WO2008026480A1 - Dispositif de commande de source d'entraînement pour un véhicule - Google Patents

Dispositif de commande de source d'entraînement pour un véhicule Download PDF

Info

Publication number
WO2008026480A1
WO2008026480A1 PCT/JP2007/066205 JP2007066205W WO2008026480A1 WO 2008026480 A1 WO2008026480 A1 WO 2008026480A1 JP 2007066205 W JP2007066205 W JP 2007066205W WO 2008026480 A1 WO2008026480 A1 WO 2008026480A1
Authority
WO
WIPO (PCT)
Prior art keywords
control device
drive source
source control
vehicle
torque
Prior art date
Application number
PCT/JP2007/066205
Other languages
English (en)
French (fr)
Inventor
Akemi Okawa
Yoshihide Suzuki
Original Assignee
Aisin Seiki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Kabushiki Kaisha filed Critical Aisin Seiki Kabushiki Kaisha
Priority to EP07792804A priority Critical patent/EP2093120A4/en
Priority to JP2008532027A priority patent/JPWO2008026480A1/ja
Priority to CN2007800322361A priority patent/CN101511657B/zh
Publication of WO2008026480A1 publication Critical patent/WO2008026480A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/30Control strategies involving selection of transmission gear ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • B60W2540/103Accelerator thresholds, e.g. kickdown
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to a drive source control apparatus for a vehicle, and more particularly to a drive source control apparatus for a vehicle including an engine and a motor as drive sources.
  • FIG. 7 is a diagram showing the torque performance of an engine and a motor 'generator (hereinafter also referred to as “motor” or “MG”), and the engine has a peak in a certain rotation range and is high in height There are exhaust gases and fuel consumption that can generate torque. On the other hand, the motor has the strength of generating high torque from the low rotation area. The torque decreases in the high rotation area.
  • motor motor 'generator
  • V a so-called parallel type hybrid vehicle, torque assist by a motor is performed at the time of start or acceleration using the difference in characteristics of the above drive source, /, and the engine at the time of traveling Technologies for reducing noise and improving fuel efficiency are known.
  • Patent Document 1 discloses that a motor is operated for a certain period of time from the start in order to prevent deterioration of fuel efficiency due to excessive depression of the accelerator pedal by the driver when starting from the idling stop state during ecolan (economy & ecology running). Implementing torque assist has been proposed.
  • Patent Document 2 estimates the power supplied from the battery and the power supply time in advance so that the battery will not run out during acceleration using torque assist and the engine noise and vibration will not change rapidly. A technology for controlling battery and engine power during an acceleration period is disclosed based on the result.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2005-325804
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2006-9588
  • Patent Documents 1 and 2 described above are incorporated herein by reference.
  • FIG. 8 is a diagram showing changes in gear, engine torque, vehicle speed, MG assist torque, and accelerator opening when the driver performs a sudden acceleration operation in the prior art.
  • the torque assist is performed by the MG immediately after the depression of the accelerator, so that the acceleration performance with good response is obtained from the vehicle speed without the assist represented by the dotted line in the figure.
  • acceleration is performed by the engine, so appropriate fuel consumption and exhaust gas generation are inevitable.
  • the present invention has been made in view of the above-described circumstances, and an object of the present invention is to reduce the fuel consumption and the exhaust gas emission during the acceleration period while securing the necessary acceleration performance. It is an object of the present invention to provide a drive source control device for a vehicle.
  • a drive source control apparatus for a vehicle that controls an engine and a motor provided as a drive source, and when an acceleration request is made by an accelerator operation, the engine Means for calculating the additional torque to be output from the motor according to the accelerator opening degree and the vehicle speed, assuming that there is a torque shortage at the calculated additional torque of the motor.
  • a vehicle drive source control device is provided, comprising: means for providing the additional torque of the engine.
  • a drive source control apparatus for a vehicle which comprises means for calculating an additional torque equivalent to a kickdown shift.
  • the motor in the drive source control device of the vehicle, is disposed so as to drive drive wheels without passing through a transmission, and a gear ratio of the transmission
  • a drive source control device for a vehicle is provided, which calculates an additional torque equivalent to the kickdown shift using the above.
  • the engine outputs a driving force via a transmission, and the gear change is performed when the acceleration request satisfies a predetermined condition.
  • a drive source control device for a vehicle comprising means for suppressing a shift in the aircraft.
  • the acceleration request satisfies the predetermined condition, and the calculated additional torque of the motor causes insufficient torque.
  • a vehicle drive source control device comprising means for performing a shift in the transmission.
  • the acceleration request satisfies a predetermined condition, and the motor can not be operated.
  • a drive source controller for a vehicle is provided which comprises means for shifting.
  • a drive control device for a vehicle that performs the shift in order to increase the driving force of the engine in the drive source control device for the vehicle.
  • the drive source control device for a vehicle includes means for calculating the driving force obtained when the gear is changed, and based on the driving force obtained when the gear is changed.
  • a drive source control device for a vehicle is provided which calculates additional torque by the motor or additional torque between the motor and the engine.
  • a drive source control device for a vehicle wherein the drive source control device for the vehicle calculates the drive force obtained when the gear shift is performed using the gear ratio of the transmission. Is provided.
  • a vehicle drive source control device for setting the predetermined condition based on an accelerator opening degree.
  • FIG. 1 is a block diagram showing a configuration of a hybrid vehicle to which the present invention can be applied.
  • FIG. 2 is a schematic diagram showing a schematic configuration (four-speed state) of a drive mechanism of a vehicle according to an embodiment of the present invention.
  • FIG. 3 is a flow chart showing a process performed at predetermined time intervals in a vehicle drive source control procedure (HV-ECU) according to an embodiment of the present invention.
  • HV-ECU vehicle drive source control procedure
  • FIG. 4 is a view for explaining the behavior of a vehicle equipped with a drive source control device (HV-ECU) according to the first embodiment of the present invention.
  • HV-ECU drive source control device
  • FIG. 5 is a view for explaining the behavior of a vehicle equipped with a drive source control procedure (HV-ECU) according to the first embodiment of the present invention.
  • HV-ECU drive source control procedure
  • FIG. 6 is a view for explaining the specific operation of the drive source control measure (HV-ECU) according to the first embodiment of the present invention.
  • FIG. 7 A diagram showing the torque performance of the engine and MG.
  • FIG. 8 is a view for explaining the behavior of a conventional hybrid vehicle.
  • FIG. 9 is a flow chart showing a process performed at predetermined time intervals in a vehicle drive source control apparatus (HV-ECU) according to an embodiment of the present invention.
  • HV-ECU vehicle drive source control apparatus
  • FIG. 10 is a flowchart showing processing performed at predetermined time intervals in the vehicle drive source control apparatus (HV-ECU) according to the embodiment of the present invention.
  • HV-ECU vehicle drive source control apparatus
  • FIG. 1 is a block diagram showing the configuration of a hybrid vehicle to which the present invention is applicable.
  • an engine represented by an internal combustion engine (hereinafter also referred to as "EG") 11 and an MG12 driven by electricity stored in a battery 19 are two types of prime movers: They are arranged in parallel and configured to drive the wheels.
  • the output of the engine 11 is transmitted to the transmission 13 and then to the axle shaft 15, 15 'and the drive wheels 16, 16' via the output differential 14. It is transmitted and drives the vehicle. Similarly, the output of the MG 12 can also drive the vehicle via a differential (differential) 14.
  • hybrid vehicle shown in FIG. 1 has a control of the entire vehicle HV-ECU 21 (Hybrid
  • MG-ECU Vehicle Electronic Control Unit
  • inverter 22 commanding drive or regeneration to MG 12
  • EG-ECU 2 3 controlling stop and combustion state of engine 11
  • the AMT-ECU 24 controls the gear shift actuator 18 to perform optimum gear shifting
  • the battery ECU 25 manages the charge state of the battery 19!
  • the HV-ECU 21 operates as a drive source control device of the vehicle, and controls and manages the MG-ECU, the inverter 22, the EG-ECU 23, and the battery ECU 25 in response to the driver's intention to travel. Further, the EG-ECU 23 cooperates with the AMT-ECU 24 to produce the best combustion state, and performs fuel control when the engine is started by the starter 20. In addition, the driver's seat is provided with an indicator 26 for displaying the speed of the vehicle.
  • FIG. 2 is a skeleton diagram showing a schematic configuration (four-speed state) of the drive mechanism of the hybrid vehicle.
  • the flywheel 32 is fixed to the end of the output shaft 31 of the engine 11, and the clutch element 33 is attached to the flywheel 32.
  • the eta 17 makes it possible to disengage.
  • the driven member of the clutch is integrally attached to the input shaft 34 of the transmission 13 in the rotational direction by splines or the like.
  • drive gears of lst35, Rev36 and 2nd37 are integrally formed with the clutch J force and the J injection, and further, drive gears of 3rd38, 4th39, 5th40 and 6th41 are rotatably mounted.
  • an output shaft 42 of the transmission 13 is provided in parallel with the input shaft 34, and the lst 43 and 2nd 44 driven gears are rotatably provided at positions where they mesh with the respective gears 3rd 45, 4th 46, 5th 47, 6th 48
  • the driven gear is integrally mounted.
  • an axis 50 parallel to the input shaft 34 of the transmission 13 is provided, and a Rev idler gear 51 is rotatably mounted.
  • the Rev idler gear 51 can also move in the axial direction, and the position on the clutch side (thick solid line) does not fit with the Rev drive gear 36! /, But the position on the 6th drive gear 41 side (thin line) Rev drive gear It is possible to meet 36!
  • hub members 52, 53, 54 that rotate fixedly with the respective shafts are provided.
  • Each hub member has engaging means such as splines on the outer periphery, and further engages with sleeve members 55, 56 and 57 provided on the outer periphery, and the sleeve is axially moved (left and right) by the shift actuator 18 By being moved, the left gear, the spline configured on the right gear, and a state capable of squeezing power transmission, and a neutral state in which none of the gears mix.
  • the sleeve member 56 moves to the left and is in the fourth speed state.
  • a gear 58 is provided on the sleeve member 55 located between the lst 43 and the 2nd 44 of the output shaft 42 and further extended to the outer peripheral portion, and the gear 58 is in a state where the Rev idler gear 51 is engaged with the Rev drive gear 36 Together with idler gear 51, it forms two states, a neutral state and a Rev driving state.
  • the drive power of engine 11 is engaged by the clutch actuator 17 with the clutch engaged, and the first drive gear 49 at the end of the output shaft 42 according to the gear ratio selected by the shift actuator 18. It is transmitted.
  • the driving force output from the MG 12 is transmitted to a driving gear 61 integrally provided at the end of the MG output shaft 60.
  • An intermediate reduction shaft 62 disposed in parallel with the MG output shaft 60 includes a driven gear 63 that meshes with the driving gear 61 and a ring gear (final gear) provided on the case of the differential gear (differential) 14.
  • a second drive gear 64 is provided to mate with the drive gear 70. The drive force of the MG 12 is transmitted to the second drive gear at a predetermined reduction ratio.
  • the outputs of engine 11 and MG 12 are transmitted to ring gear (final gear) 70 by HV-ECU 21 (Hybrid Vehicle Electronic Control Unit), and are required via differential gear (differential) 14.
  • HV-ECU 21 Hybrid Vehicle Electronic Control Unit
  • differential gear (differential) 14 Depending on the rotational speed difference, the axle shafts 15, 15 'and the drive wheels 16, 16' are driven.
  • MG12 receives power and converts it into driving power. It has both functions in the regenerative state to convert, and by driving a large amount of current at the optimum position for the magnetic force generated by the stator member 66 to pass back through the iron portion of the rotor by the three-phase power, It is controlled to enable efficient conversion including control of force generation and rotational direction.
  • a resolver 65 is mounted on the opposite side of the output shaft 60 of the MG 12 as a rotation detection device.
  • Resonoreno 65 detects the relative angle between the wound stator member 66 of the MG 12 coil and the rotor member 67 that rotates integrally with the MG output shaft 60, and can be used as a resolver signal.
  • FIG. 3 is a flow chart showing the process performed in the HV-ECU 21 at predetermined time intervals.
  • the HV—ECU 21 determines the state of charge SOC of the battery 19 (State
  • step S001 It is checked whether or not the vehicle is under a predetermined assist permission condition such that If Charge is a predetermined value or more, MG12 is a predetermined temperature or less, and the vehicle speed is a predetermined value or more (step S001).
  • the HV-ECU 21 checks whether or not the driver has made an acceleration request (Step S002). For example, if the vehicle is equipped with an accelerator opening sensor, the accelerator pedal is depressed from the previous time, and if the accelerator opening is increasing, the acceleration judgment flag is set, and the acceleration is returned when it is returned. When the judgment flag is cleared, processing is performed
  • the HV-ECU 21 determines whether the MG assist condition is satisfied, based on the results of the step S 001 and the step S 002 (step S 003).
  • the state of charge SOC of the battery 19 is equal to or less than a predetermined value, it is determined that the MG assist is unnecessary if the driver does not request acceleration or if the vehicle is not traveling.
  • MG assist torque is set to 0 (step S005).
  • the HV-ECU 21 confirms whether or not the kick down condition is satisfied (step S 004).
  • the kick down we say here is the run It is to automatically shift down control the transmission of the transmission 13 to the low speed gear for acceleration in a row. For example, it is determined that a kickdown request has been made when the accelerator opening ⁇ or the change ⁇ ⁇ of the accelerator opening exceeds a predetermined threshold ⁇ .
  • the threshold ⁇ may be a fixed value or dynamically according to the traveling state of the vehicle.
  • the HV-ECU 21 obtains an increase amount of the driver request torque according to the vehicle speed and the opening degree, and calculates this as the gear of the MG gears 61, 64.
  • the value divided by the ratio is used as it is as the MG assist torque (step S 007).
  • the HV-ECU 21 calculates the driver request torque in consideration of the torque which increases due to the kick-down (the driver calculated from the vehicle speed and the accelerator opening angle A value obtained by dividing the required torque by the gear ratio of the required gear) by the gear ratio of the MG gear 61, 64 is set as the MG assist torque (step S006). At this time, it is assumed that the HV-ECU 21 does not actually shift (downshift).
  • the HV-ECU 21 performs the limiting process of the MG assist torque calculated in the above step S 006 or S 007 based on the items such as SOC direct, MG temperature, MG maximum output and the like (step S 008).
  • the HV-ECU 21 confirms whether or not the driver request torque can be satisfied with the thus-calculated 'restricted MG assist torque (step S 009).
  • the HV-ECU 21 determines the MG assist torque as the command torque, and instructs the MG-ECU (step S 011).
  • the MG assist torque can not meet the demand requested by the driver! /,
  • the HV-ECU 21 adds the difference between the increase amount of the driver demand torque and the MG assist torque to the engine demand torque.
  • the MG assist torque and the engine request torque are determined as the command torque, and the MG-ECU and the EG-ECU are commanded (step S011).
  • step S001 of FIG. 3 the state of charge of the battery 19 is below the predetermined value. If it is determined that the process is not possible, the process proceeds to the flowchart of FIG. 9, and if the driver makes an acceleration request in step S101 and the kickdown condition is satisfied in step S102, the process proceeds to step S103. Implement control to shift down the transmission of transmission 13 to the low gear automatically.
  • the driving power can be increased by performing kick-down control to meet the driver's acceleration demand.
  • the solid line in FIG. 6 represents the traveling performance curve (EG torque only) of each gear from lst to 3rd, and the broken line in FIG. 6 represents the traveling performance curve (EG torque + with torque assist by MG) Represents MG torque)!
  • the point C' is the performance of the 2nd speed (2nd). Because it is above the curve (EG torque only), the conventional drive source control device kicks down to 1st. Even if the 1st kickdown is performed, the C 'point is above the 1st speed (1st) performance curve (EG torque only), so the driving force is insufficient.
  • the drive source control device according to the present invention although kickdown is not performed, the additional torque of the engine is necessary because the torque increase required by the MG 12 is large because the torque increase request width is large. Therefore, in this case, the present invention is advantageous in that the kick-down can be eliminated (including time loss associated with kick-down, fuel consumption and exhaust gas suppression) and the additional engine torque can be reduced (see FIG. 5).
  • MG such as MG temperature and remaining battery capacity can normally function
  • MG's response to the driver's acceleration request is made first by MG, so engine torque increase, fuel injection increase, etc.
  • MG In addition to being able to avoid an increase in exhaust gas, it is possible to improve responsiveness to driver requests (make kickdown unnecessary) and achieve cancellation of driving force interruption (torque loss) due to shifting.
  • the engine S and the motor S are the power S described with an example of the hybrid vehicle having a configuration in which the driving force output by the MG is transmitted to the differential 14.
  • the present invention is also applicable to other vehicles having a parallel relationship and driving the vehicle.
  • control of the HV-ECU 21 may be performed as shown in the flowchart of FIG.
  • steps S001 to S009 are the same as steps S001 to S009 in the flowchart of FIG.
  • step S 009 when the torque requested by the driver can not be obtained by the MG assist torque, the HV-ECU 21 performs control to shift down the shift of the transmission 13 automatically to the low speed gear in step S 210. Therefore, even if the additional torque by the MG12 causes a torque shortage, it is possible to increase the noise power by performing the kick-down control to meet the driver's acceleration demand.

Description

明 細 書
車両の駆動源制御装置
技術分野
[0001] (関連出願)本願は、先の日本特許出願 2006— 233106号(2006年 8月 30日出 願)の優先権を主張するものであり、前記先の出願の全記載内容は、本書に引用を もって繰込み記載されて!/、るものとみなされる。
本発明は、車両の駆動源制御装置に関し、特に、駆動源としてエンジンとモータと を備える車両の駆動源制御装置に関する。
背景技術
[0002] 図 7は、エンジンと、モータ'ジェネレータ(以下、「モータ」ないし「MG」ともいう。)の トルク性能を表した図であり、エンジンは一定の回転領域においてピークを持ち、高ト ルクを発生できる力 排気ガスや燃料消費がある。一方、モータは、低回転領域から 高トルクを発生できるという強みがある力 高回転域ではトルクは減少する。
[0003] V、わゆるパラレル方式のハイブリッド車にお!/、て、上記駆動源の特性の違!/、を利用 し、発進時や加速時にモータによるトルクアシストを実施し、走行時のエンジン音低 減や燃費向上を図る技術が知られている。
[0004] 例えば、特許文献 1には、ェコラン (エコノミー &エコロジーランニング)中における アイドリングストップ状態から発進する際のドライバによるアクセルペダルの過剰な踏 込みによる燃費悪化を防ぐため、発進から一定時間モータによるトルクアシストを実 施することが提案されている。
[0005] また、特許文献 2には、トルクアシストを用いた加速中にバッテリが切れてエンジン 音や振動が急激に変化しないように、事前にバッテリから供給する電力と電力供給時 間を推定し、その結果に基づいて加速期間におけるバッテリ及びエンジン出力を制 御する技術が開示されてレ、る。
[0006] 特許文献 1:特開 2005 _ 325804号公報
特許文献 2 :特開 2006— 9588号公報
発明の開示 発明が解決しょうとする課題
[0007] 以上の特許文献 1、 2の開示事項は、本書に引用をもって繰り込み記載されている ものとする。
上記のとおり、発進時や加速時にモータによるトルクアシストを実施することが提案 されているが、エンジンからの追加トルクを得ることを前提としており、相応の燃料消 費と排気ガス排出を招いてしまうという問題点がある。特に、いわゆるキックダウン操 作が行われた場合には、低速段への変速が行われるため、上記傾向は顕著になる。
[0008] 図 8は、従来技術において、ドライバより急加速操作が行われた場合の、ギヤ段、ェ ンジントルク、車速、 MGアシストトルク、アクセル開度の変化を表した図である。同図 に表されたとおり、アクセルの踏込み操作後速やかに、 MGによりトルクアシストが行 われるため、図中点線で表されたアシスト無しの車速より、応答性の良い加速性能が 得られている力 S、 MGトルクアシスト終了後は、エンジンにより加速が行われるため、 相応の燃料消費と排気ガス発生は不可避となる。
[0009] また、上記のように、アクセルペダルが踏込まれてから、エンジンの出力が実際に増 大するまでに時間が掛かるという問題点もある。特に、キックダウン時は、図 8に示す とおり、変速動作に要する時間が加わるため、ドライバの要求するトルクに達するまで に一層の時間を要することとなる。
[0010] 本発明は、上記した事情に鑑みてなされたものであって、その目的とするところは、 必要な加速性能を確保しつつ、加速期間中の燃料消費量と排気ガス排出量を低減 できる車両用駆動源制御装置を提供することにある。
課題を解決するための手段
[0011] 本発明の第 1の視点によれば、駆動源として備えられたエンジン及びモータを制御 する車両の駆動源制御装置であって、アクセル操作による加速要求があった場合に 、前記エンジンからの追加トルクが無いものとして、アクセル開度と車速に応じ前記モ ータから出力すべき追加トルクを算出する手段と、前記算出したモータの追加トルク ではトルク不足が生じる場合に、該不足分を、前記エンジンの追加トルクとする手段と 、を備える車両の駆動源制御装置が提供される。
[0012] また、本発明の第 2の視点によれば、前記車両の駆動源制御装置において、加速 要求が所定のキックダウン条件を満たす場合は、キックダウン変速相当の追加トルク を算出する手段を備える車両の駆動源制御装置が提供される。
また、本発明の第 3の視点によれば、前記車両の駆動源制御装置において、前記 モータは、変速機を介さずに駆動輪を駆動できるよう配設されており、前記変速機の ギヤ比を用いて前記キックダウン変速相当の追加トルクを算出する車両の駆動源制 御装置が提供される。
また、本発明の第 4の視点によれば、前記車両の駆動源制御装置において、前記 エンジンは変速機を介して駆動力を出力し、前記加速要求が所定の条件を満たす 場合は、前記変速機での変速を抑止する手段を備える車両の駆動源制御装置が提 供される。
また、本発明の第 5の視点によれば、前記車両の駆動源制御装置において、前記 加速要求が所定の条件を満たす場合であって、前記算出したモータの追加トルクで はトルク不足が生じる場合に、前記変速機での変速を行う手段を備える車両の駆動 源制御装置が提供される。
また、本発明の第 6の視点によれば、前記車両の駆動源制御装置において、前記 加速要求が所定の条件を満たす場合であって、前記モータが作動不能な場合に、 前記変速機での変速を行う手段を備える車両の駆動源制御装置が提供される。 また、本発明の第 7の視点によれば、前記車両の駆動源制御装置において、前記 エンジンの駆動力を増大させるために前記変速を行う車両の駆動制御装置が提供さ れる。
また、本発明の第 8の視点によれば、前記車両の駆動源制御装置において、前記 変速した場合に得られる駆動力を算出する手段を備え、前記変速した場合に得られ る駆動力に基づいて、前記モータによる追加のトルク、又は前記モータと前記ェンジ ンとの追加のトルクを算出する車両の駆動源制御装置が提供される。
また、本発明の第 9の視点によれば、前記車両の駆動源制御装置において、前記 変速機のギヤ比を用いて前記変速した場合に得られる駆動力を算出する車両の駆 動源制御装置が提供される。
また、本発明の第 10の視点によれば、前記車両の駆動源制御装置において、前 記アクセル開度に基づ!/、て、前記所定の条件を設定する車両の駆動源制御装置が 提供される。
発明の効果
[0013] 本発明によれば、加速に伴う燃料消費ゃ排ガスを低減させるとともに、応答性を向 上させること力 Sでさる。
図面の簡単な説明
[0014] [図 1]本発明を適用可能なハイブリッド車両の構成を示したブロック図である。
[図 2]本発明の一実施形態に係る車両の駆動機構の概略構成 (4速状態)を表したス ケノレトン図である。
[図 3]本発明の一実施形態に係る車両の駆動源制御措置 (HV— ECU)において所 定時間毎に行われる処理を表したフローチャートである。
[図 4]本発明の第 1の実施の形態に係る駆動源制御措置 (HV— ECU)が搭載された 車両の挙動を説明するための図である。
[図 5]本発明の第 1の実施の形態に係る駆動源制御措置 (HV— ECU)が搭載された 車両の挙動を説明するための図である。
[図 6]本発明の第 1の実施の形態に係る駆動源制御措置 (HV— ECU)の具体的な 動作を説明するための図である。
[図 7]エンジンと MGのトルク性能を表した図である。
[図 8]従来のハイブリッド車の挙動を説明するための図である。
[図 9]本発明の一実施形態に係る車両の駆動源制御装置 (HV— ECU)において所 定時間毎に行われる処理を表したフローチャートである。
[図 10]本発明の一実施形態に係る車両の駆動源制御装置 (HV— ECU)において 所定時間毎に行われる処理を表したフローチャートである。
発明を実施するための最良の形態
[0015] 続いて、本発明を実施するための最良の形態について図面を参照して詳細に説明 する。図 1は、本発明を適用可能なハイブリッド車両の構成を示したブロック図である 。まず始めに、図 1を参照すると、内燃機関に代表されるエンジン (以下、「EG」ともい う) 11と、バッテリ 19に蓄積された電気で駆動される MG12との 2種類の原動機とが 並列に配置され、車輪を駆動できるような構成となっている。
[0016] エンジン 11の出力は、変速機 13に伝達され、次いで、出力部である差動装置(デ ィファレンシャル)14を経由してアクスルシャフト 15、 15'及び駆動輪 16、 16 'に伝達 され、車両を駆動する。 MG12の出力も同様に差動装置(ディファレンシャル)14を 経由して車両を駆動可能になっている。
[0017] また、図 1のハイブリッド車両は、車両全体の制御を掌る HV—ECU21 (Hybrid
Vehicle Electronic Control Unit)、 MG12に駆動又は回生を指令する MG— ECU及びインバータ 22、エンジン 11の停止及び燃焼状態を制御する EG— ECU2 3、変速機 13に組み込まれたクラッチァクチユエータ 17、変速ァクチユエータ 18をコ ントロールし最適な変速を行なわしめる AMT— ECU24、バッテリ 19の充電状態を 管理する電池 ECU25とを備えて!/、る。
[0018] HV— ECU21は、車両の駆動源制御装置として動作し、ドライバーの走行意志を 受けて MG— ECU及びインバータ 22、 EG— ECU23、電池 ECU25を制御'管理す る。また、 EG— ECU23は、 AMT— ECU24と連携して最良の燃焼状態を生み出す とともに、スタータ 20によるエンジン始動時の燃料制御を行なう。また、運転席には、 車両の速度を表示するインジケータ 26が設けられている。
[0019] 図 2は、ハイブリッド車両の駆動機構の概略構成(4速状態)を表したスケルトン図で ある。まず、変速機 13側の構成について説明すると、エンジン 11の出力軸 31端部に は、フライホイール 32が固定されており、フライホイール 32にはクラッチ要素 33が取 り付けられ、クラッチァクチユエータ 17によって係脱可能になっている。クラッチの被 動部材はスプライン等によって回転方向に対して、変速機 13の入力軸 34に一体的 に取り付けられている。入力軸 34には、クラッチ佃 J力、ら J噴に lst35、 Rev36、 2nd37 の駆動ギヤが一体的に構成され、さらに 3rd38、 4th39、 5th40、 6th41の駆動ギヤ が回転自在に装着されている。また、入力軸 34と平行に、変速機 13の出力軸 42が 設けられ、前記各ギヤと嚙み合う位置に、 lst43、 2nd44被駆動ギヤが回転自在に、 3rd45、 4th46、 5th47、 6th48の各被駆動ギヤが一体的に装着されている。そして 、変速機 13の出力軸 42のクラッチ側の端部には、差動装置(ディファレンシャル)14 のケースに設けられたリングギヤ(ファイナルギヤ) 70と嚙合する駆動ギヤ 49がー体 的に装着されている。更に、変速機 13側には、変速機 13の入力軸 34と平行な軸 50 が設けられ、 Revアイドラギヤ 51が回転自在に装着されている。 Revアイドラギヤ 51 は軸方向にも移動可能で、クラッチ側の位置 (太実線)では Rev駆動ギヤ 36とは嚙み 合わな!/、が、 6th駆動ギヤ 41側の位置(細線)では Rev駆動ギヤ 36と嚙み合!/、可能 となっている。
[0020] 変速機 13の入力軸 34及び出力軸 42の各駆動ギヤ、被駆動ギヤの間には、各軸と 固定的に回転するハブ部材 52、 53、 54が設けられている。夫々のハブ部材には外 周にスプライン等の係合手段があり、更に外周に設けられるスリーブ部材 55、 56、 5 7と嚙み合い、該スリーブは変速ァクチユエータ 18により軸方向(図左右)に動かされ ることによって、左側のギヤ、右側のギヤに構成されたスプラインと嚙み合い動力伝 達可能な状態と、いずれのギヤとも嚙み合わない中立状態になる。図 2では、スリー ブ部材 56が左動し 4速状態となっている。また、出力軸 42の lst43、 2nd44の間に あるスリーブ部材 55には更に外周部に延びた部分にギヤ 58が設けられ、ギヤ 58は Revアイドラギヤ 51が Rev駆動ギヤ 36と嚙み合った状態でアイドラギヤ 51と嚙み合 い、中立状態と Rev駆動状態の 2つの状態を構成する。
[0021] 上記のとおり、エンジン 11の駆動力は、クラッチァクチユエータ 17によってクラッチ が係合状態となり、変速ァクチユエータ 18によって選択された変速比に従って出力 軸 42端の第 1の駆動ギヤ 49に伝達される。
[0022] 一方、 MG12で出力される駆動力は、 MG出力軸 60端に一体的に設けられた原 動ギヤ 61に伝達される。 MG出力軸 60と平行に配設された中間減速軸 62には、原 動ギヤ 61と嚙み合う被駆動ギヤ 63と、差動装置(ディファレンシャル) 14のケースに 設けられたリングギヤ (ファイナルギヤ) 70と嚙合する第 2の駆動ギヤ 64と、が設けら れ、 MG12の駆動力は、所定の減速比にて、第 2の駆動ギヤに伝達される。
[0023] 上記構成により、 HV— ECU21 (Hybrid Vehicle Electronic Control Unit )によって、エンジン 11並びに MG12の出力は、リングギヤ(ファイナルギヤ) 70に伝 達され、差動装置(ディファレンシャル)14を介して、必要に応じて回転数の差を吸収 した上で、アクスルシャフト 15、 15 '及び駆動輪 16、 16 'が駆動される。
[0024] また、 MG12は電力を受け取って駆動力に変換するカ行状態と、駆動力を電力に 変換する回生状態の両機能を有し、三相の電力によってステータ部材 66で発生させ た磁力がロータ部の鉄部分を通過して帰るのに最適な位置で多くの電流を流すこと によって、駆動力の発生や回転方向の制御も含めて効率的な変換ができるように制 御される。
[0025] MG12の出力軸 60の反対側には、回転検出装置として、レゾルバ 65が取り付けら れている。レゾノレノ 65は、 MG12のコイルの巻かれたステータ部材 66と、 MG出力 軸 60と一体的に回転するロータ部材 67との間の相対角度を検出し、レゾルバ信号と して利用可能である。例えば、レゾルバ信号を、 MG12の極数に依存した数値及び MG12側のギヤ比で換算することによって、車両の速度として、用いることが可能で ある。
[0026] 続いて、上記構成よりなるハイブリッド車両における駆動源の制御について図面を 参照して詳細に説明する。図 3は、上記 HV— ECU21において所定時間毎に行わ れる処理を表したフローチャートである。
[0027] 図 3を参照すると、まず、 HV— ECU21は、バッテリ 19の充電状態値 SOC (State
Of Charge)が所定値以上、 MG12が所定温度以下、車速が所定値以上かとい つた所定のアシスト許可条件を満たして!/、るか否かを確認する(ステップ S001)。
[0028] 続いて、 HV— ECU21は、ドライバより加速要求が行われたか否かを確認する(ス テツプ S002)。例えば、車両にアクセル開度センサが備えられている場合、前時点よ りアクセルペダルが踏み込まれ、アクセル開度 Θが増大している場合に加速判定フ ラグを立て、戻された時点で当該加速判定フラグをクリアするといつた処理が行われ
[0029] 続いて、 HV—ECU21は、上記ステップ S001及びステップ S002の結果を踏まえ て、 MGアシスト条件が成立しているか否かを判定する(ステップ S003)。ここで、例 えば、ノ ッテリ 19の充電状態値 SOCが所定値以下である場合、ドライバより加速要 求が行われていない、あるいは、車両が走行中でない場合は、 MGアシスト不要と判 定され、 MGアシストトルクは 0にセットされる(ステップ S005)。
[0030] 一方、 MGアシスト条件が成立している場合は、 HV— ECU21は、キックダウン条 件が成立しているか否かを確認する(ステップ S004)。ここで言うキックダウンとは、走 行中において加速のために変速機 13の変速を低速ギアに自動的にシフトダウン制 御することである。例えば、アクセル開度 Θ、あるいは、アクセル開度の変化 Δ Θが 所定値が所定の閾値 Θ を超えた場合に、キックダウン要求がなされたものと判定さ
TH
れる。なお、閾値 Θ は、固定値であってもよいし、車両の走行状態に応じて動的に
TH
変更されるあのとしてあよい。
[0031] ここで、キックダウン条件が成立していない場合は、 HV— ECU21は、車速とァクセ ル開度 Θに応じたドライバ要求トルクの増加量を求め、これを MGギヤ 61、 64のギヤ 比で割った値をそのまま MGアシストトルクとする(ステップ S007)。
[0032] 一方、キックダウン条件が成立している場合、 HV—ECU21は、キックダウンにより 増大するトルクを加味したドライバ要求トルク(端的に一例を示せば、車速とアクセル 開度 Θから求めたドライバ要求トルクに要求ギヤ段のギヤ比を乗ずる。)を MGギヤ 6 1、 64のギヤ比で割った値を、 MGアシストトルクとする(ステップ S006)。なお、このと き、 HV— ECU21は、実際には変速(ダウンシフト)を行わないものとする。
[0033] 続いて、 HV— ECU21は、 SOC直、 MG温度、 MG最大出力等の項目に基づき、 上記ステップ S006又は S007で算出した MGアシストトルクの制限処理を行なう(ステ ップ S008)。
[0034] 続いて、 HV— ECU21は、このようにして算出 '制限した MGアシストトルクでドライ バ要求トルクを満たすことができるか否かを確認する(ステップ S009)。ここで、 MGァ シストトルクでドライバの要求するトルクを賄うことができる場合は、 HV— ECU21は、 当該 MGアシストトルクを指示トルクとして確定し、 MG— ECUに指令する(ステップ S 011)。
[0035] 一方、 MGアシストトルクでドライバの要求するトノレクを賄うことができな!/、場合は、 H V— ECU21は、ドライバ要求トルクの増加量と MGアシストトルクとの差分をエンジン 要求トルクに加算した後(ステップ S010)、当該 MGアシストトルク及びエンジン要求 トルクを指示トルクとして確定し、 MG— ECU及び EG— ECUに指令する(ステップ S 011)。
[0036] 従って、 MG12からのトルクで加速要求を満たせる場合は、図 4に示すように、 EG1 1からの追加トルクは 0となる。また、 MG12からのトルクで加速要求を満たせない場 合であっても、図 5に示すように、 EG11からの追加トルクを低減することが可能となる 。上記 EG11からの追加トルクの低減により、排気ガスの低減と燃費向上が達成され また図 3のステップ S001において、バッテリ 19の充電状態値 SOCが所定値以下、 MG12が所定温度以上等により MG12の作動が不能と判断された場合、図 9のフロ 一チャートに移行し、ステップ S101においてドライバにより加速要求が行われ、ステ ップ S 102でキックダウン条件が成立している場合では、ステップ S 103で変速機 13 の変速を低速ギアに自動的にシフトダウンする制御を実施する。
従って、 MG12による追加のトルクを出力することができない場合においても、キッ クダウン制御を行なうことによって駆動力を増大させ、ドライバの加速要求に応えるこ とを可能としている。
[0037] 最後に、車速と加速要求の大きさに応じてキックダウンを行っていた従来技術との 相違について説明する。図 6の実線は、 lst〜3rdまでの各変速段の走行性能曲線( EGトルクのみ)を表しており、図 6の破線は、 MGによるトルクアシストを伴った場合の 走行性能曲線 (EGトルク + MGトルク)を表して!/、る。
[0038] 例えば、図 6の A点の車両状態(変速段は 2nd)から加速要求 (Α'点)が行われた ケース(ケース Α)では、 A'点は 2速(2nd)の性能曲線 (EGトルクのみ)より下にある ため、従来の駆動源制御装置においてもエンジン要求トルクの増大によって対応可 能である(キックダウン不要)。一方、本発明に係る駆動源制御装置では、 MG12の みの出力で対応することとなる。従って、このケースでは、 MGによる応答性に加えて 、燃料消費や排気ガスの増大を抑えることができる点で本発明が有利となる。
[0039] また、図 6の B点の車両状態(変速段は 2nd)力 加速要求(Β'点)が行われたケー ス(ケース Β)では、 B'点は 2速(2nd)の性能曲線(EGトルクのみ)より上にあるため、 従来の駆動源制御装置においては、 1stへのキックダウンが行われる。一方、本発明 に係る駆動源制御装置では、キックダウンは行われず、また、 MG12によるアシストで ドライバ要求を賄えるため、エンジンの追加トルクも不要となる。従って、このケースで は、上記したケース Aの有利点に加えて、キックダウンを不要化できる点で(キックダ ゥンに伴う時間的ロス、燃料消費や排気ガス抑制も含む)本発明が有利となる(図 4 参照)。
[0040] また、図 6の C点の車両状態(変速段は 2nd)力 加速要求(C'点)が行われたケー ス(ケース C)では、 C'点は 2速(2nd)の性能曲線(EGトルクのみ)より上にあるため、 従来の駆動源制御装置においては、 1stへのキックダウンが行われる。し力、し、 1st のキックダウンを行っても、 C '点は 1速(1st)の性能曲線 (EGトルクのみ)より上にあ るため、駆動力が不足する。一方、本発明に係る駆動源制御装置では、キックダウン は行わないが、トルクアップ要求幅が大きぐ MG12による追力卟ルクのみでは賄えな いため、エンジンの追カロトルクは必要となる。従って、このケースでは、キックダウンを 不要化できる点 (キックダウンに伴う時間的ロス、燃料消費や排気ガス抑制も含む)と 、追加エンジントルクを低減できる点で、本発明が有利となる(図 5参照)。
[0041] 以上のように、 MG温度ゃバッテリ残量等の MGが正常に機能できる範囲において 、ドライバの加速要求に対して、まず MGで対応することとしたため、エンジントルク増 カロ、燃料噴射増加、排気ガスの増加を回避することが可能となるほか、ドライバ要求 に対する応答性の向上 (キックダウンの不要化) 変速による駆動力遮断(トルク抜け )の解消等が達成される。
[0042] 以上、本発明の一実施形態について説明したが、本発明の技術的範囲は、上述し た実施の形態の記載に限定されるものではなぐ適用される車両の仕様等に応じて、 各種の変形を加えることが可能である。
[0043] 例えば、上記した実施形態では、 MGで出力される駆動力が、差動装置(ディファレ ンシャル) 14に伝達される構成のハイブリッド車の例を挙げて説明した力 S、エンジンと モータが並列的な関係にあって車両を駆動させるその他の車両にも適用可能である また、別の実施の形態として例えば図 10のフローチャートのように HV— ECU21の 制御を行なっても良い。図 10のフローチャートではステップ S001力もステップ S009 までは図 3のフローチャートのステップ S001からステップ S009と同様なので説明は 省略する。ステップ S009において、 MGアシストトルクでドライバの要求するトルクを 賄うことができない場合は、 HV— ECU21は、ステップ S210で変速機 13の変速を 低速ギアに自動的にシフトダウンする制御を実施する。 従って MG12による追加のトルクではトルク不足が生じる場合においても、キックダ ゥン制御を行なうことによって騒動力を増大させ、ドライバの加速要求に応えることを 可能としている。
その他本発明の全開示(請求の範囲を含む)の枠内において、その基本的技術思 想に基づいて、更なる変更 ·調整が可能である。また、本発明の請求の範囲の枠内 にお!/、て種々の開示要素の多様な組み合わせな!/、し選択が可能である。
また、本発明の更なる課題'目的及び展開形態は、本発明の請求の範囲を含む全 開示事項からも明らかにされる。

Claims

請求の範囲
[1] 駆動源として備えられたエンジン及びモータを制御する車両の駆動源制御装置で あって、
アクセル操作による加速要求があった場合に、前記エンジンからの追加トルクが無 いものとして、アクセル開度と車速に応じ前記モータから出力すべき追加トルクを算 出する手段と、
前記算出したモータの追加トルクではトルク不足が生じる場合に、該不足分を、前 記エンジンの追加トルクとする手段と、を備えたこと、
を特徴とする車両の駆動源制御装置。
[2] 前記加速要求が所定のキックダウン条件を満たす場合は、変速を抑止するとともに 、キックダウン変速相当の追加トルクを算出する手段を備えたこと、
を特徴とする請求項 1に記載の車両の駆動源制御装置。
[3] 前記モータは、変速機を介さずに駆動輪を駆動できるよう配設されており、
前記変速機のギヤ比を用いて前記キックダウン変速相当の追加トルクを算出するこ と、
を特徴とする請求項 2に記載の車両の駆動源制御装置。
[4] 前記エンジンは変速機を介して駆動力を出力し、
前記加速要求が所定の条件を満たす場合は、前記変速機での変速を抑止する手 段を備えたこと、
を特徴とする請求項 1に記載の車両の駆動源制御装置。
[5] 前記加速要求が所定の条件を満たす場合であって、
前記算出したモータの追加トルクではトルク不足が生じる場合に、前記変速機での 加速を行う手段を備えたこと、
を特徴とする請求項 4に記載の車両の駆動源制御装置。
[6] 前記加速要求が所定の条件を満たす場合であって、
前記モータが作動不能な場合に、前記変速機での変速を行う手段を備えたこと、 を特徴とする請求項 4に記載の車両の駆動源制御装置。
[7] 前記変速は前記エンジンの駆動力を増大させるための変速であること、 を特徴とする請求項 4から 6のいずれか一に記載の車両の駆動制御装置。
[8] 前記変速した場合に得られる駆動力を算出する手段を備え、
前記モータによる追加のトルク、又は前記モータと前記エンジンとの追加のトルクを 、前記変速した場合に得られる駆動力に基づいて算出すること、
を特徴とする請求項 4に記載の車両の駆動源制御装置。
[9] 前記変速した場合に得られる駆動力は、前記変速機のギヤ比を用いて算出するこ と、
を特徴とする請求項 8に記載の車両の駆動源制御装置。
[10] 前記所定の条件は、前記アクセル開度に基づいて設定されること、
を特徴とする請求項 4から 9いずれか一に記載の車両の駆動源制御装置。
PCT/JP2007/066205 2006-08-30 2007-08-21 Dispositif de commande de source d'entraînement pour un véhicule WO2008026480A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP07792804A EP2093120A4 (en) 2006-08-30 2007-08-21 DRIVE CONTROL DEVICE FOR VEHICLE
JP2008532027A JPWO2008026480A1 (ja) 2006-08-30 2007-08-21 車両の駆動源制御装置
CN2007800322361A CN101511657B (zh) 2006-08-30 2007-08-21 车辆的驱动源控制装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006233106 2006-08-30
JP2006-233106 2006-08-30

Publications (1)

Publication Number Publication Date
WO2008026480A1 true WO2008026480A1 (fr) 2008-03-06

Family

ID=39135763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/066205 WO2008026480A1 (fr) 2006-08-30 2007-08-21 Dispositif de commande de source d'entraînement pour un véhicule

Country Status (4)

Country Link
EP (1) EP2093120A4 (ja)
JP (1) JPWO2008026480A1 (ja)
CN (1) CN101511657B (ja)
WO (1) WO2008026480A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101612936A (zh) * 2008-06-27 2009-12-30 福特全球技术公司 混合动力电动车辆中变速器的输出扭矩调节控制
JP2010143363A (ja) * 2008-12-18 2010-07-01 Nissan Motor Co Ltd ハイブリッド車両の制御装置
CN102267365A (zh) * 2010-04-29 2011-12-07 F.波尔希名誉工学博士公司 机动车辆
JP2012116453A (ja) * 2010-12-01 2012-06-21 Hyundai Motor Co Ltd ハイブリッド車両のエンジン運転点追従システム及び方法
WO2015146772A1 (ja) * 2014-03-24 2015-10-01 いすゞ自動車株式会社 ハイブリッド車両及びその制御方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014102343A1 (de) * 2014-02-24 2015-08-27 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Antriebsstrang für ein Hybridkraftfahrzeug
CN103993967A (zh) * 2014-04-09 2014-08-20 潍柴动力股份有限公司 车辆及其急加速控制方法、装置
US9533677B2 (en) * 2014-08-26 2017-01-03 Ford Global Technologies, Llc Method of transitioning among shift schedules
JP6643184B2 (ja) * 2016-05-20 2020-02-12 本田技研工業株式会社 車両
JP6659459B2 (ja) * 2016-05-20 2020-03-04 本田技研工業株式会社 車両
US10207699B2 (en) * 2016-10-19 2019-02-19 GM Global Technology Operations LLC Hybrid vehicle propulsion systems and methods

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0903259A2 (en) 1997-09-17 1999-03-24 Honda Giken Kogyo Kabushiki Kaisha Control system for hybrid vehicle
EP1101650A2 (en) 1999-11-19 2001-05-23 Toyota Jidosha Kabushiki Kaisha Control apparatus for transmission-equipped hybrid vehicle
JP2001211506A (ja) * 2000-01-20 2001-08-03 Hitachi Ltd パラレル・ハイブリッド車両の駆動制御装置
JP2003146115A (ja) * 2001-11-12 2003-05-21 Nissan Motor Co Ltd 有段変速機を備えたハイブリッド車両
JP2004019641A (ja) * 2002-06-20 2004-01-22 Nissan Motor Co Ltd 車両用ハイブリッドパワートレインの制御装置
JP2004068759A (ja) * 2002-08-08 2004-03-04 Honda Motor Co Ltd ハイブリッド車両の制御装置
JP2005051872A (ja) * 2003-07-31 2005-02-24 Mazda Motor Corp ハイブリッド車両の制御装置
JP2005325804A (ja) 2004-05-17 2005-11-24 Toyota Motor Corp ハイブリッド車両の発進時制御方法
JP2005330834A (ja) * 2004-05-18 2005-12-02 Mazda Motor Corp 電動過給機を備えたパワートレインの制御装置
JP2005348482A (ja) * 2004-06-01 2005-12-15 Fuji Heavy Ind Ltd ハイブリッド車両の制御装置
JP2006009588A (ja) 2004-06-22 2006-01-12 Nissan Motor Co Ltd ハイブリット車両の駆動力制御装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3562412B2 (ja) * 1999-11-26 2004-09-08 三菱自動車工業株式会社 ハイブリッド車の出力制御装置
JP3891084B2 (ja) * 2002-09-25 2007-03-07 三菱ふそうトラック・バス株式会社 パラレル式ハイブリッド電気自動車の動力制御装置
JP3777165B2 (ja) * 2003-02-25 2006-05-24 日野自動車株式会社 ハイブリッド自動車
JP3783714B2 (ja) * 2004-01-22 2006-06-07 トヨタ自動車株式会社 ハイブリッド車の制御装置
JP2005304157A (ja) * 2004-04-09 2005-10-27 Toyota Motor Corp ディーゼルハイブリッド車両の充電制御方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0903259A2 (en) 1997-09-17 1999-03-24 Honda Giken Kogyo Kabushiki Kaisha Control system for hybrid vehicle
EP1101650A2 (en) 1999-11-19 2001-05-23 Toyota Jidosha Kabushiki Kaisha Control apparatus for transmission-equipped hybrid vehicle
JP2001211506A (ja) * 2000-01-20 2001-08-03 Hitachi Ltd パラレル・ハイブリッド車両の駆動制御装置
JP2003146115A (ja) * 2001-11-12 2003-05-21 Nissan Motor Co Ltd 有段変速機を備えたハイブリッド車両
JP2004019641A (ja) * 2002-06-20 2004-01-22 Nissan Motor Co Ltd 車両用ハイブリッドパワートレインの制御装置
JP2004068759A (ja) * 2002-08-08 2004-03-04 Honda Motor Co Ltd ハイブリッド車両の制御装置
JP2005051872A (ja) * 2003-07-31 2005-02-24 Mazda Motor Corp ハイブリッド車両の制御装置
JP2005325804A (ja) 2004-05-17 2005-11-24 Toyota Motor Corp ハイブリッド車両の発進時制御方法
JP2005330834A (ja) * 2004-05-18 2005-12-02 Mazda Motor Corp 電動過給機を備えたパワートレインの制御装置
JP2005348482A (ja) * 2004-06-01 2005-12-15 Fuji Heavy Ind Ltd ハイブリッド車両の制御装置
JP2006009588A (ja) 2004-06-22 2006-01-12 Nissan Motor Co Ltd ハイブリット車両の駆動力制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2093120A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101612936A (zh) * 2008-06-27 2009-12-30 福特全球技术公司 混合动力电动车辆中变速器的输出扭矩调节控制
JP2010143363A (ja) * 2008-12-18 2010-07-01 Nissan Motor Co Ltd ハイブリッド車両の制御装置
CN102267365A (zh) * 2010-04-29 2011-12-07 F.波尔希名誉工学博士公司 机动车辆
CN102267365B (zh) * 2010-04-29 2015-06-17 F.波尔希名誉工学博士公司 机动车辆
JP2012116453A (ja) * 2010-12-01 2012-06-21 Hyundai Motor Co Ltd ハイブリッド車両のエンジン運転点追従システム及び方法
WO2015146772A1 (ja) * 2014-03-24 2015-10-01 いすゞ自動車株式会社 ハイブリッド車両及びその制御方法
JP2015182574A (ja) * 2014-03-24 2015-10-22 いすゞ自動車株式会社 ハイブリッド車両及びその制御方法

Also Published As

Publication number Publication date
CN101511657A (zh) 2009-08-19
EP2093120A1 (en) 2009-08-26
EP2093120A4 (en) 2012-04-25
CN101511657B (zh) 2012-10-24
JPWO2008026480A1 (ja) 2010-01-21

Similar Documents

Publication Publication Date Title
WO2008026480A1 (fr) Dispositif de commande de source d'entraînement pour un véhicule
US10343509B2 (en) Device for controlling driving force of hybrid vehicle
JP3498593B2 (ja) ハイブリッド車両の制御装置
JP4961192B2 (ja) 車両の駆動源制御装置
JP5375913B2 (ja) ハイブリッド車の制御装置
JP6468223B2 (ja) ハイブリッド自動車
JP4200999B2 (ja) 車両用駆動装置の制御装置
JP4127142B2 (ja) ハイブリッド車輌の制御装置
JP3931810B2 (ja) 車輌の制御装置
US11052903B2 (en) Hybrid vehicle drive system
WO2014091917A1 (ja) 車両の駆動トルク制御装置
WO2010058470A1 (ja) 車両用動力伝達装置の制御装置
JP5742568B2 (ja) ハイブリッド自動車
US10710447B2 (en) Hybrid vehicle drive system
JP7120035B2 (ja) 車両の変速制御装置
US10737682B2 (en) Drive force control system for hybrid vehicle
JP6458770B2 (ja) ハイブリッド自動車
WO2018047224A1 (ja) ハイブリッド車両の制御方法と制御装置
JP2008068704A (ja) 車両の駆動源制御装置
JP7388213B2 (ja) ハイブリッド車両の制御装置
JP5655693B2 (ja) ハイブリッド自動車
JP2019135111A (ja) ハイブリッド車両の制御装置
JP5614393B2 (ja) エンジン始動システム
JP3552708B2 (ja) ハイブリッド自動車の動力伝達装置
JP5387487B2 (ja) ハイブリッド自動車

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780032236.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07792804

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008532027

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007792804

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU