EOにおける Eは、銅を含んでいる。これにより、 p型熱電変換材料と n
2 4
型熱電変換材料との接触抵抗をより一層低減できる。
[0014] 本発明の熱電変換モジュールは、上記熱電変換素子を複数備えている。 p型熱電 変換材料と n型熱電変換材料との接合に伴う接触抵抗を低減できる熱電変換素子を 備えて!/ヽるので、熱電変換モジュールも p型熱電変換材料と n型熱電変換材料との 接合に伴う接触抵抗を低減できる。
[0015] 本発明の熱電変換素子の一の局面における製造方法は、組成式 A BO (Aおよび
2 4
Bは 1個または複数個の元素)で示される層状ぺロブスカイト構造を有する p型熱電変 換材料の原料を準備する工程と、組成式 D EO (Dおよび Eは 1個または複数個の元
2 4
素)で示される層状ぺロブスカイト構造を有する n型熱電変換材料の原料を準備する 工程と、 p型熱電変換材料の原料と n型熱電変換材料の原料とを共焼結して、 p型熱 電変換材料と n型熱電変換材料とを直接接合する工程とを備えている。
[0016] 本発明の一の局面における熱電変換素子の製造方法によれば、同じ結晶構造の 材料力 なる p型熱電変換材料と n型熱電変換材料とを直接接合することができる。 そのため、 p型熱電変換材料と n型熱電変換材料との接触抵抗を低減できる熱電変 換素子を製造できる。
[0017] 本発明の他の局面における熱電変換素子の製造方法は、組成式 A BO (Aおよび
2 4
Bは 1個または複数個の元素)で示される層状ぺロブスカイト構造を有する p型熱電変 換材料の原料を準備し、シート状に成形する工程と、組成式 D EO (Dおよび Eは 1
2 4
個または複数個の元素)で示される層状ぺロブスカイト構造を有する n型熱電変換材 料の原料を準備し、シート状に成形する工程と、 p型熱電変換材料のシートと n型熱 電変換材料のシートとを積層して積層体を得る工程と、積層体を共焼結して、接合部 に切り込みを入れて、 p型熱電変換材料と n型熱電変換材料とを直接接合する工程と を備えている。
[0018] 本発明の他の局面における熱電変換素子の製造方法によれば、同じ結晶構造の 材料力 なる p型熱電変換材料と n型熱電変換材料とを直接接合することができる。 そのため、 p型熱電変換材料と n型熱電変換材料との接触抵抗を低減できる熱電変 換素子を製造できる。また、 p型熱電変換材料のシートおよび n型熱電変換材料のシ ートのうち、抵抗の高い材料のシートの厚みを大きくするなど、厚みの設計が容易に なる。
発明の効果
[0019] 本発明の熱電変換素子、熱電変換モジュール、および熱電変換素子の製造方法 によれば、同じ結晶構造の材料からなる p型熱電変換材料と n型熱電変換材料とが 直接接合されているので、 P型熱電変換材料と n型熱電変換材料との接合に伴う接 触抵抗を低減できる。
図面の簡単な説明
[0020] [図 1]本発明の実施の形態 1における熱電変換素子を示す概略断面図である。
[図 2]本発明の実施の形態 2における熱電変換モジュールを示す概略断面図である
[図 3]実施例における XRDチャートを示す図である。
[図 4]実施例 1 3の熱電変換素子を示す概略斜視図である。
[図 5]実施例;!〜 3における熱電変換素子を測定する方法を示す概略断面図である。
[図 6]実施例 1 3における熱電変換素子の起電力と温度差との関係を示す図である
[図 7]実施例 1 3における熱電変換素子の電流と温度差との関係を示す図である。
[図 8]実施例;!〜 3における熱電変換素子の出力と温度差との関係を示す図である。
[図 9]従来の熱電変換素子を示す概略断面図である。
符号の説明 [0021] 10 熱電変換素子、 11 p型熱電変換材料、 12 n型熱電変換材料、 13a 高温 側接合部、 13b 低温側接合部、 16 電極、 17 分離部、 30 熱電変換モジュール 、 31 加熱部材。
発明を実施するための最良の形態
[0022] 以下、図面に基づいて本発明の実施の形態を説明する。なお、以下の図面におい て同一または相当する部分には、同一の参照符号を付し、その説明は繰り返さない
[0023] (実施の形態 1)
図 1は、本発明の実施の形態 1における熱電変換素子を示す概略断面図である。 図 1を参照して、本発明の実施の形態 1における熱電変換素子を説明する。図 1に示 すように、実施の形態 1における熱電変換素子 10は、 p型熱電変換材料 11と、 n型熱 電変換材料 12とを備えている。 p型熱電変換材料 11は、組成式 A BO (Aおよび B
2 4
は 1個または複数個の元素)で示される層状ぺロブスカイト構造を有している。 n型熱 電変換材料 12は、組成式 D EO (Dおよび Eは 1個または複数個の元素)で示される
2 4
層状ぺロブスカイト構造を有している。 p型熱電変換材料 11の一部と、 n型熱電変換 材料 12の一部とは直接接合されている。なお、「直接接合」とは、 p型熱電変換材料 11と n型熱電変換材料 12との間に電極を介しないように直接接合することを意味す
