WO2008014750A2 - Dünnfilm-halbleiterbauelement und bauelement-verbund - Google Patents

Dünnfilm-halbleiterbauelement und bauelement-verbund Download PDF

Info

Publication number
WO2008014750A2
WO2008014750A2 PCT/DE2007/001273 DE2007001273W WO2008014750A2 WO 2008014750 A2 WO2008014750 A2 WO 2008014750A2 DE 2007001273 W DE2007001273 W DE 2007001273W WO 2008014750 A2 WO2008014750 A2 WO 2008014750A2
Authority
WO
WIPO (PCT)
Prior art keywords
layer
thin
film semiconductor
semiconductor device
heat dissipation
Prior art date
Application number
PCT/DE2007/001273
Other languages
English (en)
French (fr)
Other versions
WO2008014750A3 (de
Inventor
Siegfried Herrmann
Berthold Hahn
Original Assignee
Osram Opto Semiconductors Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram Opto Semiconductors Gmbh filed Critical Osram Opto Semiconductors Gmbh
Priority to KR1020097004412A priority Critical patent/KR101386303B1/ko
Priority to JP2009522082A priority patent/JP5517616B2/ja
Priority to CN200780036707.6A priority patent/CN101542752B/zh
Priority to EP07785643A priority patent/EP2047525A2/de
Priority to US12/376,425 priority patent/US8872330B2/en
Publication of WO2008014750A2 publication Critical patent/WO2008014750A2/de
Publication of WO2008014750A3 publication Critical patent/WO2008014750A3/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/642Heat extraction or cooling elements characterized by the shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/647Heat extraction or cooling elements the elements conducting electric current to or from the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • H01L33/385Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape the electrode extending at least partially onto a side surface of the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/54Encapsulations having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls

Definitions

  • the invention relates to a thin-film semiconductor device and a device composite.
  • the published patent application DE 100 40 448 A1 describes a semiconductor chip and a method for producing semiconductor chips in thin-film technology.
  • a layer composite of an active layer sequence and a base layer is arranged.
  • a reinforcing layer and a subcarrier layer are added to the layer composite, which are applied by electroplating to the base layer before the substrate is peeled off.
  • a film is laminated to handle the semiconductor chips formed from the layer composite.
  • a thin-film semiconductor component according to the invention has a carrier layer and a layer stack arranged on the carrier layer, which contains a semiconductor material and is provided for emitting radiation, wherein a heat dissipation layer provided for cooling the semiconductor component is applied to the carrier layer.
  • the heat dissipation layer is intended to absorb the heat generated during operation of the thin-film semiconductor device and to dissipate it out of the layer stack or component.
  • the heat dissipation layer includes a material having a comparatively high thermal conductivity. This has the advantage that a decrease in the light output, which is caused by the heat generated during operation of the component and a temperature increase associated therewith, can be counteracted. Furthermore, this makes it possible to reduce the risk of a wavelength shift occurring in the temperature increase of the radiation generated.
  • the heat transfer between the layer stack and the heat dissipation layer can be effected by heat conduction and / or thermal radiation.
  • the thin-film semiconductor component is characterized in particular by at least one of the following characteristic features:
  • a reflective layer is preferably applied or formed which reflects back at least part of the electromagnetic radiation generated in the epitaxial layer sequence;
  • the epitaxial layer sequence has a thickness in the range of 20 microns or less, in particular in the range of 10 microns;
  • the epitaxial layer sequence contains at least one semiconductor layer with at least one surface which has a mixing structure which, in the ideal case, leads to an approximately ergodic distribution of the light in the epitaxial epitaxial layer sequence, i. it has as ergodically stochastic scattering behavior as possible.
  • the heat dissipation layer is arranged on a side of the carrier layer facing the layer stack.
  • the heat dissipation layer may be fixed on the carrier layer.
  • the heat dissipation layer is arranged between the layer stack and the carrier layer.
  • the layer stack can be mounted on the heat dissipation layer serving as a cooling element and connected to it in a thermally conductive manner, wherein the heat dissipation layer is integrated on or in the carrier layer.
  • the heat dissipation layer is formed flat. This means that the lateral dimensions of the heat dissipation layer are greater than their height.
  • the heat dissipation layer has a base area which is at least as large as the base area of the layer stack.
  • the base surface of the heat dissipation layer does not necessarily have a rectangular shape, but may for example also be formed scaly, so that in particular two the base surface bounding side edges are curved.
  • the heat dissipation layer is preferably formed as a closed surface.
  • the heat dissipation layer preferably contains an electrically conductive material.
  • the heat dissipation layer may serve as an electrical contact in this case.
  • the heat dissipation layer is a metal coating applied to the carrier layer.
  • the heat dissipation layer may include Cu, Ni or Ag.
  • the heat dissipation layer may include an electrically insulating material, such as a ceramic material.
  • Silicon is also a suitable material for the heat dissipation layer.
  • the thickness of the heat dissipation layer is in the one to two-digit micrometer range.
  • the thickness may be 5 ⁇ m to 30 ⁇ m.
  • the thickness of the heat dissipation layer is advantageously dimensioned such that on the one hand it is sufficiently thin so as not to increase the structural height of the component significantly, and on the other hand is sufficiently thick to effect a relatively good cooling of the component.
  • the carrier layer is a film.
  • the carrier layer may be a plastic sheet produced in webs. Sufficient stability can be achieved despite a relatively small thickness of the carrier layer. Because of the relatively small thickness, the carrier layer is elastic, whereby the risk of cracking is reduced.
  • a relatively small thickness is to be understood as meaning preferably 100 ⁇ m, particularly preferably less than 100 ⁇ m.
  • the carrier layer preferably contains a plastic material.
  • a plastic material an epoxy resin, PET (polyethylene terephthalate) or a polymer, in particular a polyimide suitable.
  • the carrier layer is transparent to the radiation emitted by the layer stack. More preferably, the heat dissipation layer is offset relative to the layer stack. As a result, the radiation can decouple through the carrier layer, without departing from the
  • the thin-film semiconductor component may advantageously be emitting on both sides.
  • the carrier layer can be electrically conductive or insulating.
  • the carrier layer is arranged on a base.
  • the pad may be a metal foil.
  • the carrier layer which in this variant is preferably a plastic film, is mechanically and thermally connected to the substrate by means of a heat-conductive paste.
  • the carrier layer may have an opening with a via, so that a first electrical connection of the layer stack takes place by means of the underlay and a second electrical connection by means of the heat dissipation layer applied to the carrier layer.
  • the carrier layer may comprise a first partial layer and a second partial layer.
  • the first sub-layer is applied to the second sub-layer, and moreover has a small layer thickness.
  • the layer thickness is measured in particular by the desired heat flow, which should flow through the first part-layer and should be as large as possible.
  • the heat flow is antiproportional to the layer thickness.
  • the second sub-layer may be a film, in particular a metal foil, which is coated with a thin plastic layer, the first sub-layer.
  • the first sub-layer counteracts upon heating of an expansion of the second sub-layer.
  • the layer stack may be glued or bonded to the heat dissipation layer.
  • the following steps are also carried out:
  • the carrier layer is applied, which adheres to the layer stack after being bonded to the carrier layer.
  • a detachment of the growth substrate is also conceivable without prior application of the carrier layer on the layer stack.
  • a cover layer for covering the layer stack is arranged on a side of the layer stack opposite the carrier layer.
  • This can advantageously replace a potting.
  • the 'cover layer is geeigent to prevent the ingress of moisture loss.
  • the covering layer is applied to the layer stack by means of a coating method, for example by means of the curtain coating method.
  • the curtain coating process advantageously allows a very uniform cover layer even on uneven surfaces.
  • the covering layer is a film.
  • the covering layer may be applied on the side of the layer stack facing away from the carrier layer as a flexible covering layer and then cured.
  • the flexible cover layer may be left in an incompletely cured state.
  • Another possibility is to apply a cover layer which has a base layer and an adhesive layer facing the layer composite, the adhesive layer adhering to the layer composite.
  • the cover layer preferably contains a transparent material.
  • the cover layer can serve as a coupling-out layer.
  • the cover layer comprises a converter material for converting the radiation emitted by the layer stack.
  • the converter material is suitable for converting at least part of the radiation emitted by the layer stack to longer wavelengths.
  • the ultraviolet or blue radiation emitted by wavelength conversion of a portion of the emitted radiation in the complementary spectral range, such as the yellow spectral range, white light can be generated.
  • such a design allows a cost-effective use assembly for white thin-film semiconductor devices.
  • a layer stack that emits ultraviolet or blue radiation has, in particular, a material based on nitride compound semiconductors.
  • a material based on nitride compound semiconductors in the present context means that the active epitaxial layer sequence or at least one layer thereof comprises a nitride III / V compound semiconductor material, preferably Al n Ga m Ini n . M N, where O ⁇ n ⁇ l, O ⁇ m ⁇ l and n + m ⁇ 1.
  • this material does not necessarily have to have a mathematically exact composition according to the above formula, but instead it may contain one or more dopants and additional constituents which have the characteristic physical properties of Al n Ga .
  • m ini- n ", N - not change material is substantially the sake of simplicity, however, the above formula includes only the major components of the crystal lattice (Al, Ga, in, N), even if this is partly replaced by small amounts of other substances. could be.
  • the cover layer has an optical structure. This can be formed, for example lens, prism or pyramid-shaped, which, inter alia, a bundling of the radiation or improving the radiation extraction is possible. Furthermore, the cover layer may be partially mirrored. In particular, the cover layer has a reflective coating, which in combination with the covering layer opposite Heat dissipation layer, which is then particularly reflective, allows a relatively homogeneous radiation distribution in the device, so that a comparatively uniform luminous surface can be realized.
  • the optical structure can be arranged on a side of the cover layer facing or facing away from the layer stack.
  • a two-sided arrangement of the carrier layer and the cover layer can advantageously replace a housing body.
  • the covering layer alone is sufficient to ensure the mechanical stability of the thin-film semiconductor component.
  • the carrier layer can be completely removed at the end of the manufacturing process.
  • the heat dissipation layer can then serve as a mounting surface.
  • the layer stack can have a second electrical connection region on an outcoupling side facing away from the carrier layer.
  • the radiation outcoupling side contacting of the layer stack preferably runs along a the Layer stack facing surface of the cover at least one conductor track.
  • the conductor can run along the cover layer.
  • the conductor track may partially extend on the layer stack, partially on the carrier layer, wherein a passivation layer is arranged between the conductor track and the layer stack.
  • the conductor can be formed self-supporting.
  • the conductor track is preferably connected to a contact pad arranged on the carrier layer and rests on the passivation layer.
  • the contact pad particularly preferably has a height corresponding to the layer stack, so that the conductor track runs substantially parallel to the radiation decoupling surface and an electrical connection region arranged thereon can be contacted easily.
  • Advantageous dimensions of the conductor track are on the order of 10 ⁇ m x 50 ⁇ m. For high current applications, the dimensions may be larger.
  • a wireless auskoppel cone ⁇ contacting is preferred. This has a positive effect on the height of the thin-film semiconductor device, since the -Leiterbahn is flatter compared to a bonding wire. In addition, wireless bonding is advantageous in terms of wavelength conversion occurring in the capping layer.
  • the second electrical connection region is formed in a preferred variant as a contact structure, which has a bonding pad and contact webs.
  • the bonding pad is preferably arranged in an edge region of the radiation exit surface, so that in the central Area of the radiation exit surface from the stack of layers exiting radiation is advantageously not absorbed in the bonding pad.
  • the arrangement of the bond pad in an edge region of the radiation exit surface is to be understood in particular as meaning that the center of the bond pad is at a smaller distance from at least one side edge of the layer stack than to the center of the
  • the arrangement of the bond pad in an edge region of the radiation exit surface advantageously makes it unnecessary to lead a conductor path via the radiation exit surface to the bond pad, as a result of which absorption of the emitted radiation would occur.
  • a plurality of contact webs, which are electrically conductively connected to the bonding pad are arranged on the radiation exit surface, by means of which a comparatively homogeneous current distribution in the layer stack is achieved despite the bonding pad arranged in an edge region of the radiation exit surface.
  • the thin-film semiconductor device is comparatively flexible.
  • a component composite according to the invention has at least two thin-film semiconductor components according to at least one of the abovementioned embodiments. Since the thin-film semiconductor components are comparatively flexible, in the case of a planar arrangement of the thin-film semiconductor components, any predetermined curved luminous surfaces and thus different luminous figures can be realized by means of the component composite. Conceivable is, inter alia, to bend the sheet-like component composite tubular, so that a light-emitting cylinder is formed.
  • the thin-film semiconductor components have a common carrier layer.
  • the carrier layer is formed in particular according to one of the variants mentioned above.
  • a contact pad for an outcoupling-side electrical contact of the layer stacks on the carrier layer is applied between the layer stacks.
  • the thin-film semiconductor devices may be electrically connected in various ways.
  • the thin-film semiconductor devices are connected in series.
  • the second connection region of a first thin-film semiconductor component for example by means of a bonding wire, is particularly preferably electrically connected to the heat-dissipation layer of a second thin-film semiconductor component, the heat-dissipation layer serving as an electrical contact.
  • the first and the second connection region may be arranged on a side of the layer stack facing the carrier layer, wherein the first connection region is electrically connected to a first heat-dissipating layer serving as electrical contact and the second connection region is electrically connected to a second heat-dissipating layer serving as electrical contact.
  • An inventive component composite is particularly suitable for backlighting, for example of LCD displays.
  • the size of the component composite that is, the number of thin-film semiconductor devices, can be easily varied, since a severing due to the flexible support layer and thus the division into smaller component composites is not difficult.
  • FIG. 1 shows a schematic plan view of a first exemplary embodiment of a thin-film semiconductor component according to the invention
  • FIG. 2 shows a schematic sectional view of the first exemplary embodiment of a thin-film semiconductor component according to the invention shown in FIG. 1,
  • Figure 3 is a schematic sectional view of a second. ' .
  • Embodiment of a thin-film semiconductor device according to the invention
  • FIG. 4 shows a schematic sectional view of a third exemplary embodiment of a thin-film semiconductor component according to the invention
  • FIG. 5 shows a schematic plan view of a fourth exemplary embodiment of a thin-film semiconductor component according to the invention
  • FIG. 6 shows a schematic sectional view of a fifth exemplary embodiment of a thin-film semiconductor component according to the invention
  • FIG. 7 shows a schematic top view of a first exemplary embodiment of a component composite according to the invention
  • FIGS. 8a and 8b show a schematic top view of a second and third exemplary embodiment of a component assembly according to the invention, and FIG. 8c shows a schematic cross-sectional view of the second embodiment shown in FIG. 8a,
  • Figure 9 is a schematic cross-sectional view of a fourth embodiment of a device composite according to the invention.
  • Figure 10 is a schematic cross-sectional view of a fifth embodiment of a device composite according to the invention.
  • the same or equivalent components are each provided with the same reference numerals.
  • the illustrated components of the figures, in particular the sizes of layer thicknesses shown, are in principle not to be regarded as true to scale. Rather, they can be exaggerated in size for clarity.
  • the thin-film semiconductor component 1 shown in FIG. 1 has a cover layer 10.
  • This can be a layer stack 8 (see Figure 2) from damaging moisture protect.
  • the covering layer 10 is permeable to the radiation which is generated by a semiconductor layer sequence 5 of the layer stack 8 (see FIG. In this case, the covering layer 10 simultaneously serves as a coupling-out layer.
  • the covering layer 10 may have an optical structure for changing the emission characteristic of the thin-film semiconductor component 1, which is formed, for example, in the form of a lens, prism or pyramid.
  • the cover layer 10 may be partially mirrored.
  • the cover layer 10 is suitable as electrical insulation between a heat dissipation layer 3 and a conductor 9.
  • the heat dissipation layer 3 can have electrical conductivity in addition to the thermal conductivity.
  • a passivation layer 7 is arranged between the conductor track 9 and the semiconductor layer sequence 5. This contains, for example, silicon oxide.
  • the layer sequence 5 is provided essentially for generating radiation.
  • the layer sequence 5 can have a conventional pn junction, a double heterostructure, a single quantum well structure or a multiple quantum well structure.
  • the layer sequence 5 is substrateless, which means that a growth substrate used for growing the layer sequence 5 is no longer present in the finished thin-film semiconductor component 1.
  • the layer stack 8 (see Figure 2) comprises a first electrical connection region 5 and a second electrical connection region 6, which is arranged radiation output side.
  • the layer stack 8 is arranged on a carrier layer 2 which has a heat dissipation layer 3.
  • the carrier layer 2 is a film on which the heat dissipation layer 3 is patterned before the layer stack 8 is mounted on the heat dissipation layer 3.
  • the layer stack 8 is bonded to the heat dissipation layer 3.
  • the thickness D w of the heat dissipation layer 3 is preferably between 5 ⁇ m and 30 ⁇ m, with a metal, for example Cu, Ni or Ag, being particularly suitable as the material.
  • the thickness D 3 of the layer sequence 5 and of the first electrical connection region 4, which is approximately 7 ⁇ m, can thus be less than the thickness D w of the heat dissipation layer 3.
  • the small thicknesses of the carrier layer 2, the slaughterableit ⁇ ngsSchicht 3 and the layer stack 8 allow a total of a thin-film semiconductor device • 1 low overall height. It is a height D ges achievable, which is preferably less than 100 ⁇ m.
  • the combination of carrier layer 2 and cover layer 10, which replace a housing body or form a housing for the thin-film semiconductor component 1, also contributes to this.
  • the low height of a single thin-film semiconductor device 1 allows stacking of a plurality of thin-film semiconductor devices, whereby the luminance can be increased.
  • the heat dissipation layer 3 completely covers a base area of the layer stack 8.
  • the heat dissipation layer 3 it is also possible for the heat dissipation layer 3 to be offset from the layer stack, so that the radiation emitted by the layer sequence reaches the carrier layer 2 directly.
  • the conductor 9, which is provided for a second electrical connection, preferably runs in steps.
  • the conductor track from the first electrical connection region 6 is guided along a radiation decoupling surface 11 over a side surface of the layer stack 8 onto the carrier layer 2.
  • the heat dissipation layer 3 and the conductor 9 are opposite the backing layer 2 or the covering layer 10 in the lateral direction in such a way shows that its electrical connection to a power supply 'is possible in a simple manner.
  • the conductor 9 directly to the' stack of layers 8 and to apply the carrier layer. 2
  • the conductor can be arranged on the cover layer 10.
  • the carrier layer 2 has a first partial layer 2 a and a second partial layer 2 b.
  • the first 'part layer 2a is a thin layer, the thickness of the Partial layer 2a is chosen such that a relatively high heat flow is possible. The heat flow is antiproportional to the layer thickness.
  • the thickness of the sub-layer 2a is in the single-digit micrometer range.
  • the partial layer 2 a is electrically insulating and in particular contains a plastic material.
  • both the conductor track 9 and the heat dissipation layer 3 can be applied to the carrier layer 2, without these being short-circuited.
  • the heat dissipation layer 3 may be formed of a system of electrodeposited layers.
  • the second sub-layer 2b is a film, preferably a metal foil containing copper, for example, is provided.
  • a good heat transfer is possible.
  • a strong expansion of the second sub-layer 2b due to the heating can be advantageously counteracted by the first sub-layer 2a, which has a lower thermal expansion coefficient than the second sub-layer 2b.
  • the carrier layer 2 is arranged on a base 15.
  • the pad 15 advantageously has a good thermal conductivity.
  • the pad 15 is a metal foil.
  • the carrier layer 2, however, may be a plastic film.
  • a carrier layer 2 made of paper is conceivable.
  • a thermal compound is used for the mechanical and thermal connection of the carrier layer 2 to the substrate 15.
  • the thin-film component 1 shown schematically in plan view in FIG. 5 comprises a carrier layer 2 on which the heat-dissipation layer 3 and the layer stack
  • the carrier layer 2 has a contact pad 12, with which the conductor track 9 is electrically connected.
  • the coupling-out second electrical connection region 6 is designed in the form of a contact structure which has a bonding pad 6a and a plurality of contact webs 6b provided for current expansion, which are electrically conductively connected to the bonding pad, the bonding pad 6a being disposed in an edge region of the radiation exit surface 11 (see FIG ) is arranged.
  • the second electrical connection region 6 and the conductor 9 expediently contain an electrically conductive material.
  • This may be a metal or a TCO (Transparent Conductive Oxide).
  • the layer stack 8 has an almost complete coating on the surface, which is formed from the passivation layer 7. Furthermore, for electrical insulation between the carrier layer 2 and the covering layer 10, a filling layer (not shown) may be introduced, which further holds the carrier layer 2 and the covering layer 10 together.
  • the carrier layer 2 may be electrically conductive, so that it makes sense to remove the carrier layer 2 in the region between the heat dissipation layer 3 and the contact pad 12 in order to avoid a short circuit during operation of the thin-film semiconductor component 1.
  • the thin-film semiconductor component 1 can be soldered or glued onto a printed circuit board in accordance with an SMT component with the structured carrier layer 2.
  • the component composite 13 shown in FIG. 7 has a plurality of layer stacks 8, which are preferably designed as described in more detail in connection with FIGS. 2 and 6.
  • the stack of layers 8 are anuß.- on a common carrier layer 2 Further, the stack of layers 8 are connected by means of the conductor tracks 9 to a common 'contact pad 12, which is arranged on the carrier layer. 2
  • the size of the device array 13 can be varied by simply dicing the device array 13.
  • the component composite 13 is particularly suitable for backlighting and lighting purposes.
  • component circuits 13 are shown, which have a plurality of thin-film semiconductor devices 1.
  • the thin-film semiconductor components 1 each comprise a layer stack 8 and a part of the common carrier layer 2, on which the layer stacks 8 are arranged.
  • a heat dissipation layer 3 which serves here except for cooling as an electrical contact.
  • a bonding wire 14 leads to the rear side disposed heat dissipation layer 3 of a second thin film semiconductor device 1 adjacent to the first thin film semiconductor device 1.
  • the two thin film semiconductor devices 1 are connected in series.
  • the number of series-connected thin-film semiconductor components 1 can be chosen arbitrarily large due to the application.
  • the layer stacks 8 are arranged in a decentralized manner on the respective heat dissipation layer 3, as a result of which an improved front-side contacting of the layer stacks 8 is possible in comparison to a central arrangement.
  • the base of the heat-dissipating layer 3 is formed like a scale and has in particular a recessed side edge and a side edge thereof opposite bulged.
  • the layer stack 8 is preferably arranged on the indented side edge, since the current injection is better here than in the bulged side edge.
  • part of the heat dissipation layers 3 may be free of layer stacks 8.
  • the unpopulated heat dissipation layers 3 are preferably integrated into the series connection, so that advantageously also a layer stack 8 surrounded by unpopulated heat dissipation layers 3 can be supplied with electrical comparatively simple.
  • FIG. 8c shows a cross-sectional view of the component composite 13 already described in connection with FIG. 8a.
  • the component composite 13 comprises a plurality of layer stacks 8, which are arranged on a common carrier layer 2 and are each mechanically and electrically connected to a first heat dissipation layer 3 and a second heat dissipation layer 3 adjacent to the first heat dissipation layer 3. are connected. Both electrical contacts are in this case on the .jesper heat dissipation layers 3 facing side of the layer stack 8.
  • a complete connection of the layer stacks 8 can take place by means of a complete bridging of adjacent heat dissipation layers 3 by means of a plurality of layer stacks 8.
  • both electrical contacts of the layer stacks 8 are arranged on the side facing the carrier layer 2.
  • the carrier layer 2 contains in this case electrically insulating material, in particular a plastic material, and further comprises openings for plated-through holes.
  • the carrier layer 2 is a plastic film.
  • the base 15, with which the carrier layer 2 is mechanically and thermally connected, is preferably a metal foil, so that a first electrical connection of the layer stacks 8 takes place by means of the base 15.
  • a second electrical connection of the layer stacks 8 is possible by means of the heat dissipation layer (not shown) applied to the carrier layer 2.
  • the methods for wireless contacting used in the invention require no. adjusted bonding process. Furthermore, the arrangement of the heat dissipation layer serving as a conductor track and the further conductor track on one side of the component enables a simple contacting of the thin-film semiconductor component.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Laminated Bodies (AREA)

Abstract

Die Erfindung beschreibt ein Dünnfilm-Halbleiterbauelemen mit einer Trägerschicht und einem auf der Trägerschicht angeordneten Schichtenstapel, der ein Halbleitermaterial enthält und zur Emission von Strahlung vorgesehen ist, wobei auf der Trägerschicht eine zur Kühlung des Halbleiterbauelements vorgesehene Wärmeableitungsschicht aufgebracht ist. Ferner beschreibt die Erfindung einen Bauelement-Verbund.

Description

Beschreibung
Dünnfilm-Halbleiterbauelement und Bauelement-Verbund
Die Erfindung betrifft ein Dünnfilm-Halbleiterbauelement und einen Bauelement-Verbund.
Diese Patentanmeldung beansprucht die Priorität der deutschen Patentanmeldung 102006036543.7 und die Priorität der deutschen Patentanmeldung 102007004303.3, deren Offenbarungsgehalt hiermit durch Rückbezug aufgenommen wird.
In der Offenlegungsschrift DE 100 40 448 Al ist ein Halbleiterchip und ein Verfahren zur Herstellung von Halbleiterchips in Dünnschichttechnik beschrieben. Auf einem Substrat wird ein Schichtenverbund aus einer aktiven Schichtenfolge und einer Grundschicht angeordnet . Ferner werden dem Schichtenverbund eine Verstärkungsschicht und eine Hilfsträgerschicht hinzugefügt, die auf galvanischem Wege auf die Grundschicht aufgebracht werden, bevor das Substrat abgelöst wird. Auf der Seite des abgelösten Substrats wird zur Handhabung der aus dem Schichtenverbund gebildeten Halbleiterchips eine Folie auflaminiert .
Ferner ist aus der Offenlegungsschrift DE 102 34 978 Al ein obeflächenmontierbares Halbleiterbauelement mit einem Halbleiterchip und zwei externen Anschlüssen bekannt, wobei die externen Anschlüsse an einer Folie angebracht sind.
Es ist eine Aufgabe der vorliegenden Erfindung, ein Dünnfilm- Halbleiterbauelement anzugeben, das bei geringer Bauhöhe vergleichsweise betriebsstabil ist. Ferner ist es Aufgabe der vorliegenden Erfindung, einen Bauelement-Verbund geringer Bauhöhe bei gleichzeitiger Betriebsstabilität anzugeben.
Diese Aufgaben werden durch ein Dünnfilm-Halbleiterbauelement gemäß Patentanspruch 1 und einen Bauelement-Verbund gemäß Patentanspruch 30 gelöst. Vorteilhafte Weiterbildungen des Dünnfilm-Halbleiterbauelements sowie des Bauelement-Verbunds sind in den abhängigen Ansprüchen angegeben.
Ein erfindungsgemäßes Dünnfilm-Halbleiterbauelement weist eine Trägerschicht und einen auf der Trägerschicht angeordneten Schichtenstapel auf, der ein Halbleitermaterial enthält und zur Emission von Strahlung vorgesehen ist, wobei auf der Trägerschicht eine zur Kühlung des Halbleiterbauelements vorgesehene Wärmeableitungsschicht aufgebracht ist.
Die Wärmeableitungsschicht ist dafür vorgesehen, die im Betrieb des Dünnfilm-Halbleiterbauelements entstehende Wärme zu absorbieren und aus dem Schichtenstapel beziehungsweise Bauelement abzuleiten. Vorzugsweise enthält die Wärmeableitungsschicht ein Material, das eine vergleichsweise hohe Wärmeleitfähigkeit aufweist. Dies hat den Vorteil, dass einer Abnahme der Lichtausbeute, die durch die im Betrieb des Bauelements entstehende Wärme und eine damit verbundene Temperaturerhöhung .verursacht wird, entgegengewirkt werden kann. Ferner ist es dadurch möglich, die Gefahr einer bei Temperaturerhöhung auftretenden Wellenlängenverschiebung der erzeugten Strahlung zu reduzieren. Die Wärmeübertragung zwischen dem Schichtenstapel und der Wärmeableitungsschicht kann durch Wärmeleitung und/oder Wärmestrahlung erfolgen. Das Dünnfilm-Halbleiterbauelement zeichnet sich insbesondere durch mindestens eines der folgenden charakteristischen Merkmale aus :
- an einer zu einem Trägerelement hin gewandten ersten Hauptfläche einer Strahlungserzeugenden Epitaxieschichtenfolge ist vorzugsweise eine reflektierende Schicht aufgebracht oder ausgebildet, die zumindest einen Teil der in der Epitaxieschichtenfolge erzeugten elektromagnetischen Strahlung in diese zurückreflektiert;
- die Epitaxieschichtenfolge weist eine Dicke im Bereich von 20μm oder weniger, insbesondere im Bereich von 10 μm auf; und
- die Epitaxieschichtenfolge enthält mindestens eine Halbleiterschicht mit zumindest einer Fläche, die eine DurchmischungsStruktur aufweist, die im Idealfall zu einer annähernd ergodischen Verteilung des Lichtes in der epitaktischen Epitaxieschichtenfolge führt, d.h. sie weist ein möglichst ergodisch stochastisches Streuverhalten auf.
Ein Grundprinzip eines Strahlungsemittierenden Dünnschicht- Halbleiterchips ist beispielsweise in I. Schnitzer et al., Appl. Phys. Lett. 63 (15), 18. Oktober 1993, 2174 - 2176 beschrieben, deren Offenbarungsgehalt insofern hiermit durch Rückbezug aufgenommen wird.
Gemäß einer bevorzugten Ausführungsform ist die Wärmeableitungsschicht auf einer dem Schichtenstapel zugewandten Seite der Trägerschicht angeordnet . Insbesondere kann die Wärmeableitungsschicht auf der Trägerschicht fixiert sein. Gemäß einer weiter bevorzugten Ausführungsform ist die Wärmeableitungsschicht zwischen dem Schichtenstapel und der Trägerschicht angeordnet. Mit Vorteil kann der Schichtenstapel auf der als Kühlelement dienenden Wärmeableitungsschicht montiert und mit dieser thermisch leitend verbunden sein, wobei die Wärmeableitungsschicht auf oder in der Trägerschicht integriert ist.
Bei einer besonderen Ausgestaltung ist die Wärmeableitungsschicht flächig ausgebildet. Dies bedeutet, dass die lateralen Abmessungen der Wärmeableitungsschicht größer sind als deren Höhe. Insbesondere weist die Wärmeableitungsschicht eine Grundfläche auf, die zumindest ebenso groß ist wie die Grundfläche des Schichtenstapels. Dabei hat die Grundfläche der Wärmeableitungsschicht nicht notwendigerweise eine rechteckförmige Gestalt, sondern kann beispielsweise auch schuppenartig ausgebildet sein, so dass insbesondere zwei die Grundfläche begrenzende Seitenkanten gekrümmt verlaufen. Weiterhin ist die Wärmeableitungsschicht vorzugsweise als geschlossene Fläche ausgebildet. Dies ist auch im Hinblick auf eine elektrische Kontaktierung des Dünnfilm-Halbleiterbauelements vorteilhaft, da bei einer elektrisch leitfähigen Wärmeableitungsschicht hierdurch eine homogene Stromeinprägung in den Schichtenstapel möglich ist. Bevorzugter Weise enthält die Wärmeableitungsschicht ein elektrisch leitendes Material . Insbesondere kann die Wärmeableitungsschicht in diesem Fall als elektrischer Kontakt dienen.
Besonders bevorzugter Weise ist die Wärmeableitungsschicht eine auf die Trägerschicht aufgebrachte Metallbeschichtung. Beispielsweise kann die Wärmeableitungsschicht Cu, Ni oder Ag enthalten. Alternativ kann die WärmeableitungsSchicht ein elektrisch isolierendes Material, beispielsweise ein Keramikmaterial, enthalten.
Auch Silizium ist ein geeignetes Material für die Wärmeableitungsschicht .
Vorzugsweise liegt die Dicke der Wärmeableitungsschicht im ein- bis zweistelligen Mikrometerbereich. Insbesondere kann die Dicke 5μm bis 30μm betragen.
Die Dicke der WärmeableitungsSchicht ist vorteilhafterweise derart bemessen, dass sie einerseits ausreichend dünn ist, um die Bauhöhe des Bauelements nicht wesentlich zu vergrößern, und andererseits ausreichend dick ist, um eine relativ gute Kühlung des Bauelements zu bewirken.
Gemäß einer weiteren Variante ist die Trägerschicht eine Folie. Insbesondere kann die Trägerschicht ein in Bahnen hergestelltes Kunststoffblatt sein. Eine ausreichende Stabilität kann trotz einer relativ geringen Dicke der Trägerschicht erreicht werden. Denn aufgrund der relativ geringen Dicke ist die Trägerschicht elastisch, wodurch die Gefahr von Rissbildungen reduziert ist. Unter einer relativ geringen Dicke sind im Rahmen der Erfindung bevorzugt lOOμm, besonders bevorzugt weniger als lOOμm zu verstehen.
Bevorzugter Weise enthält die Trägerschicht ein Kunststoffmaterial. Beispielsweise ist als Kunststoffmaterial ein Epoxidharz, PET (Polyethylenterephthalat) oder ein Polymer, insbesondere ein Polyimid geeignet. Besonders bevorzugter Weise ist die Trägerschicht für die vom Schichtenstapel emittierte Strahlung transparent. Weiter bevorzugt ist die Wärmeableitungsschicht gegenüber dem Schichtenstapel versetzt. Dadurch kann die Strahlung durch die Trägerschicht auskoppeln, ohne von der
Wärmeableitungsschicht reflektiert zu werden. Mittels einer transparenten Trägerschicht und Abdeckschicht, die nachfolgend näher beschrieben wird, kann das Dünnfilm- Halbleiterbauelement vorteilhafterweise beidseitig emittierend sein.
Weiterhin kann die Trägerschicht je nach Anwendung elektrisch leitend oder isolierend sein.
Gemäß einer vorteilhaften Variante ist die Trägerschicht auf einer Unterlage angeordnet. Beispielsweise kann die Unterlage eine Metallfolie sein. Durch eine derartige Unterlage kann der Wärmetransport aus dem Bauelement weiter verbessert werden. Insbesondere ist die Trägerschicht, die bei dieser Variante vorzugsweise eine Kunststofffolie ist, mittels einer WärmeIeitpaste mit der Unterlage mechanisch und thermisch verbunden. Bei dieser Variante kann die Trägerschicht eine Öffnung mit einer Durchkontaktierung aufweisen, so dass ein erster elektrischer Anschluss des Schichtenstapels mittels der Unterlage und ein zweiter elektrischer Anschluss mittels der auf der Trägerschicht aufgebrachten Wärmeableitungsschicht erfolgt.
Gemäß einer weiteren Variante kann die Trägerschicht eine erste Teilschicht und eine zweite Teilschicht aufweisen. Vorzugsweise ist die erste Teilschicht auf die zweite Teilschicht aufgebracht, und weist darüber hinaus eine geringe Schichtdicke auf . Die Schichtdicke bemisst sich insbesondere durch den gewünschten Wärmestrom, der durch die erste Teilschicht fließen und möglichst groß sein soll. Der Wärmestrom ist antiproportional zur Schichtdicke. Die zweite Teilschicht kann eine Folie, insbesondere eine Metallfolie, sein, die mit einer dünnen Kunststoffschicht, der ersten Teilschicht, beschichtet ist. Vorteilhafterweise wirkt die erste Teilschicht bei Erwärmung einer Ausdehnung der zweiten Teilschicht entgegen.
Der Schichtenstapel kann auf die Wärmeableitungsschicht geklebt oder gebondet sein. Bei einer möglichen Variante zur Herstellung des erfindungsgemäßen Halbleiterbauelements werden ferner folgende Schritte durchgeführt :
- Ausbilden eines ein Halbleitermaterial enthaltenden Schichtenstapels auf einem AufwachsSubstrat,
- Aufbringen der Trägerschicht auf den Schichtenstapel,
- Ablösen des Aufwachssubstrats.
Es wird also auf der dem Aufwachssubstrat abgewandten Seite des Schichtenverbunds die Trägerschicht aufgebracht, die dem Schichtenstapel nach dem Aufbonden auf die Trägerschicht anhaftet .
Ein Ablösen des Aufwachssubstrats ist auch ohne vorheriges Aufbringen der Trägerschicht auf den Schichtenstapel denkbar.
Bei einer weiteren Ausgestaltung des Bauelements ist auf einer der Trägerschicht gegenüber liegenden Seite des Schichtenstapels eine Abdeckschicht zur Abdeckung des Schichtenstapels angeordnet . Diese kann vorteilhafterweise einen Verguss ersetzen. Insbesondere ist die' Abdeckschicht dazu geeigent, das Eindringen von Feuchtigkeit wirksam zu verhindern. Gemäß einer ersten Variante ist die Abdeckschicht mittels eines Beschichtungsverfahrens, beispielsweise mittels des Vorhanggießverfahrens, auf den Schichtenstapel aufgebracht. Das Vorhanggießverfahren erlaubt vorteilhafterweise auch auf unebenen Oberflächen eine sehr gleichförmige Abdeckschicht .
Gemäß einer zweiten Variante ist die Abdeckschicht eine Folie.
Beispielsweise kann die Abdeckschicht auf der der Trägerschicht abgewandten Seite des Schichtenstapels als flexible Abdeckschicht aufgebracht und dann ausgehärtet werden. Alternativ kann die flexible Abdeckschicht in einem nicht vollständig ausgehärteten Zustand belassen werden.
Eine weitere Möglichkeit besteht darin, eine Abdeckschicht aufzubringen, die eine Grundschicht und eine dem Schichtenverbund zugewandte Haftschicht aufweist, wobei die Haftschicht auf dem Schichtenverbund haftet .
Bevorzugter Weise enthält die Abdeckschicht ein transparentes Material. Die Abdeckschicht kann als Auskoppelschicht dienen.
Besonders bevorzugter Weise enthält die Abdeckschicht Glas oder Kunststoff.
Weiter bevorzugt weist die Abdeckschicht ein • Konvertermaterial zur Konversion der vom Schichtenstapel emittierten Strahlung auf. Das Konvertermaterial ist dazu geeignet, zumindest einen Teil der von dem Schichtenstapel emittierten Strahlung zu größeren Wellenlängen hin zu konvertieren. Auf diese Weise kann insbesondere mit einem Schichtenstapel, der ultraviolette oder blaue Strahlung emittiert, durch Wellenlängenkonversion eines Teils der emittierten Strahlung in den komplementären Spektralbereich, beispielsweise den gelben Spektralbereich, Weißlicht erzeugt werden. Vorteilhafterweise ermöglicht eine derartige Ausgestaltung eine kostengünstige Nutzenmontage für weiße Dünnfilm-Halbleiterbauelemente .
Ein Schichtenstapel, der ultraviolette oder blaue Strahlung emittiert, weist insbesondere ein auf Nitrid- Verbindungshalbleitern basierendes Material auf. „Auf Nitrid- Verbindungshalbleitern basierend" bedeutet im vorliegenden Zusammenhang, dass die aktive Epitaxie-Schichtenfolge oder zumindest eine Schicht davon ein Nitrid-III/V- Verbindungshalbleitermaterial, vorzugsweise AlnGamIni.n.mN umfasst, wobei O ≤ n ≤ l, O ≤ m ≤ l und n+m < 1. Dabei muss dieses Material nicht zwingend eine mathematisch exakte Zusammensetzung nach obiger Formel aufweisen. Vielmehr kann es ein oder mehrere Dotierstoffe sowie zusätzliche Bestandteile aufweisen, die die charakteristischen physikalischen Eigenschaften des AlnGamIni-.n:„,N--Materials im Wesentlichen nicht ändern. Der Einfachheit halber beinhaltet obige Formel jedoch nur die wesentlichen Bestandteile des Kristallgitters (Al, Ga, In, N) , auch wenn diese teilweise durch geringe Mengen weiterer Stoffe ersetzt sein können.
Bei einer besonderen Ausführungsform weist die Abdeckschicht eine optische Struktur auf. Diese kann beispielsweise linsen-, prismen- oder pyramidenförmig ausgebildet sein, wodurch u.a. eine Bündelung der Strahlung oder Verbesserung der Strahlungsauskopplung möglich ist. Ferner kann die Abdeckschicht teilweise verspiegelt sein. Insbesondere weist die Abdeckschicht eine Verspiegelung auf, die in Kombination mit der der Abdeckschicht gegenüber liegenden Wärmeableitungsschicht, die dann insbesondere reflektierend ist, eine relativ homogene Strahlungsverteilung im Bauelement ermöglicht, so dass eine vergleichweise gleichmäßig leuchtende Fläche realisiert werden kann.
Die optische Struktur kann auf einer dem Schichtenstapel zugewandten oder abgewandten Seite der Abdeckschicht angeordnet sein.
Eine beidseitige Anordnung der Trägerschicht und der Abdeckschicht kann vorteilhafterweise einen Gehäusekörper ersetzen.
Ferner ist es denkbar, dass die Abdeckschicht alleine ausreicht, um die mechanische Stabilität des Dünnfilm- Halbleiterbauelements zu gewährleisten. In diesem Falle kann die Trägerschicht am Ende des Herstellungsprozesses vollständig entfernt werden. Die Wärmeableitungsschicht kann dann als Montagefläche dienen. Weiterhin ist es möglich, die Trägerschicht teilweise zu entfernen. Ist die Trägerschicht elektrisch leitend, so kann es sinnvoll sein, die Trägerschicht im Bereich zwischen der Wärmeableitungsschicht und einem Kontaktpad zu entfernen,- um im Betrieb des Dünnfilm-Halbleiterbauelements einen Kurzschluss zu vermeiden.
Während vorzugsweise auf einer der Trägerschicht zugewandten Seite des Schichtenstapels ein erster elekrischer Anschlussbereich vorgesehen ist, kann der Schichtenstapel auf einer der Trägerschicht abgewandten Auskoppelseite einen zweiten elektischen Anschlussbereich aufweisen. Zur strahlungsauskoppelseitigen Kontaktierung des Schichtenstapels verläuft vorzugsweise entlang einer dem Schichtenstapel zugewandten Oberfläche der Abdeckschicht mindestens eine Leiterbahn. Beispielsweise kann die Leiterbahn entlang der Abdeckschicht verlaufen. Insbesondere kann sich die Leiterbahn teilweise auf dem Schichtenstapel, teilweise auf der Trägerschicht erstrecken, wobei zwischen der Leiterbahn und dem Schichtenstapel eine Passivierungsschicht angeordnet ist.
Ferner kann die Leiterbahn selbsttragend ausgebildet sein. In diesem Fall ist die Leiterbahn vorzugsweise mit einem auf der Trägerschicht angeordneten Kontaktpad verbunden und liegt auf der Passivierungsschicht auf. Das Kontaktpad weist besonders bevorzugt eine dem Schichtenstapel entsprechende Höhe auf, so dass die Leiterbahn im Wesentlichen parallel zur Strahlungsauskoppelfläche verläuft und ein darauf angeordneter elektrischer Anschlussbereich einfach kontaktierbar ist. Vorteilhafte Abmessungen der Leiterbahn liegen in der Größenordnung von lOμm x 50μm. Bei Hochstromanwendungen können die Abmessungen auch größer sein.
Im Rahmen der Erfindung ist eine drahtlose auskoppelseitige Kontaktierung bevorzugt. Dies wirkt sich positiv, auf die Bauhöhe des Dünnfilm-Halbleiterbauelements aus, da die -Leiterbahn im Vergleich zu einem Bonddraht flacher ist. Darüberhinaus ist eine drahtlose Kontaktierung im Hinblick auf eine in der Abdeckschicht stattfindende Wellenlängenkonversiόn von Vorteil.
Der zweite elektrische Anschlussbereich ist bei einer bevorzugten Variante als Kontaktstruktur ausgebildet, die ein Bondpad und Kontaktstege aufweist. Das Bondpad ist vorzugsweise in einem Randbereich der Strahlungsaustrittsfläche angeordnet, so dass im zentralen Bereich der Strahlungsaustrittsfläche aus dem Schichtenstapel austretende Strahlung vorteilhaft nicht in dem Bondpad absorbiert wird. Die Anordnung des Bondpads in einem Randbereich der Strahlungsaustrittsfläche ist insbesondere so zu verstehen, dass der Mittelpunkt des Bondpads einen geringeren Abstand zu zumindest einer Seitenflanke des Schichtenstapels als zum Mittelpunkt der
Strahlungsaustrittsfläche aufweist. Vorteilhaft ist es durch die Anordnung des Bondpads in einem Randbereich der Strahlungsaustrittsfläche im Gegensatz zu einem Chip mit einem zentral auf der Strahlungsaustrittsfläche angeordneten Bondpad nicht erforderlich, eine Leiterbahn über die Strahlungsaustrittsfläche zu dem Bondpad hinzuführen, wodurch eine Absorption der emittierten Strahlung auftreten würde. Insbesondere sind auf der Strahlungsaustrittsfläche mehrere mit dem Bondpad elektrisch leitend verbundene Kontaktstege angeordnet, durch welche trotz des in einen Randbereich der Strahlungsaustrittsfläche angeordneten Bondpads eine vergleichsweise homogene Stromverteilung in dem Schichtenstapel erreicht werden.
Vorzugsweise ist das Dünnfilm-Halbleiterbauelement vergleichsweise biegsam.
Ein erfindungsgemäßer Bauelement-Verbund weist mindestens zwei Dünnfilm-Halbleiterbauelemente gemäß mindestens einer der oben erwähnten Ausgestaltungen auf. Da die Dünnfilm- Halbleiterbauelemente vergleichsweise biegsam sind, können bei einer flächigen Anordnung der Dünnfilm- Halbleiterbauelemente mittels des Bauelement-Verbunds beliebige vorgegebene gekrümmte Leuchtflächen und somit verschiedenartige Leuchtfiguren realisiert werden. Denkbar ist u.a., den flächigen Bauelement-Verbund röhrenförmig zu biegen, so dass ein Leuchtzylinder entsteht.
Gemäß einer bevorzugten Variante weisen die Dünnfilm- Halbleiterbauelemente eine gemeinsame Trägerschicht auf. Die Trägerschicht ist insbesondere gemäß einer der oben genannten Varianten ausgebildet.
Gemäß einer weiter bevorzugten Variante ist ein Kontaktpad für einen auskoppelseitigen elektrischen Kontakt der Schichtenstapel auf der Trägerschicht zwischen den Schichtenstapeln aufgebracht.
Die Dünnfilm-Halbleiterbauelemente können auf verschiedene Weise elektrisch verbunden sein. Bei einer bevorzugten Ausgestaltung sind die Dünnfilm-Halbleiterbauelemente in Reihe geschaltet . Besonders bevorzugt ist hierbei der zweite Anschlussbereich eines ersten Dünnfilm-Halbleiterbauelements, beispielsweise mittels eines Bonddrahtes, mit der Wärmeableitungsschicht eines zweiten Dünnfilm- Halbleiterbauelements elektrisch verbunden, wobei die Wärmeableitungsschicht als elektrischer Kontakt dient. Alternativ können der erste und der zweite Anschlussbereich auf einer der Trägerschicht zugewandten Seite des Schichtenstapels angeordnet sein, wobei der erste Anschlussbereich mit einer ersten als elektrischer Kontakt dienenden Wärmeableitungsschicht und der zweite Anschlussbereich mit einer zweiten als elektrischer Kontakt dienenden Wärmeableitungsschicht elektrisch verbunden ist.
Ein erfindungsgemäßer Bauelement-Verbund ist insbesondere zur Hinterleuchtung, beispielsweise von LCD-Displays, geeignet. Vorteilhafterweise kann die Größe des Bauelement-Verbunds, das heißt die Anzahl der Dünnfilm-Halbleiterbauelemente, leicht variiert werden, da ein Durchtrennen aufgrund der flexiblen Trägerschicht und somit das Zerteilen in kleinere Bauelement-Verbünde keine großen Schwierigkeiten bereitet.
Weitere Merkmale und vorteilhafte Ausgestaltungen des DünnfiIm-Halbleiterbauelements beziehungsweise des Bauelement-Verbunds ergeben sich aus den im Folgenden in Verbindung mit den Figuren 1 bis 7 näher erläuterten Ausführungsbeispielen.
Es zeigen:
Figur 1 eine schematische Draufsicht eines ersten Ausführungsbeispiels eines erfindungsgemäßen Dünnfilm- Halbleiterbauelements ,
Figur 2 eine schematische Schnittansicht des in Figur 1 dargestellten ersten Ausführungsbeispiels eines erfindungsgemäßen Dünnfilm-Halbleiterbauelements,
Figur 3 eine schematische Schnittansicht eines zweiten .' . Ausführungsbeispiels eines erfindungsgemäßen Dünnfilm- Halbleiterbauelements ,
Figur 4 eine schematische Schnittansicht eines dritten Ausführungsbeispiels eines erfindungsgemäßen Dünnfilm- Halbleiterbauelements,
Figur 5 eine schematische Draufsicht eines vierten Ausführungsbeispiels eines erfindungsgemäßen Dünnfilm- Halbleiterbauelements, Figur 6 eine schematische Schnittansicht eines fünften Ausführungsbeispiels eines erfindungsgemäßen Dünnfilm- Halbleiterbauelements ,
Figur 7 eine schematische Draufsicht eines ersten Ausführungsbeispiels eines erfindungsgemäßen Bauelement- Verbunds ,
Figuren .8a und 8b eine schematische Draufsicht eines zweiten und dritten Ausführungsbeispiels eines erfindungsgemäßen Bauelement-Verbunds und Figur 8c eine schematische Querschnittsansicht des in Figur 8a dargestellten zweiten Ausführungsbeispiels,
Figur 9 eine schematische Querschnittsansicht eines vierten Ausführungsbeispiels eines erfindungsgemäßen Bauelement- Verbunds .
Figur 10 eine schematische Querschnittsansicht eines fünften Ausführungsbeispiels eines erfindungsgemäßen Bauelement- Verbunds .
In den Ausführungsbeispielen sind gleiche oder gleichwirkende Bestandteile jeweils mit den gleichen Bezugszeichen versehen. Die dargestellten Bestandteile der Figuren, insbesondere die Größen von dargestellten Schichtdicken, sind grundsätzlich nicht als maßstabsgerecht anzusehen. Vielmehr können sie zum besseren Verständnis teilweise übertrieben groß dargestellt sein.
Das in Figur 1 dargestellte Dünnfilm-Halbleiterbauelement 1 weist eine Abdeckschicht 10 auf. Diese kann einen Schichtenstapel 8 (s. Figur 2) vor schädigender Feuchtigkeit schützen. Insbesondere ist die Abdeckschicht 10 durchlässig für die Strahlung,, die von einer Halbleiter-Schichtenfolge 5 des Schichtenstapels 8 (s. Figur 2) erzeugt wird. In diesem Falle dient die Abdeckschicht 10 gleichzeitig als Auskoppelschicht. Die Abdeckschicht 10 kann zur Änderung der Abstrahlcharakteristik des Dünnfilm-Halbleiterbauelements 1 eine optische Struktur aufweisen, die beispielsweise linsen-, prismen- oder pyramidenförmig ausgebildet ist. Ferner kann die Abdeckschicht 10 teilweise verspiegelt sein.
Weiterhin ist die Abdeckschicht 10 als elektrische Isolierung zwischen einer Wärmeableitungsschicht 3 und einer Leiterbahn 9 geeignet. Denn die Wärmeableitungsschicht 3 kann neben der- thermischen Leitfähigkeit elektrische Leitfähigkeit aufweisen. Um ferner einen Kurzschluss zwischen Halbleiterschichten eines unterschiedlichen Leitfähigkeitstyps der Halbleiter-Schichtenfolge 5 zμ verhindern, ist zwischen der Leiterbahn 9 und der Halbleiter- Schichtenfolge 5 eine Passivierungsschicht 7 angeordnet. Diese enthält beispielsweise Siliziumoxid. .
Die Schichtenfolge 5 ist im Wesentlichen zur Strahlungserzeugung vorgesehen. Die Schichtenfolge 5 kann einen herkömmlichen pn-Übergang, eine Doppelheterostruktur, eine Einfach-Quantentopfstruktur oder eine Mehrfach- Quantentopfstruktur aufweisen. Insbesondere ist die Schichtenfolge 5 substratlos, was bedeutet, dass ein zum- Aufwachsen der Schichtenfolge 5 verwendetes Aufwachssubstrat im fertigen Dünnfilm-Halbleiterbauelement 1 nicht mehr vorhanden ist.
Als elektrische Kontakte umfasst der Schichtenstapel 8 (s. Figur 2) einen ersten elektrischen Anschlussbereich 5 und einen zweiten elektrischen Anschlussbereich 6, der strahlungsauskoppelseitig angeordnet ist.
Wie in Figur 2 dargestellt ist der Schichtenstapel 8 auf einer Trägerschicht 2 angeordnet, die eine Wärmeableitungsschicht 3 aufweist. Insbesondere ist die Trägerschicht 2 eine Folie, auf welcher die WärmeableitungsSchicht 3 strukturiert wird, bevor der Schichtenstapel 8 auf die WärmeableitungsSchicht 3 montiert wird. Vorzugsweise wird der Schichtenstapel 8 auf die Wärmeableitungsschicht 3 aufgebondet.
Die Dicke Dw der Wärmeableitungsschicht 3 beträgt vorzugsweise zwischen 5μm und 30μm, wobei als Material ein Metall, beispielsweise Cu, Ni oder Ag, besonders geeignet ist.
Die Dicke D3 der Schichtenfolge 5 und des ersten elektrischen Anschlussbereichs 4, die ungefähr 7μm beträgt, kann somit geringer sein als die Dicke Dw der Wärmeableitungsschicht 3.
Die geringen Dicken der Trägerschicht 2, der WärmeableitμngsSchicht 3 und des Schichtenstapels 8 ermöglichen insgesamt ein Dünnfilm-Halbleiterbauelement 1 geringer Bauhöhe. Es ist eine Bauhöhe Dges erzielbar, die vorzugsweise unter lOOμm liegt. Dazu trägt ferner die Kombination aus Trägerschicht 2 und Abdeckschicht 10 bei, die einen Gehäusekörper ersetzen beziehungsweise ein Gehäuse für das Dünnfilm-Halbleiterbauelement 1 bilden. Vorteilhafterweise erlaubt die geringe Bauhöhe eines einzelnen Dünnfilm-Halbleiterbauelements 1 eine Stapelung mehrerer Dünnfilm-Halbleiterbauelemente, wodurch die Leuchtdichte gesteigert werden kann. Die Wärmeableitungsschicht 3, die sowohl zur Kühlung des Dünnfilm-Halbleiterbauelements 1 als auch für einen ersten elektrischen Anschluss vorgesehen ist, ragt, wie in Figur 1 dargestellt, über den Schichtenstapel 8 hinaus und ist flächig ausgebildet. Im dargestellten Falle bedeckt die Wärmeableitungsschicht 3 vollständig eine Grundfläche des Schichtenstapels 8. Es ist jedoch auch möglich, dass die Wärmeableitungsschicht 3 gegenüber dem Schichtenstapel versetzt ist, so dass die von der Schichtenfolge emittierte Strahlung direkt zur Trägerschicht 2 gelangt . Die Leiterbahn 9, die für einen zweiten elektrischen Anschluss vorgesehen ist, verläuft vorzugsweise stufenförmig. Insbesondere wird die Leiterbahn vom ersten elektrischen Anschlussbereich 6 entlang einer Strahlungsauskoppelflache 11 über eine- • Seitenfläche des Schichtenstapels 8 auf die Trägerschicht 2 geführt .
Die Wärmeableitungsschicht 3 und die Leiterbahn 9 stehen gegenüber der Trägerschicht 2 beziehungsweise der Abdeckschicht 10 in lateraler Richtung derart hervor, dass deren elektrische Verbindung mit einer Spannungsversorgung ' auf einfache Weise möglich ist.
Es ' ist denkbar, die Leiterbahn 9 direkt auf den' Schichtenstapel 8 und die Trägerschicht 2 aufzubringen. Alternativ kann die Leiterbahn auf der Abdeckschicht 10 angeordnet sein.
Bei dem in Figur 3 dargestellten Dünnfilm- Halbleiterbauelement 1 weist die Trägerschicht 2 eine erste Teilschicht 2a und eine zweite Teilschicht 2b auf. Die erste' Teilschicht 2a ist eine dünne Schicht, wobei die Dicke der Teilschicht 2a derart gewählt wird, dass ein relativ hoher Wärmestrom möglich ist. Der Wärmestrom ist antiproportional zur Schichtdicke . Vorzugsweise liegt die Dicke der Teilschicht 2a im einstelligen Mikrometerbereich. Bei dem in Figur 3 dargestellten Ausführungsbeispiel ist die Teilschicht 2a elektrisch isolierend und enthält insbesondere ein Kunststoffmaterial. Vorteilhafterweise können hierdurch sowohl die Leiterbahn 9 als auch die Wärmeableitungsschicht 3 auf der Trägerschicht 2 aufgebracht sein, ohne dass diese kurzgeschlossen werden. Beispielsweise kann die WärmeableitungsSchicht 3 aus einem System galvanisch abgeschiedener Schichten gebildet sein.
Für die zweite Teilschicht 2b ist eine Folie, vorzugsweise eine Metallfolie, die beispielsweise Kupfer enthält, vorgesehen. Mittels der zweiten Teilschicht 2b ist ein guter Wärmetransport möglich. Einer starken Ausdehnung der zweiten Teilschicht 2b aufgrund der Erwärmung kann durch die erste Teilschicht 2a, die einen geringeren thermischen Ausdehungskoeffizienten aufweist als die zweite Teilschicht 2b, vorteilhaft entgegengewirkt werden.
Bei dem in Figur 4 dargestellten Dünnfilm-Bauelement 1 ist die Trägerschicht 2 auf einer Unterlage 15 angeordnet. Die Unterlage 15 weist mit Vorteil eine gute Wärmeleitfähigkeit auf. Insbesondere ist die Unterlage 15 eine Metallfolie. Die Trägerschicht 2 kann hingegen eine Kunststofffolie sein. Als Alternative ist eine Trägerschicht 2 aus Papier denkbar. Zur mechanischen und thermischen Verbindung der Trägerschicht 2 mit der Unterlage 15 wird insbesondere eine Wärmeleitpaste verwendet . Das in Figur 5 in Draufsicht schematisch dargestellte Dünnfilm-Bauelement 1 umfasst eine Trägerschicht 2, auf welcher die Wärmeableitungsschicht 3 und der Schichtenstapel
8 angeordnet sind. Ferner weist die Trägerschicht 2 ein Kontaktpad 12 auf, mit welchem die Leiterbahn 9 elektrisch verbunden ist.
Der auskoppelseitige zweite elektrische Anschlussbereich 6 ist in Form einer Kontaktstruktur ausgebildet, die ein Bondpad 6a und mehrere zur Stromaufweitung vorgesehene Kontaktstege 6b aufweist, die mit dem Bondpad elektrisch leitend verbunden sind, wobei das Bondpad 6a in einem Randbereich der Strahlungsaustrittsfläche 11 (s. Figur 2) angeordnet ist .
Der zweite elektrische Anschlussbereich 6 sowie die Leiterbahn 9 enthalten zweckmäßierweise ein elektrisch leitendes Material. Dieses kann ein Metall oder ein TCO (Transparent Conductive Oxide) sein.
Bei dem in Figur 6 dargestellten Dünnfilm- Halbleiterbauelement 1 erfolgt eine auskoppelseitige elektrische Kontaktierung wie bei dem in Figur 5 dargestellten Dünnfilm-Halbleiterbauelement 1. Die Leiterbahn
9 verläuft im Wesentlichen parallel zur Strahlungsauskoppelfläche 11. Ferner sind die Strahlungsauskoppelfläche 11 und eine der Strahlungsauskoppelfläche 11 zugewandte Oberfläche der Abdeckschicht 10 im Wesentlichen parallel zueinander angeordnet . Dadurch kann eine planare Bauform des Dünnfilm- Halbleiterbauelements 1 erzielt werden. Der Schichtenstapel 8 weist an der Oberfläche einen nahezu vollständigen Überzug auf, welcher aus der Passivierungsschicht 7 gebildet ist. Weiterhin kann zur elektrischen Isolierung zwischen der Trägerschicht 2 und der Abdeckschicht 10 eine Füllschicht (nicht dargestellt) eingebracht sein, die ferner die Trägerschicht 2 und die Abdeckschicht 10 zusammenhält.
Es ist denkbar, die Trägerschicht 2 am Ende des Herstellungsprozesses zumindest teilweise zu entfernen. Die Trägerschicht 2 kann elektrisch leitend sein, so dass es sinnvoll ist, die Trägerschicht 2 im Bereich zwischen der Wärmeableitungsschicht 3 und dem Kontaktpad 12 zu entfernen, um im Betrieb des Dünnfilm-Halbleiterbauelements 1 einen Kurzschluss zu vermeiden. Das Dünnfilm-Halbleiterbauelement 1 kann bei dieser Variante entsprechend einem SMT-Bauelment mit der strukturierten Trägerschicht 2 auf eine Leiterplatte gelötet oder geklebt werden.
Der in Figur 7 dargestellte Bauelement-Verbund 13 weist eine Mehrzahl von Schichtenstapeln 8 auf, die vorzugsweise wie im Zusammenhang mit den Figuren 2 und 6 näher beschrieben ausgebildet sind. Die Schichtenstapel 8 sind auf einer gemeinsamen Trägerschicht 2 angeordnet.- Ferner sind die Schichtenstapel 8 mittels der Leiterbahnen 9 an ein gemeinsames ' Kontaktpad 12 angeschlossen, welches auf der Trägerschicht 2 angeordnet ist. Die Größe des Bauelement-' Verbunds 13 kann durch einfaches Zerteilen des Bauelement-' Verbunds 13 variiert werden. Der Bauelement-Verbund 13 ist besonders geeignet für Hinterleuchtungs- und Beleuchtungszwecke . In den Figuren 8a und 8b sind Bauelement-Verbünde 13 dargestellt, die mehrere Dünnfilm-Halbleiterbauelemente 1 aufweisen. Die Dünnfilm-Halbleiterbauelemente 1 umfassen jeweils einen Schichtenstapel 8 und einen Teil der gemeinsamen Trägerschicht 2, auf welchem die Schichtenstapel 8 angeordnet sind. Zwischen den Schichtenstapeln 8 und der Trägerschicht 2 befindet sich jeweils eine Wärmeableitungsschicht 3, die hier außer zur Kühlung als elektrischer Kontakt dient. Von einer Vorderseite eines ersten Dünnfilm-Halbleiterbauelements 1 führt ein Bonddraht 14 zur rückseitig angeordneten Wärmeableitungsschicht 3 eines dem ersten Dünnfilm-Halbleiterbauelement 1 benachbarten zweiten Dünnfilm-Halbleiterbauelements 1. Dadurch sind die beiden Dünnfilm-Halbleiterbauelemente 1 in Reihe geschaltet. Die Anzahl der in Reihe geschalteten Dünnfilm- Halbleiterbauelemente 1 kann applikationsbedingt beliebig groß gewählt werden.
Die Schichtenstapel 8 sind auf der jeweiligen Wärmeableitungsschicht 3 dezentral angeordnet , wodurch im Vergleich zu einer mittigen Anordnung eine verbesserte vorderseitige Kontaktierung der Schichtenstapel 8 möglich ist.
Die Grundfläche der Wärmeableitungsschicht 3 ist schuppenartig ausgebildet und weist insbesondere eine eingebuchtete Seitenkante und eine dieser gegenüber liegende ausgebuchtete Seitenkante auf . Der Schichtenstapel 8 ist vorzugsweise an der eingebuchteten Seitenkante angeordnet, da hier die Stromeinprägung besser ist als bei der ausgebuchteten Seitenkante. Wie in Figur 8b dargestellt kann ein Teil der Wärmeableitungsschichten 3 frei sein von Schichtenstapeln 8. Trotzdem sind die unbestückten Wärmeableitungsschichten 3 vorzugsweise in die Reihenschaltung eingebunden, so dass vorteilhafterweise auch ein von unbestückten Wärmeableitungsschichten 3 umgebener Schichtenstapel 8 vergleichsweise einfach elektrisch versorgt werden kann. Durch einen Wechsel von bestückten und unbestückten Wärmeableitungsschichten 3 können mit Vorteil verschiedenartige Leuchtmuster erzeugt werden.
Figur 8c zeigt eine Querschnittsansicht des im Zusammenhang mit Figur 8a bereits beschriebenen Bauelement-Verbunds 13.
Bei dem in Figur 9 dargestellten Ausführungsbeispiel umfasst der Bauelement-Verbund 13 mehrere Schichtenstapel 8, die auf einer gemeinsamen Trägerschicht 2 angeordnet sind und jeweils mit einer ersten Wärmeableitungsschicht 3 und einer der ersten Wärmeableitungsschicht 3 benachbarten zweiten Wärmeableitungsschicht 3 mechanisch und elektrisch. verbunden sind. Beide elektrischen Kontakte befinden sich hierbei auf der den .jeweiligen Wärmeableitungsschichten 3 zugewandten Seite des Schichtenstapels 8. Somit werden jeweils zwei benachbarte Wärmeableitungsschichten 3 durch einen Schichtenstapel 8 überbrückt. Gleichzeitig kann durch eine lückenlose Überbrückung benachbarter Wärmeableitungsschichten 3 mittels einer Mehrzahl von Schichtenstapeln 8 eine Reihenschaltung der Schichtenstapel 8 erfolgen.
Auch bei dem in Figur 10 dargestellten Ausführungsbeispiel eines Bauelement-Verbunds 13 sind beide elektrischen Kontakte der Schichtenstapel 8 auf der der Trägerschicht 2 zugewandten Seite angeordnet. Die Trägerschicht 2. enthält hierbei ein elektrisch isolierendes Material, insbesondere ein Kunststoffmaterial, und weist ferner Öffnungen für Durchkontaktierungen auf. Vorzugsweise ist die Trägerschicht 2 eine Kunststofffolie. Die Unterlage 15, mit welcher die Trägerschicht 2 mechanisch und thermisch verbunden ist, ist vorzugsweise eine Metallfolie, so dass ein erster elektrischer Anschluss der Schichtenstapel 8 mittels der Unterlage 15 erfolgt. Ein zweiter elektrischer Anschluss der Schichtenstapel 8 ist durch die auf der Trägerschicht 2 aufgebrachte Wärmeableitungsschicht (nicht dargestellt) möglich.
Vorteilhafterweise erfordern die im Rahmen der Erfindung, verwendeten Methoden zur drahtlosen Kontaktierung keinen . justierten Bondprozess. Weiterhin ermöglicht die Anordnung, der als Leiterbahn dienenden Wärmeableitungsschicht und der weiteren Leiterbahn auf einer Seite des Bauelements eine einfache Kontaktierung des Dünnfilm-Halbleiterbauelements.
Die Erfindung ist nicht durch die Beschreibung anhand der • Ausführungsbeispiele beschränkt. Vielmehr umfasst die Erfindung jedes neue Merkmal sowie jede Kombination von Merkmalen, was insbesondere jede Kombination von Merkmalen in den Patentansprüchen beinhaltet, auch wenn dieses Merkmal oder diese Kombination selbst nicht explizit in den Patentansprüchen oder Ausführungsbeispielen- angegeben ist.

Claims

Patentansprüche
1. Dünnfilm-Halbleiterbauelement (1) mit einer Trägerschicht
(2) und einem auf der Trägerschicht (2) angeordneten Schichtenstapel (8) , der ein Halbleitermaterial enthält und zur Emission von Strahlung vorgesehen ist, wobei auf der Trägerschicht (2) eine zur Kühlung des Dünnfilm- Halbleiterbauelements (1) vorgesehene Wärmeableitungsschicht
(3) aufgebracht. ist .
2. Dünnfilm-Halbleiterbauelement (1) nach Anspruch 1, wobei die Wärmeableitungsschicht (3) auf einer dem Schichtenstapel (8) zugewandten- Seite der Trägerschicht (2) angeordnet ist."
3. Dünnfilm-Halbleiterbauelement (1) nach Anspruch 1 oder 2, wobei die Wärmeableitungsschicht (3) zwischen dem Schichtenstapel (8) und der Trägerschicht (2) angeordnet ist.
4. Dünnfilm-Halbleiterbauelement (1) nach einem der vorhergehenden Ansprüche, wobei die Wärmeableitungsschicht (3) flächig ausgebildet- ist.
5. Dünnfilm-Halbleiterbauelement (1) nach Anspruch- 4, wobei die Wärmeableitungsschicht (3) eine Grundfläche aufweist, die zumindest- ebenso groß ist wie die Grundfläche' des Schichtenstapels (8) . • .
6. Dünnfilm-Halbleiterbauelement (1) nach einem der vorhergehenden Ansprüche, wobei die Wärmeableitungsschicht (3) ein elektrisch leitendes Material enthält .
7. Dünnfilm-Halbleiterbauelement (1) nach Anspruch 6, wobei die Wärmeableitungsschicht (3) eine auf die Trägerschicht (2) aufgebrachte Metallbeschichtung ist .
8. Dünnfilm-Halbleiterbauelement (1) nach Anspruch 6 oder 7, wobei die Wärmeableitungsschicht (3) mindestens eines der Materialien Cu, Ni oder.Ag enthält.
9. Dünnfilm-Halbleiterbauelement (1) nach einem der vorhergehenden Ansprüche, wobei die Wärmeableitungsschicht (3) eine Dicke (Dw) im ein- bis zweistelligen Mikrometerbereich aufweist. ■
10. Dünnfilm-Halbleiterbauelement (1) nach Anspruch 9, wobei die Dicke (Dw) 5μm bis 30μm beträgt.
11. Dünnfilm-Halbleiterbauelement (1) nach einem der vorhergehenden Ansprüche, wobei die Wärmeableitungsschicht (3) ein elektrischer Kontakt ist.
12. Dünnfilm-Halbleiterbauelement (1) nach einem der ■ vorhergehenden Ansprüchen, wobei die Trägerschicht (2) eine Folie ist.
13. Dünnfilm-Halbleiterbauelement (1) nach einem der vorhergehenden Ansprüche, wobei die Trägerschicht (2) ein Kunststoffmaterial enthält.
14. Dünnfilm-Halbleiterbauelement (1) nach Anspruch 13, wobei die Trägerschicht (2) Polyimid enthält.
15. Dünnfilm-Halbleiterbauelement (1) nach einem der vorhergehenden Ansprüche, wobei die Trägerschicht (2) auf einer Unterlage (15) angeordnet ist.
16. Dünnfilm-Halbleiterbauelement (1) nach Anspruch 15, wobei die Unterlage (15) eine Metallfolie ist.
17. Dünnfilm-Halbleiterbauelement (1) nach einem der Ansprüche 1 bis 11, wobei die Trägerschicht (2) eine erste Teilschicht (2a.) und eine zweite Teilschicht (2b) aufweist.
18. Dünnfilm-Halbleiterbauelement (1) nach Anspruch 17, wobei die erste Teilschicht (2a) eine auf die zweite Teilschicht (2b) aufgebrachte Schicht ist und die zweite Teilschicht (2b) eine Folie ist.
19. Dünnfilm-Halbleiterbauelement (1) nach einem der vorhergehenden Ansprüche, wobei die Wärmeableitungsschicht (3) gegenüber dem Schichtenstapel (8) versetzt .ist..
20. Dünnfilm-Halbleiterbauelement (1) nach einem der vorhergehenden Ansprüche, wobei die Trägerschicht (2) eine Dicke aufweist, die kleiner oder gleich 100 μm ist.
21. Dünnfilm-Halbleiterbauelement (1) nach einem der vorhergehenden Ansprüche, wobei der Schichtenstapel (8) auf die Wärmeableitungsschicht (3) geklebt oder gebondet ist.
22. Dünnfilm-Halbleiterbauelement (1) nach einem der vorhergehenden Ansprüche, wobei auf einer der Trägerschicht (2) gegenüber liegenden Seite. des Schichtenstapels (8) eine Abdeckschicht (10) zur Abdeckung des Schichtenstapels (8) angeordnet ist.
23. Dünnfilm-Halbleiterbauelement (1) nach Anspruch 22, wobei die Abdeckschicht (10) eine Folie ist.
24. Dünnfilm-Halbleiterbauelement (1) nach Anspruch 22 oder 23 , wobei die Abdeckschicht (10) ein transparentes Material enthält.
25. Dünnfilm-Halbleiterbauelement (1) nach Anspruch 24, wobei die Abdeckschicht (10) Glas oder Kunststoff enthält.
26. Dünnfilm-Halbleiterbauelement (1) nach einem der Ansprüche 22 bis 25, wobei die Abdeckschicht (10) ein Konvertermaterial enthält.-
27. Dünnfilm-Halbleiterbauelement (1) nach einem der Ansprüche 22 bis 26, wobei die Abdeckschicht (10) eine optische Struktur aufweist.
28. Dünnfilm-Halbleiterbauelement (1) nach Anspruch 27, wobei die optische Struktur auf einer dem Schichtenstapel (8) ■ zugewandten oder abgewandten Seite der Abdeckschicht (10) angeordnet ist.
29. Dünnfilm-Halbleiterbauelement (1) nach Anspruch 27 oder 28, wobei die optische Struktur linsen-, prismen- oder pyramidenförmig ausgebildet ist.
30. Dünnfiltn-Halbleiterbauelement (1) nach Anspruch 27 oder 28, wobei die Abdeckschicht (10) teilweise verspiegelt ist.
31. Dünnfilm-Halbleiterbauelement (1) nach einem der vorhergehenden Ansprüche, wobei der Schichtenstapel (8) auf einer- der Trägerschicht (2) zugewandten Seite einen ersten elektrischen Änschlussbereich
(4) und auf einer der Trägerschicht (2) abgewandten Auskoppelseite einen zweiten elektrischen Anschlussbereich
(6) aufweist.
32. Dünnfilm-Halbleiterbauelement (1) nach Anspruch 31, wobei der zweite elektrische Anschlussbereich (6) • als
KontaktStruktur ausgebildet ist, die ein Bondpad (6a) und Kontaktstege (6b) aufweist.
33. Dünnfilm-Halbleiterbauelement (1) nach Anspruch 31 oder 32 unter Rückbezug auf Abspruch 22 oder einem der auf Anspruch 22 rückbezogenen Ansprüche, wobei. entlang einer dem Sehichtenstapel (8) zugewandten Oberfläche der Abdeckschicht (10) mindestens eine Leiterbahn (9) verläuft, die mit dem zweiten elektrischen Anschlussbereich (6) elektrisch leitend verbunden ist.
34. Dünnfilm-Halbleiterbauelement (1) nach Anspruch.33, wobei' die Leiterbahn (9) auf der Abdeckschicht (10) aufgebracht ist .
35. Dünnfilm-Halbleiterbauelement (1) nach Anspruch 33, wobei die Leiterbahn (9) selbsttragend ausgebildet ist.
36. Dünnfilm-Halbleiterbauelement (1) nach Anspruch 35, wobei die Leiterbahn (9) mit einem auf der Trägerschicht (2) angeordneten Kontaktpad (12) verbunden ist.
37. Dünnfilm-Halbleiterbauelement (1) nach einem der vorhergehenden Ansprüche, wobei das Dünnfilm-Halbleiterbauelement (1) biegsam ist.
38. Bauelement-Verbund (13), der mindestens zwei Dünnfilm- Halbleiterbauelemente (1) nach einem der Ansprüche 1 bis 33' aufweist .
39. Bauelement-Verbund (13) nach Anspruch 38, wobei die Dünnfilm-Halbleiterbauelemente (1) eine gemeinsame Trägerschicht (2) aufweisen.
40. Bauelement-Verbund (13) nach Anspruch 39, wobei ein gemeinsames Kontaktpad (12) für einen auskoppelseitigen elektrischen Kontakt der Schichtenstapel (8) auf der Trägerschicht (2) zwischen den Schichtenstapeln. (8) aufgebracht ist.
41. Bauelement-Verbund (13) nach Anspruch 38 oder 39, wobei die Dünnfilm-Halbleiterbauelemente (1) in Reihe geschaltet ' sind.
PCT/DE2007/001273 2006-08-04 2007-07-16 Dünnfilm-halbleiterbauelement und bauelement-verbund WO2008014750A2 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020097004412A KR101386303B1 (ko) 2006-08-04 2007-07-16 박막 반도체 소자 및 소자 어셈블리
JP2009522082A JP5517616B2 (ja) 2006-08-04 2007-07-16 薄膜半導体構成素子および構成素子結合体
CN200780036707.6A CN101542752B (zh) 2006-08-04 2007-07-16 薄膜半导体元件及元件复合结构
EP07785643A EP2047525A2 (de) 2006-08-04 2007-07-16 Dünnfilm-halbleiterbauelement und bauelement-verbund
US12/376,425 US8872330B2 (en) 2006-08-04 2007-07-16 Thin-film semiconductor component and component assembly

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102006036543.7 2006-08-04
DE102006036543 2006-08-04
DE102007004303.3 2007-01-29
DE102007004303A DE102007004303A1 (de) 2006-08-04 2007-01-29 Dünnfilm-Halbleiterbauelement und Bauelement-Verbund

Publications (2)

Publication Number Publication Date
WO2008014750A2 true WO2008014750A2 (de) 2008-02-07
WO2008014750A3 WO2008014750A3 (de) 2008-06-12

Family

ID=38596017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2007/001273 WO2008014750A2 (de) 2006-08-04 2007-07-16 Dünnfilm-halbleiterbauelement und bauelement-verbund

Country Status (8)

Country Link
US (1) US8872330B2 (de)
EP (1) EP2047525A2 (de)
JP (1) JP5517616B2 (de)
KR (1) KR101386303B1 (de)
CN (1) CN101542752B (de)
DE (1) DE102007004303A1 (de)
TW (1) TWI378571B (de)
WO (1) WO2008014750A2 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8058147B2 (en) 2005-08-05 2011-11-15 Osram Opto Semiconductors Gmbh Method for producing semiconductor components and thin-film semiconductor component
US8384096B2 (en) 2007-09-04 2013-02-26 Osram Opto Semiconductors Gmbh Semiconductor component with optically active regions which provides high optical output power, and method for producing same
US8872330B2 (en) 2006-08-04 2014-10-28 Osram Opto Semiconductors Gmbh Thin-film semiconductor component and component assembly
US9142720B2 (en) 2007-01-29 2015-09-22 Osram Opto Semiconductors Gmbh Thin-film light emitting diode chip and method for producing a thin-film light emitting diode chip

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007017113A1 (de) 2007-01-31 2008-08-07 Osram Opto Semiconductors Gmbh Halbleiterbauelement mit einer optisch aktiven Schicht, Anordnung mit einer Vielzahl von optisch aktiven Schichten und Verfahren zur Herstellung eines Halbleiterbauelements
DE102008013030A1 (de) 2007-12-14 2009-06-25 Osram Opto Semiconductors Gmbh Strahlungsemittierende Vorrichtung
DE102008026841A1 (de) * 2008-02-22 2009-08-27 Osram Opto Semiconductors Gmbh Optoelektronisches Bauteil
DE102008030815A1 (de) 2008-06-30 2009-12-31 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung einer Vielzahl von optoelektronischen Bauelementen
KR101755966B1 (ko) * 2013-02-28 2017-07-07 미쓰비시덴키 가부시키가이샤 방열 구조 및 광 송수신기
JP2014204029A (ja) * 2013-04-08 2014-10-27 立山科学工業株式会社 Led実装用基板
DE102014104230A1 (de) 2014-03-26 2015-10-01 Osram Opto Semiconductors Gmbh Strahlungsemittierendes Bauteil und Verfahren zur Herstellung eines strahlungsemittierenden Bauteils
US11396199B2 (en) 2015-03-23 2022-07-26 Stora Enso Oyj Inkjet ink receptive coating comprising esterified or etherified starch and laponite
DE102017112223A1 (de) * 2017-06-02 2018-12-06 Osram Opto Semiconductors Gmbh Halbleiterlaser-Bauteil und Verfahren zur Herstellung eines Halbleiterlaser-Bauteils
DE102019106546A1 (de) * 2019-03-14 2020-09-17 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Verfahren zur herstellung von optoelektronischen halbleiterbauteilen und optoelektronisches halbleiterbauteil
US10854530B1 (en) 2019-07-31 2020-12-01 Taiwan Semiconductor Manufacturing Co., Ltd. Heat dissipation structures
CN114531874A (zh) * 2020-09-14 2022-05-24 法国圣戈班玻璃厂 用光敏材料涂覆弯曲玻璃板的方法和装置
US11887908B2 (en) 2021-12-21 2024-01-30 International Business Machines Corporation Electronic package structure with offset stacked chips and top and bottom side cooling lid

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10040448A1 (de) 2000-08-18 2002-03-07 Osram Opto Semiconductors Gmbh Halbleiterchip und Verfahren zu dessen Herstellung
DE10234978A1 (de) 2002-07-31 2004-02-12 Osram Opto Semiconductors Gmbh Oberflächenmontierbares Halbleiterbauelement und Verfahren zu dessen Herstellung

Family Cites Families (104)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4068572A (en) 1972-01-31 1978-01-17 Hans Vogt Apparatus for heating food
DE8711105U1 (de) * 1987-08-14 1987-11-26 Siemens AG, 1000 Berlin und 8000 München Leiterplatte für die Elektronik
JP2953468B2 (ja) 1989-06-21 1999-09-27 三菱化学株式会社 化合物半導体装置及びその表面処理加工方法
JPH0992878A (ja) 1995-09-25 1997-04-04 Shin Etsu Handotai Co Ltd 半導体発光素子及びその製造方法
US5779924A (en) 1996-03-22 1998-07-14 Hewlett-Packard Company Ordered interface texturing for a light emitting device
DE69737086T2 (de) 1996-08-27 2007-05-16 Seiko Epson Corp. Trennverfahren, verfahren zur übertragung eines dünnfilmbauelements, und unter verwendung des übertragungsverfahrens hergestelltes flüssigkristall-anzeigebauelement
DE19640594B4 (de) 1996-10-01 2016-08-04 Osram Gmbh Bauelement
JP4032443B2 (ja) 1996-10-09 2008-01-16 セイコーエプソン株式会社 薄膜トランジスタ、回路、アクティブマトリクス基板、液晶表示装置
WO1998016201A1 (en) * 1996-10-11 1998-04-23 Sequus Pharmaceuticals, Inc. Therapeutic liposome composition and method
JP3156756B2 (ja) 1997-01-10 2001-04-16 サンケン電気株式会社 半導体発光素子
US5833073A (en) 1997-06-02 1998-11-10 Fluoroware, Inc. Tacky film frame for electronic device
US6071795A (en) 1998-01-23 2000-06-06 The Regents Of The University Of California Separation of thin films from transparent substrates by selective optical processing
JP2000049382A (ja) 1998-07-27 2000-02-18 Matsushita Electron Corp 半導体発光装置及びその製造方法
JP5019664B2 (ja) 1998-07-28 2012-09-05 アイメック 高効率で光を発するデバイスおよびそのようなデバイスの製造方法
US7253445B2 (en) 1998-07-28 2007-08-07 Paul Heremans High-efficiency radiating device
EP0977277A1 (de) 1998-07-28 2000-02-02 Interuniversitair Microelektronica Centrum Vzw Strahlenemittierende Vorrichtungen mit hohem Wirkungsgrad und Herstellungsverfahren
US6504180B1 (en) 1998-07-28 2003-01-07 Imec Vzw And Vrije Universiteit Method of manufacturing surface textured high-efficiency radiating devices and devices obtained therefrom
US6876003B1 (en) 1999-04-15 2005-04-05 Sumitomo Electric Industries, Ltd. Semiconductor light-emitting device, method of manufacturing transparent conductor film and method of manufacturing compound semiconductor light-emitting device
DE19922176C2 (de) 1999-05-12 2001-11-15 Osram Opto Semiconductors Gmbh Oberflächenmontierte LED-Mehrfachanordnung und deren Verwendung in einer Beleuchtungseinrichtung
US6888237B1 (en) 1999-07-09 2005-05-03 Osram Gmbh Encapsulation of a device
DE19947030A1 (de) 1999-09-30 2001-04-19 Osram Opto Semiconductors Gmbh Oberflächenstrukturierte Lichtemissionsdiode mit verbesserter Stromeinkopplung
JP2001168344A (ja) 1999-12-13 2001-06-22 Sony Corp 薄膜トランジスタ及びその製造方法と加熱装置並びに表示装置
DE10017336C2 (de) * 2000-04-07 2002-05-16 Vishay Semiconductor Gmbh verfahren zur Herstellung von strahlungsemittierenden Halbleiter-Wafern
DE10051465A1 (de) 2000-10-17 2002-05-02 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung eines Halbleiterbauelements auf GaN-Basis
DE10020464A1 (de) 2000-04-26 2001-11-08 Osram Opto Semiconductors Gmbh Strahlungsemittierendes Halbleiterbauelement auf GaN-Basis
CN1292494C (zh) 2000-04-26 2006-12-27 奥斯兰姆奥普托半导体有限责任公司 发光半导体元件及其制造方法
TWI289944B (en) 2000-05-26 2007-11-11 Osram Opto Semiconductors Gmbh Light-emitting-diode-element with a light-emitting-diode-chip
TW472400B (en) 2000-06-23 2002-01-11 United Epitaxy Co Ltd Method for roughing semiconductor device surface to increase the external quantum efficiency
WO2002009192A1 (en) 2000-07-24 2002-01-31 Matsushita Electric Industrial Co., Ltd. Semiconductor device, liquid crystal display device, el display device, semiconductor film producing method, and semiconductor device producing method
JP2002063985A (ja) * 2000-08-22 2002-02-28 Nec Corp 有機エレクトロルミネッセンス素子
US6562648B1 (en) 2000-08-23 2003-05-13 Xerox Corporation Structure and method for separation and transfer of semiconductor thin films onto dissimilar substrate materials
DE10041328B4 (de) * 2000-08-23 2018-04-05 Osram Opto Semiconductors Gmbh Verpackungseinheit für Halbleiterchips
US6614103B1 (en) * 2000-09-01 2003-09-02 General Electric Company Plastic packaging of LED arrays
DE10051159C2 (de) * 2000-10-16 2002-09-19 Osram Opto Semiconductors Gmbh LED-Modul, z.B. Weißlichtquelle
JP3829245B2 (ja) 2000-11-09 2006-10-04 日本軽金属株式会社 ディスペンサー洗浄用アダプター
JP4461616B2 (ja) 2000-12-14 2010-05-12 ソニー株式会社 素子の転写方法、素子保持基板の形成方法、及び素子保持基板
AR033295A1 (es) 2001-04-30 2003-12-10 Glaxo Group Ltd Compuestos biciclicos de pirimidina, proceso para su obtencion, uso de los mismos para la preparacion de una composicion farmaceutica y dicha composicion farmaceutica
JP2002339952A (ja) 2001-05-16 2002-11-27 Sankyo Seiki Mfg Co Ltd オイル動圧軸受装置およびその製造方法
EP1416219B1 (de) 2001-08-09 2016-06-22 Everlight Electronics Co., Ltd Beleuchtungseinrichtung und kartenförmige led-lichtguelle
JP3989794B2 (ja) 2001-08-09 2007-10-10 松下電器産業株式会社 Led照明装置およびled照明光源
JP4180576B2 (ja) 2001-08-09 2008-11-12 松下電器産業株式会社 Led照明装置およびカード型led照明光源
JP2003131137A (ja) 2001-10-24 2003-05-08 Tochigi Nikon Corp テラヘルツ光供給光学系、テラヘルツ光検出光学系、及びこれを用いたテラヘルツ光装置
JP3900893B2 (ja) 2001-11-02 2007-04-04 ソニー株式会社 操舵装置、ドライバー認証方法、自動車
DE10303977A1 (de) 2002-01-31 2003-11-27 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung eines Halbleiterbauelements
TWI226139B (en) 2002-01-31 2005-01-01 Osram Opto Semiconductors Gmbh Method to manufacture a semiconductor-component
DE20220258U1 (de) 2002-09-20 2004-02-19 Osram Opto Semiconductors Gmbh Halbleiterchip
JP3776824B2 (ja) 2002-04-05 2006-05-17 株式会社東芝 半導体発光素子およびその製造方法
DE60325669D1 (de) 2002-05-17 2009-02-26 Semiconductor Energy Lab Verfahren zum Transferieren eines Objekts und Verfahren zur Herstellung eines Halbleiterbauelements
JP2004047975A (ja) 2002-05-17 2004-02-12 Semiconductor Energy Lab Co Ltd 積層体の転写方法及び半導体装置の作製方法
EP1536487A4 (de) 2002-05-28 2008-02-06 Matsushita Electric Works Ltd Lichtemissionselement, lichtemissionseinrichtung und diese verwendende oberflächenemissionsbeleuchtungseinrichtung
JP2003347524A (ja) 2002-05-28 2003-12-05 Sony Corp 素子の転写方法、素子の配列方法及び画像表示装置の製造方法
JP2004047691A (ja) 2002-07-11 2004-02-12 Seiko Epson Corp 半導体装置の製造方法、電気光学装置、及び電子機器
CN1672260A (zh) 2002-07-31 2005-09-21 奥斯兰姆奥普托半导体有限责任公司 可表面安装的半导体器件及其制造方法
US7078737B2 (en) 2002-09-02 2006-07-18 Matsushita Electric Industrial Co., Ltd. Light-emitting device
TWI313062B (en) 2002-09-13 2009-08-01 Ind Tech Res Inst Method for producing active plastic panel displayers
DE10245631B4 (de) 2002-09-30 2022-01-20 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Halbleiterbauelement
DE10245628A1 (de) 2002-09-30 2004-04-15 Osram Opto Semiconductors Gmbh Elektromagnetische Strahlung emittierender Halbleiterchip und Verfahren zu dessen Herstellung
JP4097510B2 (ja) * 2002-11-20 2008-06-11 株式会社沖データ 半導体装置の製造方法
JP4472314B2 (ja) 2002-11-22 2010-06-02 株式会社半導体エネルギー研究所 半導体装置の作製方法、表示装置の作製方法、および発光装置の作製方法
US20040099926A1 (en) 2002-11-22 2004-05-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, display device, and light-emitting device, and methods of manufacturing the same
KR101247727B1 (ko) 2003-01-31 2013-03-26 오스람 옵토 세미컨덕터스 게엠베하 반도체 소자 제조 방법
US6786390B2 (en) * 2003-02-04 2004-09-07 United Epitaxy Company Ltd. LED stack manufacturing method and its structure thereof
US6903381B2 (en) 2003-04-24 2005-06-07 Opto Tech Corporation Light-emitting diode with cavity containing a filler
TWI330413B (en) 2005-01-25 2010-09-11 Epistar Corp A light-emitting device
US20050033638A1 (en) 2003-08-08 2005-02-10 Toni-Diane Donnet System and method for advertising compliance
DE10339985B4 (de) * 2003-08-29 2008-12-04 Osram Opto Semiconductors Gmbh Optoelektronisches Bauelement mit einer transparenten Kontaktschicht und Verfahren zu dessen Herstellung
WO2005035558A2 (en) 2003-10-07 2005-04-21 Michel Thiry Piscirickettsia salmonis antigens and use thereof
DE10353679A1 (de) * 2003-11-17 2005-06-02 Siemens Ag Kostengünstige, miniaturisierte Aufbau- und Verbindungstechnik für LEDs und andere optoelektronische Module
US7341882B2 (en) 2003-11-18 2008-03-11 Uni Light Technology Inc. Method for forming an opto-electronic device
US20050116235A1 (en) 2003-12-02 2005-06-02 Schultz John C. Illumination assembly
JP4496774B2 (ja) 2003-12-22 2010-07-07 日亜化学工業株式会社 半導体装置の製造方法
JP4368225B2 (ja) 2004-03-10 2009-11-18 三洋電機株式会社 窒化物系半導体発光素子の製造方法
MXPA06011114A (es) 2004-03-29 2007-01-25 Articulated Technologies Llc Hoja luminosa fabricada de rodillo a rodillo y dispositivos encapsulados de circuito semiconductor.
US7427782B2 (en) 2004-03-29 2008-09-23 Articulated Technologies, Llc Roll-to-roll fabricated light sheet and encapsulated semiconductor circuit devices
EP1735149A2 (de) * 2004-04-16 2006-12-27 Lucea AG Lichtemittierendes paneel und optisch wirksame folie
US7781789B2 (en) 2006-11-15 2010-08-24 The Regents Of The University Of California Transparent mirrorless light emitting diode
US6956246B1 (en) * 2004-06-03 2005-10-18 Lumileds Lighting U.S., Llc Resonant cavity III-nitride light emitting devices fabricated by growth substrate removal
US20050274971A1 (en) 2004-06-10 2005-12-15 Pai-Hsiang Wang Light emitting diode and method of making the same
DE102005013894B4 (de) 2004-06-30 2010-06-17 Osram Opto Semiconductors Gmbh Elektromagnetische Strahlung erzeugender Halbleiterchip und Verfahren zu dessen Herstellung
WO2006012838A2 (de) 2004-07-30 2006-02-09 Osram Opto Semiconductors Gmbh Verfahren zur herstellung von halbleiterchips in dünnfilmtechnik und halbleiterchip in dünnfilmtechnik
DE102004036962A1 (de) * 2004-07-30 2006-03-23 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung von Halbleiterchips in Dünnfilmtechnik und Halbleiterchip in Dünnfilmtechnik
KR100616600B1 (ko) * 2004-08-24 2006-08-28 삼성전기주식회사 수직구조 질화물 반도체 발광소자
JP4254669B2 (ja) * 2004-09-07 2009-04-15 豊田合成株式会社 発光装置
US7476910B2 (en) 2004-09-10 2009-01-13 Kabushiki Kaisha Toshiba Semiconductor light emitting device and method for manufacturing the same
DE102004050371A1 (de) 2004-09-30 2006-04-13 Osram Opto Semiconductors Gmbh Optoelektronisches Bauelement mit einer drahtlosen Kontaktierung
US7256483B2 (en) * 2004-10-28 2007-08-14 Philips Lumileds Lighting Company, Llc Package-integrated thin film LED
JP2006128512A (ja) 2004-10-29 2006-05-18 Ngk Spark Plug Co Ltd 発光素子用セラミック基板
US7303315B2 (en) 2004-11-05 2007-12-04 3M Innovative Properties Company Illumination assembly using circuitized strips
JP4906256B2 (ja) 2004-11-10 2012-03-28 株式会社沖データ 半導体複合装置の製造方法
JP2006147787A (ja) 2004-11-18 2006-06-08 Sony Corp 発光素子及びその製造方法
JP2006147889A (ja) 2004-11-19 2006-06-08 Stanley Electric Co Ltd 表面実装型led
KR100638666B1 (ko) 2005-01-03 2006-10-30 삼성전기주식회사 질화물 반도체 발광소자
US8622578B2 (en) * 2005-03-30 2014-01-07 Koninklijke Philips N.V. Flexible LED array
US20060237735A1 (en) 2005-04-22 2006-10-26 Jean-Yves Naulin High-efficiency light extraction structures and methods for solid-state lighting
KR100599012B1 (ko) 2005-06-29 2006-07-12 서울옵토디바이스주식회사 열전도성 기판을 갖는 발광 다이오드 및 그것을 제조하는방법
DE102005055293A1 (de) * 2005-08-05 2007-02-15 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung von Halbleiterchips und Dünnfilm-Halbleiterchip
US20070053179A1 (en) 2005-09-08 2007-03-08 Pang Slew I Low profile light source utilizing a flexible circuit carrier
WO2007089599A2 (en) * 2006-01-31 2007-08-09 3M Innovative Properties Company Led illumination assembly with compliant foil construction
US7710045B2 (en) 2006-03-17 2010-05-04 3M Innovative Properties Company Illumination assembly with enhanced thermal conductivity
US7806574B2 (en) * 2006-04-16 2010-10-05 Albeo Technologies, Inc. Thermal management of LED-based lighting systems
JP2008028352A (ja) 2006-06-02 2008-02-07 Nec Lighting Ltd 電子機器および電子機器の製造方法
DE102007004301A1 (de) 2006-08-04 2008-02-07 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung eines Halbleiterbauelements und Dünnfilm-Halbleiterbauelement
DE102007004303A1 (de) 2006-08-04 2008-02-07 Osram Opto Semiconductors Gmbh Dünnfilm-Halbleiterbauelement und Bauelement-Verbund
DE102007004304A1 (de) 2007-01-29 2008-07-31 Osram Opto Semiconductors Gmbh Dünnfilm-Leuchtdioden-Chip und Verfahren zur Herstellung eines Dünnfilm-Leuchtdioden-Chips

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10040448A1 (de) 2000-08-18 2002-03-07 Osram Opto Semiconductors Gmbh Halbleiterchip und Verfahren zu dessen Herstellung
DE10234978A1 (de) 2002-07-31 2004-02-12 Osram Opto Semiconductors Gmbh Oberflächenmontierbares Halbleiterbauelement und Verfahren zu dessen Herstellung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
I. SCHNITZER ET AL., APPL. PHYS. LETT., vol. 63, no. 16, 18 October 1993 (1993-10-18), pages 2174 - 2176

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8058147B2 (en) 2005-08-05 2011-11-15 Osram Opto Semiconductors Gmbh Method for producing semiconductor components and thin-film semiconductor component
US8872330B2 (en) 2006-08-04 2014-10-28 Osram Opto Semiconductors Gmbh Thin-film semiconductor component and component assembly
US9142720B2 (en) 2007-01-29 2015-09-22 Osram Opto Semiconductors Gmbh Thin-film light emitting diode chip and method for producing a thin-film light emitting diode chip
US8384096B2 (en) 2007-09-04 2013-02-26 Osram Opto Semiconductors Gmbh Semiconductor component with optically active regions which provides high optical output power, and method for producing same

Also Published As

Publication number Publication date
DE102007004303A1 (de) 2008-02-07
CN101542752A (zh) 2009-09-23
KR20090035040A (ko) 2009-04-08
TW200816524A (en) 2008-04-01
EP2047525A2 (de) 2009-04-15
WO2008014750A3 (de) 2008-06-12
KR101386303B1 (ko) 2014-04-17
JP2009545863A (ja) 2009-12-24
US20100163915A1 (en) 2010-07-01
TWI378571B (en) 2012-12-01
US8872330B2 (en) 2014-10-28
JP5517616B2 (ja) 2014-06-11
CN101542752B (zh) 2014-01-22

Similar Documents

Publication Publication Date Title
WO2008014750A2 (de) Dünnfilm-halbleiterbauelement und bauelement-verbund
EP1911104B1 (de) Verfahren zur herstellung von halbleiterbauelementen und dünnfilm-halbleiterbauelement
DE102008021402B4 (de) Oberflächenmontierbares Leuchtdioden-Modul und Verfahren zur Herstellung eines oberflächenmontierbaren Leuchtdioden-Moduls
EP2193553A1 (de) Optoelektronischer halbleiterchip, optoelektronisches bauelement und verfahren zum herstellen eines optoelektronischen bauelements
EP2281316B1 (de) Optoelektronisches halbleiterbauteil
DE102004050371A1 (de) Optoelektronisches Bauelement mit einer drahtlosen Kontaktierung
EP2067178A1 (de) Led-halbleiterkörper und verwendung eines led-halbleiterkörpers
EP2223354B1 (de) Optoelektronisches bauelement
DE102010048159A1 (de) Leuchtdiodenchip
WO2015010997A1 (de) Oberflächenmontierbares optoelektronisches halbleiterbauteil und verfahren zur herstellung zumindest eines oberflächenmontierbaren optoelektronischen halbleiterbauteils
DE102011101052A1 (de) Substrat mit elektrisch neutralem Bereich
DE102006015115A1 (de) Elektronisches Modul und Verfahren zum Herstellen eines elektronischen Moduls
DE102007004301A1 (de) Verfahren zur Herstellung eines Halbleiterbauelements und Dünnfilm-Halbleiterbauelement
WO2011080058A1 (de) Strahlungsemittierende lichtleitervorrichtung für die beleuchtung, modul mit einer solchen vorrichtung und verfahren zur herstellung einer solchen
DE102021200044A1 (de) Anschlussträger, optoelektronische vorrichtung und verfahren zum herstellen eines anschlussträgers
WO2014048699A1 (de) Optoelektronisches halbleiterbauteil und verfahren zur herstellung eines optoelektronischen halbleiterbauteils
EP2054947B1 (de) Optoelektronisches bauelement
WO2022248247A1 (de) Optoelektronisches halbleiterbauteil und paneel
DE102021133724A1 (de) Lichtemittierendes modul und verfahren zum herstellen eines lichtemittierenden moduls
DE102007006157A1 (de) Varistor und Leuchtvorrichtung
EP2619807B1 (de) Optoelektronischer halbleiterchip und verfahren zu dessen herstellung
DE102008054235A1 (de) Optoelektronisches Bauteil
WO2009103285A1 (de) Optoelektronisches bauteil
DE102004047061B4 (de) Optoelektronisches Bauelement und Verfahren zum Herstellen eines optoelektronischen Bauelements
DE102015115900A1 (de) Halbleiterbauelement und Verfahren zur Herstellung eines Halbleiterbauelements

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780036707.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07785643

Country of ref document: EP

Kind code of ref document: A2

REEP Request for entry into the european phase

Ref document number: 2007785643

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007785643

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009522082

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020097004412

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: RU

WWE Wipo information: entry into national phase

Ref document number: 12376425

Country of ref document: US