WO2008019581A1 - Alumine ayant une structure poreuse complexe, et catalyseur et procédé d'hydrogénation sélective de l'essence de craquage - Google Patents

Alumine ayant une structure poreuse complexe, et catalyseur et procédé d'hydrogénation sélective de l'essence de craquage Download PDF

Info

Publication number
WO2008019581A1
WO2008019581A1 PCT/CN2007/002321 CN2007002321W WO2008019581A1 WO 2008019581 A1 WO2008019581 A1 WO 2008019581A1 CN 2007002321 W CN2007002321 W CN 2007002321W WO 2008019581 A1 WO2008019581 A1 WO 2008019581A1
Authority
WO
WIPO (PCT)
Prior art keywords
alumina
weight
group
pore volume
acid
Prior art date
Application number
PCT/CN2007/002321
Other languages
English (en)
French (fr)
Inventor
Zhongneng Liu
Zaiku Xie
Xinghua Jiang
Xiaoling Wu
Minbo Hou
Hongyuan Zong
Original Assignee
China Petroleum & Chemical Corporation
Shanghai Research Institute Of Petrochemical Technology Sinopec
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CNB2006100299610A external-priority patent/CN100506380C/zh
Priority claimed from CN200610029963XA external-priority patent/CN101121120B/zh
Priority claimed from CN 200610117857 external-priority patent/CN101172258A/zh
Application filed by China Petroleum & Chemical Corporation, Shanghai Research Institute Of Petrochemical Technology Sinopec filed Critical China Petroleum & Chemical Corporation
Priority to KR1020097004763A priority Critical patent/KR101402093B1/ko
Priority to US12/377,157 priority patent/US8110527B2/en
Publication of WO2008019581A1 publication Critical patent/WO2008019581A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/32Selective hydrogenation of the diolefin or acetylene compounds
    • C10G45/34Selective hydrogenation of the diolefin or acetylene compounds characterised by the catalyst used
    • C10G45/40Selective hydrogenation of the diolefin or acetylene compounds characterised by the catalyst used containing platinum group metals or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/58Platinum group metals with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/638Pore volume more than 1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/66Pore distribution
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/104Light gasoline having a boiling range of about 20 - 100 °C