[0024] 具体的には、熱電変換素子 10は、 1の p型熱電変換材料 11と、 1の n型熱電変換 材料 12と、 2つの電極 16とを備えている。 p型熱電変換材料 11と n型熱電変換材料 1 2とは、互いに高温側接合部 13aで直接接合されている。なお、実施の形態 1では、 図 1におレヽて高温側接合部 13aを高温側とし、電極 16と接続されて!/ヽる接合部を低 温側としている。
[0025] 熱電変換素子 10は、 p型熱電変換材料 11と n型熱電変換材料 12とが接合されて いる部分以外の部分(実施の形態 1では、高温側接合部 13a以外の部分)において 、互いに分離して!/、る分離部 17を介して対向して!/、る。
[0026] なお、分離部 17には、補強や絶縁を確実にするために絶縁体のセラミックス薄板 やガラス物質を揷入してもよ!/、。 [0027] p型熱電変換材料 11は、組成式 A BO (Aおよび Bは 1個または複数個の元素)で
2 4
示される層状ぺロブスカイト構造を有している。組成式 A BOにおける Aは、少なくと
2 4
も 1種の希土類元素を含んで!/、ること力 S好ましく、ランタン(La)を含んで!/、ること力 S特 に好ましい。また、組成式 A BOにおける Bは、少なくとも 1種の遷移金属を含んでい
2 4
ること力 s好ましい。また、 1種の遷移金属として、銅を含んでいることが特に好ましい。
[0028] n型熱電変換材料 12は、組成式 D EO (Dおよび Eは 1個または複数個の元素)で
2 4
示される層状ぺロブスカイト構造を有している。組成式 D EOにおける Dは、少なくと
2 4
も 1種の希土類元素を含んでいることが好ましぐプラセオジムの)、ネオジム(Nd)、 サマリウム(Sm)、およびガドリニウム(Gd)力もなる群より選ばれる少なくとも 1種の元 素を含んでいることが特に好ましい。また、組成式 D EOにおける Eは、少なくとも 1
2 4
種の遷移金属を含んでいることが好ましい。また、 1種の遷移金属として、銅を含んで いることが特に好ましい。
[0029] なお、組成式 A BOおよび組成式 D EOにおいて、 A、 B、 Dおよび Eは、 1個また
2 4 2 4
は複数個の元素で示され、複数個の元素からなる場合には、組成式 A BOおよび組
2 4 成式 D EOにおける Aおよび Dの原子数比の合計が 2であることを意味する。また、
2 4
糸且成式 A BOおよび糸且成式 D EOにおける Bおよび Eの原子数比の合計が 1である
2 4 2 4
ことを意味する。また、 oは酸素を意味する。
[0030] p型熱電変換材料 11および n型熱電変換材料 12は、層状ぺロブスカイト構造を有 しており、結晶構造が同じである。
[0031] 電極 16は、端子用の電極である。そのため、熱電変換素子 10の端部に配置される P型熱電変換材料 11および n型熱電変換材料 12の低温側の端部に接続されてレヽる 。なお、実施の形態 1では、電極 16は、低温側の端部に接続されているが、特にこれ に限定されず、高温側に接続されていてもよいし、低温側および高温側に接続され ていてもよい。
[0032] 次に、実施の形態における熱電変換素子 10の製造方法について説明する。まず、 組成式 A BO (Aおよび Bは 1個または複数個の元素)で示される層状ぺロブスカイト
2 4
構造を有する P型熱電変換材料の原料、および組成式 D EO (Dおよび Eは 1個また
2 4
は複数個の元素)で示される層状ぺロブスカイト構造を有する n型熱電変換材料の原 料を準備する工程を実施する。準備する工程では、少なくとも 1種の希土類元素、お よび、少なくとも 1種の遷移金属を含んでいることが好ましぐ La、 Pr、 Nd、 Sm、 Gd、 および Cuからなる群より選ばれる少なくとも 1種の元素を含んでいることがより好まし い。
[0033] 具体的には、組成式 A BOにおける Aは少なくとも 1種の希土類元素を含み、 Bは
2 4
少なくとも 1種の遷移金属を含む P型熱電変換材料 11および組成式 D EOにおける
2 4
Dは少なくとも 1種の希土類元素を含み、 Eは少なくとも 1種の遷移金属を含む n型熱 電変換材料 12を製造するため、出発原料を準備する。たとえば、 La、 Pr、 Nd、 Sm、 および Gdなどの希土類元素と、 Cuなどの遷移元素とを含む出発原料を準備する。 なお、これらの出発原料のうち、 Pr、 Cu、 Niおよび Feについては、たとえば酸化物 が用いられ、 Ca、 Sr、 Baおよび Mnについては、たとえば炭酸塩が用いられることが 好ましい。これらの出発原料は、熱電特性、発電特性、および共焼結などに必要な 条件によって、適宜選択される。また、後述する共焼結のために、必要に応じて、他 の元素を添加してもよい。
[0034] なお、焼成によって金属酸化物を形成できれば特に限定されず、たとえば水酸化 物などの他の無機化合物や、アルコキシドのような有機金属化合物が用いられてもよ い。また、出発原料となる粉末は、粒径など特に限定されないが、均一に混合できる 程度の粒径であることが好まし!/、。
[0035] そして、上述した出発原料は、所望の組成比を与え得るように秤量され、次いで粉 砕混合処理される。この粉砕混合処理には、たとえば、分散媒を水とした湿式ボール ミルが用いられる。なお、ボールミルを行なう時間は特に限定されず、均一に混合さ れる時間とすることが好ましい。これにより、出発原料の混合粉末が得られる。水を分 散媒とする場合には、次いで、水を蒸発させるための操作が実施される。
[0036] そして、出発原料の混合粉末を、たとえば大気中にて仮焼する。仮焼する際に、 80 0°C〜; 1100°Cとすることが好ましい。この温度範囲とすることによって、反応が促進さ れる。これにより、 目的とする p型熱電変換材料粉末および n型熱電変換材料粉末が 得られる。なお、上述の仮焼を終えたとき、粉末中に未反応部分が残存していてもよ い。 [0037] そして、 p型熱電変換材料粉末および n型熱電変換材料粉末を、上述のようにボー ノレミルなどにより粉砕して、純水およびバインダ等を添加してスラリーにする。得られ たスラリーをたとえばドクターブレード法などによりシート状に成形する。これにより、シ ート状の p型熱電変換材料と n型熱電変換材料とが得られる。
[0038] なお、仮焼後に粉砕する際に得られる粉末の粒径は特に限定されな!/、が、熱伝導 率を低下できる観点から粒径が小さレ、程好まし!/、。
[0039] 次に、 p型熱電変換材料 11の原料と n型熱電変換材料 12の原料とを共焼結して、 P型熱電変換材料 11と n型熱電変換材料 12とを直接接合する工程を実施する。これ により、図 1に示す本発明の実施の形態 1における熱電変換素子 10を得られる。
[0040] 具体的には、得られたシート状の p型熱電変換材料 11と n型熱電変換材料 12とを 所定の厚みになるように調整して、 P型熱電変換材料 11と n型熱電変換材料 12とを 積層して、積層体にする。
[0041] そして、得られた積層体をたとえば等方静水圧プレス法などにより圧着を行ない、 成形体を製造する。得られた成形体をたとえば 300°C〜600°Cで脱脂を行ない、そ の後、たとえば大気中で焼成を行なう。この際、相対密度が 90%以上となる温度範 囲で焼成することが好ましい。この温度とすることによって、焼結が進行しやすくなる。 なお、焼成する方法は特に限定されず、一般公知の方法により行なうことができる。こ れにより、 p型熱電変換材料 11と n型熱電変換材料 12とを直接接合することができる
[0042] そして、得られた素子について、高温側接合部 13a以外の部分を切断して (接合部 に切り込みを入れて)、分離部 17を形成する。さらに必要に応じて、所定の形状に形 成することにより、図 1に示す熱電変換素子 10を形成できる。
[0043] なお、上述したように、実施の形態 1では積層体を共焼結した後に高温側接合部 1 3a以外の部分に切り込みを入れている力 S、特にこれに限定されない。積層体に切り 込みを入れた(分離部 17を形成した)後、共焼結して、 p型熱電変換材料 11と n型熱 電変換材料 12とを直接接合してもよい。
[0044] このように製造された図 1に示す熱電変換素子 10は高温部と低温部との温度差を 設けるための方法は特に限定されないが、廃熱を利用してもよいし、加熱部材(図示 せず)または冷却部材(図示せず)を使用してもょレ、。
[0045] 以上説明したように、本発明の実施の形態 1における熱電変換素子 10によれば、 組成式 A BO (Aおよび Bは 1個または複数個の元素)で示される層状ぺロブスカイト
2 4
構造を有する P型熱電変換材料 11と、組成式 D EO (Dおよび Eは 1個または複数個
2 4
の元素)で示される層状ぺロブスカイト構造を有する n型熱電変換材料 12とを備え、 p 型熱電変換材料 11の一部と、 n型熱電変換材料 12の一部とは直接接合されている 。ここで、図 9に示す従来の熱電変換素子 100については、以下の理由により接触抵 抗が生じる。具体的には、熱電材料 101 , 102が半導体からなる場合、半導体のフエ ノレミ準位と金属のフェルミ準位とは異なる(n型半導体のフェルミ準位〉金属のフェル ミ準位。 p型半導体のフェルミ準位く金属のフェルミ準位)。金属と半導体とが接触す ると、半導体の接合面付近に空乏層が発生して障壁ができるので、金属と半導体と のフェルミ準位は一致する(n型半導体の障壁の高さは、金属の仕事関数と n型半導 体の電子親和力とに依存する。 p型半導体の障壁の高さは、 p型半導体の電子親和 力と、 p型半導体のエネルギーギャップと金属の仕事関数とに依存する。)。金属と半 導体とのフェルミ準位がほぼ一致している場合は障壁を作らないが、フェルミ準位の 位置は半導体の極性によって異なる。 n型半導体のフェルミ準位は伝導帯に近!/、位 置であり、 p型半導体のフェルミ準位は価電子帯に近い位置である。そのため、 p型 半導体に対して障壁を作らない金属は、 n型半導体に対して障壁を作り、その逆の関 係も成立する。熱電材料として半導体を用いる熱電変換素子は、必ず p型半導体と n 型半導体との両極性を使用するため、 V、ずれかの極性で電極と熱電材料間との接触 抵抗が発生する。し力もながら、本発明の実施の形態 1における熱電変換素子 10は 、同じ結晶構造の材料からなる p型熱電変換材料 11と n型熱電変換材料 12とが直接 接合されているので、 P型熱電変換材料 11と n型熱電変換材料 12との間に電極を備 える必要がない。そのため、電極と、 p型熱電変換材料および n型熱電変換材料との 接合部で発生する接触抵抗をなくすことができる。
