WO2008018463A1 - Defect inspecting method and defect inspecting apparatus - Google Patents

Defect inspecting method and defect inspecting apparatus Download PDF

Info

Publication number
WO2008018463A1
WO2008018463A1 PCT/JP2007/065451 JP2007065451W WO2008018463A1 WO 2008018463 A1 WO2008018463 A1 WO 2008018463A1 JP 2007065451 W JP2007065451 W JP 2007065451W WO 2008018463 A1 WO2008018463 A1 WO 2008018463A1
Authority
WO
WIPO (PCT)
Prior art keywords
inspection
defect
substrate
pattern
predetermined pattern
Prior art date
Application number
PCT/JP2007/065451
Other languages
English (en)
French (fr)
Inventor
Misako Saito
Teruyuki Hayashi
Kaoru Fujiwara
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Priority to CN2007800008533A priority Critical patent/CN101341589B/zh
Priority to US12/376,407 priority patent/US8040504B2/en
Priority to KR1020097002675A priority patent/KR101046799B1/ko
Publication of WO2008018463A1 publication Critical patent/WO2008018463A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
    • G01N23/2251Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion using incident electron beams, e.g. scanning electron microscopy [SEM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/282Testing of electronic circuits specially adapted for particular applications not provided for elsewhere
    • G01R31/2831Testing of materials or semi-finished products, e.g. semiconductor wafers or substrates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/302Contactless testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/302Contactless testing
    • G01R31/305Contactless testing using electron beams
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/302Contactless testing
    • G01R31/308Contactless testing using non-ionising electromagnetic radiation, e.g. optical radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/646Specific applications or type of materials flaws, defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/302Contactless testing
    • G01R31/305Contactless testing using electron beams
    • G01R31/307Contactless testing using electron beams of integrated circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/302Contactless testing
    • G01R31/308Contactless testing using non-ionising electromagnetic radiation, e.g. optical radiation
    • G01R31/311Contactless testing using non-ionising electromagnetic radiation, e.g. optical radiation of integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a defect inspection method and apparatus, and more particularly, to a defect inspection method and apparatus using optical inspection and electron beam inspection.
  • Patent Document 1 Japanese Patent Laid-Open No. 2005-61837
  • Patent Document 1 Japanese Patent Laid-Open No. 2005-618373 proposes a method in which an optical inspection and an inspection using an electron beam are combined.
  • this method merely performs optical inspection on all patterns formed on the substrate to detect defects and reconfirms the defects by a method using an electron beam. Therefore, the defect detection efficiency is inferior, and if the inspection takes a long time and takes a long time, the problem will be solved.
  • a general object of the present invention is to provide a novel and useful defect detection method and apparatus that solves the above problems.
  • a more specific object of the present invention is to provide a defect inspection method and a defect inspection apparatus for detecting a defect of a pattern shape formed on a substrate with good efficiency. Means for solving the problem
  • a defect inspection method for inspecting a defect having a shape formed on a substrate, the plurality of divided regions on the substrate.
  • a primary inspection is sequentially performed by an optical method, and a first step of selecting the region to perform a secondary inspection from the plurality of regions is selected in the first step.
  • a defect inspection method characterized by comprising a second step of detecting a defect by performing a secondary inspection using an electron beam for the selected region.
  • the region is preferably a region corresponding to one die when forming a semiconductor chip on a substrate.
  • one region may be a region corresponding to one semiconductor chip when the semiconductor chip is formed on the substrate.
  • the predetermined pattern is preferably a test pattern formed in each of a plurality of regions.
  • the predetermined pattern may be a memory cell formed in each of a plurality of regions.
  • the predetermined pattern is analyzed by irradiating the predetermined pattern with light and analyzing the spectrum of the reflected light of the light according to the predetermined pattern. Even so! /
  • a defect inspection apparatus for inspecting a defect having a shape formed on a substrate, wherein the predetermined inspection is performed on each of a plurality of divided regions on the substrate.
  • An optical inspection apparatus that sequentially performs a primary inspection on a pattern by an optical method and selects the area to be subjected to a secondary inspection from the plurality of areas, and an area selected by the optical inspection apparatus.
  • a defect inspection apparatus comprising an electron beam inspection apparatus that performs a secondary inspection using an electron beam and detects a defect.
  • the optical inspection apparatus irradiates a predetermined pattern with a light beam, and analyzes the spectrum of the reflected light of the light beam according to the predetermined pattern, thereby determining the predetermined pattern. It is preferable to conduct an analysis.
  • FIG. 1 is a flowchart showing a defect inspection method according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a plurality of divided areas on a substrate.
  • FIG. 3 is an enlarged view (part 1) of the region shown in FIG.
  • FIG. 4 is an enlarged view (part 2) of the region shown in FIG.
  • FIG. 5 is a schematic view showing a defect inspection apparatus according to an embodiment of the present invention.
  • FIG. 6 is a diagram showing an outline of an optical inspection method.
  • FIG. 7 is a diagram showing an outline of an electron beam inspection method.
  • Electron emitter 203 focusing lens
  • FIG. 1 is a flowchart showing an outline of a defect inspection method according to an embodiment of the present invention.
  • the defect inspection method shown in FIG. 1 is a method for detecting defects in the shape (for example, pattern wiring, holes, etc.) formed on the substrate.
  • an optical primary inspection is performed in step S1.
  • a secondary inspection using an electron beam is performed in accordance with the result of the optical inspection in step S1.
  • an area on the substrate with a high probability that a defect is formed is detected by optical inspection, and an area to be subjected to the secondary inspection with an electron beam that enables detection of minute defects. Select promptly.
  • defects are generated by sequentially inspecting a plurality of regions formed so as to divide the substrate by a predetermined optical pattern formed in each region. Select the area immediately! /
  • the primary inspection described above in principle, it differs from a method of inspecting all patterns (shapes) formed on a substrate (for example, the method described in JP-A-2005-61837).
  • a predetermined pattern formed in the area is sequentially inspected to determine whether or not there is a high possibility that a defect is formed in the area.
  • an area where defects are likely to be formed is selected, and the selected area is subjected to secondary inspection using an electron beam that can detect minute defects.
  • a predetermined light beam for example, laser light
  • a spectrum of reflected light by the predetermined pattern of the light beam is measured. It is preferable to use a method of analyzing the shape of a predetermined pattern by analyzing. An example of this analysis method will be described later.
  • the pattern recognition method based on the analysis of the reflected light is more efficient in the primary inspection than the pattern recognition method using an optical microscope (for example, the method described in JP-A-2005-61837). It has an advantage.
  • a predetermined pattern is irradiated with light rays in a spot manner rather than scanning to detect defects such as pattern recognition with an optical microscope or the like.
  • the reflected light is analyzed to detect a defect. For this reason, the efficiency of the primary inspection is good in the method based on the spectrum analysis of reflected light.
  • such light irradiation analysis of reflected light
  • the plurality of regions obtained by dividing the substrate may be determined as follows, for example.
  • a substrate is divided into a plurality of regions arranged in a matrix called a die.
  • a die one unit for exposure by an exposure device is called a die.
  • One die is sometimes called one shot.
  • the plurality of divided regions used in the primary inspection are regions corresponding to the above-described die. In this way, defect inspection can be performed efficiently by making one region correspond to one die.
  • FIG. 2 is a schematic diagram showing an example in which the substrate W is divided into a plurality of regions (for example, dies) A1.
  • the region A1 is arranged on the substrate W in a matrix.
  • the primary inspection is performed spotwise with respect to a predetermined pattern in the area A1.
  • FIG. 3 is an enlarged view schematically showing the region A1.
  • Fig. 3 shows the case where one semiconductor chip C1 is formed on one die (area A1). It is a semiconductor chip.
  • the semiconductor chip C1 includes a region al in which a logic circuit is formed, a region a2 in which a peripheral circuit is formed, a region a3 in which a memory circuit is formed, and the like.
  • a region T in which a test pattern is formed is formed at the periphery of the semiconductor chip C1.
  • the test pattern corresponds to a predetermined pattern in the primary inspection described above. For example, by performing an optical inspection on the test pattern, it is determined whether or not a secondary inspection using an electron beam is performed on the area A1.
  • a pattern to be subjected to the primary inspection (primary inspection area where the primary inspection is performed) and a pattern where the secondary inspection is performed with an electron beam (secondary inspection area where the secondary inspection is performed) ) May be set differently.
  • an optical inspection test pattern suitable for optical inspection is used
  • an electron beam inspection test pattern suitable for electron beam inspection is used.
  • a test pattern is separately formed on the substrate in advance!
  • the inspection may be performed using a pattern related to the device of the semiconductor chip formed in any one of the region al to the region a3 other than the test pattern, for example.
  • the efficiency is given the highest priority, and the test pattern is used for quick inspection.
  • the characteristics of the product are evaluated.
  • fi detection may be performed with priority given to inspection accuracy.
  • the difference between the designed line width and the line width calculated in the primary inspection in a certain region is a predetermined value. If this happens, a secondary inspection should be performed in that area.
  • the pattern is a hole (hole)
  • the difference between the designed hole diameter and the hole diameter calculated in the primary inspection is a predetermined value or more, A secondary inspection may be performed in this area.
  • a region to be subjected to the secondary inspection may be selected according to variations in the shape of each predetermined pattern in a plurality of regions.
  • FIG. 4 is a diagram showing another configuration example of the area A1.
  • a plurality of memory semiconductor chips C2 are formed in the region A1.
  • a memory cell bl and a peripheral circuit b2 are formed on the semiconductor chip C2.
  • a plurality of semiconductor chips may be formed for one die (one region).
  • the memory cell bl described above may be used as the predetermined pattern used for the primary inspection.
  • the primary inspection in the example shown in FIG. 4 may be performed, for example, at one location per die and for any one memory cell bl of the plurality of semiconductor chips C2. .
  • a primary inspection may be performed on each semiconductor chip C2 in one die. In this case, the primary inspection may be performed on the memory cell M of each semiconductor chip C2.
  • FIG. 5 shows an example of the configuration of a defect inspection apparatus that performs the above-described defect inspection method.
  • FIG. 5 is a diagram schematically showing a configuration of a defect inspection apparatus that performs the defect inspection method described in FIG.
  • the defect inspection apparatus 300 shown in FIG. 5 includes an optical inspection apparatus 100 and an electron beam. Type inspection device 200.
  • the optical inspection apparatus 100 includes an optical inspection unit 100A, a control unit 100B, and a computer 100C.
  • the optical inspection unit 10 OA irradiates a predetermined pattern on the substrate with a light beam such as a laser and analyzes the reflected light of the predetermined pattern to recognize the shape of the predetermined pattern.
  • the optical inspection unit 100A is operated by the computer 100C via the control unit 100B.
  • the computer 100C is shared with an electron beam inspection apparatus 200 described later.
  • the above-described optical inspection apparatus 100 performs the primary inspection as described above with reference to FIG. 1, and selects the region on the substrate for the secondary inspection.
  • the electron beam inspection apparatus 200 includes an electron beam inspection unit 200A that irradiates a substrate (pattern) with an electron beam, a control unit 200B, a signal processing unit 200C, a display unit 200D, an imager unit 200E, A pattern matching unit 200F, a storage unit 200G, and a computer 100C shared with the optical inspection apparatus 100 are included.
  • the substrate is irradiated with an electron beam (primary electron) in a reduced pressure space, and secondary electrons generated by the irradiation of the primary electrons are detected.
  • the detected secondary electron data is processed by the signal processing unit 200C to become image data.
  • the image data is displayed on the display unit 200D. Further, the image data is sequentially stored in the image storage unit 200E. Pattern matching force between image data and pattern for comparison. Pattern unit 200F is used to detect defects. Further, the defect detection data is stored in the storage unit 200G as necessary.
  • the electron beam inspection apparatus 200 it is possible to detect a fine pattern defect that is difficult to detect by an optical inspection by using an electron beam.
  • the optical inspection unit 100A irradiates a light beam 103 such as a laser beam to the primary inspection area A2 of a predetermined pattern (for example, a test pattern) on the substrate W.
  • a predetermined pattern for example, a test pattern
  • the light beam 103 is reflected by a predetermined pattern.
  • the reflected light 104 is detected by the detector 102, and is subjected to spectroscopy by a spectroscopic unit (not shown) such as a spectroscopic ellipsometer or a spectroreflectometer, for example, and spectrum analysis is performed.
  • the most approximate spectrum is selected.
  • the force S is calculated to calculate the profile (line width, hole diameter, height, etc.) of the predetermined pattern described above.
  • Such an optical pattern recognition method is described in, for example, JP-A-2005-61837, JP-A-2002-243925, JP-A-2005-517903, and the like. .
  • primary inspection can be performed more efficiently than in the case of using pattern recognition using an optical microscope.
  • the general tendency of the pattern shape in the primary inspection area A2 irradiated with the light beam 103 can be quickly grasped. It becomes possible to quickly select whether or not to perform the inspection.
  • FIG. 7 is a diagram schematically showing an outline of the electron beam inspection unit 200A.
  • the electron beam inspection unit 200 A has a vacuum container 201 whose inside is evacuated by an evacuation unit 220 to become a decompressed space. Inside the vacuum vessel 201, a substrate holder 205 for holding a substrate W to be inspected is installed. In addition, an electron emission unit 202 for irradiating the substrate W with primary electrons is provided so as to face the substrate holding table 205.
  • a predetermined voltage is applied from power supply 207 to electron emission unit 202, so that primary electrons are irradiated onto substrate W. Secondary electrons generated by the primary electrons irradiated on the pattern on the substrate W are detected by the electron detection unit 206 and processed by the signal processing unit 200C shown in FIG. 5 to become image data.
  • the electron beam inspection unit 200A is sometimes referred to as an SEM (scanning electron microscope) inspection apparatus.
  • the primary inspection is performed by the optical inspection apparatus 100, and the region on the substrate where the secondary inspection using the electron beam is performed is quickly selected. For this reason
  • the defect inspection apparatus 300 sequentially inspects a predetermined pattern in a part of the divided area of the substrate in a spot shape, a defect that requires secondary inspection occurs. It is possible to select a region quickly!
  • defect inspection method and the defect inspection measures described above are not limited to the manufacture of semiconductor chips (semiconductor devices), but also include display devices such as liquid crystal display devices and plasma displays.
  • the present invention can be applied to a defect inspection method and apparatus using optical inspection and electron beam inspection.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Description

明 細 書
欠陥検査方法及び欠陥検査装置
技術分野
[0001] 本発明は欠陥検査方法及び装置に係り、より詳細には、光学式の検査と電子線に よる検査を用いた欠陥検査方法及び装置に関する。
背景技術
[0002] 様々な形状のパターンが形成された半導体装置(半導体チップ)を検査する方法と して、パターン形状の欠陥を調べるために様々な検査方法が用いられてきた。例え ば、従来は光学顕微鏡などの光学的な検査装置 (検査方法)を用いてパターン形状 の欠陥を調べる方法が用いられていた。ところ力 パターン形状の微細化に伴って光 学的な方法のみでの欠陥の検出が困難となっている。そこで、パターン形状の欠陥 検査に電子線を用いることで、より微細なパターン形状の欠陥を検出する方法が提 案されている(例えば、特許文献 1参照。)。
特許文献 1 :特開 2005— 61837号公報
発明の開示
発明が解決しょうとする課題
[0003] 電子線を用いた欠陥検出には、検査に長い時間を要するという問題があった。この ため、検査の効率を考慮すると、実質的に検査が可能となる面積は限られてしまう。
[0004] 上記の特許文献 1 (特開 2005— 61837号公報)には、光学式検査と電子線を用い た検査を組み合わせた方法が提案されている。しかし、この方法は、基板上に形成さ れた全てのパターンに対して光学式検査を行って欠陥を検出し、当該欠陥を電子線 を用いた方式により再確認しているに過ぎない。したがって、欠陥の検出の効率が悪 く、検査に長レ、時間を要するとレ、う問題は解決されてレ、な!/、。
[0005] そこで、本発明の総括的な目的は、上記の問題を解決した新規で有用な欠陥検出 方法及び装置を提供することである。
[0006] 本発明のより具体的な目的は、基板上に形成されたパターン形状の欠陥を良好な 効率で検出する欠陥検査方法、および欠陥検査装置を提供することである。 課題を解決するための手段
[0007] 上述の目的を達成するために、本発明の一つの面によれば、基板上に形成された 形状の欠陥を検査する欠陥検査方法であって、基板上の分割された複数の領域に それぞれ形成される所定のパターンに対して、光学式方法で順次 1次検査を行って 当該複数の領域から 2次検査を行う該領域を選択する第 1の工程と、第 1の工程で選 択された領域に対して、電子線を用いた 2次検査を行って欠陥を検出する第 2のェ 程とを有することを特徴とする欠陥検査方法が提供される。
[0008] 本発明による欠陥検査方法にお!/、て、領域は、基板に半導体チップを形成する際 の 1つのダイに対応する領域であることが好ましい。あるいは、 1つの領域は、基板に 半導体チップを形成する際の 1つの半導体チップに対応する領域であることとしても よい。
[0009] 本発明による欠陥検査方法にお!/、て、所定のパターンは、複数の領域にそれぞれ 形成されたテストパターンであることが好ましい。あるいは、所定のパターンは、複数 の領域にそれぞれ形成されたメモリセルであることとしてもよい。
[0010] 本発明による欠陥検査方法において、第 1の工程では、所定のパターンに光線を 照射し、所定のパターンによる光線の反射光のスペクトルを分析することで、所定の パターンの分析を行うこととしてもよ!/、。
[0011] また、本発明の他の面によれば、基板上に形成された形状の欠陥を検査する欠陥 検査装置であって、基板上の分割された複数の領域にそれぞれ形成される所定の パターンに対して、光学式方法で順次 1次検査を行って当該複数の領域のうちから 2 次検査を行う当該領域を選択する光学式検査装置と、光学式検査装置で選択され た領域に対して、電子線を用いた 2次検査を行って欠陥を検出する電子線式検査装 置とを有することを特徴とする欠陥検査装置が提供される。
[0012] 本発明による欠陥検査装置にお!/、て、光学式検査装置は、所定のパターンに光線 を照射し、所定のパターンによる光線の反射光のスペクトルを分析することで所定の ノ ターンの分析を行うことが好ましレヽ。
発明の効果
[0013] 本発明によれば、基板上に形成された形状の欠陥を良好な効率で検出する欠陥 検査方法、および欠陥検査装置を提供することが可能となる。 図面の簡単な説明
[0014] [図 1]本発明の一実施例による欠陥検査方法を示すフローチャートである。
[図 2]基板上の分割された複数の領域を示す図である。
[図 3]図 2に示す領域の拡大図(その 1)である。
[図 4]図 2に示す領域の拡大図(その 2)である。
[図 5]本発明の一実施例による欠陥検査装置を示す模式図である。
[図 6]光学式検査方法の概略を示す図である。
[図 7]電子線式検査方法の概略を示す図である。
符号の説明
[0015] 100 光学式検査装置
100A 光学式検査部
100B 制御部
100C コンピュータ
101 照射手段
102 検出手段
103 光線
104 反射光
200 電子線式検査装置
200A 電子線式検査部
200B 制御部
200C 信号処理部
200D 表示部
200E 画像記憶部
200F パターンマッチングユニット
200G 記憶部
201 真空容器
202 電子放出部 203 集束レンズ
204 走査コイル
205 基板保持台
206 電子検出部
207 電源
発明を実施するための最良の形態
[0016] 先ず、本発明の一実施例による欠陥検査方法について、図 1を参照しながら説明 する。図 1は、本発明の一実施例による欠陥検査方法の概要を示すフローチャートで ある。図 1に示す欠陥検査方法は、基板上に形成された形状 (例えばパターン配線、 ホールなど)の欠陥を検出する方法である。
[0017] 図 1に示す欠陥検査方法では、ステップ S1において光学式の 1次検査を行う。次 に、ステップ S2においてステップ S1での光学式検査の結果に対応して電子線を用 いた 2次検査を行う。上述の 1次検査では、欠陥が形成されている確率の高い基板 上の領域を光学式検査によって検出し、微細な欠陥を検出することが可能となる電 子線による 2次検査を行う領域を速やかに選択している。
[0018] 上述の欠陥検査方法では、基板を分割するように形成された複数の領域に対して 、それぞれの領域に形成された所定のパターンを順次光学式方法で検査することで 、欠陥が生じてレ、る可能性の高!/、領域を速やかに選択して!/、る。
[0019] すなわち、上述の 1次検査においては、原則的に基板上に形成された全てのバタ ーン (形状)を検査する方法 (例えば、特開 2005— 61837号公報記載の方法)と異 なり、分割された領域毎に、当該領域にそれぞれ形成された所定のパターンを順次 検査することで、当該領域に欠陥が形成されている可能性が高いかどうかを判断して いる。その結果、欠陥が形成されている可能性が高い領域を選択し、選択された領 域に対して微細な欠陥を検出可能な電子線を用いた 2次検査を行っている。
[0020] また、上述の 1次検査を行うにあたっては、所定のパターンに対して所定の光線 (例 えばレーザ光など)を照射し、当該光線の所定のパターンによる反射光のスぺクトラ ムを分析することで所定のパターンの形状を分析する方法を用いることが好ましい。 この分析方法の例については後述する。 [0021] このように、反射光の分析によるパターン認識方法は、光学顕微鏡によるパターン 認識方法 (例えば、特開 2005— 61837号公報記載の方法)に比べて、 1次検査の 効率が良好となるとレ、う利点を有してレ、る。
[0022] すなわち、反射光のスペクトラム分析による方法では、光学顕微鏡などによるパター ン認識などのように走査して欠陥を検出しているわけではなぐスポット的に所定のパ ターンに光線を照射し、反射光を分析して欠陥と検出する。このために、反射光のス ぺクトラム分析による方法では、 1次検査の効率が良好となっている。また、このような 光線の照射 (反射光の分析)は、少なくとも分割された領域の所定のパターンが形成 された部分でスポット的に順次行えばよ!/、ため、 1次検査を非常に高速度で行うこと が可能となる。
[0023] また、基板を分割して得られる複数の領域は、例えば以下のように定めればよい。
通常、半導体装置(半導体チップ)を製造する場合には、基板はダイと呼ばれるマトリ タス状に配列された複数の領域に分割される。通常、半導体チップを形成する際に、 露光器による露光を行うときの 1単位がダイと称される。 1ダイは 1ショットと称されるこ ともある。
[0024] そこで、本実施例による欠陥検査方法では、 1次検査で用いられる複数の分割され た領域は、上述のダイに対応する領域とする。このように 1つの領域が 1つのダイに対 応する領域とすることで、欠陥検査を効率的に行うことができる。
[0025] 半導体チップを製造する場合の歩留まり低下には様々な原因がある。パターユング にあたっての露光 ·現像工程のばらつきが歩留まり低下に大きく影響していると考え られる。この場合、 1次検査を、露光 ·現像の場合の 1ショットであるダイ毎に行い、ダ ィ毎に欠陥の有無の可能性を判断することで、露光'現像のばらつきに起因する不 具合を効率的に検出することが可能となる。
[0026] 図 2は、基板 Wを複数の領域 (例えばダイ) A1に分割した一例を示す模式図である 。図 2において、領域 A1は、基板 W上にマトリクス状に配列される。 1次検査は、領域 A1の所定のパターンに対してスポット的に行われることになる。
[0027] 図 3は、領域 A1を模式的に示す拡大図である。図 3は、 1つのダイ(領域 A1)に 1つ の半導体チップ C1が形成される場合を示しており、半導体チップ C1がロジック系の 半導体チップである。
[0028] 半導体チップ C1には、論理回路が形成された領域 alと、周辺回路が形成された 領域 a2、記憶回路が形成された領域 a3などが設けられている。また、半導体チップ C1の周縁部には、テストパターンが形成された領域 Tが形成されている。テストパタ ーンは、上述の 1次検査における所定のパターンに相当する。例えば、テストパター ンに対して光学的検査が行われることで、領域 A1に対して電子線による 2次検査を おこなうか否かの判断がなされる。
[0029] また、 1次検査が行われる対象となるパターン(1次検査が行われる 1次検査エリア) と、電子線による 2次検査が行われるパターン(2次検査が行われる 2次検査エリア) は、異なるように設定してもよい。
[0030] 例えば、 1次検査においては、光学式の検査に好適な光学検査用のテストパター ンを用い、 2次検査においては電子線の検査に好適な電子線検査用のテストパター ンを用いるように、基板上にテストパターンを予め別個に形成してお!/、てもよ!/、。
[0031] また、 2次検査においては、テストパターン以外の、例えば、領域 al〜領域 a3のい ずれかに形成された、半導体チップのデバイスにかかるパターンを用いて検査を行 つてもよい。
[0032] 1次検査では、 2次検査を行う領域を選択するために、効率を最優先してテストバタ ーンを用いて速やかに検査を行い、 2次検査では製品(半導体チップ)の特性に係る デバイスのパターン (領域 al〜領域 a3)を用いて、検査の精度を優先して欠陥検出 を fiつてもよい。
[0033] また、上述の 1次検査では、 1次検査に用いられる所定のパターンの設計上の形状 と、実際に 1次検査により算出される形状の違いに応じて 2次検査を行う領域を選択 すればよい。
[0034] すなわち、 1次検査が行われた領域において、 1次検査で算出される所定のパター ンの形状と、設計上の所定のパターンの形状の差が大きい場合には、当該領域では 形状の欠陥が形成されている可能性が高いと推察される。そこで、当該領域に対し て 2次検査を行い、より微細な欠陥を検出するようにすればよい。また、 1次検査が行 われた領域において、 1次検査で算出される所定のパターンの形状と、設計上の所 定のパターンの形状の差が小さい場合には、当該領域では形状の欠陥が形成され ている可能性が低いと推察されるため、当該領域に対する 2次検査を省略することが できる。
[0035] 例えば、当該パターンが線状のパターン (パターン配線)である場合、ある領域にお いて設計上の線の幅と、 1次検査で算出された線の幅との差が所定の値以上となつ た場合には、当該領域において 2次検査を行うようにすればよい。
[0036] また、当該パターンがホール(穴)の場合には、設計上のホールの径と、 1次検査で 算出されたホールの径との差が所定の値以上となった場合には、当該領域において 2次検査を行うようにすればよい。
[0037] また上述の 1次検査では、複数の領域におけるそれぞれの所定のパターンの形状 のばらつきに応じて、 2次検査を行う領域を選択してもよい。
[0038] また、図 3に示す場合に限定されず、基板 W上の分割された領域 A1には様々なパ ターンや様々なデバイスが形成されていてもよい。図 4は、領域 A1の別の構成例を 示す図である。図 4に示す例において、領域 A1には、複数のメモリ系の半導体チッ プ C2が形成されている。また、半導体チップ C2には、メモリセル blと、周辺回路 b2 が形成されている。このように、 1ダイ(1つの領域)に対して、複数の半導体チップが 形成される場合もある。
[0039] また、図 4に示す例では、 1次検査に用いる所定のパターンとして、上述のメモリセ ル blを用いてもよい。
[0040] また、図 4に示す例における 1次検査は、例えば 1ダイにつき 1か所とし、複数の半 導体チップ C2のうちのいずれか 1つのメモリセル blに対して行うようにすればよい。 また、 1ダイの中のそれぞれの半導体チップ C2に対して 1次検査を行うようにしてもよ い。この場合には、それぞれの半導体チップ C2のメモリセル Mに対して 1次検査を 行うようにすればよい。
[0041] 次に、上述の欠陥検査方法を実施する欠陥検査装置の構成の一例について、図 5
〜図 7を参照しながら説明する。
[0042] 図 5は、図 1で説明した欠陥検査方法を実施する欠陥検査装置の構成を模式的に 示した図である。図 5に示す欠陥検査装置 300は、光学式検査装置 100と、電子線 式検査装置 200とを有する。
[0043] まず、光学式検査装置 100について説明する。光学式検査装置 100は、光学式検 查部 100A、制御部 100B、及びコンピュータ 100Cを有している。光学式検査部 10 OAは、例えばレーザなどの光線を基板上の所定のパターンに照射し、当該光線の 所定のパターンによる反射光を分析して所定のパターンの形状を認識する。光学式 検査部 100Aは、制御部 100Bを介してコンピュータ 100Cによって動作される。なお 、コンピュータ 100Cは、後述する電子線式検査装置 200と共有される。上述の光学 式検査装置 100によって、図 1で先に説明したような 1次検査が行われ、 2次検査を 行う基板上の領域が選択される。
[0044] 一方、電子線式検査装置 200は、基板 (パターン)に電子線の照射を行う電子線検 查部 200A、制御部 200B、信号処理部 200C、表示部 200D、画像機億部 200E、 パターンマッチングユニット 200F、記憶部 200G、及び光学式検査装置 100と共有 となるコンピュータ 100Cを有する。
[0045] 電子線式検査部 200Aでは、減圧空間において基板 (パターン)に電子線(1次電 子)が照射され、 1次電子の照射によって生成される 2次電子が検出される。検出され た 2次電子のデータは、信号処理部 200Cによって処理されて画像データとなる。画 像データは表示部 200Dに表示される。また、画像データは画像記憶部 200Eに順 次記憶される。画像データと比較用のパターンのパターンマッチング力 パターンュ ニット 200Fによって行われ、欠陥が検出される。また、欠陥検出のデータは、必要に 応じて記憶部 200Gに記憶される。
[0046] 上述のように、電子線式検査装置 200では、電子線を用いることで光学式の検査で は検出することが困難な微細なパターンの欠陥を検出することが可能になっている。
[0047] 次に、光学式検査装置 100と電子線式検査装置 200のそれぞれの原理について、 図面に基づき説明する。
[0048] まず、上述の光学式検査部 100Aが、所定のパターンの形状を認識する原理につ いて、図 6を参照しながら説明する。光学式検査部 100Aは、図 6に示すように、基板 Wの所定のパターン (例えばテストパターンなど)の 1次検査エリア A2に対して、照射 手段 101によってレーザなどの光線 103を照射する。 [0049] ここで、光線 103は所定のパターンによって反射される。反射光 104は、検知部 10 2によって検知され、例えば分光楕円偏光解析器や分光反射計などの分光部(図示 せず)によって分光が行われ、スペクトル分析が行われる。ここで、反射光のスぺタト ノレのパターンと、コンピュータ 100Cに予め記憶された複数のスペクトルのパターン( これらをライブラリと称することもある)を比較して、最も近似したスペクトルを選択する ことにより、上述の所定のパターンのプロファイル (線幅、穴径、高さなど)を算出する こと力 Sでさる。
[0050] このような光学式のパターン認識の方法(装置)は、例えば、特開 2005— 61837 号公報、特開 2002— 243925号公報、特開 2005— 517903号公報などに記載さ れている。上述の方法によれば、例えば、光学顕微鏡によるパターン認識などを用い た場合と比べて、効率よく 1次検査を行うことができる。
[0051] また、上述の方法によれば、パターンの線幅ゃ穴径のみならず、例えば形成される ノ ターンの角度やパターンのエッジでの表面粗さなども、画像処理などの複雑な処 理を行うことなく迅速に算出することができる
すなわち、上述の方法では、光線 103が照射された 1次検査エリア A2におけるパ ターン形状の全般的な傾向を速やかに把握することが可能なため、当該パターンが 形成された領域に対して 2次検査を行うかどうかの選択を速やかに行うことが可能に なる。
[0052] 次に、電子線式検査装置 100における電子線検査部 100Aの概要について、図 7 を参照しながら説明する。図 7は、電子線式検査部 200Aの概要を模式的に示した 図である。
[0053] 図 7に示すように、本実施例による電子線式検査部 200Aは、排気手段 220によつ て内部が真空排気されて減圧空間となる真空容器 201を有している。真空容器 201 の内部には、検査対象となる基板 Wを保持する基板保持台 205が設置されている。 また、基板保持台 205に対向するように、基板 Wに 1次電子を照射する電子放出部 2 02が設置されている。
[0054] また、電子放出部 202と基板保持台 205の間には、放出された 1次電子(電子線) を集束するための集束レンズ 203と、 1次電子を走査するための走査コイル 204、お よびアパーチャ 221が設置されている。さらに、基板保持台 205と走査コイル 204の 間には、 1次電子の照射によって生成される 2次電子を検出する電子検出部 206が 設置されている。電子放出部 202には、電子放出部 202に電圧を印加するための電 源 207が接続されている。
[0055] 電子式検査部 200Aでは、電源 207から電子放出部 202に所定の電圧が印加され ることで、 1次電子が基板 Wに照射される。基板 W上のパターンに照射された 1次電 子によって生成された 2次電子は、電子検出部 206によって検出され、図 5に示す信 号処理部 200Cによって処理されて画像データとなる。
[0056] 電子線式検査部 200Aは、 SEM (走査型電子顕微鏡)式検査装置と称されることも ある。
[0057] 上述のように、電子線を用いた欠陥検査では、光学式に比べてより微細な欠陥を検 出することが可能である。しかし一方で、高倍率で検査を行うために、広い面積を検 查する場合には時間力かかるという問題がある。
[0058] そこで、欠陥検査装置 300では、光学式検査装置 100によって 1次検査を行い、電 子線を用いた 2次検査を実施する基板上の領域を速やかに選択している。このため
、より効率的に微細な欠陥の検査を行うことができる。
[0059] また、欠陥検査装置 300では、先に説明したように、基板の分割された領域の一部 の所定のパターンを、順次スポット状に検査するため、 2次検査が必要な欠陥が発生 して!/、る可能性の高!/、領域を速やかに選択することができる。
[0060] また、上述の欠陥検査方法および欠陥検査措置は、半導体チップ (半導体装置) の製造のみならず、例えば液晶表示装置やプラズマディスプレイなどの表示装置や
、その他の電子部品の製造に対しても適用可能である。
[0061] 以上、本発明を好ましい実施例について説明したが、本発明は具体的に開示され た実施例に限定されるものではなぐ本発明の範囲を逸脱することなぐ様々な変形' 改良が可能である。
[0062] 本出願は 2006年 8月 11日出願の優先権主張出願 2006— 220162号に基づくも のであり、その全内容はここに援用される。
産業上の利用可能性 本発明は、光学式の検査と電子線による検査とを用いた欠陥検査方法及び装置に 適用可能である。

Claims

請求の範囲
[1] 基板上に形成された形状の欠陥を検査する欠陥検査方法であって、
前記基板上の分割された複数の領域にそれぞれ形成される所定のパターンに対し て光学式方法で順次 1次検査を行い、該複数の領域のうちから 2次検査を行う該領 域を選択する第 1の工程と、
該第 1の工程で選択された前記領域に対して、電子線を用いた前記 2次検査を行 つて欠陥を検出する第 2の工程と
を有することを特徴とする欠陥検査方法。
[2] 前記領域の各々は、前記基板に半導体チップを形成する際の 1つのダイに対応す る領域であることを特徴とする請求項 1記載の欠陥検査方法。
[3] 前記領域の各々は、前記基板に半導体チップを形成する際の 1つの半導体チップ に対応する領域であることを特徴とする請求項 1記載の欠陥検査方法。
[4] 前記所定のパターンは、前記複数の領域にそれぞれ形成されたテストパターンで あることを特徴とする請求項 1乃至 3のうちいずれ力、 1項記載の欠陥検査方法。
[5] 前記所定のパターンは、前記複数の領域にそれぞれ形成されたメモリセルであるこ とを特徴とする請求項 1乃至 3のうちいずれ力、 1項記載の欠陥検査方法。
[6] 前記第 1の工程において、前記所定のパターンに光線を照射し、前記所定のバタ ーンによる前記光線の反射光のスペクトルを分析することで、前記所定のパターンの 分析を行うことを特徴とする請求項 1乃至 3のうちいずれ力、 1項記載の欠陥検査方法
[7] 基板上に形成された形状の欠陥を検査する欠陥検査装置であって、
前記基板上の分割された複数の領域にそれぞれ形成される所定のパターンに対し て、光学式方法で順次 1次検査を行って当該複数の領域のうちから 2次検査を行う当 該領域を選択する光学式検査装置と、
前記光学式検査装置で選択された前記領域に対して、電子線を用いた前記 2次検 查を行って欠陥を検出する電子線式検査装置と
を有することを特徴とする欠陥検査装置。
[8] 前記光学式検査装置は、前記所定のパターンに光線を照射し、前記所定のパター ンによる前記光線の反射光のスペクトルを分析することで前記所定のパターンの分 析を行うことを特徴とする請求項 7記載の欠陥検査装置。
PCT/JP2007/065451 2006-08-11 2007-08-07 Defect inspecting method and defect inspecting apparatus WO2008018463A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2007800008533A CN101341589B (zh) 2006-08-11 2007-08-07 缺陷检查方法和缺陷检查装置
US12/376,407 US8040504B2 (en) 2006-08-11 2007-08-07 Defect inspecting method and defect inspecting apparatus
KR1020097002675A KR101046799B1 (ko) 2006-08-11 2007-08-07 결함 검사방법 및 결함 검사장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-220162 2006-08-11
JP2006220162A JP5022648B2 (ja) 2006-08-11 2006-08-11 欠陥検査方法および欠陥検査装置

Publications (1)

Publication Number Publication Date
WO2008018463A1 true WO2008018463A1 (en) 2008-02-14

Family

ID=39032993

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/065451 WO2008018463A1 (en) 2006-08-11 2007-08-07 Defect inspecting method and defect inspecting apparatus

Country Status (6)

Country Link
US (1) US8040504B2 (ja)
JP (1) JP5022648B2 (ja)
KR (1) KR101046799B1 (ja)
CN (1) CN101341589B (ja)
TW (1) TWI404155B (ja)
WO (1) WO2008018463A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5086970B2 (ja) * 2008-11-05 2012-11-28 パナソニック株式会社 木材の外観検査装置、木材の外観検査方法
JP2010112833A (ja) * 2008-11-06 2010-05-20 Hitachi High-Technologies Corp 電子線式基板検査装置
KR101955466B1 (ko) * 2010-10-26 2019-03-12 삼성디스플레이 주식회사 실링 검사 장치 및 이를 이용한 평판 표시 장치의 실링 검사 방법
US10151986B2 (en) 2014-07-07 2018-12-11 Kla-Tencor Corporation Signal response metrology based on measurements of proxy structures
JP6685301B2 (ja) * 2014-11-19 2020-04-22 デカ テクノロジーズ インコーポレイテッド ユニット固有パターニングの自動光学検査
JP6521735B2 (ja) * 2015-05-20 2019-05-29 Juki株式会社 検査装置、検査方法及び検査装置で用いられるプログラム
US10042974B2 (en) * 2016-05-30 2018-08-07 Camtek Ltd. Inspecting a wafer using image and design information
KR20180079157A (ko) * 2016-12-29 2018-07-10 삼성전자주식회사 반도체 소자의 제조 방법
KR102409943B1 (ko) * 2017-11-29 2022-06-16 삼성전자주식회사 결함 검출 방법 및 이를 수행하기 위한 장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005017145A (ja) * 2003-06-27 2005-01-20 Hitachi High-Technologies Corp 試料寸法測定方法及び荷電粒子線装置
JP2005061837A (ja) * 2003-08-11 2005-03-10 Jeol Ltd 走査型荷電粒子ビーム装置を用いた欠陥検査方法
JP2007235023A (ja) * 2006-03-03 2007-09-13 Hitachi High-Technologies Corp 欠陥観察方法および装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4206192B2 (ja) * 2000-11-09 2009-01-07 株式会社日立製作所 パターン検査方法及び装置
US6252412B1 (en) * 1999-01-08 2001-06-26 Schlumberger Technologies, Inc. Method of detecting defects in patterned substrates
JP4677701B2 (ja) * 2001-09-28 2011-04-27 株式会社日立製作所 パターン検査方法及び検査結果確認装置
WO2002037526A1 (fr) * 2000-11-02 2002-05-10 Ebara Corporation Appareil a faisceau electronique et procede de fabrication d'un dispositif a semi-conducteur comprenant ledit appareil
JP3817464B2 (ja) * 2001-11-13 2006-09-06 株式会社日立ハイテクノロジーズ 微細パターンの3次元形状測定システム、及び3次元形状測定方法
CN1518085B (zh) * 2003-01-15 2010-05-12 内格夫技术有限公司 用于快速在线电光检测晶片缺陷的方法和系统
JP4564728B2 (ja) * 2003-07-25 2010-10-20 株式会社日立ハイテクノロジーズ 回路パターンの検査装置
KR101346492B1 (ko) * 2003-10-27 2013-12-31 가부시키가이샤 니콘 패턴 검사장치 및 패턴 검사방법
JP4283201B2 (ja) * 2004-10-14 2009-06-24 株式会社荏原製作所 情報記録媒体検査装置および方法
JP5283830B2 (ja) * 2006-06-13 2013-09-04 富士通セミコンダクター株式会社 欠陥検査方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005017145A (ja) * 2003-06-27 2005-01-20 Hitachi High-Technologies Corp 試料寸法測定方法及び荷電粒子線装置
JP2005061837A (ja) * 2003-08-11 2005-03-10 Jeol Ltd 走査型荷電粒子ビーム装置を用いた欠陥検査方法
JP2007235023A (ja) * 2006-03-03 2007-09-13 Hitachi High-Technologies Corp 欠陥観察方法および装置

Also Published As

Publication number Publication date
CN101341589A (zh) 2009-01-07
TWI404155B (zh) 2013-08-01
JP5022648B2 (ja) 2012-09-12
JP2008047635A (ja) 2008-02-28
CN101341589B (zh) 2012-05-30
US20100245812A1 (en) 2010-09-30
US8040504B2 (en) 2011-10-18
TW200816343A (en) 2008-04-01
KR101046799B1 (ko) 2011-07-05
KR20090033892A (ko) 2009-04-06

Similar Documents

Publication Publication Date Title
WO2008018463A1 (en) Defect inspecting method and defect inspecting apparatus
JP4312910B2 (ja) レビューsem
US8804109B2 (en) Defect inspection system
TW201625915A (zh) 用於程序窗特徵化之虛擬檢測系統
TWI744540B (zh) 用於高效處理窗口探索之混合檢測系統
JP2006148091A (ja) ウェーハを検査するための方法
CN110892516B (zh) 识别晶片上的干扰缺陷的来源
JP2001004347A (ja) 欠陥検査装置
JP4287863B2 (ja) レビューsem
JP3793668B2 (ja) 異物欠陥検査方法及びその装置
JP5036889B2 (ja) レビューsem
JP4745380B2 (ja) レビューsem
JP2007078356A (ja) 欠陥検査装置
JP2009008396A (ja) 検査装置及び検査方法
WO2021037695A1 (en) Self-differential confocal tilt sensor for measuring level variation in charged particle beam system
US20120241645A1 (en) Mask inspection apparatus and mask inspection method
JPH10242227A (ja) ウエハのマクロ検査方法および自動ウエハマクロ検査装置
KR20070016496A (ko) 결함 분류 방법 및 이를 수행하기 위한 장치
KR20080087427A (ko) 반도체 장치의 결함 검사 방법
CN114641726B (zh) 集成式多工具光罩检验
JP2010258013A (ja) 基板検査装置及び方法
JP2004258384A (ja) 欠陥検査方法及びその装置、並びに露光用マスクの前処理方法
JP2002236907A (ja) 欠陥検査装置及び該装置を用いた半導体デバイス製造方法
JP2002092595A (ja) パターン検査方法および装置
JP2024511008A (ja) ダイスクリーニングシステムおよび方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780000853.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07792120

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12376407

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020097002675

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07792120

Country of ref document: EP

Kind code of ref document: A1