WO2008032453A1 - Procédé de fabrication d'une hydrazone - Google Patents

Procédé de fabrication d'une hydrazone Download PDF

Info

Publication number
WO2008032453A1
WO2008032453A1 PCT/JP2007/001006 JP2007001006W WO2008032453A1 WO 2008032453 A1 WO2008032453 A1 WO 2008032453A1 JP 2007001006 W JP2007001006 W JP 2007001006W WO 2008032453 A1 WO2008032453 A1 WO 2008032453A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
hydrazone
general formula
hours
chemical
Prior art date
Application number
PCT/JP2007/001006
Other languages
English (en)
French (fr)
Inventor
Shinnosuke Tazawa
Hiroomi Kiyono
Michihiro Miyagaki
Hiroshi Yoshino
Original Assignee
Shiratori Pharmaceutical Co., Ltd.
Asubio Pharma Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shiratori Pharmaceutical Co., Ltd., Asubio Pharma Co., Ltd. filed Critical Shiratori Pharmaceutical Co., Ltd.
Publication of WO2008032453A1 publication Critical patent/WO2008032453A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C315/00Preparation of sulfones; Preparation of sulfoxides
    • C07C315/02Preparation of sulfones; Preparation of sulfoxides by formation of sulfone or sulfoxide groups by oxidation of sulfides, or by formation of sulfone groups by oxidation of sulfoxides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C249/00Preparation of compounds containing nitrogen atoms doubly-bound to a carbon skeleton
    • C07C249/16Preparation of compounds containing nitrogen atoms doubly-bound to a carbon skeleton of hydrazones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D475/00Heterocyclic compounds containing pteridine ring systems
    • C07D475/02Heterocyclic compounds containing pteridine ring systems with an oxygen atom directly attached in position 4
    • C07D475/04Heterocyclic compounds containing pteridine ring systems with an oxygen atom directly attached in position 4 with a nitrogen atom directly attached in position 2

Definitions

  • the present invention relates to a method for producing a dialkylsulfonylmethane derivative and hydrazones that are important as intermediates for the production of pharmaceuticals such as sapropterin hydrochloride.
  • Sapropterin hydrochloride (L-tetrahydrobiopterin hydrochloride) has been widely used as a therapeutic agent for atypical hyperfenalaninemia.
  • Sapropterin hydrochloride is obtained from L-rhamnose via L-rhamnose jetylmer force ptal (REM) and 5-deoxy_L-arabinose (5-DA) as shown in the following formula.
  • REM L-rhamnose jetylmer force ptal
  • 5-DA 5-deoxy_L-arabinose
  • 6_hydroxy-1,2,4,5_triaminovirimidine is reacted with this to release the acetyl group and then asymmetrically reduced (Patent Document 1, Patent Document) 2. See Non-Patent Document 1).
  • hydrazone is an important intermediate in the production process of sapropterin hydrochloride.
  • a method for producing a hydrazone in addition to a method for obtaining a phenylhydrazone from L-rhamnose via 5_DA, a method for obtaining a phenylhydrazone from L-arabinose via 5_DA (See Patent Document 3), a method for obtaining a phenylhydrazone form from tartaric acid (see Non-Patent Documents 2 and 3), a method for obtaining a phenylhydrazone form from R_lipose (see Patent Document 4), etc. It is.
  • the process is long and the yield is low, and the low-temperature reaction process includes a silica gel purification process in the process. It is not suitable as a manufacturing method.
  • the method for obtaining a phenylhydrazone from L-rhamnose or L-arabinose via 5_DA also has problems such as low yield and complicated subsequent processing.
  • Patent Document 1 Japanese Patent Laid-Open No. 59-186986
  • Patent Document 2 JP-A-60-169493
  • Patent Document 3 European Patent Application Publication No. 0 1 65595 Specification
  • Patent Document 4 European Patent Application Publication No. 0385336
  • Non-Patent Document 1 Helv.Chiim.Acta68 (6) 1 639— 1 64
  • Non-Patent Document 2 ⁇ O r g. C h em. 62, 4007— 40 1 4, (1 99 7)
  • Non-Patent Document 3 ⁇ O r g. C h em. 6 1, 8698— 8700, (1 99 6)
  • An object of the present invention is to provide an industrially advantageous production method of the hydrazone which is the important intermediate.
  • the present inventor has conducted various studies on methods for obtaining a phenylhydrazone form from L-rhamnose.
  • the product is decomposed as the reaction proceeds, and the reaction yield is not improved. Became clear.
  • the problem is that it requires complicated and multi-stage treatments such as the charging time of the solvent and the concentration of the solvent.
  • the present inventor has directly reacted hydrazines without introducing the REM oxidative dehydration obtained by oxidation of REM into 5-DA.
  • a hydrazone body can be obtained in a high yield.
  • REM oxidative dehydration can be obtained quantitatively by performing oxidation using hydrogen peroxide as an oxidizing agent for REM in the presence of tungstic acid or a salt thereof and phosphoric acid.
  • the present inventors have found that a REM oxidative dehydrated product can be obtained more advantageously if oxidation is performed using monopersulfate under certain conditions as an oxidizing agent for REM, and the present invention has been completed.
  • R 1 and R 2 are the same or different and each represents an alkyl group, and R 3 represents a hydrogen atom or a hydroxyl group]
  • R 4 and R 5 are the same or different and each represents a hydrogen atom, an alkyl group, or a substituent group.
  • the manufacturing method of hydrazone represented by these is provided.
  • dialkylsulfonylmethane derivative represented by the general formula (2) is represented by the following general formula (1):
  • R 1 and R 2 are the same or different and each represents an alkyl group, and R 3 represents a hydrogen atom or a hydroxyl group]
  • the compound represented by is reacted with hydrogen peroxide in the presence of tungstic acid or a salt thereof and phosphoric acid, or at 0 ° C or higher and lower than 20 ° C for 10 to 140 hours or 20 ° C to 100 ° C.
  • the present invention provides a method for producing the above hydrazone (4) obtained by reacting monopersulfate at ° C or reacting peracid.
  • R 1 and R 2 are the same or different and each represents an alkyl group, and R 3 represents a hydrogen atom or a hydroxyl group]
  • R 1 and R 2 are the same or different and each represents an alkyl group, and R 3 represents a hydrogen atom or a hydroxyl group]
  • the hydrazone (4) can be obtained in a high yield with fewer steps than before, with easy post-treatment and good operability.
  • the compound (2) is an important production intermediate in the method of the present invention.
  • the raw material 1, 1_bisalkylsulfanyl compound (1) is, for example,
  • L_rhamnose was added with 2 molar equivalents of ethanethiol in an aqueous hydrochloric acid solution under ice cooling and allowed to act for 20 hours under ice cooling.
  • the precipitated crystals were collected by filtration, and the obtained crystals were transferred to ice water and n-. It can be produced by washing with xane and drying.
  • the alkyl group represented by R 1 and R 2 a linear or branched alkyl group having 1 to 8 carbon atoms such as a methyl group, an ethyl group, an n_propyl group, an isopropyl group, and an n_butyl group.
  • an alkyl group having 1 to 5 carbon atoms, particularly an ethyl group is preferred.
  • Compound (2) is obtained by reacting compound (1) with hydrogen peroxide in the presence of tungstic acid or tungstate and phosphoric acid.
  • the tungstate include sodium tungstate, metal tungstate, such as sodium tungstate, and sodium tungstate is preferred.
  • phosphoric acid include phenylphosphonic acid, diphenylphosphinic acid, phosphoric acid, phosphorous acid, hypophosphorous acid and the like.
  • the amount of these catalysts to be used is not particularly limited, but is preferably 0.001 to 0.07 mol, and particularly preferably 0.01 to 0.03 mol, per 1 mol of the compound (1).
  • Hydrogen peroxide is used as the hydrogen peroxide, and it is preferably used in an amount of 4 to 5 mol, particularly 4.1 to 4.5 mol, relative to 1 mol of the compound (1).
  • reaction solvent water, lower alcohols such as methanol and ethanol can be used, and water is particularly preferable.
  • the amount of the reaction solvent used is preferably 4 to 15 times, particularly preferably 4 times that of the compound (1).
  • the reaction temperature is preferably 20 to 60 ° C, particularly preferably 30 to 40 ° C, and the reaction time is preferably 4 to 48 hours, particularly preferably 8 to 22 hours. It is.
  • the next reaction may be carried out as it is, but it is preferable to deactivate excess hydrogen peroxide with a reducing agent such as sodium thiosulfate for the next reaction.
  • compound (2) may be subjected to the following reaction without isolation.
  • the compound (1) may be reacted with monopersulfate at 0 ° C to less than 20 ° C for 10 to 140 hours or at 20 ° O to 100 ° C. ) Is obtained.
  • monopersulfates include alkali metal monopersulfates such as potassium monopersulfate (KHS0 5 ) and sodium monopersulfate (N a HS0 5 ).
  • KHS0 5 potassium monopersulfate
  • Na HS0 5 sodium monopersulfate
  • a mixture can be used.
  • a mixture of 2 KHS0 5 -KHS0 4 -K 2 S0 4 sold by DuPont under the trade name OXONE can be used.
  • the reaction solvent water or a lower alcohol is preferable, and water is particularly preferable.
  • the lower alcohol include alcohols having 1 to 5 carbon atoms such as methanol, ethanol, and isopropanol.
  • the amount of the reaction solvent used is preferably 5 to 30 times, particularly 7.5 to 15 times the volume of the compound (1).
  • reaction time is 0 ° C or more and less than 20 ° C, from the viewpoint of completing the reaction, 10 hours or more are necessary, 10 to 140 hours, further 15 to 50 hours, especially 20 to 30 hours. Is preferred.
  • the reaction is usually completed within 50 hours.
  • the preferred reaction temperature is 30 to 40 ° C., and the reaction time is preferably 10 to 30 hours, particularly preferably 15 to 25 hours.
  • compound (2) can also be obtained by reacting compound (1) with peracid.
  • the peracid used here include peracetic acid, perpropionic acid, and perbenzoic acid. It is preferable to use 6 moles of peracid per 1 mole of compound (1).
  • the reaction solvent water or a lower alcohol is preferable, and water is particularly preferable.
  • the reaction time is preferably 10 to 30 hours, particularly preferably 15 to 20 hours.
  • the dialkylsulfonylmethane derivative (2) thus obtained is reacted with hydrazines (3) to produce hydrazones represented by general formula (4).
  • R 4 and R 5 in the hydrazines (3) are the same or different and each represents a hydrogen atom, an alkyl group or an aryl group which may have a substituent.
  • the alkyl group examples thereof include a straight or branched lower alkyl group having 1 to 7 carbon atoms, such as a methyl group and an ethyl group, and a methyl group is preferable.
  • the aryl group include aryl groups having 6 to 14 carbon atoms such as a vinyl group and a naphthyl group, and a phenyl group is preferable.
  • Examples of the substituent for the aryl group include a linear or branched lower alkyl group having 1 to 6 carbon atoms, such as a methyl group and an ethyl group.
  • a hydrogen atom or a phenyl group is particularly preferable.
  • Examples of hydrazines (3) include hydrazine, 1,1_dimethyldiazone, phenylhydrazine and the like, and phenylhydrazine is particularly preferred. Yes.
  • the hydrazines (3) are preferably used in an amount of 1.0 to 2.0 mol, particularly 1.1 to 1.5 mol, relative to 1 mol of the compound (1).
  • This reaction can be carried out in a solvent such as water, ethyl acetate, chloroform, toluene, etc., but is preferably carried out in water or an ethyl acetate solvent.
  • the reaction is carried out at pH 3.0 to 11.0, particularly preferably pH 5.0 to 9.0.
  • This reaction temperature is preferably 0 to 50 ° C., particularly preferably 10 to 30 ° C., and the reaction time is preferably 1 to 30 hours, particularly preferably 5 to 24 hours. is there.
  • the hydrazone (4) can be obtained easily and quantitatively by extracting the aqueous layer of the reaction solution with an organic solvent.
  • REM 10.00 g (369. 8 mm o I), sodium tungstate dihydrate 1. 220 g (3. 698 mm o I 1 mol%), phenyl phosphonic acid 0.6 1 4 g (3. 883 mm o I, 1.05 mo I%) and 400 mL of water were placed in a reaction vessel and stirred at an external temperature of 0 ° C. 14.7.3 g (1 5 1 6 mmo I) of 35% hydrogen peroxide was added dropwise at an internal temperature of 20 ° C or lower. External temperature 40 The mixture was reacted at ° C for 21.5 hours to obtain REM oxidative dehydrated product.
  • the cyclized oxidant was suspended in 500 mL of 3 mol / L hydrochloric acid and reacted at an internal temperature of 50 55 ° C for 2.5 hours.
  • the reaction solution was decolorized with activated carbon and then neutralized with 28% aqueous ammonia.
  • the precipitated crystals were collected by filtration to obtain crude biopterin.
  • the obtained crude biopterin was dissolved in 6% aqueous ammonia, decolorized again with activated carbon, and neutralized with concentrated hydrochloric acid.
  • the precipitated crystals were collected by filtration and dried to obtain 2.73 g of biopterin.
  • the content was 83.5%.
  • the yield from REM to biopterin was 28%.
  • the reaction solution was stirred at an external temperature of 40 ° C for about 9 hours, then cooled at an external temperature of 10 ° C, and 750 mL of an aqueous solution in which 60.02 g of sodium acetate was dissolved was added to the reaction solution, and then stirred overnight. did.
  • the reaction solution was cooled at an external temperature of 0 ° C, and 3 L of an aqueous solution containing 525.27 g of hydrosulfite sodium was added dropwise until the oxidation-reduction potential reached 43 6 mV, and the mixture was stirred overnight at an external temperature of 5 ° C. .
  • the reaction solution was concentrated under reduced pressure at an external temperature of 60 ° C until the internal temperature stopped increasing. The concentrated residue was used in the next step. Multiple spots were confirmed from the TLC of the concentrated residue.
  • the yield to the hydrazone body was 45 to 75%.

Description

明 細 書
ヒドラゾン類の製造法
技術分野
[0001] 本発明は、 塩酸サプロプテリン等の医薬品の製造中間体として重要なジァ ルキルスルホニルメタン誘導体及びヒドラゾン類の製造法に関する。
背景技術
[0002] 塩酸サプロプテリン ( L—テトラヒドロビォプテリン塩酸塩) は、 異型高 フエ二ルァラニン血症の治療薬として広く用いられている。 塩酸サプロプテ リンは、 下記式のように L—ラムノースから L—ラムノースジェチルメル力 プタール (REM) 、 5—デォキシ _ L—ァラビノース (5— DA) を経由 してヒドラゾン体を得、 このヒドラゾン体をァセチル化した後、 これに 6_ ヒドロキシ一 2, 4, 5_トリアミノビリミジンを反応させ、 ァセチル基を 脱離させた後、 不斉還元することにより製造されている (特許文献 1、 特許 文献 2、 非特許文献 1参照) 。
[0003]
[化 1 ]
Figure imgf000004_0001
(REM)
(REM酸化体)
Figure imgf000004_0002
(5-DA) (ヒドラゾン体)
Figure imgf000004_0003
このようにヒドラゾン体は塩酸サプロプテリン製造工程における重要な中 間体である。
従来、 ヒドラゾン体の製造方法としては、 L—ラムノースから 5 _ D Aを 経由してフエニルヒドラゾン体を得る方法の他に、 L—ァラビノースから 5 _ D Aを経由してフエニルヒドラゾン体を得る方法 (特許文献 3参照) 、 酒 石酸からフエニルヒドラゾン体を得る方法 (非特許文献 2、 3参照) 、 R _ リポースからフエニルヒドラゾン体を得る方法 (特許文献 4参照) 等が知ら れている。
[0005] しかしながら、 酒石酸又は R—リポースからフエニルヒドラゾン体を得る 方法では、 工程が長く収率が悪いこと、 及びその工程中に低温反応工程ゃシ リカゲル精製工程が含まれており、 工業的製造方法としては適切ではない。 また、 L—ラムノースや L—ァラビノースから 5_D Aを経由してフエニル ヒドラゾン体を得る方法についても、 収率が低いことや、 またその後の処理 が煩雑であるといった問題があつた。
このように、 いずれの製造方法においても、 収率および作業効率に問題が あることから、 工業的に有利なフエニルヒドラゾン体の製造方法の開発が求 められていた。
特許文献 1 :特開昭 59 - 1 86986号公報
特許文献 2:特開昭 60— 1 69493号公報
特許文献 3:欧州特許出願公開第 0 1 65595号明細書
特許文献 4:欧州特許出願公開第 0385336号明細書
非特許文献 1 : H e l v. C h i m. A c t a 68 (6) 1 639— 1 64
3 ( 1 985)
非特許文献 2: 丄 O r g. C h em. 62, 4007— 40 1 4, ( 1 99 7)
非特許文献 3: 丄 O r g. C h em. 6 1 , 8698— 8700, ( 1 99 6)
発明の開示
発明が解決しょうとする課題
[0006] 本発明の目的は、 前記重要中間体であるヒドラゾン体の工業的に有利な製 造法を提供することにある。
課題を解決するための手段
[0007] 本発明者は、 L—ラムノースからフエニルヒドラゾン体を得る方法につい て種々検討したところ、 REMの酸化工程では、 反応の進行とともに生成物 の分解が生じ、 反応収率が向上しないことが明らかになった。 また、 還元剤 の投入時間や溶媒の濃縮など、 煩雑で多段階の処理を要すことが問題であつ た。
さらに、 REM酸化体の脱炭素工程では、 生成する 5_D Aが共存する無 機塩類に不安定であることから、 品質と収率の低下が危惧された。 また、 煩 雑な濾過作業や抽出作業があるため、 作業時間が長時間に及ぶという作業効 率の問題があった。
[0008] 本発明者は、 工業的に有利な方法を見出すべく鋭意研究を行なった結果、 R E Mの酸化によって得られる R E M酸化脱水体を 5— DAに導くことなく 、 これにヒドラジン類を直接反応させたところ、 収率良くヒドラゾン体が得 られることを見出した。 さらに、 タングステン酸若しくはその塩及びリンォ キソ酸の存在下、 REMの酸化剤として過酸化水素を用いて酸化を行なえば 、 定量的に REM酸化脱水体が得られることを見出した。 また、 REMの酸 化剤として一定の条件下でモノ過硫酸塩を用いて酸化を行なえば、 より有利 に R E M酸化脱水体が得られることを見出し、 本発明を完成するに至った。
[0009] すなわち、 本発明は、 一般式 (2)
[0010] [化 2]
Figure imgf000006_0001
[0011] (式中、 R1及び R2は同一又は異なってアルキル基を示し、 R3は水素原子又 は水酸基を示す)
で表されるジアルキルスルホニルメタン誘導体に、 一般式 (3)
[0012] [化 3]
R4
一 NNH2 (3)
[0013] (式中、 R4及び R5は同一又は異なって、 水素原子、 アルキル基又は置換基 を有していてもよいァリール基を示す)
で表されるヒドラジン類を反応させることを特徴とする一般式 (4)
[化 4]
Figure imgf000007_0001
[0015] (式中、 R3、 R4及び R 5は前記と同じ)
で表されるヒドラゾン類の製造法を提供するものである。
[0016] また、 本発明は、 一般式 (2) で表されるジアルキルスルホニルメタン誘 導体が、 次の一般式 ( 1 )
[0017] [化 5]
Figure imgf000007_0002
[0018] (式中、 R1及び R2は同一又は異なってアルキル基を示し、 R3は水素原子又 は水酸基を示す)
で表される化合物に、 タングステン酸若しくはその塩及びリンォキソ酸の存 在下過酸化水素を反応させるか、 0°C以上 20°C未満で 1 0〜1 40時間若 しくは 20°C〜1 00°Cでモノ過硫酸塩を反応させるか、 又は過酸を反応さ せることにより得られるものである上記のヒドラゾン類 (4) の製造法を提 供するものである。
[0019] 更に本発明は、 次の一般式 (1 )
[0020]
Figure imgf000008_0001
[0021] (式中、 R1及び R2は同一又は異なってアルキル基を示し、 R3は水素原子又 は水酸基を示す)
で表される化合物に、 タングステン酸若しくはその塩及びリンォキソ酸の存 在下過酸化水素を反応させるか、 又は 0°C以上 20°C未満で 1 0〜1 40時 間若しくは 20°C〜 1 00°Cでモノ過硫酸塩を反応させることを特徴とする 一般式 (2)
[0022] [化 7]
Figure imgf000008_0002
[0023] (式中、 R1及び R2は同一又は異なってアルキル基を示し、 R3は水素原子又 は水酸基を示す)
で表されるジアルキルスルホニルメタン誘導体の製造法をも提供するもので あ 。
発明の効果
[0024] 本発明によれば、 従来よりも少ない工程で、 後処理も簡便で操作性が良く 、 高収率でヒドラゾン類 (4) が得られる。
発明を実施するための最良の形態
[0025] 本発明方法は、 下記の反応式で表される。
[0026]
Figure imgf000009_0001
R
5^ H2 (3)
R
Figure imgf000009_0002
[0027] (式中、 R1、 R2、 R3、 R4及び R 5は前記と同じ)
この反応式から判るように、 本発明方法において化合物 (2) は重要な製造 中間体である。
[0028] 原料である 1 , 1 _ビスアルキルスルファニル化合物 ( 1 ) は、 例えば、
L_ラムノースに、 氷冷下、 塩酸水溶液中でエタンチオール 2モル当量を加 え、 20時間氷冷下作用させた後、 析出した結晶をろ取し、 得られた結晶を 氷水及び n—へキサンで洗浄、 乾燥することによって製造することができる 。 ここで、 R1及び R2で示されるアルキル基としては、 メチル基、 ェチル基 、 n _プロピル基、 イソプロピル基、 n _ブチル基等の炭素数 1〜 8の直鎖 又は分岐鎖のアルキル基が挙げられるが、 炭素数 1〜5のアルキル基、 特に ェチル基が好ましい。
[0029] 化合物 (1 ) に、 タングステン酸若しくはタングステン酸塩及びリンォキ ソ酸の存在下過酸化水素を反応させることにより、 化合物 (2) が得られる タングステン酸塩としては、 タングステン酸ナトリウム、 タングステン酸 力リウム等のタングステン酸アル力リ金属塩が挙げられるが、 タングステン 酸ナトリウムが好ましい。 また、 リンォキソ酸としては、 フエニルホスホン 酸、 ジフヱニルホスフィン酸、 リン酸、 亜リン酸、 次亜リン酸等が挙げられ る。 これら触媒の使用量は、 特に限定されないが、 化合物 (1 ) 1モルに対 し、 夫々 0. 001〜0. 07モル用いることが好ましく、 特に 0. 01〜 0. 03モル用いることが好ましい。
また、 過酸化水素としては過酸化水素水を用い、 これは、 化合物 (1 ) 1 モルに対し、 4〜5モル用いることが好ましく、 特に 4. 1〜4. 5モル用 いることが好ましい。
[0030] 反応溶媒としては、 水、 メタノール、 エタノール等の低級アルコール類を 用いることができるが、 水が特に好ましい。 反応溶媒の使用量は、 化合物 ( 1 ) に対して 4〜1 5倍、 特に 4倍が好ましい。 また、 反応温度は、 好まし くは 20〜60°Cであり、 特に好ましくは 30〜40°Cであり、 反応時間は 、 好ましくは 4〜48時間であり、 特に好ましくは、 8〜22時間である。 反応後は、 そのまま次の反応を行ってもよいが、 次の反応のため過剰の過 酸化水素をチォ硫酸ナトリウム等の還元剤で失活させておくことが好ましい 。 また、 化合物 (2) は単離することなく、 次の反応を行ってもよい。
[0031] また、 化合物 (1 ) に 0°C以上 20°C未満で 1 0〜1 40時間又は20°〇 〜 1 00°Cでモノ過硫酸塩を反応させることによつても化合物 (2) が得ら れる。 モノ過硫酸塩としては、 モノ過硫酸カリウム (KHS05) 、 モノ過硫 酸ナトリウム (N a HS05) 等のモノ過硫酸アルカリ金属塩が挙げられる。 モノ過硫酸塩としては、 混合物も使用でき , 例えばデュポン社から O X O N Eの商品名で販売されている 2 KHS05 - KHS04 - K2S04の組成の混 合物を使用することができる。 モノ過硫酸塩は、 化合物 (1 ) に対して OX ON E (=2 KHS05■ KHS04■ K2S04) として 2〜3. 5モル当量 、 さらに 2〜3モル当量、 特に 2. 2〜2. 4モル当量使用するのが好まし い。 反応溶媒としては、 水又は低級アルコールが好ましく、 特に水が好まし い。 ここで低級アルコールとしては、 メタノール、 エタノール、 イソプロパ ノール等の炭素数 1〜 5のアルコールが挙げられる。 反応溶媒の使用量は、 化合物 (1 ) に対して 5〜 30倍容量、 特に 7. 5〜1 5倍容量が好ましい 。 反応時間は 0°C以上 20°C未満の場合は、 反応を完結させる観点から、 1 0時間以上が必要であり、 1 0〜 1 40時間、 さらに 1 5〜 50時間、 特に 20〜30時間が好ましい。 一方、 20°C〜 1 00°Cで反応を行なう場合、 反応は通常 50時間以内で完結する。 好ましい反応温度は、 30〜40°Cで あり、 その場合の反応時間は 1 0〜30時間、 特に 1 5〜 25時間が好まし い。
さらに、 化合物 (1 ) に過酸を反応させることによつても化合物 (2) が 得られる。 ここで用いる過酸としては、 過酢酸、 過プロピオン酸、 過安息香 酸等が挙げられる。 過酸は化合物 (1 ) 1モルに対して 6モル使用するのが 好ましい。 反応溶媒としては、 水又は低級アルコールが好ましく、 特に水が 好ましい。 反応時間は 1 0〜30時間、 特に 1 5〜 20時間が好ましい。 このようにして得られたジアルキルスルホニルメタン誘導体 (2) に、 ヒ ドラジン類 (3) を反応させ一般式 (4) で表されるヒドラゾン類を製造す る。
ヒドラジン類 (3) の R4及び R5は同一又は異なって、 水素原子、 アルキ ル基又は置換基を有していてもよぃァリ一ル基を示すが、 ここでアルキル基 としては、 炭素数 1〜7の直鎖若しくは分岐鎖の低級アルキル基、 例えばメ チル基、 ェチル基等が挙げられ、 メチル基が好ましい。 ァリール基としては 、 炭素数 6〜1 4のァリール基、 例えばフヱ二ル基、 ナフチル基等が挙げら れ、 フヱニル基が好ましい。 該ァリール基の置換基としては、 炭素数 1〜6 の直鎖若しくは分岐鎖の低級アルキル基、 例えばメチル基、 ェチル基等が挙 げられる。 R4及び R5における基としては特に水素原子又はフエニル基が好 ましい。 ヒドラジン類 (3) としては、 ヒドラジン、 1 , 1 _ジメチルジァ ゾン、 フエニルヒドラジン等が挙げられ、 特にフエニルヒドラジンが好まし い。
[0033] ヒドラジン類 (3) は化合物 (1 ) 1モルに対し、 1. 0〜2. 0モル用 いることが好ましく、 特に 1. 1〜1. 5モル用いることが好ましい。 この反応は、 水、 酢酸ェチル、 クロ口ホルム、 トルエン等の溶媒中で行な うことができるが、 水、 酢酸ェチル溶媒中で行なうのが好ましい。 反応は、 p H 3. 0〜1 1. 0で行なわれ、 特に p H 5. 0〜9. 0が好ましい。 この反応温度は、 好ましくは 0〜50°Cであり、 特に好ましくは、 1 0〜 30°Cであり、 反応時間は、 好ましくは 1〜30時間であり、 特に好ましく は、 5〜24時間である。 反応終了後、 反応液の水層を有機溶媒で抽出すれ ば、 容易にかつ定量的にヒドラゾン類 (4) が得られる。
[0034] かくして得られたヒドラゾン類 (4) は、 前記公知の方法に従い、 塩酸サ プロプテリンへと導くことができる。
実施例
[0035] 次に実施例等を挙げて本発明を詳細に説明するが、 本発明はこれに何ら限 定されるものではない。
以下の実施例等の反応式を以下に示す。
[0036]
[化 9]
Figure imgf000013_0001
REM RE 酸化脱水体 5-OA ヒドラゾン体
Figure imgf000013_0002
5-DAヒドラゾン体ァセチル体
Figure imgf000013_0003
STEP 5
閉環酸化体
Figure imgf000013_0004
実施例 1 (酸化)
REM 1 00. 0 g (369. 8 mm o I ) 、 タングステン酸ナトリゥ ム■ 2水和物 1. 220 g (3. 698 mm o I 1 mo l %) 、 フエニル ホスホン酸 0. 6 1 4 g (3. 883 mm o I、 1. 05 m o I %) および 水 400 m Lを反応容器に入れ、 外温 0 °Cで攪拌した。 35 %過酸化水素水 1 47. 3 g ( 1 5 1 6mmo I ) を内温 20°C以下で滴下した。 外温 40 °Cで 2 1. 5時間反応し、 R E M酸化脱水体を得た。
[0038] 実施例 2 (ヒドラゾン化)
外温 1 0°Cでチォ硫酸ナトリウム■ 5水和物 9. 1 79 g (36. 98m mo I ) を加えて 30分間攪拌し、 過剰の過酸化水素を失活させた。 これに 、 酢酸ェチル 50 Om Lおよびフエニルヒドラジン 59. 99 g (554. 7mmo I ) を加え、 酢酸で p Hを 5. 3に調整し、 外温20°〇で23時間 反応した。
反応後、 食塩 50 gを加え溶解後、 反応液を分液し、 得られた水層を酢酸 ェチル 20 Om Lで抽出した。 分液後、 水層を酢酸ェチル 1 O Om Lで抽出 •分液した。 得られた有機層を合わせて、 無水硫酸マグネシウム 25 gで乾 燥し、 濾過後、 5 _ D Aヒドラゾン体—酢酸ェチル溶液を得た。
H P L Cを用いて 5_D Aヒドラゾン体を定量したところ、 REMから 5 —DAヒドラゾン体の収率は 1 00%であった。
[0039] 参考例 1 (ァセチル化)
外温 0°Cで 5_D Aヒドラゾン体—酢酸ェチル溶液に DMA P 1 5. 8 2 g ( 1 29. 5mmo I ) を加え溶解させた後、 無水酢酸 1 88. 8 g ( 1 849 mm o I ) を滴下し、 外温 1 0°Cで 1 6時間反応した。 水 250 m Lを加え 20分間攪拌して静置後、 分液し、 有機層に 20%水酸化ナトリウ ム水溶液を p H 7. 1になるまで加えた。 静置後分液し、 有機層を無水硫酸 ナトリウム 70 gで乾燥後濾過した。 外温 40 °Cで液量が 500 m Lになる まで減圧濃縮し、 5— DAヒドラゾンァセチル体—酢酸ェチル溶液を得た。
[0040] 参考例 2 (閉環)
5— DAヒドラゾンァセチル体一酢酸ェチル溶液に T A Uフリー体 46. 96 g (332. 8 mm o I ) 、 メタノール 50 Om L、 および水 5 O Om Lを加えた後、 内温 50〜 55°Cで 6時間反応し、 閉環体反応液を得た。
[0041] 参考例 3 (酸化)
外温 1 0°Cで、 閉環体反応液に 35 %過酸化水素水 1 36. 6 g ( 1 40 6 m mo I ) を滴下し 62時間反応した。 析出した結晶を濾取し、 水とメタ ノールで結晶を洗浄し、 閉環酸化体を得た。
[0042] 参考例 4 (脱ァセチル化)
閉環酸化体を 3 m o I / L塩酸 500 m Lに懸濁し、 内温 50 55 °Cで 2. 5時間反応した。 反応液を活性炭で脱色後、 28%アンモニア水で中和 した。 析出した結晶を濾取し粗ビォプテリンを得た。
得られた粗ビォプテリンを 6 %アンモニア水に溶解し、 活性炭で再度脱色 した後、 濃塩酸で中和した。 析出した結晶を濾取■乾燥し、 ビォプテリン 2 9. 73 gを得た。 H P L Cで定量したところ、 含量は 83. 5%であった REMからビォプテリンまでの収率は 28%であった。
[0043] 実施例 3 (モノ過硫酸塩を用いた酸化)
[0044] [化 10]
Figure imgf000015_0001
REM酸化脱水体
[0045] (酸化)
REM 1 00. 0 g (369. 8 mm o I ) と水 75 OmLを加えて、 氷冷下攪拌し O x o n e 523. 0 g (850. 5mmo I ) を内温 1 4 . 9 22. 5 °Cで少しずつ加えた。 外温 30 °Cで 1 39時間 40分攪拌し た。 氷冷下 28 %アンモニア水で中和し、 R E M酸化脱水体水溶液を得た。
(単離)
外温 5°Cで、 REM 200. 0 g (739. 6 mm o I ) を水 3 Lに懸 濁させ、 Ox o n e 1 046 g (1 701 mm o I ) を内温 20°C以下で 加え、 外温 1 0°Cで 1 9時間反応した。 反応後、 酢酸ェチルで水層から RE M酸化脱水体がなくなるまで抽出し、 有機層を無水硫酸マグネシウムで乾燥 濾過後、 減圧で濃縮乾固し、 REM酸化脱水体を収量 225. 9 g、 収率 9 7%で得た。 [0046] R E M酸化脱水体の 1 H _ N M R
H - N M R ( 300 M H z , DMSO_d 6_D20) δ ( p p m) = 1. 1 8 (d , 3 H、 J = 6. O H z) , 1. 24 ( d , 3 H, J = 6. 6 H z) , 1. 28 ( t , 1 2 H, J = 7. 5 H z) , 3. 35〜 3. 60 (m, 9 H) , 3. 7 1 (m, 1 H) , 3. 78 (d q , 1 H, J = 2. 1 , 6. 0 H z) , 3. 89 (q u i n t , 1 H, J = 6. 6 H z) , 4. 1 7 (m, 1 H) , 4. 40〜4. 53 (m, 3 H) , 5. 20 ( d , 1 H, J = 9. 6 H z) , 5. 25 (d , 1 H, J = 1. 5 H z) .
[0047] 実施例 4 (過酢酸法)
32%過酢酸 (希酢酸溶液) 3. 55 g及び水 1 m Lをフラスコに加え、 外温 1 0 °Cで攪拌し、 反応液に R E M 1 gを分割投入した。 反応液を外温 3 0°Cで終夜攪拌し、 2 1時間後に T L Cで反応終了を確認した。 反応液を氷 冷し、 ハイ ドロサルフアイ トナトリウム 0. 35 gをゆつくり添力 [1し、 反応 液中の過酸化物の消失を K I /デンプン紙にて確認した。 反応液を外温 50 °Cで減圧濃縮して、 R E M酸化脱水体として 2. 337 gを得た。
[0048] 比較例 1 (過酸化水素法)
REM 1. 5 k gに酢酸 8. 25 Lを加え、 外温 1 5°Cで攪拌した後 35 %過酸化水素水 1 1 85. 64 gを内温 30°C以下で約 8時間かけて滴下し た。 反応液を終夜攪拌した後、 濃塩酸 1 8. 04 gを加え、 反応液を外温 4 0 °Cに加温した後、 再度 35 %過酸化水素水 1 778. 39 gを約 30分か けて滴下した。 反応液を外温 40 °Cで約 9時間攪拌した後、 外温 1 0 °Cで冷 却し、 反応液に酢酸ナトリウム 60. 02 gを溶かした水溶液 750 m Lを 投入した後、 終夜攪拌した。 反応液を外温 0°Cで冷却し、 ハイ ドロサルファ イ トナトリウム 525. 27 gを溶かした水溶液 3 Lを、 酸化還元電位 43 6 mVとなるまで滴下し、 外温 5 °Cで終夜攪拌した。 反応液を外温 60 °Cで 、 内温の上昇が止まるまで減圧濃縮した。 濃縮残渣を次工程に用いた。 濃縮 残渣の T L Cから複数のスポッ卜が確認された。
懸濁反応液に内温 25°C以下を保つように 28%アンモニア水を滴下し、 反応液の p Hを 9〜1 0になるように調整した。 懸濁反応液を外温 1 0°Cで 滴下終了から 1 5. 5時間撹拌した後、 反応終点を T L Cにて確認した。 反 応液をろ過し、 残渣を酢酸ェチル (1 O O OmL) 及び水 (200mL) で 続けて練り洗いをし、 残渣に目的物 (5— DA) の残存がないか T LCで確 認した。 ろ液を分液し、 水層を酢酸ェチル (1 O O OmL) で 2回洗浄した 後、 有機層をあわせ、 水 (200m l ) を加え再度抽出した。 水層をあわせ 、 5— D Aを含む水溶液を得た。
[0049] 2000mLの 4頸フラスコに、 前項で合成した 5 _ D Aを含む水溶液 ( 897 g) を加え、 アルゴン気流下、 外温 1 0°Cに冷却した。 反応液の p H が 5〜 6になるように酢酸を加え、 次いでフエニルヒドラジン (1 6. 00 g, 0. 1 48モル) を投入した。 反応液を外温 1 0°C、 1時間撹拌した後 、 反応終点を T L Cにて確認した。 橙色懸濁反応液の p Hが 7付近になるよ うに 20 %水酸化ナトリゥム水溶液を加え、 次いで酢酸ェチル ( 200 m L ) 及び食塩 (225 g) を加えた。 反応液を分液し、 水層に酢酸ェチル (2 O OmL) を加え、 再度抽出した。 有機層を合わせ、 無水硫酸ナトリウム ( 40 g) を加え、 脱水 ' ろ過し、 ヒドラゾン体を含む酢酸ェチル溶液 (50 Om L) を得た。
その結果、 ヒドラゾン体までの収率は 45〜75%であった。
産業上の利用可能性
[0050] 実施例と比較例との対比から明らかなように、 本発明方法によれば、 工程 が短縮され、 かつ収率も極めて高い。

Claims

請求の範囲 [1] 一般式 (2)
[化 1] R R
Figure imgf000018_0001
(式中、 R1及び R2は同一又は異なってアルキル基を示し、 R3は水素原子又 は水酸基を示す)
で表されるジアルキルスルホニルメタン誘導体に、 一般式 (3)
[化 2]
NNH2 (3)
(式中、 R4及び R5は同一又は異なって、 水素原子、 アルキル基又は置換基 を有していてもよいァリール基を示す)
で表されるヒドラジン類を反応させることを特徴とする一般式 (4)
[化 3]
Figure imgf000018_0002
(式中、 R3、 R4及び R5は前記と同じ)
で表されるヒドラゾン類の製造法。
[2] 一般式 (2) で表されるジアルキルスルホニルメタン誘導体が、 次の一般 式 (1 )
[化 4]
Figure imgf000019_0001
(式中、 R1及び R2は同一又は異なってアルキル基を示し、 R3は水素原子又 は水酸基を示す)
で表される化合物に、 タングステン酸若しくはその塩及びリンォキソ酸の存 在下過酸化水素を反応させるか、 0°C以上 20°C未満で 1 0〜1 40時間若 しくは 20°C〜1 00°Cでモノ過硫酸塩を反応させるか、 又は過酸を反応さ せることにより得られるものである請求項 1記載のヒドラゾン類の製造法。 次の一般式 ( 1 )
[化 5]
Figure imgf000019_0002
(式中、 R1及び R2は同一又は異なってアルキル基を示し、 R3は水素原子又 は水酸基を示す)
で表される化合物に、 タングステン酸若しくはその塩及びリンォキソ酸の存 在下過酸化水素を反応させるか、 又は 0°C以上 20°C未満で 1 0〜1 40時 間若しくは 20°C〜 1 00°Cでモノ過硫酸塩を反応させることを特徴とする 一般式 (2) [化 6]
Figure imgf000020_0001
(式中、 R1及び R2は同一又は異なってアルキル基を示し、 R3は水素原子又 は水酸基を示す)
で表されるジアルキルスルホニルメタン誘導体の製造法。
PCT/JP2007/001006 2006-09-14 2007-09-14 Procédé de fabrication d'une hydrazone WO2008032453A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-249156 2006-09-14
JP2006249156A JP2009292726A (ja) 2006-09-14 2006-09-14 ヒドラゾン類の製造法

Publications (1)

Publication Number Publication Date
WO2008032453A1 true WO2008032453A1 (fr) 2008-03-20

Family

ID=39183522

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/001006 WO2008032453A1 (fr) 2006-09-14 2007-09-14 Procédé de fabrication d'une hydrazone

Country Status (2)

Country Link
JP (1) JP2009292726A (ja)
WO (1) WO2008032453A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109320442A (zh) * 2018-11-19 2019-02-12 启东华拓药业有限公司 一种比卡鲁胺的合成方法
CN114380871A (zh) * 2022-01-27 2022-04-22 重庆迈德凯医药有限公司 一种5-脱氧-l-阿拉伯糖苯腙的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HOUGH L. ET AL.: "1,1-Diethylsulfonyl derivatives of L-rhamnose and their conversion into 5-deoxy-L-arabinose", JOURNAL OF THE CHEMICAL SOCIETY, 1955, pages 3544 - 3548 *
WANG Y. ET AL.: "Synthesis of 5-deoxy-L-lyxofuranose", HUAXUE XUEBAO, vol. 25, 1959, pages 265 - 276 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109320442A (zh) * 2018-11-19 2019-02-12 启东华拓药业有限公司 一种比卡鲁胺的合成方法
CN114380871A (zh) * 2022-01-27 2022-04-22 重庆迈德凯医药有限公司 一种5-脱氧-l-阿拉伯糖苯腙的制备方法
CN114380871B (zh) * 2022-01-27 2024-03-01 重庆迈德凯医药有限公司 一种5-脱氧-l-阿拉伯糖苯腙的制备方法

Also Published As

Publication number Publication date
JP2009292726A (ja) 2009-12-17

Similar Documents

Publication Publication Date Title
KR101342086B1 (ko) 엘-바이옵테린의 제조방법
JP6084967B2 (ja) セピアプテリン及びテトラヒドロラクトイルプテリンの製造法
KR101277074B1 (ko) 히드라존 유도체의 제조방법
WO2005035538A1 (ja) ペナム結晶及びその製造法
WO2008032453A1 (fr) Procédé de fabrication d'une hydrazone
EP2582711B1 (en) Process for the preparation of pteridine derivatives
WO2001021617A1 (en) Process for preparing sulfoxide compounds
CN103087080B (zh) 一种盐酸头孢卡品酯的制备方法及其合成中间体
WO2001029004A1 (en) Oxidation process for the preparation of intermediates useful in the synthesis of diarylpyridines
CN112661668B (zh) 一种n-取代酰胺类化合物及其制备方法
EP1476441B1 (en) A method of eliminating sulfone analog in the synthesis of pyridine-benzimidazole sulfoxides
CN111892547A (zh) 一种丙硫菌唑中间体的合成方法
CN105622520A (zh) 一种治疗非小细胞肺癌药物色瑞替尼(Ceritinib)的新中间体及其制备方法
CN113666945B (zh) 2β-叠氮甲基青霉烷酸二苯甲酯、他唑巴坦中间体及他唑巴坦三者的制备方法
JP3290172B1 (ja) 2−アミノフェノキサジン−3−オン誘導体又は3−アミノフェノキサジン−2−オン誘導体を製造する方法
TW200526564A (en) Method for producing 2,3,6,7,10,11-hexahydroxytriphenylene
JP2002179655A (ja) アリールトリアゾリノン類の製造法
JPH0739410B2 (ja) 6−(3−ジメチルアミノプロピオニル)フォルスコリンの新規製造法
CN112262124A (zh) α-叠氮苯胺衍生物或α,α’-二叠氮衍生物的制造方法
JP2019135220A (ja) L−カルノシン及びその誘導体の製造方法
IL127969A (en) Process for the preparation of clarithromycin from its 9-hydrazone
JP2002302484A (ja) 新規イミダゾール誘導体及びその製造方法
JPWO2006013965A1 (ja) 三環系スルホンの製造法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07805860

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 07805860

Country of ref document: EP

Kind code of ref document: A1