[0046] また、 p型熱電変換材料 11と n型熱電変換材料 12とは同じ結晶構造の材料からな るので、高温側接合部 13aの接触抵抗をより減少できる。なお、異材料の場合、ホット プレス、高温等方圧プレス、または放電プラズマ焼結などの特殊な焼成でないと共焼 結し難いので好ましくない。
[0047] さらに、 p型熱電変換材料 11と n型熱電変換材料 12との間に電極を備える必要が ないので、高温側接合部 13aで金属による酸化が発生して劣化することがない。その ため、熱電変換素子 10の高温側をより高温にすることができる。さらに、 p型熱電変 換材料 11と n型熱電変換材料 12との間の隙間を狭くできるので、高密度化できる。さ らには、小型化を図ることができる。
[0048] 上記熱電変換素子 10において好ましくは、組成式 A BOにおける Aおよび組成式
2 4
D EOにおける Dは、少なくとも 1種の希土類元素を含み、組成式 A BOにおける B
2 4 2 4 および組成式 D EOにおける Eは、少なくとも 1種の遷移金属を含んでいる。これによ
2 4
り、 p型熱電変換材料 11と n型熱電変換材料 12との接触抵抗をより低減できる。
[0049] 上記熱電変換素子 10において好ましくは、組成式 A BOにおける Aは、ランタンを
2 4
含み、組成式 D EOにおける Dは、プラセオジム、ネオジム、サマリウム、およびガドリ
2 4
ニゥムからなる群より選ばれる少なくとも 1種の元素を含み、組成式 A BOにおける B
2 4 および組成式 D EOにおける Eは、銅を含んでいる。これにより、 p型熱電変換材料 1
2 4
1と n型熱電変換材料 12との接触抵抗をより一層低減できる。
[0050] 本発明の実施の形態 1の一の局面における熱電変換素子 10の製造方法は、組成 式 A BO (Aおよび Bは 1個または複数個の元素)で示される層状ぺロブスカイト構造
2 4
を有する p型熱電変換材料 11の原料を準備する工程と、組成式 D EO (Dおよび E
2 4
は 1個または複数個の元素)で示される層状ぺロブスカイト構造を有する n型熱電変 換材料 12の原料を準備する工程と、 p型熱電変換材料 11の原料と n型熱電変換材 料 12の原料とを共焼結して、 p型熱電変換材料 11と n型熱電変換材料 12とを直接 接合する工程とを備えている。本発明の熱電変換素子 10の製造方法によれば、同じ 結晶構造の材料力もなる P型熱電変換材料 11と n型熱電変換材料 12とを直接接合 すること力 Sできる。そのため、 p型熱電変換材料 11と n型熱電変換材料 12との接触抵 抗を低減できる熱電変換素子 10を製造できる。
[0051] また、準備する工程で、 p型熱電変換材料 11および n型熱電変換材料 12を同じ結 晶構造の材料を選択しているので、特別な焼成方法を用いずに共焼結できる。その ため、熱電変換素子 10を容易に製造することができる。 [0052] また、 p型熱電変換材料 11と n型熱電変換材料 12との間に接合のための電極を形 成する必要がないため、熱電変換素子 10を製造する際に、電極を作製する工程が 不要となる。また、 p型熱電変換材料 11の原料と n型熱電変換材料 12の原料とを共 焼結する際に接合してレ、るので、 p型熱電変換材料 11と n型熱電変換材料 12とを接 合するためのみの工程が不要となる。そのため、熱電変換素子 10を製造するための 工程数を減少できるので、コストを低減できるとともに、製造を簡略化することができる
[0053] さらに、 p型熱電変換材料 11と n型熱電変換材料 12とがキャリア元素を備えている 場合に、高温側接合部 13aにおいて、電極を備えた熱電変換素子と比較して、キヤリ ァ元素は拡散しにくいので、キャリア元素のロスを減少できる。
[0054] 本発明の実施の形態 1の他の局面における熱電変換素子の製造方法は、組成式 A BO (Aおよび Bは 1個または複数個の元素)で示される層状ぺロブスカイト構造を
2 4
有する p型熱電変換材料 11の原料を準備し、シート状に成形する工程と、組成式 D EO (Dおよび Eは 1個または複数個の元素)で示される層状ぺロブスカイト構造を有
4
する n型熱電変換材料 12の原料を準備し、シート状に成形する工程と、 p型熱電変 換材料 11のシートと n型熱電変換材料 12のシートとを積層して積層体を得る工程と、 積層体を共焼結して、接合部に切り込みを入れて(分離部 17を形成して)、 p型熱電 変換材料 11と n型熱電変換材料 12とを直接接合する工程とを備えている。これによ り、 p型熱電変換材料 11のシートおよび n型熱電変換材料 12のシートのうち、抵抗の 高い材料のシートの厚みを大きくするなど、厚みの設計が容易になる。そのため、熱 電変換素子 10をより容易に製造できる。
[0055] (実施の形態 2)
図 2は、本発明の実施の形態 2における熱電変換モジュールを示す概略断面図で ある。図 2を参照して、本発明の実施の形態 2における熱電変換モジュールを説明す る。実施の形態 2における熱電変換モジュール 30は、実施の形態 1における熱電変 換素子 10を複数備えている。
[0056] 具体的には、熱電変換モジュール 30は、 1の p型熱電変換材料 11と 1の n型熱電 変換材料 12とを有する、 2つの熱電変素子 10と、 2つの電極 16とを備えている。熱 電変換モジュール 30を構成しているそれぞれの熱電変換素子 10において、 p型熱 電変換材料 11と n型熱電変換材料 12とは、互いに高温側接合部 13aで直接接合さ れている。そして、一方の熱電変換素子 10の p型熱電変換材料 11と、他方の熱電変 換素子 10の n型熱電変換材料 12とは、互!/、に低温側接合部 13bで直接接合されて いる。なお、実施の形態 2では、図 2において高温側接合部 13aを高温側とし、低温 側接合部 13bを低温側として!/、る。
[0057] また、熱電変換モジュール 30を構成している熱電変換素子 10は、 p型熱電変換材 料 11と n型熱電変換材料 12とが接合されて!/、る部分以外の部分(実施の形態 2では 、高温側接合部 13aおよび低温側接合部 13b以外の部分)において、互いに分離し ている分離部 17を介して対向している。
[0058] 実施の形態 2における熱電変換モジュール 30の製造方法は、実施の形態 1におけ る熱電変換素子 10を複数製造することにより製造する。具体的には、複数 (実施の 形態 2では 2つ)の p型熱電変換材料 11と n型熱電変換材料 12とを直接接合すること により、複数の素子を得ることができる。
[0059] そして、得られた複数の素子につ!/、て、高温側接合部 13aおよび低温側接合部 13 b以外の部分を切断して、分離部 17を形成する。さらに必要に応じて、所定の形状に 形成することにより、図 2に示す熱電変換モジュール 30を形成できる。
[0060] なお、実施の形態 2における熱電変換モジュール 30は、熱電変換素子 10を 2っ備 えている構成とした力 熱電変換素子 10を 2つ以上備えていれば、特にこれに限定 されない。
[0061] 以上説明したように、本発明の実施の形態 2における熱電変換モジュール 30によ れば、実施の形態 1における熱電変換素子 10を複数備えている。これにより、熱電変 換モジュール 30は、 p型熱電変換材料 11と n型熱電変換材料 12との接合に伴う接 触抵抗を低減できる。また、熱電変換素子 10を複数備えているので、変換効率を向 上できる。さらに、 p型熱電変換材料 11と n型熱電変換材料 12との間に電極を形成 する必要がないので、その隙間を狭くできるため、小型化を図ることができる。
[0062] [実施例]
以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定され るものではない。
[0063] (実施例;!〜 3)
実施例;!〜 3における熱電変換素子は、実施の形態 1における熱電変換素子の製 造方法にしたがって製造した。具体的には、まず、 p型熱電変換材料の原料粉末とし て、 La O、 Sr COおよび CuOを準備した。また、 n型熱電変換材料の原料粉末とし
2 3 2 3
て、 Pr〇 、 CeOおよび Cu〇を準備した。これらの原料粉末を下記の表 1に記載の
6 11 2
組成となるように秤量した。
[0064] 次に、秤量された原料粉末に、純水を溶媒として、ボールミルで 16時間、粉砕混合 を行なった。粉砕した原料粉末に純水およびバインダを添加して、混合し、得られた スラリーをドクターブレード法でシート状に成形を行なった。得られたシートを焼成し て、厚みが 1. 5mmになるように調整して、 p型シートおよび n型シートを準備した。そ して、 p型シートの上に n型シートを積層し、積層体を得た。
[0065] 次に、積層体を等方静水圧プレス法にて 200MPaで圧着を行ない、成形体を得た 。得られた成形体を 480°Cで脱脂を行ない、その後、大気雰囲気中において 1025 °Cで焼成を行なった。焼結により得られた試料を X線回折 (XRD)により観察したとこ ろ、図 3に示すように、層状ぺロブスカイト構造を有するそれぞれの材料に特有のピ ークを有していることから、層状ぺロブスカイト構造を有していたことが確認できた。な お、図 3は、実施例における XRDチャートを示す図である。図 3において、「a. u.」は 、任 早 1il ^arbitrary unit)を,き、'味する。
[0066] 得られた試料を図 4に示すように、 3mm (D) (p型熱電変換材料 11の D1が 1. 5m m、 n型熱電変換材料 12の D2が 1 · 5mm) X 4mm (L) X 6mm (Hl)に切断し、 p型 熱電変換材料 11および n型熱電変換材料 12の接合部(高温側接合部 13a)が 1. 5 mm (H2)残るように 0· 2mm (K)幅の切り込みを入れた。これにより、図 4に示す実 施例;!〜 3における熱電変換素子を得た。なお、図 4は、実施例;!〜 3の熱電変換素 子を示す概略斜視図である。
[0067] (比較例;!〜 8)
比較例 1〜8の熱電変換素子は、基本的には実施例;!〜 3の熱電変換素子と同様 に製造したが、 p型熱電変換材料と n型熱電変換材料とを表 2に示す電極で接合した 点においてのみ実施例 1〜3の熱電変換素子と異なる。
