WO2008013174A1 - PROCÉDÉ DE PRODUCTION DE SEL D'ESTER ALKYLIQUE D'ACIDE α-SULFO-GRAS - Google Patents

PROCÉDÉ DE PRODUCTION DE SEL D'ESTER ALKYLIQUE D'ACIDE α-SULFO-GRAS Download PDF

Info

Publication number
WO2008013174A1
WO2008013174A1 PCT/JP2007/064514 JP2007064514W WO2008013174A1 WO 2008013174 A1 WO2008013174 A1 WO 2008013174A1 JP 2007064514 W JP2007064514 W JP 2007064514W WO 2008013174 A1 WO2008013174 A1 WO 2008013174A1
Authority
WO
WIPO (PCT)
Prior art keywords
bleaching
fatty acid
temperature
acid alkyl
alkyl ester
Prior art date
Application number
PCT/JP2007/064514
Other languages
English (en)
French (fr)
Inventor
Tsutomu Ishikawa
Taku Nishio
Go Ichitani
Daisuke Negishi
Nobukazu Syogase
Ryuichi Matsushita
Original Assignee
Lion Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lion Corporation filed Critical Lion Corporation
Priority to JP2008526778A priority Critical patent/JP5193865B2/ja
Publication of WO2008013174A1 publication Critical patent/WO2008013174A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C303/00Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides
    • C07C303/32Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of salts of sulfonic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C303/00Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides
    • C07C303/02Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of sulfonic acids or halides thereof
    • C07C303/04Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of sulfonic acids or halides thereof by substitution of hydrogen atoms by sulfo or halosulfonyl groups
    • C07C303/06Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of sulfonic acids or halides thereof by substitution of hydrogen atoms by sulfo or halosulfonyl groups by reaction with sulfuric acid or sulfur trioxide