Definitions

  • the present invention relates to an alumina support having a pore structure of the catalyst composite and a method for the selective hydrogenation of pyrolysis gasoline, in particular for (: ⁇ 5 hydrocarbon is fully dry point pyrolysis gasoline fraction of hydrocarbon compounds 204.C Or a catalyst for the selective hydrogenation of a middle distillate pyrolysis gasoline, such as pyrolysis gasoline consisting of C 6 ⁇ C 8 hydrocarbon compounds.
  • Alumina supports are widely used in hydrocarbon processing because of their large specific surface area and good stability.
  • a useful application is as a carrier for the selective hydrogenation catalyst for cracking gasoline.
  • Pyrolysis gasoline is a by-product of the ethylene industry.
  • the output of the pyrolysis gasoline may account for about 60% by weight or more of the ethylene production capacity.
  • Pyrolysis gasoline is typically subjected to a selective hydrogenation to remove highly unsaturated olefins such as diolefins and styrene, followed by two stages of hydrogenation to remove monoolefins and impurities containing sulfur, nitrogen, oxygen, and the like.
  • the hydrotreated cracked gasoline is then primarily used to produce aromatics.
  • the catalyst for selective hydrogenation of cracked gasoline in the industry is mainly a Pd-based or Ni-based catalyst.
  • the presence of impurities and poisons, and the lack of effective pretreatment measures in industrial plants, such a feed directly into the catalyst bed of the reactor may cause: (1) the catalyst is easy to coke;
  • the catalyst carrier A1 2 3 3 itself is hydrophilic, preferentially adsorbing water and accumulating to make the catalyst oleophobic, the adsorption of the hydrocarbon reactant on the catalyst is hindered, and the catalyst activity is reduced or deactivated; (3) Recombination The adsorption of the component and the oligomer colloid on the surface of the catalyst, blocking the adsorption-diffusion-desorption channel, also hindering the adsorption of the reactant on the catalyst, and reducing or deactivating the activity of the catalyst; (4) Heavy metals, arsenic, etc.
  • the poison is combined with the active site of the catalyst by strong coordination to reduce or deactivate the catalyst activity; (5) excessive reaction of light components that are easily hydrogenated causes loss of aromatic yield, or incomplete reaction of heavy components that are difficult to hydrogenate Causes the product to fail. These all cause a decrease in the quality of the catalyst operation, a shortened operating cycle and a shortened life, so the catalyst has to be frequently activated and regenerated.
  • the catalyst with larger pore volume and larger pore diameter can reduce the accumulation of colloid and free water on the catalyst, thereby being more resistant to the impact of the colloid and free water in the raw material, slowing down the deactivation of the catalyst and allowing the catalyst to operate. Cycle and life extension.
  • the pore structure of the supported catalyst is determined by the carrier constituting the catalyst. Therefore, preparing a carrier having a large pore volume and pore diameter while ensuring excellent low-temperature activity of the catalyst is a selective hydrogenation catalyst for preparing pyrolysis gasoline, especially The key to the preparation of a hydrogenation catalyst for a full-fraction cracked gasoline having a high colloidal content and a high free water content.
  • CN1714937A discloses a preparation method of a macroporous shaped alumina carrier, which comprises mixing aluminum ammonium carbonate and a nitrogen-containing compound other than acid, molding and baking at 350 ⁇ 650 ° C for 1 ⁇ 8 hours.
  • the carrier has a specific surface area of 200 to 350 m 2 /g and a median pore diameter of 25 to 35 nm.
  • CN1689703A discloses a method for preparing an alumina carrier having double pores, which comprises a hydrated alumina with a nitrogen-containing compound other than acid and a The halide is mixed, shaped and fired at 600 ⁇ 850 e C for 1 ⁇ 10 hours.
  • the pore size of the obtained carrier is 35 ⁇ 80% of the total pore volume of pores with a diameter of 10 ⁇ 20 nm, and the pore volume of pores of 500 ⁇ 1200 nm accounts for 15 ⁇ 60% of the total pore volume, and the pore diameter is ⁇ 10 nm, >
  • the sum of pores of 20 ⁇ ⁇ 500 nm and > 1200 nm accounts for 5 to 40% of the total pore volume.
  • the resulting carrier has an acid amount of 0.05 to 0.2 mmol/g.
  • CN1647857A discloses a preparation method of a macroporous alumina carrier, which comprises mixing a pseudoboehmite having a crystallinity of less than 70% with an organic pore-expanding agent, molding and calcining at 600 ⁇ 1100 'C 0.5. ⁇ 4 hours.
  • the pore volume of the carrier obtained by the method is 0.9 ⁇ 1.3 liter / gram, and the pore diameter of the pore larger than 100 nm accounts for 7 ⁇ 25% of the total pore volume.
  • CN1600430A discloses a method for preparing a macroporous alumina carrier which mixes and forms a hydrated alumina with a pore-expanding agent at 600 to 850. C is calcined for 1 to 10 hours.
  • the obtained carrier has a pore diameter of 14 to 20 nm, a pore volume of 0.6 to 1.2 ml/g, a specific surface area of 150 to 200 m 2 /g, and an acid amount of 0.05 to 0.2 mmol/g.
  • a large pore volume carrier can be prepared by using a pore-enlarging agent, such a carrier contains a considerable number of pores having a pore diameter of less than 10 nm, and the pore distribution is relatively diffuse. Further, if the pore-reducing agent is used in a small amount The effect is not obvious, and if the amount of the pore-expanding agent is large, it will adversely affect the mechanical strength and the like of the carrier.
  • Chinese patent application CN1635054A discloses a catalyst for selective hydrogenation of cracked gasoline heavy fraction, a preparation method thereof and an application thereof.
  • the alumina carrier contains 1 to 3% by weight of an alkaline earth metal or an oxide thereof deposited on the surface thereof, and contains Pd and Mo or Pd and W as active components, and has a Pd content of 0.24 to 0.35% by weight, Pd and The weight ratio of Mo or Pd to W is 1: 0.5 - 1: 2.5. It is said that the catalyst can be used to crack gasoline C 5 ⁇ C 9 fractions, especially C 8 ⁇ C 9 heavy fraction hydrogenation, with high low temperature activity, high resistance to As, S, 0, N impurities, large capacity The amount of glue and stable activity. However, this patent application does not describe the water resistance of the catalyst.
  • Chinese patent CN1184289C discloses a reminder for selective hydrogenation of pyrolysis gasoline Chemical agent and preparation method and application thereof.
  • the catalyst comprises a titanium oxide-alumina composite as a carrier, and an active component metal palladium supported on the composite carrier, wherein the metal palladium is contained in an amount of 0.25 to 0.35% by weight based on the total amount of the catalyst Weight meter.
  • the catalyst is said to operate at high feed space velocities with good selectivity and stability.
  • this patent does not mention the water and gel resistance of the catalyst.
  • Citride Application No. CN1181165A discloses a selective hydrogenation catalyst comprising 0.15 - 0.5% by weight of Pd, 0.1 to 3.0% by weight of an alkaline earth metal oxide and an alumina carrier, wherein the specific surface area of the alumina carrier For pores of 50 to 150 m 2 /g, specific pore volume of 0.35 to 0.55 ml/g, and pores with a pore radius of 5.0 to 10.0 nm provide more than 70% of the total pore volume.
  • the catalyst is said to be suitable not only for the selective hydrogenation of pyrolysis gasoline, but also for the selective hydrogenation of highly unsaturated hydrocarbons to monoolefins in C 3 ⁇ C 6 distillates. However, the catalyst has a high activity temperature, and the patent application does not mention the water and gel resistance of the catalyst.
  • An object of the present invention is to provide an alumina carrier having a composite pore structure, wherein the alumina carrier has a specific surface area of 40 to 160 m 2 /g, a total pore volume of 0.3 to 1.2 ml / gram, and a pore diameter ⁇
  • the pore volume of 30 nm accounts for 5 ⁇ 60% of the total pore volume
  • the pore volume of pore diameter of 30 - 60 nm accounts for 20 ⁇ 75% of the total pore volume
  • the pore volume of pore diameter > 60 nm accounts for 20 ⁇ 60 of the total pore volume. %.
  • Another object of the present invention is to provide a process for preparing the above alumina support having a composite pore structure.
  • It is still another object of the present invention to provide a catalyst for the selective hydrogenation of cracked gasoline comprising:
  • It is a further object of the present invention to provide a method of selective hydrogenation of pyrolysis gasoline comprising contacting pyrolysis gasoline with a catalyst of the present invention under hydrogenation reaction conditions.
  • the present invention provides an alumina carrier having a composite pore structure, wherein the alumina carrier has a specific surface area of 40 to 160 m 2 /g and a total pore volume of 0.3 to 1.2 liters per gram.
  • the pore volume with a pore diameter ⁇ 30 nm accounts for 5 ⁇ 60% of the total pore volume
  • the pore volume with a pore diameter of 30-60 nm accounts for 20-75% of the total pore volume
  • the pore volume with pore diameter >60 nm accounts for the total pore volume. 20 ⁇ 60%.
  • the alumina support has multiple pore distributions and has a large pore size.
  • the alumina support having a composite pore structure has a specific surface area of 50 to 150 m 2 /g, a total pore volume of 0.4 to 1.0 ml/g, and a pore volume of ⁇ 30 nm. 5-55% of the pore volume, pore volume of 30 ⁇ 60 nm pore diameter accounts for 20 ⁇ 72% of the total pore volume, and pore volume of pore diameter >60 nm accounts for 20 ⁇ 45% of the total pore volume.
  • the pore volume of the pores having a pore diameter ⁇ 10 nm accounts for 0 to 10% of the total pore volume.
  • the alumina carrier having a composite pore structure further comprises: (3) 0.1 to 1.5% by weight, preferably 0.2 to 0.8% by weight, of at least one metal selected from the group consisting of alkali metals and alkaline earth metals. And/or (b) 0.1 to 20.0% by weight, preferably 0.2 to 10.0% by weight, of at least one element selected from the group consisting of elements of Groups IVA and VA of the periodic table, The compound form is present and all percentages are based on the weight of the alumina carrier.
  • the above component (a) is preferably at least one selected from the group consisting of potassium, calcium, magnesium and cerium, in the form of a salt and/or an oxide thereof; and the above component (b) is preferably at least one selected from the group consisting of silicon and phosphorus.
  • component (a) can be adjusted. Acid-base, neutralizing the strong acid center, improving the dispersion of the active component, and simultaneously changing the phase transition temperature of the alumina carrier, so that it still has a large specific surface area after sintering at a higher temperature.
  • component (b) above can modulate the hydrophobic nature of the carrier, modulate its acidity and alkalinity, and enhance the interaction between the subsequently supported metal and the support. It is believed that the combination of components (a) and (b) is advantageous for increasing the low temperature reactivity, selectivity, free water resistance and impurity resistance (e.g., heavy metal resistance) of the catalyst made from the carrier.
  • the alumina support having a composite pore structure is a composition comprising alumina A and alumina B, wherein alumina A is derived from selected from the group consisting of pseudoboehmite, alumina trihydrate, boehmite, and amorphous aluminum hydroxide. At least one of the alumina precursors, and the alumina B is at least one selected from the group consisting of ⁇ , ⁇ , ⁇ , ⁇ or ⁇ phase alumina, and the weight ratio of the alumina A to the alumina B is 1 : 0.05 - 1: 10.0.
  • the alumina A is derived from at least one alumina precursor selected from the group consisting of pseudoboehmite, amorphous aluminum hydroxide or boehmite, and the alumina B is selected from the group consisting of ⁇ , ⁇ or ⁇ phase alumina. At least one of them, and the weight ratio of the alumina crucible to the alumina B is 1: 0.1 to 1: 5.0. More preferably, the alumina A is derived from at least one alumina precursor selected from the group consisting of pseudoboehmite or amorphous aluminum hydroxide, and the alumina B is at least one selected from the group consisting of ⁇ , ⁇ or ⁇ phase alumina. And the weight ratio of the alumina crucible to the alumina B is 1: 0.2 ⁇ 1: 4.0.
  • the present invention provides a method of preparing the above-described alumina support having a composite pore structure, the method comprising:
  • the dried mixture can be dried at 50 to 100 ° C for 1 to 24 hours.
  • the calcination may be in the range of 800 to 1150"C, preferably 900 ⁇ . It is carried out at a temperature of 1100 ° C for 1 to 10 hours, preferably 2 to 8 hours.