[0068] 具体的には、実施例;!〜 3と同様の原料粉末を準備して、これらの原料粉末を下記 の表 1に記載の組成となるように、秤量した。次に、秤量された原料粉末に、純水を溶 媒として、ボールミルで 16時間、粉砕混合を行なった。得られたスラリーを乾燥させ、 その後大気雰囲気中において 900°Cで仮焼を行なった。
[0069] 次に、得られた混合粉末にバインダを添加して、純水を溶媒として、ボールミルで 1 6時間、粉砕混合を行なった。そして、得られたスラリーを乾燥させ、その後、プレス 機を用いて 1000kg/cm2で成形を行なって、成形体を得た。そして、得られた成形 体を 400°Cで脱脂を行ない、その後、それぞれ大気雰囲気中で 1025°Cで焼成を行 なった。
[0070] 次に、得られた試料をそれぞれ 1. 5mm X 4mm X 5mmに切断して、 p型熱電変換 材料と n型熱電変換材料とを、比較例 1〜4は Cu電極で、比較例 5〜8は Ag電極で それぞれ接合した。これにより、比較例;!〜 8における熱電変換素子を得た。
[0071] [表 1]
Figure imgf000016_0001
(評価方法)
図 5に示すように、実施例 1〜3における熱電変換素子において p型熱電変換材料 11と n型熱電変換材料 12とを直接接合した接合部を高温側接合部 13aとし、高温側 接合部 13aと反対の端面を低温側として、 Agからなる端子用の電極 16を接続した。 比較例 1〜8における熱電変換素子において、 Cu電極または Ag電極で接合した接 合部を高温側接合部とし、高温側接合部と反対の端面を低温側として、実施例;!〜 3 と同じ端子用の電極 16を接続した。なお、図 5は、実施例 1〜3における熱電変換素 子を測定する方法を示す概略断面図である。
[0073] そして、加熱部材により高温側の接合部を加熱した。また、低温側の接合部を水冷 板を使用して 20°Cに固定した。高温側の接合部が低温側の接合部よりも温度が高く なるように、カロ熱咅 才を 50。C、 100。C、 150。C、 200。C、 250。C、 300。C、 350。C、お よび 400°Cに加熱した。加熱部材としては、抵抗加熱式カートリッジヒーターを使用し た。そして、この際に、実施例;!〜 3および比較例;!〜 8における熱電変換素子に発 生する起電力および電流を測定して、出力を算出した。その結果を図 6〜図 8に示す 。ただし、図 6〜図 8に示すように、材料組成によって熱伝導率に差があるため、測定 した熱電変換モジュールの温度は異なっている。なお、図 6は、実施例;!〜 3におけ る熱電変換素子の起電力と温度差との関係を示す図である。図 7は、実施例;!〜 3に おける熱電変換素子の電流と温度差との関係を示す図である。図 8は、実施例;!〜 3 における熱電変換素子の出力と温度差との関係を示す図である。
[0074] また、実施例 1〜3および比較例 1〜8における熱電変換素子について、高温側接 合部 13a部分の素子抵抗 R13a ( Q )を、以下のように測定した。以下、 R16を電極 1 6の抵抗、 R11を p型熱電変換材料 11の抵抗、 R13aを高温側接合部 13aの抵抗、 R 12を n型熱電変換材料 12の抵抗とする。まず、 R11および R12は四端子法による測 定を行ない、 (R16 + R11 +R16) ,および(R16 + R12 + R16)の試料を作製してこ れらの抵抗を測定した。ここ力、ら、(R11 +R16)および(R12 + R16)の抵抗を求め た。そして、(R16 + Rl l +R13a + R12 + R16)を測定した。最後に、(R16 + R11 + R13a + R12 + R16) (R11 +R16)一(R12 + R16)を算出することにより、高温 側接合部 13a部分の素子抵抗 Rl 3aを求めた。その結果を表 2に示す。
[0075] [表 2] 素子抵抗(Ω ) 接合方法
実施例 1 10. 99
実施例 1 0. 58 共焼結
実施例 3 1 . 53
比較例 1 1 58
比較例 1 1 99 Cu電極
比較例 3 96
比較例 4 1 36
比較例 5 361
比較例 6 394 Ag電極
比較例 7 1 65
比較例 8 1 97
[0076] (測定結果)
表 2に示すように、実施例;!〜 3の熱電変換素子は、比較例;!〜 8の熱電変換素子 よりも素子抵抗を低減できることが確認できた。
[0077] また、図 6〜図 8に示すように、実施例 1〜3の熱電素子は、温度差が高い程、起電 力、電流、および出力が高いことが確認できた。この結果から、実施例;!〜 3の熱電 変換素子は電極を備えてレ、なレ、ので、熱電変換素子の高温側を高温に加熱しても 問題が生じないことが確認できた。また、接合部では、 Prおよび Laのみ拡散しており 、キャリア添加元素である Ceおよび Srは拡散せず、キャリアのロスが少ないことがわ かった。
[0078] 今回開示された実施の形態および実施例はすべての点で例示であって制限的な ものではないと考えられるべきである。本発明の範囲は上記した実施の形態ではなく て請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての 変更が含まれることが意図される。

Claims

請求の範囲
[1] 組成式 A BO (Aおよび Bは 1個または複数個の元素)で示される層状ぺロブスカイ
2 4
ト構造を有する P型熱電変換材料( 11 )と、
組成式 D EO (Dおよび Eは 1個または複数個の元素)で示される層状ぺロブスカイ
2 4
ト構造を有する n型熱電変換材料(12)とを備え、
前記 P型熱電変換材料(11)の一部と、前記 n型熱電変換材料(12)の一部とは直 接接合されている、熱電変換素子(10)。
[2] 前記組成式 A BOにおける Aおよび前記組成式 D EOにおける Dは、少なくとも 1
2 4 2 4
種の希土類元素を含み、
前記組成式 A BOにおける Bおよび前記組成式 D EOにおける Eは、少なくとも 1
2 4 2 4
種の遷移金属を含む、請求の範囲第 1項に記載の熱電変換素子(10)。
[3] 前記組成式 A BOにおける Aは、ランタンを含み、
2 4
前記組成式 D EOにおける Dは、プラセオジム、ネオジム、サマリウム、およびガドリ
2 4
ニゥムからなる群より選ばれる少なくとも 1種の元素を含み、
前記組成式 A BOにおける Bおよび前記組成式 D EOにおける Eは、銅を含む、
2 4 2 4
請求の範囲第 1項に記載の熱電変換素子(10)。
[4] 請求の範囲第 1項に記載の熱電変換素子(10)を複数備える、熱電変換モジユー ル(30)。
[5] 組成式 A BO (Aおよび Bは 1個または複数個の元素)で示される層状ぺロブスカイ
2 4
ト構造を有する P型熱電変換材料( 11 )の原料を準備する工程と、
組成式 D EO (Dおよび Eは 1個または複数個の元素)で示される層状ぺロブスカイ
2 4
ト構造を有する n型熱電変換材料(12)の原料を準備する工程と、
前記 P型熱電変換材料(11)の原料と前記 n型熱電変換材料(12)の原料とを共焼 結して、前記 p型熱電変換材料 (11)と前記 n型熱電変換材料 (12)とを直接接合す る工程とを備える、熱電変換素子(10)の製造方法。
[6] 組成式 A BO (Aおよび Bは 1個または複数個の元素)で示される層状ぺロブスカイ
2 4
ト構造を有する P型熱電変換材料(11)の原料を準備し、シート状に成形する工程と、 組成式 D EO (Dおよび Eは 1個または複数個の元素)で示される層状ぺロブスカイ ト構造を有する n型熱電変換材料(12)の原料を準備し、シート状に成形する工程と、 前記 P型熱電変換材料(11)のシートと前記 n型熱電変換材料(12)のシートとを積 層して積層体を得る工程と、
前記積層体を共焼結して、接合部に切り込みを入れて、前記 p型熱電変換材料(1
1)と前記 n型熱電変換材料(12)とを直接接合する工程とを備える、熱電変換素子(
10)の製造方法。
PCT/JP2007/067728 2006-09-28 2007-09-12 Élément de conversion thermoélectrique, module de conversion thermoélectrique et procédé de production d'élément de conversion thermoélectrique WO2008038519A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-264881 2006-09-28
JP2006264881A JP2010027631A (ja) 2006-09-28 2006-09-28 熱電変換素子、熱電変換モジュール、および熱電変換素子の製造方法