Definitions

  • the present invention relates to a method for producing an ⁇ -sulfo fatty acid alkyl ester salt.
  • Neutralized salts of sulfonated compounds of fatty acid alkyl esters are also generally referred to as ⁇ -sulfo fatty acid alkyl ester salts.
  • ⁇ -Sulfo fatty acid alkyl ester salts are hard water resistant, biodegradable, have excellent detergency, are mild to the skin, and are renewable and cost-effective because they use natural resources as raw materials. It is also regarded as important from the viewpoint of protecting the global environment.
  • a method for producing a sulfo-fatty acid alkyl ester salt a method of sulfonating a fatty acid alkyl ester to obtain an ⁇ -sulfo fatty acid alkyl ester, and neutralizing the ⁇ -sulfo fatty acid alkyl ester with an alkali is common. .
  • the reaction rate of the ester formation stage is very slow. Therefore, at present, an aging step is provided after sulfonation to promote the elimination of so from the bimolecular adduct.
  • the ⁇ -sulfo fatty acid alkyl ester salt is produced by neutralizing the produced ⁇ -sulfo fatty acid alkyl ester with an alkali.
  • the ⁇ -sulfo fatty acid alkyl ester salt obtained as described above usually has a remarkable coloring. Coloring is inconvenient for use as a cleaning agent. Therefore, bleaching treatment is generally performed before or after the alkali neutralization step to improve the color tone of a sulfo fatty acid alkyl ester salt (for example, Patent Document 1).
  • the ⁇ -sulfo fatty acid alkyl ester salt is produced by performing a bleaching step in addition to a sulfonation step, an aging step, and an alkali neutralization step.
  • the method for producing an ⁇ -sulfo fatty acid alkyl ester salt as described above has a problem that by-products such as ⁇ -sulfo fatty acid and ⁇ -sulfo fatty acid dialkali salt are easily generated. . If such a by-product is present in a large amount, the performance of the ⁇ -sulfo fatty acid alkyl ester salt as a surfactant may be reduced, and it is required to suppress the formation of a by-product.
  • the bleaching treatment near neutrality requires a high bleaching temperature and a long bleaching time, which causes hydrolysis of ester bonds.
  • the bleaching treatment near neutrality is basically very low in hydrolyzability of ⁇ -sulfo fatty acid alkali ester salt compared to bleaching under acidic conditions! if it is possible to effectively react, ultimately quality bleaching product is a possible force s is obtained.
  • Patent Document 3 by performing the sulfonation step in the presence of a coloring inhibitor, an ⁇ -sulfo fatty acid alkyl ester in which coloring is suppressed is obtained, and the ⁇ -sulfo fatty acid alkyl ester is neutralized and bleached. Power S has been proposed. According to such a production method, since the coloring of the ⁇ -sulfo fatty acid alkyl ester salt itself before bleaching is suppressed, it is considered that the bleaching treatment time is short.
  • Patent Document 1 JP-A-9 12533
  • Patent Document 2 Japanese Patent Laid-Open No. 2001_128852
  • Patent Document 3 Japanese Patent Laid-Open No. 2001-64248
  • the present invention has been made in view of the above circumstances, and produces an ⁇ -sulfo fatty acid alkyl ester salt that is excellent in color tone and suppressed by-product formation even in a short bleaching time. It aims at providing the manufacturing method which can be performed.
  • the present inventors have controlled the temperature conditions during bleaching by a specific procedure, or, as the bleaching reaction proceeds, the reaction temperature and the reaction amount of the bleaching agent are in a specific range.
  • the present inventors have found that the above-mentioned problems can be solved by controlling the enclosure.
  • the present invention provides a sulfonation step for sulfonating a fatty acid alkyl ester, an aging step for aging a sulfonated compound obtained in the sulfonation step, and an aging compound obtained in the aging step.
  • a sulfonation step for sulfonating a fatty acid alkyl ester
  • an aging step for aging a sulfonated compound obtained in the sulfonation step
  • an aging compound obtained in the aging step an aging compound obtained in the aging step.
  • an esterification process in which an esterification process is performed using an alcohol having 1 to 6 carbon atoms
  • a neutralization process in which an esterified compound obtained in the esterification process is neutralized to obtain a neutralized product
  • a bleaching step of bleaching the neutralized product to obtain a bleached product.
  • the start temperature of the bleaching reaction is set to 55 to 80 ° C, and the start temperature is The temperature is raised to the maximum temperature of 85 to 100 ° C in 20 to 240 minutes from the start of the reaction, held at the maximum temperature for 20 to 360 minutes, and then lowered to the end temperature of 55 to 80 ° C.
  • a method for producing an ⁇ -sulfo fatty acid alkyl ester salt is provided.
  • the present invention also provides a sulfonation step for sulfonating a fatty acid alkyl ester, an aging step for aging a sulfonated compound obtained in the sulfonation step, and an aging compound obtained in the aging step.
  • An esterification process in which an esterification process is performed using an alcohol having 1 to 6 carbon atoms, a neutralization process in which an esterified compound obtained in the esterification process is neutralized to obtain a neutralized product, and the neutralization
  • the reaction is started by adding a bleaching agent to the neutralized product at a reaction start temperature of 55 to 80 ° C.
  • the temperature is raised to a maximum temperature of 85 to 100 ° C. so that the consumption of bleach from the start is 30-60% by weight (vs. added), at which the bleach ⁇ 35% by mass (vs. added amount) Remaining bleach after holding consumption time
  • the production temperature of the ⁇ -sulfo fatty acid alkyl ester salt is characterized in that the reaction temperature is lowered to the end temperature of 55 to 80 ° C. so that the amount is 0.;! To 15% by mass (additional amount).
  • the color tone is excellent even with a small amount of bleach and a short bleaching time.
  • ⁇ -sulfo fatty acid alkyl ester salts with reduced by-product formation can be produced. That is, the constant temperature reaction, which is a general bleaching method, is used to suppress the production of by-products such as ⁇ -sulfo fatty acid dialkali salts. Decreasing the temperature slows the progress of the bleaching reaction. Raising the temperature to accelerate the progress of the bleaching reaction accelerates the decomposition of the bleaching agent, and it is impossible to obtain a bleached product of good color.
  • the initial stage where bleaching progresses early is performed at a low temperature, and the temperature of the bleaching agent is increased by leaving a lot of bleaching agent in the latter half when the progress of bleaching is delayed. Degradation can be suppressed as much as possible, and a bleached product having a good color tone can be obtained.
  • the present invention relates to "coloring power of ⁇ -sulfo fatty acid alkali ester S, a polymer called polysulfonated product during sulfonation reaction, and this polymer is easily bleached due to its molecular size.
  • FIG. 1 is a schematic configuration diagram showing an example of a manufacturing apparatus preferably used in the present invention.
  • FIG. 2 is a schematic configuration diagram showing an example of a manufacturing apparatus suitably used in the present invention.
  • FIG. 3 is a schematic configuration diagram showing an example of a continuous bleaching tube preferably used in the present invention.
  • FIG. 4 is a graph comparing bleaching conditions in the bleaching process of the present invention with conventional bleaching conditions.
  • FIG. 5 is a graph showing the time transition of bleach consumption in the bleaching process of the present invention.
  • FIG. 6 is a graph showing the time transition of the color tone of the bleached product in the bleaching process of the present invention. Explanation of symbols
  • a sulfonation step is performed to sulfonate the fatty acid alkyl ester as a raw material.
  • fatty acid alkyl ester examples include fatty acid alkyl esters represented by the following general formula (I) (hereinafter sometimes referred to as fatty acid alkyl esters (I)).
  • R 1 represents a linear or branched alkyl group or alkenyl group having 6 to 24 carbon atoms
  • R 2 represents a linear or branched alkyl group having 6 to 6 carbon atoms
  • the alkyl group of R 1 may be linear or branched, and preferably has 8 to 22 carbon atoms, more preferably 10 to 18 carbon atoms; preferable.
  • the alkenyl group for R 1 may be linear or branched, and preferably has 8 to 22 carbon atoms, more preferably 10 to 18 carbon atoms, and more preferably 18 carbon atoms.
  • R 1 is preferably an alkyl group. That is, the ⁇ -sulfo fatty acid alkyl ester salt is preferably an ⁇ -sulfo saturated fatty acid alkyl ester salt.
  • the alkyl group of R 2 may be linear or branched, and preferably has from 3 to 3 carbon atoms, more preferably 1 or 2.
  • fatty acid alkyl esters include animal fats and oils that are also derived from beef tallow and fish oil lanolin; vegetable fats and oils derived from palm oil, palm oil, soybean oil, and the like; Examples include derived synthetic fatty acid alkyl esters.
  • Any one of these fatty acid alkyl esters may be used alone, or two or more thereof may be used in combination.
  • the fatty acid alkyl ester preferably has an iodine value of 0.5 or less, more preferably 0.2 or less.
  • the lower the iodine value the more effectively the coloration in the sulfonation step can be reduced and the color tone of the resulting ⁇ -sulfo fatty acid alkyl ester salt becomes better. Also, the odor of ⁇ -sulfo fatty acid alkyl ester salt is suppressed.
  • those having an iodine value of 0.2 or less have a particularly good color tone compared to those having an iodine value exceeding 0.2.
  • Sulfonation of fatty acid alkyl esters is generally used for sulfonation.
  • a sulfonating reactor such as a double-tube type or multi-tube type falling film reactor, tank reactor, etc.
  • fatty acid alkyl ester and SO containing SO are examples of fatty acid alkyl esters.
  • the fatty acid alkyl ester (I) will be described as an example. As shown below, the fatty acid alkyl ester (I) is attached with a SO-molecule represented by the following general formula ( ⁇ ).
  • a triad adduct ( ⁇ ) is formed, and ⁇ — represented by the following general formula (II) from the SO bimolecular adduct ( ⁇ )
  • Sulfo fatty acid alkyl esters are formed.
  • R 1 and R 2 are the same as R 1 and R 2 in the above formula (I), respectively.
  • the reaction rate of the steal formation stage is very slow, and then the aging process is performed to promote the elimination of so from the SO biadduct.
  • SO gas SO concentration by dehumidified air or inert gas such as nitrogen;
  • SO gas diluted to 3 3% by volume is preferably used. If the SO concentration is 1% by volume or higher,
  • I can do it. If it is 30% by volume or less, the formation of by-products in which the sulfonation reaction is difficult to be excessive can be suppressed, and the color tone of sulfonated compounds such as ⁇ -sulfo fatty acid alkyl esters can be prevented from being deteriorated.
  • the amount of SO gas used is that the amount of SO in the SO gas is 1.0 of the fatty acid alkyl ester.
  • the sulfonation reaction proceeds sufficiently when it is at least 1.0 mol, and excessive sulfonation reaction can be suppressed at less than 2.0 mol, and coloring of the reaction product due to local heat can be prevented. Can be suppressed.
  • the reaction temperature in the sulfonation reaction may be a temperature at which the fatty acid alkyl ester has fluidity. Generally, a temperature within the range of the melting point + 70 ° C from the melting point of the fatty acid alkyl ester is applied. For example, in the case of the fatty acid alkyl ester (I) described above, the reaction temperature is usually 50 to 120 ° C, more preferably 60 to 90 ° C.
  • the reaction time is preferably 5 to 180 seconds, and more preferably 5 to 60 seconds.
  • the reaction time is 5 seconds or more and 180 seconds or less, there is an advantage that a sulfonic acid having good SO gas absorption and excellent color tone can be obtained.
  • the product (sulfonated compound) is discharged from the outlet (extraction port) of the sulfonation reactor.
  • the sulfonated compound is usually discharged with the gas in the sulfonation reactor, After exiting, it is preferable to perform gas-liquid separation by a dust collector such as a cyclone.
  • the gas (exhaust gas) separated by gas-liquid separation usually contains so gas and reaction mist.
  • An alkali scrubber is a type of wet acidic gas absorber, and is a device that neutralizes and collects an acidic gas contained in a gas by passing it through an aqueous alkaline solution.
  • the sulfonated compound obtained in the sulfonation step is subjected to aging treatment to prepare an aging compound.
  • the sulfonated compound usually ⁇ -sulfo fatty acid alkyl ester itself, intermediates such as SO bimolecular adduct, which is a by-product, and a small amount of unreacted
  • aging treatment is to hold the sulfonated compound at a predetermined aging temperature and a predetermined aging time.
  • the aging temperature is preferably 70 to 100 ° C, more preferably 70 to 90 ° C.
  • the reaction proceeds rapidly, and when it is 100 ° C or lower, coloring is unlikely to occur.
  • the ripening time is preferably 20 to 240 minutes, 30 to 120 minutes force S, more preferably 40 to 100 minutes force S. When it is 20 minutes or more and 240 minutes or less, SO gas absorption is good and color tone is excellent.
  • the aging treatment can be performed using a general stirring tank or a flow pipe.
  • a “circulation pipe” is one that passes through a pipe at a constant temperature with a constant flow rate.
  • a pipe having a function of maintaining a predetermined temperature for a predetermined time.
  • the aging treatment is particularly preferably carried out using a continuous multistage agitation tank having two or more partitioned mixing spaces, since it is easy to reduce the unevenness of the aging treatment. Yes.
  • a continuous multistage stirred tank the sulfonated compound stays in each mixing space for a certain period of time and then is supplied to the next mixing space. Therefore, the residence time when viewed as a whole continuous multistage stirred tank, that is, the aging time Non-uniformity is reduced.
  • the sulfonation step and / or aging step described above are preferably performed in the presence of a color inhibitor.
  • a color inhibitor preferably coloring of a sulfo fatty acid alkyl ester can be suppressed. Therefore, the color tone of the obtained ⁇ -sulfo fatty acid alkyl ester salt is further improved.
  • coloring inhibitor it is preferable to use a poorly soluble one in the fatty acid alkyl ester.
  • solubility in 100 g of fatty acid alkyl ester (raw material) used is 1 g or less at 25 ° C.
  • inorganic sulfates and / or organic acid salts having monovalent metal ions are preferable to use.
  • inorganic sulfate is a component that is highly inexpensive and has a high coloration inhibiting effect, and is further incorporated into detergents. Therefore, when producing ⁇ -sulfo fatty acid alkyl ester salts for detergent use, inorganic sulfate should be Sulfo fatty acid alkyl ester salt does not need to be removed!
  • Examples of monovalent metal ions include sodium ions, potassium ions, lithium ions, and the like.
  • Examples of the inorganic sulfate include sodium sulfate, potassium sulfate, lithium sulfate and the like.
  • anhydrous sodium sulfate sodium salt is particularly preferable among the anhydrous salts.
  • organic acid salt examples include sodium formate, potassium formate, and sodium acetate.
  • the coloring inhibitor is preferably in powder form!
  • the average particle size is preferably 250 in or less, more preferably 100 in or less.
  • Such a color inhibitor increases the contact area with the raw material liquid having a large surface area, improves dispersibility in the raw material liquid, The color suppression effect is fully exhibited.
  • the lower limit of the average particle size is preferably 10 m or more, more preferably 1 m or more, considering ease of handling and availability.
  • Coloring inhibitors may be used alone or in combination of two or more.
  • the addition amount of the coloring inhibitor needs to be within a range of 0.1 to 10 mass% with respect to the amount of the fatty acid alkyl ester used as a raw material. When the amount is less than 1% by mass, the effect of suppressing coloration cannot be obtained. When the content exceeds 10% by mass, the content of the coloring inhibitor in the sulfonated compound or the aged compound increases, and the content (purity) of the ⁇ -sulfo fatty acid alkyl ester salt in the sulfonated compound or the aged compound is relatively high. descend.
  • the addition amount of the color inhibitor is preferably 1 to 10% by mass, more preferably 3 to 7% by mass, based on the amount of fatty acid alkyl ester used.
  • the color inhibitor is sulfonated before the sulfonated step or after the sulfonated step, which may be used in the initial stage of the sulfonated step, before the ripened step or during the ripened step. You may add to a compound and mix and use.
  • the aging compound obtained in the aging step is subjected to esterification using an alcohol having carbon atoms of! -6. This improves the yield of ⁇ -sulfo fatty acid alkyl ester and suppresses the production of by-products.
  • ⁇ -sulfo fatty acid alkyl ester ( ⁇ ) represented by the following general formula ( ⁇ ) is formed. Therefore, the yield of ⁇ -sulfo fatty acid alkyl ester is improved.
  • R 1 and R 2 are each the same as R 1 and R 2 in the above formula (I), R 3 is an alkyl group of carbon number 1 6. ]
  • the aging compound is
  • ⁇ -sulfo fatty acid dialkali salt as shown in the following general formula (III) is likely to be formed.
  • this ⁇ -sulfo fatty acid dialkali salt has a function as a surfactant, its performance is lower than that of ⁇ -sulfo fatty acid alkyl ester salt. This may reduce the detergency, water solubility, and the like of the sulfofatty acid alkyl ester salt, which in turn may cause a decrease in the performance of the detergent used in the product.
  • the yield of ⁇ -sulfo fatty acid alkyl ester salt is improved, and the yield of a sulfo-fatty acid alkyl ester salt is improved by suppressing the formation of by-products.
  • R 1 is the same as R 1 in the formula (I). ]
  • an alcohol having 16 carbon atoms is added to an aged compound. This can be performed by maintaining a predetermined reaction time at a predetermined reaction temperature.
  • the reaction temperature is 50 to 100 ° C, preferably 50 to 90 ° C. If the reaction temperature is 50 ° C or higher and 100 ° C or lower, there is an advantage that a sulfonic acid excellent in the reaction rate and color tone can be obtained. S, Less than 50 ° C or higher than 100 ° C, the reaction rate decreases In addition, there is a risk of inconveniences such as promotion of color deterioration.
  • the reaction time is 5 to; 180 minutes is preferable, and 10 to 60 minutes is more preferable. If the reaction time is 5 minutes or more and 180 minutes or less, there is an advantage that a sulfonic acid excellent in reaction rate and color tone can be obtained. However, if the reaction time is less than 5 minutes or longer than 180 minutes, the reaction rate decreases or the color tone deteriorates. There is a risk that the problem of promotion will occur.
  • the esterification treatment can be carried out using a general stirring tank as in the aging step! /, Using a flow pipe. In order to narrow the residence time distribution, two or more partitions are used. Preference is given to using a continuous multistage stirred tank with mixing space! /.
  • the alcohol is preferably a monohydric alcohol that may be linear or branched.
  • the same alkyl group as the alkyl group in the alcohol residue in which an alcohol having a carbon number equal to the carbon number of the alcohol residue of the starting fatty acid alkyl ester (for example, the carbon number of R2 in formula (I)) is preferred is used. More preferred is alcohol.
  • the amount of alcohol added is preferably from! To 10% by weight, more preferably from 2 to 5% by weight, based on 100% by weight of the ripening compound. If the amount of alcohol added is 1% by mass or more, the effect of the esterification treatment is sufficiently obtained, and if it is 10% by mass or less, there is no need to carry out a process for recovering excess lower alcohol. It is.
  • the sulfonated reaction rate of the product (esterified compound) obtained in the esterification step is 95 mol% or more, preferably 97 mol% or more. It is more preferable. Thereby, the production
  • the sulfonation reaction rate means the ratio (%) of the compound having a Cs bond in the esterified compound.
  • the sulfonation reaction rate can be calculated from the concentration of an unreacted raw material (fatty acid alkyl ester) in the esterified compound obtained by analyzing the esterified compound by high performance liquid chromatography (HPLC).
  • the sulfonation reaction rate is, for example, the amount of SO reacted with a fatty acid alkyl ester
  • reaction temperature and time in the ripening process and esterification process can be adjusted by adjusting the reaction temperature and time in the ripening process and esterification process. For example, the greater the amount of SO, the higher the sulfonation reaction rate. Also, the reaction time is long
  • the esterified compound is neutralized to form an ⁇ - sulfo fatty acid alkyl ester salt from the ⁇ - sulfo fatty acid alkyl ester in the esterified compound.
  • an ⁇ -sulfo fatty acid alkyl ester salt (IV) represented by the following general formula (IV) is mainly produced.
  • R 1 and R 2 are the same as IT and R 2 in the above formula (I), respectively;
  • water-soluble salts include alkali metal salts such as sodium salts and potassium salts; alkaline earth metal salts such as calcium salts; ammonium salts; ethanolamine salts and the like.
  • Neutralization can be performed, for example, by bringing an esterified compound into contact with an alkaline aqueous solution.
  • alkaline aqueous solution those capable of forming the target salt, for example, those capable of forming M in the general formula (I) described above may be used.
  • examples include Lucari metal hydroxide, alkali metal carbonate, alkaline earth metal hydroxide, ammonia and ethanolamine.
  • the concentration of the aqueous alkali solution is preferably 50% by mass or less, more preferably 15 to 50% by mass. If it is 50% by mass or less, hydrolysis of the produced ⁇ -sulfo fatty acid alkyl ester salt can be suppressed. Further, if it is 15% by mass or more, it is easy to adjust the concentration of the active ingredient (IV) in the product (neutralized product) obtained by neutralization.
  • the neutralized product has a lower viscosity as the soot concentration is lower, and the viscosity tends to be higher as the soot concentration is higher.
  • ⁇ ⁇ is a compound having a function as a surfactant contained in the product.
  • the product obtained by the production method of the present invention usually contains ⁇ -sulfo fatty acid alkyl ester salt, and ⁇ -sulfo fatty acid dialkali salt as a by-product.
  • a Sulfo fatty acid dialkali salt has a function as a surface active agent, similarly to a Sulfo fatty acid alkyl ester salt. Therefore, in the present invention, the AI concentration is determined as the total concentration of ⁇ -sulfo fatty acid alkyl ester salt in the product and ⁇ -sulfo fatty acid dialkali salt which is one of by-products.
  • the soot concentration (neutralized product soot) in the neutralized product is preferably 10 to 80% by mass. When it is 10% by mass or more, production efficiency is improved, and when it is 80% by mass or less, handling properties are excellent.
  • the neutralized product is more preferably from 62 to 75% by mass, more preferably from 60 to 80% by mass, because the production efficiency and handling properties with moderately low viscosity are excellent.
  • the neutralized product koji means that the ⁇ -sulfo fatty acid alkyl ester and ⁇ -sulfo fatty acid disulfonic acid in the neutralized product are completely neutralized with an alkali agent, respectively, and an ⁇ -sulfo fatty acid alkyl ester salt is obtained.
  • ⁇ -sulfo fatty acid dialkali salt means the total content (% by mass) of ⁇ -sulfo fatty acid alkyl ester salt and ⁇ -sulfo fatty acid dialkali salt in the neutralized product.
  • the molecular weight of the salt Shall be calculated by proportionally dividing by the number of moles of the metal salt present.
  • the reaction temperature in the neutralization step is preferably 30 to 140 ° C, 50 to 140 ° C, more preferably 30 to 80 ° C.
  • the reaction temperature is 30 ° C or higher and 140 ° C or lower, decomposition is suppressed. It has the advantage of being able to obtain ⁇ -sulfo fatty acid alkyl ester salts that are excellent in storage stability and are less than 30 ° C or higher than 140 ° C. Degradation is accelerated, and pH decreases during storage. There is a risk of malfunction.
  • the neutralization time is preferably 5 to 60 minutes, more preferably 20 to 60 minutes. If the neutralization time is 5 minutes or more and 60 minutes or less, degradation is suppressed and ⁇ -sulfo fatty acid alkyl ester salts with excellent storage stability can be obtained. Degradation may be accelerated, and pH may drop during storage.
  • the pH during neutralization is preferably in the acidic or weak alkaline range ( ⁇ 4-9) in order to prevent hydrolysis of the ⁇ -sulfo fatty acid alkyl ester salt formed, and in particular, ⁇ 5-7. Is preferred. Outside this range, the ester bond of the ⁇ -sulfo fatty acid alkyl ester salt may be easily cleaved.
  • the pH at the time of neutralization means the value measured at a temperature of 25 ° C after adjusting the neutralized product to 10% by mass.
  • neutralization treatment there is a loop neutralization method.
  • a part of the neutralized neutralized product (recycled neutralized product) is circulated in a looped pipe (recycled loop), and the recycled neutralized product after circulation is converted into unneutralized ester.
  • This is a method in which neutralization is performed by adding to a chemical compound.
  • neutralization may be performed, for example, by bringing an aqueous alkaline solution into contact with a mixture of a recycle neutralized product and an unneutralized esterified compound.
  • a product, an unneutralized esterified compound, and an aqueous alkali solution may be mixed instantaneously under a strong shearing force.
  • the added amount of the recycled neutralized product is preferably 5 to 25 times by mass of the total amount of the unneutralized esterified compound and the alkaline aqueous solution, and more preferably 10 to 20 times by mass.
  • the ratio of the added amount of the recycled neutralized product to the total amount of the unneutralized esterified compound and the alkaline aqueous solution that is, when the recycling ratio is 5 or more, the by-product formation suppression effect is excellent, and when it is 25 or less. Manufacturing efficiency is improved.
  • the neutralization step can be performed by using a solid metal carbonate or hydrogen carbonate in addition to using an alkaline aqueous solution.
  • neutralization with solid metal carbonate concentration soda ash
  • concentrated soda ash is preferable because concentrated soda ash is less expensive than other alkalis.
  • the amount of water contained in the mixture is small and it becomes difficult to become strongly alkaline. Since it is lower than that of an oxide, hydrolysis of ⁇ -sulfo fatty acid alkyl ester salt can be suppressed, which is advantageous.
  • metal carbonate or hydrogen carbonate examples include anhydrous salts such as sodium carbonate, potassium carbonate, ammonium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, and ammonium hydrogen carbonate, hydrated salts, and mixtures thereof.
  • the neutralized product obtained in the neutralization step is bleached to prepare a bleached product (bleached product).
  • the start temperature, maximum temperature and end temperature of the bleaching reaction, the bleach consumption from the start temperature to the maximum temperature, the bleach consumption while being held at the maximum temperature, and The bleaching agent remaining at the end of the reaction and the time to maintain the maximum temperature from the start temperature (maximum temperature retention time) are controlled within a specific range to bleach the neutrals.
  • the starting temperature of the bleaching reaction is in the range of 55 to 80 ° C, preferably 55 to 75 ° C force S, more preferably 60 to 70 ° C. If the starting temperature exceeds 80 ° C, there is a concern that the hydrolysis of the neutralized product will proceed, and if it is less than 55 ° C, the fluidity of the neutralized product will be poor, resulting in a handling problem.
  • the temperature is gradually increased from the start temperature until the maximum temperature is reached.
  • Maximum temperature is in the range of 85 to 100 ° C, preferably 85 to 95 ° C, more preferably 85 to 90 ° C. If the maximum temperature is less than 85 ° C, sufficient bleaching effect cannot be obtained. If the temperature exceeds 100 ° C, the bleach will self-decompose and the bleaching efficiency will decrease.
  • the end temperature is in the range of 55-80 ° C, preferably 55-75 ° C force S, more preferably 60-70 ° C.
  • the temperature of the bleached product when a continuous bleaching tube is used in the apparatus, it is preferable to install a temperature sensor that can be continuously taken in at an arbitrary position.
  • the temperature is preferably controlled by utilizing the heat of decomposition of the bleach. If the temperature cannot be controlled by using only the decomposition heat, it is necessary to heat or remove heat. In this method, for example, when a continuous bleaching tube is used, an optional warm water is passed through the jacket so that the temperature of the bleached product becomes a predetermined temperature. It is also possible to control the temperature by installing a heat exchanger in the middle.
  • the time from start temperature to maximum temperature is 20 240 minutes, 30 180 minutes is preferred 40-; 120 minutes is more preferred. If the time exceeds 240 minutes, there is concern that hydrolysis of ⁇ -sulfo fatty acid alkyl ester salt in the neutralized product and the consumption of bleaching agent will increase. In addition, if the temperature rise time is less than 20 minutes, that is, if the temperature is raised to the maximum temperature at once in less than 20 minutes, the bleaching agent, especially hydrogen peroxide, decomposes and bleaching is actually used for bleaching. Because the amount of the agent decreases, sufficient bleaching effect cannot be obtained.
  • the time to maintain the maximum temperature is 20 360 minutes, preferably 30 360 minutes force S, 60
  • the amount of bleaching agent consumed from the start temperature to the maximum temperature is 30 60% by mass (additional amount), and 35 55% by mass (additional amount) is preferred 40 50% by mass ( The addition amount) is more preferable. If the amount of bleaching agent consumed in the time from the start temperature to the maximum temperature is less than 30 mass% (additional amount), the bleaching reaction will not proceed sufficiently until the maximum temperature is reached, and a sufficient bleaching effect will be achieved. Cannot be obtained. On the other hand, if the amount is more than 60% by mass (additional amount), the bleaching reaction will not proceed sufficiently while the maximum temperature is maintained, and a sufficient bleaching effect will not be obtained.
  • the amount of bleaching agent consumed while maintaining the maximum temperature is 25 35% by mass (addition amount), and 27 33% by mass (addition amount) is preferable 29 31% by mass (addition amount) More preferred. If the amount of bleaching agent while maintaining the maximum temperature is 25% by mass (additional amount) or less, the bleaching reaction proceeds sufficiently. Without sufficient bleaching effect. On the other hand, if it is more than 35% by mass (addition amount), it is difficult to control to a predetermined temperature due to heat generated by the decomposition of the bleach.
  • the sum of the time to increase the temperature from the start of the reaction to the maximum temperature and the holding time at the maximum temperature is preferably 240 to 540 minutes, more preferably 300 to 480 minutes, and more preferably 360 to 420 minutes. ⁇ If the sum of the time for raising the temperature from the start of the reaction to the maximum temperature and the holding time at the maximum temperature is 240 minutes or less, the bleaching reaction does not proceed sufficiently and a sufficient bleaching effect cannot be obtained. Further, if it is 540 minutes or more, there is a concern about the power depending on the temperature and the hydrolysis of the ⁇ -sulfo fatty acid alkyl ester salt in the neutralized product.
  • the amount of the remaining bleaching agent when the reaction temperature is lowered to the reaction end temperature of 55 to 80 ° C is 0.;! To 15 mass% (addition amount). 5 to 10% by mass (addition amount) is preferable 1 to 5% by mass (addition amount) is more preferable. If the amount of bleaching agent remaining when the reaction temperature is lowered to the reaction end temperature is 0.1% by mass or less (addition amount), the color tone may deteriorate over time. On the other hand, if it is 15% by mass (addition amount) or more, for example, when a bleaching agent is used, foaming may occur due to decomposition of the bleaching agent over time.
  • expansion coefficient When hydrogen peroxide is used as a bleaching agent, hydrogen peroxide decomposes over time, and oxygen gas generated during decomposition causes foaming. In order to prevent foaming due to decomposition of the bleaching agent, it is desirable that the volume expansion coefficient (hereinafter referred to as expansion coefficient) of the bleached product from the end of the bleaching reaction to 24 hours later should be 200% or less.
  • the time for reducing the maximum temperature to the end temperature needs to be within 24 hours. This is because the decomposition of the whitening agent proceeds if the temperature is not lowered for more than 24 hours. It is preferably within 12 hours, and more preferably 3 to 6 hours. If this time is 3 hours or more, general cooling equipment can be used, and if it is 6 hours or less, the production efficiency is good.
  • the cooling method is not particularly limited, and a general method can be used. For example, in an atmosphere of 80 ° C or less, preferably 10 to 40 ° C, even if it is allowed to cool to 55 to 80 ° C. Good.
  • the bleaching step can be carried out, for example, by mixing a neutralized product and a bleaching agent and treating the mixture at the above temperature conditions.
  • bleaching agents include hydrogen peroxide, persulfate, peracetic acid, percarbonate, and perborate. Although peroxides such as can be used, hydrogen peroxide is particularly preferable. Bleach is added in the form of an aqueous solution.
  • the concentration of the bleaching agent to be used is preferably 35 to 60% by mass on a pure basis. If it is 35% by mass or more and 60% by mass or less, there is a margin in the range that can be added, and there is an advantage that it can be handled safely. If it is less than 35% by mass or more than 60% by mass, the added amount increases and the physical properties are increased. Deterioration and handling! / If there is an increase in the risk of being over, there is a risk of disadvantages.
  • the added amount of the bleaching agent is preferably 0.05 to 5% by mass with respect to 1100% by mass of the neutralized product. 0. 05% by mass or more and 5% by mass or less has the advantage that an ⁇ -sulfo fatty acid ester salt having excellent physical properties and excellent color tone can be obtained. 0.0. If less than 05% by mass or more than 5% by mass, bleaching occurs. There may be a disadvantage that it does not progress or the physical properties deteriorate.
  • the amount of bleach used varies depending on the color of the neutralized product.
  • the color tone of the neutralized product is measured using a Kret photoelectric photometer. For example, 500 if (5% Klett) 1% by mass or less are suitable, 500 force, whether et 1000 (5 0/0 KLE felling of trees) (or, Ri 2 mass 0/0 force appropriate, 1000 force However, if it is 1500 (5% KLETT), 3% by mass is appropriate, but the amount used is not limited to this.
  • the color tone of the final product after bleaching is similarly measured using a Kret photoelectric photometer. It is preferable that the color tone of the final product is less than 50 (5% KLETT). If it exceeds 100 (5% KLETT), it will be brown, 50 to 100 (5% KLETT) will be dark yellow, and less than 50 (5% KLETT) will be white to light yellow.
  • the bleaching step is preferably performed using a continuous bleaching tube.
  • the “bleaching pipe” is a pipe having a function of maintaining the temperature in the pipe at a predetermined temperature, similar to the distribution pipe.
  • the bleaching object passes through the bleaching pipe.
  • the bleaching reaction proceeds to become a bleached product.
  • a “continuous bleaching tube” is a bleaching tube having two or more compartments.
  • FIG. 3 is a schematic configuration diagram of an example of a continuous bleaching tube preferably used in the present invention.
  • the continuous bleaching pipe 41 shown in FIG. 3 has a configuration in which six independent bleaching pipes (hereinafter referred to as divided pipes) 42a to 42f are connected in series via connecting pipes 43a to 43e.
  • Jacket heaters 44a to 44f and a temperature sensor are provided around each of the divided pipes 42a to 42f, and the temperature can be adjusted for each divided pipe.
  • a sample in the dividing tube can be collected and the progress level of bleaching can be confirmed.
  • the bleaching step is preferably performed under the conditions of pH of 4 to 79, preferably 5 to 7.
  • This pH can be finely adjusted by adjusting the pH in the neutralization step or by adding an acid or an alkali agent.
  • the pH at the time of neutralization means a value measured at a temperature of 25 ° C after adjusting the soot concentration to 10%.
  • FIG. 1 is a schematic configuration diagram of a manufacturing apparatus suitably used in this embodiment.
  • the production apparatus shown in FIG. 1 includes a falling film reactor 2, a cyclone 3 connected to the falling film reactor 2 via a line 21, and an aging connected to the cyclone 3 via a flow pipe 22.
  • Reaction tank 4 esterification reaction tank 5 connected to this aging reaction tank 4 via line 23, recycling loop 6 connected to this esterification reaction tank 5 via line 24, and this recycling loop 6
  • a stirring tank 7 connected via a line 25, and a continuous bleaching tube 8 connected to the stirring tank 7 via a line 26.
  • a gas supply line 31 and a raw material liquid supply line 32 are connected to the upper part of the falling film reactor 2 and contain SO gas and fatty acid alkyl ester through each.
  • the raw material liquid can be supplied to the falling film reactor 2.
  • the aging reaction tank 4 includes a first continuous multistage stirring tank 4a having three mixing spaces, and three
  • the second continuous multistage agitation tank 4b having a mixing space of A storage tank 10 for storing the color inhibitor is connected to the first continuous multistage agitation tank 4a to which the flow pipe 22 is connected, so that the color inhibitor can be supplied from the storage tank 10.
  • the esterification reaction tank 5 includes a continuous multistage stirring tank 5a having three mixing spaces and a stirring tank 5b.
  • An alcohol supply line 33 is connected to the continuous multistage agitation tank 5a so that alcohol having 1 to 6 carbon atoms can be supplied to the continuous multistage agitation tank 5a.
  • the recycle loop 6 includes a neutralization line 6a having ends connected to the line 24 and the line 25, and a circulation line 6b branched from both ends of the neutralization line 6a.
  • Two mixers 6c and 6d are provided on the neutralization line, and an alkali supply line 34 is connected to a portion of the neutralization line 6a between the mixer 6c and the mixer 6d.
  • Alkaline aqueous solution can be supplied into the sum line 6a.
  • a heat exchanger 6e is provided on the circulation line 6b so that the neutralized product can be cooled.
  • a mixer 26a is provided on the line 26, and a bleaching agent supply line 35 is connected to a portion of the line 26 between the stirring tank 7 and the mixer 26a.
  • the continuous bleaching pipe 8 is composed of five dividing pipes and four connecting pipes connecting them.
  • the temperature of the bleaching object passing through the continuous bleaching tube 8 and its holding time can be adjusted by adjusting the temperature for each individual dividing tube.
  • Production of an ⁇ -sulfo fatty acid alkyl ester salt using the production apparatus shown in Fig. 1 can be performed, for example, as follows.
  • the reaction product (sulfonated compound) is discharged from the falling film reactor 2, gas-liquid separated in the cyclone 3, and then introduced into the first continuous multistage agitation tank 4a to come into contact with the coloring inhibitor. Aged in the first continuous multistage stirring tank 4a and the second continuous multistage stirring tank 4b.
  • the aging compound after aging is supplied to the continuous multistage agitation tank 5a,
  • the alcohol having 1 to 6 carbon atoms is supplied from the water supply line 33 and mixed.
  • the obtained mixture is held in the continuous multistage stirring tank 5a and the stirring tank 5b for a predetermined time at a predetermined temperature, the obtained esterified compound is supplied to the recycle loop 6 through the line 24. .
  • the esterified compound is neutralized by supplying an aqueous alkali solution from the alkali supply line 34, and a part of the resulting neutralized product is circulated through the circulation line 6b and cooled in the heat exchanger 6e. Add to unneutralized esterified compound in sum line 6a. After mixing with mixer 6c, neutralize as above.
  • the neutralized product obtained is supplied to the line 26 via the line 25 and the stirring tank 7, and mixed with the bleach supplied from the bleach supply line 35 and the mixer 26a, and then the mixture Is fed to the continuous bleaching tube 8.
  • the temperature of the mixture is 55-80 ° C
  • the temperature is 85--20 minutes in 20-240 minutes
  • the temperature is reached to 100 ° C
  • the temperature is maintained for 20-360 minutes, to bleach.
  • the obtained bleached product is cooled in the continuous bleaching tube 8 or in the continuous bleaching tube 8 by discharging the power in the stirring tank 9 by allowing it to cool to 55 to 80 ° C. .
  • the desired ⁇ -sulfo fatty acid alkyl ester salt (bleached product) is obtained.
  • FIG. 2 is a schematic configuration diagram of a manufacturing apparatus preferably used in this embodiment. It should be noted that this manufacturing apparatus has the same configuration as the manufacturing apparatus shown in FIG. 1, and is given the same reference numerals and detailed description thereof is omitted.
  • the production apparatus shown in Fig. 2 includes a stirring tank 11, three tank reactors 12a to 12c, a stirring tank-type aging reaction tank 13, a stirring tank-type esterification reaction tank 14, and a recycling loop. 6 and stirring tank
  • a raw material liquid supply line 32 is connected to the stirring tank 11.
  • the raw material liquid containing the fatty acid alkyl ester supplied to the agitation tank 11 through the raw material liquid supply line 32 and the color inhibitor are mixed, and the resulting mixture is used as the tank reactors 12a to 12a. It can be supplied to 12c.
  • the three tank reactors 12a to 12c are respectively provided with gas supply lines 31 (for convenience). Only those connected to the tank reactor 12a are shown, and the others are not shown. ) Are connected to each other so that SO gas can be supplied to the tank reactors 12a to 12c.
  • each of the tank reactors 12a to 12c and the aging reaction tank 13 is provided with a circulation line connecting the bottom and the top thereof, and heat exchangers 15a to 15d are provided on the circulation lines, respectively. is set up. Therefore, in the sulfonation process and / or the aging process, a part of the reaction tank is extracted from the bottom, cooled by a heat exchanger on the circulation line, and returned to the reactor from the top of the tank reactor again. By circulating the water, it is possible to prevent an excessive increase in the reaction temperature in the tank reactor.
  • An alcohol supply line 33 is connected to the esterification reaction tank 14 so that alcohol having 1 to 6 carbon atoms can be supplied to the esterification reaction tank 14.
  • Production of an ⁇ -sulfo fatty acid alkyl ester salt using the production apparatus shown in Fig. 2 can be performed, for example, as follows.
  • a raw material (fatty acid alkyl ester) and a color inhibitor are introduced into the stirring tank 11 from the raw material supply line 32 to prepare a solid-liquid mixed phase, which is charged into each of the tank reactors 12a to 12c.
  • SO gas is introduced from the gas supply line 31 into this mixed liquid-solid liquid mixed phase, and contact is made.
  • a part of the solid-liquid mixed phase is fed from the circulation line provided at the bottom of the tank reactors 12a to 12c. May be extracted, cooled by heat exchangers 15a to 15c provided in the middle of the circulation line, and returned to the upper part of the tank reactors 12a to 12c and circulated again.
  • the sulfonated compounds in the tank reactors 12a to 12c are supplied to the aging reaction tank 13, and the aging process is performed while maintaining the temperature at a predetermined temperature.
  • the aging compound in the aging reaction tank 13 is supplied to the esterification reaction tank 14, and alcohol having 1 to 6 carbon atoms is supplied from the alcohol supply line 33 and mixed. After the obtained mixture is held in the esterification reaction tank 14 at a predetermined temperature for a predetermined time, the obtained esterified compound is supplied to the recycle reactor 6 through the line 24.
  • a heating step of heat-treating the neutralized product may be performed after the neutralization step and before the bleaching step.
  • the color tone of the resulting product is further improved.
  • the heat treatment can be performed by heating the neutralized product to a predetermined temperature and holding the temperature for a predetermined time.
  • the heating temperature is preferably 70 ° C or higher, 70 to 120 ° C. More preferred.
  • the heating time is preferably 0.5 hours to 7 days, more preferably 1 hour to 5 days, and further preferably 2 to 24 hours.
  • the ⁇ -sulfo fatty acid alkyl ester salt produced as described above may be used as it is, or may be used for preparing a liquid detergent composition or the like. Further, it may be formed into a powder, granular, flake, noodle or the like and used for the preparation of a powder detergent composition, a solid detergent or the like.
  • ⁇ -sulfo fat having a good color tone and suppressed generation of by-products by allowing a bleaching agent to effectively act on a bleaching reaction even in a short bleaching time.
  • Fatty acid alkyl ester salts can be produced.
  • the bleaching temperature is increased from a specific start temperature to a specific maximum temperature at a specific temperature rise time, held for a specific time, and cooled to improve the bleaching efficiency.
  • a certain amount of bleaching agent remains even in the late bleaching stage, and it is considered that a high bleaching effect can be obtained by a short bleaching treatment.
  • the colored product is a polymer having different molecular weights. Because of the size of the molecule, there are those that are easily bleached and those that are difficult to be bleached. It can be assumed that the reaction efficiency of the bleaching agent has been improved.
  • 0.02, 0.1 and 0.2 g of standard fatty acid methyl esters are accurately weighed into a 50 ml volumetric flask, and methanol is added up to the marked line and dissolved using ultrasound. After dissolution, cool to about 25 ° C and use this as the standard solution. About 2 ml of this standard solution is filtered using a 0.45 ⁇ 111 chromatodisc, and then subjected to high performance liquid chromatography under the following measurement conditions to create a calibration curve from the peak area.
  • Sample (sulfonated compound or esterified compound) 5.
  • methanol up to the marked line, and dissolve using ultrasonic waves. After dissolution, cool to about 25 ° C and use this as the test solution.
  • About 2 ml of this test solution was filtered using a 0.45 m chromatographic disk, analyzed by high performance liquid chromatography under the same measurement conditions as above, and unreacted in the sample solution using the calibration curve created above.
  • the concentration of the reacted raw material is determined from the concentration of the unreacted raw material, and the ratio of the reacted raw material in the used raw material (sulfonation reaction rate (mass%)) is calculated from the value.
  • AI concentration total concentration of ⁇ -sulfo fatty acid methyl ester sodium salt and ⁇ -sulfo fatty acid dinatrium salt (di-Na salt)]
  • Di-Na salt standard products 0.02, 0. 05, 0. lg are accurately weighed into a 200 ml volumetric flask, add about 50 ml of water and about 50 ml of ethanol, and dissolve using ultrasound. After dissolution, cool to about 25 ° C, add methanol to the marked line accurately, and use this as the standard solution. About 2 ml of this standard solution is filtered using a 0.45 m chromatographic disk and then subjected to high performance liquid chromatography under the following measurement conditions to create a calibration curve from the peak area.
  • Methyl sulfate and mirabilite standard products are weighed in 0.2 ml, 0.04, 0.1, 0.2 g, respectively, into a 200 ml volumetric flask, and ion-exchanged water (distilled water) is added to the marked line. Dissolve using waves. After dissolution, cool to about 25 ° C and use this as the standard solution. About 2 ml of this standard solution is filtered using a 0.45 m chromatographic disk, and ion chromatography is performed under the following measurement conditions to create a calibration curve from the peak areas of methyl sulfate and mirabilite standard solution.
  • Reclaimed liquid pure water
  • the ratio of the methyl sulfate concentration and sodium sulfate concentration to the soot concentration (% vs. ⁇ ) is calculated.
  • a fatty acid methyl ester prepared by the following procedure was used as a raw material.
  • RBD palm stearin is caustic with methanol (35% vs RBD palm stearin) Soda (0.21% to RBD palm stearin) was used as a catalyst for esterification by stirring at 80 ° C. for 60 minutes to obtain a crude esterified compound.
  • the iodine value was reduced by hydrogenating this in the following procedure, and fatty acid methyl ester (hereinafter referred to as raw material) used as a raw material was obtained.
  • RBD palm stearin is a RBD treatment (purification: refinement, bleaching: bleaching, deodorization: solid content of palm oil after wintering (crystallization and solid-liquid separation) of palm oil) deodar) oil.
  • the hydrogenated process is carried out according to a conventional method, trade name hydrogenation catalyst SO- 850 (manufactured by Sakai Chemical Co.), 0.1 mass 0/0 was added to the fatty acid methyl ester, 170 ° C, 1 I went on time. After the hydrogenation treatment, the catalyst was removed by filtration. The iodine value of the obtained raw material was 0.02 mg—I2 / g.
  • Example 1 In Example 1 and Comparative Example 1, a stirred tank reactor was used. As SO gas, dry
  • SO was catalytically oxidized using dry air (dew point 55 ° C) to give SO.
  • the sulfonation reaction was performed by blowing over 3 hours so that the molar ratio of 3 3 was 1.2.
  • the resulting sulfonated compound was then aged by stirring in a stirring tank at 80 ° C. for 30 minutes.
  • the exhaust gas is mist collected by a Cottrell dust collector, and SO is removed by an alkali scrubber.
  • Examples 2 to 6 and Comparative Examples 2 to 6 a multitubular falling film reactor was used.
  • SO gas SO is catalytically oxidized using dry air (dew point 55 ° C) to make SO.
  • the reaction temperature in the reactor 2 was 80 ° C., and the reaction time was 15 seconds.
  • the exhaust gas discharged together with the sulfonated compound is gas-liquid separated from the sulfonated compound with a cyclone, and then collected with a cottrel dust collector, and after SO is removed by the Al force risk rubber. Released into the atmosphere.
  • Multi-tubular falling film reactor power After the gas-liquid separation of the discharged sulfonated compound in a cyclone, 5 parts by mass of fine powdered sulfuric acid soda with an average particle size of 40-50 m is added to 100 parts by mass of the raw material. While adding, the mixture was supplied to the continuous multistage agitation tank 4a and aged at a temperature of 80 ° C for an average of 90 minutes.
  • Example 1 to 6 and Comparative Examples 1 to 6 the aging compound after aging was supplied to the continuous multistage agitation tank 5a, and at the same time, 3% by mass of methanol was continuously added to the aging compound.
  • the mixture was maintained at a temperature of 80 ° C and an average residence time of 30 minutes for esterification.
  • the industrial grade (moisture lOOOppm or less) of methanol was used.
  • the resulting esterified compound was measured for sulfonation reaction rate (sulfonation rate after esterification) and color tone.
  • sulfonation reaction rate after esterification in Example 1 and Comparative Example 1 was 99%, and the color tone was 900 (5% KLETT).
  • the sulfonation reaction rate after esterification was 98%, and the color tone was 1100 (5% KL ETT).
  • esterified compound after completion of esterification was supplied to the recycle loop 6 shown in FIG. 1 for neutralization.
  • an alkaline aqueous solution obtained by diluting 48% by mass of industrial grade caustic soda with tap water was used.
  • the caustic soda was diluted so that the caustic soda concentration force S in the alkaline aqueous solution and the AI concentration in the neutralized product neutralized with the alkaline aqueous solution were 68% by mass.
  • a part of the neutralized product is circulated through the recycle loop 6, mixed with the esterified compound, and recycled. Neutralization was performed. At this time, neutralization was performed at a recycle ratio of 20 while maintaining the pH of the recycled neutralized product at 5-7.
  • the neutralization temperature was controlled at 70 ° C by the heat exchanger in the recycling loop 6.
  • the pressure inside the recycle loop 6 was 0.4 MPa.
  • the color tone of the obtained neutralized product was measured. As a result, the color tone of the neutralized product in Example 1 was 8 50 (5% KLETT). The color tone of the neutralized product in Examples 2 to 6 and Comparative Examples 1 to 6 was 1000 (5% KLETT). The pH of the neutralized product was 6.2.
  • bleaching was performed after thoroughly mixing the 70 ° C neutralized product obtained at the neutralization step with hydrogen peroxide at room temperature in a beaker for 1 minute. 2) Place in a temperature-controllable thermostatic bath, and adjust the starting temperature shown in the table;! ⁇ 2 until the temperature of the mixture reaches the maximum temperature, the maximum temperature, and the maximum temperature holding time. went. The temperature of the bleached product was measured by inserting the temperature sensor directly into the bleached product (paste).
  • the color tone of the pasty bleached product 24 hours after the start of bleaching was measured.
  • the composition of the bleached product includes the AI concentration in the bleached product, the ratio of di-Na salt in the AI, the concentration of sodium nitrate in the bleached product, and methyl. Sulfate concentration was measured. The results are shown in Table 1 [0122] [Table 1].
  • Example 7 and Comparative Example 7 a stirred tank reactor was used, and sulfonation and aging were performed in the same procedure as in Example 1 and Comparative Example 1.
  • Examples 8 to 18 and Comparative Examples 8 to 18 sulfonation was performed in the same procedure as in Examples 2 to 6 and Comparative Examples 2 to 6, using a multi-tube falling film reactor. And aged.
  • the resulting esterified compound was measured for sulfonation reaction rate (sulfonation rate after esterification) and color tone.
  • sulfonation reaction rate after esterification in Example 7 and Comparative Example 7 was 99%, and the color tone was 400 (5% KLETT).
  • esterified compound after completion of esterification was supplied to the recycle loop 6 of FIG. 1 and neutralized by the same procedure as in Examples 1 to 6 and Comparative Examples 1 to 6.
  • the color tone of the obtained neutralized product was measured. As a result, the color tone of the neutral product in Example 7 and Comparative Example 7 was 350 (5% KLETT). The color of the neutralized product in Examples 8 to 18 and Comparative Examples 8 to 18 was 450 (5% KLETT). The pH of the neutralized product was 6.2.
  • bleaching was carried out using 35% by mass pure industrial grade hydrogen peroxide.
  • Examples 7 to 8 and Comparative Examples 7 to 8 the same as Examples;! To 3 and Comparative Examples;! To 3
  • bleaching was performed by adjusting the starting temperature shown in Tables 3 to 4, the time until the temperature of the mixture reached the maximum temperature, the maximum temperature, and the maximum temperature holding time.
  • the color tone of the pasty bleached product 24 hours after the start of bleaching was measured.
  • the AI concentration in the bleached product As the composition of the bleached product, the proportion of di-Na salt in AI, the concentration of sodium sulfate in the bleached product and the concentration of methyl sulfate were measured. The results are shown in Tables 3-4.
  • Comparative Example 8 with a time force to reach the maximum temperature of 3 ⁇ 400 minutes, Comparative Example 10 with a maximum temperature of 110 ° C, and Comparative Example 12 with a maximum temperature holding time of 480 minutes have di-Na salt production. Many won.
  • the color value of the neutral product was the same level as in Examples 7 to 18; however, the color value of the bleached product was worse than that in Examples 7 to 18; It was. This result indicates that the bleaching reaction did not proceed sufficiently.
  • Comparative Example 17 in which the amount of hydrogen peroxide added was 0.04% vs. AI was worse in color than Example 17, and Comparative Example 18 in which the amount of hydrogen peroxide added was 6% vs. AI was The expansion rate during storage was larger than that in Example 18.
  • Example 8 In order to compare the bleaching conditions of the present invention with the prior art, the bleaching conditions (tilt warming) of Example 8 are round, and the neutralized product and bleaching agent similar to those of Example 8 are used as the prior art.
  • Figure 4 is a graph plotting the bleaching conditions when the bleaching reaction is performed at a constant temperature of 70 ° C using a triangle, and similarly, the bleaching conditions when the bleaching reaction is performed at a constant temperature of 90 ° C as a square. Shown in
  • FIG. 5 shows a graph showing the time transition of the bleaching agent consumption under the bleaching conditions
  • FIG. 6 shows a graph showing the time transition of the color tone under the bleaching conditions.
  • Example 19 and Comparative Example 19 a stirred tank reactor was used, and Example 1 and Comparative Example Sulfonation and aging were carried out in the same procedure as in Example 1.
  • Example 19 and Comparative Example 19 esterification was performed in the same manner as in Examples;! -6 and Comparative Examples;!-6.
  • the resulting esterified compound was measured for sulfonation reaction rate (sulfonation rate after esterification) and color tone.
  • sulfonation reaction rate after esterification in Example 19 and Comparative Example 19 was 99%, and the color tone was 600 (5% KLETT).
  • esterified compound after completion of esterification was supplied to the recycle loop 6 of FIG. 1 and neutralized by the same procedure as in Examples 1 to 6 and Comparative Examples 1 to 6.
  • the color tone of the obtained neutralized product was measured. As a result, the color tone of the neutralized product in Example 19 and Comparative Example 19 was 550 (5% KLETT). The pH of the neutralized product was 6.2.
  • the color tone of the pasty bleached product 24 hours after the start of bleaching was measured.
  • the AI concentration in the bleached product As the composition of the bleached product, the proportion of di-Na salt in AI, the concentration of sodium sulfate in the bleached product and the concentration of methyl sulfate were measured. The results are shown in Table 5.
  • Example 19 the bleached product produced in Example 19 was excellent in color tone with little coloring, and had a small expansion rate during storage. Also, the amount of di-Na salt that is a by-product was small.
  • Example 19 an excellent bleaching effect was obtained under the same bleaching conditions as in Comparative Example 19 while suppressing the formation of by-products.
  • the initial stage where the progress of bleaching is started at a low temperature and the temperature is increased in the second half when the progress of whitening is delayed, leaving a large amount of bleaching agent. Can be suppressed, and a bleached product having a good color tone can be obtained. According to the method of the present invention, even with a small amount of bleach and a short bleaching time, the color tone is excellent and the production of by-products is achieved. An ⁇ -sulfo fatty acid alkyl ester salt with suppressed formation can be produced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

明 細 書
a一スルホ脂肪酸アルキルエステル塩の製造方法
技術分野
[0001] 本発明は、 α スルホ脂肪酸アルキルエステル塩の製造方法に関する。
本願 (ま、 2006年 7月 24曰 ίこ出願された特願 2006— 201073号 ίこ基づき優先権 を主張し、その内容をここに援用する。
背景技術
[0002] 脂肪酸アルキルエステルのスルホン化化合物の中和塩は、一般に α スルホ脂肪 酸アルキルエステル塩とも呼ばれる。 α スルホ脂肪酸アルキルエステル塩は、耐 硬水性、生分解性が良好である上、洗浄力に優れ、皮膚にマイルドな界面活性剤で あり、天然資源を原料として用いるため再生可能かつコスト的に有利であり、地球環 境保護の面からも重要視されてレ、る。
[0003] a スルホ脂肪酸アルキルエステル塩の製造方法としては、脂肪酸アルキルエス テルをスルホン化して α スルホ脂肪酸アルキルエステルを得、この α スルホ脂肪 酸アルキルエステルをアルカリによって中和する方法が一般的である。
脂肪酸アルキルエステルのスルホン化のメカニズムは、以下の反応スキームによつ て説明されている。まず脂肪酸アルキルエステルのアルコキシ基部分に SOが揷入
3 され、 SO—分子付加体が生成し、さらに、 SO—分子付加体の α位に SOが導入
3 3 3 されて SO二分子付加体が生成する。最後に、 so二分子付加体のアルコキシ基部
3 3
分に挿入された SOが脱離して α スルホ脂肪酸アルキルエステルが生成する。
3
[0004] 上記スルホン化の反応スキームにおいては、 S〇二分子付加体の生成段階までは
3
反応が速やかに進行する力 SO二分子付加体からの α スルホ脂肪酸アルキル
3
エステルの生成段階は反応速度が非常に遅い。そのため、現在、スルホン化を行つ た後に熟成工程を設けて、 so二分子付加体からの soの脱離を促進することが行
3 3
われている。
そして、生成した α スルホ脂肪酸アルキルエステルをアルカリで中和することによ つて、 α スルホ脂肪酸アルキルエステル塩が製造されている。 [0005] し力、し、上述のようにして得られた α スルホ脂肪酸アルキルエステル塩には、通 常、顕著な着色がある。着色は、洗浄剤としての用途においては、不都合である。そ のため、アルカリ中和工程の前または後に漂白処理を行い、 a スルホ脂肪酸アル キルエステル塩の色調を改善することが一般的に行われている(たとえば特許文献 1
〜3参照)。
このように、一般に、 α スルホ脂肪酸アルキルエステル塩は、スルホン化工程、熟 成工程、アルカリによる中和工程の他に、漂白工程を行って製造されている。
[0006] し力、し、上記のような α スルホ脂肪酸アルキルエステル塩の製造方法にお!/、ては 、 α スルホ脂肪酸、 α スルホ脂肪酸ジアルカリ塩などの副生物が生成しやすい という問題がある。このような副生物は、多量に存在すると、当該 α スルホ脂肪酸ァ ルキルエステル塩の界面活性剤としての性能を低下させるおそれがあり、副生物の 生成を抑制することが求められている。
[0007] 副生物の生成には、中和の操作条件が大きく影響することは良く知られているが、 検討の結果、漂白処理条件も大きく影響することが判明した。すなわち、現在、工業 的に実施されて!/、る酸性条件下での漂白と比較して中性付近の漂白処理は、漂白 剤の活性が低!/、ために反応の進行が遅!/、ことから、高!/、漂白温度と長!/、漂白時間が 必要となるため、未だ、実用化には至っていない。
さらに、発明者らの研究によると中性付近の漂白処理は、高い漂白温度と長い漂白 時間を必要とするため、エステル結合の加水分解を引き起こすという問題もあること がわかった。し力、し、中性付近の漂白処理は、酸性条件下での漂白と比較して、基本 的には α スルホ脂肪酸アルカリエステル塩の加水分解性が非常に低!/、ので、漂白 剤を有効に反応させることが出来れば、最終的に高品質な漂白物が得られる可能性 力 sある。
[0008] そこで、漂白処理をできるだけ短時間で行うことが、副生物の生成抑制に有効と考 えられ、単に漂白時間を短くしても、充分な漂白効果は得られない。また、短時間の 漂白処理で充分な漂白効果を得るために漂白温度を高くすると、漂白剤が分解して 有効に作用する漂白剤量が低下することや、加水分解の促進によって、かえって副 生物の生成量が増大してしまう。 また、漂白反応の進行と共に、反応に必要な量の漂白剤を供給する目的で、漂白 剤を分割して添加する反応方法も考えられるが、実験の結果、分割して添加する方 法は、良好な色調の漂白物を得ることができないことが分かった。
[0009] 特許文献 3では、スルホン化工程を、着色抑制剤の存在下で行うことにより、着色の 抑制された α スルホ脂肪酸アルキルエステルを得、 α スルホ脂肪酸アルキルェ ステルを中和し、漂白すること力 S提案されている。かかる製造方法によれば、漂白さ れる前の α スルホ脂肪酸アルキルエステル塩自体の着色が抑制されているため、 漂白処理時間は短時間で済むと考えられる。
しかしな力 Sら、 α スルホ脂肪酸アルキルエステル塩に要求される色調のレベルは 高ぐ更なる色調の向上が求められている。
特許文献 1 :特開平 9 12533号公報
特許文献 2:特開 2001 _ 128852号公報
特許文献 3:特開 2001— 64248号公報
発明の開示
発明が解決しょうとする課題
[0010] 本発明は、上記事情に鑑みてなされたものであって、短時間の漂白時間であっても、 色調に優れ、かつ副生物の生成が抑制された α スルホ脂肪酸アルキルエステル 塩を製造できる製造方法を提供することを目的とする。
課題を解決するための手段
[0011] 本発明者らは、鋭意検討を重ねた結果、漂白時の温度条件を特定の手順で制御 すること、または、漂白反応の進行と共に、反応温度と漂白剤の反応量を特定の範 囲に制御することにより上記課題が解決されることを見出し、本発明を完成させた。
[0012] すなわち、本発明は、脂肪酸アルキルエステルをスルホン化するスルホン化工程と 、該スルホン化工程で得られたスルホン化化合物を熟成する熟成工程と、該熟成ェ 程で得られた熟成化合物に対し、炭素数 1〜6のアルコールを用いてエステル化処 理を行うエステル化工程と、該エステル化工程で得られたエステル化化合物を中和 して中和物を得る中和工程と、該中和物を漂白して漂白物を得る漂白工程とを有し、 前記漂白工程において、漂白反応の開始温度を 55〜80°Cとし、該開始温度を、反 応開始から 20〜240分間で、 85〜100°Cの最高温度にまで上昇させ、該最高温度 を 20〜360分間保持した後、 55〜80°Cの終了温度にまで低下させることを特徴と する α —スルホ脂肪酸アルキルエステル塩の製造方法を提供する。
[0013] また、本発明は、脂肪酸アルキルエステルをスルホン化するスルホン化工程と、該 スルホン化工程で得られたスルホン化化合物を熟成する熟成工程と、該熟成工程で 得られた熟成化合物に対し、炭素数 1〜6のアルコールを用いてエステル化処理を 行うエステル化工程と、該エステル化工程で得られたエステル化化合物を中和して 中和物を得る中和工程と、該中和物を漂白して漂白物を得る漂白工程とを有し、前 記漂白工程において、 55〜80°Cの反応開始温度で、該中和物に漂白剤を添加し て反応を開始させ、反応開始からの漂白剤の消費量が 30〜60質量% (対添加量) になるように、温度を 85〜; 100°Cの最高温度まで上昇させ、該最高温度において、 さらに、漂白剤が 25〜35質量% (対添加量)消費する時間保持した後、漂白剤の残 存量が 0.;!〜 15質量% (対添加量)になるように、反応温度を 55〜80°Cの反応終 了温度まで低下させることを特徴とする α —スルホ脂肪酸アルキルエステル塩の製 造方法を提供する。
発明の効果
[0014] 本発明の α —スルホ脂肪酸アルキルエステル塩の製造方法によれば、一般的な漂 白方法と比較して、少ない漂白剤量かつ短時間の漂白時間であっても、色調に優れ 、かつ副生物の生成が抑制された α —スルホ脂肪酸アルキルエステル塩を製造でき 即ち、一般的な漂白方法である定温反応は、 《—スルホ脂肪酸ジアルカリ塩など の副生成物の生成を抑制するために温度を下げると、漂白反応の進行が遅くなり、 漂白反応の進行を早めるために温度を上げると、漂白剤の分解が促進され、良好な 色調の漂白物を得ることができなレ、。
[0015] これは、特に漂白剤に過酸化水素を用いる場合、系内に配管など力 溶出した金 属が微量存在すると分解が促進されるため、その影響を受けやすい。
それに対して、本発明のように、漂白の進行が早い初期は低い温度から行い、漂白 の進行が遅くなる後半に多くの漂白剤を残した状態で温度を上げることで、漂白剤の 分解をできるだけ抑制し、良好な色調の漂白物を得ることができる。
[0016] なお、本発明は、「 α—スルホ脂肪酸アルカリエステルの着色力 S、スルホン化反応 時にポリスルホン化物と呼ばれる重合物であり、この重合物は、その分子の大きさか ら漂白され易いものと、され難いものが存在し、漂白され易い部分を最高温度到達ま でに漂白し、漂白され難い部分を最高温度保持中に漂白することにより、漂白剤の 反応効率が向上して最終的に色調が良好な漂白物を得ることができる」との仮説を 基にして完成したものである。
図面の簡単な説明
[0017] [図 1]本発明に好適に用いられる製造装置の一例を示す概略構成図である。
[図 2]本発明に好適に用いられる製造装置の一例を示す概略構成図である。
[図 3]本発明に好適に用いられる連続式漂白管の一例を示す概略構成図である。
[図 4]本発明の漂白工程における漂白条件と従来の漂白条件とを比較したグラフで ある。
[図 5]本発明の漂白工程における漂白剤消費量の時間推移を示したグラフである。
[図 6]本発明の漂白工程における漂白品の色調の時間推移を示したグラフである。 符号の説明
[0018] 2···流下薄膜式反応器
2a…流下薄膜式反応器の出口
3···サイクロン
4···熟成反応槽
5···エステル化反応槽
6···リサイクルループ
7···撹拌槽
8···連続式漂白管
9···撹拌槽
10…貯槽
11···撹拌槽
12a…槽型反応器 12b…槽型反応器
12c- …槽型反応器
13·· •熟成反応槽
14·· •エステル化反応槽
21··ライン
22·· -流通管
23··ライン
24··ライン
25··ライン
26··ライン
31·· 'ガス供給ライン
32·· •原料液供給ライン
33·· •アルコール供給ライン
34·· •アルカリ供給ライン
35·· •漂白剤供給ライン。
発明を実施するための最良の形態
[0019] 以下、本発明をより詳細に説明する。
<スルホン化工程〉
まず、原料である脂肪酸アルキルエステルをスルホン化するスルホン化工程を行う
脂肪酸アルキルエステルとしては、たとえば、下記一般式 (I)で表される脂肪酸アル キルエステル (以下、脂肪酸アルキルエステル (I)ということがある。)が挙げられる。
[0020] [化 1] 一 C¾ CU ¾ )
[式中、 R1は炭素数 6〜24の直鎖または分岐鎖状のアルキル基またはアルケニル基 を表し、 R2は炭素数;!〜 6の直鎖または分岐鎖状のアルキル基を表す。 ] [0021] R1のアルキル基は、直鎖状であっても分岐鎖状であってもよぐ炭素数 8〜22であ ることが好ましぐ炭素数 10〜; 18であることがより好ましい。
R1のアルケニル基は、直鎖状であっても分岐鎖状であってもよぐ炭素数 8〜22で あることが好ましぐ炭素数 10〜; 18であることがより好ましい。
R1としては、アルキル基が好ましい。すなわち、 α—スルホ脂肪酸アルキルエステ ル塩は、 α —スルホ飽和脂肪酸アルキルエステル塩であることが好ましい。
R2のアルキル基は、直鎖状であっても分岐鎖状であってもよぐ炭素数;!〜 3である ことが好ましぐ 1または 2であることがより好ましい。
[0022] 脂肪酸アルキルエステルの具体例としては、牛脂、魚油ラノリンなど力も誘導される 動物系油脂;ヤシ油、パーム油、大豆油などから誘導される植物系油脂; α—ォレフ インのォキソ法から誘導される合成脂肪酸アルキルエステル等が挙げられる。より具 体的には、ラウリン酸メチル、ラウリン酸ェチルまたはラウリン酸プロピル;ミリスチン酸 メチル、ミリスチン酸ェチルまたはミリスチン酸プロピル;パルミチン酸メチル、パルミチ ン酸ェチルまたはパルミチン酸プロピル;ステアリン酸メチル、ステアリン酸ェチルまた はステアリン酸プロピル;硬化牛脂脂肪酸メチル、硬化牛脂脂肪酸ェチルまたは硬 化牛脂脂肪酸プロピル;硬化魚油脂肪酸メチル、硬化魚油脂肪酸ェチルまたは硬化 魚油脂肪酸プロピル;ヤシ油脂肪酸メチル、ヤシ油脂肪酸ェチルまたはヤシ油脂肪 酸プロピル;パーム油脂肪酸メチル、パーム油脂肪酸ェチルまたはパーム油脂肪酸 プロピル;パーム核油脂肪酸メチル、パーム核油脂肪酸ェチルまたはパーム核油脂 肪酸プロピルなどを例示することができる。
これらの脂肪酸アルキルエステルは、何れ力、 1種を単独で用いてもよぐ 2種以上を 併用してもよい。
[0023] 脂肪酸アルキルエステルとしては、ヨウ素価が 0. 5以下のものが好ましぐ 0. 2以下 のものがより好ましい。ヨウ素価が低いほど、スルホン化工程における着色を効果的 に低減することができ、得られる α —スルホ脂肪酸アルキルエステル塩の色調が良 好となる。また、 α —スルホ脂肪酸アルキルエステル塩の臭気も抑制される。特にヨウ 素価が 0. 2以下のものは、 0. 2を越えるものと比較して、色調が特に良好となる。
[0024] 脂肪酸アルキルエステルのスルホン化は、一般的にスルホン化に用いられている 方法が利用でき、たとえば 2重円管型や多管型の流下薄膜式反応器、槽型反応器 等のスルホン化反応器を使用して、脂肪酸アルキルエステルと、 SOを含有する SO
3 3 ガスとを接角虫させることにより fiうことカできる。
脂肪酸アル iキルエステルを soガスと接触させると、まず、脂肪酸アルキルエステ
I 3
ルのアルコキシ基部分に SOが揷入された SO—分子付加体が生成する。次に、 S
3 3
O一分子付加体の α位に soが揷入され、 so二分子付加体が生成する。その後
3 3 3
、 SO二分子付加体のアルコキシ基部分から SOが脱離して α —スルホ脂肪酸アル
3 3
キルエステルが生成する。
[0025] 前記脂肪酸アルキルエステル (I)を例に挙げてより具体的に説明すると、以下に示 すように、脂肪酸アルキルエステル (I)から下記一般式 (Γ )で表される SO—分子付
3 加体 (Γ )が生成し、 SO一分子付加体 (Γ )から下記一般式 (Γ)で表される so二分
3 3 子付加体 (Γ)が生成し、 SO二分子付加体 (Γ)から下記一般式 (II)で表される α
3
スルホ脂肪酸アルキルエステルが生成する。
[0026] [化 2]
.R一
Figure imgf000010_0001
^ 1
O α
R¾ -—-- CS-C—- O—- R H— C— 一 ■>- SOjH
(Γ)
[式中、 R1および R2は、それぞれ、上記式(I)中の R1および R2と同じである。 ]
[0027] このスルホン化の反応スキームにおいては、 SO二分子付加体の生成段階までは
3
反応が速やかに進行する。 SO二分子付加体からの α —スルホ脂肪酸アルキルェ
3
ステルの生成段階は反応速度が非常に遅ぐこの後、熟成工程を行うことにより、 SO 二分子付加体からの soの脱離が促進される。
3 3 [0028] SOガスとしては、脱湿空気または窒素などの不活性ガスにより、 SO濃度;!〜 30
3 3 容量%に希釈した SOガスが好適に用いられる。 SO濃度が 1容量%以上であると、
3 3
soガスの体積が適度な範囲内となり、容量の比較的小さい反応器を使用すること
3
力できる。 30容量%以下であると、スルホン化反応が過剰になりにくぐ副生物の生 成を抑制でき、 α —スルホ脂肪酸アルキルエステル等のスルホン化化合物の色調の 劣化も防止できる。
SOガスの使用量は、 SOガス中の SOの量が、脂肪酸アルキルエステルの 1. 0
3 3 3
〜2· 0倍モノレとなる量力《好ましく、 1 ·;!〜 1 · 3倍モノレとなる量力より好ましく、 1. 15 〜; 1. 25倍モルとなる量がさらに好ましい。 1. 0倍モル以上であると、スルホン化反応 が充分に進行し、 2. 0倍モル以下であると、過剰なスルホン化反応を抑制でき、反応 生成物の、局部熱に起因する着色を抑制できる。
[0029] スルホン化反応における反応温度は、脂肪酸アルキルエステルが流動性を有する 温度であればよぐ一般に、脂肪酸アルキルエステルの融点から、融点 + 70°Cの範 囲内の温度が適用される。たとえば上述した脂肪酸アルキルエステル (I)の場合は、 反応温度は、通常、 50〜; 120°Cであることが好ましぐ 60〜90°Cであることがより好 ましい。
[0030] 反応時間は、スルホン化反応器として流下薄膜式反応器を使用する場合は、 5〜1 80秒が好ましぐ 5〜60秒がより好ましい。反応時間が 5秒以上 180秒以下であると 、 SOガス吸収が良好で且つ、色調に優れたスルホン酸が得られるという利点がある
3
、 5秒未満あるいは 180秒より長いと SOガス吸収が悪くなる、または色調劣化が
3
促進されるという不具合が生じる恐れがある。また、槽型反応器を使用する場合は、 1 0分〜 6時間が好ましぐ 10分〜 4時間がより好ましい。反応時間が 10分以上 6時間 以下であると SOガス吸収が良好で且つ、色調に優れたスルホン酸が得られるという
3
利点がある力 10分未満あるいは 6時間より長いと SOガス吸収が悪くなる、または
3
色調劣化が促進されるという不具合が生じる恐れがある。
[0031] スルホン化反応後、生成物(スルホン化化合物)は、スルホン化反応器の出口(取り 出し口)から排出される。
スルホン化化合物は、通常、スルホン化反応器内のガスとともに排出されるため、排 出後、サイクロン等の集塵装置により気液分離を行うことが好ましい。
気液分離により分離されたガス (排ガス)中には、通常、 soガスや反応ミストが含ま
X
れている。これらは、電気集塵機やフィルタ一等により捕集 ·除去することが好ましい
。また、排ガス中に残存する soを、必要に応じて、アルカリスクラバーを通して除去
2
してもよい。アルカリスクラバーとは、湿式の酸性ガス吸収装置の 1種であり、気体中 に含まれる酸性気体を、アルカリ水溶液中を通過させることにより中和 ·捕集する装置 である。
[0032] <熟成工程〉
次に、前記スルホン化工程で得られるスルホン化化合物の熟成処理を行い、熟成 化合物を調製する。スルホン化化合物中には、通常、 α —スルホ脂肪酸アルキルェ ステルそのものの他、副生物である SO二分子付加体等の中間体や、微量の未反応
3
物等が含まれる。熟成工程を行うことにより、 SO二分子付加体からの soの脱離が
3 3 促進され、 α —スルホ脂肪酸アルキルエステルの収率が向上し、また、副生物の生 成を抑制できる。
[0033] ここで、「熟成処理」とは、スルホン化化合物を、所定の熟成温度で所定の熟成時 間保持することである。
熟成温度は、 70〜; 100°Cが好ましぐ 70〜90°Cがより好ましい。熟成温度が 70°C 以上であると反応が速やかに進行し、 100°C以下であると着色が生じにくい。
熟成時間は 20〜240分が好ましぐ 30〜; 120分力 Sより好ましく、 40〜; 100分力 Sさら に好ましい。 20分以上 240分以下であると SOガス吸収が良好で且つ、色調に優れ
3
たスルホン酸が得られると!/、う利点がある力 S、 20分未満ある!/、は 240分より長!/、と SO ガス吸収が悪くなる、または色調劣化が促進されるとレ、う不具合が生じる恐れがある
3
[0034] 熟成処理は、一般的な撹拌槽または流通管を用いて行うことができる。
「流通管」とは、一定温度の管内において一定の流速をもって通過させることにより
、所定の温度で一定時間維持する機能を有する配管である。
熟成処理は、特に、熟成処理のむらを少なくすることが容易であることから、 2個以 上の仕切られた混合スペースを有する連続式多段撹拌槽を用いて行うことが好まし い。かかる連続式多段撹拌槽においては、スルホン化化合物が、各混合スペースで ある程度の時間滞留した後次の混合スペースに供給されるため、連続式多段撹拌槽 全体としてみた場合の滞留時間、すなわち熟成時間のむらが少なくなる。
[0035] <着色抑制剤〉
本発明においては、上述したスルホン化工程および/または熟成工程を、着色抑 制剤の存在下で行うことが好ましい。これにより、 a スルホ脂肪酸アルキルエステ ルの着色を抑制できる。そのため、得られる α スルホ脂肪酸アルキルエステル塩の 色調がさらに向上する。
着色抑制剤としては、前記脂肪酸アルキルエステルに難溶性のものを用いることが 好ましい。
[0036] ここで、本発明にお!/、て、「脂肪酸アルキルエステルに難溶性の着色抑制剤」とは、
25°Cにおいて、使用する脂肪酸アルキルエステル (原料) 100gに対する溶解度が 1 g以下であるものを意味する。
着色抑制剤としては、一価の金属イオンを有する無機硫酸塩および/または有機 酸塩を使用することが好ましい。特に、無機硫酸塩は、着色抑制効果が高ぐ安価な ものが多ぐさらに洗浄剤に配合される成分なので、洗浄剤用途の α スルホ脂肪 酸アルキルエステル塩製造の場合は、無機硫酸塩を α スルホ脂肪酸アルキルェ ステル塩から除去する必要がな!/、ので好ましレ、。
[0037] 一価の金属イオンとしては、ナトリウムイオン、カリウムイオン、リチウムイオン等が挙 げられる。
無機硫酸塩としては、例えば硫酸ナトリウム、硫酸カリウム、硫酸リチウム等が挙げら れる。無機硫酸塩としては、特に、無水塩が好ましぐなかでも無水の硫酸ナトリウム( 芒硝)が好ましい。
有機酸塩としては、例えば蟻酸ナトリウム、蟻酸カリウム、酢酸ナトリウム等が挙げら れる。
[0038] 着色抑制剤としては、粉末状であることが好まし!/、。特に、平均粒径が 250 a m以 下のものが好ましぐ 100 in以下がより好ましい。かかる着色抑制剤は、表面積が 大きぐ原料液との接触面積が大きくなり、また、原料液中での分散性の向上し、着 色抑制効果が充分に発揮される。平均粒径の下限は、取り扱いやすさ、入手しやす さ等を考慮すると、; 1 m以上が好ましぐ 10 m以上がより好ましい。
着色抑制剤は、 1種を単独で用いてもよぐ 2種以上を併用してもよい。
[0039] 着色抑制剤の添加量は、原料の脂肪酸アルキルエステルの使用量に対して 0. 1 〜; 10質量%の範囲内である必要がある。 0. 1質量%未満の場合は、着色抑制効果 が得られない。 10質量%を越えると、スルホン化化合物または熟成化合物中の着色 抑制剤の含有量が多くなり、相対的に、スルホン化化合物または熟成化合物中の α スルホ脂肪酸アルキルエステル塩の含有量 (純度)が低下する。着色抑制剤の添 加量は、好ましくは脂肪酸アルキルエステルの使用量に対して 1〜; 10質量%、より好 ましくは 3〜7質量%である。
着色抑制剤は、スルホン化工程を行う前、またはスルホン化工程の初期段階にお いて原料と混合して用いてもよぐスルホン化工程後、熟成工程を行う前または熟成 工程中に、スルホン化化合物に添加し、混合して用いてもよい。
[0040] <エステル化工程〉
次に、前記熟成工程で得られる熟成化合物に対して、炭素数;!〜 6のアルコールを 用いてエステル化処理を行う。これにより、 α スルホ脂肪酸アルキルエステルの収 率が向上し、副生物の生成も抑制される。
このエステル化工程においては、熟成化合物中に、中間体である SO二分子付加
3 体が残留している場合に、下記のように、 SO二分子付加体のアルコキシ基部分の
3
エステル化が進行する。すなわち、アルコール (R3— OH)により、 SO二分子付加体
3
(1")のアルコキシ基部分に挿入されていた soの脱離とエステル交換とが進行し、
3
下記一般式 (ΙΓ )で表される α スルホ脂肪酸アルキルエステル (ΙΓ )が生成する。 したがって、 α スルホ脂肪酸アルキルエステルの収率が向上する。
[0041] [化 3]
Figure imgf000015_0001
Figure imgf000015_0002
flf)
[式中、 R1および R2は、それぞれ、上記式 (I)中の R1および R2と同じであり、 R3は炭 素数 1 6のアルキル基である。 ]
[0042] また、熟成化合物中に SO二分子付加体が残存している場合、熟成化合物を、ェ
3
ステル化工程を行わずにそのまま中和すると、下記一般式 (III)に示すような α—ス ルホ脂肪酸ジアルカリ塩が生成しやすい。この α スルホ脂肪酸ジアルカリ塩は、界 面活性剤としての機能は有しているものの、その性能は α スルホ脂肪酸アルキル エステル塩に比べて低ぐ最終生成物 (製品)中に多量に存在すると、 a スルホ脂 肪酸アルキルエステル塩の洗浄力、水溶性等を低下させ、ひいては、当該製品が用 いられる洗浄剤等の性能の低下を引き起こすおそれがある。
[0043] 本発明においては、エステル化工程を行うことにより、副生物の一つである α—ス ルホ脂肪酸ジアルカリ塩の生成を抑制することができる。
このように、 α スルホ脂肪酸アルキルエステルの収率が向上し、また副生物の生 成が抑制されることにより、 a スルホ脂肪酸アルキルエステル塩の収率が向上する
[0044] [化 4]
O
!1
™i,.i¾.~C― "―;| (IB
[式中、 R1は、上記式 (I)中の R1と同じである。 ]
[0045] エステル化処理は、たとえば、熟成化合物に炭素数 1 6のアルコールを添加し、こ れを、所定の反応温度で所定の反応時間保持することにより行うことができる。
反応温度は 50〜; 100°Cが好ましぐ 50〜90°Cがより好ましい。反応温度が 50°C以 上 100°C以下であると、反応率及び色調に優れたスルホン酸が得られるという利点が ある力 S、 50°C未満あるいは 100°Cより高いと反応率の低下や、色調劣化の促進という 不具合が生じる恐れがある。
反応時間は 5〜; 180分が好ましぐ 10〜60分がより好ましい。反応時間が 5分以上 180分以下であると、反応率及び色調に優れたスルホン酸が得られるという利点があ るが、 5分未満あるいは 180分より長いと反応率の低下や、色調劣化の促進という不 具合が生じる恐れがある。
[0046] エステル化処理は、前記熟成工程と同様、一般的な撹拌槽ある!/、は流通管を用い て行うことができ、滞留時間分布を狭くするために、 2個以上の仕切られた混合スぺ ースを有する連続式多段撹拌槽を用いることが好まし!/、。
[0047] アルコールは、直鎖状であっても分岐鎖状であってもよぐ 1価アルコールが好まし い。特に、原料の脂肪酸アルキルエステルのアルコール残基の炭素数 (たとえば式( I)中の R2の炭素数)と等しい炭素数のアルコールが好ましぐアルコール残基にお けるアルキル基と同じアルキル基を有するアルコールがより好ましい。
アルコールの添加量は、熟成化合物 100質量%に対して;!〜 10質量%が好ましく 、 2〜5質量%がより好ましい。アルコールの添加量が 1質量%以上であると、エステ ル化処理の効果が充分に得られ、 10質量%以下であると、過剰分の低級アルコー ルを回収する工程を行う必要がなぐ効率的である。
[0048] 本発明にお!/、ては、エステル化工程で得られる生成物(エステル化化合物)のスル ホン化反応率が 95モル%以上であることが好ましぐ 97モル%以上であることがより 好ましい。これにより、副生物の生成を抑制でき、 α スルホ脂肪酸アルキルエステ ノレ塩の収率が向上する。
[0049] ここで、スルホン化反応率とは、エステル化化合物中の、 C S結合を有する化合 物の割合(%)を意味する。
C S結合を有する化合物には、 目的の化合物である α スルホ脂肪酸アルキル エステルのほか、上述した SO二分子付加体や、副生物(メチルサルフェート等)等 の、 cs結合を有するもの全てが含まれる。
[0050] スルホン化反応率は、エステル化化合物を、高速液体クロマトグラフィー(HPLC) で分析し、エステル化化合物中の未反応の原料 (脂肪酸アルキルエステル)の濃度 を求め、その濃度から算出できる。
スルホン化反応率は、たとえば、脂肪酸アルキルエステルと反応させる SOの量、
3 熟成工程やエステル化工程での反応温度や時間等を調節することにより調節できる 。たとえば SOの量が多いほどスルホン化反応率が高くなる。また、反応時間が長い
3
ほど、スルホン化反応率が高くなる。
[0051] <中和工程〉
次に、前記エステル化化合物に対して中和処理を行い、エステル化化合物中の α スルホ脂肪酸アルキルエステルから、 α スルホ脂肪酸アルキルエステル塩を生 成させる。たとえば原料として上記脂肪酸アルキルエステル (I)を用いた場合は、主 に、下記一般式 (IV)で表される α スルホ脂肪酸アルキルエステル塩 (IV)が生成 する。
[0052] [化 5]
Figure imgf000017_0001
[式中、 R1および R2は、それぞれ、上記式(I)中の ITおよび R2と同じであり、 Mは対ィ
[0053] の対ィォンとしては、!^ーじ^1 (じ0— 0— 1^2)—30—とともに水溶性の塩を形
3
成するものであればよい。水溶性の塩としては、たとえば、ナトリウム塩、カリウム塩等 のアルカリ金属塩;カルシウム塩等のアルカリ土類金属塩;アンモニゥム塩;エタノー ルァミン塩等が挙げられる。
[0054] 中和は、たとえば、エステル化化合物と、アルカリ水溶液とを接触させることにより実 施できる。
アルカリ水溶液としては、 目的とする塩を形成することができるもの、たとえば上述し た一般式 (I)中の Mを形成するものであればよぐたとえば、水酸化ナトリウム等のァ ルカリ金属の水酸化物、アルカリ金属の炭酸塩、アルカリ土類金属の水酸化物、アン モユア、エタノールァミン等が挙げられる。
[0055] アルカリ水溶液の濃度は、 50質量%以下が好ましぐ 15〜50質量%がより好まし い。 50質量%以下であると、生成した α スルホ脂肪酸アルキルエステル塩の加水 分解を抑制できる。また、 15質量%以上であると、中和により得られる生成物(中和 物)中の有効成分 (ΑΙ)濃度の調整が容易である。中和物は、 ΑΙ濃度が低いほど粘 度が低くなり、 ΑΙ濃度が高いほど粘度が高くなる傾向がある。
[0056] ここで、 「ΑΙ」とは、生成物中に含まれる、界面活性剤としての機能を有する化合物 である。本発明の製造方法により得られる生成物中には、通常、 α スルホ脂肪酸ァ ルキルエステル塩のほ力、、副生物として α—スルホ脂肪酸ジアルカリ塩が含まれる。 a スルホ脂肪酸ジアルカリ塩も、 a スルホ脂肪酸アルキルエステル塩と同様、界 面活性剤としての機能を有している。したがって、本発明において、 AI濃度は、生成 物中の α スルホ脂肪酸アルキルエステル塩と、副生物の 1つである α スルホ脂 肪酸ジアルカリ塩との合計の濃度として求められる。
[0057] 中和物中の ΑΙ濃度(中和物 ΑΙ)は、 10〜80質量%が好ましい。 10質量%以上で あると製造効率が向上し、 80質量%以下であるとハンドリング性に優れる。特に、粘 度が適度に低ぐ製造効率、ハンドリング性ともに優れることから、中和物 ΑΙは、 60〜 80質量%がより好ましぐ 62〜75質量%がさらに好ましい。
[0058] なお、中和物 ΑΙとは、中和物中の α スルホ脂肪酸アルキルエステルと α—スル ホ脂肪酸ジスルホン酸がアルカリ剤で完全に中和されて、それぞれ α スルホ脂肪 酸アルキルエステル塩と α スルホ脂肪酸ジアルカリ塩が生成したと見なしたときの 、中和物中の α スルホ脂肪酸アルキルエステル塩と α スルホ脂肪酸ジアルカリ 塩の合計含有量 (質量%)を意味する。
ここで、中和物中に上記中和塩の対イオンと成り得る複数の金属イオン (例えば、 Ν a+、 K+、 Ca2+、 Mg2+)が存在する場合に、上記塩の分子量は、前記金属塩の存在 モル数で按分して算出するものとする。
[0059] 中和工程における反応温度は、 30〜; 140°Cが好ましぐ 50〜; 140°Cがより好ましく 、 30〜80°Cがさらに好ましい。反応温度が 30°C以上 140°C以下であると、分解を抑 制し且つ、保存安定性に優れた α —スルホ脂肪酸アルキルエステル塩が得られると いう利点がある力 30°C未満あるいは 140°Cより高いと分解が促進されたり、保存中 に pHが低下したりという不具合が生じる恐れがある。
中和時間は、 5〜60分間が好ましぐ 20〜60分間がより好ましい。中和時間が 5分 以上 60分以下であると分解を抑制し且つ、保存安定性に優れた α —スルホ脂肪酸 アルキルエステル塩が得られるとレ、う利点がある力 5分未満あるいは 60分より長!/、と 分解が促進されたり、保存中に pHが低下したりという不具合が生じる恐れがある。
[0060] 中和時の pHは、生成した α —スルホ脂肪酸アルキルエステル塩の加水分解を防 止するために、酸性あるいは弱いアルカリ性の範囲(ρΗ4〜9)が好ましいぐ特に、 ρ Η5〜7が好適である。この範囲外では、 α —スルホ脂肪酸アルキルエステル塩のェ ステル結合が切断されやすくなる可能性がある。
なお、中和時の pHとは、中和物 ΑΙを 10質量%になるよう調整し、温度 25°Cの条件 で測定した数値を意味する。
[0061] また、中和工程においては、生成した α —スルホ脂肪酸アルキルエステル塩の加 水分解とそれに伴う副生物の生成を防止するために、過激な中和操作を避け、極力 穏やかな中和処理を行うことが好ましい。
力、かる中和処理としては、ループ中和方式が挙げられる。この方式は、ループ状の 配管(リサイクルループ)内で、中和処理した中和物の一部(リサイクル中和物)を循 環させ、循環後のリサイクル中和物を、未中和のエステル化化合物に添加して中和 を行う方式である。
[0062] ループ中和方式において、中和は、たとえばリサイクル中和物と未中和のエステル 化化合物との混合物に対してアルカリ水溶液を接触させて行ってもよぐまた、前記リ サイクル中和物と、未中和のエステル化化合物と、アルカリ水溶液とを、強力なせん 断力の元で瞬時に混合して行ってもよい。
リサイクル中和物の添加量は、未中和のエステル化化合物とアルカリ水溶液との合 計量の 5〜25質量倍が好ましぐ 10〜20質量倍がより好ましい。未中和のエステル 化化合物とアルカリ水溶液との合計量に対するリサイクル中和物の添加量の比、す なわちリサイクル比が 5以上であると副生物の生成抑制効果に優れ、 25以下であると 製造効率が向上する。
[0063] 中和工程は、アルカリ水溶液を用いる以外に、固体の金属炭酸塩または炭酸水素 塩を用いることによつても行うこと力 Sできる。特に固体の金属炭酸塩 (濃厚ソーダ灰) による中和は、濃厚ソーダ灰が他のアルカリよりも安価であるため好ましい。また、固 体の金属炭酸塩で中和を行うと、生成物と混合した際に、その混合物に含まれる水 分量が少なく強アルカリ性になりにくぐまた、中和時の中和熱が金属水酸化物の場 合よりも低いため、 α —スルホ脂肪酸アルキルエステル塩の加水分解を抑制でき、有 利である。
金属炭酸塩または炭酸水素塩としては、炭酸ナトリウム、炭酸カリウム、炭酸アンモ ユウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素アンモユウムなどの無水塩 、水和塩、またはこれらの混合物などが挙げられる。
[0064] <漂白工程〉
次に、前記中和工程で得られる中和物を漂白し、漂白物(漂白品)を調製する。 漂白工程においては、漂白反応の開始温度、最高温度および終了温度、ならびに 、開始温度から最高温度に至るまでの漂白剤消費量、ならびに、最高温度に保持し ている間の漂白剤消費量、ならびに、反応終了時の漂白剤残存量、ならびに開始温 度から最高温度を保持する時間(最高温度保持時間)を特定の範囲内に制御して中 和物の漂白を行う。
[0065] 漂白反応の開始温度は 55〜80°Cの範囲内であり、 55〜75°C力 S好ましく、 60〜7 0°Cがより好ましい。開始温度が 80°Cを越えると、中和物の加水分解が進行する懸 念があり、 55°C未満では中和物の流動性が悪ぐハンドリング上問題となる。
[0066] 漂白反応においては、開始温度から徐々に温度を上げていき最高温度に達するま で温度制御を行う。最高温度は 85〜; 100°Cの範囲内であり、 85〜95°Cが好ましく、 85〜90°Cがより好ましい。最高温度が 85°C未満であると、充分な漂白効果が得られ ない。また、 100°Cを越えると、漂白剤の自己分解が生じ、漂白効率が低下する。 終了温度は、 55〜80°Cの範囲内であり、 55〜75°C力 S好ましく、 60〜70°Cがより 好ましい。終了温度が 80°Cを越えると、中和物の加水分解が進行する懸念があり、 5 5°C未満では中和物の流動性が悪ぐ次工程への移送等のハンドリング上問題となる [0067] 漂白物の温度は、装置に連続式漂白管を用いる場合、連続的に取り込めるような 温度センサーを、任意の箇所に設置することが好ましレ、。
また、温度の制御は、漂白剤の分解熱を利用して温度を上げることが好ましい。分 解熱の利用だけでは温度コントロールが出来ない場合、加温や除熱を行う必要があ る。この方法には、例えば連続式漂白管を用いる場合は、ジャケット式にして漂白物 温度を所定温度になるように任意の温水を通水する。また、途中に熱交換器を設置 して温度制御することも可能である。
[0068] 開始温度から最高温度に至るまでの時間は 20 240分であり、 30 180分が好ま しぐ 40〜; 120分がより好ましい。時間が 240分を越えると、温度にもよる力 中和物 中の α —スルホ脂肪酸アルキルエステル塩の加水分解や漂白剤消費量が多くなる ことが懸念される。また、昇温時間が 20分未満であると、すなわち 20分未満の昇温 時間で一気に最高温度まで昇温すると、漂白剤、特に過酸化水素の分解が進み、 実際に漂白に使用される漂白剤量が低下するため、充分な漂白効果が得られなレ、。
[0069] 最高温度を保持する時間は、 20 360分間であり、 30 360分間力 S好ましく、 60
240分間がより好ましい。最高温度を保持する時間が 360分間を越えると、温度に もよる力 中和物中の α —スルホ脂肪酸アルキルエステル塩の加水分解が懸念され 20分間未満であると、漂白反応が充分に進行せず、充分な漂白効果が得られない
[0070] 開始温度から最高温度に至るまでに消費する漂白剤量は、 30 60質量% (対添 加量)であり、 35 55質量% (対添加量)が好ましぐ 40 50質量% (対添加量)が より好ましい。開始温度から最高温度に至るまでの時間に消費する漂白剤量が 30質 量% (対添加量)以下だと、最高温度に至るまでの漂白反応が充分に進行せず、充 分な漂白効果が得られない。また、 60質量% (対添加量)以上だと最高温度保持中 の漂白反応が充分に進行せず、充分な漂白効果が得られなレ、。
[0071] 最高温度保持中に消費する漂白剤量は、 25 35質量% (対添加量)であり、 27 33質量% (対添加量)が好ましぐ 29 31質量% (対添加量)がより好ましい。最高 温度保持中の漂白剤量が 25質量% (対添加量)以下だと、漂白反応が充分に進行 せず、充分な漂白効果が得られない。また、 35質量% (対添加量)以上だと、漂白剤 の分解による発熱により所定温度にコントロールすることが難しい。
[0072] 反応開始から最高温度まで上昇させる時間と最高温度での保持時間との和が、 24 0分〜 540分力好ましく、 300分〜 480分力好ましく、 360分〜 420分力より好ましレヽ 。反応開始から最高温度まで上昇させる時間と最高温度での保持時間との和が、 24 0分以下だと漂白反応が充分に進行せず、充分な漂白効果が得られない。また、 54 0分以上だと温度にもよる力、中和物中の α —スルホ脂肪酸アルキルエステル塩の 加水分解が懸念される。
[0073] 反応温度を 55〜80°Cの反応終了温度まで低下させた時の残存して!/、る漂白剤量 は、 0.;!〜 15質量% (対添加量)であり、 0. 5〜; 10質量% (対添加量)が好ましぐ 1 〜5質量% (対添加量)がより好ましい。反応終了温度まで低下させた時の残存して いる漂白剤量が 0. 1質量% (対添加量)以下だと、経時により色調が劣化することが ある。また、 15質量% (対添加量)以上だと、例えば、漂白剤を用いた場合、経時に よる漂白剤の分解で発泡することがある。漂白剤として過酸化水素を用いた場合に は、過酸化水素が経時により分解するため、分解の際に発生する酸素ガスが発泡の 原因となる。漂白剤の分解による発泡を防ぐためには、漂白反応終了時から 24時間 後までの漂白物の体積膨張率(以下膨張率とレ、う)を 200%以下にすることが望まし い。
[0074] また、本発明においては、最高温度を前記終了温度にまで低下させる時間は、 24 時間以内であることが必要である。 24時間より長く温度を下げずに置いておくと、漂 白剤の分解が進行してしまうためである。好ましくは 12時間以内であり、 3〜6時間が さらに好ましい。この時間が 3時間以上であると、一般的な冷却設備を使用可能であ り、 6時間以下であると製造効率が良好である。
冷却方法は、特に限定されず、一般的な方法が利用でき、たとえば 80°C以下、好 ましくは 10〜40°Cの雰囲気下で、 55〜80°Cとなるまで放冷してもよい。
[0075] より具体的には、漂白工程は、たとえば、中和物と漂白剤を混合し、この混合物を、 上記温度条件で処理することにより実施できる。
漂白剤としては、例えば、過酸化水素、過硫酸塩、過酢酸、過炭酸塩、過ホウ酸塩 などの過酸化物が使用できるが、特に、過酸化水素が好ましい。漂白剤は水溶液の 状態で添加される。
[0076] 使用する漂白剤の濃度としては、純分で 35〜60質量%が好ましい。 35質量%以 上 60質量%以下であると添加できる範囲に余裕があり、且つ安全な取り扱いができ るという利点がある力 35質量%未満あるいは 60質量%より多いと添加量が多くなり 物性が悪化することや、取り扱!/、上の危険性が増すとレ、う不利益が生じる恐れがある
漂白剤の添加量は、中和物八1100質量%に対し、漂白剤純分 0. 05〜5質量%が 好ましい。 0. 05質量%以上 5質量%以下であると色調に優れた良好な物性の α — スルホ脂肪酸エステル塩が得られるという利点がある力 0. 05質量%未満あるいは 5質量%より多いと漂白が進行しなかったり、物性が悪化したりという不利益が生じる 恐れがある。
[0077] 漂白剤の使用量は中和物の色調によって異なる。中和物の色調は、クレット光電光 度計を用いて測定される。例えば、 500 (5%KLETT)以下であれば 1質量%が適当 であり、 500力、ら 1000 (50/0KLE丁丁)であれ (ま、2質量0 /0力適当で り、 1000力、ら 15 00 (5%KLETT)であれば 3質量%が適当である。但し、使用量はこれに限定される ものではない。
[0078] 漂白後の最終生成物の色調も同様にクレット光電光度計を用いて測定される。最 終生成物の色調は 50 (5%KLETT)未満になることが好ましい。 100 (5%KLETT) を超えると茶色、 50から 100 (5%KLETT)であると濃い黄色、 50 (5%KLETT)未 満であると白から薄い黄色となる。
[0079] 本発明において、漂白工程は、連続式漂白管を用いて行うことが好ましい。
ここで、「漂白管」とは、流通管と同様、管内の温度を所定の温度に維持する機能を 有する配管であり、所望の漂白温度に設定すると、漂白対象物がこの漂白管を通過 して!/、くうちに漂白反応が進行して漂白物となる。
「連続式漂白管」とは、 2個以上の仕切られた区画を有する漂白管である。
[0080] 図 3は、本発明において好ましく用いられる連続式漂白管の一例の概略構成図で ある。 図 3に示す連続式漂白管 41は、それぞれ独立した 6つの漂白管(以下、分割管と いう。)42a〜42fが接続管 43a〜43eを介して直列に接続された構成を有する。各 分割管 42a〜42fの周囲には、それぞれ、ジャケットヒーター 44a〜44fおよび温度セ ンサー(図示せず)が設けられており、個々の分割管ごとに、温度調節が可能となつ ている。また、各分割管 42a〜42fからは、この分割管内の試料を採取できるようにな つており、漂白の進行レベルを確認できるようになつている。
[0081] かかる連続式漂白管 41に中和物および漂白剤の混合物を供給すると、混合物が、 各分割管内を、それぞれ一定時間ずつ滞留しながら移動する。そのため、連続式漂 白管 41においては、各分割管における滞留時間を考慮し、各分割管の温度を個別 に設定することにより、容易に、上述した温度制御を行うことができる。
[0082] 漂白工程は、 pHは 4〜79、好ましくは 5〜7の条件下で行うことが好ましい。これに より、加水分解を抑制しながら、良好な色調の α —スルホ脂肪酸アルキルエステル塩 が得られる。この pHは、中和工程での pH調整又は酸やアルカリ剤の添加により微調 整できる。なお、中和時の pHとは、 ΑΙ濃度を 10%になるよう調整し、温度 25°Cの条 件で測定した数値を意味する。
[0083] 以下、図面を用いて本発明の製造方法の好ましい態様を説明する。
<第 1の態様〉
図 1は、本態様において好適に用いられる製造装置の概略構成図である。 図 1に示す製造装置は、流下薄膜式反応器 2と、この流下薄膜式反応器 2にライン 21を介して接続されたサイクロン 3と、このサイクロン 3に流通管 22を介して接続され た熟成反応槽 4と、この熟成反応槽 4にライン 23を介して接続されたエステル化反応 槽 5と、このエステル化反応槽 5にライン 24を介して接続されたリサイクルループ 6と、 このリサイクルループ 6に、ライン 25を介して接続された撹拌槽 7と、この撹拌槽 7に、 ライン 26を介して接続された連続式漂白管 8とから概略構成される。
[0084] 流下薄膜式反応器 2の上部には、ガス供給ライン 31と、原料液供給ライン 32とが接 続されており、それぞれを通じて、 SOガスと、脂肪酸アルキルエステルを含有する
3
原料液とを流下薄膜式反応器 2に供給できるようになつている。
[0085] 熟成反応槽 4は、 3つの混合スペースを有する第 1の連続式多段撹拌槽 4aと、 3つ の混合スペースを有する第 2の連続式多段撹拌槽 4bとから構成されて!/、る。流通管 22が接続された第 1の連続式多段撹拌槽 4aには、着色抑制剤を貯留するための貯 槽 10が接続されており、貯槽 10から着色抑制剤を供給できるようになつている。 エステル化反応槽 5は、 3つの混合スペースを有する連続式多段撹拌槽 5aと、撹拌 槽 5bとから構成されている。連続式多段撹拌槽 5aには、アルコール供給ライン 33が 接続されており、連続式多段撹拌槽 5aに炭素数 1〜6のアルコールを供給できるよう になっている。
[0086] リサイクルループ 6は、ライン 24およびライン 25にその端部が連結された中和ライン 6aと、中和ライン 6aの両端から分岐する循環ライン 6bとから構成されている。中和ラ イン上には、 2つのミキサー 6c、 6dが設けられており、中和ライン 6aの、ミキサー 6cと ミキサー 6dとの間の部分には、アルカリ供給ライン 34が接続されており、中和ライン 6 a内にアルカリ水溶液を供給できるようになつている。また、循環ライン 6b上には熱交 換器 6eが設けられており、中和物を冷却できるようになつている。
[0087] ライン 26上にはミキサー 26aが設けられており、ライン 26の、撹拌槽 7とミキサー 26 aとの間の部分には、漂白剤供給ライン 35が接続されている。
連続式漂白管 8は、この例においては、 5つの分割管とそれらを連絡する 4つの接 続管とから構成されている。連続式漂白管 8においては、個々の分割管ごとに温度を 調節することにより、連続式漂白管 8内を通過する漂白対象物の温度とその保持時 間を調節することができる。
[0088] 図 1に示す製造装置を用いた α —スルホ脂肪酸アルキルエステル塩の製造は、た とえば以下のようにして行うことができる。
まず、流下薄膜式反応器 2上部から、 SOガスと、脂肪酸アルキルエステルを含有
3
する原料液とを供給すると、流下薄膜式反応器 2上部から下部にかけて、 SOガスと
3
、原料液の薄膜とが接触してスルホン化反応が進行する。
その反応生成物 (スルホン化化合物)を、流下薄膜式反応器 2から排出し、サイクロ ン 3で気液分離した後、第 1の連続式多段撹拌槽 4aに導入して着色抑制剤と接触さ せ、第 1の連続式多段撹拌槽 4aおよび第 2の連続式多段撹拌槽 4bで熟成する。
[0089] 次に、熟成後の熟成化合物を連続式多段撹拌槽 5aに供給するとともに、アルコー ル供給ライン 33から炭素数 1〜6のアルコールを供給し、それらを混合する。得られ た混合物を、所定の温度で、所定の時間、連続式多段撹拌槽 5aおよび撹拌槽 5bに おいて保持した後、得られたエステル化化合物を、ライン 24を通じてリサイクルルー プ 6に供給する。
このエステル化化合物を、アルカリ供給ライン 34からアルカリ水溶液を供給して中 和し、得られた中和物の一部を、循環ライン 6bを通して循環させ、熱交換器 6eで冷 却した後、中和ライン 6a内の未中和のエステル化化合物に添加する。これを、ミキサ 一 6cで混合した後、上記と同様にして中和する。
[0090] 中和後、得られた中和物を、ライン 25、撹拌槽 7を介してライン 26に供給し、漂白 剤供給ライン 35から供給された漂白剤とミキサー 26aで混合した後、混合物を連続 式漂白管 8に供給する。この連続式漂白管 8を用いて、混合物の温度を 55〜80°Cと し、温度を 20〜240分間で 85〜; 100°Cにまで到達させ、その温度を 20〜360分間 保持し、漂白する。得られた漂白物を、連続式漂白管 8内で、または連続式漂白管 8 力も排出して撹拌槽 9内で、放冷等により冷却し、その温度を 55〜80°Cまで低下さ せる。これにより、 目的とする α —スルホ脂肪酸アルキルエステル塩 (漂白品)が得ら れる。
[0091] <第 2の態様〉
図 2は、本態様において好適に用いられる製造装置の概略構成図である。なお、こ の製造装置にお!/、て、図 1に示した製造装置と同様の構成を有するものにつ!/、ては 同じ符号を付してその詳細な説明を省略する。
[0092] 図 2に示す製造装置は、撹拌槽 11と、 3つの槽型反応器 12a〜12cと、撹拌槽型の 熟成反応槽 13と、撹拌槽型のエステル化反応槽 14と、リサイクルループ 6と、撹拌槽
7と、連続式漂白管 8と、撹拌槽 9とから概略構成される。
撹拌槽 11には原料液供給ライン 32が接続されている。撹拌槽 11では、原料液供 給ライン 32を通じて撹拌槽 1 1に供給された脂肪酸アルキルエステルを含有する原 料液と着色抑制剤とを混合し、得られた混合液を槽型反応器 12a〜12cに供給でき るようになっている。
[0093] 3つの槽型反応器 12a〜12cの上部には、それぞれ、ガス供給ライン 31 (便宜的に 、槽型反応器 12aに接続したもののみを図示し、他は図示せず。)が接続されており 、それぞれを通じて、 SOガスを槽型反応器 12a〜 12cに供給できるようになつてい
3 また、槽型反応器 12a〜12c、および熟成反応槽 13には、それぞれ、その底部と 上部とを連絡する循環ラインが設けられており、循環ライン上にはそれぞれ熱交換器 15a〜15dが設置されている。そのため、スルホン化工程および/または熟成工程に おいて、反応槽の一部を底部から抜き出し、循環ライン上の熱交換器によって冷却し 、これを再度、槽型反応器上部から反応器内に戻して循環させることにより、槽型反 応器内での反応温度の過度の上昇を防止できるようになつている。
エステル化反応槽 14にはアルコール供給ライン 33が接続されており、エステル化 反応槽 14に炭素数 1〜6のアルコールを供給できるようになつている。
[0094] 図 2に示す製造装置を用いた α —スルホ脂肪酸アルキルエステル塩の製造は、た とえば以下のようにして行うことができる。
まず、撹拌槽 11内に原料供給ライン 32から原料 (脂肪酸アルキルエステル)と着色 抑制剤とを投入して固液混合相を調製し、これを各槽型反応器 12a〜12cに仕込む 。次に、この混合液固液混合相に、ガス供給ライン 31から SOガスを導入して、接触
3
させる。このとき、原料とスルホン化ガスが接触して発熱することによる反応温度の過 度の上昇を防ぐため、槽型反応器 12a〜12cの底に設けられた循環ラインから固液 混合相の一部を抜き出し、循環ラインの途中に設けられた熱交換器 15a〜15cによ つて冷却し、再び槽型反応器 12a〜 12cの上部からもどして循環させてもよい。
[0095] 次に、槽型反応器 12a〜12c内のスルホン化化合物を熟成反応槽 13に供給し、所 定温度に保持して熟成工程を行う。
熟成工程終了後、熟成反応槽 13内の熟成化合物をエステル化反応槽 14に供給 するとともに、アルコール供給ライン 33から炭素数 1〜6のアルコールを供給し、それ らを混合する。得られた混合物を、所定の温度で、所定の時間、エステル化反応槽 1 4において保持した後、得られたエステル化化合物を、ライン 24を通じてリサイクルノレ ープ 6に供給する。
[0096] 以下、上記第 1の態様と同様にして、中和、漂白を行うことにより、 目的とする α—ス ルホ脂肪酸アルキルエステル塩 (漂白品)が得られる。
[0097] <他の任意の工程〉
本発明においては、上記中和工程後、漂白工程を行う前に、中和物を加熱処理す る加熱工程を行ってもよい。加熱工程を行うと、さらに、得られる製品の色調が向上 する。
加熱処理は、中和物を所定の温度に加熱し、温度を所定時間保持することによつ て行うことができ、加熱温度は、 70°C以上が好ましぐ 70〜; 120°Cがより好ましい。ま た、加熱時間は、 0. 5時間〜 7日間が好ましぐ 1時間〜 5日間がより好ましぐ 2〜2 4時間がさらに好ましい。
[0098] 上述のようにして製造された α スルホ脂肪酸アルキルエステル塩は、そのまま製 品としてもよく、液体洗浄剤組成物等の調製に用いてもよい。また、粉状、粒状、フレ ーク状、ヌードル状等の形状に成形し、粉末洗浄剤組成物、固体洗浄剤等の調製に 用いてもよい。
[0099] 上記本発明の製造方法によれば、短時間の漂白時間であっても、漂白剤を有効に 漂白反応に作用させ、色調に優れ、かつ副生物の生成が抑制された α スルホ脂 肪酸アルキルエステル塩を製造できる。
a スルホ脂肪酸アルキルエステル塩の着色メカニズム自体が不明であることから 、上述のような効果が得られる理由は定かではないが、漂白工程の初後期段階で、 中和物と漂白剤との混合物中に漂白剤がある程度残留するためではな!/、かと推測さ れる。すなわち、従来は、漂白を、一気に最高温度に加熱し、その温度を保持して行 う方法が一般的であり、この場合、漂白効率の高い漂白反応の初期に漂白剤を一気 に消費しきってしまうため、漂白効率が低くなる漂白後期においては漂白剤が残存 せず、これが漂白効果を低下させて!/、たと推測される。
[0100] これに対し、本発明においては、漂白温度を、特定の開始温度から、特定の昇温 時間で特定の最高温度に昇温して特定時間保持し、冷却することにより、漂白効率 が低くなる漂白後期においてもある程度の漂白剤が残存し、これによつて、短時間の 漂白処理で高レ、漂白効果が得られると考えられる。
さらに、詳述すると、前記の仮説のように、着色物は分子量の異なる重合物であり、 その分子の大きさから漂白され易いものと、され難いものが存在し、漂白され易い部 分を、漂白剤の自己分解の少ない温度の低いところで漂白し、漂白され難い部分を 温度の高いところで漂白することにより、漂白剤の反応効率が向上したと推測できる。 実施例
[0101] 以下、本発明について、実施例を示してさらに具体的に説明する。
以下の実施例および比較例において用いた測定方法は下記のとおりである。
[0102] <生成物中のスルホン化反応率の測定方法〉
使用する原料として脂肪酸メチルエステルの標準品 0. 02, 0. 1 , 0. 2gを 50mlの メスフラスコに正確に量りとり、メタノールを標線まで加え超音波を用いて溶解させる。 溶解後、約 25°Cまで冷却し、これを標準液とする。この標準液約 2mlを、 0. 45 ^ 111 のクロマトディスクを用いて濾過後、下記測定条件の高速液体クロマトグラフィーを行 い、ピーク面積から検量線を作成する。
(高速液体クロマトグラフィー測定条件)
装置: LC 10 AT (島津製作所製)
カラム: Inertsil ODS 2 (ジーエルサイエンス社製)
カラム温度: 40°C
検出器:示差屈折率検出器 RID— 6 A (島津製作所製)
移動相: H O/CH OH = 5/95 (体積比)混合溶液
2 3
流直: 1. OmL/ min
注入量: 100 ^ L
[0103] 試料(スルホン化化合物またはエステル化化合物) 5. Ogを 50mlのメスフラスコに正 確に量りとり、メタノールを標線まで加え超音波を用いて溶解させる。溶解後、約 25 °Cまで冷却し、これを試験溶液とする。この試験溶液約 2mlを、 0. 45 mのクロマト ディスクを用いて濾過後、上記と同じ測定条件の高速液体クロマトグラフィーで分析し 、上記で作成した検量線を用いて、試料溶液中の未反応の原料の濃度を求める。こ の未反応の原料の濃度から、反応した原料の濃度を求め、その値から、使用した原 料中の、反応した原料の割合 (スルホン化反応率 (質量%) )を算出する。
[0104] <色調の測定方法〉 色調は、試料の純分 (AI)濃度が 5質量%の水溶液を、 40mm光路長の No. 42ブ ルーフィルターを用いてクレット光電光度計で測定する。
[0105] <残存過酸化水素測定法〉
漂白品 2. Ogを 200mlの三角フラスコに正確に量りとり、 1Nの硫酸 50mlを加え、完 全に溶解させる。溶解後、ヨウ化カリウムを 0. 5g加え、三角フラスコに空冷管を接続 して、沸騰している温浴に 30分間漬ける。 30分後、温浴から取り出し、室温まで冷却 して力、ら 0. 1Nのチォ硫酸ナトリウムで滴定する。その際、でんぷん溶液を指示薬とし て使用する。得られた滴定量から、以下の式を用いて残存過酸化水素量を定量する 残存過酸化水素(%) =A X 0. 1 X F X 0. 017 X 100/S
A: 0. INチォ硫酸ナトリウム滴定量 (ml)
F : 0. INチォ硫酸ナトリウムのファクター
S :試料のサンプル量(g)
[0106] <漂白品組成の測定方法〉
[AI濃度( α—スルホ脂肪酸メチルエステルナトリウム塩と α—スルホ脂肪酸ジナトリ ゥム塩 (di-Na塩)との合計濃度)]
漂白品 0. 3gを 200mlメスフラスコに正確に量り取り、イオン交換水(蒸留水)を標 線まで加えて超音波で溶解させる。溶解後、約 25°Cまで冷却し、この中から 5mlをホ ールピペットで滴定瓶にとり、 MB指示薬(メチレンブルー) 25mlとクロ口ホルム 15ml を加え、更に 0. 004mol/l塩化べンゼトニゥム溶液を 5ml加えた後、 0. 002ml/l アルキルベンゼンスルホン酸ナトリウム溶液で滴定する。滴定は、その都度滴定瓶に 栓をして激しく振とうした後静置し、白色板を背景として両層が同一色調になった点 を終点とする。同様に空試験 (漂白品を使用しない以外は上記と同じ試験)を行い、 滴定量の差から濃度を算出する。
[0107] [AI中の di— Na塩の割合]
di— Na塩の標準品 0. 02, 0. 05, 0. lgを 200mlメスフラスコに正確に量りとり、水 約 50mlとエタノール約 50mlを加えて超音波を用いて溶解させる。溶解後、約 25°C まで冷却し、メタノールを標線まで正確に加え、これを標準液とする。 この標準液約 2mlを、 0. 45 mのクロマトディスクを用いて濾過後、下記測定条件 の高速液体クロマトグラフィーを行い、ピーク面積から検量線を作成する。
(高速液体クロマトグラフィー測定条件)
装置: LC 6 A (島津製作所製)
カラム: nucleosil 5SB (ジーエルサイエンス社製)
カラム温度: 40°C
検出器:示差屈折率検出器 RID— 6 A (島津製作所製)
移動相: 0. 7%過塩素酸ナトリウムの H O/CH ΟΗ= 1/4 (体積比)溶液
2 3
流直: 1. OmL/ min
注入量: 100 ^ L
[0108] 次に、漂白品 1 · 5gを 200mlメスフラスコに正確に量りとり、水約 50mlとエタノール 約 50mlを加えて超音波を用いて溶解させる。溶解後、約 25°Cまで冷却し、メタノー ルを標線まで正確に加え、これを試験溶液とする。
試験溶液約 2mlを、 0. 45 πιのクロマトディスクを用いて濾過後、上記と同じ測定 条件の高速液体クロマトグラフィーで分析し、上記で作成した検量線を用いて、試料 溶液中の di Na塩濃度を求める。
算出した di Na塩濃度と、上記で求めた AI濃度とから、 AI中の di Na塩の割合( 質量%)を算出する。
[0109] [芒硝濃度およびメチルサルフェート濃度(質量%) ]
メチルサルフェート及び芒硝の標準品をそれぞれ 0· 02, 0. 04, 0. 1 , 0. 2gずつ 、 200mlメスフラスコに正確に量りとり、イオン交換水(蒸留水)を標線まで加え、超音 波を用いて溶解させる。溶解後、約 25°Cまで冷却し、これを標準液とする。この標準 液約 2mlを、 0. 45 mのクロマトディスクを用いて濾過後、下記測定条件のイオンク 口マトグラフィーを行い、メチルサルフェート及び芒硝標準液のピーク面積から検量 線を作成する。
(イオンクロマトグラフィー測定条件)
装置: DX— 500 (日本ダイォネックス社製)
検出器:電気伝導度検出器 CD— 20 (日本ダイォネックス社製) ポンプ: IP— 25 (日本ダイォネックス社製)
オーブン: LC 25 (日本ダイォネックス社製)
インテグレータ: C— R6A (島津製作所製)
分離カラム: AS— 12A (日本ダイォネックス社製)
ガードカラム: AG— 12A(日本ダイォネックス社製)
溶離液: 2. 5mM Na CO /2. 5mM NaOH/5% (体積)ァセトニトリル水溶液
2 3
溶離液流量: 1. 3mL/min
再生液:純水
カラム温度: 30°C
ノレープ容量:25〃 L
[0110] 次に、漂白品 0· 3gを 200mlメスフラスコに正確に量り、イオン交換水(蒸留水)を 標線まで加え、超音波を用いて溶解させる。溶解後、約 25°Cまで冷却し、これを試験 溶液とする。
試験溶液約 2mlを、 0. 45 πιのクロマトディスクを用いて濾過後、上記と同じ測定 条件のイオンクロマトグラフィーで分析し、上記で作成した検量線を用いて、試料溶 液中のメチルサルフェート濃度及び芒硝濃度を求め、試料中のメチルサルフェート濃 度及び芒硝濃度 (質量%)を算出する。
算出したメチルサルフェート濃度及び芒硝濃度と、上記で求めた ΑΙ濃度とから、 ΑΙ 濃度に対するメチルサルフェート濃度及び芒硝濃度の割合(%対 ΑΙ)を算出する。
[0111] [中和物の ρΗ]
中和物の ΑΙ濃度を測定し、 ΑΙ濃度が 10%になるように蒸留水で希釈する。希釈後 、超音波などを用いて完全に溶解させ、恒温水や恒温槽などを用いて 25°Cにし、 p Hメーターを用いて測定する。
[0112] <実施例;!〜 6、比較例 1〜6 ( α スルホ脂肪酸アルキルエステル塩含有ペースト の調製) >
(原料 (脂肪酸メチルエステル)の調製)
原料として、下記の手順で調製した脂肪酸メチルエステルを用いた。
RBDパームステアリンを、メタノール(35%対 RBDパームステアリン)を用いて苛性 ソーダ(0· 21 %対 RBDパームステアリン)を触媒として 80°C、 60分撹拌することによ りエステル化して粗エステル化化合物を得た。
この粗エステル化化合物を水洗することにより、粗エステル化化合物中に残存する グリセリン及びその誘導体の含有量を減少させた後、脂肪酸のアルキル基の炭素鎖 長比率が、 C14/C16/C18 = l/60/39 (質量比)となるように蒸留した。これを 下記の手順で水添処理することによりヨウ素価を低減し、原料として使用する脂肪酸 メチルエステル (以下、原料という。)を得た。
[0113] なお、 RBDパームステアリンとは、パーム油をウィンターリング(特定温度にて結晶 化し固液分離)した後の固体分 (パームステアリン)を RBD処理 (精製: refine、漂白: bleach,脱臭: deodar)した油である。
上記水添処理は、常法に従い、水添触媒として商品名 SO— 850 (堺化学 (株)製) を、脂肪酸メチルエステルに対して 0. 1質量0 /0添加し、 170°C、 1時間の条件で行つ た。水添処理の後、濾過により触媒を除去した。得られた原料のヨウ素価は 0. 02mg — I2/gであった。
[0114] 得られた脂肪酸メチルエステルを原料として用いて、下記の手順で α スルホ脂肪 酸アルキルエステル塩を製造した。
(スルホン化工程'熟成工程)
実施例 1と比較例 1においては、撹拌槽型反応器を使用した。 SOガスとしては、乾
3
燥空気(露点 55°C)を用いて SOを触媒酸化して SOとしたものを用いた。
2 3
槽内に原料と、原料 100質量部に対して 5質量部の平均粒径 40〜50 mの微粉 硫酸ソーダを仕込んだ後、乾燥空気により 8%に希釈された SOガスを、 SO /原料
3 3 のモル比が 1. 2となるように 3時間かけて吹き込み、スルホン化反応を行った。得られ たスルホン化化合物は、その後、撹拌槽で 80°C、 30分間撹拌して熟成した。排ガス はコットレル集塵器でミスト捕集され、さらにアルカリスクラバーにより SOが除去され
2
た後、大気に放出された。
[0115] 実施例 2〜6と比較例 2〜6においては、多管式流下薄膜型反応器を使用した。 S Oガスとしては、乾燥空気(露点 55°C)を用いて SOを触媒酸化して SOとしたも
3 2 3 のを用いた。 SO /原料のモル比を 1. 2として、反応器上部から下部にかけて並流 で接触するように、原料及び乾燥空気により 8%に希釈された SOガスを供給した。
3
反応器 2内における反応温度は 80°C、反応時間は 15秒であった。
このとき、スルホン化化合物とともに排出された排ガスは、サイクロンでスルホン化化 合物と気液分離された後、コットレル集塵器でミスト捕集され、さらにアル力リスクラバ 一により SOが除去された後、大気に放出された。
2
多管式流下薄膜型反応器力 排出されたスルホン化化合物を、サイクロンでの気 液分離後、原料 100質量部に対して 5質量部の平均粒径 40〜50 mの微粉硫酸ソ ーダを添加しながら連続式多段撹拌槽 4aに供給し、温度 80°C、平均 90分間滞留さ せ熟成した。
[0116] (エステル化工程)
次に、実施例 1〜6及び比較例 1〜6において、連続式多段撹拌槽 5aに、熟成後の 熟成化合物を供給し、それと同時に、熟成化合物に対して 3質量%のメタノールを連 続的に供給し、温度 80°C、平均滞留時間 30分の条件にて保持することによりエステ ル化処理を行った。ここで、メタノールは、工業グレード(水分 lOOOppm以下)のもの を使用した。
得られたエステル化化合物につ!/、て、スルホン化反応率(エステル化後のスルホン 化率)および色調を測定した。その結果、実施例 1と比較例 1におけるエステル化後 のスルホン化反応率は 99%、色調は 900 (5%KLETT)であった。実施例 2〜6と比 較例 2〜6におけるエステル化後のスルホン化反応率は 98%、色調は 1100 (5%KL ETT)であった。
[0117] (中和工程)
次に、エステル化終了後のエステル化化合物を、図 1のリサイクルループ 6に供給し て中和を行った。
中和には、工業グレードの 48質量%の苛性ソーダを上水で希釈したアルカリ水溶 液を使用した。このとき、苛性ソーダの希釈は、アルカリ水溶液中の苛性ソーダ濃度 力 S、このアルカリ水溶液を用いて中和された中和物中の AI濃度が 68質量%となるよ うに fiつた。
[0118] 中和物の一部を、リサイクルループ 6を循環させ、エステル化化合物と混合して再 度中和を行った。このとき中和は、リサイクル中和物の pHを 5〜7に維持しつつ、リサ イタル比 20で行った。中和温度はリサイクルループ 6中の熱交換器により 70°Cにコン トロールした。リサイクルループ 6の管内圧力は 0. 4MPaであった。
得られた中和物の色調を測定した。その結果、実施例 1における中和物の色調は 8 50 (5%KLETT)であった。実施例 2〜6および比較例 1〜6における中和物の色調 は 1000 (5%KLETT)であった。また、中和物の pHは 6· 2であった。
[0119] (漂白工程)
中和に引き続き、純分 35質量%の工業グレードの過酸化水素水を使用して漂白を 行った。過酸化水素添加量は、中和物 100質量%に対して過酸化水素純分 1. 5質 量% (AIに対して 2. 2%)で行った。
漂白は、実施例 1〜3と比較例 1〜3においては、中和工程によって得られた 70°C の中和物と常温の過酸化水素水をビーカー中で 1分間、充分に混合した後、温度コ ントロール可能な恒温槽内に入れ、表;!〜 2に示す開始温度、混合物の温度が最高 温度に至るまでの時間、最高温度、最高温度保持時間となるように調節して漂白を 行った。漂白物の温度の測定は、温度センサーを直接、漂白物(ペースト)内に揷入 して fiつた。
[0120] また、実施例 4〜6と比較例 4〜6においては、 70°Cの中和物と常温の過酸化水素 水とをラインミキサー中で瞬時に混合した後、図 3に示したものと同様の構成 (ただし 分割管の数は最高温度に至るまでの時間、最高温度保持時間に応じて変更)の連 続式漂白管 (各分割管の滞留時間はそれぞれ約 30分間)に導入した。この連続式 漂白管において、各分割管の温度を、 目標時間に目標温度に到達するように、つま り表;!〜 2に示す開始温度、混合物の温度が最高温度に至るまでの時間、最高温度 、最高温度保持時間を満たすように調節して漂白を行った。
[0121] 最高温度を表;!〜 2に示す時間保持した後、漂白物は放冷により、表;!〜 2に示す 終了温度にまで冷却した。
漂白開始 (過酸化水素水との混合後、最初に開始温度となった時点)から 24時間 後のペースト状の漂白品について、その色調を測定した。また、漂白品の組成として 、漂白品中の AI濃度、 AI中の di— Na塩の割合、漂白品中の芒硝濃度およびメチル サルフェート濃度を測定した。その結果を表 1 [0122] [表 1]
表 1
Figure imgf000036_0001
[0123] [表 2]
表 2
Figure imgf000037_0001
[0124] 上記結果から明らかなように、実施例 1〜6で製造された漂白品は、着色が少なぐ 色調に優れたものであった。また、副生物である di— Na塩の生成量も少なかった。 一方、最高温度に至るまでの時間が 300分間の比較例 1と、最高温度保持時間が 480分間の比較例 6は、 di— Na塩の生成量が多かった。また、最高温度に至るまで の時間が 10分間の比較例 2、最高温度が 85〜; 100°Cの範囲外である比較例 3〜4、 および最高温度保持時間が 10分間の比較例 5は、中和物の色調の値は実施例;!〜 6と同レベルであったにも関わらず、漂白品の色調の値は実施例 1〜6に比べて高く 、色調が悪かった。この結果は、漂白反応が充分に進行しなかったことを示す。 このように、実施例;!〜 6においては、比較例 1〜5と同程度の漂白時間で、また、比 較例 6よりも短時間で、副生物の生成を抑制しつつ、優れた漂白効果が得られた。
[0125] <実施例 7〜: 18、比較例 7〜 18 ( "—スルホ脂肪酸アルキルエステル塩含有ペース トの調製) >
(原料 (脂肪酸メチルエステル)の調製) 脂肪酸のアルキル基の炭素鎖長比率力 じ16/じ18 = 90/10 (質量%)となるよ うに蒸留した以外は、実施例 1〜6及び比較例 1〜6と同様の手順で脂肪酸メチルェ ステルを調製した。
[0126] 得られた脂肪酸メチルエステルを原料として用いて、下記の手順で α —スルホ脂肪 酸アルキルエステル塩を製造した。
(スルホン化工程'熟成工程)
実施例 7と比較例 7においては、撹拌槽型反応器を使用し、実施例 1及び比較例 1 と同様の手順でスルホン化及び熟成を行った。
[0127] 実施例 8〜; 18と比較例 8〜; 18においては、多管式流下薄膜型反応器を使用し、実 施例 2〜6及び比較例 2〜6と同様の手順でスルホン化および熟成を行った。
[0128] (エステル化工程)
次に、実施例 7〜; 18及び比較例 7〜; 18において、実施例;!〜 6及び比較例;!〜 6と 同様の手順でエステル化を行った。
得られたエステル化化合物につ!/、て、スルホン化反応率(エステル化後のスルホン 化率)および色調を測定した。その結果、実施例 7と比較例 7におけるエステル化後 のスルホン化反応率は 99%、色調は 400 (5%KLETT)であった。実施例 8〜; 18と 比較例 8〜; 18におけるエステル化後のスルホン化反応率は 98%、色調は 500 (5%
KLETT)であった。
[0129] (中和工程)
次に、エステル化終了後のエステル化化合物を、図 1のリサイクルループ 6に供給し 、実施例 1〜 6及び比較例 1〜 6と同様の手順で中和を行った。
得られた中和物の色調を測定した。その結果、実施例 7および比較例 7における中 和物の色調は 350 (5%KLETT)であった。実施例 8〜; 18および比較例 8〜; 18にお ける中和物の色調は 450 (5%KLETT)であった。また、中和物の pHは 6. 2であつ た。
[0130] (漂白工程)
中和に引き続き、純分 35質量%の工業グレードの過酸化水素水を使用して漂白を 行った。 実施例 7〜8と比較例 7〜8においては、実施例;!〜 3及び比較例;!〜 3と同 様の手順で、表 3〜4に示す開始温度、混合物の温度が最高温度に至るまでの時間 、最高温度、最高温度保持時間となるように調節して漂白を行った。
[0131] また、実施例 9〜; 18と比較例 9〜; 18においては、実施例 9〜; 18及び比較例 9〜18 と同様の手順で、表 3〜4に示す開始温度、混合物の温度が最高温度に至るまでの 時間、最高温度、最高温度保持時間を満たすように調節して漂白を行った。
[0132] 最高温度を表 3〜4に示す時間保持した後、漂白物は放冷により、表 3〜4に示す 終了温度にまで冷却した。
漂白開始 (過酸化水素水との混合後、最初に開始温度となった時点)から 24時間 後のペースト状の漂白品について、その色調を測定した。また、漂白品の組成として 、漂白品中の AI濃度、 AI中の di— Na塩の割合、漂白品中の芒硝濃度およびメチル サルフェート濃度を測定した。その結果を表 3〜4に示す。
[0133] [表 3]
表 3
実施例 実施例 実施例 実施例 実施例 実施例 7 8 9 1 0 1 1 1
5%KLE
中和物の色調 350 450 450 450 450 450
TT
%対 A
過酸化水素添加量 1 1 1 1 1 1
I
反応方式 恒 ?J !■槽 連続式漂白管 漂白開始温度 °c 75 70 75 75 75 75 最高温度到達まで
分 20 240 120 180 225 180 の時間
最高温度までの過 %対添
30 30 45 50 58 50 酸化水素消費量 加量
最高温度 °c 90 90 85 100 90 90 最高温度保持時間 分 240 120 240 300 20 360 最高温度での過酸 %対添
35 30 30 31 28 33 化水素消費量 加量
反応開始から最高
温度保持終了まで 分 260 360 360 480 245 540 の時間
反応終了温度 70 75 70 70 70 70 反応終了時の残存 %対添
10 1 7 3 5 1 過酸化水素量 加量
漂白開始から 2 4
5%KLE
時間後の漂白品の 35 30 28 25 35 38
TT
色調
反応終了時から 2
4時間後までの膨 % 130 105 115 105 105 102 張率
漂白品組成
%対八
A I濃度 66.4 66.5 66.4 66.2 65.9 66.4
I
A I中の di-Na ¾ %対 A
5.2 6.1 4.9 5.2 5.7 5.3 の割合 I
%対 A
A I中の芒硝濃度 3.3 3.3 2.9 3.7 3.3 3.7
I
A I中のメチノレサ %対 A
6.8 7.1 6.9 6.5 6.7 6.7 ルフヱ一ト濃度 I 表 3の続き
Figure imgf000041_0001
4] 表 4
比較例 比較例 比較例 比較例 比較例 比較例 7 8 9 1 0 1 1 1 2
5%KLE
中和物の色調 350 450 450 450 450 450
TT
%対 A
過酸化水素添加量 1 1 1 1 1 1
I
反応方式 恒 ?J ¾槽 連続式漂白管 漂白開始温度 。c 75 70 75 75 75 75 最高温度到達まで
分 10 300 120 180 240 40 の時間
最高温度までの過 %対添
25 40 45 50 50 50 酸化水素消費量 加量
最高温度 で 90 90 80 110 90 90 最高温度保持時間 分 240 120 240 300 10 480 最高温度での過酸 %対添
30 30 30 35 20 40 化水素消費量 加量
反応開始から最高
温度保持終了まで 分 250 420 360 480 250 520 の時間
反応終了温度 。c 70 75 70 70 70 70 反応終了時の残存 %対添
10 1 10 1 6 1 過酸化水素量 加量
漂白開始から 2 4
5%KLE
時間後の漂白品の 60 75 70 55 58 45
TT
色調
反応終了時から 2
4時間後までの膨 % 150 105 150 105 130 105 張率
漂白品組成
%対 A
A I濃度 66.5 66.5 66.8 66.4 66.2 66.4
I
A I中の di-Na塩 %対
5.2 10.5 5.7 11.0 6.1 12.5 の割合 I
%対 A
A I中の芒硝濃度 3.7 3.3 3.7 3.7 3.3 3.2
I
A I中のメチルサ %対 A
6.7 7.1 6.9 6.7 6.7 6.2 ルフヱ一ト濃度 I 表 4の続き
Figure imgf000043_0001
上記結果から明らかなように、実施例 7〜; 18で製造された漂白品は、着色が少なく 、色調に優れ、且つ保存中の膨張率が小さいものであった。また、副生物である di— Na塩の生成量も少なかった。
一方、最高温度に至るまでの時間力 ¾00分間の比較例 8と、最高温度が 110°Cの 比較例 10と最高温度保持時間が 480分間の比較例 12は、 di— Na塩の生成量が多 かった。また、最高温度に至るまでの時間が 10分間の比較例 7、最高温度が 80°Cの 比較例 9、最高保持時間が 10分の比較例 11、最高温度での過酸化水素消費量が 2 0%対添加量の比較例 13、最高温度での過酸化水素消費量が 40%対添加量の比 較例 14、反応終了時の残存過酸化水素量が 0. 05%対添加量の比較例 15は、中 和物の色調の値は実施例 7〜; 18と同レベルであったにも関わらず、漂白品の色調の 値は実施例 7〜; 18に比べて高ぐ色調が悪かった。この結果は、漂白反応が充分に 進行しなかったことを示す。
[0136] また、過酸化水素添加量が 0. 04%対 AIの比較例 17は、実施例 17よりも色調が悪 くなり、過酸化水素添加量が 6%対 AIの比較例 18は、実施例 18よりも保存中の膨張 率が大きくなつた。
このように、実施例 7〜; 18においては、比較例 7〜; 18と同程度の漂白条件で、副生 成物の生成を抑制しつつ、優れた漂白効果が得られた。
[0137] なお、本発明と従来技術の漂白条件を比較するために、実施例 8の漂白条件 (傾 斜加温)を丸、従来技術として、実施例 8と同様の中和物と漂白剤を使用し、 70°Cの 一定温度で漂白反応を行った場合の漂白条件を三角、同様に 90°Cの一定温度で 漂白反応を行った場合の漂白条件を四角でプロットしたグラフを図 4に示す。
同様に、上記漂白条件における漂白剤消費量の時間推移を示すグラフを図 5に、 さらに、上記漂白条件における色調の時間推移を示すグラフを図 6に示す。
[0138] <実施例 19、比較例 19 ( α —スルホ脂肪酸アルキルエステル塩含有ペーストの調 製)〉
(原料 (脂肪酸メチルエステル)の調製)
脂肪酸のアルキル基の炭素鎖長比率力 じ16/じ18 = 80/20 (質量%)となるょ うに蒸留した以外は、実施例 1〜6及び比較例 1〜6と同様の手順で脂肪酸メチルェ ステルを調製した。
[0139] 得られた脂肪酸メチルエステルを原料として用いて、下記の手順で α —スルホ脂肪 酸アルキルエステル塩を製造した。
(スルホン化工程'熟成工程)
実施例 19と比較例 19においては、撹拌槽型反応器を使用し、実施例 1及び比較 例 1と同様の手順でスルホン化及び熟成を行った。
[0140] (エステル化工程)
次に、実施例 19と比較例 19において、実施例;!〜 6及び比較例;!〜 6と同様の手 順でエステル化を行った。
得られたエステル化化合物につ!/、て、スルホン化反応率(エステル化後のスルホン 化率)および色調を測定した。その結果、実施例 19と比較例 19におけるエステル化 後のスルホン化反応率は 99%、色調は 600 (5%KLETT)であった。
[0141] (中和工程)
次に、エステル化終了後のエステル化化合物を、図 1のリサイクルループ 6に供給し 、実施例 1〜 6及び比較例 1〜 6と同様の手順で中和を行った。
得られた中和物の色調を測定した。その結果、実施例 19および比較例 19における 中和物の色調は 550 (5%KLETT)であった。また、中和物の pHは 6. 2であった。
[0142] (漂白工程)
中和に引き続き、実施例 4〜6及び比較例 4〜6と同様の手順で、表 5に示す開始 温度、混合物の温度が最高温度に至るまでの時間、最高温度、最高温度保持時間 を満たすように調節して漂白を行った。
[0143] 最高温度を表 5に示す時間保持した後、漂白物は放冷により、表 5に示す終了温 度にまで冷却した。
漂白開始 (過酸化水素水との混合後、最初に開始温度となった時点)から 24時間 後のペースト状の漂白品について、その色調を測定した。また、漂白品の組成として 、漂白品中の AI濃度、 AI中の di— Na塩の割合、漂白品中の芒硝濃度およびメチル サルフェート濃度を測定した。その結果を表 5に示す。
[0144] [表 5] 表 5
Figure imgf000046_0001
[0145] 上記結果から明らかなように、実施例 19で製造された漂白品は、着色が少なぐ色 調に優れ、且つ保存中の膨張率が小さいものであった。また、副生物である di— Na 塩の生成量も少なかった。
一方、最高温度が 80°Cの比較例 19は、中和物の色調の値が実施例 19と同レベル であったにも関わらず、漂白品の値は実施例 19に比べて高ぐ色調が悪かった。こ の結果は、漂白反応が充分に進行しなかったことを示す。
このように、実施例 19においては、比較例 19と同程度の漂白条件で、副生成物の 生成を抑制しつつ、優れた漂白効果が得られた。
産業上の利用可能性
[0146] 本発明では、漂白工程において、漂白の進行が早い初期は低い温度から行い、漂 白の進行が遅くなる後半に多くの漂白剤を残した状態で温度を上げるので、漂白剤 の分解を抑制し、良好な色調の漂白物を得ることができる。本発明の方法によると、 少ない漂白剤量かつ短時間の漂白時間であっても、色調に優れ、かつ副生物の生 成が抑制された α —スルホ脂肪酸アルキルエステル塩を製造できる。

Claims

請求の範囲
[1] 脂肪酸アルキルエステルをスルホン化するスルホン化工程と、該スルホン化工程で 得られたスルホン化化合物を熟成する熟成工程と、該熟成工程で得られた熟成化合 物に対し、炭素数 1〜6のアルコールを用いてエステル化処理を行うエステル化工程 と、該エステル化工程で得られたエステル化化合物を中和して中和物を得る中和ェ 程と、該中和物を漂白して漂白物を得る漂白工程とを有し、
前記漂白工程において、漂白反応の開始温度を 55〜80°Cとし、該開始温度を、 反応開始から 20〜240分間で、 85〜100°Cの最高温度にまで上昇させ、該最高温 度を 20〜360分間保持した後、 55〜80°Cの終了温度にまで低下させることを特徴 とする α —スルホ脂肪酸アルキルエステル塩の製造方法。
[2] 前記漂白工程において、反応開始温度から最高温度まで上昇させる時間と、前記 最高温度の保持時間との和が、 240〜540分である請求項 1に記載の α —スルホ脂 肪酸アルキルエステル塩の製造方法。
[3] 前記漂白工程を、連続式漂白管を用いて行う請求項 1に記載の α —スルホ脂肪酸 アルキルエステル塩の製造方法。
[4] 前記漂白工程において、さらに漂白剤を添加し、該漂白剤の添加量が中和物 AI10 0質量%に対し、漂白剤純分 0. 05〜5質量%である請求項 1に記載の α —スルホ 脂肪酸アルキルエステル塩の製造方法。
[5] 前記スルホン化工程および/または前記熟成工程を、着色抑制剤の存在下で行う 請求項 1に記載の α —スルホ脂肪酸アルキルエステル塩の製造方法。
[6] 脂肪酸アルキルエステルをスルホン化するスルホン化工程と、該スルホン化工程で 得られたスルホン化化合物を熟成する熟成工程と、該熟成工程で得られた熟成化合 物に対し、炭素数 1〜6のアルコールを用いてエステル化処理を行うエステル化工程 と、該エステル化工程で得られたエステル化化合物を中和して中和物を得る中和ェ 程と、該中和物を漂白して漂白物を得る漂白工程とを有し、
前記漂白工程において、 55〜80°Cの反応開始温度で、該中和物に漂白剤を添 加して反応を開始させ、反応開始からの漂白剤の消費量が 30〜60質量% (対添加 量)になるように、温度を 85〜; 100°Cの最高温度まで上昇させ、該最高温度におい て、さらに、漂白剤が 25〜35質量% (対添加量)消費する時間保持した後、漂白剤 の残存量が 0. ;!〜 15質量% (対添加量)になるように、反応温度を 55〜80°Cの反 応終了温度まで低下させることを特徴とする α —スルホ脂肪酸アルキルエステル塩 の製造方法。
[7] 前記漂白工程を、連続式漂白管を用いて行う請求項 6に記載の α —スルホ脂肪酸 アルキルエステル塩の製造方法。
[8] 前記漂白剤の添加量が中和物八1100質量%に対し、漂白剤純分 0. 05〜5質量% である請求項 6に記載の α —スルホ脂肪酸アルキルエステル塩の製造方法。
[9] 前記スルホン化工程および/または前記熟成工程を、着色抑制剤の存在下で行う 請求項 6に記載の α —スルホ脂肪酸アルキルエステル塩の製造方法。
[10] 前記着色抑制剤として、一価の金属イオンを有する無機硫酸塩および/または有 機酸塩を用いる請求項 9に記載の α —スルホ脂肪酸アルキルエステル塩の製造方 法。
PCT/JP2007/064514 2006-07-24 2007-07-24 PROCÉDÉ DE PRODUCTION DE SEL D'ESTER ALKYLIQUE D'ACIDE α-SULFO-GRAS WO2008013174A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008526778A JP5193865B2 (ja) 2006-07-24 2007-07-24 α―スルホ脂肪酸アルキルエステル塩の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006201073 2006-07-24
JP2006-201073 2006-07-24

Publications (1)

Publication Number Publication Date
WO2008013174A1 true WO2008013174A1 (fr) 2008-01-31

Family

ID=38981485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/064514 WO2008013174A1 (fr) 2006-07-24 2007-07-24 PROCÉDÉ DE PRODUCTION DE SEL D'ESTER ALKYLIQUE D'ACIDE α-SULFO-GRAS

Country Status (3)

Country Link
JP (1) JP5193865B2 (ja)
MY (1) MY148448A (ja)
WO (1) WO2008013174A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000128852A (ja) * 1998-10-21 2000-05-09 Lion Corp 淡色α−スルホ脂肪酸アルキルエステル塩の製造方法
JP2000191633A (ja) * 1993-09-17 2000-07-11 Chemithon Corp スルホン化脂肪酸エステルの製造方法
JP2000319685A (ja) * 1999-05-07 2000-11-21 Lion Corp 界面活性剤の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000191633A (ja) * 1993-09-17 2000-07-11 Chemithon Corp スルホン化脂肪酸エステルの製造方法
JP2000128852A (ja) * 1998-10-21 2000-05-09 Lion Corp 淡色α−スルホ脂肪酸アルキルエステル塩の製造方法
JP2000319685A (ja) * 1999-05-07 2000-11-21 Lion Corp 界面活性剤の製造方法

Also Published As

Publication number Publication date
MY148448A (en) 2013-04-30
JPWO2008013174A1 (ja) 2009-12-17
JP5193865B2 (ja) 2013-05-08

Similar Documents

Publication Publication Date Title
JP3307780B2 (ja) スルホン化脂肪酸エステルの製造方法
US6657071B1 (en) Process for producing α-sulfo-fatty acid alkyl ester salt
JP2008024672A (ja) α―スルホ脂肪酸アルキルエステル塩の製造方法
EP2252580B1 (en) Process for the production of alfa-sulfo fatty acid esters and their salts
JP2008094942A (ja) 界面活性剤組成物
WO2008013174A1 (fr) PROCÉDÉ DE PRODUCTION DE SEL D&#39;ESTER ALKYLIQUE D&#39;ACIDE α-SULFO-GRAS
JP4782001B2 (ja) α―スルホ脂肪酸アルキルエステル塩を含むアニオン界面活性剤の製造方法、アニオン界面活性剤及びこれを含む洗浄剤組成物
JP5358190B2 (ja) α−スルホ脂肪酸アルキルエステル塩含有粉体の製造方法
JP5495307B2 (ja) α−スルホ脂肪酸アルキルエステル含有組成物の製造方法
JP3425247B2 (ja) 界面活性剤溶液の濃縮方法
JP5134980B2 (ja) 脂肪酸アルキルエステルスルホネート製造用の水添脂肪酸アルキルエステルの製造方法、脂肪酸アルキルエステルスルホネートの製造方法
JP4230097B2 (ja) α−スルホ脂肪酸アルキルエステル塩の製造方法
JP6060013B2 (ja) α−スルホ脂肪酸アルキルエステル塩水溶液の製造方法
JP3895065B2 (ja) α−スルホ脂肪酸アルキルエステル塩の製造方法および装置
JP2008133209A (ja) α−スルホ脂肪酸アルキルエステル塩の製造方法
JP3929585B2 (ja) 淡色α−スルホ脂肪酸アルキルエステル塩およびその製造法
JP5553379B2 (ja) 副生物の量を低減したα−スルホ脂肪酸アルキルエステル塩の製造方法
JP2005171137A (ja) α−スルホ脂肪酸アルキルエステル塩の製造方法
JP2009191065A (ja) α−スルホ脂肪酸アルキルエステル塩の製造方法
JP2009126847A (ja) 脂肪酸アルキルエステル中の微量グリセリンの除去方法
JP2000319685A (ja) 界面活性剤の製造方法
JP2011032251A (ja) α−スルホ脂肪酸アルキルエステル塩の製造方法
JP2005187598A (ja) α−スルホ脂肪酸アルキルエステル塩の製造方法
JP5618988B2 (ja) α−スルホ脂肪酸アルキルエステルアルカノールアミン塩の製造方法
JP2008156538A (ja) アニオン界面活性剤濃縮物の製造装置及び製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07791239

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008526778

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07791239

Country of ref document: EP

Kind code of ref document: A1