  • the peptizer which can be used in the preparation of the alumina carrier of the present invention refers to a substance which can react with alumina or its precursor to form a sol, for example, a monocarboxylic acid such as capric acid, acetic acid, propionic acid or butyric acid, succinic acid, a dibasic or polybasic carboxylic acid such as maleic acid or citric acid; an acid anhydride and a weak base salt of the carboxylic acid; a monoprotic inorganic acid such as nitric acid or hydrochloric acid; and a strong aluminum nitrate, nickel nitrate, aluminum trichloride, aluminum sulfate, etc. Acid salt, etc.
  • a monocarboxylic acid such as capric acid, acetic acid, propionic acid or butyric acid
  • succinic acid a dibasic or polybasic carboxylic acid such as maleic acid or citric acid
  • the binder which can be used for the preparation of the alumina carrier of the present invention refers to a substance capable of bonding various alumina powders together at normal temperature or low temperature, such as an aluminum sol, a silica sol and the like, and a number average molecular weight of 500.
  • the peptizer and/or binder is at least one selected from the group consisting of nitric acid, acetic acid, citric acid, aluminum sol, silica sol, and polyvinyl alcohol (number average molecular weight of 1,000 to 4,000).
  • the peptizing agent and/or binder is used in an amount of 0.2 to 20% by weight, preferably 0.5 to 10% by weight, based on the solid content of the mixture obtained in the step (i).
  • water may be used in an amount of from 60 to 95% by weight based on the solid content of the mixture obtained in the step (i). Water may be added singly or as a solvent or dispersion medium of the other components.
  • Modifiers optionally including those of the elements of Groups IA, II A, IVA and VA of the Periodic Table of the Elements, such as salts and oxides of potassium, calcium, magnesium and strontium, silicon compounds," a phosphorus compound, and a combination thereof.
  • the modifier is at least one compound of the elements of Groups IVA and VA of the Periodic Table of the Elements and at least one compound of the elements of IA and the group of the Periodic Table of the Elements. a combination, for example, at least one selected from the group consisting of oxides and salts of bells, calcium, magnesium and strontium, and at least one selected from the group consisting of silicon compounds and phosphorus compounds.
  • the amount of modifier used is IA, II A,
  • the metal or element of the IVA and VA groups may be from 0.:! to 20.0% by weight, preferably from 0.2 to 12.0% by weight, based on the solids content of the mixture obtained in the step (i).
  • the molding of the step (ii) of the above method can be carried out in a conventional manner, such as tableting, Rolling balls, extruded strips, etc. can be used.
  • the shaping is carried out by an extrusion process.
  • the present invention provides a catalyst for the selective hydrogenation of pyrolysis gasoline, comprising:
  • the catalyst of the invention is suitable for use in middle distillate pyrolysis gasoline (for example c 6 ⁇ c 8 hydrocarbon compound middle distillate pyrolysis gasoline and c 5 - c 8 hydrocarbon compound middle distillate pyrolysis gasoline) and full fraction ( ⁇ : 5 hydrocarbon ⁇ dry point 204 °) C hydrocarbon compound fraction) pyrolysis gasoline hydrogenation, can be operated at a higher feed space velocity, has good low temperature activity, selectivity and stability, and has good resistance to high content of gelatin and high content of free water. performance.
  • middle distillate pyrolysis gasoline for example c 6 ⁇ c 8 hydrocarbon compound middle distillate pyrolysis gasoline and c 5 - c 8 hydrocarbon compound middle distillate pyrolysis gasoline
  • full fraction ⁇ : 5 hydrocarbon ⁇ dry point 204 °
  • the catalyst of the present invention preferably comprises from 0.05 to 1.0% by weight, more preferably from 0.1 to 0.7% by weight, of metal palladium or an oxide thereof, based on the weight of the alumina carrier.
  • the catalyst of the present invention can be prepared using conventional shell catalyst impregnation techniques.
  • the catalyst of the present invention can be prepared as follows: The carrier is optionally pre-impregnated with a liquid miscible with the impregnation liquid containing the palladium salt, and then impregnated with the impregnation liquid containing the palladium salt, and the impregnated carrier is washed. , dry, 300 ⁇ 600 e C roasting in the air, that is, the finished oxidizing catalyst. The finished catalyst can be used only by reducing ammonia in the reactor.
  • the catalyst of the present invention is suitable for selective hydrogenation of alkynes, conjugated dienes and the like in petroleum hydrocarbons, including whole fractions ( ⁇ 5 hydrocarbons to hydrocarbon fractions having a dry point of 204 'C) or various middle distillates (such as C). 6 ⁇ C 8 hydrocarbon compound middle distillate) Hydrogenation of pyrolysis gasoline.
  • the present invention provides a process for the selective hydrogenation of pyrolysis gasoline comprising contacting pyrolysis gasoline with the selective hydrogenation catalyst of the present invention under hydrogenation reaction conditions.
  • the pyrolysis gasoline selective hydrogenation process can be carried out in a manner well known to those skilled in the art.
  • the raw material is a whole fraction pyrolysis gasoline containing a high content of gum and a high content of free water
  • the presence of small pores in the catalyst causes the catalyst to be more easily deactivated because of the large molecules such as free water and colloid adsorbed by the pores.
  • the material is more difficult to desorb, making the catalyst oleophobic or the catalyst loss specific surface area.
  • the large pores are advantageous for reducing the surface tension, so that the water adsorbed by the catalyst can be balanced with the water in the raw material, "free and free", and the adsorbed water can be removed even when the water content in the raw material is low.
  • macroporous supports generally have a relatively low specific surface area and are detrimental to the dispersion of the active components. Catalyst activity is primarily dependent on its active surface area, and the active surface area of the catalyst is related to the specific surface area of the support - a larger specific surface area of the support facilitates dispersion of the active component, thereby increasing catalyst activity.
  • the alumina carrier having the composite pore structure of the invention has a large pore volume, a large specific surface area and a large pore size, and a suitable pore volume ratio of various pores, wherein the diameter is 30 to 60 nm.
  • the pore volume accounts for 20 ⁇ 75% of the total pore volume.
  • the pore volume of the pore below lOnm accounts for 0 ⁇ 10% of the total pore volume.
  • the specific surface area of the carrier is mainly provided by the narrow pore size of the medium pore size.
  • the catalyst based on the alumina carrier having the composite pore structure of the present invention has good low temperature activity, selection Sex and stability, and has good resistance to high content of gel and high content of free water.
  • inlet temperature 40 e C reaction pressure 2.7 MPa, hydrogen/oil volume ratio 80:1, fresh oil volume space velocity 3.8 hours, the colloid content is 150 g/100 g oil, and the free water content is 1000 ppm.
  • Example 7 ⁇ 12 illustrates the performance of a catalyst prepared from the support of the present invention in a hydrogenation of a whole fraction pyrolysis gasoline containing a high content of gum and a high content of free water, the result See Table 2.
  • Example 1 60 g of the carrier Z0 prepared in [Example 1] was immersed in 300 ml of a PdCl 2 immersion liquid (PdCl 2 mass concentration: 0.10%) until the immersion liquid was colorless. After removing the liquid, the solid was at 60. C was dried for 16 hours at 480. C was calcined for 3 hours to obtain a Pd-based catalyst COo. The catalyst had a Pd content of 0.3% by weight based on the weight of the alumina carrier.
  • Pd-based catalyst Cl was prepared from 60 g of the carrier Z1 prepared in [Example 2] by the dipping method described in [Example 7].
  • the catalyst had a Pd content of 0.3% by weight based on the weight of the alumina support.
  • Pd-based catalyst C2 was prepared from 60 g of the support Z2 prepared in [Example 3] by the impregnation method described in [Example 7].
  • the catalyst had a Pd content of 0.3% by weight based on the weight of the alumina support.
  • Pd-based catalyst C3 was prepared from 60 g of the carrier Z3 prepared in [Example 4] by the impregnation method described in [Example 7].
  • the catalyst had a Pd content of 0.3% by weight based on the weight of the alumina support.
  • Pd-based catalyst C4 was prepared from 60 g of the carrier Z4 prepared in [Example 5] by the impregnation method described in [Example 7].
  • the catalyst had a Pd content of 0.3% by weight based on the weight of the alumina support.
  • Pd-based catalyst C5 was prepared from 60 g of the carrier Z5 prepared in [Example 6] by the impregnation method described in [Example 7]. The catalyst had a Pd content of 0.3% by weight, based on the weight of the alumina support. [Comparative Example 2]
  • the Pd-based catalyst CD1 was prepared from 60 g of the support D1 prepared in [Comparative Example 1] by the impregnation method described in [Example 7].
  • the catalyst had a Pd content of 0.3% by weight based on the weight of the alumina support.
  • the above prepared catalysts C0, Cl, C2, C3, C4, C5 and CD1 were evaluated on a 100 ml small adiabatic fixed bed reactor, respectively, using a colloidal content of 150 ⁇ 2 mg / 100 g of oil and a free water content of 1000 ⁇
  • a 15 ppm full fraction ( ⁇ : 5 hydrocarbons to a hydrocarbon compound fraction with a dry point of 204 ° C) is used to crack gasoline.
  • the feedstock contains 15 ⁇ 1 wt% C s hydrocarbons, 65 ⁇ 2 wt% ( 6 ⁇ ( 8 hydrocarbons, 20 ⁇ 1 wt% C 9 + hydrocarbons, and a diene value of 27.12 ⁇ 0.30 8 iodine / 10 ( ⁇ oil.
  • the reaction conditions are as follows: inlet temperature 40 ° C, pressure 2.65 MPa, fresh oil volume space velocity 3.8 hours, cycle ratio of 2.63, hydrogen / oil volume ratio of 80: 1.
  • the evaluation results are shown in Table 2.
  • the catalyst of the present invention is suitable for the hydrogenation of a full-fraction pyrolysis gasoline containing a relatively high content of colloid and a relatively high content of free water, and its performance is remarkably superior to that prepared by a conventional macroporous alumina carrier. The performance of the catalyst.
  • the carrier was pre-soaked with an equal volume of deionized water, and then drained.
  • the support was then impregnated in 210 ml of PdCl 2 impregnation solution (PdCl 2 concentration of 0.143%) until the impregnation liquid was colorless.
  • the solid was dried at 120 ° C for 4 hours and calcined at 450 ° C for 4 hours to obtain a Pd-based catalyst C6.
  • the catalyst had a Pd content of 0.3% by weight, based on the weight of the alumina support.
  • the catalyst composition and specific surface area, pore volume, and pore distribution are shown in Table 3, wherein the contents of each component are based on the weight of the alumina carrier.
  • Pd-based catalyst C7 was prepared from 60 g of the support Z7 by the procedure described in [Example 13], and the Pd content of the catalyst was 0.5% by weight based on the weight of the alumina carrier.
  • the catalyst composition and specific surface area, pore volume, and pore distribution are shown in Table 3, wherein the contents of each component are based on the weight of the alumina carrier.
  • Pd-based catalyst C8 was prepared from 60 g of the support Z8 by the procedure described in [Example 13], and the Pd content of the catalyst was 0.18% by weight based on the weight of the alumina carrier.
  • the catalyst composition and specific surface area, pore volume, and pore distribution are shown in Table 3, wherein the contents of each component are based on the weight of the alumina carrier.
  • This example illustrates the use of the catalyst obtained in [Examples 7, 12-15] for selective hydrogenation of pyrolysis gasoline in a full fraction ( ⁇ : 5 hydrocarbon to a hydrocarbon compound fraction having a dry point of 204 °C).
  • the full-fraction pyrolysis gasoline feedstock has a rubber shield content of 150 ⁇ 2 g/100 g oil, a free water content of 1000 ⁇ 15 ppm by weight, and contains 15 ⁇ 1 wt% of C 5 hydrocarbons, 65 ⁇ 2 wt%.
  • 100 ml of the catalyst C6 obtained in [Example 13] was filled into a 100 ml small adiabatic fixed bed reactor, and then at a hydrogen pressure of 2.7 MPa, a temperature of 110 ° C and a hydrogen flow rate of 4 ml / (min * gram of catalyst) Restore under conditions of 8 hours.
  • the inlet temperature was 40 ° C
  • the reaction pressure was 2.65 MPa
  • the fresh oil volumetric space velocity was 3.8 hours -1
  • the total oil volumetric space velocity was 13.8 hours
  • the hydrogen/oil volume ratio was 80:1.
  • the whole fraction pyrolysis gasoline feedstock has a gel content of 150 ⁇ 2 mg/100 g oil, a free water content of 1000 ⁇ 15 ppm by weight, and contains 15 ⁇ 1 wt% of C 5 hydrocarbons, 65 ⁇ 2. % by weight of C 6 ⁇ C 8 hydrocarbons, 20 ⁇ 1% by weight of C 9 + hydrocarbons, and diene value of 27.12 ⁇ 0.30 g iodine / 100 g oil.
  • the hydrogenation results are shown in Table 5.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

具有复合孔结构的氧化铝和
用于裂解汽油选择性加氢的催化剂及方法 相关申请的交叉参考
本申请要求 2006年 8月 11 日提交的 CN200610029961.0, 2006 年 8月 11 日提交的 200610029963.X和 2006年 11月 2 日提交的 200610117857.7的优先权, 通过引用并且为了所有的目的将所述文 件整体结合在本申请中。 技术领域
本发明涉及一种具有复合孔结构的氧化铝载体和用于裂解汽油 选择性加氢的催化剂及方法,特别是用于(:5烃 ~干点为 204。C的烃 化合物的全馏分裂解汽油或中间馏分裂解汽油 (例如 C6 ~ C8烃化合 物组成的裂解汽油)的选择性加氢的催化剂。
背景技术
在烃加工过程中, 氧化铝载体因具有较大的比表面积和良好的 稳定性而得到广泛应用。 一个有用的应用是用作裂解汽油选择性加 氢催化剂的载体。
裂解汽油是乙烯工业的副产物。 当以石脑油、 瓦斯油等液体原 料蒸汽裂解制乙烯时,裂解汽油的产量可以占乙烯生产能力的约 60 % (重量)或更多。 裂解汽油一般先经一段选择性加氢以除去高度不 饱和烯烃如二烯烃和苯乙烯, 再经二段加氢以除去单烯烃以及含 硫、 氮、 氧等的杂质。 加氢处理过的裂解汽油然后主要用于生产芳 烃。 目前工业上裂解汽油选择性加氢用催化剂主要是 Pd基或 Ni 基催化剂。 在裂解汽油, 特别是全馏分裂解汽油的选择性加氢反应 中, 因被处理的进料中不饱和组分、 胶质 (二烯烃及苯乙烯等不饱 和组分发生聚合反应生成的聚合物)、 重组分、 游离水、 重金属等 杂质和毒物的存在, 而工业装置普遍缺乏有效的预处理措施, 这样 的原料直接进入反应器的催化剂床层可能引起: (1)催化剂易结焦;
(2) 由于催化剂载体 A1203本身具有亲水性, 优先吸附水并累积使 催化剂成为疏油性质, 烃类反应物在催化剂上的吸附受阻, 催化剂 活性降低或失活; (3) 重组分和低聚物胶质等吸附在催化剂表面, 堵塞吸附 -扩散 -脱附孔道, 也会使反应物在催化剂上的吸附受阻, 催化剂活性降低或失活; (4) 原料中重金属、 砷等毒物通过强配位 与催化剂活性中心结合, 使催化剂活性降低或失活; (5)易加氢的轻 质组分反应过度引起芳烃产率损失, 或难加氢的重质组分反应不完 全导致产品不合格。 这些都会引起催化剂运行质量下降、 运行周期 和寿命缩短, 因此催化剂不得不频繁活化和再生。 具有较大孔容和 较大孔径的催化剂可减少胶质和游离水在催化剂上的累积,从而更 耐原料中胶质和游离水的沖击, 可以减緩催化剂的失活, 使催化剂 的运转周期和寿命延长。 负载型催化剂的孔结构由构成催化剂的载 体决定, 因此, 制备具有较大孔容和孔径, 同时又能保证催化剂具 有优良低温活性的载体是制备用于裂解汽油的选择性加氢催化剂, 尤其是制备适用于高胶质含量、 高游离水含量的全馏分裂解汽油的 加氢催化剂的关键。
在制备拟薄水铝石的成胶、 洗涤过程或在拟薄水铝石成型过程 中引入扩孔剂, 是现有技术制备具有较大孔容和较大孔直径的氧化 铝载体常采用的方法。
CN1714937A公开了一种大孔容成型氧化铝栽体的制备方法, 该方法将一种碳酸铝铵和一种除酸以外的含氮化合物混合, 成型并 于 350 ~ 650°C焙烧 1 ~ 8小时。 该法所得载体比表面积为 200 ~ 350 米 2/克, 中值孔径为 25 ~ 35纳米。
CN1689703A公开了一种具有双重孔的氧化铝栽体的制备方 法, 该方法将一种水合氧化铝与一种除酸以外的含氮化合物和一种 卤化物混合、成型并于 600 ~ 850eC焙烧 1 ~ 10小时。 所得载体孔分 布为孔直径 10 ~ 20纳米的孔容占总孔容的 35 ~ 80%,孔直径 500 ~ 1200纳米的孔容占总孔容的 15 ~ 60%, 孔直径 < 10纳米、 > 20 ~ < 500纳米以及> 1200纳米的孔容之和占总孔容的 5 ~ 40%。 所得 载体的酸量为 0.05 ~ 0.2毫摩尔 /克。
CN1647857A公开了一种大孔氧化铝载体的制备方法, 该方法 包括将一种结晶度小于 70%的拟薄水铝石与一种有机扩孔剂混合, 成型并于 600 ~ 1100 'C焙烧 0.5 ~ 4小时。该法所得载体孔容为 0.9 ~ 1.3亳升 /克, 孔径大于 100纳米的孔占总孔容的 7 ~ 25%。
CN1600430A公开了一种大孔氧化铝载体的制备方法, 该方法 将一种水合氧化铝与一种扩孔剂混合、 成型并于 600 ~ 850。C焙烧 1 ~ 10小时。 所得栽体的可几孔径为 14 ~ 20纳米, 孔容为 0.6 ~ 1.2 毫升 /克, 比表面积为 150 ~ 200米 2/克, 酸量为 0.05 ~ 0.2毫摩尔 / 克。
可见, 虽然采用扩孔剂能制备一些大孔容载体, 但这样的载体 却含有相当数量的孔径小于 10纳米的小孔, 而且孔分布" ^比较弥 散。 再有, 如果扩孔剂用量较少则效果不明显, 而如果扩孔剂用量 较大则将会对栽体机械强度等性能产生不利影响。
中国专利申请 CN1635054A公开了一种用于裂解汽油重馏分选 择加氢的催化剂及其制备方法和应用。 氧化铝载体含有沉积在其表 面上的 1 ~ 3重量%的碱土金属或其氧化物, 并且含有 Pd和 Mo或 Pd和 W作为活性组分, Pd含量为 0.24 - 0.35% (重量), Pd与 Mo 或 Pd与 W的重量比为 1: 0.5 - 1: 2.5。 据称该催化剂可用于裂解 汽油 C5 ~ C9馏分,特别是 C8 ~ C9重馏分加氢,具有高的低温活性、 高的抗 As、 S、 0、 N杂质的能力、 大的容胶量和稳定的活性。 但 该专利申请并未说明所述催化剂的耐水性能。
中国专利 CN1184289C公开了一种用于裂解汽油选择加氢的催 化剂及其制备方法和应用。 所述催化剂包括作为载体的氧化钛 -氧 化铝复合物, 以及负载于该复合栽体上的活性组分金属钯, 其中金 属钯的含量为 0.25 ~ 0.35% (重量), 基于所述催化剂的总重量计。 据称该催化剂可以在高原料空速下运转, 并具有好的选择性及稳定 性。 但该专利未提及催化剂的耐水、 耐胶质性能。
中国专利申请 CN1181165A公开了一种选择性加氢催化剂, 由 0.15 - 0.5% (重量) Pd、 0.1 ~ 3.0% (重量)碱土金属氧化物和氧化铝载 体组成, 其中所述氧化铝载体的比表面积为 50 ~ 150米 2/克, 比孔 容为 0.35 ~ 0.55毫升 /克, 并且孔半径为 5.0 ~ 10.0纳米的孔提供了 总孔容的 70%以上。据称该催化剂不仅适用于裂解汽油一段选择性 加氢过程, 也适用于 C3 ~ C6馏分油中高度不饱和烃选择加氢生成 单烯烃的过程。 但所述催化剂活性温度较高, 并且该专利申请也未 提及催化剂的耐水、 耐胶质性能。
因此, 本领域仍然希望提供可以在较高进料空速下操作并具有 较高的低温活性、 好的选择性、 好的耐水和胶盾性能的选择加氢催 化剂, 以延长催化剂的再生周期和使用寿命。
发明概述
本发明的一个目的是提供一种具有复合孔结构的氧化铝载体, 其中所述氧化铝载体的比表面积为 40 ~ 160米 2/克,总孔容为 0.3 ~ 1.2毫升 /克, 孔直径 < 30纳米的孔容占总孔容的 5 ~ 60%, 孔直径 30 - 60纳米的孔容占总孔容的 20 ~ 75%, 孔直径 > 60纳米的孔容 占总孔容的 20 ~ 60%。
本发明的另一个目的是提供一种制备上述具有复合孔结构的 氧化铝载体的方法。
本发明的又一个目的是提供一种用于裂解汽油选择性加氢的 催化剂, 其包括:
(a) 本发明的氧化铝载体; 和 (b) 基于氧化铝载体重量计 0.01 ~ 1.2 重量%的金属钯或其氧 化物。
本发明的再" ^个目的是提供一种裂解汽油选择性加氢方法, 包 括在加氢反应条件下, 使裂解汽油与本发明的催化剂接触。
优选实施方案的详细描述
在第一方面, 本发明提供了一种具有复合孔结构的氧化铝载 体, 其中所述氧化铝载体的比表面积为 40 ~ 160米 2/克, 总孔容为 0.3~1.2亳升 /克, 孔直径 <30纳米的孔容占总孔容的 5~60%, 孔 直径 30 ~ 60纳米的孔容占总孔容的 20~75%, 孔直径 > 60纳米的 孔容占总孔容的 20~60%。该氧化铝载体具有多重孔分布, 并具有 较大的可几孔径。
按照一个优选的实施方案, 所述具有复合孔结构的氧化铝载体 的比表面积为 50 ~ 150米 2/克, 总孔容为 0.4 - 1.0毫升 /克, 孔直径 < 30纳米的孔容占总孔容的 5 - 55%, 孔直径 30 ~ 60纳米的孔容占 总孔容的 20~72%,孔直径 >60纳米的孔容占总孔容的 20~45%。 在一个更优选的实施方案中,孔直径 < 10纳米的孔的孔容占总孔容 的 0~10%。
按照一个优选的实施方案, 所述具有复合孔结构的氧化铝载体 还包括: (3) 0.1~1.5重量%, 优选 0.2 ~ 0.8重量%的选自碱金属和 碱土金属中的至少一种金属, 以其盐和 /或氧化物形式存在; 和 /或 (b) 0.1 ~ 20.0重量%, 优选 0.2 ~ 10.0重量%的选自元素周期表中 IVA和 VA族元素中的至少一种元素, 以其化合物形式存在, 所有 百分比以氧化铝栽体重量为基准计。上述组分 (a)优选为选自钾、钙、 镁和钡中的至少一种, 以其盐和 /或氧化物形式存在; 上述组分 (b) 优选为选自硅和磷中的至少一种, 以其化合物, 特别是氧化物的形 式存在。
不希望局限于特定的理论, 但是据信上述组分 (a) 可调节载体 酸碱性, 中和其中的强酸性中心, 改善活性组分分散, 同时调变氧 化铝载体的转相温度,使其在经较高温度烧结后仍具有较大的比表 面积。 不希望局限于特定的理论, 但是据信上述组分(b )可调节 载体疏水性质, 调变其酸碱性, 强化后续负载的金属与载体间的相 互作用。 据信组分(a )和(b )的组合有利于提高由所述栽体制成 的催化剂的低温反应活性、选择性、耐游离水性能和耐杂质性能(如 耐重金属性能) 。
所述具有复合孔结构的氧化铝载体是包含氧化铝 A和氧化铝 B 的组合物, 其中氧化铝 A衍生自选自拟薄水铝石、 三水合氧化铝、 薄水铝石和无定形氢氧化铝中的至少一种氧化铝前体, 和氧化铝 B 是选自 γ、 η、 δ、 θ、 κ或 α相氧化铝中的至少一种, 并且氧化铝 A 和氧化铝 B的重量比为 1: 0.05 - 1: 10.0。 优选地, 氧化铝 A衍生 自选自拟薄水铝石、无定形氢氧化铝或薄水铝石中的至少一种氧化 铝前体, 氧化铝 B为选自 δ、 Θ或 α相氧化铝中的至少一种, 并且 氧化铝 Α和氧化铝 B的重量比为 1: 0.1 ~ 1: 5.0。 更优选地, 氧化 铝 A衍生自选自拟薄水铝石或无定形氢氧化铝中的至少一种氧化 铝前体, 氧化铝 B为选自 δ、 Θ或 α相氧化铝中的至少一种, 并且 氧化铝 Α和氧化铝 B的重量比为 1: 0.2 ~ 1: 4.0。
在笫二方面, 本发明提供了一种制备上述具有复合孔结构的氧 化铝载体的方法, 该方法包括:
( i )将至少一种氧化铝 A的前体、 至少一种氧化铝 B、 水、 胶溶剂和 /或粘结剂以及任选的改性剂按所需比例混合,以提供一种 混合物;
( ii )将得自步骤(i ) 的混合物成型;
( iii )将上述成型的混合物干燥, 并然后焙烧。
在本发明方法中,成型的混合物的干燥可以在 50 ~ 100°C下进行 1 ~ 24小时。在本发明方法中,焙烧可以在 800 ~ 1150 "C,优选 900 ~ 1100'C的温度下进行 1 ~ 10小时, 优选 2 ~ 8小时。
可用于本发明的氧化铝载体制备的胶溶剂是指能与氧化铝或其 前体发生反应形成溶胶的物质, 例如: 曱酸、 乙酸、 丙酸、 丁酸等 一元羧酸, 丁二酸、 马来酸和柠檬酸等二元或多元羧酸, 所述羧酸 的酸酐和弱碱盐; 硝酸、 盐酸等单质子无机酸; 以及硝酸铝、 硝酸 镍、 三氯化铝、 硫酸铝等强酸盐等。 可用于本发明的氧化铝载体制 备的粘结剂是指在常温或低温下能把各种氧化铝粉体粘合在一起 的物质, 如铝溶胶、 硅溶胶等无机溶胶和数均分子量在 500 至 100000, 优选 700至 50000, 更优选 800至 30000的聚合物, 例如 聚乙烯醇类、 聚丙烯酸类、 聚曱基丙烯酸类、 聚醋酸乙烯-乙烯共 聚物、聚苯乙烯、聚丁二烯等。优选胶溶剂和 /或粘结剂是选自硝酸、 乙酸、 柠檬酸、 铝溶胶、 硅溶胶、 聚乙烯醇 (数均分子量为 1000至 4000)中的至少一种。 以步骤 (i)所得混合物的固体含量计,所述胶溶 剂和 /或粘结剂的用量为 0.2 ~ 20重量%,优选 0.5 ~ 10重量%。
在上述方法中, 水的用量可以为步骤 (i)所得混合物的固体含量 的 60〜95重量%。 水可以单独加入, 或者以其它组分的溶剂或分散 介质的形式加入。
任选地用于上述方法的"改性剂,,包括元素周期表中 IA、 II A, IVA和 VA族的元素的化合物,例如钾、钙、镁和钡的盐和氧化物, 硅化合物, 磷化合物, 和它们的组合。 按照一个优选的实施方案, 改性剂是元素周期表中 IVA和 VA族的元素的至少一种化合物与元 素周期表中 IA和 ΠΑ族的元素的至少一种化合物的组合, 例如选 自钟、 钙、 镁和钡的氧化物和盐中的至少之一与选自硅化合物和磷 化合物中的至少之一的组合。改性剂的用量以 IA、 II A, IVA和 VA 族的金属或元素计可以为 0.:!〜 20.0重量%,优选为 0.2~12.0重量%, 基于步骤 (i)所得混合物的固体含量计。
上述方法的步骤(ii ) 的所述成型可按常规方法进行, 如压片、 滚球、 挤条等方法均可。 按照一个优选的实施方案, 所述成型通过 挤出方法进行。
在第三方面, 本发明提供了一种用于裂解汽油选择性加氢的催 化剂, 其包括:
(a) 本发明的氧化铝载体; 和
(b)基于氧化铝栽体重量计 0.01 ~ 1.2 重量%的金属钯或其氧 化物。
本发明的催化剂适用于中间馏分裂解汽油 (例如 c6 ~ c8烃化 合物中间馏分裂解汽油和 c5 - c8烃化合物中间馏分裂解汽油)及 全馏分 (<:5烃~干点为 204 °C的烃化合物馏分)裂解汽油加氢, 可以 在较高的进料空速下操作,具有良好的低温活性、选择性和稳定性, 并具有良好的耐高含量胶质和高含量游离水的性能。
本发明的催化剂优选包含 0.05 ~ 1.0 重量%, 更优选 0.1 ~ 0.7 重量%的金属钯或其氧化物, 基于氧化铝载体重量计。
本发明的催化剂可以采用常规的壳层催化剂浸渍技术制备。 例 如, 本发明的催化剂可以制备如下: 将载体任选地先用一种能与含 钯盐的浸渍液互溶的液体预浸渍, 再用含钯盐的浸渍液浸溃, 浸渍 后的载体经洗涤、 千燥、在空气中 300 ~ 600eC焙烧, 即得氧化性催 化剂成品。 成品催化剂只需在反应器中通氨气还原即可使用。
本发明的催化剂适用于石油烃中的炔烃、共轭双烯等的选择加 氢, 包括全馏分 (< 5烃~干点为 204 'C的烃化合物馏分)或各种中间 馏分 (如 C6 ~ C8烃化合物中间馏分)裂解汽油的加氢。
因此, 在第四方面, 本发明提供了一种裂解汽油选择性加氢方 法, 包括在加氢反应条件下, 使裂解汽油与本发明的所述选择性加 氢催化剂接触。
所述裂解汽油选择性加氢方法可以按照本领域技术人员熟知 的方式进行。 在其中原料是含有高含量胶质和高含量游离水的全馏分裂解汽 油的情况下, 催化剂中小孔的存在会导致催化剂更容易失活, 因为 小孔吸附的游离水和胶质等大分子物质更难脱附, 使催化剂成为疏 油性质的或者催化剂损失比表面积。 而大孔有利于减小表面张力, 使得催化剂吸附的水可以与原料中的水保持平衡, "来去自由", 甚 至在原料中水含量较低时可脱除催化剂已吸附的水。但大孔载体通 常具有较低的比表面积, 不利于活性组分的分散。 催化剂活性主要 取决于其活性表面积,催化剂的活性表面积与载体比表面积有关 - 较大的载体比表面积有利于活性组分的分散, 由此可提高催化剂活 性。
本发明的所述具有复合孔结构的氧化铝载体具有较大的孔容、 较大的比表面积和较大的可几孔径, 并且各种孔道的孔容比例适 宜,其中直径 30~60纳米孔的孔容占总孔容的 20~75%, lOnm以下 小孔的孔容占总孔容 0~10%,载体比表面积主要由呈窄分布的中等 孔径的孔提供。当用于全馏分 (< 5烃~干点为 204Ό的烃化合物馏分) 裂解汽油选择性加氢时,基于本发明的所述具有复合孔结构的氧化 铝载体的催化剂具有良好的低温活性、 选择性和稳定性, 而且具有 良好的耐高含量胶质和高含量游离水性能。在入口温度 40eC、反应 压力 2.7MPa、氢 /油体积比 80:1、新鲜油体积空速 3.8小时 条件下, 对胶质含量为 150亳克 /100克油、 游离水含量为 lOOOppm的全馏 分 (C5烃 ~干点为 204 °C的烃化合物馏分)裂解汽油的选择性加氢反 应可以给出 0.0克 /100克油的出口双烯平均值, 即 100%的双烯 加氢率。 具体实施方式
下面通过实施例对本发明作进一步阐述。 但是这些实施例无论 如何都不对本发明的范围构成限制。 【实施例 1】
将 380克薄水铝石、 20克 δ氧化铝、 12克田菁粉、 20克聚乙烯 醇 (数均分子量为 1750)的水溶液 (质量浓度为 5%)、 4.5克乙酸和 4.5 克柠檬酸混合在一起, 挤成 φ2.5毫米的三叶形条。 湿条经 100。C干 燥 2小时后, 于 900°C焙烧 8小时, 得到载体 Z0。 釆用压汞法测定 Z0的比表面积、 孔容、 可几孔径和孔分布, 结果见表 1。
【实施例 2】
将 300克拟薄水铝石、 30克 δ氧化铝、 9克田箐粉、 18克聚乙 烯醇 (数均分子量为 1750)的水溶液 (质量浓度为 5%)、 4.0克硝酸混 合在一起,挤成 φ2.5毫米的三叶形条。湿条经 100。C干燥 2小时后, 于 900。C焙烧 8小时, 得到载体 Zl。 采用压汞法测定 Z1的比表面 积、 孔容、 可几孔径和孔分布, 结果见表 1。
【实施例 3】
将 300克拟薄水铝石、 150克 α氧化铝、 12克田箐粉、 30克聚 乙烯醇 (数均分子量为 1750)的水溶液 (质量浓度为 5%)和 6.0克醋酸 混合在一起, 挤成 φ2.5毫米的三叶形条。 湿条经 50。C干燥 24小时 后, 于 1000 °C焙烧 4小时, 得到载体 Z2。 采用压汞法测定 Z2的比 表面积、 孔容、 可几孔径和孔分布, 结果见表 1。
【实施例 4】
将 200克拟薄水铝石、 200克 Θ氧化铝、 12克田菁粉、 25克聚 乙烯醇 (数均分子量为 1750)的水溶液 (质量浓度为 5%)、 4.0克硝酸 和 34克铝溶胶 (氧化铝含量为 10重量% )混合在一起, 挤成 φ2.5 毫米的三叶形条。 湿条经 80°C干燥 6小时后, 于 1100'C焙烧 2小 时, 得到载体 Z3。 采用压汞法测定 Z3的比表面积、 孔容、 可几孔 径和孔分布, 结果见表 1。
【实施例 5】
将 80克无定型氢氧化铝、 320克 Θ氧化铝、 12克田菁粉、 20克 聚乙烯醇 (数均分于量为 1750)的水溶液 (盾量浓度为 5%)、 6.0克硝 酸和 34克铝溶胶(氧化铝含量为 10重量% )混合在一起,挤成 φ2.5 毫米的三叶形条。 湿条经 80。C干燥 6小时后, 于 1100。C焙烧 2小 时, 得到载体 Z4。 釆用压汞法测定 Z4的比表面积、 孔容、 可几孔 径和孔分布, 结果见表 1。
【实施例 6】
将 40克拟薄水铝石、 360克 α氧化铝、 12克田菁粉、 3.0克醋 酸乙烯-乙烯共聚物乳液(VAE707, 固含量为 54.5 %, 得自中国石 油化工股份有限公司四川维尼纶厂) 、 3.0克硝酸和 8克硝酸铝混 合在一起,挤成 φ2.5亳米的三叶形条。湿条经 50。C干燥 24小时后, 于 1000。C焙烧 4小时,得到栽体 Z5。 采用压汞法测定 Z5的比表面 积、 孔容、 可几孔径和孔分布, 结果见表 1。
【比较例 1】
将 300克拟薄水铝石、 9克田菁粉、 45克石墨和 4.0克硝酸混合 在一起, 挤成 φ2.5毫米的三叶形条。 湿条经 120。C干燥 4小时后, 于 1050°C焙烧 4 时, 得到载体 Dl。 釆用压汞法测定 D1的比表 面积、 孔容、 可几孔径和孔分布, 结果见表 1。
Figure imgf000013_0001
Figure imgf000013_0002
实施例 7^12说明了由本发明的载体制备的催化剂在含有高含量 胶质和高含量游离水的全馏分裂解汽油的一段加氢中的性能, 结果 见表 2。
【实施例 7】
将【实施例 1】制备的载体 Z0 60克在 300ml的 PdCl2浸渍液 ( PdCl2质量浓度为 0.10% ) 中进行浸渍, 至浸渍液呈无色。 在除 去液体之后, 将固体物在 60。C干燥 16小时, 在 480。C焙烧 3小时, 制得 Pd基催化剂 COo 该催化剂的 Pd含量为 0.3重量%, 基于氧 化铝载体的重量计。
【实施例 8】
用 【实施例 7】 中描述的浸渍法从 60克【实施例 2】制备的栽 体 Z1制备 Pd基催化剂 Cl。 该催化剂的 Pd含量为 0.3重量%, 基 于氧化铝载体的重量计。
【实施例 9】
用 【实施例 7】 中描述的浸渍法从 60克【实施例 3】制备的载 体 Z2制备 Pd基催化剂 C2。 该催化剂的 Pd含量为 0.3重量%, 基 于氧化铝载体的重量计。
【实施例 10】
用 【实施例 7】 中描述的浸渍法从 60克【实施例 4】制备的载 体 Z3制备 Pd基催化剂 C3。 该催化剂的 Pd含量为 0.3重量%, 基 于氧化铝载体的重量计。
【实施例 11】
用 【实施例 7】 中描述的浸渍法从 60克【实施例 5】制备的载 体 Z4制备 Pd基催化剂 C4。 该催化剂的 Pd含量为 0.3重量%, 基 于氧化铝载体的重量计。
【实施例 12】
用 【实施例 7】 中描述的浸渍法从 60克【实施例 6】制备的载 体 Z5制备 Pd基催化剂 C5。 该催化剂的 Pd含量为 0.3重量%, 基 于氧化铝载体的重量计。 【比较例 2】
用 【实施例 7】 中描述的浸渍法从 60克【比较例 1】制备的载 体 D1制备 Pd基催化剂 CD1。 该催化剂的 Pd含量为 0.3重量%, 基于氧化铝载体的重量计。
分别在 100 毫升小型绝热固定床反应器上评价上面制备的催化 剂 C0、 Cl、 C2、 C3、 C4、 C5和 CD1, 使用胶质含量为 150±2毫 克 /100克油、 游离水含量为 1000±15 ppm的全馏分 (<:5烃 ~干点为 204°C的烃化合物馏分)裂解汽油为原料。所述原料含有 15±1重量% 的 Cs烃, 65±2重量%的( 6 ~ (:8烃, 20±1重量%的 C9+烃, 并且双 烯值为27.12 ± 0.30 8碘/10(^ 油。 反应条件如下: 入口温度 40°C, 压力 2.65MPa, 新鲜油体积空速 3.8小时 , 循环比为 2.63, 氢 /油 体积比为 80: 1。 评价结果见表 2。
表 2
Figure imgf000015_0001
由表 2结果可以看到, 本发明的催化剂适用于含有较高含量胶 质和较高含量游离水的全馏分裂解汽油的一段加氢, 其性能明显优 于由常规的大孔氧化铝载体制备的催化剂的性能。
【实施例 13】
将 300克拟薄水铝石、 150克 α氧化铝和 9克田菁粉混合在一 起,然后向该混合物中加入含有 25克质量浓度为 5%的聚乙烯醇 (数 均分子量为 1750)的水溶液、 4.0克硝酸、 1.8克浓度为 85%的磷酸、 1.5克硝酸钟和 2克硝酸镁的水溶液 360毫升。 将得到的混合物混 合均匀, 然后挤成 φ2.5毫米的三叶形条。 湿条经 50。C干燥 24小时 后, 于 1000。C焙烧 4小时,得到具有复合孔结构的改性氧化铝载体 Z6.
以等体积去离子水预浸 60g载体, 然后沥干水分。 然后将载体 在 210ml PdCl2浸渍液(PdCl2质量浓度为 0.143% ) 中进行浸渍, 至浸渍液呈无色。 除去液体后, 将固体物在 120°C干燥 4小时, 在 450°C焙烧 4小时, 制得 Pd基催化剂 C6。 该催化剂的 Pd含量为 0.3 重量%, 基于氧化铝载体重量计。 催化剂组成及比表面积、 孔 容、 孔分布见表 3, 其中各组分含量均基于氧化铝载体重量。
【实施例 14】
将 75克拟薄水铝石、375克 δ氧化铝和 9克田菁粉混合在一起, 之后向该混合物中加入含有 25克质量浓度为 5%的聚乙烯醇 (数均 分子量为 1750)水溶液、 2.0克硝酸、 240克质量浓度为 40%的硅溶 胶和 1.7克硝酸钡的水溶液 360毫升。 将得到的混合物混合均匀, 然后挤成 φ2.5毫米的三叶形条。 湿条经 50°C干燥 24小时后, 于 950。C焙烧 4小时, 得到具有复合孔结构的改性氧化铝载体 Z7。
用【实施例 13】中描述的程序从 60g所述载体 Z7制备 Pd基催 化剂 C7, 并且该催化剂的 Pd含量为 0.5重量%, 基于氧化铝载体 重量计。 催化剂组成及比表面积、 孔容、 孔分布见表 3, 其中各组 分含量均基于氧化铝载体重量。
【实施例 15】
将 150克拟薄水铝石、300克 α氧化铝和 9克田菁粉混合在一起, 之后向该混合物中加入含有 25克质量浓度为 5%的聚乙烯醇 (数均 分子量为 1750)水溶液、4.0克硝酸、4.5克浓度为 85%的磷酸和 13.4 克四水硝酸钙的水溶液 360毫升。 将得到的混合物混合均匀, 然后 挤成 φ2.5毫米的三叶形条。 湿条经 50。C干燥 24小时后, 于 900。C 焙烧 4小时, 得到具有复合孔结构的改性氧化铝载体 Z8。 用【实施例 13】中描述的程序从 60g所述载体 Z8制备 Pd基催 化剂 C8, 并且该催化剂的 Pd含量为 0.18重量%,基于氧化铝栽体 重量计。 催化剂组成及比表面积、 孔容、 孔分布见表 3, 其中各组 分含量均基于氧化铝载体重量。
表 3
Figure imgf000017_0001
【实施例 16]
本实施例说明【实施例 7, 12~15】所得催化剂在全馏分 (<:5烃 ~ 干点为 204 °C的烃化合物馏分)裂解汽油选择加氢中的应用。
将【实施例 7, 12-151 中制备的催化剂各 100毫升填充到 100 毫升小型绝热固定床反应器中, 然后在氢气压力为 2.7 MPa, 温度 为 110°C和氢气流量为 4亳升 /(分'克催化剂)的条件下还原 8小时。 在氢气压力 2.7MPa, 入口温度 40。C , 新鲜油体积空速 3.8小时 总油体积空速 13.8小时 (循环比为 2.63), 氢 /油体积比 80: 1的条 件下通入全馏分裂解汽油原料进行试验。 该全馏分裂解汽油原料的 胶盾含量为 150±2亳克 /100克油, 游离水含量为 1000±15 ppm (重 量) , 含有 15±1重量%的 C5烃, 65±2重量%的 C6 ~ C8烃, 20±1 重量%的 C9 +烃, 并且双烯值为 27.12 ± 0.30 g礁 /100g 油。 加氢结 果见表 4。
表 4
Figure imgf000018_0001
【实施例 17】
将由 【实施例 13】得到的催化剂 C6 100毫升填充到 100毫升 小型绝热固定床反应器中, 然后在氢气压力为 2.7 MPa, 温度为 110°C和氢气流量为 4毫升 /(分*克催化剂)的条件下还原 8小时。 在 入口温度 40°C, 反应压力 2.65MPa, 新鲜油体积空速 3.8小时 -1, 总油体积空速 13.8小时 , 氢 /油体积比 80: 1的条件下通入全馏分 裂解汽油原料进行评价试验 1000小时, 该全馏分裂解汽油原料的 胶质含量为 150±2毫克 /100克油, 游离水含量为 1000±15 ppm (重 量) , 含有 15±1重量%的 C5烃, 65±2重量%的 C6 ~ C8烃, 20±1 重量%的 C9+烃, 并且双烯值为 27.12 ± 0.30 g碘 /100g 油。 加氢结 果见表 5。
表 5
Figure imgf000019_0002
Figure imgf000019_0001
将由 【实施例 14】得到的催化剂 C7 100毫升填充到 100毫升 小型绝热固定床反应器中, 然后在氢气压力为 2.7 MPa, 温度为 110°C和氢气流量为 4亳升 /(分*克催化剂)的条件下还原 8小时。 在 入口温度 44。C,反应压力 2.65MPa,新鲜油体积空速 3.8小时 · 总 油体积空速 13.8小时 氢 /油体积比 110: 1的条件下通入胶质含 量为 140±2毫克 /100克油, 游离水含量为 1000±15 ppm (重量)的 C6 - C8 中间馏分裂解汽油原料进行试验。 原料双烯值为 23.99土 0.30克碘 /100克油。 加氢结果见表 6。 表 6
Figure imgf000020_0001
本申请说明书中提到的专利、 专利申请、非专利文献和测试 方法通过引用结合在本文。
虽然参考示例性实施方案描述了本发明,但本领域技术人员 将理解,在不偏离本发明的精神和范围的情况下, 可以做出各种 改变和修改。 因此, 本发明不限于作为实施本发明的最佳方式公 开的特定实施方案,而是包括落入所附权利要求书范围内的所有 实施方案。

Claims

1. 一种具有复合孔结构的氧化铝载体, 其中所述氧化铝载体的 比表面积为 40 - 160米 2/克, 总孔容为 0.3 ~ 1.2毫升 /克, 孔直径 < 30纳米的孔容占总孔容的 5 ~ 60%, 孔直径 30 ~ 60纳米的孔容占 总孔容的 20 - 75%,孔直径 > 60纳米的孔容占总孔容的 20 - 60% «
2. 权利要求 1所述的氧化铝载体, 其中所述氧化铝载体比表面 积为 50 ~ 150米 2/克, 总孔容为 0.4 ~ 1.0亳升 /克,孔直径 < 30纳米 的孔容占总孔容的 5 ~ 55%,孔直径 30 ~ 60纳米的孔容占总孔容的 20 ~ 72%, 孔直径 > 60纳米的孔容占总孔容的 20 ~ 45%。
3. 权利要求 1或 2所述的氧化铝载体, 其中孔直径 < 10纳米的 孔的孔容占所述氧化铝栽体总孔容的 0~10%。
4. 权利要求 1 - 3中任一项所述的氧化铝载体,其是包含氧化铝 A和氧化铝 B的组合物,其中氧化铝 A衍生自选自拟薄水铝石、三 水合氧化铝、 薄水铝石和无定形氢氧化铝中的至少一种氧化铝前 体, 和氧化铝 B是选自 γ、 η、 δ、 θ、 κ和 α相氧化铝中的至少一种, 并且氧化铝 Α和氧化铝 Β的重量比为 1: 0.05 - 1: 10.0。
5. 权利要求 4所述的氧化铝载体, 其中氧化铝 A衍生自选自三 水合氧化铝和拟薄水铝石中的至少一种氧化铝前体,氧化铝 B是选 自 δ、 Θ和 α相氧化铝中的至少一种, 并且氧化铝 Α和氧化铝 Β的 重量比为 1: 0.1 ~ 1: 5.0。
6. 权利要求 1-5中任一项所述的氧化铝载体, 其还包括:
(a) 0.1 - 1.5 重量%的选自碱金属和碱土金属中的至少一种金 属, 以其盐和 /或氧化物形式存在; 和 /或
(b) 0.1 ~ 20.0重量%的选自元素周期表中 IVA和 VA族元素中 的至少一种元素, 以其化合物形式存在,
所有百分比以氧化铝载体重量为基准计。
7. 权利要求 6所述的氧化铝载体, 其包括:
(a) 0.2 ~ 0.8 重量%的选自碱金属和碱土金属中的至少一种金 属, 以其盐和 /或氧化物形式存在; 和 /或
(b) 0.2 ~ 10.0重量%的选自元素周期表中 IVA或 VA族元素中 的至少一种元素, 以其化合物形式存在,
所有百分比以氧化铝载体重量为基准计。
8. 权利要求 6或 7所述的氧化铝载体, 其中组分 (a)为选自钾、 钙、 镁和钡中的至少一种, 以其盐和 /或氧化物形式存在; 组分 (b) 为选自硅和磷中的至少一种,以其化合物,特别是氧化物形式存在。
9. 制备权利要求 1 - 8任一项所述的氧化铝载体的方法,该方法 包括:
( i )混合氧化铝 A的前体、氧化铝 B、水、胶溶剂和 /或粘结剂, 以及任选的改性剂, 以提供一种混合物, 其中所述氧化铝 A的前体 是选自三水合氧化铝、 薄水铝石、 拟薄水铝石和无定形氢氧化铝中 的至少一种; 所述氧化铝 B是选自 γ、 η、 δ、 θ、 κ和 α相氧化铝中 的至少一种; 所述改性剂是元素周期表中 IA、 IIA、 IVA和 VA族 中的至少一种元素的至少一种化合物;
( ii )将上述混合物成型; 和
( iii )将上述成型的混合物干燥并然后焙烧。
10. 权利要求 9所述的方法, 其中氧化铝 A和氧化铝 B的重量 比为 1: 0.05 ~ 1: 10.0。
11. 权利要求 9所述的方法, 其中氧化铝 A的前体是选自三水 合氧化铝和拟薄水铝石中的至少一种, 氧化铝 B是选自 δ、 Θ和 α 相氧化铝中的至少一种, 并且氧化铝 Α和氧化铝 B 的重量比为 1: 0.1 ~ 1: 5.0。
12. 权利要求 9 - 11中任一项所述的方法,其中所述胶溶剂选自 一元羧酸、 二元羧酸、 多元羧酸、 羧酸的酸酐和弱碱盐、 单质子无 机酸、 能与氧化铝或其前体发生胶溶反应形成溶胶的其它物质以及 它们的混合物, 所述粘结剂选自无机溶胶、 数均分子量为 500 至
100000 的聚合物和它们的组合, 所述胶溶剂和粘结剂的总用量为 0.2 ~ 20重量%, 以步骤(i )所得混合物的固体含量计。
13. 权利要求 12所述的方法, 其中所述胶溶剂选自由如下物质 组成的组: 曱酸、 乙酸、 丙酸、 丁酸、 丁二酸、 马来酸、 拧檬酸、 所述羧酸的酸酐、 所述羧酸的弱碱盐、 硝酸、 盐酸、 硝酸铝、 硝酸 镍、 三氯化铝、 硫酸铝和它们的混合物; 所述粘结剂选自由如下物 质组成的组: 铝溶胶、 硅溶胶、 聚乙烯醇类、 聚丙烯酸类、 聚甲基 丙烯酸类、 聚醋酸乙烯-乙烯共聚物、 聚苯乙烯、 聚丁二烯和它们 的混合物, 并且以步骤( i )所得混合物的固体含量计, 所述胶溶剂 和粘结剂的总用量为 0.5 ~ 10重量%。
14. 权利要求 12所述的方法, 其中所述胶溶剂是选自硝酸、 乙 酸和柠檬酸中的至少一种, 所述粘结剂是选自铝溶胶、 硅溶胶、 数 均分子量为 1000 - 4000的聚乙烯醇中的至少一种, 并且以步骤(i ) 所得混合物的固体含量计, 所述胶溶剂和粘结剂的总用量为 0.5 ~ 10重量%。
15. 权利要求 9 - 14中任一项所述的方法,其中所述改性剂的用 量以所述元素周期表中 IA、 II A, IVA和 VA族的至少一种元素计 为 0.1~20.0重量%, 基于步骤 (i)所得混合物的固体含量计。
16. 权利要求 9 - 15中任一项所述的方法,其中所述改性剂是选 自钾、 钙、 镁和钡的氧化物和盐中的至少之一与选自硅化合物和磷 化合物中的至少之一的组合。
17. 权利要求 9 - 16中任一项所述的方法, 其中步骤(iii ) 中的 焙烧在 800 ~ 1150。C下进行 1 ~ 10小时。
18. —种用于裂解汽油选择性加氢的催化剂, 其包括:
(a)权利要求 1 ~ 8任一项所述的氧化铝载体; 和 (b) 基于氧化铝载体重量计 0.01 ~ 1.2 重量%的金属钯或其氧 化物。
19. 权利要求 18所述的催化剂, 其中基于氧化铝载体重量计, 金属钯或其氧化物的含量为 0.1〜0.7重量%。
20. 一种裂解汽油选择性加氢的方法, 包括在加氢反应条件下, 使裂解汽油与权利要求 18和 19所述的选择性加氢催化剂接触。
PCT/CN2007/002321 2006-08-11 2007-08-02 Alumine ayant une structure poreuse complexe, et catalyseur et procédé d'hydrogénation sélective de l'essence de craquage WO2008019581A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020097004763A KR101402093B1 (ko) 2006-08-11 2007-08-02 복합 세공 구조를 갖는 알루미나, 및 분해 가솔린의 선택적수소화 반응 촉매 및 그 방법
US12/377,157 US8110527B2 (en) 2006-08-11 2007-08-02 Alumina having a complex pore structure, and catalyst and process for selective hydrogenation of cracking gasoline

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CNB2006100299610A CN100506380C (zh) 2006-08-11 2006-08-11 用于裂解汽油选择性加氢的催化剂
CN200610029961.0 2006-08-11
CN200610029963.X 2006-08-11
CN200610029963XA CN101121120B (zh) 2006-08-11 2006-08-11 具有复合孔结构的氧化铝载体的制备方法
CN 200610117857 CN101172258A (zh) 2006-11-02 2006-11-02 具有复合孔结构的改性氧化铝载体及其制备方法
CN200610117857.7 2006-11-02

Publications (1)

Publication Number Publication Date
WO2008019581A1 true WO2008019581A1 (fr) 2008-02-21

Family

ID=38983252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/002321 WO2008019581A1 (fr) 2006-08-11 2007-08-02 Alumine ayant une structure poreuse complexe, et catalyseur et procédé d'hydrogénation sélective de l'essence de craquage

Country Status (6)

Country Link
US (1) US8110527B2 (zh)
KR (1) KR101402093B1 (zh)
DE (1) DE102007037785B4 (zh)
FR (1) FR2904783B1 (zh)
TW (1) TW200906487A (zh)
WO (1) WO2008019581A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CO5930067A1 (es) * 2006-12-06 2008-06-27 Ecopetrol Sa Trampa de vanadio para el proceso de ruptura catalitica y su preparacion
CO5930068A1 (es) * 2006-12-06 2008-06-27 Ecopetrol Sa Proceso de produccion de trampas de vanadio por impregnacion y trampa de vanadio producida por dicho proceso
KR101626541B1 (ko) * 2009-11-19 2016-06-01 에스케이이노베이션 주식회사 암모니아의 선택산화 촉매 및 이의 제조방법
TWI666310B (zh) * 2013-03-15 2019-07-21 Advanced Refining Technologies Llc 觸媒組成物、加氫處理重烴類部分之方法及製備沉澱氧化鋁組成物的方法
US10525448B2 (en) 2015-07-22 2020-01-07 Basf Corporation High geometric surface area catalysts for vinyl acetate monomer production
US9956553B2 (en) * 2016-06-28 2018-05-01 Chevron U.S.A. Inc. Regeneration of an ionic liquid catalyst by hydrogenation using a macroporous noble metal catalyst
CN108970628B (zh) * 2018-08-08 2023-08-29 北京众智创新科技开发有限公司 一种沸腾床加氢处理催化剂的制备方法
KR20210106568A (ko) * 2018-12-28 2021-08-30 차이나 페트로리움 앤드 케미컬 코포레이션 슈도-베마이트, 및 이의 제조방법 및 용도
CN111375395B (zh) * 2018-12-29 2022-10-28 中国石油化工股份有限公司 氧化铝载体和碳二碳三馏分选择加氢催化剂及其应用
CN112742425B (zh) * 2019-10-29 2022-07-08 中国石油化工股份有限公司 一种加氢催化剂及其制备方法
CN113694944B (zh) * 2020-05-20 2024-06-07 中国石油化工股份有限公司 一种裂解汽油用钯系选择加氢催化剂及其制备方法与应用
CN115709089B (zh) * 2022-11-15 2024-09-06 国家能源集团宁夏煤业有限责任公司 费托合成油加氢精制催化剂及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11246868A (ja) * 1998-02-27 1999-09-14 Catalysts & Chem Ind Co Ltd 炭化水素接触分解用触媒組成物
CN1249208A (zh) * 1998-09-28 2000-04-05 中国石油化工集团公司 一种大孔氧化铝载体及其制备方法
CN1289825A (zh) * 1999-09-29 2001-04-04 中国石油化工集团公司 一种重油加氢处理催化剂载体及其制备方法
US6703343B2 (en) * 2001-12-18 2004-03-09 Caterpillar Inc Method of preparing doped oxide catalysts for lean NOx exhaust

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4154812A (en) * 1977-03-25 1979-05-15 W. R. Grace & Co. Process for preparing alumina
FR2486094B1 (zh) 1980-07-02 1985-03-22 Catalyse Soc Prod Francais
CA1159039A (en) 1980-11-21 1983-12-20 Harvey D. Schindler Hydrotreating catalyst and use thereof
US4608360A (en) * 1985-07-02 1986-08-26 Uop Inc. Dehydrogenation catalyst compositions and method of preparing same
DE3803897A1 (de) 1988-02-09 1989-08-10 Degussa Presslinge auf basis von pyrogen hergestelltem aluminiumoxid, verfahren zu ihrer herstellung und ihre verwendung
DE4207959A1 (de) 1992-03-13 1993-09-16 Solvay Umweltchemie Gmbh Abriebfester traegerkatalysator
KR100241174B1 (ko) * 1992-12-22 2000-02-01 더블유. 케이스 터너 중유의 수소화 탈황용 촉매 및 이의 제조방법
JP3504984B2 (ja) 1994-09-19 2004-03-08 日本ケッチェン株式会社 重質炭化水素油の水素化脱硫脱金属触媒
FI102440B1 (fi) 1995-12-29 1998-11-30 Nokia Telecommunications Oy Monihaarainen taajuushyppelevä vastaanotin
JP3304360B2 (ja) 1996-03-05 2002-07-22 護郎 佐藤 アルミナゾル及びその製造方法、及びそれを用いたアルミナ成型体の製造方法、及びそれによって得られたアルミナ系触媒
JP3366808B2 (ja) 1996-07-18 2003-01-14 株式会社日立製作所 電子財布
CN1184289C (zh) 2001-12-31 2005-01-12 北京燕山石油化工公司研究院 用于裂解汽油选择加氢的催化剂、其制备方法及用途
CN1296135C (zh) 2003-09-28 2007-01-24 中国石油化工股份有限公司 一种大孔氧化铝载体及其制备方法
CN1317364C (zh) 2003-12-31 2007-05-23 中国石油化工股份有限公司北京燕山分公司研究院 用于裂解汽油重馏分选择加氢的催化剂、其制备方法及其应用
CN1296136C (zh) 2004-01-19 2007-01-24 中国石油化工股份有限公司 一种大孔氧化铝载体及其制备方法
CN100509158C (zh) 2004-04-29 2009-07-08 中国石油化工股份有限公司 一种具有双重孔的氧化铝载体及其制备方法
CN100586569C (zh) 2004-06-29 2010-02-03 中国石油化工股份有限公司 一种大孔容成型氧化铝载体及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11246868A (ja) * 1998-02-27 1999-09-14 Catalysts & Chem Ind Co Ltd 炭化水素接触分解用触媒組成物
CN1249208A (zh) * 1998-09-28 2000-04-05 中国石油化工集团公司 一种大孔氧化铝载体及其制备方法
CN1289825A (zh) * 1999-09-29 2001-04-04 中国石油化工集团公司 一种重油加氢处理催化剂载体及其制备方法
US6703343B2 (en) * 2001-12-18 2004-03-09 Caterpillar Inc Method of preparing doped oxide catalysts for lean NOx exhaust

Also Published As

Publication number Publication date
TWI366487B (zh) 2012-06-21
FR2904783B1 (fr) 2012-12-21
US8110527B2 (en) 2012-02-07
US20100176030A1 (en) 2010-07-15
DE102007037785A1 (de) 2008-03-27
DE102007037785B4 (de) 2020-08-06
KR20090042952A (ko) 2009-05-04
KR101402093B1 (ko) 2014-05-30
TW200906487A (en) 2009-02-16
FR2904783A1 (fr) 2008-02-15

Similar Documents

Publication Publication Date Title
WO2008019581A1 (fr) Alumine ayant une structure poreuse complexe, et catalyseur et procédé d&#39;hydrogénation sélective de l&#39;essence de craquage
KR101404770B1 (ko) 선택적 수소화를 위한 니켈 촉매
CN106604978B (zh) 具有大于300纳米中值大孔直径的中孔和大孔共混镍活性相的催化剂及其在氢化中的用途
RU2683777C2 (ru) МАКРО- И МЕЗОПОРИСТЫЙ КАТАЛИЗАТОР С ОДНОРОДНО РАСПРЕДЕЛЕННОЙ АКТИВНОЙ НИКЕЛЕВОЙ ФАЗОЙ И СРЕДНИМ ДИАМЕТРОМ МАКРОПОР ОТ 50 ДО 300 нм И ЕГО ПРИМЕНЕНИЕ В ГИДРИРОВАНИИ УГЛЕВОДОРОДОВ
CN1078104C (zh) 载体型催化剂及其制备方法和用途
TW583168B (en) Hydrogenation catalyst and hydrogenation process
WO2003015916A1 (fr) Catalyseur d&#39;hydrocraquage selectif des hydrocarbures insatures, son procede de fabrication et ses applications
JP2009161766A (ja) 水添および脱水素方法そしてそれら用の触媒
CN1244446A (zh) 有机化合物转化反应中可使用的载体上的催化剂
JP2019501767A (ja) パラジウム系担持型水素化触媒及びその製造方法、並びにその利用
RU2654205C1 (ru) Подложка для способа селективного синтеза высококачественной керосиновой фракции из синтез-газа, катализатор этого способа и способ их изготовления
WO2021063345A1 (zh) 一种脱砷吸附剂及其制备方法
CN106807437A (zh) 一种用于丙烷直接脱氢制备丙烯的催化剂及其制备和应用
CN114206497A (zh) 包含分布在壳中的活性镍相的催化剂
WO2010070030A2 (en) Catalyst and process for selective hydrogenation of alkynes and dienes.
US8536082B2 (en) Dehydrogenation catalyst preparation by dry impregnation
CN106925279B (zh) 一种Fe系选择加氢催化剂、制备方法及其应用
EP3228384B1 (en) Catalyst and preparation method thereof, and method for preparing isobutylene by applying the same
CN109364945B (zh) 一种全馏分裂解汽油选择性加氢的方法
CN109289868B (zh) 裂解汽油选择性加氢催化剂及制备方法
CN108863697B (zh) 一种增产丁二烯的方法
CN112934232B (zh) 一种碳三馏分选择加氢的催化剂
CN1181165C (zh) 一种选择性加氢催化剂
CN109355093A (zh) 一种裂解汽油全馏分选择性加氢方法
CN112844407B (zh) 一种碳三馏分选择加氢催化剂的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07785235

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020097004763

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 12377157

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: RU

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC, EPO FORM 1205A DATED 12.08.2009.

122 Ep: pct application non-entry in european phase

Ref document number: 07785235

Country of ref document: EP

Kind code of ref document: A1