Publications (1)

Publication Number Publication Date
WO2008038519A1 true WO2008038519A1 (fr) 2008-04-03

Family

ID=39229957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/067728 WO2008038519A1 (fr) 2006-09-28 2007-09-12 Élément de conversion thermoélectrique, module de conversion thermoélectrique et procédé de production d'élément de conversion thermoélectrique

Country Status (2)

Country Link
JP (1) JP2010027631A (ja)
WO (1) WO2008038519A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010058464A1 (ja) * 2008-11-20 2010-05-27 株式会社村田製作所 熱電変換モジュール

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6809852B2 (ja) * 2016-09-13 2021-01-06 古河電気工業株式会社 熱電変換素子および熱電変換モジュール
WO2021049167A1 (ja) * 2019-09-09 2021-03-18 パナソニックIpマネジメント株式会社 熱電変換材料、熱電変換素子、熱電変換材料を用いて電力を得る方法及び熱を輸送する方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS645911A (en) * 1987-06-26 1989-01-10 Sharp Kk Thermoelectric conversion material
JPH08125240A (ja) * 1994-10-27 1996-05-17 Mitsubishi Materials Corp 熱電素子の製造方法
JPH1154808A (ja) * 1997-08-07 1999-02-26 Science & Tech Agency 積層一体成形熱電素子及びその製造法
JP2000012914A (ja) * 1998-06-22 2000-01-14 Tokyo Gas Co Ltd 熱電変換材料及び熱電変換素子
JP2005223307A (ja) * 2004-01-08 2005-08-18 Univ Nagoya 酸化物系熱電変換膜、及び酸化物系熱電変換膜の作製方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS645911A (en) * 1987-06-26 1989-01-10 Sharp Kk Thermoelectric conversion material
JPH08125240A (ja) * 1994-10-27 1996-05-17 Mitsubishi Materials Corp 熱電素子の製造方法
JPH1154808A (ja) * 1997-08-07 1999-02-26 Science & Tech Agency 積層一体成形熱電素子及びその製造法
JP2000012914A (ja) * 1998-06-22 2000-01-14 Tokyo Gas Co Ltd 熱電変換材料及び熱電変換素子
JP2005223307A (ja) * 2004-01-08 2005-08-18 Univ Nagoya 酸化物系熱電変換膜、及び酸化物系熱電変換膜の作製方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010058464A1 (ja) * 2008-11-20 2010-05-27 株式会社村田製作所 熱電変換モジュール
US20110226304A1 (en) * 2008-11-20 2011-09-22 Murata Manufacturing Co., Ltd. Thermoelectric Conversion Module

Also Published As

Publication number Publication date
JP2010027631A (ja) 2010-02-04

Similar Documents

Publication Publication Date Title
JP4983920B2 (ja) 熱電変換素子、熱電変換モジュール、および熱電変換素子の製造方法
WO2010058464A1 (ja) 熱電変換モジュール
JP4797148B2 (ja) 熱電変換材料接続用導電性ペースト
JP5098589B2 (ja) 熱電変換モジュール
JP5464274B2 (ja) 熱電変換素子、その製造方法、および通信装置
KR20080003875A (ko) 열전 변환 재료, 그의 제조 방법 및 열전 변환 소자
WO2007145030A1 (ja) 熱電材料
EP1492171B1 (en) DOUBLE OXIDE WITH n TYPE THERMOELECTRIC CHARACTERISTICS
WO2008038519A1 (fr) Élément de conversion thermoélectrique, module de conversion thermoélectrique et procédé de production d&#39;élément de conversion thermoélectrique
JP3981716B2 (ja) 金属酸化物多結晶体、熱電材料、熱電素子およびその製造方法
JP2009004542A (ja) 熱電材料及び熱電材料の製造方法
WO2007108147A1 (ja) 熱電半導体、熱電変換素子および熱電変換モジュール
JP6050906B2 (ja) 熱電変換材料、熱電変換素子及び熱電変換モジュール
JP2001019544A (ja) 熱電変換材料及び複合酸化物焼結体の製造方法
JP2003282966A (ja) 電子型熱電変換材料
JP2003238154A (ja) 複合酸化物、酸化物イオン伝導体、酸化物イオン伝導膜および電気化学セル
JP2010283112A (ja) 熱電変換材料
JP2004296704A (ja) n型熱電特性を有する複合酸化物
JP2002118296A (ja) 高い電気伝導率を有する高温用n型熱電変換素子及びそれを用いた熱電変換モジュール
EP2975659B1 (en) Thermoelectric generator comprising a thermoelectric element
CN108780834A (zh) 层叠型热电转换元件
WO2016148117A1 (ja) 熱電変換材料、熱電変換素子及び熱電変換モジュール
KR101874391B1 (ko) CaMnO₃계 열전재료 및 이의 제조 방법
JP3903172B2 (ja) 金属酸化物焼結体の製造方法
WO2009093642A1 (ja) 熱電変換材料および熱電変換モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07807135

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07807135

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP