WO2008023795A1 - Solar battery module and solar battery module manufacturing method - Google Patents

Solar battery module and solar battery module manufacturing method Download PDF

Info

Publication number
WO2008023795A1
WO2008023795A1 PCT/JP2007/066458 JP2007066458W WO2008023795A1 WO 2008023795 A1 WO2008023795 A1 WO 2008023795A1 JP 2007066458 W JP2007066458 W JP 2007066458W WO 2008023795 A1 WO2008023795 A1 WO 2008023795A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
solar
solar battery
conductor
electrode
Prior art date
Application number
PCT/JP2007/066458
Other languages
English (en)
French (fr)
Inventor
Shigeyuki Okamoto
Yukihiro Yoshimine
Yasufumi Tsunomura
Original Assignee
Sanyo Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co., Ltd. filed Critical Sanyo Electric Co., Ltd.
Priority to US12/438,384 priority Critical patent/US9660120B2/en
Priority to CN2007800312406A priority patent/CN101506993B/zh
Priority to JP2008530969A priority patent/JP5213712B2/ja
Priority to EP07806044.9A priority patent/EP2056355B1/en
Publication of WO2008023795A1 publication Critical patent/WO2008023795A1/ja
Priority to US15/197,758 priority patent/US10043931B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0512Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module made of a particular material or composition of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar battery module and a solar battery module including a plurality of solar battery cells connected to each other by connecting collector electrodes formed on the surfaces of adjacent solar battery cells with a conductor. It relates to the manufacturing method.
  • Solar cells are expected to be a new and energy source that can directly convert light from the sun, which is a clean and inexhaustible energy source, into electricity.
  • FIG. 1 is a diagram showing a part of a conventional solar cell module.
  • FIG. 2 is a cross-sectional view taken along the line XX ′ of FIG.
  • the plurality of solar battery cells 101 are electrically connected by connecting a collector electrode (finger electrode 111! / Is a bus bar electrode 121) formed on the surface of each solar battery cell 101 using a wiring material 141. Connected.
  • the collector electrode is printed and formed with a width approximately equal to or greater than the width of the wiring member 141.
  • the wiring member 141 is a conductor in which a low resistance body 141a such as copper is coated with a solder 141b such as tin, silver or copper.
  • the solar battery cell 101 has a light-transmitting surface member such as glass or light-transmitting plastic, and a back surface member made of a resin film such as a polyethylene terephthalate film, a steel plate, or a glass plate. It is sealed with a light-transmitting filler such as EVA.
  • the linear expansion coefficients of the wiring material 141 made of copper foil and the solar battery cell 101 composed of the crystalline silicon substrate are 4 times more than 17.8 ppm / ° C and 4.2 ppm / ° C, respectively.
  • the degree of expansion and contraction of the materials due to heating and cooling when the wiring material 141 is connected to the bus bar electrode 121 formed on the solar battery cell 101 using solder is different.
  • warpage stress is generated in the solar battery cell 101 and cell cracking or electrode peeling occurs. appear.
  • the thickness of the solar battery cell is reduced for the purpose of reducing the manufacturing cost of the solar battery cell, this problem increases, and there is a problem that the manufacturing yield decreases due to cracking of the solar battery cell.
  • a lead-tin eutectic solder having a eutectic point of 183 ° C, which has a melting point of 183 ° C has been conventionally used as a means for bonding wiring materials in modularization of solar cells.
  • lead-free solder and solder materials in response to environmental protection.
  • eutectic solders of tin, silver and copper which have an eutectic point with a melting point of 217 ° C, are widely used.
  • solder joining work using eutectic solder of tin, silver and copper heating at about 240 ° C is generally performed. For this reason, working temperatures that are approximately 30 ° C higher than conventional lead-tin eutectic solder have made it more difficult to solve the above-described problem of warpage of solar cells.
  • This proposed solar cell device is a solar cell device in which a plurality of solar cells are connected by a wiring material, and after the wiring material of approximately the same length is soldered to the solar cells in advance, the solar cell Connect the wiring materials connected to the light-receiving surface side and the non-light-receiving surface side of the cell using different wiring materials.
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-359388
  • Patent Document 1 the compressive stress applied to one solar battery cell is limited to that of one solar battery cell to eliminate cell cracking. Therefore, if the substrate of the solar cell is made thin, cell cracking due to the warpage of the substrate may occur even with a stress of one sheet. In addition, when the thickness of the wiring material is increased, the risk of cell cracking is further increased.
  • the present invention is that warp stress, cell cracking, electrode peeling, etc. occur more prominently as the solar cell is made thinner or the thickness of the wiring material is increased. It is an object to provide a solar cell module to be suppressed and a method for manufacturing the solar cell module.
  • a first feature of the present invention is a solar battery including a plurality of solar cells connected to each other by connecting collectors formed on the surfaces of adjacent solar cells with a conductor.
  • the gist of the present invention is that the collector electrode is a solar battery module in which the collector electrode is embedded in a conductor, and the solar battery cell and the conductor are joined together by a resin.
  • the solar cell module since the resin used at a lower temperature than the alloy bonding by solder is used as the adhesive material between the collector electrode and the conductor, the solar cell can be thinned or wired. As the thickness of the material increases, it becomes possible to suppress the occurrence of warp stress, cell cracking, electrode peeling, etc., which become more prominent.
  • the resin preferably covers the side surface of the collector electrode.
  • this solar cell module it is possible to further prevent the occurrence of warping stress, cell cracking, electrode peeling, and the like, and to prevent moisture from entering.
  • the resin may contain fine particles.
  • a second feature of the present invention is that a step of forming a collector electrode on the surface of a solar battery cell, and a collector A step of arranging a resin so as to cover the electrode, a step of arranging a conductor connected to a collecting electrode formed on the surface of an adjacent solar cell on the resin, and a direction of the solar cell from the top of the conductor And a method of heating the solar cell module while applying pressure to the solar cell module.
  • the solar cell module is thin. It is possible to suppress the occurrence of warping stress, cell cracking, electrode peeling, etc., which become more conspicuous with the increase in thickness or the thickness of the wiring material.
  • the conductor is softer than the collector electrode during heating!
  • the collector electrode is easily embedded in the conductor, and the adhesion between the collector electrode and the conductor can be further improved.
  • FIG. 1 is a plan view showing a conventional solar cell module.
  • FIG. 2 is an enlarged view of the XX ′ cross section of FIG.
  • FIG. 3 is a plan view showing the solar cell module according to the present embodiment.
  • FIG. 4 is an enlarged view of the AA ′ cross section of FIG.
  • FIG. 5 is an enlarged view of the BB ′ cross section of FIG.
  • FIG. 6 is an enlarged view of a CC ′ section of FIG.
  • FIG. 7 is an enlarged view of the DD ′ section of FIG.
  • FIG. 8 is a cross-sectional view for explaining the method for manufacturing the solar cell module according to the present embodiment.
  • FIG. 9 is a plan view showing a solar cell module according to another embodiment.
  • FIG. 10 is an enlarged view of the EE ′ cross section of FIG.
  • FIG. 11 is an enlarged view of the FF ′ cross section of FIG.
  • FIG. 12 is an enlarged view of the GG ′ cross section of FIG.
  • FIG. 13 is an enlarged view of the HH ′ cross section of FIG.
  • FIG. 14 is a graph showing resistance values according to examples.
  • FIG. 15 is a graph showing the peel strength of the spring material according to the example.
  • FIG. 16 is a graph showing the solar cell characteristics according to the example.
  • FIG. 17 is a graph showing the solar cell characteristics after the moisture resistance test according to the example.
  • FIG. 18 is a graph showing solar cell characteristics after a temperature cycle test according to an example. BEST MODE FOR CARRYING OUT THE INVENTION
  • Fig. 3 is a plan view of the solar cells in the solar cell module.
  • Figs. 4 to 7 are A-A 'cross-sectional view, B-B' cross-sectional view, C C 'cross-sectional view, D- D 'sectional view
  • Solar cell 1 is made of a crystalline semiconductor such as single crystal silicon or polycrystalline silicon having a thickness of about 0.15 mm, and has a substantially square shape with one side of 125 mm.
  • This solar cell 1 has an n-type region and a p-type region, and a semiconductor junction is formed at the interface between the n-type region and the p-type region.
  • a structure in which a substantially intrinsic amorphous silicon layer is sandwiched between a single crystal silicon substrate and an amorphous silicon layer to reduce defects at the interface and to improve the characteristics of the hetero-coupled interface The solar cell 1 may have a so-called HIT structure.
  • a light receiving surface collecting electrode is formed on the light receiving surface side surface (hereinafter referred to as “light receiving surface”) of the n-type region of solar cell 1.
  • the light-receiving surface collecting electrode includes a bus bar electrode 21 connected to the wiring material (conductor) 41 and a finger electrode 11 formed by intersecting and branching the bus bar electrode 21.
  • Two bus bar electrodes 21 are formed over substantially the entire length of the solar battery cell 1.
  • a large number of finger electrodes 11 are formed across substantially the entire area of the solar battery cell so as to cross the bus bar electrode 21.
  • the bus bar electrode 21 is formed with a width of about 0.3 mm, for example. For example, about 60 finger electrodes 11 having a width of about 0.1 mm are formed.
  • Such a light receiving surface collecting electrode is formed, for example, by screen-printing silver paste and curing it at a temperature of a few hundred degrees.
  • back surface As shown in FIG. 4, the back surface of solar cell 1 (hereinafter referred to as "back surface”).
  • This back surface collecting electrode is also composed of a bus bar electrode 22 for connecting the wiring material (conductor) 42, and a plurality of finger electrodes 12 (see FIG. 5) that intersect with the bus bar electrode 22 and are branched. .
  • Two bus bar electrodes 22 are formed over substantially the entire length of the solar battery cell, and many finger electrodes 12 are formed over substantially the entire area of the solar battery cell 1 so as to intersect the bus bar electrode 22.
  • the bus bar electrode 22 is formed with a width of about 0.3 mm, for example. For example, about 100 finger electrodes 12 are formed with a width of about 0.1 mm.
  • Such a back collector electrode is formed, for example, by screen printing a silver paste and curing it at a temperature of a few hundred degrees.
  • Adhesives 31 and 32 are mainly composed of epoxy resin, and contain a crosslinking accelerator so that crosslinking is rapidly accelerated by heating at 180 ° C and curing is completed in about 15 seconds.
  • the thicknesses of the adhesives 31 and 32 are preferably 0.01 to 0.05 mm, and the width is preferably equal to or less than the width of the wiring member 41 in consideration of shielding of incident light.
  • a strip-shaped film sheet having a width of 1.5 mm and a thickness of 0.02 mm is used as the adhesives 31 and 32.
  • the adhesives 31 and 32 are mainly composed of an epoxy resin.
  • the adhesives 31 and 32 can be bonded at a temperature lower than that of solder bonding, preferably 200 ° C. or less. Any material can be used as long as curing can be completed in about 20 seconds so as not to significantly impair productivity.
  • thermosetting resin adhesives such as acrylic resins and high-flexibility polyurethane resins that can contribute to reducing thermal stress at low curing temperatures
  • thermoplastic resins such as EVA resin systems and synthetic rubber systems It is possible to use a two-component reaction adhesive that bonds with an adhesive, epoxy resin, acrylic resin, or urethane resin that can be bonded at low temperatures, and then mixes and hardens the mixture.
  • the resin adhesive may contain fine particles.
  • the fine particles have a size of 2 to 30 ⁇ , and preferably an average particle size of about 10 m.
  • As the fine particles nickel, nickel with a gold coat, or a mixture of particles obtained by coating a plastic with a conductive metal such as gold can be used.
  • the spring materials 41 and 42 are conductors having a width of 2 ⁇ Omm and a thickness of 0.15mm.
  • the spring materials 41 and 42 are composed of a copper foil 41a as a core material and a soft conductor 41 as a surface layer of the core material.
  • the soft conductor 41b is formed by plating about 10 m of tin on the surface of the copper foil 41a.
  • the wiring members 41 and 42 are used by being bent between the solar cells 1 adjacent to each other.
  • tin is used as the material of the soft conductor 41b that constitutes the wiring members 41 and 42, but basically, it is softer than the collector electrode (the bus bar electrode 21 or the finger electrode 11). It is desirable to use a material that is soft on the body and at a temperature at which the resin adhesive cures.
  • soft V and conductive metals can be used, including eutectic solder with a lowered melting point.
  • a part of the bus bar electrode 21 is embedded in the soft conductor 41b which is the surface layer of the wiring member 41, as shown in FIG.
  • the light receiving surface of the solar battery cell 1 and the wiring material 41 are joined together by an adhesive 31 made of resin. Yes.
  • the adhesive 31 covers the side surface of the bus bar electrode 21.
  • a part of the finger electrode 11 is embedded in a soft conductor 41b which is a surface layer of the wiring member 41.
  • the light receiving surface of the solar battery cell 1 and the wiring member 41 are joined by an adhesive 31 made of resin.
  • the adhesive 31 covers the side surface of the finger electrode 11.
  • bus bar electrode 21 and the finger electrode 11 are embedded in the wiring material 42 not only on the light receiving surface side of the solar battery cell 1 but also on the back surface of the solar battery cell 1.
  • the wiring member 42 may be joined by an adhesive 32 made of resin.
  • a soft conductor 41b such as tin covers the periphery of a low resistance element 41a such as Cu.
  • the bus bar electrode 21 and the finger electrode 11 may be embedded and bonded to a depth reaching the low resistance body 41a embedded and bonded in the soft conductor 41b.
  • the width and thickness of the wiring member 41 are not limited to the above values.
  • the width and thickness of the wiring material 41 are determined by the rigidity of the wiring material 41 created by the material of the low resistance body 41a and the soft conductor 41b surrounding the low resistance body 41a, and the specific resistance and cross-sectional area of the material. In consideration of the resistance of material 41, it can be determined to improve yield and properties.
  • bus bar electrodes 21 are formed on the light receiving surface and the back surface of solar cell 1. Specifically, the bus bar electrode 21 is formed by screen-printing silver paste and curing it at a temperature of a few hundred degrees.
  • an adhesive 31 made of resin is disposed so as to cover the bus bar electrode 21.
  • the wiring member 41 is placed on the bus bar electrode 21 of the solar battery cell 1 and lightly crimped.
  • the solar battery cell 1 is heated while applying pressure from the upper part of the wiring member 41 arranged on the adhesive 31 toward the solar battery cell 1. .
  • it has a structure in which heater blocks 50 and 51 heated to 180 ° C. Set the solar cell 1 in a device with a function to keep it constant. Subsequently, the solar cell 1 is sandwiched between the upper and lower heater blocks 50 and 51, for example, at a pressure of 2 MPa, and heating is performed for a time necessary for curing the adhesive 31, for example, 15 seconds. During this heating, it is preferable that at least the surface region of the wiring member 41 is softer than the bus bar electrode 21.
  • the bus bar electrode 21 is embedded in the wiring member 41, and the wiring member 41 and the bus bar electrode 21 are joined.
  • the manner in which the collector electrode (bus bar electrode) in which the silver powder is mainly hardened with an epoxy resin is embedded in tin as a soft conductor will be described in detail.
  • Tin which is a soft conductor surrounding the wiring material 41, has about half the hardness of silver at room temperature. Since the melting point of tin is 232 ° C, it becomes softer and stronger when heated to 180 ° C.
  • the second solar cell 1 is placed on the wiring member 42 and lightly crimped, and bonded in the same procedure as described above to join the desired number of solar cells 1 together. To go.
  • the warpage of the solar battery cell occurs because the linear expansion coefficients of the wiring material and the solar battery cell are different. Since such warpage is proportional to temperature, if the temperature applied to the wiring material and the solar cell increases, the warpage of the solar cell tends to increase. Therefore, adhesive bonding at low and high temperatures is the most effective means for reducing the warpage of solar cells.
  • the bonding means is a resin that can be performed at a lower temperature than the alloy bonding by solder, the warping stress on the front and back of the solar cell can be further reduced, and the warpage is reduced. Generation of noise.
  • the wiring material 41 is soft.
  • the wiring member 41 and the collector electrode are joined.
  • the resin adhesive whose viscosity has been reduced by heating is discharged from the joint between the wiring member 41 and the collector electrode.
  • the resin discharged from the joint is covered so as to fill the gap between the wiring member 41 and the collecting electrode balanced by the applied pressure, and for example, the curing is completed 15 seconds after the start of the crimping.
  • the resin adhesive shrinks in accordance with the cooling after releasing the pressure.
  • the resin adhesive covers and covers the joint between the collector electrode and the wiring members 41 and 42, so that the resin adhesive filled between the two serves not only as an adhesive but also to the electrical joint. Has the function of preventing moisture intrusion. Therefore, oxide formation at the bonding interface is suppressed, and a good contact environment can be maintained for a long time. As a result, increase in series resistance can be prevented and the characteristics of the solar cell module can be maintained.
  • the solar cell module is formed on each interface between the wiring member 41 and the solar cell 1 to be joined via the resin adhesive. It is required to withstand harsh and cold environmental cycles assuming the usage environment. That is, in the thermal cycle, the stress generated due to the difference in linear expansion coefficient is repeatedly given to each interface. In order to increase the resistance to this stress, the resin adhesive is required to have an appropriate elasticity corresponding to the tensile, compression, twist, and expansion / contraction ratio as well as the strong adhesive force.
  • the resin adhesive can be mixed with fine particles having a property different from that of the resin, preferably about 10 m, to increase the stress resistance without impairing the original adhesive strength of the resin.
  • Dissimilar fine particles mixed in the resin can have the same effect as increasing the resistance to expansion, compression, etc. by adding an aggregate and iron to the cement.
  • the long-term reliability of the solar cell module can be further improved.
  • the wiring material used in the present embodiment is made of tin having a specific resistance of 1 ⁇ 4 ⁇ ⁇ ′ cm, which is approximately one digit higher than that of copper having a specific resistance of 1.7 2 ⁇ ′ cm. Without changing the thickness of the entire wiring material including the soft conductor, the specific resistance is larger than that of the wiring material, and the thickness of the soft conductor is reduced, that is, the configuration of the soft conductor is reduced. The resistance can be made relatively low.
  • the present invention may be applied to a normal crystalline or thin-film solar cell that does not have the force HIT structure described by taking the solar cell having the HIT structure as an example. Absent.
  • the force S described in the example using the bus bar electrode 21 and the contact with the material forming the alloy as in the conventional case are not required, and therefore the bus bar electrode 21 is not necessarily required.
  • the case where a photovoltaic cell is not provided with a bus-bar electrode is demonstrated, referring drawings.
  • FIG. 9 is a plan view of a solar cell module including solar cells 2 having only finger electrodes 11 as collector electrodes.
  • FIG. 10 is an enlarged view of the EE ′ cross section of FIG.
  • finger electrodes 11 and 21 are formed as collecting electrodes on the light receiving surface and the back surface of solar cell 2.
  • the light receiving surface collector electrode (finger electrode 11) of one solar cell 2 and the back collector electrode (finger electrode 21) of another solar cell 2 adjacent to one solar cell 2 are wiring materials 41, 42 is electrically connected.
  • FIG. 11 is an enlarged view of the FF ′ cross section of FIG.
  • finger electrodes 1 1 12 and the wiring members 41 42 are directly joined. Thereby, the electrical connection between the finger electrodes 11 and 12 and the wiring members 41 and 42 is achieved.
  • the adhesives 31 and 32 are discharged from the contact interface between the finger electrodes 11 and 12 and the wiring members 41 and 42 and are disposed on the side surfaces of the wiring members 41 and 42. Since the contribution of the adhesives 31 and 32 to the electrical connection between the finger electrodes 11 and 12 and the wiring members 41 and 42 is small, the adhesives 31 and 32 may not include conductive particles.
  • FIG. 12 is an enlarged view of the GG ′ cross section of FIG. As shown in the figure, an adhesive 31 is disposed between the light receiving surface of the solar battery cell 2 and the wiring member 41.
  • FIG. 13 is an enlarged view of a cross-section taken along the line H ′ in FIG.
  • the upper part of the finger electrode 11 is embedded in the wiring member 41.
  • the upper part of the finger electrode 11 is embedded in the soft conductor 41 b that is the surface layer of the wiring member 41.
  • the adhesives 31 and 32 are discharged from the contact interface between the finger electrodes 11 and 12 and the wiring materials 41 and 42, whereby the finger electrodes 11 and 12 and the wiring materials 41 and 42 are directly connected. Be joined.
  • the finger electrodes 11 and 12 and the wiring members 41 and 42 are mechanically joined.
  • the force described in the case where the wiring material is copper foil the material of the wiring material may be iron, nickel, The same effect can be obtained even if silver or a mixture of these is used.
  • the resin adhesive has been described as having been pre-shaped into a belt-shaped film sheet, but the same applies even if the resin adhesive is in a paste form. Effects can be obtained.
  • Figure 14 shows the resistance value of the entire wiring material composed of the wiring material copper and the surrounding soft conductor, even though the thickness of the entire wiring material is the same. The difference in resistance value of each wiring material is shown.
  • soldering thickness of 40 Hm was required for soldering.
  • the resistance value of an average of 4 ( ⁇ 111 coated material (metal thickness 4 C ⁇ m) of eutectic solder of tin, silver and copper was plotted.
  • the wiring material of the present invention was plotted. Plots the resistance value of a copper material with a tin coating of 15 Hm (mesh thickness 15 m), and the effect of the present invention can be obtained if the soft conductor is about 2 am. Therefore, the resistance value of the copper material coated with 2 m of tin (mesh thickness 2 ⁇ m) was also plotted, and the resistance value was measured with a millimeter.
  • the warping stress is generated by the differential force of the balance between the cross-sectional area of the wiring material and the cell thickness, and the stress due to expansion and contraction during cooling and cooling.
  • the cell thickness is constant, even if a spring material having the same cross-sectional area is used, a hot spring material having a lower resistance than conventional ones is used, and a highly efficient solar cell module can be obtained.
  • thin solar cells are used to deal with cracking of solar cells due to warping, it is understood that a solar cell module similar to the conventional one can be obtained even if a wiring material having a small cross-sectional area is used. It was. Thus, it was found that a greater effect can be obtained by relatively increasing the composition ratio of the low-resistance copper material.
  • the collector electrode in the conventional structure is printed and formed with a silver paste on the solar battery cell with approximately the same size as the wiring member width, and the wiring member is soldered on the collector electrode. Therefore, the mechanical joint strength between the wiring material and the solar battery cell depends on the strength of the printed collector electrode. As the characteristics of the collector electrode, a low electrical resistance and an alloying action with a eutectic solder are required, so it is necessary to increase the mixing rate of silver particles in the silver paste. Therefore, the adhesive strength with the solar battery cell can be obtained in the balance between the above-described electrical resistance and solderability. Therefore, the adhesive force obtained is lower than that of the adhesive according to the present example mainly composed of resin. Specifically, as shown in FIG. 15, when the wiring material peeling strength was compared between this example and the conventional structure, there was an average difference of about three times. [0066] Here, a method of measuring the strength material peeling strength will be described.
  • a solar cell is laid flat on a flat stage, and a wire with a sharp ridgeline, for example, a metal ruler, is pressed at about 10 mm from the end, and the wiring material is fixed. Gently peeled off to the ridgeline.
  • the metal ruler is removed after clamping the wiring material that has been peeled off by approximately 10 mm with the sample clamp attached to the force gauge of the maximum scale lkg with the maximum torque hold function attached in the vertical direction. It was.
  • the measurement was performed by pulling up the force gauge vertically upward while pressing the photovoltaic cell in the vicinity of the wiring material to be peeled off against the flat stage. The measurement points for each wire were measured at approximately 10 mm from both ends of the solar cell and at approximately three central points from both ends.
  • the graph shown in Fig. 16 shows the measured data that the resistance value of each wiring material varies due to the difference in the thickness of the soft conductive plating layer even if the thickness of the entire wiring material is the same. is there.
  • FF fill factor
  • a wiring material made of a material (mesh thickness 40 ⁇ m) coated with an eutectic solder of tin, silver and copper on an average of 40 m was used.
  • the width of the conventional wiring material was 2 mm and the thickness was 0.15 mm.
  • a wiring material in which a copper material was covered with 15 m of tin (mesh thickness 15 m) was used.
  • the wiring material of the example had a width of 2 mm and a thickness of 0.20 mm. Therefore, the total thickness of the wiring material including the thickness of the plating and the thickness of the copper material was 0.23 mm in both the example and the conventional example.
  • two types were prepared: a case where a bus bar having a width of 0.3 mm was used and a case where no bus bar was used.
  • FIG. 16 shows the FF values in the conventional example (soldering) and the examples with and without the bus bar.
  • the F. F value was normalized with the average value of 5 samples in the conventional example as 100.
  • the solar battery according to the example can obtain a higher F. F value than the solar battery according to the conventional example. However, it was a component.
  • FIG. 17 shows FF values after exposing the example and the conventional example to an environment of 85 ° C. and 85% humidity for 1216 hours.
  • the F.F value after the moisture resistance test is standardized with the F.F value before the moisture resistance test as 100.
  • the temperature cycle test was conducted in the same examples and conventional examples as those used in the moisture resistance test described above. As examples, four types were prepared: a bus bar with a width of 0.3 mm, a width of 1. Omm, and a width of 1.8 mm, and a case without a bus bar.
  • FIG. 18 shows FF values after 265 cycles of the example and the conventional example.
  • the F.F value after the temperature cycle test is normalized with the F.F value before the temperature cycle test as 100.
  • the example had a long-term reliability comparable to that of the conventional example. Further, considering the evaluation results of the solar cell characteristics shown in FIG. 16, it was found that the Example can maintain a higher FF value than the conventional example even after the temperature cycle test.
  • the solar cell module according to the present invention is useful because it can suppress the occurrence of warping stress, cell cracking, and electrode peeling on the solar cell.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Description

明 細 書
太陽電池モジュール及び太陽電池モジュールの製造方法
技術分野
[0001] 本発明は、隣接する太陽電池セルの表面上に形成された集電極を導電体によって 接続することにより、互いに接続された複数の太陽電池セルを備える太陽電池モジュ ール及び太陽電池モジュールの製造方法に関する。
背景技術
[0002] 太陽電池は、クリーンで無尽蔵のエネルギー源である太陽からの光を直接電気に 変換できること力、ら、新しレ、エネルギー源として期待されてレ、る。
[0003] このような太陽電池を家屋あるいはビル等の電源として用いるにあたっては、太陽 電池セル 1枚当たりの出力が数 Wと小さいことから、通常複数の太陽電池セルを電気 的に直列あるいは並列に接続することで、出力を数 100Wにまで高めた太陽電池モ ジュールとして使用される。図 1は、従来の太陽電池モジュールの一部分を示す図で ある。図 2は、図 1の X— X'断面図である。複数の太陽電池セル 101どうしは、各太 陽電池セル 101の表面上に形成された集電極(フィンガー電極 111ある!/、はバスバ 一電極 121)を配線材 141を用いて接続することにより電気的に接続される。集電極 は、配線材 141の幅と略同等以上の幅に印刷形成される。
[0004] ここで、配線材 141は、図 2に示すように、銅などの低抵抗体 141aの周囲を錫、銀 、銅などの半田 141bによってコーティングされた導電体である。又、太陽電池セル 1 01は、ガラス、透光性プラスチックのような透光性を有する表面部材と、ポリエチレン テレフタレートフィルムなどの樹脂フィルムや鋼板あるいはガラス板等からなる裏面部 材との間に、 EVA等の透光性を有する充填材により封止されている。ここで、例えば 銅箔である配線材 141と、結晶系シリコン基板で構成される太陽電池セル 101との線 膨張係数は、それぞれ 17· 8ppm/°C、 4. 2ppm/°Cと 4倍以上に異なる。そのた め、太陽電池セル 101上に形成されたバスバー電極 121に半田を用いて配線材 14 1を接続する際の加熱、冷却による素材それぞれの膨張、収縮度合いは異なる。そ の結果、太陽電池セル 101には反り応力が発生してセル割れや電極剥がれなどが 発生する。特に、太陽電池セルの製造コスト低減を目的として太陽電池セルの厚さを 薄くするに従い、この問題は大きくなり、太陽電池セルの割れなどにより製造歩留まり が低下するという問題があった。
[0005] 又、配泉材の厚みを大きくすることで、配泉材の直列抵抗を低減して太陽電池モジ ユールの出力を高くしょうとする場合にも、同様に、太陽電池セルの反りが生じやすく なるという問題があった。
[0006] 加えて、太陽電池セルのモジュール化における配線材の接着手段として、従来、信 頼性が高く作業性の良い融点 183°Cの共晶点を持つ鉛と錫の共晶半田が用いられ て!/、たが、近年におレ、て環境保全への対応から鉛を含まなレ、半田材への切り替えが 進められている。そして、現在では融点 217°Cの共晶点を持つ錫と銀と銅の共晶半 田が多くに用いられている。錫と銀と銅の共晶半田を用いた半田接合作業では一般 的に 240°C程度の加熱が行われる。そのため、従来の鉛錫共晶半田に比べ略 30°C 以上高い作業温度が、上述した太陽電池セルの反り問題の解決をますます難しくし ていた。
[0007] ところで、従来配線材に用いる銅箔を厚くすることによって発生する太陽電池セル の割れ課題を解消することを目的とした太陽電池装置が提案されて!、る(例えば、特 許文献 1参照。)。
[0008] この提案されている太陽電池装置は、複数の太陽電池を配線材で接続した太陽電 池装置において、太陽電池セルに予め略同長さの配線材を半田付けした後に、太 陽電池セルの受光面側と反受光面側に接続した配線材同士を、別の配線材によつ て接続する。
[0009] この方法によれば、受光面側及び反受光面側電極に別々の配泉材を接続し、後か らこれら配線材同士を接続する。従って、配線材の熱膨張及び収縮によって太陽電 池セルに加わる圧縮応力力 1枚の太陽電池セルの分だけになる。その結果、隣り 同士の太陽電池セルが引っ張り合うことがなくなり、太陽電池セル割れを解消すると されている。
特許文献 1 :特開 2002— 359388号公報
発明の開示 [0010] しかしながら、上述した特許文献 1では、 1枚の太陽電池セルに加わる圧縮応力を 1枚の太陽電池セル分だけにして、セル割れを解消するものである。従って、太陽電 池セルの基板を薄くすると、 1枚分の応力でも基板の反りによるセル割れが発生する おそれがある。又、配線材の厚みを大きくすると、セル割れが発生するおそれは、更 に高まる。
[0011] そこで、本発明は、上記の課題に鑑み、太陽電池セルの薄型化あるいは配線材の 厚みの増大に伴い、より顕著になる、反り応力、セル割れや電極剥がれなどが発生 することを抑制する太陽電池モジュール及び太陽電池モジュールの製造方法を提供 することを目白勺とする。
[0012] 本発明の第 1の特徴は、隣接する太陽電池セルの表面上に形成された集電極を導 電体によって接続することにより、互いに接続された複数の太陽電池セルを備える太 陽電池モジュールであって、集電極は、導電体の中に埋め込まれて、太陽電池セル と導電体とは、樹脂によって接合されている太陽電池モジュールであることを要旨と する。
[0013] 第 1の特徴に係る太陽電池モジュールによると、集電極と導電体との接着材料とし て、半田による合金接合よりも低温で行う樹脂を使用するため、太陽電池セルの薄型 化あるいは配線材の厚みの増大に伴い、より顕著になる、反り応力、セル割れゃ電 極剥がれなどが発生することを抑制することができる。
[0014] 又、第 1の特徴に係る太陽電池モジュールにおいて、樹脂は、集電極の側面を覆 つていることが好ましい。
[0015] この太陽電池モジュールによると、反り応力、セル割れや電極剥がれなどが発生す ることを更に防止し、水分の侵入を防ぐことができる。
[0016] 又、第 1の特徴に係る太陽電池モジュールにおいて、樹脂には、微粒子が含まれ ていてもよい。
[0017] この太陽電池モジュールによると、樹脂が集電極の周辺を覆い、且つ導電体と太陽 電池セルを接着しているので、水分の侵入を防ぎ、導電体の接着性を高めることが できる。
[0018] 本発明の第 2の特徴は、太陽電池セルの表面上に集電極を形成する工程と、集電 極を覆うように樹脂を配置する工程と、樹脂上に、隣接する太陽電池セルの表面上 に形成された集電極と接続する導電体を配置する工程と、導電体上部から太陽電池 セルの方向へ圧力をかけながら、当該太陽電池モジュールを加熱する工程とを含む 太陽電池モジュールの製造方法であることを要旨とする。
[0019] 第 2の特徴に係る太陽電池モジュールの製造方法によると、集電極と導電体との接 着材料として、半田による合金接合よりも低温で行う樹脂を使用するため、太陽電池 セルの薄型化あるいは配線材の厚みの増大に伴い、より顕著になる、反り応力、セル 割れや電極剥がれなどが発生することを抑制することができる。
[0020] 又、第 2の特徴に係る太陽電池モジュールの製造方法では、加熱時にお!/、て、導 電体は集電極よりも軟ら力^、ことが好ましレ、。
[0021] この太陽電池モジュールの製造方法によると、集電極が導電体内部に埋め込まれ やすくなり、集電極と導電体との接着性をより高めることができる。
[0022] 以上のように、本発明によると、太陽電池セルの薄型化あるいは配線材の厚みの増 大に伴い、より顕著になる、反り応力、セル割れや電極剥がれなどが発生することを 抑制する太陽電池モジュール及び太陽電池モジュールの製造方法を提供すること ができる。
図面の簡単な説明
[0023] [図 1]図 1は、従来の太陽電池モジュールを示す平面図である。
[図 2]図 2は、図 1の X— X'断面の拡大図である。
[図 3]図 3は、本実施形態に係る太陽電池モジュールを示す平面図である。
[図 4]図 4は、図 1の A— A'断面の拡大図である。
[図 5]図 5は、図 1の B— B'断面の拡大図である。
[図 6]図 6は、図 1の C C'断面の拡大図である。
[図 7]図 7は、図 1の D— D'断面の拡大図である。
[図 8]図 8は、本実施形態に係る太陽電池モジュールの製造方法を説明するための 断面図である。
[図 9]図 9は、その他の実施形態に係る太陽電池モジュールを示す平面図である。
[図 10]図 10は、図 7の E— E'断面の拡大図である。 [図 11]図 11は、図 7の F— F'断面の拡大図である。
[図 12]図 12は、図 7の G— G'断面の拡大図である。
[図 13]図 13は、図 7の H— H'断面の拡大図である。
[図 14]図 14は、実施例に係る抵抗値を示すグラフである。
[図 15]図 15は、実施例に係る配泉材の引き剥がし強度を示すグラフである。
[図 16]図 16は、実施例に係る太陽電池特性を示すグラフである。
[図 17]図 17は、実施例に係る耐湿試験後の太陽電池特性を示すグラフである。
[図 18]図 18は、実施例に係る温度サイクル試験後の太陽電池特性を示すグラフであ 発明を実施するための最良の形態
[0024] 次に、図面を用いて、本発明の実施の形態を説明する。以下の図面の記載におい て、同一又は類似の部分には、同一又は類似の符号を付している。ただし、図面は 模式的なものであり、各寸法の比率等は現実のものとは異なることに留意すべきであ る。従って、具体的な寸法等は以下の説明を参酌して判断すべきものである。又、図 面相互間におレ、ても互!/、の寸法の関係や比率が異なる部分が含まれて!/、ることは勿 論である。
[0025] (太陽電池モジュール)
本実施形態に係る太陽電池モジュールについて、図 3〜図 7を参照して説明する。 図 3は、太陽電池モジュール中における太陽電池セルの平面図であり、図 4〜7は、 それぞれ図 3の A— A'断面図、 B-B'断面図、 C C'断面図、 D— D'断面図であ
[0026] 本実施形態に係る太陽電池セル 1は、厚み 0. 15mm程度の単結晶シリコンや多結 晶シリコン等の結晶系半導体からなり、 1辺が 125mmのほぼ正方形である。この太 陽電池セル 1内には、 n型領域と p型領域とがあり、 n型領域と p型領域との界面部分 で半導体接合部が形成されている。この他に単結晶シリコン基板と非晶質シリコン層 との間に実質的に真性な非晶質シリコン層を挟み、その界面での欠陥を低減し、へ テロ結合界面の特性を改善した構造、レ、わゆる HIT構造を有する太陽電池セル 1で あってもよい。 [0027] 太陽電池セル 1の n型領域の受光面側表面(以下において、「受光面」という。)部 分には、受光面集電極が形成されている。この受光面集電極は、配線材(導電体) 4 1と接続するバスバー電極 21と、バスバー電極 21と交差し、分岐して形成されたフィ ンガー電極 11とからなる。バスバー電極 21は、太陽電池セル 1の略全長にわたって 2本形成されている。フィンガー電極 11は、バスバー電極 21に交差して多数本が太 陽電池セルの略全域にわたって形成されている。バスバー電極 21は、例えば、 0. 3 mm程度の幅で形成される。フィンガー電極 11は、例えば、 0. 1mm程度の幅で、 6 0本程度形成される。このような受光面集電極は、例えば、銀ペーストをスクリーン印 刷して百数十度の温度で硬化させて形成されている。
[0028] 図 4に示すように、太陽電池セル 1の裏面側の表面(以下において、「裏面」という。
)にも同様に裏面集電極が設けられている。この裏面集電極も、配線材(導電体) 42 を接続するためのバスバー電極 22と、バスバー電極 22と交差し、分岐して多数本形 成されるフィンガー電極 12 (図 5参照)とからなる。バスバー電極 22は、太陽電池セ ルの略全長にわたって 2本形成されており、フィンガー電極 12は、バスバー電極 22 に交差して多数本が太陽電池セル 1の略全域にわたって形成されている。バスバー 電極 22は、例えば、 0. 3mm程度の幅で形成される。フィンガー電極 12は、例えば、 0. 1mm程度の幅で、 100本程度形成される。太陽電池セル 1の裏面側は、受光面 積の減少を考慮しなくてもよいことから、受光面集電極よりも多くのフィンガー電極が 形成でき、裏面集電極側での抵抗損失を低減できる。このような裏面集電極は、例え ば、銀ペーストをスクリーン印刷して百数十度の温度で硬化させて形成されている。
[0029] 受光面側及び裏面側のバスバー電極 21、 22上には、接着剤 31、 32を介して、そ れぞれ配線材 41、 42が接着されている。接着剤 31、 32は、エポキシ樹脂を主成分 とし、 180°Cの加熱で急速に架橋が促進され、 15秒程度で硬化が完了するように架 橋促進剤を含んでいる。この接着剤 31、 32の厚みは、 0. 01 -0. 05mmであり、幅 は入射光の遮蔽を考慮して、配線材 41の幅と同等以下であることが好ましい。この実 施形態では、接着剤 31、 32として、幅 1. 5mm、厚み 0. 02mmの帯状フィルムシ一 トを用いている。尚、接着剤 31、 32として、エポキシ樹脂を主成分としたものを用いる と説明したが、半田接合より低い温度、好ましくは 200°C以下の温度で接着でき、生 産性を著しく阻害しないよう 20秒程度で硬化が完了するものであればよい。例えば、 硬化温度が低ぐ熱ストレスの軽減に寄与できるアクリル系樹脂、柔軟性の高いポリゥ レタン系などの熱硬化性樹脂接着剤の他に、 EVA樹脂系、合成ゴム系などの熱可 塑性接着剤、低温での接合作業が可能となるエポキシ樹脂、アクリル樹脂、あるいは ウレタン樹脂を主剤にして硬化剤を混ぜ合わせて接着する 2液反応系接着剤なども 用いること力 Sでさる。
[0030] 又、樹脂からなる接着剤には、微粒子が含まれていてもよい。微粒子は、 2〜30 ιη φ、好ましくは、平均粒径 10 m程度の大きさである。微粒子としては、ニッケル、 金コート付きニッケル、あるいはプラスチックに導電性金属、例えば金などをコートし た粒子を混ぜ合わせたものを用いることができる。
[0031] 又、配泉材 41、 42は、幅 2· Omm、厚み 0. 15mmの導電体である。配泉材 41、 4 2は、芯材としての銅箔 41aと、芯材の表面層としての軟導電体 41とから構成される。 軟導電体 41bは、銅箔 41aの表面上に錫を厚さ 10 m程度メツキすることによって形 成される。配線材 41、 42は、互いに隣接する太陽電池セル 1の間で折り曲げて用い る。尚、本実施形態では、配線材 41、 42を構成する軟導電体 41b材料として錫を用 いたが、基本的には、集電極(バスバー電極 21あるいはフィンガー電極 11)より軟ら カ^、導電体で、かつ樹脂接着剤が硬化する温度で軟化する材料を用いることが望ま しい。具体的には、表 1に示すように、融点を引き下げた共晶半田を含めて、軟らか V、導電性金属も使用することができる。
[表 1]
Figure imgf000009_0001
又、本実施形態に係る太陽電池モジュールでは、図 6に示すように、バスバー電極 21の一部は、配線材 41の表面層である軟導電体 41bの中に埋め込まれている。太 陽電池セル 1の受光面と配線材 41とは、樹脂からなる接着剤 31によって接合されて いる。又、接着剤 31は、バスバー電極 21の側面を覆っている。同様に、図 7に示すよ うに、フィンガー電極 11の一部は、配線材 41の表面層である軟導電体 41bの中に埋 め込まれている。太陽電池セル 1の受光面と配線材 41とは、樹脂からなる接着剤 31 によって接合されている。又、接着剤 31は、フィンガー電極 11の側面を覆っている。
[0033] 尚、バスバー電極 21及びフィンガー電極 11の一部は、太陽電池セル 1の受光面側 だけでなぐ裏面側においても、配線材 42の中に埋め込まれ、太陽電池セル 1の裏 面と配線材 42とは、樹脂からなる接着剤 32によって接合されていてもよい。
[0034] 又、配泉材 41は、図 6及び図 7に示すように、 Cuなどの低抵抗体 41aの周囲を錫な どの軟導電体 41bが覆っている。バスバー電極 21及びフィンガー電極 11は、軟導電 体 41bに埋め込まれて接合されている力 低抵抗体 41aに達する深さまで埋め込ま れて接合されてもよい。
[0035] 又、配線材 41の幅、厚みについても、上記の数値に限定するものではない。配線 材 41の幅、厚みは、低抵抗体 41aと低抵抗体 41aを取り巻く軟導電体 41bとの材料 が作り出す配線材 41の剛性や、素材の持つ比抵抗と断面積とで決定される配線材 4 1の抵抗値を考慮して、歩留まり及び特性の向上が得られるように決定することができ
[0036] (太陽電池モジュールの製造方法)
次に、本実施形態に係る太陽電池モジュールの製造方法について、図 8を用いて 説明する。
[0037] まず、図 8 (a)に示すように、太陽電池セル 1の受光面及び裏面上にバスバー電極 21 (あるいはフィンガー電極 11)を形成する。具体的には、銀ペーストをスクリーン印 刷して百数十度の温度で硬化させることにより、バスバー電極 21を形成する。
[0038] 次に、図 8 (b)に示すように、バスバー電極 21を覆うように樹脂からなる接着剤 31を 配置する。そして、配線材 41を太陽電池セル 1のバスバー電極 21上に重ね置いて、 軽く圧着する。
[0039] 次に、図 8 (c)に示すように、接着剤 31上に配置された配線材 41上部から太陽電 池セル 1の方向へ圧力をかけながら、当該太陽電池セル 1を加熱する。具体的には、 180°Cに加熱されたヒータブロック 50、 51を上下に有する構造で、且つ加圧力を一 定に保つ機能を持つ装置に太陽電池セル 1をセットする。続いて、上下のヒータブ口 ック 50、 51で、例えば、圧力 2MPaで太陽電池セル 1を挟み、接着剤 31の硬化に必 要な時間、例えば、 15秒の加熱を行う。この加熱時において、配線材 41の少なくとも 表面領域は、バスバー電極 21よりも軟らかいことが好ましい。
[0040] すると、図 8 (d)に示すように、配線材 41中にバスバー電極 21が埋め込まれて、配 線材 41とバスバー電極 21とが接合される。このように、軟導電体としての錫に、銀粉 末を主としてエポキシ樹脂で固められた集電極 (バスバー電極)が埋め込まれる様子 について、詳細に説明する。配線材 41の周辺を取り巻く軟導電体である錫は、常温 において銀の約 1/2の硬さを有する。錫の融点は 232°Cであるため、 180°Cに加熱 されることにより更に軟ら力、くなる。従って、太陽電池セル表裏の配線材の両面を、例 えば、 2MPaの圧力で加圧することで、融点 963°Cの銀粒子を熱硬化性樹脂で固め られた集電極が、樹脂接着剤を流動的に排除した後に、配線材表面の錫中に容易 に埋め込まれる。
[0041] 同様にして、 2枚目の太陽電池セル 1を配線材 42上に重ね置いて軽く圧着し、上 述した同様の手順で接着を行い、所望する枚数の太陽電池セル 1を接合していく。
[0042] (作用及び効果)
太陽電池セルの反りは、配線材と太陽電池セルとの線膨張係数が異なるために発 生すると考えられる。このような反りは温度に比例することから、配線材と太陽電池セ ルとに加える温度が高くなれば、太陽電池セルの反りは大きくなりやすい。従って、太 陽電池セルの反りの低減には、低!/、温度での接着接合が最も有効な手段とレ、える。
[0043] 本実施形態に係る太陽電池モジュールによると、接着手段を半田による合金接合 よりも低温で行うことができる樹脂にしたため、太陽電池セル表裏の反り応力をより小 さくすることができ、反りの発生を ί卬ぇることができる。
[0044] 更に、この樹脂が集電極の周辺を覆い、且つ、配線材と太陽電池セルとを接着して いるので、集電極と配線材との界面への水分の侵入を防ぎ、配線材の接着性を高め ること力 Sでさる。
[0045] 一般的に、熱硬化性の樹脂接着剤を加熱していくと、一度粘度が下がり、その後に 硬化剤により架橋が促進されて硬化が完了する。本実施形態では、配線材 41の軟 導電体 41 aの中にバスバー電極 21が埋め込まれることにより、配線材 41と集電極と は接合される。加熱により粘度が下がった樹脂接着剤は、配線材 41と集電極との接 合部から流動排出される。接合部から流動排出された樹脂は、加圧力によりバランス した配線材 41と集電極との隙間を埋めるようにして覆い、例えば、圧着開始後 15秒 で硬化が完了する。加圧解除後の冷却に従い、樹脂接着剤は収縮する。この収縮 応力は、配線材 41、 42と集電極との電気的接合に確実性を持たすことに有用である 。即ち、樹脂接着剤は集電極と配線材 41、 42の接合部を覆い包むことにより、両者 の間に充填された樹脂接着剤は、接着剤としての働きのみならず、電気的接合部へ の水分侵入を防ぐ働きを有する。そのため、接合界面における酸化物形成は抑制さ れ、長期に渡り良好な接触環境を保つことができる。その結果、直列抵抗の増大を防 ぎ、太陽電池モジュールの特性を維持することができる。
[0046] 又、太陽電池セルの接合には、機械的接合と同時に、配線材を介しての電気的接 合が求められる。低抵抗な電気的接合を得るには、接合するそれぞれの導電性材料 方面の自然酸化膜、汚れなどを取り除いた清浄面で接触させることが重要である。本 実施形態にお!/、ては、配線材素材を覆う軟導電体に集電極を機械的に圧入して埋 め込ませた形態として!/、るので、十分な電気的接合を得ることができる。
[0047] 又、樹脂接着剤を介して接合される配線材 41と太陽電池セル 1とのそれぞれの界 面には、加熱、加圧により必然的に存在する残留応力に加えて、太陽電池モジユー ルの使用環境を想定した厳しレ、冷熱環境サイクルに耐えることが要求される。つまり 、冷熱サイクルにおいては、線膨張係数の違いから発生する応力がそれぞれの界面 に繰り返し与えられることになる。この応力に対する耐性を高めるために、樹脂接着 剤には、強い接着力とともに引っ張り、圧縮、捩れ、伸縮比などに対応する適度な弾 性率が求められる。この適度な弾性率を得る手段として、樹脂接着剤の中に樹脂と 性質の異なる好ましくは 10 m程度の微粒子を混在させることで、樹脂本来の接着 力を損なうことなぐ応力耐性を高めることができる。樹脂中に混入させた異種微粒子 は、あた力、もセメントに骨材、鉄材を加えることで、伸縮、圧縮などの耐性を高めると 同様な効果を得ること力できる。その結果、太陽電池モジュールの長期信頼性を更 に高めることができる。 [0048] 更に、本実施形態に係る太陽電池モジュールが、従来の太陽電池モジュールに比 ベ、低抵抗な電気的接合に優れている点について説明する。従来の共晶半田を用 いた太陽電池セル接合用配線材としては、安定した合金化接合に必要な約 40 m の厚みで素材の周辺を被覆したものを用いていた。一方、本発明に必要な軟導電体 の厚みは、 程度あればよい。本実施形態に用いた配線材素材は、比抵抗 1. 7 2 Ω ' cmの銅に略一桁高い比抵抗 1 1 · 4 β Ω ' cmを示す錫を用いている。軟導電 体を含む配線材全体の厚みを変えずに、配線材素材に比べ比抵抗の大き!/、軟導電 体を薄くする、即ち、軟導電体の構成を小さくすることで、配線材全体の抵抗を相対 的に低くすることができる。
[0049] (その他の実施形態)
本発明は上記の実施形態によって記載した力 この開示の一部をなす論述及び図 面はこの発明を限定するものであると理解すべきではない。この開示から当業者には 様々な代替実施形態、実施例及び運用技術が明らかとなろう。
[0050] 例えば、上記の実施形態では、 HIT構造を有する太陽電池セルを例にとり説明し た力 HIT構造を有しない通常の結晶系あるいは薄膜系の太陽電池セルに本発明 を適用しても構わない。
[0051] 又、本実施形態では、バスバー電極 21を用いた例について説明した力 S、従来のよ うに合金を形成する材料の接触が必要でないために、バスバー電極 21は、必ずしも 必要ではない。このように、太陽電池セルがバスバー電極を備えない場合について、 図面を参照しながら説明する。
[0052] 図 9は、集電極としてフィンガー電極 1 1のみを有する太陽電池セル 2を備える太陽 電池モジュールの平面図である。
[0053] 図 10は、図 9の E— E '断面の拡大図である。同図に示すように、太陽電池セル 2の 受光面上及び裏面上には、集電極としてフィンガー電極 1 1 , 21が形成される。一の 太陽電池セル 2の受光面集電極(フィンガー電極 1 1 )と、一の太陽電池セル 2に隣接 する他の太陽電池セル 2の裏面集電極(フィンガー電極 21 )とは、配線材 41 , 42に よって電気的に接続される。
[0054] 図 1 1は、図 9の F— F '断面の拡大図である。同図に示すように、フィンガー電極 1 1 , 12と配線材 41 , 42とは、直接的に接合される。これにより、フィンガー電極 11 , 12 と配線材 41 , 42との電気的接合が図られる。接着剤 31 , 32は、フィンガー電極 11 , 12と配線材 41 , 42との接触界面から流動排出され、配線材 41 , 42の側面に配設さ れる。フィンガー電極 11 , 12と配線材 41 , 42との電気的接合に対する接着剤 31 , 3 2の寄与は小さいため、接着剤 31 , 32は導電性粒子を含んでいなくてもよい。
[0055] 図 12は、図 9の G— G'断面の拡大図である。同図に示すように、太陽電池セル 2の 受光面と配線材 41との間には、接着剤 31が配設される。
[0056] 図 13は、図 9の Η— H'断面の拡大図である。同図に示すように、フィンガー電極 1 1の上部は、配線材 41中に埋め込まれる。具体的に、フィンガー電極 1 1の上部は、 配線材 41の表面層である軟導電体 41b中に埋め込まれる。このように、接着剤 31 , 32がフィンガー電極 11 , 12と配線材 41 , 42との接触界面から流動排出されることに より、フィンガー電極 11 , 12と配線材 41 , 42とは直接的に接合される。これにより、フ インガー電極 11 , 12と配線材 41 , 42とは機械的に接合される。
[0057] 以上のように、フィンガー電極 11のみの集電極の上に、配線材 41を貼り合わせて も、機械的接合は勿論のこと、電気的接合も遜色なぐ得ること力 Sできる。
[0058] 又、本実施形態にお!/、て、配線材の材料を銅箔として説明を行った力 配線材の 材料としては電気抵抗が小さいものであればよぐ他に鉄、ニッケル、銀あるいはこれ らを混合したものであっても、同様な効果が得られる。
[0059] 更に、本実施形態において、樹脂接着剤として、帯状フィルムシートに予め整形さ れた形態のものを用いたもので説明したが、樹脂接着剤がペースト状のものであって も、同様な効果が得られる。
[0060] このように、本発明はここでは記載していない様々な実施形態等を含むことは勿論 である。従って、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に 係る発明特定事項によってのみ定められるものである。
実施例
[0061] 以下、本発明に係る半導体発光素子について、実施例を挙げて具体的に説明す る力 本発明は、下記の実施例に示したものに限定されるものではなぐその要旨を 変更しない範囲において、適宜変更して実施することができるものである。 [0062] (抵抗値の実測)
図 14は、配線材素材の銅と周辺の軟導電体とから構成される配線材全体の抵抗 値について、配線材全体の厚みが同じであっても、構成する軟導電体の厚みの違い により、それぞれの配線材が持つ抵抗値の違いを示したものである。
[0063] 従来は、半田付けを行うために、メツキ厚みが 40 H m必要であった。このため、従 来の配線材として、錫、銀、銅の共晶半田を平均 4(^ 111被覆した材料 (メツキ厚み 4 C^ m)の抵抗値をプロットした。一方、本発明の配線材は、銅素材の周囲に錫を 15 H m被覆させたもの(メツキ厚み 15 m)の抵抗値をプロットした。又、軟導電体は 2 a m程度あれば本発明の効果を得ることが可能であるため、銅素材の周囲に錫を 2 m被覆させたもの(メツキ厚み 2 μ m)の抵抗値もプロットした。尚、抵抗値は、ミリオ ームメータによる実測値である。
[0064] 反り応力は、配線材の断面積とセル厚みのバランスの差力 加熱、冷却時の膨張、 収縮による応力により発生すると述べた。セル厚みを一定としたとき、同じ断面積の 配泉材を用いても、従来に比べて低抵抗な配泉材を用いることになり、高効率な太 陽電池モジュールが得られる。又、反対に、薄い太陽電池セルを用いて、反りによる 太陽電池セルの割れに対応するときは、断面積が小さい配線材を用いても従来と同 様な太陽電池モジュールが得られることが分かった。このように、低抵抗な銅素材の 構成比率を相対的に高めることで、より大きな効果が得られることが分かった。
[0065] (配泉材引きはがし強度)
従来の構造における集電極は、配線材幅と略同寸法で太陽電池セル上に銀ぺー ストで印刷形成されて、この集電極の上に配線材が半田接合されている。従って、配 線材と太陽電池セルの機械的接合強度は、この印刷形成された集電極の強度に依 存する。集電極の特性としては、低い電気抵抗、及び共晶半田との合金化作用が求 められるために、銀ペースト中の銀粒子の混入率を高くする必要がある。そのため、 太陽電池セルとの接着力は、上述した電気抵抗、半田付け性とのバランスの中で得 られるものとなる。従って、得られる接着力は、樹脂を主成分とする本実施例に係る 接着剤と比べて低い。具体的には、図 15に示すように、配線材引きはがし強度につ いて、本実施例と従来構造とを比較したとき、平均値で約 3倍の差があった。 [0066] ここで、配泉材引きはがし強度の測定方法について説明する。
[0067] まず準備として、太陽電池セルを平面ステージ上に平置きし、端部より概 10mmの ところに鋭角な稜線を持つ、例えば金属製定規のようなものを押し付けておいて、配 線材を静かに稜線まで引きはがした。続いて、垂直方向に取り付けられた最大トルク のホールド機能を持つ最大スケール lkgのフォースゲージに取り付けられた試料クラ ンプで、概 10mm引きはがしておいた配線材をクランプした後に、金属定規を取り除 いた。続いて、引きはがし測定する配線材近傍の太陽電池セルを平面ステージに押 し付けながら、フォースゲージを垂直上方に引き上げて測定を行った。それぞれの配 線材の測定点は、太陽電池セルの両端部より概 10mmのところと、両端部よりの概中 心点 3点について行った。
[0068] (太陽電池特性)
図 16に示したグラフは、配線材全体の厚みが同じであっても軟導電性メツキ層の厚 みの違いにより、それぞれが持つ配線材の抵抗値が異なることを実測データで示し たものである。ここでは、本発明の太陽電池特性の寄与を説明するため、太陽電池 特性の F. F (フィルファクター)を比較した。 F. Fは、太陽電池の直列抵抗に依存す る特性の一つである。
[0069] 従来例として、錫、銀、銅の共晶半田を平均 40 m被覆した材料 (メツキ厚み 40 μ m)からなる配線材を用いた。従来例の配線材の幅は 2mm、厚みは 0. 15mmであ つた。一方、実施例として、銅素材の周囲に錫を 15 m被覆させた(メツキ厚み 15 m)配線材を用いた。実施例の配線材の幅は 2mm、厚みは 0. 20mmであった。従 つて、メツキの厚みと、銅素材の厚みとを合わせた、配線材の総厚みは、実施例、従 来例共に 0. 23mmであった。又、実施例として、 0. 3mm幅のバスバーを用いた場 合と、バスバー無しの場合の 2種類を用意した。
[0070] 図 16に、従来例(半田付け)、バスバー有り及び無しの実施例における、 F. F値を 示す。尚、 F. F値は、従来例の 5試料の平均値を 100として規格化した。
[0071] 同図に示すように、低抵抗な配泉材を用いたことにより、実施例に係る太陽電池セ ノレは、従来例に係る太陽電池セルよりも、高い F. F値を得ることが分力、つた。
[0072] (耐湿試験) 上述した太陽電池特性の評価に用いたのと同様の実施例及び従来例につ!/、て耐 湿試験を行った。なお、実施例としては、 0. 3mm幅、 1. Omm幅、 1. 8mm幅のバス バーを用いた場合と、バスバー無しの場合との 4種類を用意した。
[0073] 図 17は、実施例及び従来例を、温度 85°C、湿度 85%の環境に 1216時間さらした 後の F. F値を示す。尚、図 17では、耐湿試験後における F. F値を、耐湿試験前に おける F. F値を 100として規格化して表している。
[0074] 図 17に示すように、実施例は、従来例と同程度の耐湿性を有することが確認された 。従って、図 16に示す太陽電池特性の評価結果を考慮すれば、実施例では、耐湿 試験後においても、従来例より高い F. F値を維持できることが判った。
[0075] 特に、バスバー無しの実施例においても、フィンガー電極と配線材との機械的接合 及び電気的接合を十分に得られることが確認された。
[0076] (温度サイクル試験)
上述の耐湿試験に用いたのと同様の実施例及び従来例につ!/、て温度サイクル試 験を fiつた。なお、実施例としては、 0. 3mm幅、 1. Omm幅、 1. 8mm幅のバスバー を用いた場合と、バスバー無しの場合との 4種類を用意した。
[0077] 温度サイクル試験は、 JIS C8917の温度サイクル試験に準拠した方法を使用した 。具体的には、 45分かけて 25°Cから 90°Cまで上昇させ、この温度で 90分間保持し、 次いで 90分かけて 40°Cまで降下させ、この温度で 90分間保持し、さらに 45分か けて 25°Cまで上昇させることを 1サイクル(6時間)として 265サイクル繰返した。
[0078] 図 18は、実施例及び従来例について 265サイクル繰返した後の F. F値を示す。尚 、同図では、温度サイクル試験後における F. F値を、温度サイクル試験前における F . F値を 100として規格化して表している。
[0079] 図 18に示すように、実施例は、従来例と同程度の長期信頼性を有することが確認さ れた。また、図 16に示す太陽電池特性の評価結果を考慮すれば、実施例では、温 度サイクル試験後においても、従来例より高い F. F値を維持できることが判った。
[0080] 特に、バスバー無しの実施例においても長期信頼性が維持されることが確認された 。なお、 日本国特許出願第 2006— 229209号(2006年 8月 25日出願)の全内容が 、参照により、本願明細書に組み込まれている。 産業上の利用可能性
以上のように、本発明に係る太陽電池モジュールは、太陽電池セルにかかる反り応 力、セル割れ、及び電極剥がれの発生を抑制することができるため有用である。

Claims

請求の範囲
[1] 隣接する太陽電池セルの表面上に形成された集電極を導電体によって接続するこ とにより、互いに接続された複数の太陽電池セルを備える太陽電池モジュールであ つて、
前記集電極は、前記導電体の中に埋め込まれ、
前記太陽電池セルと前記導電体とは、樹脂によって接合されていることを特徴とす る太陽電池モジュール。
[2] 前記樹脂は、前記集電極の側面を覆って!/、ることを特徴とする請求項 1に記載の太 陽電池モジュール。
[3] 前記樹脂には、微粒子が含まれていることを特徴とする請求項 1又は 2に記載の太 陽電池モジュール。
[4] 前記導電体は、芯材と、前記芯材の表面上に形成された表面層とを有し、
前記集電極は、前記表面層の中に埋め込まれている
ことを特徴とする請求項 1に記載の太陽電池モジュール。
[5] 太陽電池セルの表面上に集電極を形成する工程と、
前記集電極を覆うように配置された樹脂上に、隣接する太陽電池セルの表面上に 形成された集電極と接続する導電体を配置する工程と、
前記導電体上部から前記太陽電池セルの方向へ圧力をかけながら、当該太陽電 池セルを加熱する工程と
を含むことを特徴とする太陽電池モジュールの製造方法。
[6] 前記加熱時にお!/、て、前記導電体の表面は前記集電極よりも軟らか!/、ことを特徴と する請求項 5に記載の太陽電池モジュールの製造方法。
[7] 前記導電体は、芯材と、前記芯材の表面上に形成された表面層とを有し、
前記加熱時において、前記表面層は、前記集電極よりも軟らかいことを特徴とする 請求項 5に記載の太陽電池モジュールの製造方法。
PCT/JP2007/066458 2006-08-25 2007-08-24 Solar battery module and solar battery module manufacturing method WO2008023795A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US12/438,384 US9660120B2 (en) 2006-08-25 2007-08-24 Solar cell module and solar cell module manufacturing method
CN2007800312406A CN101506993B (zh) 2006-08-25 2007-08-24 太阳能电池模块以及太阳能电池模块的制造方法
JP2008530969A JP5213712B2 (ja) 2006-08-25 2007-08-24 太陽電池モジュール及び太陽電池モジュールの製造方法
EP07806044.9A EP2056355B1 (en) 2006-08-25 2007-08-24 Solar battery module and solar battery module manufacturing method
US15/197,758 US10043931B2 (en) 2006-08-25 2016-06-30 Solar cell module and solar cell module manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-229209 2006-08-25
JP2006229209 2006-08-25

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/438,384 A-371-Of-International US9660120B2 (en) 2006-08-25 2007-08-24 Solar cell module and solar cell module manufacturing method
US15/197,758 Continuation US10043931B2 (en) 2006-08-25 2016-06-30 Solar cell module and solar cell module manufacturing method

Publications (1)

Publication Number Publication Date
WO2008023795A1 true WO2008023795A1 (en) 2008-02-28

Family

ID=39106876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/066458 WO2008023795A1 (en) 2006-08-25 2007-08-24 Solar battery module and solar battery module manufacturing method

Country Status (7)

Country Link
US (2) US9660120B2 (ja)
EP (1) EP2056355B1 (ja)
JP (2) JP5213712B2 (ja)
KR (1) KR101342281B1 (ja)
CN (2) CN101506993B (ja)
TW (1) TWI487124B (ja)
WO (1) WO2008023795A1 (ja)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009104627A1 (ja) * 2008-02-21 2009-08-27 三洋電機株式会社 太陽電池モジュール
JP2009266559A (ja) * 2008-04-24 2009-11-12 Hitachi Chem Co Ltd 太陽電池用電極基材、これを用いた太陽電池及び太陽電池用電極基材の製造法
JP2010118705A (ja) * 2010-02-26 2010-05-27 Sanyo Electric Co Ltd 太陽電池モジュール
WO2010071123A1 (ja) 2008-12-17 2010-06-24 三洋電機株式会社 太陽電池モジュール及びその製造方法
US20100243024A1 (en) * 2009-03-31 2010-09-30 Sanyo Electric Co., Ltd Solar cell, solar cell module and solar cell system
JP2010238938A (ja) * 2009-03-31 2010-10-21 Sanyo Electric Co Ltd 太陽電池セル、太陽電池モジュールおよび太陽電池システム
KR20110117656A (ko) 2009-02-17 2011-10-27 산요덴키가부시키가이샤 태양 전지 및 태양 전지 모듈
WO2011148840A1 (ja) 2010-05-28 2011-12-01 三洋電機株式会社 太陽電池モジュール及びその製造方法
WO2011152372A1 (ja) * 2010-05-31 2011-12-08 三洋電機株式会社 太陽電池モジュール及びその製造方法
WO2011152319A1 (ja) 2010-05-31 2011-12-08 三洋電機株式会社 太陽電池モジュール及び太陽電池モジュールの製造方法
EP2113948A3 (en) * 2008-04-28 2011-12-14 SANYO Electric Co., Ltd. Solar cell module
WO2012002213A1 (ja) * 2010-06-30 2012-01-05 三洋電機株式会社 太陽電池モジュール
EP2423970A1 (en) * 2009-04-21 2012-02-29 Sanyo Electric Co., Ltd. Solar cell module
WO2012043491A1 (ja) * 2010-09-29 2012-04-05 日立化成工業株式会社 太陽電池モジュール
WO2012141073A1 (ja) * 2011-04-11 2012-10-18 三菱電機株式会社 太陽電池モジュールおよびその製造方法
US20120285527A1 (en) * 2011-05-11 2012-11-15 International Business Machines Corporation Low resistance, low reflection, and low cost contact grids for photovoltaic cells
WO2013014810A1 (ja) * 2011-07-26 2013-01-31 三洋電機株式会社 太陽電池モジュール及びその製造方法
US8446145B2 (en) 2009-02-06 2013-05-21 Sanyo Electric Co., Ltd. Method for measuring I-V characteristics of solar cell, and solar cell
US20130160815A1 (en) * 2010-08-30 2013-06-27 Commissariat A L'energie Atomique Et Aux Energies Alternatives Photovoltaic Cell Having Discontinuous Conductors
CN103597609A (zh) * 2011-05-31 2014-02-19 三洋电机株式会社 太阳能电池模块及其制造方法
JP2015233096A (ja) * 2014-06-10 2015-12-24 日立化成株式会社 太陽電池ユニット及び太陽電池ユニットの製造方法
JP2016072495A (ja) * 2014-09-30 2016-05-09 株式会社カネカ 太陽電池モジュール及びその製造方法
US9484479B2 (en) 2011-11-09 2016-11-01 Mitsubishi Electric Corporation Solar cell module and manufacturing method thereof

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI487124B (zh) 2006-08-25 2015-06-01 Sanyo Electric Co 太陽電池模組及太陽電池模組的製造方法
US9848447B2 (en) * 2007-06-27 2017-12-19 Ford Global Technologies, Llc Method and system for emergency notification
US8609983B2 (en) * 2009-06-29 2013-12-17 Sharp Kabushiki Kaisha Interconnection sheet, solar cell with interconnection sheet, solar cell module, and interconnection sheet roll
WO2011010373A1 (ja) * 2009-07-22 2011-01-27 三菱電機株式会社 太陽電池セルおよびその製造方法
US20110056532A1 (en) * 2009-09-09 2011-03-10 Crystal Solar, Inc. Method for manufacturing thin crystalline solar cells pre-assembled on a panel
JP5289291B2 (ja) * 2009-12-01 2013-09-11 デクセリアルズ株式会社 電子部品の製造方法、電子部品および導電性フィルム
DE102010017180A1 (de) * 2010-06-01 2011-12-01 Solarworld Innovations Gmbh Solarzelle, Solarmodul, und Verfahren zum Verdrahten einer Solarzelle, und Kontaktdraht
JP2012064729A (ja) * 2010-09-15 2012-03-29 Fuji Electric Co Ltd 太陽電池モジュールおよびラミネート方法
WO2012057125A1 (ja) * 2010-10-26 2012-05-03 三洋電機株式会社 太陽電池モジュールの製造方法
KR20120044540A (ko) * 2010-10-28 2012-05-08 엘지전자 주식회사 태양전지 패널 및 이의 제조 방법
EP2650926B1 (en) 2010-12-06 2021-03-31 Shin-Etsu Chemical Co., Ltd. Solar cell and method of making a solar cell
SG191044A1 (en) 2010-12-06 2013-08-30 Shinetsu Chemical Co Solar cell and solar-cell module
KR101621989B1 (ko) 2011-01-27 2016-05-17 엘지전자 주식회사 태양전지 패널
JP5328996B2 (ja) * 2011-02-16 2013-10-30 三菱電機株式会社 太陽電池セル、太陽電池モジュール及び太陽電池セルのリード線接合方法
GB2491209B (en) * 2011-05-27 2013-08-21 Renewable Energy Corp Asa Solar cell and method for producing same
US20140109962A1 (en) * 2011-05-27 2014-04-24 Nippon Steel & Sumitomo Metal Corporation Interconnector for solar cells, and solar cell module
WO2013018152A1 (ja) * 2011-07-29 2013-02-07 日立化成工業株式会社 接着剤組成物、それを用いたフィルム状接着剤及び回路接続材料、回路部材の接続構造及びその製造方法
CN102254978A (zh) * 2011-08-16 2011-11-23 上海华友金镀微电子有限公司 一种用于太阳能光伏组件的锡铅焊带及其制造方法
KR101923658B1 (ko) * 2011-12-13 2018-11-30 인텔렉츄얼 키스톤 테크놀로지 엘엘씨 태양전지 모듈
DE102012100535A1 (de) 2012-01-23 2013-07-25 Schott Solar Ag Verfahren zum Herstellen eines elektrisch leitenden Kontakts auf einer Solarzelle
KR20140110231A (ko) * 2013-03-06 2014-09-17 엘지전자 주식회사 태양 전지 및 이의 제조 방법
JP6124166B2 (ja) * 2013-03-28 2017-05-10 パナソニックIpマネジメント株式会社 太陽電池モジュールおよび太陽電池モジュールの製造方法
CN104282788B (zh) * 2014-09-28 2017-03-22 苏州中来光伏新材股份有限公司 无主栅、高效率背接触太阳能电池模块、组件及制备工艺
WO2016051638A1 (ja) * 2014-09-30 2016-04-07 パナソニックIpマネジメント株式会社 太陽電池モジュール
EP3355361B1 (en) * 2016-12-01 2023-05-31 Shin-Etsu Chemical Co., Ltd. Solar cell having high photoelectric conversion efficiency and method for producing solar cell having high photoelectric conversion efficiency
USD841570S1 (en) * 2017-08-25 2019-02-26 Flex Ltd Solar cell
USD855017S1 (en) * 2017-10-24 2019-07-30 Flex Ltd. Solar cell
USD855016S1 (en) * 2017-10-24 2019-07-30 Flex Ltd. Solar cell
JP1645550S (ja) * 2019-02-08 2019-11-11 太陽電池
JP1645155S (ja) * 2019-02-08 2019-11-05
WO2020255597A1 (ja) * 2019-06-21 2020-12-24 株式会社カネカ 太陽電池モジュール
DE102022122448A1 (de) 2022-09-05 2024-03-07 Hanwha Q Cells Gmbh Solarmodul-Halbzeug und Verfahren zur Herstellung eines Solarmoduls

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60239067A (ja) * 1984-05-11 1985-11-27 Hitachi Ltd 太陽電池素子
JPH09260707A (ja) * 1996-03-27 1997-10-03 Sharp Corp 太陽電池モジュール
JPH11135812A (ja) * 1997-10-29 1999-05-21 Kyocera Corp 太陽電池素子の形成方法
JP2002043597A (ja) * 2000-07-28 2002-02-08 Kyocera Corp 太陽電池
JP2002151712A (ja) * 2000-11-15 2002-05-24 Kanegafuchi Chem Ind Co Ltd 薄膜太陽電池の裏面封止方法
JP2002359388A (ja) 2002-05-28 2002-12-13 Kyocera Corp 太陽電池装置
JP2005340756A (ja) * 2004-04-28 2005-12-08 Sharp Corp 太陽電池モジュール用一体型配線部材、それを用いた太陽電池モジュールおよびそれらの製造方法
JP2006229209A (ja) 2005-02-15 2006-08-31 Samsung Electronics Co Ltd Led駆動装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH036867A (ja) * 1989-06-05 1991-01-14 Mitsubishi Electric Corp 光発電素子の電極構造、形成方法、及びその製造装置
JP2938634B2 (ja) * 1991-10-08 1999-08-23 キヤノン株式会社 太陽電池モジュール
EP0540797A1 (fr) * 1991-11-07 1993-05-12 Paul Leon Machine à mettre en rangée et à souder aux conducteurs qui les relient entre eux une pluralité de dispositifs à semi-conducteurs
US5480494A (en) * 1993-05-18 1996-01-02 Canon Kabushiki Kaisha Solar cell module and installation method thereof
BR9610739A (pt) * 1995-10-05 1999-07-13 Ebara Sola Inc Célula solar e processo para sua fabricação
JP3743743B2 (ja) * 1999-03-09 2006-02-08 三菱電機株式会社 太陽電池
JP4441102B2 (ja) * 1999-11-22 2010-03-31 キヤノン株式会社 光起電力素子及びその製造方法
JP3929711B2 (ja) * 2001-02-27 2007-06-13 三洋電機株式会社 屋根用太陽電池モジュールの設置方法
US20050109389A1 (en) * 2002-03-05 2005-05-26 Akzo Nobel N. V, Process for manufacturing a solar cell unit using a temporary substrate
JP4019254B2 (ja) * 2002-04-24 2007-12-12 信越化学工業株式会社 導電性樹脂組成物
EP1606846B1 (en) * 2003-03-24 2010-10-27 Konarka Technologies, Inc. Photovoltaic cell with mesh electrode
JP2005101519A (ja) * 2003-09-05 2005-04-14 Hitachi Chem Co Ltd 太陽電池ユニット及び太陽電池モジュール
JP2005244171A (ja) * 2003-11-28 2005-09-08 Kyocera Corp 光電変換装置および光電変換アレイならびに光発電装置
US20050115602A1 (en) * 2003-11-28 2005-06-02 Kyocera Corporation Photo-electric conversion cell and array, and photo-electric generation system
EP1560272B1 (en) * 2004-01-29 2016-04-27 Panasonic Intellectual Property Management Co., Ltd. Solar cell module
JP4464708B2 (ja) * 2004-02-26 2010-05-19 信越半導体株式会社 太陽電池モジュール及び太陽電池モジュールの製造方法
US20070295381A1 (en) * 2004-03-29 2007-12-27 Kyocera Corporation Solar Cell Module and Photovoltaic Power Generator Using This
JP3123842U (ja) * 2006-05-18 2006-07-27 京セラケミカル株式会社 太陽電池モジュール
TWI487124B (zh) 2006-08-25 2015-06-01 Sanyo Electric Co 太陽電池模組及太陽電池模組的製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60239067A (ja) * 1984-05-11 1985-11-27 Hitachi Ltd 太陽電池素子
JPH09260707A (ja) * 1996-03-27 1997-10-03 Sharp Corp 太陽電池モジュール
JPH11135812A (ja) * 1997-10-29 1999-05-21 Kyocera Corp 太陽電池素子の形成方法
JP2002043597A (ja) * 2000-07-28 2002-02-08 Kyocera Corp 太陽電池
JP2002151712A (ja) * 2000-11-15 2002-05-24 Kanegafuchi Chem Ind Co Ltd 薄膜太陽電池の裏面封止方法
JP2002359388A (ja) 2002-05-28 2002-12-13 Kyocera Corp 太陽電池装置
JP2005340756A (ja) * 2004-04-28 2005-12-08 Sharp Corp 太陽電池モジュール用一体型配線部材、それを用いた太陽電池モジュールおよびそれらの製造方法
JP2006229209A (ja) 2005-02-15 2006-08-31 Samsung Electronics Co Ltd Led駆動装置

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009104627A1 (ja) * 2008-02-21 2009-08-27 三洋電機株式会社 太陽電池モジュール
JP5367588B2 (ja) * 2008-02-21 2013-12-11 三洋電機株式会社 太陽電池モジュール
JP2009266559A (ja) * 2008-04-24 2009-11-12 Hitachi Chem Co Ltd 太陽電池用電極基材、これを用いた太陽電池及び太陽電池用電極基材の製造法
EP2113948A3 (en) * 2008-04-28 2011-12-14 SANYO Electric Co., Ltd. Solar cell module
EP2375454A4 (en) * 2008-12-17 2014-03-26 Sanyo Electric Co SOLAR CELL MODULE AND METHOD FOR MANUFACTURING THE SAME
JP2010147194A (ja) * 2008-12-17 2010-07-01 Sanyo Electric Co Ltd 太陽電池モジュール及びその製造方法
CN102257626B (zh) * 2008-12-17 2015-11-25 三洋电机株式会社 太阳能电池模块及其制造方法
EP2375454A1 (en) * 2008-12-17 2011-10-12 Sanyo Electric Co., Ltd. Solar battery module and method for manufacturing same
WO2010071123A1 (ja) 2008-12-17 2010-06-24 三洋電機株式会社 太陽電池モジュール及びその製造方法
CN102257626A (zh) * 2008-12-17 2011-11-23 三洋电机株式会社 太阳能电池模块及其制造方法
US8446145B2 (en) 2009-02-06 2013-05-21 Sanyo Electric Co., Ltd. Method for measuring I-V characteristics of solar cell, and solar cell
KR20110117656A (ko) 2009-02-17 2011-10-27 산요덴키가부시키가이샤 태양 전지 및 태양 전지 모듈
US9099590B2 (en) 2009-02-17 2015-08-04 Panasonic Intellectual Property Management Co., Ltd. Solar cell and solar cell module
JP2010238938A (ja) * 2009-03-31 2010-10-21 Sanyo Electric Co Ltd 太陽電池セル、太陽電池モジュールおよび太陽電池システム
US20100243024A1 (en) * 2009-03-31 2010-09-30 Sanyo Electric Co., Ltd Solar cell, solar cell module and solar cell system
EP2423970A4 (en) * 2009-04-21 2013-05-29 Sanyo Electric Co SOLAR CELL MODULE
EP2423970A1 (en) * 2009-04-21 2012-02-29 Sanyo Electric Co., Ltd. Solar cell module
JP2010118705A (ja) * 2010-02-26 2010-05-27 Sanyo Electric Co Ltd 太陽電池モジュール
WO2011148840A1 (ja) 2010-05-28 2011-12-01 三洋電機株式会社 太陽電池モジュール及びその製造方法
WO2011152372A1 (ja) * 2010-05-31 2011-12-08 三洋電機株式会社 太陽電池モジュール及びその製造方法
US8927851B2 (en) 2010-05-31 2015-01-06 Sanyo Electric Co., Ltd. Solar cell module and method of manufacturing solar cell module
WO2011152319A1 (ja) 2010-05-31 2011-12-08 三洋電機株式会社 太陽電池モジュール及び太陽電池モジュールの製造方法
JP2012015269A (ja) * 2010-06-30 2012-01-19 Sanyo Electric Co Ltd 太陽電池モジュール
WO2012002213A1 (ja) * 2010-06-30 2012-01-05 三洋電機株式会社 太陽電池モジュール
US10453975B2 (en) * 2010-08-30 2019-10-22 Commissariat à l'Energie Atomique et aux Energies Alternatives Photovoltaic cell having discontinuous conductors
US20130160815A1 (en) * 2010-08-30 2013-06-27 Commissariat A L'energie Atomique Et Aux Energies Alternatives Photovoltaic Cell Having Discontinuous Conductors
WO2012043491A1 (ja) * 2010-09-29 2012-04-05 日立化成工業株式会社 太陽電池モジュール
CN103140936A (zh) * 2010-09-29 2013-06-05 日立化成株式会社 太阳能电池模块
WO2012141073A1 (ja) * 2011-04-11 2012-10-18 三菱電機株式会社 太陽電池モジュールおよびその製造方法
US20120285527A1 (en) * 2011-05-11 2012-11-15 International Business Machines Corporation Low resistance, low reflection, and low cost contact grids for photovoltaic cells
US9337363B2 (en) * 2011-05-11 2016-05-10 International Business Machines Corporation Low resistance, low reflection, and low cost contact grids for photovoltaic cells
US9666749B2 (en) 2011-05-11 2017-05-30 International Business Machines Corporation Low resistance, low reflection, and low cost contact grids for photovoltaic cells
CN103597609A (zh) * 2011-05-31 2014-02-19 三洋电机株式会社 太阳能电池模块及其制造方法
CN103597609B (zh) * 2011-05-31 2016-08-24 松下知识产权经营株式会社 太阳能电池模块及其制造方法
WO2013014810A1 (ja) * 2011-07-26 2013-01-31 三洋電機株式会社 太陽電池モジュール及びその製造方法
US9484479B2 (en) 2011-11-09 2016-11-01 Mitsubishi Electric Corporation Solar cell module and manufacturing method thereof
JP2015233096A (ja) * 2014-06-10 2015-12-24 日立化成株式会社 太陽電池ユニット及び太陽電池ユニットの製造方法
JP2016072495A (ja) * 2014-09-30 2016-05-09 株式会社カネカ 太陽電池モジュール及びその製造方法

Also Published As

Publication number Publication date
EP2056355A1 (en) 2009-05-06
TW200814340A (en) 2008-03-16
US20100126551A1 (en) 2010-05-27
US20160329449A1 (en) 2016-11-10
JP2011086964A (ja) 2011-04-28
KR20090061632A (ko) 2009-06-16
KR101342281B1 (ko) 2013-12-16
CN101506993B (zh) 2011-04-06
EP2056355B1 (en) 2019-02-20
JP5213712B2 (ja) 2013-06-19
JPWO2008023795A1 (ja) 2010-01-14
US9660120B2 (en) 2017-05-23
US10043931B2 (en) 2018-08-07
TWI487124B (zh) 2015-06-01
CN101506993A (zh) 2009-08-12
CN102122677A (zh) 2011-07-13
EP2056355A4 (en) 2013-03-06
CN102122677B (zh) 2013-11-06

Similar Documents

Publication Publication Date Title
JP5213712B2 (ja) 太陽電池モジュール及び太陽電池モジュールの製造方法
JP5384004B2 (ja) 太陽電池モジュール
JP5367569B2 (ja) 太陽電池モジュールの製造方法
JP5046743B2 (ja) 太陽電池モジュール及びその製造方法
TWI388065B (zh) 太陽電池元件及太陽電池模組
JP5367588B2 (ja) 太陽電池モジュール
JP6043971B2 (ja) 太陽電池モジュール及び太陽電池モジュールの製造方法
WO2010122875A1 (ja) 太陽電池モジュール
WO2008041486A1 (en) Solar battery module
JP5312293B2 (ja) 太陽電池モジュール
WO2015037213A1 (ja) 太陽電池セル、太陽電池モジュール及びその製造方法
JP4974718B2 (ja) 太陽電池モジュール
JP2007207795A (ja) 太陽電池素子および太陽電池モジュール
JP5312410B2 (ja) 太陽電池モジュール
JP5312375B2 (ja) 太陽電池モジュール
JP2015012117A (ja) 太陽電池モジュール及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780031240.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07806044

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008530969

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007806044

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020097005970

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: RU

WWE Wipo information: entry into national phase

Ref document number: 12438384

Country of ref document: US