WO2016148117A1 - 熱電変換材料、熱電変換素子及び熱電変換モジュール - Google Patents

熱電変換材料、熱電変換素子及び熱電変換モジュール Download PDF

Info

Publication number
WO2016148117A1
WO2016148117A1 PCT/JP2016/058057 JP2016058057W WO2016148117A1 WO 2016148117 A1 WO2016148117 A1 WO 2016148117A1 JP 2016058057 W JP2016058057 W JP 2016058057W WO 2016148117 A1 WO2016148117 A1 WO 2016148117A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoelectric conversion
conversion material
general formula
plate
crystal
Prior art date
Application number
PCT/JP2016/058057
Other languages
English (en)
French (fr)
Inventor
一矢 多賀
亮太 里村
泰裕 仲岡
Original Assignee
日本化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016044066A external-priority patent/JP6050906B2/ja
Application filed by 日本化学工業株式会社 filed Critical 日本化学工業株式会社
Priority to CA2979188A priority Critical patent/CA2979188A1/en
Priority to US15/558,315 priority patent/US10224473B2/en
Publication of WO2016148117A1 publication Critical patent/WO2016148117A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/855Thermoelectric active materials comprising inorganic compositions comprising compounds containing boron, carbon, oxygen or nitrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device

Definitions

  • thermoelectric conversion material in particular, a thermoelectric conversion material comprising a CoO 2 -based layered oxide useful as a p-type thermoelectric conversion material, a thermoelectric conversion element and a thermoelectric conversion module using the thermoelectric conversion material.
  • Thermoelectric conversion is an energy conversion method that uses the Seebeck effect to generate a potential difference by creating a temperature difference at both ends of the thermoelectric conversion material.
  • electricity can be obtained simply by placing one end of a thermoelectric conversion material in a high-temperature part generated by waste heat and placing the other end in the atmosphere (room temperature) and connecting a conductor to each end. Accordingly, there is no need for a movable device such as a motor or a turbine necessary for general power generation. For this reason, there is an advantage that power generation cost is low, gas is not discharged due to combustion, and power generation can be continuously performed until the thermoelectric conversion material deteriorates.
  • oxides having n-type thermoelectric conversion characteristics calcium manganese composite oxide of CaMnO 3 , oxides obtained by substituting a part of Ca or Mn of the calcium manganese composite oxide with appropriate elements, etc. have been proposed.
  • the composite oxide exhibits good conductivity even in high-temperature air, and since its Seebeck coefficient exceeds 100 ⁇ V / K, it is expected to be put to practical use as an n-type oxide thermoelectric conversion material (for example, Patent Document 1).
  • CoO 2 layered oxide such as calcium cobaltate (Ca 3 Co 4 O 9 ) or a part of Ca or / and Co of the calcium cobaltate is appropriately used.
  • CoO 2 layered oxides substituted with elements have also been reported (for example, see Patent Documents 2 to 3).
  • Thermoelectric conversion material using CoO 2 based layered oxides are excellent with a plate-like crystals of CoO 2 based layered oxides in order to express the thermoelectric properties, prepared as crystal plane is oriented in one direction .
  • Patent Document 4 proposes a thermoelectric conversion element using a CoO 2 -based layered oxide as a p-type thermoelectric conversion material.
  • a method for preparing the thermoelectric conversion material a plate crystal of CoO 2 -based layered oxide is pressurized.
  • a method of preparing by a so-called pressure sintering method in which molding is performed and then hot press sintering under pressure is disclosed.
  • thermoelectric conversion material obtained by the pressure sintering method of Patent Document 4 is obtained by aligning the plate-like crystals of CoO 2 -based layered oxide in the direction of the crystal plane and having excellent orientation. In the kneading method, it is difficult to produce a large amount of sintered bodies at the same time, which is not industrially advantageous.
  • Patent Document 5 discloses a plate-like material made of a cobalt compound such as Co 3 O 4 and Co (OH) 2.
  • a method has been proposed in which powder, a calcium compound, and a fluorine compound are molded by a doctor blade method, a press molding method, a rolling method, an extrusion method, and the like and then sintered at normal pressure.
  • JP 2010-37131 A Japanese Patent No. 3069701 JP 2001-223393 A JP 2006-49796 A JP 2004-152846 A
  • thermoelectric power generation is attracting attention as one promising technology for solving energy problems that will be a concern in the future.
  • thermoelectric conversion materials that contain CoO 2 -based layered oxides and have excellent thermoelectric properties are industrially used. There is a need for a method of manufacturing in an advantageous manner.
  • an object of the present invention is to provide a thermoelectric conversion material comprising a CoO 2 -based layered oxide having an excellent thermoelectric property, manufactured by an industrially advantageous method, a thermoelectric conversion element and a thermoelectric conversion module using the thermoelectric conversion material. It is to provide.
  • the present inventors have reacted a plate calcium crystal of a specific calcium cobaltate, a bismuth compound, a cobalt compound, and a calcium compound as a template. Since the CoO 2 -based layered oxide obtained as a raw material promotes crystal growth in the major axis direction during the firing reaction, it becomes a plate-like crystal in which crystals have developed in the major axis direction, and has a specific major axis length. Found that a composite oxide plate-like crystal having a thickness is made of a sintered body oriented in the major axis direction of the crystal plane has thermoelectric properties equivalent to a thermoelectric conversion material obtained by a pressure sintering method. The present invention has been completed.
  • the present invention (1) includes the following general formula (2): Bi f Ca g M 3 h Co i M 4 j O k (2)
  • M 3 is a kind selected from the group consisting of Na, K, Li, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Pb, Sr, Ba, Al, Y, and a lanthanoid
  • M 4 is one or more elements selected from the group consisting of Ti, V, Cr, Mn, Fe, Ni, Cu, Mo, W, Nb and Ta.
  • the present invention (2) is a thermoelectric conversion element having a p-type thermoelectric conversion material and an n-type thermoelectric conversion material, and the p-type thermoelectric conversion material is the thermoelectric conversion material of the present invention (1). A feature of the thermoelectric conversion element is provided.
  • this invention (3) provides the thermoelectric conversion module characterized by having the thermoelectric conversion element of this invention (2).
  • thermoelectric conversion element and a thermoelectric conversion module using the thermoelectric conversion material composed of CoO 2 based layered oxides, the thermoelectric conversion material having excellent thermoelectric properties be able to.
  • thermoelectric conversion element in this invention. It is a schematic diagram of one embodiment of the thermoelectric conversion module in the present invention. It is a rear view of the thermoelectric conversion module of FIG. It is a SEM photograph of calcium cobaltate used in the example. It is a SEM photograph of the section of the thermoelectric conversion material obtained in Example 1 (magnification 1000 times). It is a SEM photograph of the section of the thermoelectric conversion material obtained by comparative example 1 (magnification 1000 times).
  • thermoelectric conversion material of the present invention has the following general formula (2): Bi f Ca g M 3 h Co i M 4 j O k (2)
  • M 3 is a kind selected from the group consisting of Na, K, Li, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Pb, Sr, Ba, Al, Y, and a lanthanoid
  • M 4 is one or more elements selected from the group consisting of Ti, V, Cr, Mn, Fe, Ni, Cu, Mo, W, Nb and Ta.
  • thermoelectric conversion material of the present invention has the following general formula (2): Bi f Ca g M 3 h Co i M 4 j O k (2) A sintered body of a plate-like crystal of a complex oxide represented by
  • M 3 is selected from the group consisting of Na, K, Li, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Pb, Sr, Ba, Al, Y, and a lanthanoid.
  • M 4 is one or more elements selected from the group consisting of Ti, V, Cr, Mn, Fe, Ni, Cu, Mo, W, Nb, and Ta. It is.
  • the lanthanoid element of M 3 include La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, and Lu.
  • M 1 and M 2 are elements added to impart electrical conductivity.
  • f is 0 ⁇ f ⁇ 1.0, preferably 0.2 ⁇ f ⁇ 0.8.
  • thermoelectric conversion material When f is in the above range, the thermoelectric conversion material has a high density and excellent thermoelectric properties.
  • g is 2.0 ⁇ g ⁇ 3.6, preferably 2.2 ⁇ g ⁇ 3.3, particularly preferably 3.0 ⁇ g ⁇ 3.3.
  • h is 0 ⁇ h ⁇ 1.0, preferably 0.1 ⁇ h ⁇ 0.9.
  • i is 3.5 ⁇ i ⁇ 4.5, preferably 3.7 ⁇ i ⁇ 4.3.
  • j is 0 ⁇ j ⁇ 0.5, preferably 0.1 ⁇ j ⁇ 0.4.
  • k is 8.0 ⁇ k ⁇ 10.0, preferably 8.5 ⁇ k ⁇ 9.5.
  • the composite oxide represented by the general formula (2) is a CoO 2 layered oxide of calcium cobaltate (Ca 3 Co 4 O 9 ), in which part of Ca is Bi, and further substituted with M 3 element as necessary. In this case, a part of Co is optionally substituted with M 4 element.
  • the structure of the composite oxide represented by the general formula (2) is such that a layer having a rock salt structure, six O's are octahedrally coordinated to one Co, and the octahedrons share sides with each other. Two-dimensionally arranged CoO 2 layers have a structure in which they are alternately stacked.
  • thermoelectric conversion material of the present invention is a thermoelectric conversion material made of a complex oxide represented by the general formula (2) having a single phase in X-ray diffraction.
  • thermoelectric conversion material of the present invention is a composite oxide plate-like crystal represented by the general formula (2) constituting the thermoelectric conversion material, in which the crystal is developed in the major axis direction as compared with the conventional one. .
  • the plate-like crystal of the complex oxide represented by the general formula (2) is oriented in the major axis direction of the crystal plane, that is, the surface of the thermoelectric conversion material and the general formula (2).
  • the major axis direction of the crystal plane of the plate-like crystal of the complex oxide represented by is substantially parallel. Note that the orientation of the plate crystals in the major axis direction of the crystal plane is confirmed by SEM observation of the cross section of the thermoelectric conversion material at a magnification of 1000 times.
  • the fact that the major axis direction of the surface of the thermoelectric conversion material and the crystal plane of the complex oxide plate-like crystal represented by the general formula (2) is substantially parallel is the inclination of the major axis direction with respect to the surface of the thermoelectric conversion material Indicates that the ratio of the plate-like crystals of the composite oxide having a value of 0 ⁇ 20 ° or less is 60% or more in terms of number.
  • thermoelectric conversion material of the present invention the higher the content of the plate-like crystal of the complex oxide represented by the general formula (2) oriented in the major axis direction of the crystal plane, the better the thermoelectric characteristics.
  • the thermoelectric conversion material is cut into two, and the cross section of the cut end is 1000 times larger.
  • the ratio of the plate-like crystals of the complex oxide whose major axis inclination with respect to the surface of the thermoelectric conversion material is within 0 ⁇ 20 ° may be 60% or more in terms of number, and preferably the thermoelectric The ratio of the plate-like crystals of the complex oxide whose major axis inclination with respect to the surface of the conversion material is within 0 ⁇ 15 ° is 65% or more in terms of number.
  • the density of the thermoelectric conversion material of the present invention is 4.0 to 5.1 g / cm 3 , preferably 4.2 to 5.1 g / cm 3 .
  • the density of the thermoelectric conversion material is in the above range, the strength of the thermoelectric conversion material can be increased, the workability can be improved, and the resistivity of the thermoelectric conversion material can be reduced.
  • the average length of the major axis of the plate-like crystal of the composite oxide represented by the general formula (2) constituting the thermoelectric conversion material of the present invention is 20 ⁇ m or more, preferably 20 to 50 ⁇ m, particularly preferably 25 to 50 ⁇ m. .
  • the average length of the minor axis of the plate-like crystal of the composite oxide represented by the general formula (2) constituting the thermoelectric conversion material of the present invention is preferably 0.5 to 5 ⁇ m, particularly preferably 0.8 to 3 ⁇ m. Particularly preferred is 0.8 to 1.8 ⁇ m.
  • the aspect ratio of the plate-like crystal of the composite oxide represented by the general formula (2) constituting the thermoelectric conversion material of the present invention is 20 or more, preferably 20 to 50.
  • the thermoelectric characteristics are excellent.
  • the major axis, minor axis, and aspect ratio of the plate-like crystal of the composite oxide represented by the general formula (2) are the same as those of the plate-like crystal of the complex oxide represented by the general formula (2) at a magnification of 1000 times.
  • the method for producing the thermoelectric conversion material of the present invention includes the following method (1) for producing a thermoelectric conversion material.
  • thermoelectric conversion material is represented by the following general formula (1): Ca a M 1 b Co c M 2 d O e (1) (Wherein M 1 is selected from the group consisting of Bi, Na, K, Li, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Pb, Sr, Ba, Al, Y and lanthanoids. One or more elements, and M 2 is one or more elements selected from the group consisting of Ti, V, Cr, Mn, Fe, Ni, Cu, Mo, W, Nb, and Ta.
  • A is 2.0 ⁇ a ⁇ 3.6, b is 0 ⁇ b ⁇ 1.0, c is 2.0 ⁇ c ⁇ 4.5, d is 0 ⁇ d ⁇ 2.0, and e is 8. (0 ⁇ e ⁇ 10.0)
  • thermoelectric conversion material that is a sintered body of a plate-like crystal of a complex oxide represented by: It is a manufacturing method of the thermoelectric conversion material which has this.
  • the manufacturing method (1) of the thermoelectric conversion material includes a slurry preparation step, a sheeting step, a lamination step, and a firing step.
  • the slurry preparation step is a step of preparing a raw material slurry containing a plate-like crystal of calcium cobaltate represented by the general formula (1), a bismuth compound, a calcium compound, and a cobalt compound.
  • the calcium cobaltate according to the slurry preparation step is represented by the general formula (1): Ca a M 1 b Co c M 2 d O e (1) It is calcium cobaltate represented by these.
  • M 1 is selected from the group consisting of Bi, Na, K, Li, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Pb, Sr, Ba, Al, Y, and a lanthanoid.
  • M 2 is one or more elements selected from the group consisting of Ti, V, Cr, Mn, Fe, Ni, Cu, Mo, W, Nb and Ta.
  • M 1 is an element added for imparting electrical conductivity, and M 1 is preferably Bi.
  • M 2 is an element added to further improve thermoelectric characteristics as necessary.
  • the lanthanoid element according to M 1 include La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, and Lu.
  • a is 2.0 ⁇ a ⁇ 3.6, preferably 2.2 ⁇ a ⁇ 3.3.
  • b is 0 ⁇ b ⁇ 1.0, preferably 0.1 ⁇ b ⁇ 0.9.
  • c is 2.0 ⁇ c ⁇ 4.5, preferably 2.2 ⁇ c ⁇ 4.3.
  • d is 0 ⁇ d ⁇ 2.0, preferably 0.1 ⁇ d ⁇ 1.9.
  • e is 8.0 ⁇ e ⁇ 10.0, preferably 8.5 ⁇ e ⁇ 9.5.
  • the calcium cobaltate represented by the general formula (1) is a known compound, and in the CoO 2 layered oxide of calcium cobaltate (Ca 3 Co 4 O 9 ), a part of Ca is substituted with M 1 element. In this case, a part of Co is optionally substituted with M 2 element.
  • the structure of calcium cobaltate is a layer having a rock salt type structure, and a CoO 2 layer in which six O's are octahedrally coordinated to one Co, and the octahedrons are arranged two-dimensionally so that they share sides with each other. Is known to have a structure in which layers are alternately stacked.
  • the calcium cobaltate represented by the general formula (1) related to the slurry preparation step is a plate crystal.
  • the plate-like crystal of calcium cobaltate represented by the general formula (1) functions as a template in the process of manufacturing the thermoelectric conversion material of the present invention.
  • the plate-like crystal of calcium cobaltate is oriented in the major axis direction of the crystal plane, resulting in the orientation of the plate-like compound oxide represented by the general formula (2).
  • the crystal can be oriented in the major axis direction of the crystal plane.
  • the major axis of the calcium cobaltate plate-like crystal represented by the general formula (1) is preferably 6 to 15 ⁇ m, particularly preferably 7 to 13 ⁇ m from the viewpoint of obtaining a thermoelectric conversion material having good orientation.
  • the minor axis of the calcium cobaltate plate-like crystal represented by the general formula (1) is preferably 0.5 to 5 ⁇ m, particularly preferably 0 in that a thermoelectric conversion material with further improved orientation can be obtained. .5-4 ⁇ m.
  • the aspect ratio of the calcium cobaltate plate-like crystal represented by the general formula (1) is preferably 5 to 20, particularly preferably 8 to 15 in that the contact resistance is reduced.
  • the major axis, minor axis, and aspect ratio of the calcium cobaltate plate-like crystals are average values of 10 particles obtained by observing the plate-like crystal of calcium cobaltate with a SEM at a magnification of 1000 times and arbitrarily extracting in the field of view. It is.
  • the plate-like crystal of calcium cobaltate represented by the general formula (1) is produced by a known method.
  • the calcium cobaltate plate-like crystal represented by the general formula (1) is prepared by mixing a calcium source, a cobalt source, an M 1 source and, if necessary, a raw material of an M 2 source at a predetermined blending ratio. (See JP 2001-223393 A, JP 3069701 A, JP 2006-499796 A, etc.).
  • the calcium compound according to the slurry preparation step is not particularly limited as long as it is a compound having a calcium atom, and is calcium oxide, calcium chloride, calcium carbonate, calcium nitrate, calcium hydroxide, dimethoxycalcium, diethoxycalcium, dipropoxycalcium, etc. Is mentioned.
  • the cobalt compound of the slurry preparation step may be a compound having a cobalt atom, e.g., CoO, Co 2 O 3, Co 3 cobalt oxide O 4 or the like, cobalt chloride, cobalt carbonate, cobalt nitrate, cobalt hydroxide , Dipropoxy cobalt and the like.
  • a cobalt atom e.g., CoO, Co 2 O 3, Co 3 cobalt oxide O 4 or the like
  • cobalt chloride cobalt carbonate
  • cobalt nitrate cobalt nitrate
  • cobalt hydroxide e.g., Dipropoxy cobalt and the like.
  • the bismuth compound related to the slurry preparation step may be a compound having bismuth, for example, bismuth oxide such as Bi 2 O 3 and Bi 2 O 5 , bismuth nitrate, bismuth chloride, bismuth hydroxide, tripropoxy bismuth and the like. Can be mentioned.
  • the physical properties of the calcium compound, cobalt compound, and bismuth compound are not particularly limited, but in view of excellent reactivity, the average particle size determined by the laser diffraction method is preferably 5 ⁇ m or less, particularly preferably 0.1 to 3 0.0 ⁇ m.
  • each raw material component is a solvent by adding the plate-like crystal of the calcium cobaltate represented by General formula (1), a calcium compound, a cobalt compound, and a bismuth compound to a solvent, and mixing and stirring.
  • a raw material slurry dispersed in is prepared.
  • the content of the tabular crystal of calcium cobaltate represented by the general formula (1) is that of the calcium cobaltate represented by the general formula (1) in that the thermoelectric conversion material can be highly oriented.
  • the content is preferably 1 to 99% by mass, particularly preferably 10 to 80% by mass, based on the total content of plate crystals, bismuth compound, calcium compound and cobalt compound.
  • the bismuth compound has a function as a sintering aid as well as a bismuth source that incorporates Bi into the crystal structure of the composite oxide represented by the general formula (2).
  • the raw material slurry is an amount such that the value of f in the composite oxide represented by the general formula (2) is 0 ⁇ f ⁇ 1, preferably 0.2 ⁇ f ⁇ 0.8. It is preferable to contain a bismuth compound because the thermoelectric conversion material can be densified and a thermoelectric conversion material having excellent thermoelectric properties can be obtained.
  • a bismuth compound because the thermoelectric conversion material can be densified and a thermoelectric conversion material having excellent thermoelectric properties can be obtained.
  • calcium cobaltate containing Bi is used as the plate-like crystal of calcium cobaltate represented by the general formula (1), it is included in the calcium cobaltate represented by the general formula (1).
  • the amount of f in the compound oxide represented by the general formula (2) is such that 0 ⁇ f ⁇ 1, preferably 0.2 ⁇ f ⁇ 0.8
  • the raw slurry contains a bismuth compound because the thermoelectric conversion material can be densified and a thermoelectric conversion material having excellent thermoelectric properties can be obtained.
  • g in the formula of the composite oxide represented by the general formula (2) The value is 2.0 ⁇ g ⁇ 3.6, preferably 2.2 ⁇ g ⁇ 3.3, and the value of i is 3.5 ⁇ i ⁇ 4.5, preferably 3.7 ⁇ i ⁇ 4.
  • the raw material slurry is made to contain a calcium compound and a cobalt compound in an amount of 3.
  • Examples of the solvent in the slurry preparation step include water, a mixed solvent of water and a hydrophilic solvent, and an organic solvent.
  • the slurry concentration (solid content) of the raw material slurry is preferably 60 to 75% by mass, particularly preferably 65 to 70% by mass, from the viewpoint of dispersibility of the slurry and high density of the raw material sheet in the sheeting step. .
  • a dispersant can be added to the raw slurry in order to further improve the dispersibility of the solid content.
  • the dispersant include various surfactants, polycarboxylic acid ammonium salt, alkyl sulfate ester salt, polyoxyethylene alkyl ether sulfate ester salt, alkylbenzene sulfonate, naphthalene sulfonate formalin condensate, polyoxyethylene alkyl ether. , Polyoxyethylene sorbidan fatty acid ester, glycerin fatty acid ester, polyoxyethylene alkylamine, alkylamine oxide and the like.
  • the content of the dispersant in the raw material slurry is preferably 0.1 to 10% by mass, particularly preferably 0.5 to 5% by mass, from the viewpoint that a sufficient dispersion effect can be exhibited.
  • the binder resin in the raw slurry preparation step, it is preferable to contain a binder resin in the raw slurry from the viewpoint of giving the raw material sheet appropriate strength and flexibility.
  • the binder resin include known binder resins such as acrylic, cellulose, polyvinyl alcohol, polyvinyl acetal, urethane, and vinyl acetate.
  • the content of the binder resin in the raw slurry is preferably 5 to 25% by mass, particularly preferably 10 to 20 in that a high density and high strength raw material sheet can be obtained by increasing the bonding force between the particles. % By mass.
  • a known plasticizer such as a phthalate ester, a fatty acid ester, or a glycol derivative may be added to the raw material slurry as necessary.
  • the raw material slurry prepared in the slurry preparation step is made into a sheet, and a raw material sheet comprising a mixture of raw material components, that is, a calcium cobaltate plate crystal represented by the general formula (1), a bismuth compound, calcium It is the process of preparing the sheet
  • the raw material sheet is prepared so that at least the calcium cobaltate plate-like crystal represented by the general formula (1) is oriented in the major axis direction of the crystal plane, that is, the sheet surface of the raw material sheet and the general It is important to prepare the raw material sheet so that the major axis direction of the crystal plane of the calcium cobaltate plate-like crystal represented by the formula (1) is substantially parallel.
  • the general formula (1) By forming a sheet using a raw material slurry containing calcium cobaltate plate crystals, the calcium cobaltate plate crystals represented by the general formula (1) are oriented in the major axis direction of the crystal plane. A raw material sheet is obtained.
  • the crystal plane of the plate crystal refers to a plane extending in the two-dimensional direction of the plate crystal, and the major axis direction of the crystal plane of the plate crystal is the major axis of the crystal plane of the plate crystal.
  • the orientation of the plate crystals in the major axis direction of the crystal plane means that the plate crystals are oriented so that the major axis directions of the crystal faces of each plate crystal are substantially the same.
  • the sheet surface of the raw material sheet refers to a surface of the raw material sheet that extends in the two-dimensional direction.
  • the fact that the major axis direction of the sheet surface of the raw material sheet and the crystal plane of the calcium cobaltate plate crystal represented by the general formula (1) is substantially parallel means the inclination of the major axis direction with respect to the sheet surface of the raw material sheet
  • the ratio of the tabular crystals of calcium cobaltate represented by the general formula (1) having a value of 0 ⁇ 20 ° or less is 60% or more in terms of number.
  • the orientation of the plate crystal is confirmed by cutting the raw material sheet into two and observing the cross section of the cut surface with a SEM at a magnification of 1000 times.
  • the raw material slurry is made into a sheet and a raw material sheet is prepared by, for example, uniformly applying the raw material slurry to a sheet-like substrate resin using an applicator and a coating machine, and then drying the raw material sheet.
  • the method is not limited to this, and may be a method such as a doctor blade method, a press molding method, a rolling method, an extrusion method, or a method in which these methods are appropriately combined.
  • the thickness of the raw material sheet prepared in the sheeting step is preferably 50 to 500 ⁇ m in that the sheet strength is increased to improve the workability in the lamination step, and a thermoelectric conversion material excellent in orientation can be obtained. Particularly preferred is 100 to 350 ⁇ m.
  • the sheet forming step it contains a plate-like crystal of calcium cobaltate represented by the general formula (1), a bismuth compound, a calcium compound and a cobalt compound, and is represented by the general formula (1) in the sheet. It is possible to obtain a raw material sheet in which plate-like crystals of calcium cobaltate are oriented in the major axis direction substantially parallel to the sheet surface.
  • the laminating step is a step of preparing the raw material sheet laminate by laminating the raw material sheets prepared in the sheeting step.
  • the size of the raw material sheet laminate and the number of raw material sheets stacked are appropriately selected according to the machine to be used.
  • the reactivity of the raw material sheet laminate is further improved by pressing the raw material sheet laminate, and the calcium cobaltate plate-like crystal represented by the general formula (1)
  • the orientation can be further increased.
  • the pressure at the time of pressure bonding is usually 2.4 to 19.6 MPa, preferably 4.0 to 9.6 MPa, although it varies depending on the type of press, the physical properties and types of raw material sheets, and the like. Further, by performing the pressure bonding while applying a temperature of 50 to 200 ° C., preferably 70 to 150 ° C., the raw material sheet laminate can be pressure bonded more efficiently.
  • Examples of the press machine used for the crimping include a hand press machine, a tableting machine, a briquette machine, and a roller compactor, but are not particularly limited to these apparatuses.
  • the firing step is a step of obtaining a thermoelectric conversion material containing the composite oxide represented by the general formula (2) by firing the raw material sheet laminate prepared in the lamination step.
  • a plate-like crystal of calcium cobaltate represented by the general formula (1) serves as a template, and along that, the reaction between the plate-like crystal of calcium cobaltate and a bismuth compound, a calcium compound, a cobalt compound, and Since the reaction such as the reaction of the bismuth compound proceeds, the resulting composite oxide has excellent orientation due to the excellent orientation of the calcium cobaltate plate-like crystal represented by the general formula (1).
  • the calcination temperature is preferably 900 to 980 ° C., particularly preferably 910 to 960 ° C. in that a thermoelectric conversion material composed of a high-density and single-phase composite oxide can be obtained.
  • the firing atmosphere is preferably an air atmosphere or an oxygen atmosphere.
  • the firing time is preferably 10 hours or more, particularly preferably 20 to 60 hours.
  • the raw material slurry contains a binder resin
  • heat treatment may be performed mainly for degreasing before the firing step.
  • the temperature for degreasing is not particularly limited as long as it is sufficient to thermally decompose the binder resin. Usually, the degreasing temperature is 500 ° C. or less.
  • thermoelectric conversion material obtained by performing the firing step can be subjected to surface polishing treatment if necessary and cut out to a desired size.
  • thermoelectric conversion material which consists of a sintered body of the plate-like crystal
  • thermoelectric conversion element of the present invention is a thermoelectric conversion element having a p-type thermoelectric conversion material and an n-type thermoelectric conversion material, and the p-type thermoelectric conversion material is the thermoelectric conversion material of the present invention. It is a thermoelectric conversion element.
  • thermoelectric conversion material examples include a calcium manganese composite oxide represented by the following general formula (3) and a calcium manganese composite oxide represented by the following general formula (4). At least one selected is preferable.
  • a 1 is selected from the group consisting of Ce, Pr, Nd, Sm, Eu, Gd, Yb, Dy, Ho, Er, Tm, Tb, Lu, Sr, Ba, Al, Bi, Y, and La.
  • a 2 is at least one element selected from the group consisting of Ta, Nb, W, V and Mo.
  • x is 0 ⁇ x ⁇ 0.5
  • y is 0 ⁇ .
  • z is 2.7 ⁇ z ⁇ 3.3.
  • the calcium manganese composite oxide represented by the general formula (3) and the calcium manganese composite oxide represented by the general formula (4) are known compounds and have a negative Seebeck coefficient. When a temperature difference is generated between both ends of the material made of an oxide, the potential generated by the thermoelectromotive force is higher on the high temperature side than on the low temperature side, and exhibits characteristics as an n-type thermoelectric conversion material.
  • the calcium manganese complex oxide represented by the general formula (3) is a calcium manganese complex oxide having a perovskite type crystal structure. Ca is partially substituted with an A 1 element as necessary, and a part of Mn If necessary, it is partially substituted with A 2 element.
  • a 1 and A 2 are elements that are included as necessary with the intention of imparting electrical conductivity.
  • calcium-manganese-based composite oxide represented by, in the calcium-manganese-based composite oxide having a layered perovskite structure, Ca partially substituted with A 3 element by the need, some of the Mn those substituted partially with A 4 elements necessary.
  • a 3 and A 4 are elements that are included as necessary for the purpose of imparting electrical conductivity.
  • the calcium manganese composite oxide represented by the following general formula (3) and the calcium manganese composite oxide represented by the following general formula (4) are produced by a known method. It can be manufactured by mixing raw materials and firing so that the metal component ratio is the same as the metal component ratio of the composite oxide (Japanese Patent Application Laid-Open Nos. 2006-49796 and 2010-37131). No. 2010-195620, etc.). Further, the obtained calcium manganese composite oxide is filled in a mold having a predetermined shape, molded under pressure, and sintered under normal pressure, so that an n-type thermoelectric conversion having a predetermined shape is obtained. Can be a material.
  • thermoelectric conversion element of the present invention is obtained by electrically connecting one end of a p-type thermoelectric conversion material and one end of an n-type thermoelectric conversion material.
  • the shape, size, etc. of the p-type thermoelectric conversion material and n-type thermoelectric conversion material are not particularly limited, and are appropriately selected according to the size, shape, etc. of the thermoelectric conversion module so that the necessary thermoelectric performance can be exhibited. Is done.
  • the method of electrically connecting one end of the p-type thermoelectric conversion material and one end of the n-type thermoelectric conversion material is not particularly limited, but the operating temperature of the thermoelectric conversion module of the present invention (293 to 1223 K (absolute temperature)) ) Any method that can withstand the range is acceptable.
  • a method of bonding one end of a p-type thermoelectric conversion material and one end of an n-type thermoelectric conversion material to a conductive material using a bonding agent or directly or electrically connecting one end of a p-type thermoelectric conversion material and one end of an n-type thermoelectric conversion material
  • a method of pressure bonding or sintering through a conductive material a method of electrically connecting a p-type thermoelectric conversion material and an n-type thermoelectric conversion material using a conductor material, and the like.
  • FIG. 1 shows a schematic diagram of one embodiment of a thermoelectric conversion element in the present invention.
  • a thermoelectric conversion element 10 includes a p-type thermoelectric conversion material (P), an n-type thermoelectric conversion material (N), an electrode (1), an electrode (1a), and a binder (2).
  • the p-type thermoelectric conversion material (P), the electrode (1), and the electrode (1a) are connected via the binder (2).
  • the n-type thermoelectric conversion material (N), the electrode (1), and the electrode (1a) are connected via the binder (2).
  • a metal paste, solder or the like is used, and noble metals such as gold, silver and platinum that can be used even at a high temperature of about 1223K, and pastes containing these noble metals are suitable.
  • noble metals such as gold, silver and platinum that can be used even at a high temperature of about 1223K, and pastes containing these noble metals are suitable.
  • an insulating substrate (not shown) may be further connected to the electrode (1a) via a binder (2).
  • the insulating substrate is used for the purpose of improving thermal uniformity, mechanical strength, maintaining electrical insulation, and the like.
  • oxide ceramics such as alumina is preferable.
  • thermoelectric conversion module of the present invention is a thermoelectric conversion module comprising a plurality of the thermoelectric conversion elements of the present invention, and the unjoined end of the p-type thermoelectric conversion material of one thermoelectric conversion element is the other A plurality of thermoelectric conversion elements are connected in series by being connected to an unconnected end of the n-type thermoelectric conversion material of the thermoelectric conversion element.
  • the end part of the p-type thermoelectric conversion element and the end part of the n-type thermoelectric conversion material of the other thermoelectric conversion element are bonded by using a binder to bond the unjoined end part of the thermoelectric conversion element onto the substrate. Are connected on the insulating substrate.
  • thermoelectric conversion elements used in one thermoelectric conversion module is not particularly limited, and can be arbitrarily selected according to required power.
  • FIG. 2 shows a schematic diagram of one embodiment of the thermoelectric conversion module of the present invention.
  • eight thermoelectric conversion elements are used.
  • the output of the module is approximately equal to the output of the thermoelectric conversion element multiplied by the number of thermoelectric conversion elements used.
  • thermoelectric conversion module of the present invention can generate a voltage by arranging one end of the thermoelectric conversion module in the high temperature portion and the other end of the thermoelectric conversion module in the low temperature portion.
  • the substrate surface may be disposed in the high temperature portion and the other end may be disposed in the low temperature portion.
  • thermoelectric conversion module shown in FIG. 2
  • FIG. 3 showing the rear view of FIG. 2 in more detail.
  • thermoelectric conversion material (N) and the p-type thermoelectric conversion material (P) for example, a silver paste or the like is screen-printed, dried, fired, and then n-type thermoelectric conversion material (N). And a binder (2a) layer is formed on the end face of the p-type thermoelectric conversion material (P).
  • a silver paste or the like is screen-printed in a predetermined pattern on an insulating substrate (4) such as an alumina substrate, dried, and then fired to form a binder (2b) layer.
  • a silver paste or the like is further screen-printed on the binder (2b) layer, an electrode (1a) such as a silver electrode is placed thereon, and a dried structure is obtained.
  • a lower electrode substrate (5) is produced.
  • thermoelectric conversion module of FIG. 2 can be manufactured by baking the structure (6) after thermocompression treatment.
  • Examples of the heat source in the high temperature section include automobile engines; factories; thermal power or nuclear power plants; various fuel cells such as molten carbonate type (MCFC), hydrogen membrane separation type (HMFC), solid oxide type (SOFC); gas Examples include high-temperature heat of about 200 ° C. or higher from various cogeneration systems such as engine type and gas turbine type, and low-temperature heat of about 20 to 200 ° C. such as solar heat, hot water, body temperature, and the like.
  • MCFC molten carbonate type
  • HMFC hydrogen membrane separation type
  • SOFC solid oxide type
  • gas Examples include high-temperature heat of about 200 ° C. or higher from various cogeneration systems such as engine type and gas turbine type, and low-temperature heat of about 20 to 200 ° C. such as solar heat, hot water, body temperature, and the like.
  • thermoelectric conversion module of the present invention can be used in a temperature range of 773 to 1223 K (absolute temperature), particularly in a high temperature range of 873 to 1223 K (absolute temperature). It can be used.
  • thermoelectric conversion module of the present invention is excellent in thermal durability, and even if the high temperature portion is rapidly cooled from a high temperature of about 1073 K to room temperature, it is not damaged and the power generation characteristics are hardly deteriorated.
  • thermoelectric conversion module of the present invention is not only small and has high power density, but also resistant to thermal shock, so waste heat from factories, garbage incinerators, thermal / nuclear power plants, various fuel cells, cogeneration systems, etc. In addition to its use, it can also be applied to thermoelectric power generation using the heat of an automobile engine with a drastic temperature change.
  • the major axis, minor axis, and aspect ratio are average values of 10 particles obtained by observing the obtained calcium cobaltate particles with an SEM at a magnification of 1000 times and arbitrarily extracting from the field of view. Moreover, the SEM photograph of the obtained calcium cobaltate is shown in FIG.
  • Examples 1 to 5 and Comparative Examples 1 to 4 Calcium cobaltate, calcium carbonate (average particle size 1.4 ⁇ m) obtained above, cobalt oxide (Co 3 O 4 , average particle size 1.1 ⁇ m), bismuth oxide (Bi 2 O 3 , average particle size 2.5 ⁇ m) was charged in a container with the blending amount shown in Table 2. Next, an aqueous solution containing 1% by mass of a dispersant and 2% by mass of ethanol was added to the container so that the slurry concentration was 68.5% by mass.
  • thermoelectric conversion material was cut into a size that could be measured with a thermoelectric property evaluation apparatus, and the cut surface was flattened using a polishing machine to prepare a p-type thermoelectric conversion material.
  • thermoelectric conversion material (Reference Example 1) A p-type thermoelectric conversion material was prepared by the pressure sintering method based on the description in Example 1 of JP-A-2006-49796 using the calcium cobaltate obtained above. Note that. Hot press sintering was performed at 1123 K for 20 hours under uniaxial pressure of 10 MPa.
  • thermoelectric conversion material obtained by the Example was measured about the thermoelectric conversion material obtained by the Example, the comparative example, and the reference example. Moreover, the complex oxide contained in the thermoelectric conversion material was confirmed by X-ray diffraction analysis and ICP analysis. The results are shown in Table 3.
  • thermoelectric conversion materials of Example 1 and Comparative Example 1 were cut into two by hand, and SEM photographs of cross sections of the thermoelectric conversion materials of Example 1 and Comparative Example 1 are shown in FIGS. 5 and 6, respectively. It was.
  • the average length of the major axis, the average length of the minor axis, and the aspect ratio were determined by cutting the p-type thermoelectric conversion material into two by hand, observing the cross section of the cut surface at a magnification of 1000 times, and arbitrarily changing the field of view. It is an average value about 10 particles in the extracted cross section.
  • thermoelectric conversion material (Evaluation of orientation state) A p-type thermoelectric conversion material is cut into two by hand, and the cross section of the cut surface is observed by SEM at a magnification of 1000 times, and a complex oxide whose major axis inclination with respect to the surface of the thermoelectric conversion material is within 0 ⁇ 20 °
  • the ratio of plate crystals was determined.
  • the symbols in the table indicate the following.
  • O The major axis tilt with respect to the surface of the thermoelectric conversion material is 0 ⁇ .
  • the ratio of the plate-like crystal of the composite oxide within 20 ° is 60% or more and less than 80%.
  • The plate-like crystal of the composite oxide having a tilt in the major axis direction with respect to the surface of the thermoelectric conversion material is within 0 ⁇ 20 °.
  • the ratio is 40% or more and less than 60% x: The ratio of the plate-like crystal of the complex oxide whose major axis inclination with respect to the surface of the thermoelectric conversion material is within 0 ⁇ 20 ° is less than 40%
  • thermoelectric property evaluation apparatus ZEM-3 ULVAC-RIKO
  • the power factor was calculated after measurement.
  • a power factor is calculated
  • Power factor (PF) S 2 / ⁇ (1) (S: thermoelectromotive force, ⁇ : specific resistance value)
  • thermoelectric conversion materials of the present invention (Examples 1 to 5) have a higher power factor and excellent thermoelectric properties than the thermoelectric conversion materials obtained in the comparative examples, and the pressure firing. It was found that the thermoelectric conversion material (Reference Example 1) obtained by the sintering method has almost the same thermoelectric characteristics.
  • thermoelectric conversion module (Creation of thermoelectric conversion module) ⁇ Creation of n-type thermoelectric conversion material> Calcium carbonate and manganese oxide were weighed so that the molar ratio of calcium to manganese was 1.0: 1.0 and charged into the tank. Water and a dispersant (polycarboxylic acid ammonium salt) were added to the tank to prepare a slurry having a slurry concentration of 30% by mass. The concentration of the dispersant was 2% by mass. While stirring the slurry, the slurry was supplied to a media stirring type bead mill charged with zirconia beads having a diameter of 0.5 mm, and mixed for 90 minutes for wet grinding. Next, the slurry was supplied to a spray dryer set at 200 ° C.
  • a dispersant polycarboxylic acid ammonium salt
  • the dried raw material was charged into an electric furnace and baked in the air at 850 ° C. for 5 hours. X-ray diffraction measurement was performed on the fired product, and it was confirmed that a single phase of CaMnO 3 was obtained.
  • the fired product was charged into a mold and pressed at a pressure of 2 t / cm 2 to prepare a molded body.
  • the compact was charged into an electric furnace and heat-treated at 1250 ° C. for 12 hours to obtain an n-type thermoelectric conversion material.
  • thermoelectric conversion module was produced using the thermoelectric conversion material of Example 1 as the p-type thermoelectric conversion material and the n-type thermoelectric conversion material prepared above as the n-type thermoelectric conversion material.
  • thermoelectric conversion material of Example 1 was produced using the thermoelectric conversion material of Example 1 as the p-type thermoelectric conversion material and the n-type thermoelectric conversion material prepared above as the n-type thermoelectric conversion material.
  • thermoelectric conversion material (P, N) Silver paste is screen-printed on the end faces of the n-type thermoelectric conversion material (N) and the p-type thermoelectric conversion material (P) prepared in Example 1, and is dried for 15 minutes in a 120 ° C. dryer, and then the electricity at 850 ° C. Heating was performed in a furnace for 1 hour to form a binder (2a) layer on the end face of the thermoelectric conversion material.
  • ⁇ Process B Preparation of lower electrode substrate (5)> A silver paste was printed in a predetermined pattern on the alumina substrate (4), dried for 15 minutes with a dryer at 120 ° C., and then heated in an electric furnace at 850 ° C. for 1 hour to form a binder (2b) layer. A silver paste (2c) was further printed on the binder (2b) layer, and after placing the silver electrode (1a), it was dried with a dryer at 120 ° C. for 30 minutes. The structure (5) on which the silver electrode (1a) was arranged was thermocompression bonded at 200 ° C. for 15 minutes with a load of 35 kN to obtain a lower electrode substrate (5).
  • thermoelectric conversion module A silver paste (2e) is printed as a bonding material layer on the lower electrode (1a), and an n-type thermoelectric conversion material (N) and a p-type thermoelectric having a binder (2a) layer on the end face of the thermoelectric conversion material prepared in step A.
  • the conversion materials (P) were alternately arranged and then dried for 30 minutes with a 120 ° C. dryer.
  • the silver electrode (1) coated with the silver paste (2d) on the binder (2a) layer on the arrayed thermoelectric conversion material is replaced with an n-type thermoelectric conversion material (N) and a p-type thermoelectric conversion material (P) of ⁇ .
  • thermoelectric conversion module It arrange
  • the structure (6) was thermocompression bonded at 200 ° C. for 15 minutes with a load of 35 kN, and then heated in an electric furnace at 850 ° C. for 1 hour to prepare a thermoelectric conversion module.
  • thermoelectric conversion module 50 n-type thermoelectric conversion materials and 50 p-type thermoelectric conversion materials of 3.5 mm ⁇ 3.5 mm ⁇ 7.5 mm were prepared by the above-described method, and then placed on an alumina substrate by the above-described method.
  • a thermoelectric conversion module was created.
  • a power generation test was performed by bringing a plate heater at 500 ° C. into contact with one side of the module and a water-cooled plate with 20 ° C. cooling water flowing into the opposite side. The temperature on the high temperature side of the thermoelectric conversion material was 357 ° C., the temperature on the low temperature side was 92 ° C., and the temperature difference was 265 ° C. At this time, a maximum output of 0.6 W was observed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

 工業的に有利な方法で製造され、優れた熱電特性を有するCoO2系層状酸化物からなる熱電変換材料、該熱電変換材料を用いる熱電変換素子及び熱電変換モジュールを提供すること。 一般式(2):BifCag3 hCoi4 jk(2)で表わされる複合酸化物の板状結晶の焼結体であり、密度が4.0~5.1g/cm3であり、SEM観察したときに、熱電変換材料の表面に対する長軸方向の傾きが0±20°以内である前記一般式(2)で表される複合酸化物の板状結晶の割合が個数換算で60%以上であり、前記一般式(2)で表される複合酸化物の板状結晶の長径の平均長さが20μm以上であり、アスペクト比が20以上であること、を特徴とする熱電変換材料。

Description

熱電変換材料、熱電変換素子及び熱電変換モジュール
 本発明は、熱電変換材料、特にp型熱電変換材料として有用なCoO2系層状酸化物からなる熱電変換材料、それを用いる熱電変換素子及び熱電変換モジュールに関するものである。
 熱電変換とは、ゼーベック効果を利用し、熱電変換材料の両端に温度差を設けることで電位差を生じさせて発電を行うエネルギー変換法である。この熱電発電では、熱電変換材料の一端を廃熱により生じた高温部に配置し、もう一端を大気中(室温)に配置して、それぞれの両端に導線を接続するだけで電気が得られる。したがって、一般の発電に必要なモーターやタービン等の可動装置は全く必要ない。このため発電コストが安く、燃焼等によるガスの排出もなく、熱電変換材料が劣化するまで継続的に発電を行うことができるという利点がある。
 n型熱電変換特性を有する酸化物としては、CaMnO3のカルシウムマンガン複合酸化物や該カルシウムマンガン複合酸化物のCa又はMnの一部を適当な元素で置換したもの等が提案され、該カルシウムマンガン複合酸化物は高温の空気中でも良好な導電性を示し、また、ゼーベック係数が100μV/Kを超えるので、n型酸化物熱電変換材料として実用化が期待されている(例えば、特許文献1)。
 一方、p型熱電変換特性を有する酸化物として、コバルト酸カルシウム(Ca3Co49)等のCoO2系層状酸化物、或いは該コバルト酸カルシウムのCa又は/及びCoの一部を適当な元素で置換したCoO2系層状酸化物等も報告されている(例えば、特許文献2~3参照等)。
 CoO2系層状酸化物を用いた熱電変換材料は、優れた熱電特性を発現させるためにCoO2系層状酸化物の板状結晶を用い、結晶面が一方向に配向するように調製されている。
 下記特許文献4には、CoO2系層状酸化物をp型熱電変換材料として用いた熱電変換素子が提案され、熱電変換材料の調製方法として、CoO2系層状酸化物の板状結晶を加圧成形、次いで加圧下にホットプレス焼結させる、所謂、加圧焼結法により調製する方法が開示されている。
 特許文献4の加圧焼結法で得られる熱電変換材料は、CoO2系層状酸化物の板状結晶が結晶面の方向に配向し、配向性に優れたものが得られるが、加圧焼結法は、多量の焼結体を同時に作製することは困難であり、工業的に有利でない。
 また、工業的に有利な方法でCoO2系層状酸化物を含む熱電変換材料を製造する方法として、特許文献5には、Co34、Co(OH)2等のコバルト化合物からなる板状粉末、カルシウム化合物及びフッ素化合物とをドクターブレード法、プレス成形法、圧延法、押出法等で成形して、次いで常圧で焼結させる方法が提案されている。
特開2010-37131号公報 特許第3069701号公報 特開2001-223393号公報 特開2006-49796号公報 特開2004-152846号公報
 熱電発電は、今後心配されるエネルギー問題の解決する一つの有望な技術として注目されているが、その一方で、CoO2系層状酸化物を含み、熱電特性に優れた熱電変換材料を工業的に有利な方法で製造する方法が求められている。
 従って、本発明の目的は、工業的に有利な方法で製造され、優れた熱電特性を有するCoO2系層状酸化物からなる熱電変換材料、該熱電変換材料を用いる熱電変換素子及び熱電変換モジュールを提供することにある。
 本発明者らは、上記実情に鑑み鋭意研究を重ねた結果、特定のコバルト酸カルシウムの板状結晶をテンプレートとし、該コバルト酸カルシウムの板状結晶、ビスマス化合物、コバルト化合物及びカルシウム化合物とを反応原料として得られるCoO2系層状酸化物は、焼成反応の際に長軸方向への結晶成長が促進されるため、長軸方向に結晶が発達した板状結晶になること、特定の長径の長さを有する複合酸化物の板状結晶が結晶面の長軸方向に配向した焼結体からなるものは、加圧焼結法で得られる熱電変換材料と同等の熱電特性を有すること等を見出し本発明を完成するに到った。
 すなわち、本発明(1)は、下記一般式(2):
   BifCag3 hCoi4 jk   (2)
(式中、M3は、Na、K、Li、Ti、V、Cr、Mn、Fe、Ni、Cu、Zn、Pb、Sr、Ba、Al、Y及びランタノイドからなる群から選択される一種又は二種以上の元素であり、M4は、Ti、V、Cr、Mn、Fe、Ni、Cu、Mo、W、Nb及びTaからなる群から選択される一種又は二種以上の元素である。fは0<f≦1.0、gは2.0≦g≦3.6、hは0≦h≦1.0、iは3.5≦i≦4.5、jは0≦j≦0.5、kは8.0≦k≦10.0である。)
で表わされる複合酸化物の板状結晶の焼結体であり、
 密度が4.0~5.1g/cm3であり、
 SEM観察したときに、熱電変換材料の表面に対する長軸方向の傾きが0±20°以内である前記一般式(2)で表される複合酸化物の板状結晶の割合が個数換算で60%以上であり、
 前記一般式(2)で表される複合酸化物の板状結晶の長径の平均長さが20μm以上であり、アスペクト比が20以上であること、
を特徴とする熱電変換材料を提供するものである。
 また、本発明(2)は、p型熱電変換材料とn型熱電変換材料とを有する熱電変換素子であって、該p型熱電変換材料が本発明(1)の熱電変換材料であることを特徴とする熱電変換素子を提供するものである。
 また、本発明(3)は、本発明(2)の熱電変換素子を有することを特徴とする熱電変換モジュールを提供するものである。
 本発明によれば、工業的に有利な方法で製造され、優れた熱電特性を有するCoO2系層状酸化物からなる熱電変換材料、該熱電変換材料を用いる熱電変換素子及び熱電変換モジュールを提供することができる。
本発明における熱電変換素子の一つの実施形態の模式図である。 本発明における熱電変換モジュールの一つの実施形態の模式図である。 図2の熱電変換モジュールの背面図である。 実施例で使用したコバルト酸カルシウムのSEM写真である。 実施例1で得られた熱電変換材料の断面のSEM写真である(倍率1000倍)。 比較例1で得られた熱電変換材料の断面のSEM写真である(倍率1000倍)。
 本発明の熱電変換材料は、下記一般式(2):
   BifCag3 hCoi4 jk   (2)
(式中、M3は、Na、K、Li、Ti、V、Cr、Mn、Fe、Ni、Cu、Zn、Pb、Sr、Ba、Al、Y及びランタノイドからなる群から選択される一種又は二種以上の元素であり、M4は、Ti、V、Cr、Mn、Fe、Ni、Cu、Mo、W、Nb及びTaからなる群から選択される一種又は二種以上の元素である。fは0<f≦1.0、gは2.0≦g≦3.6、hは0≦h≦1.0、iは3.5≦i≦4.5、jは0≦j≦0.5、kは8.0≦k≦10.0である。)
で表わされる複合酸化物の板状結晶の焼結体であり、
 密度が4.0~5.1g/cm3であり、
 SEM観察したときに、熱電変換材料の表面に対する長軸方向の傾きが0±20°以内である前記一般式(2)で表される複合酸化物の板状結晶の割合が個数換算で60%以上であり、
 前記一般式(2)で表される複合酸化物の板状結晶の長径の平均長さが20μm以上であり、アスペクト比が20以上であること、
を特徴とする熱電変換材料である。
 本発明の熱電変換材料は、下記一般式(2):
   BifCag3 hCoi4 jk   (2)
で表される複合酸化物の板状結晶の焼結体である。
 一般式(2)中、M3は、Na、K、Li、Ti、V、Cr、Mn、Fe、Ni、Cu、Zn、Pb、Sr、Ba、Al、Y及びランタノイドからなる群から選択される一種又は二種以上の元素であり、M4は、Ti、V、Cr、Mn、Fe、Ni、Cu、Mo、W、Nb及びTaからなる群から選択される一種又は二種以上の元素である。M3のランタノイド元素としては、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Lu等が挙がられる。M1及びM2は、電気伝導性を付与するため添加される元素である。fは、0<f≦1.0、好ましくは0.2≦f≦0.8である。fが上記範囲であることにより、熱電変換材料が高密度となり且つ優れた熱電特性を有する。gは、2.0≦g≦3.6、好ましくは2.2≦g≦3.3、特に好ましくは3.0<g≦3.3である。hは、0≦h≦1.0、好ましくは0.1≦h≦0.9である。iは、3.5≦i≦4.5、好ましくは3.7≦i≦4.3である。jは、0≦j≦0.5、好ましくは0.1≦j≦0.4である。kは、8.0≦k≦10.0、好ましくは8.5≦k≦9.5である。
 一般式(2)で表される複合酸化物は、コバルト酸カルシウム(Ca3Co49)のCoO2系層状酸化物において、Caの一部がBiで、更に必要によりM3元素で置換され、Coの一部が必要によりM4元素で置換されたものである。一般式(2)で表される複合酸化物の構造は、岩塩型構造をとる層と、六つのOが一つのCoに八面体配位し、その八面体がお互いに辺を共有するように二次元的に配列したCoO2層が、交互に積層した構造を有するものである。
 本発明の熱電変換材料は、X線回折的に単相の一般式(2)で表される複合酸化物からなる熱電変換材料である。
 本発明の熱電変換材料は、従来のものに比べて、熱電変換材料を構成する一般式(2)で表される複合酸化物の板状結晶が、長軸方向に結晶が発達したものである。
 本発明の熱電変換材料では、一般式(2)で表される複合酸化物の板状結晶が結晶面の長軸方向に配向している、すなわち、熱電変換材料の表面と一般式(2)で表される複合酸化物の板状結晶の結晶面の長軸方向が概ね平行である。なお、板状結晶が結晶面の長軸方向に配向していることは、熱電変換材料の断面を倍率1000倍でSEM観察することにより確認される。また、熱電変換材料の表面と一般式(2)で表される複合酸化物の板状結晶の結晶面の長軸方向が概ね平行であるとは、熱電変換材料の表面に対する長軸方向の傾きが0±20°以内である複合酸化物の板状結晶の割合が個数換算で60%以上であることを指す。
 本発明の熱電変換材料において、一般式(2)で表される複合酸化物の板状結晶が結晶面の長軸方向に配向しているものの含有率が高いものほど熱電特性に優れたものになるが、必ずしも熱電変換材料に含有されるすべての複合酸化物が結晶面の長軸方向に配向している必要はなく、熱電変換材料を2つに切断し、その切り口の断面を1000倍の倍率でSEM観察したときに、熱電変換材料の表面に対する長軸方向の傾きが0±20°以内である複合酸化物の板状結晶の割合が個数換算で60%以上あればよく、好ましくは熱電変換材料の表面に対する長軸方向の傾きが0±15°以内である複合酸化物の板状結晶の割合が個数換算で65%以上である。
 本発明の熱電変換材料の密度は、4.0~5.1g/cm3、好ましくは4.2~5.1g/cm3である。熱電変換材料の密度が上記範囲にあることにより、熱電変換材料の強度を高め加工性を良好にし、熱電変換材料の抵抗率を低減させることができる。
 本発明の熱電変換材料を構成する一般式(2)で表される複合酸化物の板状結晶の長径の平均長さは、20μm以上、好ましくは20~50μm、特に好ましくは25~50μmである。
 本発明の熱電変換材料を構成する一般式(2)で表される複合酸化物の板状結晶の短径の平均長さは、好ましくは0.5~5μm、特に好ましくは0.8~3μm、特に好ましくは0.8~1.8μmである。
 本発明の熱電変換材料を構成する一般式(2)で表される複合酸化物の板状結晶のアスペクト比は、20以上、好ましくは20~50である。熱電変換材料を構成する一般式(2)で表される複合酸化物の板状結晶のアスペクト比が、上記範囲にあることにより、熱電特性に優れる。
 なお、一般式(2)で表される複合酸化物の板状結晶の長径、短径及びアスペクト比は、一般式(2)で表される複合酸化物の板状結晶を倍率1000倍でSEM観察し、その視野で任意に抽出した10個の粒子についての平均値である。
 本発明の熱電変換材料を製造する方法としては、以下に示す熱電変換材料の製造方法(1)が挙げられる。
 熱電変換材料の製造方法(1)は、下記一般式(1):
   Caa1 bCoc2 de    (1)
(式中、M1は、Bi、Na、K、Li、Ti、V、Cr、Mn、Fe、Ni、Cu、Zn、Pb、Sr、Ba、Al、Y及びランタノイドからなる群から選択される一種又は二種以上の元素であり、M2は、Ti、V、Cr、Mn、Fe、Ni、Cu、Mo、W、Nb及びTaからなる群から選択される一種又は二種以上の元素である。aは2.0≦a≦3.6、bは0<b≦1.0、cは2.0≦c≦4.5、dは0≦d≦2.0、eは8.0≦e≦10.0である。)
で表されるコバルト酸カルシウムの板状結晶と、ビスマス化合物と、カルシウム化合と、コバルト化合物と、を含有する原料スラリーを調製するスラリー調製工程と、
 該原料スラリーをシート化して、一般式(1)で表されるコバルト酸カルシウムの板状結晶と、ビスマス化合物と、カルシウム化合物と、コバルト化合物と、を含有する原料シートを調製するシート化工程と、
 該原料シートを積層して原料シート積層体を調製する積層工程と、
 該原料シート積層体を焼成し、下記一般式(2):
   BifCag3 hCoi4 jk   (2)
(式中、M3は、Na、K、Li、Ti、V、Cr、Mn、Fe、Ni、Cu、Zn、Pb、Sr、Ba、Al、Y及びランタノイドからなる群から選択される一種又は二種以上の元素であり、M4は、Ti、V、Cr、Mn、Fe、Ni、Cu、Mo、W、Nb及びTaからなる群から選択される一種又は二種以上の元素である。fは0<f≦1.0、gは2.0≦g≦3.6、hは0≦h≦1.0、iは3.5≦i≦4.5、jは0≦j≦0.5、kは8.0≦k≦10.0である。)
で表わされる複合酸化物の板状結晶の焼結体である熱電変換材料を得る焼成工程と、
を有する熱電変換材料の製造方法である。
 つまり、熱電変換材料の製造方法(1)は、スラリー調製工程と、シート化工程と、積層工程と、焼成工程と、を有する。
 スラリー調製工程は、一般式(1)で表されるコバルト酸カルシウムの板状結晶と、ビスマス化合物と、カルシウム化合物と、コバルト化合物と、を含有する原料スラリーを調製する工程である。
 スラリー調製工程に係るコバルト酸カルシウムは、一般式(1):
   Caa1 bCoc2 de   (1)
で表されるコバルト酸カルシウムである。一般式(1)中、M1は、Bi、Na、K、Li、Ti、V、Cr、Mn、Fe、Ni、Cu、Zn、Pb、Sr、Ba、Al、Y及びランタノイドからなる群から選択される一種又は二種以上の元素であり、M2は、Ti、V、Cr、Mn、Fe、Ni、Cu、Mo、W、Nb及びTaからなる群から選択される一種又は二種以上の元素である。M1は、電気伝導性を付与するために添加される元素であり、M1は、好ましくはBiである。M2は必要により、更に熱電特性を改良するために添加される元素である。M1に係るランタノイド元素としては、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Lu等が挙げられる。aは、2.0≦a≦3.6、好ましくは2.2≦a≦3.3である。bは、0<b≦1.0、好ましくは0.1≦b≦0.9である。cは、2.0≦c≦4.5、好ましくは2.2≦c≦4.3である。dは、0≦d≦2.0、好ましくは0.1≦d≦1.9である。eは、8.0≦e≦10.0、好ましくは8.5≦e≦9.5である。
 一般式(1)で表されるコバルト酸カルシウムは、公知の化合物であり、コバルト酸カルシウム(Ca3Co49)のCoO2系層状酸化物において、Caの一部がM1元素で置換され、Coの一部が必要によりM2元素で置換されたものである。コバルト酸カルシウムの構造は、岩塩型構造をとる層と、六つのOが一つのCoに八面体配位し、その八面体がお互いに辺を共有するように二次元的に配列したCoO2層が、交互に積層した構造を有するものであることが知られている。
 そして、スラリー調製工程に係る一般式(1)で表されるコバルト酸カルシウムは、板状結晶である。一般式(1)で表されるコバルト酸カルシウムの板状結晶は、本発明の熱電変換材料の製造の過程において、テンプレートとして作用する。つまり、シート化工程で、コバルト酸カルシウムの板状結晶を、結晶面の長軸方向に配向させることで、その配向に起因して、一般式(2)で表される複合酸化物の板状結晶を、結晶面の長軸方向に配向させることができる。
 一般式(1)で表されるコバルト酸カルシウムの板状結晶の長径は、良好な配向性を有する熱電変換材料が得られる点で、好ましくは6~15μm、特に好ましくは7~13μmである。また、一般式(1)で表されるコバルト酸カルシウムの板状結晶の短径は、更に配向性が向上した熱電変換材料が得られる点で、好ましくは0.5~5μm、特に好ましくは0.5~4μmである。一般式(1)で表されるコバルト酸カルシウムの板状結晶のアスペクト比は、接触抵抗が低減される点で、好ましくは5~20、特に好ましくは8~15である。なお、コバルト酸カルシウムの板状結晶の長径、短径及びアスペクト比は、コバルト酸カルシウムの板状結晶を倍率1000倍でSEM観察し、その視野で任意に抽出した10個の粒子についての平均値である。
 一般式(1)で表されるコバルト酸カルシウムの板状結晶は、公知の方法により製造される。例えば、一般式(1)で表されるコバルト酸カルシウムの板状結晶は、カルシウム源、コバルト源、M1源及び必要により添加するM2源の原料物質を所定の配合比率で混合し、酸化性雰囲気中で焼成する固相反応法により製造される(特開2001-223393号公報、特許第3069701号公報、特開2006-499796号公報等参照。)。また、その他の一般式(1)で表されるコバルト酸カルシウムの板状結晶の製造方法として、例えば、フラックス法、ゾーンメルト法、引き上げ法、ガラス前駆体を経由するガラスアニール法等の単結晶製造方法、固相反応法、ゾルゲル法等の粉末製造方法、スパッタリング法、レーザーアブレーション法、ケミカル・ペーパー・デポジション法等の薄膜製造方法等の公知の方法(例えば、特開2006-499796号公報等参照。)が挙げられる。
 スラリー調製工程に係るカルシウム化合物は、カルシウム原子を有する化合物であれば、特に制限されず、酸化カルシウム、塩化カルシウム、炭酸カルシウム、硝酸カルシウム、水酸化カルシウム、ジメトキシカルシウム、ジエトキシカルシウム、ジプロポキシカルシウム等が挙げられる。
 スラリー調製工程に係るコバルト化合物としては、コバルト原子を有する化合物であればよく、例えば、CoO、Co23、Co34等の酸化コバルト、塩化コバルト、炭酸コバルト、硝酸コバルト、水酸化コバルト、ジプロポキシコバルト等が挙げられる。
 スラリー調製工程に係るビスマス化合物としては、ビスマスを有する化合物であればよく、例えば、Bi23、Bi25等の酸化ビスマス、硝酸ビスマス、塩化ビスマス、水酸化ビスマス、トリプロポキシビスマス等が挙げられる。
 カルシウム化合物、コバルト化合物及びビスマス化合物の諸物性は、特に制限はないが、反応性に優れる点で、レーザー回折法により求められる平均粒径が、好ましくは5μm以下、特に好ましくは0.1~3.0μmである。
 そして、スラリー調製工程では、一般式(1)で表されるコバルト酸カルシウムの板状結晶、カルシウム化合物、コバルト化合物及びビスマス化合物を、溶媒に添加し、混合撹拌することにより、各原料成分が溶媒に分散した原料スラリーを調製する。スラリー調製工程では、十分撹拌等を行って各原料成分が均一に分散した原料スラリーを調製することが望ましい。
 原料スラリー中、一般式(1)で表されるコバルト酸カルシウムの板状結晶の含有量は、熱電変換材料の高配向化が図れる点で、一般式(1)で表されるコバルト酸カルシウムの板状結晶、ビスマス化合物、カルシウム化合物及びコバルト化合物の合計含有量に対して、好ましくは1~99質量%、特に好ましくは10~80質量%である。
 ビスマス化合物は、一般式(2)で表される複合酸化物の結晶構造中に、Biを取り込ませて含有させるビスマス源としてだけでなく、焼結助剤としての機能も有する。
 スラリー調製工程では、一般式(2)で表される複合酸化物の式中のfの値が、0<f≦1、好ましくは0.2≦f≦0.8となる量で、原料スラリーに、ビスマス化合物を含有させることが、熱電変換材料を高密化することができ、また、優れた熱電特性を有する熱電変換材料が得られる点で、好ましい。なお、スラリー調製工程で、一般式(1)で表されるコバルト酸カルシウムの板状結晶として、Biを含むコバルト酸カルシウムを用いる場合は、一般式(1)で表されるコバルト酸カルシウムに含まれるBiの量を考慮して、一般式(2)で表される複合酸化物の式中のfの値が、0<f≦1、好ましくは0.2≦f≦0.8となる量で、原料スラリーに、ビスマス化合物を含有させることが、熱電変換材料を高密化することができ、また、優れた熱電特性を有する熱電変換材料が得られる点で、好ましい。
 また、スラリー調製工程では、一般式(1)で表されるコバルト酸カルシウムに含まれるCa及びCoの量を考慮して、一般式(2)で表される複合酸化物の式中のgの値が、2.0≦g≦3.6、好ましくは2.2≦g≦3.3、iの値が、3.5≦i≦4.5、好ましくは3.7≦i≦4.3となる量で、原料スラリーに、カルシウム化合物及びコバルト化合物を含有させる。
 スラリー調製工程における溶媒としては、水、水と親水性溶媒との混合溶媒、有機溶媒等が挙げられる。
 原料スラリーのスラリー濃度(固形分含有量)は、スラリーの分散性及びシート化工程において原料シートを高密度化できる点で、好ましくは60~75質量%、特に好ましくは65~70質量%である。
 また、スラリー調製工程では、固形分の分散性を更によくするために、原料スラリーに分散剤を添加することができる。分散剤としては、例えば、各種の界面活性剤、ポリカルボン酸アンモニウム塩、アルキル硫酸エステル塩、ポリオキシエチレンアルキルエーテル硫酸エステル塩、アルキルベンゼンスルフォン酸塩、ナフタレンスルフォン酸ホルマリン縮合物、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンソルビダン脂肪酸エステル、グリセリン脂肪酸エステル、ポリオキシエチレンアルキルアミン、アルキルアミンオキサイド等が挙げられる。原料スラリー中の分散剤の含有量は、十分な分散効果を発現させることができる点で、好ましくは0.1~10質量%、特に好ましくは0.5~5質量%である。
 また、スラリー調製工程では、原料シートに適度な強度と柔軟性を持たせる点で、原料スラリーにバインダー樹脂を含有させることが好ましい。バインダー樹脂としては、アクリル系、セルロース系、ポリビニルアルコール系、ポリビニルアセタール系、ウレタン系、酢酸ビニル系の公知のバインダー樹脂が挙げられる。原料スラリー中のバインダー樹脂の含有量は、粒子同士の結合力を高くして高密度で高強度の原料シートを得ることができる点で、好ましくは5~25質量%、特に好ましくは10~20質量%である。
 また、スラリー調製工程では、必要に応じて、フタル酸エステル系、脂肪酸エステル系、グリコール誘導体等の公知の可塑剤を原料スラリーに添加してもよい。
 シート化工程は、スラリー調製工程で調製した原料スラリーをシート化して、原料成分の混合物からなる原料シート、すなわち、一般式(1)で表されるコバルト酸カルシウムの板状結晶、ビスマス化合物、カルシウム化合物及びコバルト化合物を含有するシートを調製する工程である。
 シート化工程では、少なくとも一般式(1)で表されるコバルト酸カルシウムの板状結晶が結晶面の長軸方向に配向するように原料シートを調製すること、すなわち、原料シートのシート面と一般式(1)で表されるコバルト酸カルシウムの板状結晶の結晶面の長軸方向が概ね平行となるように原料シートを調製することが重要である。そして、原料スラリーがシート化するときに、一般式(1)で表されるコバルト酸カルシウムの板状結晶は、シート中で、結晶面の長軸方向に配向するので、一般式(1)で表されるコバルト酸カルシウムの板状結晶を含有する原料スラリーを用いてシート化することにより、一般式(1)で表されるコバルト酸カルシウムの板状結晶が結晶面の長軸方向に配向している原料シートが得られる。なお、板状結晶の結晶面とは、板状結晶のうちの二次元方向に広がる面を指し、また、板状結晶の結晶面の長軸方向とは、板状結晶の結晶面の長径が延びる方向を指し、また、板状結晶が結晶面の長軸方向に配向するとは、各板状結晶の結晶面の長軸の方向が概ね同じになるように、板状結晶が配向することを指す。また、原料シートのシート面とは、原料シートのうちの二次元方向に広がる面を指す。また、原料シートのシート面と一般式(1)で表されるコバルト酸カルシウムの板状結晶の結晶面の長軸方向が概ね平行であるとは、原料シートのシート面に対する長軸方向の傾きが0±20°以内である一般式(1)で表されるコバルト酸カルシウムの板状結晶の割合が個数換算で60%以上であることを指す。なお、板状結晶の配向については、原料シートを2つに切断し、その切り口の断面を1000倍の倍率でSEM観察することにより確認される。
 シート化工程において、原料スラリーをシート化して原料シートを調製する方法としては、例えば、シート状の基板樹脂に原料スラリーをアプリケーターと塗工機を用いて均一に塗布後、乾燥することにより原料シートを調製する方法が挙げられるが、これに限定されず、例えば、ドクターブレード法、プレス成形法、圧延法、押出法等の方法、あるいは、これらの方法を適宜組み合わせた方法であってもよい。
 シート化工程で調製される原料シートの厚さは、シート強度を高めて積層工程での加工性を高め、配向性に優れた熱電変換材料を得ることができる点で、好ましくは50~500μm、特に好ましくは100~350μmである。
 このようにして、シート化工程では、一般式(1)で表されるコバルト酸カルシウムの板状結晶、ビスマス化合物、カルシウム化合物及びコバルト化合物を含有し、シート内で一般式(1)で表されるコバルト酸カルシウムの板状結晶がシート面と概ね平行に長軸方向が配向している原料シートを得ることができる。
 積層工程は、シート化工程で調製した原料シートを積層して原料シート積層体を調製する工程である。原料シートを積層体とすることにより、反応性を高め、X線回折分析的に高純度な一般式(2)で表される複合酸化物を生成させ易くすることができる。
 原料シート積層体の大きさ及び原料シートの積層枚数等は、使用する機械等に応じて適宜選択される。
 積層工程では、必要に応じて、原料シート積層体を圧着することにより、原料シート積層体の反応性を一層向上させ、また、一般式(1)で表されるコバルト酸カルシウムの板状結晶の配向性をより高めることができる。圧着する際の圧力は、プレス機の種類、原料シートの物性及び種類等により異なるが、通常2.4~19.6MPa、好ましくは4.0~9.6MPaである。また、50~200℃、好ましくは70~150℃の温度をかけながら圧着を行うことにより、より効率よく原料シート積層体を圧着することができる。圧着に用いるプレス機としては、ハンドプレス機、打錠機、ブリケットマシン、ローラーコンパクター等が挙げられるが、特にこれらの装置に限定されるわけではない。
 焼成工程は、積層工程で調製した原料シート積層体を焼成することにより、一般式(2)で表される複合酸化物を含有する熱電変換材料を得る工程である。焼成工程では、一般式(1)で表されるコバルト酸カルシウムの板状結晶がテンプレートになり、それに沿って、コバルト酸カルシウムの板状結晶と、ビスマス化合物との反応、カルシウム化合物、コバルト化合物及びビスマス化合物の反応等の反応が進行するため、生成する複合酸化物は、一般式(1)で表されるコバルト酸カルシウムの板状結晶の優れた配向に起因して優れた配向性を有する。
 焼成工程において、焼成温度は、高密度且つ単相の複合酸化物からなる熱電変換材料が得られる点で、好ましくは900~980℃、特に好ましくは910~960℃である。また、焼成雰囲気は、大気雰囲気又は酸素雰囲気が好ましい。また、焼成時間は、好ましくは10時間以上、特に好ましくは20~60時間である。
 また、原料スラリーにバインダー樹脂を含有させた場合は、焼成工程の前に、脱脂を主目的として熱処理を行ってもよい。脱脂の温度は、特に制限されるものではなく、バインダー樹脂を熱分解させるのに十分な温度であればよい。通常、脱脂温度は500℃以下である。
 焼成工程を行い得られた熱電変換材料を、必要に応じて、表面研磨処理し、所望の大きさに切り出すこともできる。
 そして、焼成工程を行うことにより、前記一般式(2)で表される複合酸化物の板状結晶の焼結体からなる熱電変換材料が得られる。
 本発明の熱電変換素子は、p型熱電変換材料とn型熱電変換材料とを有する熱電変換素子であって、該p型熱電変換材料が、本発明の熱電変換材料であることを特徴とする熱電変換素子である。
 本発明の熱電変換素子に係るn型熱電変換材料としては、下記一般式(3)で表されるカルシウムマンガン系複合酸化物及び下記一般式(4)で表されるカルシウムマンガン系複合酸化物から選ばれる少なくとも一種が好ましい。
 一般式(3):
   Ca1-x1 xMn1-y2 yz   (3)
(式中、A1は、Ce、Pr、Nd、Sm、Eu、Gd、Yb、Dy、Ho、Er、Tm、Tb、Lu、Sr、Ba、Al、Bi、Y及びLaからなる群から選ばれる少なくとも一種の元素であり、A2はTa、Nb、W、V及びMoからなる群から選ばれる少なくとも一種の元素である。式中、xは0≦x≦0.5、yは0≦y≦0.2、zは2.7≦z≦3.3である。)
 一般式(4):
   (Ca1-s3 s)Mn1-t4 tu   (4)
(式中、A3は、Ce、Pr、Nd、Sm、Eu、Gd、Yb、Dy、Ho、Er、Tm、Tb、Lu、Sr、Ba、Al、Bi、Y及びLaからなる群から選ばれる少なくとも一種の元素であり、A4はTa、Nb、W、V及びMoからなる群から選ばれる少なくとも一種の元素である。式中、sは0≦s≦0.5、tは0≦t≦0.2、uは3.6≦u≦4.4である。)。
 一般式(3)で表されるカルシウムマンガン系複合酸化物及び一般式(4)で表されるカルシウムマンガン系複合酸化物は、公知の化合物であり、負のゼーベック係数を有し、これらの複合酸化物からなる材料の両端に温度差を生じさせた場合に、熱起電力により生じる電位は、高温側の方が低温側に比べて高くなり、n型熱電変換材料としての特性を示す。
 一般式(3)で表されるカルシウムマンガン系複合酸化物は、ペロブスカイト型の結晶構造を有するカルシウムマンガン系複合酸化物において、Caが必要によりA1元素で一部置換され、Mnの一部が必要によりA2元素で一部置換されたものである。
 一般式(3)において、A1及びA2は、電気伝導性を付与することを意図して必要により含有させる元素である。
 また、一般式(4)で表されるカルシウムマンガン系複合酸化物は、層状ペロブスカイト構造を有するカルシウムマンガン系複合酸化物において、Caが必要によりA3元素で一部置換され、Mnの一部が必要によりA4元素で一部置換されたものである。
 なお、一般式(4)において、A3及びA4は、電気伝導性を付与することを意図して必要により含有させる元素である。
 下記一般式(3)で表されるカルシウムマンガン系複合酸化物及び下記一般式(4)で表されるカルシウムマンガン系複合酸化物は、公知の方法により製造され、例えば、目的とするカルシウムマンガン系複合酸化物の金属成分比率と同様の金属成分比率となるように原料物質を混合し、焼成することにより製造することができる(特開2006-49796号公報、特開2010-37131号公報、特開2010-195620号公報等参照)。更に、得られたカルシウムマンガン系複合酸化物を、これを所定の形状を有する金型に充填し、加圧下に成型して常圧下で焼結させることで、所定の形状を有するn型熱電変換材料とすることができる。
 本発明の熱電変換素子は、p型熱電変換材料の一端とn型熱電変換材料の一端を電気的に接続したものである。
 p型熱電変換材料及びn型熱電変換材料の形状、大きさ等は特に制限されるものではなく、熱電変換モジュールの大きさ、形状等に応じて、必要な熱電性能を発揮できるように適宜選択される。
 p型熱電変換材料の一端とn型熱電変換材料の一端を電気的に接続する方法は、特に制限されるものではないが、本発明の熱電変換モジュールの使用温度(293~1223K(絶対温度))範囲に耐え得る方法であればよい。例えば、接合剤を用いてp型熱電変換材料の一端とn型熱電変換材料の一端を導電性材料に接着する方法、p型熱電変換材料の一端とn型熱電変換材料の一端を直接又は導電性材料を介して圧着又は焼結させる方法、導体材料を用いてp型熱電変換材料とn型熱電変換材料を電気的に接続させる方法等がある。
 図1に、本発明における熱電変換素子の一つの実施形態の模式図を示す。図1中、熱電変換素子10は、p型熱電変換材料(P)、n型熱電変換材料(N)、電極(1)、電極(1a)及び結合剤(2)を備える。p型熱電変換材料(P)と、電極(1)及び電極(1a)とは、結合剤(2)を介して接続されている。n型熱電変換材料(N)と、電極(1)及び電極(1a)とは、結合剤(2)を介して接続されている。
 結合剤(2)としては、金属ペースト、ハンダ等が用いられ、特に1223K程度の高温においても使用可能な金、銀、白金等の貴金属、これらの貴金属を含むペーストが好適である。
 また、電極(1)及び電極(1a)としては、1223K程度の高温においても使用可能な金、銀、白金等の貴金属、これらの貴金属を含むペーストが好適である。
 また、電極(1a)には、更に結合剤(2)を介して絶縁性基板(不図示)が接続させていてもよい。絶縁性基板は、均熱性や機械的強度の向上、電気的絶縁性の保持等の目的で用いられるものである。絶縁性基板としては、アルミナ等の酸化物セラミックスが好ましい。
 本発明の熱電変換モジュールは、本発明の熱電変換素子を複数個有することを特徴とする熱電変換モジュールであり、一つの熱電変換素子のp型熱電変換材料の未接合の端部が、他の熱電変換素子のn型熱電変換材料の未接続の端部に接続されることにより、複数の熱電変換素子が直列に接続されたものである。
 通常は、結合剤を用いて熱電変換素子の未接合の端部を基板上に接着する方法で、p型熱電変換素子の端部と、他の熱電変換素子のn型熱電変換材料の端部とが絶縁性基板上において接続される。
 一つの熱電変換モジュールに用いられる熱電変換素子の数は特に限定されず、必要とする電力により任意に選択される。
 図2に、本発明の熱電変換モジュールの一つの実施形態の模式図を示す。図2では、8個の熱電変換素子が用いられている。モジュールの出力は、熱電変換素子の出力に熱電変換素子の使用数を乗じたものとほぼ等しい値となる。
 本発明の熱電変換モジュールは、その一端が高温部に配置され、他端が低温部に配置されることによって電圧を発生することができる。例えば、図2の熱電変換モジュールでは、基板面が高温部に配置され、他端が低温部に配置されればよい。
 例えば、図2に示す熱電変換モジュールの調製方法の一例を図2の背面図を更に詳細に示した図3に基づいて説明する。
 まず、n型熱電変換材料(N)及びp型熱電変換材料(P)の端面に、例えば、銀ペースト等をスクリーン印刷し、乾燥を行った後、焼成し、n型熱電変換材料(N)及びp型熱電変換材料(P)の端面に結合剤(2a)層を形成する。
 次いで、アルミナ基板等の絶縁性基板(4)に所定のパターンで銀ペースト等をスクリーン印刷し、乾燥を行った後、焼成し結合剤(2b)層を形成する。結合剤(2b)層上に、更に銀ペースト等をスクリーン印刷し、その上に銀電極等の電極(1a)を配置してから乾燥した構造体を得た後、この構造体を加熱圧着して下部電極基板(5)を作成する。
 次いで、下部電極基板(5)上の電極(1a)上に銀ペースト等をスクリーン印刷し、n型熱電変換材料(N)とp型熱電変換材料(P)を交互に配置した後、乾燥し結合剤(2e)層を形成する。次いで、配列した熱電変換材料(P、N)上に、銀ペースト等の結合剤(2d)を塗布した銀等の電極(1)をn型熱電変換材料(N)とp型熱電変換材料(P)がπの字状に直列に接続するように配置し乾燥し構造体(6)を得る。次いで、構造体(6)を加熱圧着処理した後、焼成することにより、図2の熱電変換モジュールを製造することができる。
 高温部の熱源としては、例えば、自動車エンジン;工場;火力乃至原子力発電所;溶融炭酸塩型(MCFC)、水素膜分離型(HMFC)、固体酸化物型(SOFC)等の各種燃料電池;ガスエンジン型、ガスタービン型等の各種コジェネレーションシステム等から出る200℃程度以上の高温熱や、太陽熱、熱湯、体温等20~200℃程度の低温熱等が挙げられる。
 本発明の熱電変換モジュールの使用温度であるが、本発明の熱電変換モジュールは、773~1223K(絶対温度)の温度領域で使用可能であり、特に873~1223K(絶対温度)での高温域で使用可能である。
 また、本発明の熱電変換モジュールは、熱耐久性に優れたものであり、高温部を1073K程度の高温から室温まで急冷しても、破損することがなく、発電特性も劣化し難い。
 本発明の熱電変換モジュールは、小型で高い出力密度を有するばかりでなく、熱衝撃にも強いことから、工場やゴミ焼却炉、火力・原子力発電所、各種燃料電池やコジェネレーションシステム等の廃熱利用だけではなく、温度変化が激しい自動車エンジンの熱を利用した熱電発電への応用も可能である。
 以下、本発明を実施例により説明するが、本発明はこれらの実施例に限定されるものではない。
<コバルト酸カルシウム>
 炭酸カルシウム(平均粒径1.4μm)、酸化コバルト(Co34、平均粒径1.1μm)及び酸化ビスマス(Bi23、平均粒径2.5μm)をカルシウムとコバルトとビスマスの原子換算のモル比が、3.105:4:0.3となるように仕込み、ミキサーで混合した。次いで、ムライトコージライト製の匣鉢に充填して大気雰囲気下にて930℃で10時間焼成後、粉砕解砕を行い、200meshの篩で分級して、コバルト酸カルシウムを作製した。
 得られた焼成体をXRDで分析した結果、X線回折的に単相のコバルト酸カルシウム(Bi0.30Ca3.105Co49)であることを確認した。
 また、得られたコバルト酸カルシウムの諸物性を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 なお、長径、短径及びアスペクト比は、得られたコバルト酸カルシウム粒子を1000倍の倍率でSEM観察し、その視野で任意に抽出した10個の粒子についての平均値である。また、得られたコバルト酸カルシウムのSEM写真を図4に示す。
(実施例1~5及び比較例1~4)
 上記で得たコバルト酸カルシウム、炭酸カルシウム(平均粒径1.4μm)、酸化コバルト(Co34、平均粒径1.1μm)、酸化ビスマス(Bi23、平均粒径2.5μm)を、表2に示す配合量で、容器に仕込んだ。
 次いで、分散剤1質量%、エタノール2質量%を含む水溶液を、スラリー濃度が68.5質量%となるように容器に添加した。
 次いで、ミキサーで十分撹拌後、バインダー樹脂としてアクリル酸系(AS-2000、東亞合成株式会社製)を、含有量が10質量%となるように添加し、更に十分撹拌して原料スラリーを調製した。
 次いで、原料スラリーを、塗工厚250μmのアプリーケーターと自動塗工機を用いて、速度10mm/secで、ベースフィルム上に塗工し、次いで、60℃で30分乾燥して、ベースフィルム上に原料シートを作製した。次いで、ベースフィルムを剥がし、適当な大きさ(縦が約2cm、横が約2cm)に切り出し、焼結後の厚みが約3.5mmとなるように数枚重ね、次いで、100℃に昇温したプレス機を用いて4.9MPaで圧着し、原料シート積層体を調製した。
 次いで、原料シート積層体を、300℃で15時間、脱脂した後、930℃で40時間、大気雰囲気で焼成し、熱電変換材料を得た。得られた熱電変換材料を、熱電特性評価装置で測定可能な大きさに切り出し、切り出した面を研磨機を用いて平面にし、p型熱電変換材料を調製した。
(参考例1)
 上記で得たコバルト酸カルシウムを用いて特開2006-49796号公報の実施例1記載に基づいて加圧焼結法によりp型熱電変換材料を調製した。
なお。ホットプレス焼結は、10MPaの一軸加圧下に1123Kで20時間行った。
Figure JPOXMLDOC01-appb-T000002
<諸物性の評価>
 実施例、比較例及び参考例で得られた熱電変換材料について、密度を測定した。また、X線回折分析及びICP分析により熱電変換材料に含有される複合酸化物を確認した。その結果を表3に示す。
 また、実施例1及び比較例1の熱電変換材料を手で2つに切断し、実施例1及び比較例1の熱電変換材料の切り口の断面のSEM写真を、図5及び図6にそれぞれ示した。
(長径の平均長さ、短径の平均長さ及びアスペクト比の評価)
 長径の平均長さ、短径の平均長さ及びアスペクト比は、p型熱電変換材料を手で2つに切断し、その切り口の断面を1000倍の倍率でSEM観察し、その視野で任意に抽出した断面中の10個の粒子についての平均値である。
(配向状態の評価)
 p型熱電変換材料を手で2つに切断し、その切り口の断面を1000倍の倍率でSEM観察し、熱電変換材料の表面に対する長軸方向の傾きが0±20°以内である複合酸化物の板状結晶の割合を求めた。
 表中の記号は下記のことを示す。
◎:熱電変換材料の表面に対する長軸方向の傾きが0±20°以内である複合酸化物の板状結晶の割合が80%以上
○:熱電変換材料の表面に対する長軸方向の傾きが0±20°以内である複合酸化物の板状結晶の割合が60%以上80%未満
△:熱電変換材料の表面に対する長軸方向の傾きが0±20°以内である複合酸化物の板状結晶の割合が40%以上60%未満
×:熱電変換材料の表面に対する長軸方向の傾きが0±20°以内である複合酸化物の板状結晶の割合が40%未満
Figure JPOXMLDOC01-appb-T000003
<熱電変換特性の評価>
 実施例、比較例及び参考例で得られたp型熱電変換材料について、熱電特性評価装置(ZEM-3 アルバック理工社)を用いて、大気雰囲気下で800℃における比抵抗値、熱起電力を測定し、更にパワーファクターを算出した。
 なお、パワーファクターは、下記計算式(1)から求められ、このパワーファクターは熱電変換材料から取り出せる電力を示す指標であり、この値が大きいほど出力が高いことであることを示す。
   パワーファクター(P.F.)=S2/ρ  (1)
(S:熱起電力、ρ:比抵抗値)
Figure JPOXMLDOC01-appb-T000004
 表4より、本発明の熱電変換材料(実施例1~5)は、比較例で得られる熱電変換材料と比べ、パワーファクターが高く、優れた熱電特性を有しており、また、加圧焼結法で得られた熱電変換材料(参考例1)とほぼ同等の熱電特性を有していることが分かった。
(熱電変換モジュールの作成)
<n型熱電変換材料の作成>
 炭酸カルシウム及び酸化マンガンを、カルシウムとマンガンのモル比が1.0:1.0となるように秤量しタンクに仕込んだ。タンクに水と分散剤(ポリカルボン酸アンモニウム塩)を加え、スラリー濃度が30質量%のスラリーを調製した。分散剤の濃度は2質量%であった。スラリーを攪拌しながら、直径0.5mmのジルコニアビーズを仕込んだメディア攪拌型ビーズミルに供給し、90分間混合して湿式粉砕を行った。次いで、200℃に設定したスプレードライヤーに、3L/hの供給速度でスラリーを供給し、乾燥原料を得た。乾燥原料を電気炉に仕込み、大気下に850℃にて5時間静置状態で焼成した。焼成品についてX線回折測定を行い、CaMnO3の単相が得られていることを確認した。焼成品を金型に仕込み、2t/cm2の圧力で加圧して成形体を作成した。成形体を電気炉に仕込み、1250℃で12時間加熱処理をし、n型熱電変換材料とした。
 p型熱電変換材料として実施例1の熱電変換材料を用い、n型熱電変換材料として、上記で調製したn型熱電変換材料を用いて、熱電変換モジュールを作製した。以下、図3を参照しながら、説明する。
<工程A:熱電変換材料(P、N)端面上に結合剤(2a)層の作成>
 n型熱電変換材料(N)及び実施例1で作成したp型熱電変換材料(P)の端面に銀ペ
ーストをスクリーン印刷し、120℃の乾燥機で15分乾燥し、次いで、850℃の電気炉で1時間加熱して、熱電変換材料端面に結合剤(2a)層を形成した。
<工程B:下部電極基板(5)の作成>
 アルミナ基板(4)に所定のパターンで銀ペーストを印刷し、120℃の乾燥機で15分乾燥し、次いで、850℃の電気炉で1時間加熱し、結合剤(2b)層を形成した。結合剤(2b)層上に、更に銀ペースト(2c)を印刷し、銀電極(1a)を配置してから120℃の乾燥機で30分乾燥した。銀電極(1a)を配置した構造体(5)を200℃で15分、35kNの荷重で加熱圧着して下部電極基板(5)とした。
<工程C:熱電変換モジュールの作成>
 下部電極(1a)上に接合材料層として銀ペースト(2e)を印刷し、A工程で作成した熱電変換材料端面に結合剤(2a)層を有するn型熱電変換材料(N)とp型熱電変換材料(P)を交互に配置してから120℃の乾燥機で30分乾燥した。配列した熱電変換材料上の結合剤(2a)層上に、銀ペースト(2d)を塗布した銀電極(1)を、n型熱電変換材料(N)とp型熱電変換材料(P)がπの字状に直列に接続するように配置し、120℃の乾燥機で30分乾燥し構造体(6)を得た。次に構造体(6)を、200℃で15分間、35kNの荷重で加熱圧着し、次いで、850℃の電気炉で1時間加熱して熱電変換モジュールを作成した。
(発電試験)
 上記した方法で3.5mm×3.5mm×7.5mmのn型熱電変換材料50個およびp型熱電変換材料50個を調製し、次いで上記した方法でアルミナ基板上に配置して42mm角の熱電変換モジュールを作成した。モジュールの片面に500℃のプレートヒーターを接触させ、反対側の面に20℃の冷却水を流した水冷プレートを接触させて発電試験を行った。熱電変換材料の高温側の温度は357℃、低温側の温度は92℃となり、温度差は265℃であった。この時、0.6Wの最大出力が観測された。

Claims (5)

  1.  下記一般式(2):
       BifCag3 hCoi4 jk   (2)
    (式中、M3は、Na、K、Li、Ti、V、Cr、Mn、Fe、Ni、Cu、Zn、Pb、Sr、Ba、Al、Y及びランタノイドからなる群から選択される一種又は二種以上の元素であり、M4は、Ti、V、Cr、Mn、Fe、Ni、Cu、Mo、W、Nb及びTaからなる群から選択される一種又は二種以上の元素である。fは0<f≦1.0、gは2.0≦g≦3.6、hは0≦h≦1.0、iは3.5≦i≦4.5、jは0≦j≦0.5、kは8.0≦k≦10.0である。)
    で表わされる複合酸化物の板状結晶の焼結体であり、
     密度が4.0~5.1g/cm3であり、
     SEM観察したときに、熱電変換材料の表面に対する長軸方向の傾きが0±20°以内である前記一般式(2)で表される複合酸化物の板状結晶の割合が個数換算で60%以上であり、
     前記一般式(2)で表される複合酸化物の板状結晶の長径の平均長さが20μm以上であり、アスペクト比が20以上であること、
    を特徴とする熱電変換材料。
  2.  前記一般式(2)中、fは0<f≦1.0、gは3.0<g≦3.3、hは0≦h≦1.0、iは3.5≦i≦4.5、jは0≦j≦0.5、kは8.0≦k≦10.0であることを特徴とする請求項1記載の熱電変換材料。
  3.  p型熱電変換材料とn型熱電変換材料とを有する熱電変換素子であって、該p型熱電変換材料が請求項1又は2いずれか1項記載の熱電変換材料であることを特徴とする熱電変換素子。
  4.  前記n型熱電変換材料が、下記一般式(3)で表されるカルシウムマンガン系複合酸化物及び下記一般式(4)で表されるカルシウムマンガン系複合酸化物から選ばれる少なくとも一種であることを特徴とする請求項3記載の熱電変換素子。
    一般式(3):
       Ca1-x1 xMn1-y2 yz   (3)
    (式中、A1は、Ce、Pr、Nd、Sm、Eu、Gd、Yb、Dy、Ho、Er、Tm、Tb、Lu、Sr、Ba、Al、Bi、Y及びLaからなる群から選ばれる少なくとも一種の元素であり、A2はTa、Nb、W、V及びMoからなる群から選ばれる少なくとも一種の元素である。式中、xは0≦x≦0.5、yは0≦y≦0.2、zは2.7≦z≦3.3である。)
    一般式(4):
       (Ca1-s3 s)Mn1-t4 tu   (4)
    (式中、A3は、Ce、Pr、Nd、Sm、Eu、Gd、Yb、Dy、Ho、Er、Tm、Tb、Lu、Sr、Ba、Al、Bi、Y及びLaからなる群から選ばれる少なくとも一種の元素であり、A4はTa、Nb、W、V及びMoからなる群から選ばれる少なくとも一種の元素である。式中、sは0≦s≦0.5、tは0≦t≦0.2、uは3.6≦u≦4.4である。)
  5.  請求項3又は4いずれか1項記載の熱電変換素子を有することを特徴とする熱電変換モジュール。
PCT/JP2016/058057 2015-03-18 2016-03-15 熱電変換材料、熱電変換素子及び熱電変換モジュール WO2016148117A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA2979188A CA2979188A1 (en) 2015-03-18 2016-03-15 Thermoelectric conversion material, thermoelectric conversion element and thermoelectric conversion module
US15/558,315 US10224473B2 (en) 2015-03-18 2016-03-15 Thermoelectric conversion material, thermoelectric conversion element and thermoelectric conversion module

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015054774 2015-03-18
JP2015-054774 2015-03-18
JP2016044066A JP6050906B2 (ja) 2015-03-18 2016-03-08 熱電変換材料、熱電変換素子及び熱電変換モジュール
JP2016-044066 2016-03-08

Publications (1)

Publication Number Publication Date
WO2016148117A1 true WO2016148117A1 (ja) 2016-09-22

Family

ID=56918828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/058057 WO2016148117A1 (ja) 2015-03-18 2016-03-15 熱電変換材料、熱電変換素子及び熱電変換モジュール

Country Status (1)

Country Link
WO (1) WO2016148117A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003179272A (ja) * 2001-12-13 2003-06-27 Toyota Central Res & Dev Lab Inc 熱電変換材料及びその使用方法
JP2003246678A (ja) * 2002-02-27 2003-09-02 National Institute Of Advanced Industrial & Technology 複合酸化物焼結体の製造方法
JP2004363576A (ja) * 2003-05-15 2004-12-24 Toyota Central Res & Dev Lab Inc 熱電材料
JP2009188319A (ja) * 2008-02-08 2009-08-20 Swcc Showa Cable Systems Co Ltd 熱電変換素子の製造方法
JP2011129838A (ja) * 2009-12-21 2011-06-30 Fujitsu Ltd 熱電変換モジュール及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003179272A (ja) * 2001-12-13 2003-06-27 Toyota Central Res & Dev Lab Inc 熱電変換材料及びその使用方法
JP2003246678A (ja) * 2002-02-27 2003-09-02 National Institute Of Advanced Industrial & Technology 複合酸化物焼結体の製造方法
JP2004363576A (ja) * 2003-05-15 2004-12-24 Toyota Central Res & Dev Lab Inc 熱電材料
JP2009188319A (ja) * 2008-02-08 2009-08-20 Swcc Showa Cable Systems Co Ltd 熱電変換素子の製造方法
JP2011129838A (ja) * 2009-12-21 2011-06-30 Fujitsu Ltd 熱電変換モジュール及びその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JONG WON PARK ET AL.: "Thermoelectric properties of highly oriented Ca2.7Bi0.3Co4O9 fabricated by rolling process", JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, vol. 117, no. 5, 2009, pages 643 - 646, XP055311667 *
ZHAO LI-MIN ET AL.: "Effect of Bi Doping on the Microstructure and Thermoelectric Properties of Ca3-xBixCo4O9 Oxides", JOURNAL OF SYNTHETIC CRYSTALS, vol. 39, no. 2, 2010, pages 470 - 473,480 *

Similar Documents

Publication Publication Date Title
JP4446064B2 (ja) 熱電変換素子及び熱電変換モジュール
Kim et al. Thermoelectric properties of La3+ and Ce3+ co-doped CaMnO3 prepared by tape casting
JP5035561B2 (ja) n型熱電特性を有する酸化物焼結体
EP1672709B1 (en) Conductive paste for connecting thermoelectric conversion material
US20120145214A1 (en) Thermoelectric conversion material, and thermoelectric conversion module using same
JP5252474B2 (ja) n型熱電特性を有する酸化物複合体
JP5250762B2 (ja) 熱電変換素子、熱電変換モジュール、及び製造方法
JP2010225705A (ja) 積層型圧電素子及びその製造方法
JP6050906B2 (ja) 熱電変換材料、熱電変換素子及び熱電変換モジュール
JP3867134B2 (ja) 複合酸化物焼結体の製造方法
WO2016148117A1 (ja) 熱電変換材料、熱電変換素子及び熱電変換モジュール
JP4876721B2 (ja) 熱電変換材料およびその製造方法
JP6044972B2 (ja) 熱電変換材料の製造方法及び熱電変換材料
JP6567845B2 (ja) 熱電変換材料の製造方法
JP5218285B2 (ja) 熱電変換材料
WO2008038519A1 (fr) Élément de conversion thermoélectrique, module de conversion thermoélectrique et procédé de production d'élément de conversion thermoélectrique
WO2007108147A1 (ja) 熱電半導体、熱電変換素子および熱電変換モジュール
JP2001019544A (ja) 熱電変換材料及び複合酸化物焼結体の製造方法
JP5506186B2 (ja) 固体酸化物形燃料電池の製造方法
JP6562623B2 (ja) 固体酸化物型燃料電池用混合空気極材料、及び、固体酸化物型燃料電池
JP4214757B2 (ja) 熱電変換材料及びその製造方法
KR101874391B1 (ko) CaMnO₃계 열전재료 및 이의 제조 방법
JP3903172B2 (ja) 金属酸化物焼結体の製造方法
JP4595071B2 (ja) 熱電変換素子、熱電変換モジュール及び熱電変換方法
JP2022144073A (ja) 熱電変換層を有する積層体とその製造方法、及び発電モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16764947

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2979188

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15558315

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16764947

Country of ref document: EP

Kind code of ref document: A1