WO2008029919A1 - Variable displacement compressor - Google Patents

Variable displacement compressor Download PDF

Info

Publication number
WO2008029919A1
WO2008029919A1 PCT/JP2007/067522 JP2007067522W WO2008029919A1 WO 2008029919 A1 WO2008029919 A1 WO 2008029919A1 JP 2007067522 W JP2007067522 W JP 2007067522W WO 2008029919 A1 WO2008029919 A1 WO 2008029919A1
Authority
WO
WIPO (PCT)
Prior art keywords
arm
swash plate
rotating member
pin
tilting
Prior art date
Application number
PCT/JP2007/067522
Other languages
English (en)
French (fr)
Inventor
Hiroyuki Makishima
Nobuyuki Kobayashi
Original Assignee
Calsonic Kansei Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corporation filed Critical Calsonic Kansei Corporation
Priority to CN2007800331591A priority Critical patent/CN101512151B/zh
Priority to EP07806954A priority patent/EP2063121A1/en
Priority to US12/440,353 priority patent/US20110041682A1/en
Publication of WO2008029919A1 publication Critical patent/WO2008029919A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/10Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F04B27/1036Component parts, details, e.g. sealings, lubrication
    • F04B27/1054Actuating elements
    • F04B27/1072Pivot mechanisms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B25/00Multi-stage pumps
    • F04B25/04Multi-stage pumps having cylinders coaxial with, or parallel or inclined to, main shaft axis

Definitions

  • the present invention relates to a variable capacity compressor including a hinge mechanism capable of relative rotational movement while transmitting rotational torque.
  • variable capacity compressor is disclosed in, for example, Japanese Patent Application Laid-Open No. 2004-068756.
  • the variable capacity compressor includes a drive shaft 105, a rotor 103 that is fixed to the drive shaft 105 and rotates integrally with the drive shaft, and is slid on the drive shaft 105.
  • the swash plate 101 includes a swash plate 101 (cam plate) attached thereto, and a piston (not shown) moored to the swash plate 101 and reciprocally accommodated in a cylinder bore (not shown). By changing the angle, the piston stroke can be changed to change the discharge capacity.
  • a hinge mechanism is provided between the rotor 103 and the swash plate 101 in order to change the inclination angle of the swash plate while transmitting torque from the rotor 103 to the swash plate 101.
  • the hinge mechanism includes a rotor arm 104 protruding from the rotor 103 toward the swash plate 101, and a swash plate arm 102 protruding from the swash plate 101 toward the rotor 103. It has been.
  • the rotor arm 104 and the swash plate arm 102 overlap each other in the rotational direction, so that the rotational force of the rotor 103 rotating integrally with the drive shaft 105 is transmitted to the swash plate 101.
  • An axial load pressure receiving surface 106 is provided at the base end of the rotor arm 104, and the axial load pressure receiving surface 106 receives the compression reaction force (axial load) from the piston acting on the swash plate 101. It ’s like that.
  • the pressure receiving surface 106 also functions to change and guide the tilt angle of the swash plate 101 as the swash plate arm 102 slides.
  • the compression reaction force Fp is the top dead center of the swash plate 101.
  • a torsional force Fn is applied to the swash plate 101 because it is not applied symmetrically with respect to the line C passing through the corresponding position TDC and the bottom dead center corresponding position BDC.
  • the swash plate 24 is inclined with respect to the line C and twisted.
  • the present invention has been made on the basis of such a conventional technique, and its purpose is to suppress the twisting of the swash plate and to reduce the sliding resistance generated between the arm of the swash plate and the arm of the rotor. This is to provide a variable capacity compressor that can be made smaller.
  • the present invention provides a drive shaft, a rotating member fixed to the drive shaft and integrally rotated, and slidably attached to the drive shaft in the axial direction of the drive shaft and attached to the drive shaft.
  • a tilting member that is tiltably attached to the tilting member, a hinge mechanism that transmits the rotational torque of the rotating member to the tilting member while allowing the tilting member to tilt, and a cylinder bore that accompanies the rotational movement of the tilting member.
  • a variable capacity compressor having a piston that reciprocates inside,
  • the hinge mechanism includes an arm projecting from the rotating member toward the tilting member, an arm projecting from the tilting member toward the rotating member, and receiving rotational torque from the arm of the rotating member; A pin provided on one of the arm of the rotating member and the arm of the tilting member, and the pin formed on the other side of the arm of the rotating member and the arm of the tilting member and contacting the pin, thereby tilting the rotating member; An axial load pressure receiving surface that receives an axial load generated between the pin and the axial load pressure receiving surface when the tilting member has a maximum inclination angle. It is characterized by being within an angle range of 27 ° to 90 ° forward R from the top dead center position.
  • FIG. 1 is a cross-sectional view of a variable capacity compressor according to an embodiment of the present invention in a maximum stroke state.
  • Fig. 2 is a sectional view of the variable capacity compressor in a minimum stroke state.
  • FIG. 3 is a side view of the assembly of the variable displacement compressor assembled with the drive shaft, rotor and swash plate in the maximum stroke state.
  • Fig. 4 is a side view of the assembly in the minimum stroke state.
  • FIG. 5 is a perspective view of the assembly.
  • FIG. 6 is a view from the VI direction in FIG. 3, showing the swash plate body of the assembly removed.
  • FIG. 9 is a graph showing the results of measuring the relationship between the pressure peak in the cylinder bore and the rotational speed.
  • FIG. 10 is a perspective view showing a modified example of the assembly of the variable capacity compressor.
  • FIG. 11 is a view corresponding to FIG. 3 of a conventional variable capacity compressor.
  • FIG. 12 is a side view from the direction of arrow XII in FIG.
  • FIG. 13 is a view showing a state in which the swash plate is twisted when a large compression reaction force is applied from the state of FIG. 11.
  • variable capacity compressor according to an embodiment of the present invention and a hinge mechanism used therefor will be described with reference to the drawings.
  • FIGS. Figure 1 shows the maximum stroke state
  • Figure 2 shows the minimum stroke state.
  • the variable capacity compressor 1 includes a cylinder block 2 having a plurality of (in this example, six) cylinder bores 3 arranged at equal intervals in the circumferential direction, and the cylinder block
  • the front housing 4 is joined to the front end face of 2 and forms the crank chamber 5 inside, and the rear end face of the cylinder block 2 is joined via the valve plate 9 and the suction chamber 7 and the discharge chamber 8 are formed inside.
  • the cylinder block 2, the front housing 4 and the rear housing 6 are fastened and fixed by a plurality of through bolts B.
  • the nozzle plate 9 includes a suction hole 11 that communicates the cylinder bore 3 and the suction chamber 7, and a discharge hole 12 that communicates the cylinder bore 3 and the discharge chamber 8.
  • a valve mechanism (not shown) for opening and closing the suction hole 11 is provided on the surface of the valve plate 9 on the cylinder block 2 side, while the discharge hole 1 is provided on the surface of the valve plate 9 on the rear housing 6 side.
  • a valve mechanism (not shown) for opening and closing 2 is provided.
  • a drive shaft 10 is supported via 18. As a result, the drive shaft 10 is rotatable in the crank chamber 5.
  • a rotor 21 as a “rotating member” fixed to the drive shaft 10 and a swash plate 24 as a “tilting member” attached to the drive shaft 10 are provided. ing. Swash plate 24
  • a hub 25 mounted on the drive shaft 10 so as to be slidable along the axis of the drive shaft and tiltable with respect to the axis of the drive shaft, and a swash plate fixed to a boss portion of the hub 25 Body
  • a piston 29 is slidably accommodated in each cylinder bore 3, and this piston 29 is connected to a swash plate body 26 of a swash plate 24 via a pair of hemispherical piston shoes 30, 30.
  • a hinge mechanism 40 is interposed between the rotor 21 as the rotating member and the hub 25 of the swash plate 24 as the tilting member, and the hinge mechanism 40 can change the tilt angle of the swash plate 24. Permissible, the rotational torque of the rotor 21 can be transmitted to the swash plate 24.
  • the rotor 21 rotates integrally with the drive shaft 10 and is transmitted to the swash plate 24 via the rotational force S hinge mechanism 40 of the rotor 21.
  • the rotation of the swash plate 24 is converted into a reciprocating motion of the piston 29 by the pair of piston shrouds 30 and 30, and the piston 29 reciprocates in the cylinder bore 3.
  • the inclination angle of the swash plate 24 is changed by adjusting the differential pressure (pressure balance) between the crank chamber pressure Pc on the rear surface side of the piston 29 and the suction chamber pressure Ps on the front surface side of the piston 29.
  • a pressure control mechanism is provided.
  • the pressure control mechanism includes an extraction passage (not shown) that connects the crank chamber 5 and the suction chamber 7, an air supply passage (not shown) that connects the crank chamber 5 and the discharge chamber 8, and the air supply passage.
  • a control valve 33 that is provided in the middle of the engine and controls the opening and closing of the air supply passage.
  • the inclination angle of the swash plate 24 decreases when the hub 25 moves closer to the cylinder block 2, while the inclination angle of the swash plate 24 decreases when the hub 25 moves away from the cylinder block 2. The angle increases.
  • FIG. 3 is a side view of the maximum stroke state of the drive shaft, rotor, and swash plate assembly.
  • FIG. 4 is a side view of the assembly in the minimum stroke state
  • FIG. 5 is a perspective view of the assembly in the maximum stroke state
  • FIG. 6 is a state in which the swash plate body of the assembly is removed. It is the figure seen from.
  • the hinge mechanism 40 includes an arm 41 protruding from the rotor 21 toward the hub 25, and an arm 43 protruding from the hub 25 toward the rotor 21. ing.
  • the arm 41 of the rotor is formed in a forked shape with a slit 41 s extending in the axial direction XY (perpendicular to the rotational torque transmission direction Ft).
  • the swash plate arm 43 is slidably held in the slit 41s (that is, between the pair of arms 41a and 41b).
  • the swash plate arm 43 is also bifurcated. It is.
  • This compression reaction force Fp consists of a pin 51 press-fitted into the press-fitting hole of the arm 43 of the swash plate 24, and axial load receiving surfaces 53a and 53b provided at the tips of the arms 41a and 41b of the rotor 21. It is received by contact.
  • the pin 51 extends in the tangential direction of the rotation track of the rotating member 21 and the swash plate 24, in other words, extends in the rotation torque transmitting direction Ft.
  • the axial load receiving surfaces 53a and 53b have a function of changing and guiding the inclination angle of the swash plate. Therefore, when the inclination angle of the swash plate 24 is changed, the swash plate 24 is subjected to an axial load Fp (compression reaction force from the piston) between the pin 51 and the axial load receiving surfaces 53a and 53b. The tilt angle of is changed.
  • Fp compression reaction force from the piston
  • the range of the suction pressure is 0.26 Mpa to 0.51 Mpa
  • the range of the discharge pressure is 3.16 Mpa to l.12 Mpa.
  • the theoretical value of the pressure peak in the cylinder bore (that is, when the discharge valve opens) within this range is 323 ° (37 ° forward from the top dead center) as shown in Fig. 7.
  • the lower limit is 270 ° (90 ° forward from the top dead center) as shown in FIG.
  • the pressure peak point in the cylinder bore is delayed from the theoretical value according to the rotational speed of the drive shaft.
  • the pressure peak point in the cylinder bore was delayed by a maximum of 10 ° from the theoretical value as shown in FIG. More specifically, the rotation of the drive shaft is delayed by 4 ° from the theoretical value when driving at low speed (actually when the vehicle is idling), and when driving at high speed (actually when the vehicle is operating at 100 km / h or more). 10 ° behind the theoretical value.
  • the range in which the compression reaction force Fp from the piston 29 becomes maximum is from the top dead center corresponding position TDC of the swash plate 24 to the forward direction R in the rotational direction, with the discharge pressure, suction pressure, and rotation speed as variables
  • the angle is in the range of 27 ° to 90 °.
  • the theoretical value is a position shifted by 37 ° toward the front R from the position corresponding to the top dead center TDC force, and depending on the number of rotations, the theoretical value of 37 ° force is delayed by a maximum of 10 ° toward the rear in the rotational direction. From the top dead center corresponding position TDC to the forward direction R in the rotation direction, ⁇ is in the range of 27 ° to 37 ° (see Figs. 7 and 9).
  • the force S is preferably within an angle range of 27 ° to 90 ° from the position corresponding to the top dead center of the swash plate 24 toward the front direction R from the TDC. More preferably, it is within an angle range of 27 ° to 37 ° from the top dead center corresponding position TDC toward the forward direction R in the rotation direction.
  • the differential pressure between the discharge pressure and the suction pressure is the maximum and the rotational speed is low (during idle rotation), the problem becomes most significant.
  • 24 Top dead center position TDC is located at a position of 33 ° from the TDC toward the forward rotation R (that is, the theoretical value is 37 °, 4 ° behind the force).
  • the compression reaction force Fp from the piston 29 can be received at the front face of the axial load receiving face 53a or at a position close to the front face. Can reduce torsion. As a result, between the arm 43 of the swash plate and the arm 41 of the rotor The generated sliding resistance can be reduced, and the controllability of the compressor is improved.
  • this embodiment has the following effects.
  • the hinge mechanism 40 includes an arm 41 projecting from the rotor 21 and a rotary tunnel projecting from the arm 41 of the rotor projecting from the swash plate 24.
  • Pin 51 provided on one of the arm 43 receiving the rotor, the arm 41 of the rotor and the arm 43 of the swash plate (in this example, the arm 43 of the swash plate), and the arm 41 of the rotor and the arm 43 3 of the swash plate
  • the axial load pressure receiving surfaces 53a and 53b that receive the compression reaction force Fp (axial load) from the piston 29 by contacting the pin 51 are provided.
  • the compression reaction force Fp from the piston 29 can be received at a position closer to the front, thereby preventing the swash plate 24 from being twisted as in the prior art.
  • the sliding resistance generated between the arm 43 of the swash plate and the arm 41 of the rotor can be reduced, and the controllability of the compressor is improved.
  • one of the contact portions between the pin 51 and the axial load receiving surfaces 53a, 53b when the swash plate 24 has the maximum inclination angle (in this example, 53a ) It is provided in the angle range ⁇ ° of 27 ° to 37 ° from the force S, top dead center corresponding position TDC toward the forward direction R in the rotation direction. Therefore, the sliding resistance generated between the arm 43 of the swash plate and the arm 41 of the rotor can be further reduced.
  • either one of the arms 41 and 43 (in this example, the swash plate arm 43) has a bifurcated shape with a slit 4 Is, and the other arm (in this example the rotor) in the slit 41s.
  • the arm 41) is slidably sandwiched. Therefore, a backlash between the arms 41 and 43 is preferable.
  • the pin 51 is formed separately from the arm 41 of the rotor and the arm 43 of the swash plate, and one of them (in this example, the slant) Plank arm 4 Fixed to 3).
  • the pin 51 is formed as a member different from the arm (in this example, the arm 43 of the swash plate).
  • the plate arm 43 does not require hardness-increasing processing such as quenching, and the manufacturing cost is reduced.
  • the pin 51 is separate from the arm (in this example, the swash plate arm 43), it is relatively easy to process the outer peripheral surface of the pin 51 into a complex surface shape. In such a case, the manufacturing cost can be reduced as compared with the case where the arm (in this example, the swash plate arm 43) is processed into a complicated surface shape. In addition, only the pin 51 can be replaced.
  • 43 may be provided with an axial load receiving surface, and a pin 51 may be provided on the arm 41 of the rotor.
  • the force pin 51 in which the arm and the pin 51 are provided separately may be formed integrally with the arm 41 or 43.
  • the axial load pressure receiving surfaces 53a and 53b are symmetrically provided with respect to the top dead center corresponding position TDC.
  • the axial load pressure receiving surfaces 53a and 53b are The position corresponding to the top dead center TDC need not be symmetrical.
  • the slit 41s is provided in the arm 41 of the rotor, and the force S that slidably holds the arm 43 of the swash plate in the slit 41s.
  • a slit 43s may be provided in the swash plate arm 43, and the rotor arm 41 may be slidably held in the slit 43s.
  • the pin has a circular cross section, but may have other cross sectional shapes in the present invention.
  • the swash plate 24 is formed by combining the swash plate body 26 and the hub 25 as separate members!
  • the swash plate body and the hub are integrally formed in advance. It may be a swash plate.
  • the force is a sleeveless structure in which the swash plate 24 is directly attached to the drive shaft 10 without a sleeve.
  • the swash plate is attached to the drive shaft via the sleeve. Good.
  • a swash type swash plate is used!
  • a double type swash plate may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Description

明 細 書
可変容量圧縮機
技術分野
[0001] 本発明は、回転トルクを伝達しながら相対回転運動可能なヒンジ機構を備える可変 容量圧縮機に関する。
背景技術
[0002] 従来の可変容量圧縮機には、例えば特開 2004— 068756号公報に開示されるも のがある。この可変容量圧縮機は、図 11〜図 13に示すように、駆動軸 105と、駆動 軸 105に固定されて駆動軸と一体的に回転するロータ 103と、駆動軸 105に摺動自 在に取り付けられた斜板 101 (カムプレート)と、斜板 101に係留され且つ図示せぬシ リンダボア内に往復動自在に収容された図示せぬピストンと、を備えて構成され、斜 板 101の傾斜角を変化させることでピストンストロークを変化させて吐出容量を変化さ せることができるようになつている。ロータ 103から斜板 101へトルクを伝達しながら斜 板の傾斜角を変化させるため、ロータ 103と斜板 101との間にはヒンジ機構が設けら れている。
[0003] ヒンジ機構は、ロータ 103から斜板 101に向けて突設されたロータのアーム 104と、 斜板 101からロータ 103に向けて突設された斜板のアーム 102と、を備えて構成され ている。ロータのアーム 104と斜板のアーム 102とが回転方向に互いに重なり合うこと で、駆動軸 105と一体に回転するロータ 103の回転力 斜板 101に伝達されるように なっている。ロータのアーム 104の基端には軸方向荷重受圧面 106が設けられてお り、この軸方向荷重受圧面 106で、斜板 101に作用するピストンからの圧縮反力(軸 方向荷重)を受け止めるようになつている。この受圧面 106は、斜板のアーム 102の スライドに伴って斜板 101の傾角を変更ガイドする機能も果たす。
発明の開示
[0004] ここで斜板式圧縮機では、ピストンからの圧縮反力 Fpが最大となる位置は、図 12、
13に示すように、斜板 101の上死点対応位置 TDCとは一致せずに当該上死点対応 位置よりも回転方向前方に位置する。そのため、圧縮反力 Fpは、斜板 101の上死点 対応位置 TDCと下死点対応位置 BDCとを通る線 Cに対して左右対称に加わらない ため、図 13に示すように斜板 101には捻れ力 Fnが加わる。これにより、斜板 24は線 Cに対して傾むいて捻れることとなる。このように斜板 101が捻れると、斜板 101のァ ーム 102の角部 K1がロータ 103のアーム 104に食い込むとともにロータ 103のァー ム 104の角部 K2が斜板 101のアーム 102に食い込むこととなる。すると、斜板 101の 傾角を変更する際の両者 102、 104間に生じる摺動抵抗が極めて大きくなつてしまう
[0005] 本発明はこのような従来技術をもとに為されたもので、その目的は、斜板の捻れを 抑制して斜板のアームとロータのアームとの間に生じる摺動抵抗を小さくできる可変 容量圧縮機の提供である。
[0006] 本発明は、駆動軸と、前記駆動軸に固定されて一体に回転する回転部材と、前記 駆動軸に当該駆動軸の軸方向に向けて摺動自在に取り付けられるとともに前記駆動 軸に対して傾斜自在に取り付けられた傾動部材と、前記傾動部材の傾動を許容しつ つ前記回転部材の回転トルクを前記傾動部材に伝達するヒンジ機構と、前記傾動部 材の回転運動に伴つてシリンダボア内を往復動するピストンと、を備えた可変容量圧 縮機であって、
前記ヒンジ機構は、前記回転部材から前記傾動部材に向けて突設されたアームと、 前記傾動部材から前記回転部材に向けて突設され前記回転部材のアームからの回 転トルクを受けるアームと、前記回転部材のアームおよび前記傾動部材のアームの 一方に設けられたピンと、前記回転部材のアームおよび前記傾動部材のアームの他 方に形成され且つ前記ピンに当接することで前記回転部材と前記傾動部材との間に 生じる軸方向荷重を受ける軸方向荷重受圧面と、を備え、前記傾動部材が最大傾斜 角のときの前記ピンと前記軸方向荷重受圧面との当接部位力 少なくとも前記傾動 部材の上死点対応位置から 27° 〜90° 回転方向前方 Rの角度範囲内にあることを 特徴とする。
図面の簡単な説明
[0007] [図 1]図 1は本発明の一実施形態にかかる可変容量圧縮機の最大ストローク状態の 断面図。 [図 2]図 2は同可変容量圧縮機の最小ストローク状態の断面図。
[図 3]図 3は同可変容量圧縮機の、駆動軸、ロータおよび斜板を組み立てたアッセン プリの最大ストローク状態の側面図。
[図 4]図 4は同アッセンプリの、最小ストローク状態の側面図。
[図 5]図 5は同アッセンプリの斜視図。
[図 6]図 6は同アッセンプリの斜板本体を取り外した状態を示す、図 3中矢視 VI方向 から見た図。
[図 7]図 7は吐出圧力 Pdの上限値である Pd = 3. 16Mpaにおける 1つのシリンダボア 内の圧力線図の理論値を示す図。
[図 8]図 8は吐出圧力 Pdの下限値である Pd= l . 12Mpaにおける 1つのシリンダボア 内の圧力線図の理論値を示す図。
[図 9]図 9はシリンダボア内の圧力ピークと回転数との関係を測定した結果を示す図。
[図 10]図 10は可変容量圧縮機のアッセンプリの変形例を示す斜視図。
[図 11]図 11は従来の可変容量圧縮機の図 3相当の図。
[図 12]図 12は図 11中の矢視 XII方向からの側面図。
[図 13]図 13は図 11の状態から大きな圧縮反力が加わった際に斜板が捻れる様子を 示す図。
発明を実施するための最良の形態
[0008] 以下、本発明の実施形態にかかる可変容量圧縮機およびこれに用いるヒンジ機構 を図面を参照しつつ説明する。
[0009] まず、図 1、 2を参照しつつ可変容量圧縮機の概略を説明する。なお、図 1は最大ス トロークの状態を示し、図 2は最小ストロークの状態を示している。
[0010] 図 1、 2に示すように、可変容量圧縮機 1は、円周方向に複数 (この例では 6つ)の等 間隔に配置されたシリンダボア 3を有するシリンダブロック 2と、該シリンダブロック 2の 前端面に接合され内部にクランク室 5を形成するフロントハウジング 4と、シリンダブ口 ック 2の後端面にバルブプレート 9を介して接合され且つ内部に吸入室 7および吐出 室 8を形成するリアハウジング 6と、を備えている。これらシリンダブロック 2とフロントノヽ ウジング 4とリアハウジング 6とは、複数のスルーボルト Bによって締結固定される。 [0011] ノ ルブプレート 9は、シリンダボア 3と吸入室 7とを連通する吸入孔 11と、シリンダボ ァ 3と吐出室 8とを連通する吐出孔 12と、を備えている。
[0012] バルブプレート 9のシリンダブロック 2側の面には、吸入孔 11を開閉する図示せぬ 弁機構が設けられ、一方、バルブプレート 9のリアハウジング 6側の面には、吐出孔 1
2を開閉する図示せぬ弁機構が設けられている。
[0013] シリンダブロック 2およびフロントハウジング 4の中心の支持孔 19、 20には軸受 17、
18を介して駆動軸 10が軸支されている。これにより、この駆動軸 10がクランク室 5内 で回転自在となっている。
[0014] クランク室 5内には、前記駆動軸 10に固設された「回転部材」としてのロータ 21と、 駆動軸 10に装着された「傾動部材」としての斜板 24と、が設けられている。斜板 24は
、駆動軸の軸心に沿ってスライド自在で且つ駆動軸の軸心に対して傾動自在となる ように駆動軸 10に装着されたハブ 25と、このハブ 25のボス部に固定された斜板本体
26と、を備えてなる。
[0015] 各シリンダボア 3にはピストン 29が摺動自在に収容されており、このピストン 29は半 球状の一対のピストンシユー 30、 30を介して斜板 24の斜板本体 26に連結されてい
[0016] 回転部材としてのロータ 21と、傾動部材としての斜板 24のハブ 25と、の間にはヒン ジ機構 40が介在しており、このヒンジ機構 40により斜板 24の傾角の変動を許容しつ つロータ 21の回転トルクを斜板 24に伝達できるようになつている。駆動軸 10が回転 するとこの駆動軸 10と一体にロータ 21が回転し、このロータ 21の回転力 Sヒンジ機構 4 0を介して斜板 24に伝達される。斜板 24の回転は、一対のピストンシユー 30、 30に よってピストン 29の往復動に変換され、ピストン 29がシリンダボア 3内を往復動する。 このピストン 29の往復動により、吸入室 7内の冷媒は、バルブプレート 9の吸入孔 11 を通じてシリンダボア 3内に吸入されたのち圧縮され、バルブプレート 9の吐出孔 12 を通じて吐出室 8へと吐出される。
[0017] 可変容量の制御
この可変容量圧縮機には、ピストン 29の後面側のクランク室圧 Pcとピストン 29の前 面側の吸入室圧 Psの差圧 (圧力バランス)を調整して斜板 24の傾角を変化させるた めに、圧力制御機構が設けられている。圧力制御機構は、クランク室 5と吸入室 7とを 連通する抽気通路(図示せぬ)と、クランク室 5と吐出室 8とを連通する給気通路(図 示せぬ)と、この給気通路の途中に設けられ給気通路を開閉制御する制御弁 33と、 を備える。
[0018] 制御弁 33で給気通路を開くと給気通路を通じて吐出室 8の冷媒がクランク室 5に流 れこんでクランク室圧 Pcが上昇し、これによりクランク室圧 Pcと吸入室圧 Psとの圧力 ノ ランスにより斜板 24の傾斜角が小さくなる。結果、ピストンストロークが小さくなり、 吐出量が減少する。逆に、制御弁 33で給気通路を閉じると抽気通路を通じてクラン ク室 5の冷媒が吸入室 7に除々に抜けていくことでクランク室圧 Pcが低下し、これによ りクランク室圧 Pcと吸入室圧 Psとの圧力バランスにより斜板 24の傾斜角が大きくなる 。結果、ピストンストロークが大きくなり、吐出量が増加する。なお、斜板 24の傾斜角 は、ハブ 25がシリンダブロック 2側に近接移動すると斜板 24の傾斜角が減少し、一方 、ハブ 25がシリンダブロック 2から離れる方向に移動すると斜板 24の傾斜角が増大 する。
[0019] ヒンジ機構
次に図 3〜6参照しつつヒンジ機構 40について説明する。
[0020] 図 3は駆動軸、ロータおよび斜板のアッセンプリの最大ストローク状態の側面図、図
4は同アッセンプリの最小ストローク状態の側面図、図 5は同アッセンプリの最大スト口 ーク状態の斜視図、図 6は同アッセンプリの斜板本体を取り外した状態を示す、図 3 中矢視 VI方向から見た図である。
[0021] 図 3〜6に示すように、ヒンジ機構 40は、ロータ 21からハブ 25に向けて突設された アーム 41と、ハブ 25からロータ 21に向けて突設されアーム 43と、を備えている。ロー タのアーム 41とハブのアーム 43は回転トルク伝達方向 Ft (=駆動軸 10の回転方向 接線方向)に重なり合つており、これによりロータ 21の回転トルクが斜板 24に伝達さ れる。この例では、図 3、 4に示すように、ロータのアーム 41が軸方向 XYに延びる(回 転トルク伝達方向 Ftと直交する)スリット 41 sを有して二股状に形成されており、このス リット 41s内(つまり一対のアーム 41a、 41bの間)に摺動自在に、斜板のアーム 43が 狭持された構造となっている。なお、この例では斜板のアーム 43も二股状に形成さ れている。
[0022] 斜板 24が回転すると、ピストン 29が往復動して斜板 24にはピストン 29からの圧縮 反力(軸方向荷重 Fp)が加わる。この圧縮反力 Fpは、斜板 24のアーム 43の圧入孔 に圧入固定されたピン 51と、ロータ 21のアーム 41a、 41bの先端に設けられた軸方 向荷重受圧面 53a、 53bと、の当接により受け止められている。なおピン 51は、回転 部材 21および斜板 24の回転軌道の接線方向に延在している、言い換えると、回転ト ルク伝達方向 Ftに向けて延在している。
[0023] この軸方向荷重受圧面 53a、 53bは、斜板の傾角を変更ガイドする機能を備えてい る。そのため、斜板 24の傾角が変更される際には、ピン 51と軸方向荷重受圧面 53a 、 53bとの間に軸方向荷重 Fp (ピストンからの圧縮反力)が加わった状態で斜板 24の 傾角が変更される。
[0024] ピン 51とロータ 21の軸方向荷重受圧面 53a、 53bとの当接面間には大きな圧縮反 力(軸方向荷重 Fp)が加わるため、ピン 51およびロータ 21の軸方向荷重受圧面 53a 、 53bには焼き入れ加工などの硬度増強加工を施してある。
[0025] 軸方向荷重受圧面 53a、 53bの位置
ここで、本発明者が研究した結果、圧縮反力 Fpが最大となる位置は、吐出圧、吸 入圧および回転数を変数として、斜板 24の上死点対応位置 TDCから回転方向前方 Rに向けて α = 27° 〜90° の範囲になることが判明した(図 7、 8、 9参照)。そのな かでも特に圧縮反力 FPが大きくなる位置は、圧縮負荷が最大のときであって(すな わち吐出圧と吸入圧との差圧が最大となるときであって)、このときには回転数を変数 として、斜板 24の上死点対応位置 TDCから回転方向前方 Rに向けて α = 27° 〜3 7° の範囲になることが判明した(図 7、 9参照)。
[0026] 冷媒が 134aなどである場合、吸入圧力の範囲が 0. 26Mpa〜0. 51Mpaであり、 吐出圧力の範囲が 3. 16Mpa~l . 12Mpaである。この範囲内でのシリンダボア内 の圧力ピーク (すなわち吐出弁の開弁時点)の理論値は、その上限値が図 7に示す ように 323° (上死点から回転方向前方に 37° )であり、その下限値が図 8に示すよ うに 270° (上死点から回転方向前方に 90° )である。図 7は吐出圧力 Pdの上限値 である Pd = 3. 16Mpaにおける 1つのシリンダボア内の圧力線図の理論値を示す図 、図 8吐出圧力 Pdの下限値である Pd= l . 12Mpaにおける 1つのシリンダボア内の 圧力線図の理論値を示す図である。
[0027] そして、このようなシリンダボア内の圧力ピーク点は、駆動軸の回転数に応じて上記 理論値よりも遅れる。実験の結果、シリンダボア内の圧力ピーク点は、図 9に示すよう に、前記理論値から最大 10° 遅れることが判明した。より具体的には、駆動軸の回 転が低速運転 (実際には車両のアイドリング運転状態)では前記理論値から 4° 遅れ 、高速運転 (実際には車両が 100Km/h以上の運転状態)では前記理論値から 10 ° 遅れた。
[0028] そのため、ピストン 29からの圧縮反力 Fpが最大となる範囲は、吐出圧力および吸 入圧力および回転数を変数として、斜板 24の上死点対応位置 TDCから回転方向前 方 Rに向けて 27° 〜90° の角度範囲内となる。その中でも特に圧縮反力 FPが大き くなる位置は、吐出圧と吸入圧との差圧が最大となるときであり(つまり吐出圧 = 3. 1 6Mpa且つ吸入圧 =0. 26Mpaのときであり)、その理論値は上死点対応位置 TDC 力、ら回転方向前方 Rに向けて 37° ずれた位置であり、回転数によっては理論値 37 ° 力も回転方向後方に向けて最大 10° 遅れるため、上死点対応位置 TDCから回 転方向前方 Rに向けて α = 27° 〜37° の範囲になる(図 7、 9参照)。
[0029] これに対応させて、本実施形態では、斜板 24が最大傾斜角のときのピン 51と軸方 向荷重受圧面 53a、 53bとの当接部位の一方(この例では 53a)力 斜板 24の上死 点対応位置 TDCから回転方向前方 Rに向けて 27° 〜90° の角度範囲内に設けら れていること力 S好ましい。さらに好ましくは、上死点対応位置 TDCから回転方向前方 Rに向けて 27° 〜37° の角度範囲内である。なお、この例では、吐出圧と吸入圧と の差圧が最大であり且つ回転数が低速時 (アイドル回転時)において最も課題が顕 著となるため、これに対応する位置である、斜板 24の上死点対応位置 TDCから回転 方向前方 Rに向けて 33° の位置(つまり理論値 37° 力 4° 遅れた位置)に設けら れている。
[0030] そのため、本実施形態によれば、ピストン 29からの圧縮反力 Fpを、軸方向荷重受 圧面 53aの正面または正面に近い位置で受け止めることができ、これにより、従来より も斜板 24の捻れを小さくできる。結果、斜板のアーム 43とロータのアーム 41との間に 発生する摺動抵抗を小さくでき、圧縮機の制御性が向上する。
[0031] 効果
以上のような構成によりこの実施形態によれば以下のような効果がある。
[0032] まず第 1に、本実施形態の可変容量圧縮機では、ヒンジ機構 40は、ロータ 21から 突設されたアーム 41と、斜板 24から突設され前記ロータのアーム 41からの回転トノレ クを受けるアーム 43と、ロータのアーム 41および斜板のアーム 43の一方(この例で は斜板のアーム 43)に設けられたピン 51と、ロータのアーム 41および斜板のアーム 4 3の他方(この例ではロータのアーム 41)に形成され且つピン 51に当接することでピ ストン 29からの圧縮反力 Fp (軸方向荷重)を受ける軸方向荷重受圧面 53a、 53bと、 を備えた構造であり、そして、斜板 24が最大傾斜角のときのピン 51と軸方向荷重受 圧面 53a、 53bとの当接部位の一方(この例では 53a)力 S、ピストン 29からの圧縮反力 Fpが最大となる位置、つまり、上死点対応位置 TDCから回転方向前方 Rに向けて 2 7° 〜90° の角度範囲 α ° に設けられている。
[0033] そのため、ピストン 29からの圧縮反力 Fpを、より正面に近い位置で受け止めること ができ、これにより、従来のように斜板 24が捻れてしまうようなことを防止できる。結果 、斜板のアーム 43とロータのアーム 41との間に発生する摺動抵抗を小さくでき、圧縮 機の制御性が向上する。
[0034] 第 2に、本実施形態の可変容量圧縮機では、斜板 24が最大傾斜角のときのピン 51 と軸方向荷重受圧面 53a、 53bとの当接部位の一方(この例では 53a)力 S、上死点対 応位置 TDCから回転方向前方 Rに向けて 27° 〜37° の角度範囲 α ° に設けられ ている。そのため、斜板のアーム 43とロータのアーム 41との間に生じる摺動抵抗をさ らに小さくできる。
[0035] 第 3に、両アーム 41、 43のいずれか一方(この例では斜板のアーム 43)がスリット 4 Isを備えた二股状で、このスリット 41s内に他方のアーム(この例ではロータのアーム 41 )が摺動自在に狭持された構造である。そのため、両アーム 41、 43間にガタが生 じに《好ましい。
[0036] 第 4に、この実施形態によれば、ヒンジ機構 40は、ピン 51は、ロータのアーム 41お よび斜板のアーム 43とは別体で形成され、これらの一方(この例では斜板のアーム 4 3)に固定されたものである。
[0037] そのため、ピン 51はアーム(この例では斜板のアーム 43)とは別部材で形成されて いるため、ピン 51のみを焼き入れなどの硬度増強加工すれば、アーム(この例では 斜板のアーム 43)は焼き入れなどの硬度増強加工が不要となり、製造コストが低減さ れる。
[0038] また、ピン 51はアーム(これの例では斜板のアーム 43)とは別体であるため、ピン 5 1の外周面を複雑な面形状に加工することも比較的容易にできる。このような場合は 、アーム(これの例では斜板のアーム 43)を複雑な面形状に加工する場合に比べ、 製造コストを低減できる。また、ピン 51のみを部品交換することもできる。
[0039] なお、本発明は上述した実施形態に何ら限定されることはない。
[0040] 例えば上述の実施形態では、斜板のアーム 43にピン 51を固定し且つロータのァ ーム 41に軸方向荷重受圧面 53a、 53bを設けている力 本発明では、斜板のアーム 43に軸方向荷重受圧面を設け且つロータのアーム 41にピン 51を設けてもよい。
[0041] また上述の実施形態では、アームとピン 51とが別体で設けられている力 ピン 51が アーム 41または 43に一体形成されていてもよい。
[0042] また上述の実施形態では、軸方向荷重受圧面 53a、 53bは、上死点対応位置 TD Cに対して左右対称に設けられている力 本発明では軸方向荷重受圧面 53a、 53b が上死点対応位置 TDCに対して左右対称でなくてもよい。
[0043] また上述の実施形態では、ロータのアーム 41にスリット 41sを設けてこのスリット 41s 内に斜板のアーム 43を摺動自在に狭持している力 S、本発明では図 10の変形例のよ うに、斜板のアーム 43にスリット 43sを設けてこのスリット 43s内にロータのアーム 41を 摺動自在に狭持してもよい。
[0044] また、上述の実施形態では、ピンは断面円形であつたが本発明ではその他の断面 形状であってもよい。
[0045] また上述の実施形態では別部材の斜板本体 26とハブ 25とを組み合わせて斜板 2 4を構成して!/、るが、本発明では斜板本体とハブとを予め一体成形した斜板であって もよい。また、上述実施形態ではスリーブ無しで斜板 24が直接駆動軸 10に装着され たスリーブレス構造である力 本発明では斜板をスリーブを介して駆動軸に装着して あよい。
[0046] また、上述実施形態ではスヮッシュ式の斜板を用いて!/、るが本発明ではヮブル式の 斜板を用いてもよい。
[0047] また、本発明の技術的範囲に属する限りその他の種々の態様で本発明は実施し得

Claims

請求の範囲
[1] 駆動軸と、前記駆動軸に固定されて一体に回転する回転部材と、前記駆動軸に当 該駆動軸の軸方向に向けて摺動自在に取り付けられるとともに前記駆動軸に対して 傾斜自在に取り付けられた傾動部材と、前記傾動部材の傾動を許容しつつ前記回 転部材の回転トルクを前記傾動部材に伝達するヒンジ機構と、前記傾動部材の回転 運動に伴ってシリンダボア内を往復動するピストンと、を備えた可変容量圧縮機であ つて、
前記ヒンジ機構は、前記回転部材から前記傾動部材に向けて突設されたアームと、 前記傾動部材から前記回転部材に向けて突設され前記回転部材のアームからの回 転トルクを受けるアームと、前記回転部材のアームおよび前記傾動部材のアームの 一方に設けられたピンと、前記回転部材のアームおよび前記傾動部材のアームの他 方に形成され且つ前記ピンに当接することで前記回転部材と前記傾動部材との間に 生じる軸方向荷重を受ける軸方向荷重受圧面と、を備え、
前記傾動部材が最大傾斜角のときの前記ピンと前記軸方向荷重受圧面との当接 部位が、少なくとも上死点対応位置から 27° 〜90° 回転方向前方 Rの角度範囲内 にめ ·ο。
[2] 請求項 1に記載の可変容量圧縮機であって、
前記傾動部材が最大傾斜角のときの前記ピンと前記軸方向荷重受圧面との当接 部位が、上死点対応位置から 27° 〜37° 回転方向前方 Rの角度範囲内にある。
[3] 請求項 1に記載の可変容量圧縮機であって、
前記回転部材のアーム力 前記傾動部材のアームを摺動自在に狭持するスリットを 備えた二股状である。
[4] 請求項 1に記載の可変容量圧縮機であって、
前記傾動部材のアームが前記回転部材のアームを摺動自在に狭持するスリットを 備えた二股状である。
[5] 請求項 1に記載の可変容量圧縮機であって、
前記ピンは、前記回転部材のアームまたは前記傾動部材のアームと別部材で当該 アームに固定されている。
PCT/JP2007/067522 2006-09-08 2007-09-07 Variable displacement compressor WO2008029919A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2007800331591A CN101512151B (zh) 2006-09-08 2007-09-07 可变容量压缩机
EP07806954A EP2063121A1 (en) 2006-09-08 2007-09-07 Variable displacement compressor
US12/440,353 US20110041682A1 (en) 2006-09-08 2007-09-07 Variable capacity compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-244691 2006-09-08
JP2006244691A JP2008064057A (ja) 2006-09-08 2006-09-08 可変容量圧縮機

Publications (1)

Publication Number Publication Date
WO2008029919A1 true WO2008029919A1 (en) 2008-03-13

Family

ID=39157342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/067522 WO2008029919A1 (en) 2006-09-08 2007-09-07 Variable displacement compressor

Country Status (6)

Country Link
US (1) US20110041682A1 (ja)
EP (1) EP2063121A1 (ja)
JP (1) JP2008064057A (ja)
KR (1) KR20090052867A (ja)
CN (1) CN101512151B (ja)
WO (1) WO2008029919A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5579144B2 (ja) * 2011-09-22 2014-08-27 サンデン株式会社 可変容量圧縮機
KR101889628B1 (ko) * 2013-09-11 2018-08-17 가부시키가이샤 도요다 지도숏키 용량 가변형 사판식 압축기
WO2017011518A1 (en) 2015-07-13 2017-01-19 University Of South Florida Protein acyl transferase inhibitors and methods of treatment
JP7028402B2 (ja) * 2018-02-28 2022-03-02 サンデン・オートモーティブコンポーネント株式会社 可変容量圧縮機

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04303184A (ja) * 1991-03-30 1992-10-27 Toyota Autom Loom Works Ltd 容量可変型斜板式圧縮機
JPH11336657A (ja) * 1998-05-27 1999-12-07 Nippon Soken Inc 斜板型可変容量圧縮機
JP2001207956A (ja) * 1999-12-16 2001-08-03 Halla Aircon Co Ltd 可変容量型斜板式圧縮機
JP2002303261A (ja) * 2001-04-06 2002-10-18 Sanden Corp 容量可変型斜板式圧縮機
JP2004068756A (ja) 2002-08-08 2004-03-04 Toyota Industries Corp 容量可変型圧縮機

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05312144A (ja) * 1992-05-08 1993-11-22 Sanden Corp 可変容量斜板式圧縮機
JP3422186B2 (ja) * 1995-11-24 2003-06-30 株式会社豊田自動織機 可変容量圧縮機
JP4007637B2 (ja) * 1997-03-31 2007-11-14 サンデン株式会社 可変容量圧縮機
JPH11264371A (ja) * 1998-03-18 1999-09-28 Toyota Autom Loom Works Ltd 可変容量型圧縮機
US6470761B1 (en) * 1999-11-09 2002-10-29 Sanden Corporation Connecting link between the rotor and the CAM plate of a variable displacement swash plate compressor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04303184A (ja) * 1991-03-30 1992-10-27 Toyota Autom Loom Works Ltd 容量可変型斜板式圧縮機
JPH11336657A (ja) * 1998-05-27 1999-12-07 Nippon Soken Inc 斜板型可変容量圧縮機
JP2001207956A (ja) * 1999-12-16 2001-08-03 Halla Aircon Co Ltd 可変容量型斜板式圧縮機
JP2002303261A (ja) * 2001-04-06 2002-10-18 Sanden Corp 容量可変型斜板式圧縮機
JP2004068756A (ja) 2002-08-08 2004-03-04 Toyota Industries Corp 容量可変型圧縮機

Also Published As

Publication number Publication date
KR20090052867A (ko) 2009-05-26
JP2008064057A (ja) 2008-03-21
US20110041682A1 (en) 2011-02-24
EP2063121A1 (en) 2009-05-27
CN101512151A (zh) 2009-08-19
CN101512151B (zh) 2011-08-17

Similar Documents

Publication Publication Date Title
KR100279223B1 (ko) 가변 용량형 압축기
JPH05312144A (ja) 可変容量斜板式圧縮機
JPH05172052A (ja) 可変容量斜板式圧縮機
JP2009068358A (ja) 容量可変型斜板式圧縮機
JP3197759B2 (ja) 可変容量型圧縮機のフルストローク位置決め構造
WO2007043574A1 (ja) 可変容量圧縮機
JP4439405B2 (ja) 揺動斜板型可変容量圧縮機
WO2008029919A1 (en) Variable displacement compressor
US6524079B1 (en) Alignment means for the swash plate of a variable-capacity swash-plate type compressor
JP2004308621A (ja) 容量可変型斜板式圧縮機
JPH10205440A (ja) 中空ピストン及びそれを用いた斜板式圧縮機
US6276904B1 (en) Variable capacity refrigerant compressor having an inclination limiting means to interrupt compressive forces on a hinge mechanism
KR101765946B1 (ko) 가변용량형 사판식 압축기
JP2001295755A (ja) 可変容量圧縮機のガイドピン及び可変容量圧縮機
JP4451323B2 (ja) リンク機構およびこれを用いた可変容量圧縮機
JP2001123944A (ja) 可変容量圧縮機
JP4778773B2 (ja) 可変容量圧縮機
US20060222513A1 (en) Swash plate type variable displacement compressor
JP2013245632A (ja) 可変容量圧縮機
JP2002180955A (ja) 容量可変型斜板式圧縮機
WO2006095565A1 (ja) 可変容量圧縮機
JP2002161852A (ja) 可変容量型圧縮機及びその製造方法
JP2005307940A (ja) 揺動斜板型可変容量圧縮機
US20040202553A1 (en) Swash plate compressor
JP2009257203A (ja) 容量可変型斜板式圧縮機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780033159.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07806954

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12440353

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020097005025

Country of ref document: KR

Ref document number: 2007806954

Country of ref document: EP