WO2008010563A1 - Système optique à puissance variable, dispositif d'imagerie, procédé d'agrandissement variable d'un système optique à puissance variable - Google Patents

Système optique à puissance variable, dispositif d'imagerie, procédé d'agrandissement variable d'un système optique à puissance variable Download PDF

Info

Publication number
WO2008010563A1
WO2008010563A1 PCT/JP2007/064300 JP2007064300W WO2008010563A1 WO 2008010563 A1 WO2008010563 A1 WO 2008010563A1 JP 2007064300 W JP2007064300 W JP 2007064300W WO 2008010563 A1 WO2008010563 A1 WO 2008010563A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens group
lens
optical system
end state
variable magnification
Prior art date
Application number
PCT/JP2007/064300
Other languages
English (en)
French (fr)
Inventor
Satoru Shibata
Takeshi Suzuki
Hiroshi Yamamoto
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006347841A external-priority patent/JP5082431B2/ja
Priority claimed from JP2007177530A external-priority patent/JP5130806B2/ja
Priority claimed from JP2007177540A external-priority patent/JP5358902B2/ja
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to CN200780027520XA priority Critical patent/CN101490594B/zh
Priority to EP07791042A priority patent/EP2045639A4/en
Priority to US12/303,305 priority patent/US20090231708A1/en
Publication of WO2008010563A1 publication Critical patent/WO2008010563A1/ja
Priority to US13/090,936 priority patent/US20110194191A1/en
Priority to US13/545,651 priority patent/US20120275032A1/en
Priority to US14/092,748 priority patent/US10437026B2/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • G02B15/1445Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being negative
    • G02B15/144511Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being negative arranged -+-+
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/04Reversed telephoto objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/177Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a negative front lens or group of lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/64Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
    • G02B27/646Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for small deviations, e.g. due to vibration or shake

Definitions

  • variable magnification optical system imaging device, variable magnification optical system magnification method
  • the present invention relates to a variable magnification optical system, an imaging apparatus, and a variable magnification optical system variable magnification method.
  • variable magnification optical system suitable for a photographic camera, an electronic still camera, a video camera, and the like has been proposed (see, for example, JP-A-2004-61910 and JP-A-11-174329).
  • variable magnification optical system has a problem that it cannot fully satisfy the demand for high magnification because the magnification ratio is about 2 times.
  • the aperture stop is not optimally arranged, there is a problem that good optical performance is not achieved.
  • the present invention has been made in view of the above-described problems, and provides a variable magnification optical system, an imaging apparatus, and a variable magnification method for the variable magnification optical system that have a high variable magnification ratio and good optical performance.
  • the purpose is to provide.
  • the lens groups move so that the distance between the lens group and the third lens group changes, and the distance between the third lens group and the fourth lens group changes.
  • a variable magnification optical system characterized by moving together with the third lens group and further satisfying the following conditional expressions (1) and (2) is provided.
  • an imaging apparatus comprising the variable magnification optical system according to the first aspect of the present invention.
  • Each lens group is moved so that the distance between the second lens group and the third lens group is changed at the time of magnification, and the distance between the third lens group and the fourth lens group is changed,
  • the aperture stop moves together with the third lens group, and the second lens group, the third lens group, and the fourth lens group each have at least one cemented lens, and the fourth lens group
  • the cemented lens in the middle consists of a positive lens and a negative lens in order from the object side.
  • cl 1 w Distance on the optical axis from the lens surface closest to the object side to the image plane in the variable magnification optical system in the wide-angle end state
  • a first lens group having a negative refractive power, a second lens group having a positive refractive power, and a third lens group having a negative refractive power And a fourth lens group having a positive refractive power and when zooming from the wide-angle end state to the telephoto end state, the distance between the second lens group and the third lens group changes, and The distance between the third lens group and the fourth lens group changes, and the whole or a part of the third lens group is shifted in the direction orthogonal to the optical axis as an anti-vibration lens group, and the following conditional expression (5)
  • r 1 radius of curvature of the image stabilizing lens group on the object side
  • r 2 radius of curvature of the image stabilizing side of the image stabilizing lens group
  • an imaging apparatus comprising the variable magnification optical system according to the fourth aspect of the present invention.
  • a zooming method for a variable power optical system having an aperture stop between the second lens group and the fourth lens group, and a wide-angle end state
  • the distance between the second lens group and the third lens group changes, and the distance between the third lens group and the fourth lens group changes.
  • Each of the lens groups moves, and the aperture stop moves with the third lens group, and further satisfies the following conditional expressions (1) and (2): Provide a double method.
  • a seventh aspect of the present invention in order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, and a third lens having a negative refractive power And a fourth lens group having a positive refracting power, a zooming method for a variable power optical system having an aperture stop between the second lens group and the fourth lens group, and a wide-angle end state
  • a zooming method for a variable power optical system having an aperture stop between the second lens group and the fourth lens group, and a wide-angle end state
  • each of the second lens group, the third lens group, and the fourth lens group has at least one cemented lens.
  • the cemented lenses in the fourth lens group are positive in order from the object side.
  • the lens surface closest to the image plane in the variable magnification optical system is convex toward the image plane side, and further satisfies the following conditional expression (3): A zooming method for a zooming optical system is provided.
  • Yin ax Maximum image height
  • a first lens group having a negative refractive power, a second lens group having a positive refractive power, and a third lens group having a negative refractive power in order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, and a third lens group having a negative refractive power
  • the zooming method of the zooming optical system having the fourth lens unit having a positive refractive power when zooming from the wide-angle end state to the telephoto end state, the second lens unit and the third lens The distance between the third lens group and the fourth lens group changes, and the whole or a part of the third lens group is shifted in the direction orthogonal to the optical axis.
  • the present invention provides a zooming method for a zooming optical system characterized by satisfying the following conditional expression (5).
  • r 1 radius of curvature on the object side of the anti-vibration lens group
  • r 2 radius of curvature of the image stabilizing side of the image stabilizing lens group
  • variable power optical system having an anti-vibration function that corrects blurring of a photographed image due to vibration and hand blur while having a high zoom ratio and good optical performance, an imaging device, and A zooming method for a zooming optical system can be provided.
  • FIG. 1 is a lens cross-sectional view in the wide-angle end state showing a configuration of a variable magnification optical system according to the first example of the first embodiment.
  • 2A and 2B are diagrams showing various aberrations when focusing at infinity in the wide-angle end state of the variable magnification optical system according to the first example, and blur correction for rotation blur of 0.734 °, respectively. It is a meridional transverse aberration diagram at the time of contact.
  • FIG. 3 is a diagram of various aberrations during focusing at infinity in the intermediate focal length state of the variable magnification optical system according to the first example.
  • 4A and 4B are diagrams showing various aberrations during focusing at infinity in the telephoto end state of the variable magnification optical system according to Example 1, and blur correction for rotational blurring of 0.432 °, respectively. It is a meridional transverse aberration diagram at the time of contact.
  • FIG. 5 is a lens cross-sectional view in the wide-angle end state showing the configuration of the variable magnification optical system according to the second example of the first embodiment.
  • Figures 6 and 6 respectively show various aberration diagrams during focusing at infinity in the wide-angle end state of the variable magnification optical system according to the second example, and shake correction for rotational blurring of 0.734 °. It is a meridional transverse aberration diagram at the time of contact.
  • FIG. 7 is a diagram of various aberrations during focusing at infinity in the intermediate focal length state of the variable magnification optical system according to the second example.
  • Figures 8 and 8 show aberration diagrams for focusing at infinity in the telephoto end state of the variable magnification optical system according to the second example, and blur correction for rotational blurring of 0.432 °, respectively.
  • FIG. 6 is a meridional transverse aberration diagram when performed.
  • FIG. 9 is a lens cross-sectional view in the wide-angle end state showing the configuration of the variable magnification optical system according to the third example of the first embodiment.
  • FIGS. 10A and 10B are diagrams showing various aberrations when focusing at infinity in the wide-angle end state of the variable magnification optical system according to the third example, and blur correction was performed for rotation blur of 0.734 °, respectively. It is a meridional transverse aberration diagram at the time.
  • FIG. 11 is a diagram of various aberrations during focusing at infinity in the intermediate focal length state of the variable magnification optical system according to the third example.
  • 12A and 12B are diagrams showing various aberrations when focusing at infinity in the telephoto end state of the variable magnification optical system according to the third example, and blur correction was performed for rotational blurring of 0.432 °, respectively. It is a meridional transverse aberration diagram at the time.
  • FIG. 13 is a lens cross-sectional view in the wide-angle end state showing a configuration of a variable magnification optical system according to the fourth example of the first embodiment.
  • FIGS. 14A and 14B are diagrams showing various aberrations when focusing at infinity in the wide-angle end state of the variable magnification optical system according to the fourth example, and blur correction was performed for rotational blur of 0.734 °, respectively. It is a meridional transverse aberration diagram at the time.
  • FIG. 15 is a diagram of various aberrations at the time of infinity focusing in the intermediate focal length state of the variable magnification optical system according to the fourth example.
  • FIGS. 16A and 16B are diagrams showing various aberrations at the time of focusing on infinity in the telephoto end state of the variable magnification optical system according to Example 4, and rotational blurring of 0.4 3 2 °, respectively.
  • FIG. 6 is a meridional lateral aberration diagram when blur correction is performed.
  • FIG. 17 is a cross-sectional view showing the lens configuration in the wide-angle end state of the variable magnification optical system having the image stabilization function according to the fifth example of the second embodiment.
  • Figures 18A and 18B are diagrams showing various aberrations in the wide-angle end state of the variable magnification optical system having the image stabilization function according to the fifth example when focused at infinity, and when image blur correction was performed.
  • the meridional transverse aberration diagram is shown.
  • FIG. 19 shows various aberration diagrams in the intermediate focal length state at the time of focusing on infinity of the variable magnification optical system having the image stabilization function according to the fifth example.
  • FIGS. 20A and 20B are diagrams showing various aberrations in the telephoto end state at the time of focusing on infinity of the variable magnification optical system having the image stabilization function according to the fifth example, and when image blur correction is performed.
  • Figure 2 shows the lateral transverse aberration diagram.
  • FIG. 21 is a cross-sectional view showing the lens configuration in the wide-angle end state of the variable magnification optical system having the image stabilization function according to the sixth example of the second embodiment.
  • Figures 2 2 and 2 2 are diagrams showing various aberrations in the wide-angle end state of the variable magnification optical system having the image stabilization function according to the sixth example when focused at infinity, and when image blur correction was performed.
  • the meridional transverse aberration diagram is shown.
  • FIG. 23 shows various aberration diagrams in the intermediate focal length state at the time of focusing on infinity of the variable magnification optical system having the image stabilization function according to the sixth example.
  • Figures 2-4 and 2-4 are diagrams showing various aberrations at the telephoto end state at the time of focusing on infinity of the variable magnification optical system having the image stabilization function according to Example 6 and image blur correction. Shows the meridional transverse aberration diagram.
  • FIG. 25 shows a wide range of the variable magnification optical system having the image stabilization function according to the seventh example of the second embodiment. It is sectional drawing which shows the lens structure in a corner end state.
  • Figures 26 and 26 show the various aberration diagrams at the wide-angle end state when focusing on infinity of the variable magnification optical system having the image stabilization function according to the seventh example, and when image blur correction was performed.
  • the meridional transverse aberration diagram is shown.
  • FIG. 27 shows various aberration diagrams in the intermediate focal length state at the time of focusing on infinity of the variable magnification optical system having the image stabilization function according to the seventh example.
  • Figures 28 and 28 are diagrams showing various aberrations at the telephoto end state at the time of focusing on infinity of the variable magnification optical system having the image stabilization function according to Example 7 and image blur correction. Shows the meridional transverse aberration diagram.
  • FIG. 29 is a cross-sectional view showing the lens configuration in the wide-angle end state of the variable magnification optical system having the image stabilization function according to Example 8 of Embodiment 2.
  • Figures' 3 0 ⁇ and 3 0 ⁇ ⁇ ⁇ ⁇ show various aberration diagrams at the wide-angle end state when focusing on infinity of the variable magnification optical system having the image stabilization function according to Example 8 and image blur correction, respectively.
  • the meridional transverse aberration diagram is shown.
  • FIG. 31 shows various aberration diagrams in the intermediate focal length state at the time of focusing on infinity of the variable magnification optical system having the image stabilization function according to the eighth example.
  • Figures 3 2 and 3 2 are graphs showing various aberrations in the telephoto end state at the time of focusing on infinity and image blur correction of the variable magnification optical system having the image stabilization function according to Example 8. Shows the meridional transverse aberration diagram.
  • FIG. 33 is a cross-sectional view showing the lens configuration in the wide-angle end state of the variable magnification optical system having the image stabilization function according to Example 9 of Embodiment 2.
  • Figures 3-4 and 3-4 are diagrams showing various aberrations in the wide-angle end state of the variable magnification optical system having the image stabilization function according to the ninth example when focused at infinity, and when image blur correction was performed.
  • the meridional transverse aberration diagram is shown.
  • FIG. 35 is a diagram of various aberrations in the intermediate focal length state at the time of focusing on infinity of the variable magnification optical system having the image stabilization function according to Example 9.
  • FIG. ' Figures 36A and 36B are diagrams showing various aberrations at the telephoto end state at the time of focusing on infinity and image blur correction of the variable magnification optical system having the image stabilization function according to the ninth example. Shows the meridional transverse aberration diagram. '
  • FIG. 37 is a cross-sectional view showing the lens configuration in the wide-angle end state of the variable magnification optical system having the image stabilization function according to Example 10 of the third embodiment.
  • Figures 3 8 A and 3 8 B show aberration diagrams of the variable magnification optical system having the image stabilization function according to Example 10 in the wide-angle end state when focused at infinity, and Figure 3 8 A shows image blur correction.
  • Fig. 38B shows the meridional lateral aberration when image blur correction is performed.
  • FIG. 39 is a diagram of various aberrations in the intermediate focal length state when the variable magnification optical system having the image stabilization function according to Example 10 is in focus at infinity.
  • FIGS. 40A and 40B show aberration diagrams in the telephoto end state at the time of infinity of the variable magnification optical system having the image stabilization function according to Example 10.
  • FIG. 4 OA shows image blur correction.
  • Figure 40B shows the meridional lateral aberration when image blur correction is performed.
  • FIG. 41 is a cross-sectional view showing the lens configuration in the wide-angle end state of the variable magnification optical system having the image stabilization function according to the first example of the third embodiment.
  • Fig. 4 2 A and 4 2 B show aberration diagrams of the variable magnification optical system having the image stabilization function according to Example 1 in the wide-angle end state when focused at infinity, and Fig. 4 2 A shows image blur correction. Fig. 4 2B shows the meridional transverse aberration when image blur correction is performed.
  • FIG. 43 is a diagram illustrating various aberrations in the intermediate focal length state at the time of focusing on infinity of the variable magnification optical system having the image stabilization function according to the first example.
  • FIG. 4A and 4B show aberration diagrams of the variable magnification optical system having the image stabilization function according to Example 1 in the telephoto end state when focused at infinity, and FIG. 4 4A shows image blur correction.
  • Fig. 4 4B shows the various aberrations when image blurring is not performed. Null aberration is shown.
  • FIG. 45 is a cross-sectional view showing the lens configuration in the wide-angle end state of the variable magnification optical system having the image stabilization function according to the first to second examples of the third embodiment.
  • Figures 4-6 and 4-6 indicate aberration diagrams of the variable magnification optical system having the image stabilization function according to Example 1 in the wide-angle end state when focused at infinity, and Figure 4-6 indicates image blur correction.
  • Fig. 46B shows the meridional lateral aberration when image blur correction is performed.
  • FIG. 47 is a diagram of various aberrations in the intermediate focal length state at the time of focusing on infinity of the variable magnification optical system having a torsion prevention function according to the first and second examples.
  • FIG. 4A and 4B show aberration diagrams in the telephoto end state of the variable magnification optical system having the image stabilization function according to Example 1 2 at the time of focusing on infinity, and FIG. 4 8A shows image blur correction.
  • Figure 48B shows the meridional lateral aberration when image blur correction is performed.
  • FIG. 49 is a schematic configuration diagram of an image pickup apparatus (camera) including a variable magnification optical system having a vibration isolation function according to the first example of the first embodiment.
  • BEST MODE FOR CARRYING OUT THE INVENTION is a schematic configuration diagram of an image pickup apparatus (camera) including a variable magnification optical system having a vibration isolation function according to the first example of the first embodiment.
  • variable power optical system an imaging apparatus, and a variable power method of the variable power optical system according to the first embodiment of the present application will be described.
  • the variable magnification optical system includes, in order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, a third lens group having a negative refractive power, and a positive A fourth lens group having a refractive power, an aperture stop between the second lens group and the fourth lens group, and in the zooming from the wide-angle end state to the telephoto end state,
  • the lens groups are moved so that the distance between the lens group and the third lens group is increased, and the distance between the third lens group and the fourth lens group is decreased. It moves with the third lens group, and further satisfies the following conditional expressions (1) and (2).
  • the zoom optical system corrects the image plane when an image blur occurs by shifting the entire third lens group in a direction orthogonal to the optical axis.
  • Conditional expression (1) defines an appropriate range of the refractive power of the second lens group.
  • conditional expression (1) If the lower limit of conditional expression (1) is not reached, the refractive power of the second lens group becomes too large, and coma becomes worse. In addition, the decentration aberration during vibration isolation, that is, coma aberration or astigmatism is deteriorated.
  • conditional expression (1) In order to secure the effect of the present invention, it is desirable to set the lower limit value of conditional expression (1) to 1.30.
  • conditional expression (1) In order to secure the effect of the present invention, it is desirable to set the upper limit value of conditional expression (1) to 1.80.
  • Conditional expression (2) defines the refractive power of the third lens group.
  • the present zoom optical system effectively secures a predetermined zoom ratio, Good optical performance, particularly good optical performance can be achieved even during image stabilization. If the lower limit of conditional expression (2) is not reached, the refractive power of the third lens unit becomes too small, and the amount of movement of the third lens unit during zooming increases. For this reason, the variation in curvature of field at the time of zooming becomes large, and it becomes difficult to correct this.
  • conditional expression (2) If the upper limit of conditional expression (2) is exceeded, the refractive power of the third lens group will become too large and the spherical aberration will deteriorate. In addition, the decentration aberration during vibration isolation, that is, coma aberration or astigmatism is deteriorated.
  • conditional expression (2) In order to secure the effect of the present invention, it is desirable to set the upper limit value of conditional expression (2) to ⁇ 1.50. In order to further secure the effect of the present invention, it is desirable to set the lower limit value of conditional expression (2) to 12.0.
  • the aperture stop is disposed between the second lens group and the fourth lens group, and when zooming from the wide angle end state to the telephoto end state, Move with.
  • the third lens group has a cemented lens.
  • the fourth lens group is composed of a cemented lens composed of a negative lens and a positive lens, and a single lens having a positive refractive power, in order from the most image side. It is desirable.
  • each of the second lens group, the third lens group, and the fourth lens group has at least one cemented lens.
  • the zoom lens unit moves to the object side after moving to the image plane side when zooming from the wide-angle end state to the telephoto end state.
  • the variable magnification optical system satisfies the following conditional expression (3).
  • Conditional expression (3) defines the moving condition of the first lens unit upon zooming from the wide-angle end state to the telephoto end state.
  • conditional expression (3) it is desirable to set the lower limit value of conditional expression (3) to ⁇ 0.15.
  • conditional expression (3) it is desirable to set the upper limit value of conditional expression (3) to 0.05.
  • variable magnification optical system it is desirable that the lens surface closest to the image plane in the variable magnification optical system is convex toward the image plane side.
  • the variable magnification optical system includes, in order from the object side, a first lens group having negative refractive power, a second lens group having positive refractive power, and a third lens group having negative refractive power, A fourth lens group having a positive refractive power, an aperture stop between the second lens group and the fourth lens group, and in zooming from the wide-angle end state to the telephoto end state,
  • the first lens group moves to the object side after moving to the image plane side, the distance between the second lens group and the third lens group increases, and the third lens group and the fourth lens group
  • the aperture stop moves together with the third lens group, the second lens group, the third lens group, and the fourth lens.
  • Each lens group has at least one cemented lens, and the cemented lens in the fourth lens group Is composed of a positive lens and a negative lens in order from the object side, and the lens surface closest to the image plane in the zoom optical system is convex toward the image plane, and the following conditional expression ( 3) is satisfied.
  • cM t Distance on the optical axis from the lens surface closest to the object side to the image plane in the variable magnification optical system in the telephoto end state
  • the aperture stop moves together with the third lens group when zooming from the wide-angle end state to the telephoto end state.
  • each of the second lens group, the third lens group, and the fourth lens group has at least one cemented lens. 10 With this configuration, it is possible to satisfactorily correct the variation in lateral chromatic aberration during zooming.
  • the fourth lens group includes a cemented lens including a negative lens and a positive lens in order from the most image side, and a single lens having a positive refractive power. It is configured. With this configuration, it is possible to satisfactorily correct lateral chromatic aberration, spherical aberration, and coma aberration while securing the distances if,, between the third lens group and the fourth lens group.
  • the third lens group as an anti-vibration lens group, coma or astigmatism during image stabilization can be corrected well.
  • the present variable magnification optical system has a convex shape toward the image surface side of the lens surface force closest to the image surface in the variable magnification optical system. With this configuration, it is possible to reduce 0 ghost wrinkles due to reflected light from the image plane.
  • conditional expression (3) is the same as that described above, its description is omitted.
  • variable magnification optical system satisfies the following conditional expression (4).
  • f 2 Focal length of the second lens group
  • f 3 Focal length of the third lens group
  • Conditional expression (4) appropriately defines the refractive power of the second lens group and the refractive power of the third lens group.
  • the present variable magnification optical system can realize good optical performance by satisfying the conditional expression (4).
  • conditional expression (4) If the lower limit value of conditional expression (4) is not reached, the refractive power of the second lens group becomes too large, so that coma during zooming cannot be corrected well.
  • conditional expression (4) it is desirable to set the lower limit value of conditional expression (4) to 0.75.
  • conditional expression (4) it is desirable to set the upper limit value of conditional expression (4) to 1.1.
  • the main image apparatus includes the variable magnification optical system having the above-described configuration.
  • an imaging device having a high zoom ratio and good optical performance can be realized.
  • the variable magnification method of the variable magnification optical system includes, in order from the object side, a first lens group having negative refractive power, a second lens group having positive refractive power, and a third lens group having negative refractive power. And a fourth lens group having a positive refractive power, a zooming method of the variable power optical system having an aperture stop between the second lens group and the fourth lens group, and a wide-angle end state
  • zooming from the telephoto end state to the telephoto end state the distance between the second lens group and the third lens group is increased, and the distance between the third lens group and the fourth lens group is decreased.
  • Each lens group moves, and the aperture stop moves together with the third lens group, and further satisfies the following conditional expressions (1) and (2).
  • the zooming method of the zoom optical system includes, in order from the object side, a first lens group having negative refractive power; a second lens group having positive refractive power; and a third lens group having negative refractive power And a fourth lens group having a positive refractive power, a zooming method of the variable power optical system having an aperture stop between the second lens group and the fourth lens group, and a wide-angle end state
  • the first lens group moves to the object side once after moving to the image plane side, and the distance between the second lens group and the third lens group increases.
  • the lens groups move so that the distance between the third lens group and the fourth lens group decreases, and the aperture stop moves with the third lens group, and the second lens group,
  • Each of the third lens group and the fourth lens group has at least one cemented lens
  • the cemented lens in the fourth lens group is composed of a positive lens and a negative lens in order from the object side, and the lens surface closest to the image plane in the variable magnification optical system is convex toward the image plane side. Further, the following conditional expression (3) is satisfied.
  • variable magnification optical system according to each numerical example of the first embodiment will be described below with reference to the accompanying drawings.
  • FIG. 1 is a lens cross-sectional view in the wide-angle end state showing a configuration of a variable magnification optical system according to the first example of the first embodiment.
  • variable magnification optical system includes, in order from the object side, a first lens group G 1 having a negative refractive power, a second lens group G 2 having a positive refractive power, and a negative refractive power.
  • the third lens group G 3 has a fourth lens group G 4 having a positive refractive power.
  • the first lens group G 1 includes, in order from the object side, a negative meniscus lens L 11 having a convex surface facing the object side, a negative meniscus lens L 12 having a convex surface facing the object side, and a positive surface having a convex surface facing the object side. It consists of a cemented lens with a meniscus lens L 1 3.
  • the negative meniscus / cass lens 11 is an aspheric lens in which an aspheric surface is formed by providing a resin layer on the glass lens surface on the image side.
  • the second lens group G 2 includes, in order from the object side, a biconvex positive lens L 2 1 and a cemented lens of a biconvex positive lens L 2 2 and a biconcave negative lens L 2 3.
  • the third lens group G 3 includes, in order from the object side, a cemented lens of a positive meniscus lens L 3 1 having a concave surface facing the object side and a biconcave negative lens L 3 2.
  • the fourth lens unit G4 consists of a positive meniscus lens L 4 1 with a concave surface facing the object side, a biconvex positive lens L 4 2 and a negative meniscus lens L 4 with a convex surface facing the image side. 3 and a cemented lens.
  • the zoom optical system when zooming from the wide-angle end state to the telephoto end state, the distance between the second lens group G2 and the third lens group G3 is increased.
  • the first lens group G 1 moves to the object side after moving to the image side so that the distance between the lens group G 3 and the fourth lens group G 4 decreases, and the second lens group G 2,
  • the third lens group G 3 and the fourth lens group G 4 move to the object side.
  • the aperture stop S is disposed between the second lens group G2 and the third lens group G3, and moves together with the third lens group G3 upon zooming from the wide-angle end state to the telephoto end state. .
  • variable magnification optical system the entire third lens group G3 is shifted in a direction perpendicular to the optical axis to correct the image plane when an image blur occurs.
  • Table 1 below lists the values of the specifications of the variable magnification optical system according to the first example.
  • f is the focal length
  • FNO is the F number
  • W is the wide-angle end state
  • M is the intermediate focal length state
  • T is the telephoto end state.
  • the first column N is the order of the lens surfaces counted from the object side
  • the second column r is the radius of curvature of the lens surfaces
  • the third column d is the distance between the lens surfaces
  • R 0.000 represents a plane
  • Bf represents back focus
  • [Aspherical data] shows the aspherical coefficient when the shape of the aspherical surface is expressed by the following equation.
  • x (h 2 / r) / [1 + ⁇ 1 - ⁇ (h / r) 2 ⁇ 1/2 ]
  • x is the displacement in the optical axis direction at the height h from the optical axis when the apex of the aspherical surface is the reference (sag amount)
  • is the conic constant
  • C4, C6, C8, C10 are non
  • the spherical coefficient r is the radius of curvature of the reference sphere (paraxial radius of curvature).
  • ⁇ -nj indicates “XI 0— ⁇ ”, for example, ⁇ 1.234E-05J is “1.234X10 1 5 ”.
  • the focal length f and the variable interval between the lens groups are shown.
  • the focal length f, the radius of curvature r, and other length units listed in all the specification values in the following examples are generally “mm”.
  • the optical system can obtain the same optical performance even when proportionally enlarged or proportionally reduced, so the unit is limited to “mm”. It is not something that can be done. Note that the same reference numerals as in the present embodiment are used in the specification values of the following embodiments.
  • the lens where the focal length of the entire lens system is f, and the ratio of the image movement amount on the image plane I to the movement amount of the image stabilizing lens group at the time of blurring correction, that is, the lens whose image stabilization coefficient is K In order to correct the rotational blur of the lens, it is only necessary to move the anti-vibration lens group by (f ⁇ tan ⁇ ) ZK in a direction perpendicular to the optical axis. Since the anti-vibration coefficient is 1.321 and the focal length is 18.5 (mm) in the end state, the amount of movement of the third lens group G3 to correct the rotational blur of 0.734 ° is ⁇ . 1 79 In the telephoto end state, the anti-vibration coefficient is 2.2 and the focal length is 53.4 (mm), so the third lens is used to correct rotation blur of 0.432 °. The movement of group G3 is 0.183 (mm).
  • 2A and 2B are diagrams showing various aberrations at the time of focusing on infinity in the wide-angle end state of the variable magnification optical system according to the first example, and when blur correction is performed for rotational blurring of 0.734 °, respectively. It is a meridional transverse aberration diagram.
  • FIG. 3 is a diagram of various aberrations during focusing at infinity in the intermediate focal length state of the variable magnification optical system according to the first example.
  • FIG. 4A and 4B are diagrams showing various aberrations during focusing at infinity in the telephoto end state of the variable magnification optical system according to the first example, and blur correction for rotational blurring of 0.432 °.
  • FIG. 4A and 4B are diagrams showing various aberrations during focusing at infinity in the telephoto end state of the variable magnification optical system according to the first example, and blur correction for rotational blurring of 0.432 °.
  • F NO is the F picker and Y is the image height.
  • the spherical aberration diagram shows the F-number value corresponding to the maximum aperture
  • the astigmatism diagram and the distortion graph show the maximum field angle
  • the coma diagram shows the value of each field angle.
  • the solid line shows the sagittal image plane
  • the broken line shows the meridional image plane.
  • variable magnification optical system corrects various aberrations well from the wide-angle end state to the telephoto end state and has excellent imaging performance.
  • FIG. 5 is a lens cross-sectional view in the wide-angle end state showing the configuration of the variable magnification optical system according to the second example of the first embodiment.
  • the variable magnification optical system according to this example includes, in order from the object side, a first lens group G 1 having a negative refractive power, a second lens group G 2 having a positive refractive power, and a negative refractive power.
  • the third lens group G 3 has a fourth lens group G 4 having a positive refractive power.
  • the first lens group G1 consists of a negative meniscus lens L 1 1 with a convex surface facing the object side, a biconcave negative lens L 1 2 and a positive meniscus lens L with a convex surface facing the object side. It consists of 1 and 3.
  • the negative meniscus lens L I 1 is an aspheric lens in which an aspheric surface is formed by providing a resin layer on the image-side glass lens surface.
  • the second lens group G 2 includes, in order from the object side, a cemented lens of a negative meniscus lens L 2 1 having a convex surface facing the object side and a biconvex positive lens L 2 2, and a biconvex positive lens L 2. It consists of three.
  • the third lens group G 3 includes, in order from the object side, a cemented lens of a positive meniscus lens L 3 1 having a concave surface facing the object side and a biconcave negative lens L 3 2.
  • the fourth lens group G4 consists of a negative meniscus lens L 4 1 with a concave surface facing the object side, a biconvex positive lens L 4 2 and a negative meniscus lens L 4 with a convex surface facing the image side. 3 and a cemented lens.
  • the zoom optical system according to the present embodiment having such a configuration, when zooming from the wide-angle end state to the telephoto end state, the distance between the second lens group G2 and the third lens group G3 is increased.
  • the first lens group G 1 once moves to the image plane side and then moves to the object side so that the distance between the third lens group G 3 and the fourth lens group G 4 decreases.
  • the third lens group G 3 and the fourth lens group G 4 move to the object side.
  • the aperture stop S is disposed between the second lens group G2 and the third lens group G3, and moves together with the third lens group G3 upon zooming from the wide-angle end state to the telephoto end state. .
  • variable magnification optical system the entire third lens group G3 is shifted in a direction perpendicular to the optical axis, thereby correcting the image plane when an image blur occurs.
  • Table 2 below provides values of specifications of the variable magnification optical system according to the second example.
  • the variable magnification optical system according to the present example corrects rotational blur of 0.734 ° because the image stabilization coefficient is 1.162 and the focal length is 18.5 (mm) in the wide-angle end state. Therefore, the moving amount of the third lens group G3 is 0.204 (mm). In the telephoto end state, the anti-vibration coefficient is 1.914 and the focal length is 53.6 (mm), so the amount of movement of the third lens group G3 to correct rotation blur of 0.432 ° is 0. 21 1 (mm).
  • FIG. 6A and 6B are diagrams showing various aberrations when focusing on infinity in the wide-angle end state of the variable magnification optical system according to the second example, and for rotational blurring of 0.734 °, respectively.
  • FIG. 6 is a meridional transverse aberration diagram when the measurement is performed.
  • FIG. 7 is a diagram of various aberrations during focusing at infinity in the intermediate focal length state of the variable magnification optical system according to the second example.
  • FIGS. 8A and 8B are diagrams showing various aberrations when focusing at infinity in the telephoto end state of the variable magnification optical system according to the second example, and for blurring correction for rotational blurring of 0.4 3 2 °, respectively.
  • FIG. 6 is a meridional transverse aberration diagram when the measurement is performed.
  • variable magnification optical system corrects various aberrations well from the wide-angle end state to the telephoto end state and has excellent imaging performance.
  • FIG. 9 is a lens sectional view in the wide-angle end state showing the configuration of the variable magnification optical system according to the third example of the first embodiment.
  • variable magnification optical system includes, in order from the object side, a first lens group G 1 having a negative refractive power, a second lens group G 2 having a positive refractive power, and a negative refractive power.
  • the third lens group G 3 has a fourth lens group G 4 having a positive refractive power.
  • the first lens group G1 consists of a negative meniscus lens L 1 1 with a convex surface facing the object side, a biconcave negative lens L 1 2 and a positive meniscus lens L with a convex surface facing the object side. It consists of 1 and 3.
  • the negative meniscus lens L 11 is an aspherical lens in which an aspherical surface is formed by providing a resin layer on the image-side glass lens surface.
  • the second lens group G 2 includes, in order from the object side, a cemented lens of a negative meniscus lens L 2 1 having a convex surface facing the object side and a biconvex positive lens L 2 2, and a biconvex positive lens L 2. It consists of three.
  • the third lens group G 3 includes, in order from the object side, a cemented lens of a biconcave negative lens L 3 1 and a positive meniscus lens L 3 2 having a convex surface facing the object side.
  • the fourth lens group G4 consists of a positive meniscus lens L 4 1 with a concave surface facing the object side, a biconvex positive lens L 4 2 and a negative meniscus lens L 4 with a convex surface facing the image side. 3 and a cemented lens.
  • the zoom optical system according to the present embodiment having such a configuration, when zooming from the wide-angle end state to the telephoto end state, the distance between the second lens group G2 and the third lens group G3 is increased.
  • the first lens group G 1 once moves to the image plane side and then moves to the object side so that the distance between the lens group G 3 and the fourth lens group G 4 decreases.
  • the third lens group G 3 and the fourth lens group G 4 move to the object side.
  • the aperture stop S is disposed between the second lens group G2 and the third lens group G3, and moves together with the third lens group G3 upon zooming from the wide-angle end state to the telephoto end state. .
  • variable magnification optical system the entire third lens group G3 is shifted in a direction perpendicular to the optical axis to perform image plane correction when image blur occurs.
  • Table 3 lists the values of the specifications of the variable magnification optical system according to the third example.
  • the zoom optical system according to the present example has a vibration isolation coefficient of 1.1 6 2 and a focal length of 18.5 (mm) in the wide-angle end state, the rotation is 0.7 3 4 °.
  • the amount of movement of the third lens group G 3 for correcting blur is 0.204 (mm).
  • the anti-vibration coefficient is 2.0 3 7 and the focal length is 5 3.6 (mm), so the third lens group is used to correct rotation blur of 0.4 3 2 °.
  • G 3 travel is 0.
  • FIGS. 10A and 10B are graphs showing various aberrations at the time of focusing at infinity in the wide-angle end state of the variable magnification optical system according to the third example, and 0.7.
  • FIG. 6 is a meridional lateral aberration diagram when blur correction is performed.
  • FIG. 11 is a diagram of various aberrations at the time of infinity focusing in the intermediate focal length state of the variable magnification optical system according to the third example.
  • Figures 12A and 12B are graphs showing various aberrations when focusing at infinity in the telephoto end state of the variable magnification optical system according to the third example.
  • FIG. 6 is a meridional transverse aberration diagram when correction is performed.
  • FIG. 13 is a lens cross-sectional view in the wide-angle end state showing a configuration of a variable magnification optical system according to the fourth example of the first embodiment.
  • variable magnification optical system includes, in order from the object side, a first lens group G 1 having a negative refractive power, a second lens group G 2 having a positive refractive power, and a negative refractive power.
  • the third lens group G 3 has a fourth lens group G 4 having a positive refractive power.
  • the first lens group G1 consists of a negative meniscus lens L 1 1 with a convex surface facing the object side, a biconcave negative lens L 1 2 and a positive meniscus lens L with a convex surface facing the object side. It consists of 1 and 3.
  • the negative meniscus lens L 11 is an aspheric lens in which an aspheric surface is formed by providing a resin layer on the glass lens surface on the image side.
  • the second lens group G2 consists of, in order from the object side, a cemented lens of a negative meniscus lens L2 1 with a convex surface facing the object side and a biconvex positive lens L22, and a biconvex positive lens L. It consists of 2 and 3.
  • the third lens group G3 includes, in order from the object side, a cemented lens of a positive meniscus lens L3 1 with a concave surface facing the object side and a negative lens L3 2 with a biconcave shape, and a positive surface with a concave surface facing the image side.
  • the fourth lens group G4 consists of a positive meniscus lens L 4 1 with a concave surface facing the object side, a biconvex positive lens L 4 2 and a negative meniscus lens L with the heel surface facing the image side. 4 It consists of a cemented lens with 3.
  • the zoom optical system according to the present embodiment having such a configuration, when zooming from the wide-angle end state to the telephoto end state, the distance between the second lens group G2 and the third lens group G3 is increased.
  • the first lens group G 1 once moves to the image plane side and then moves to the object side so that the distance between the lens group G 3 and the fourth lens group G 4 decreases.
  • the third lens group G 3 and the fourth lens group G 4 move to the object side.
  • the aperture stop S is disposed between the second lens group G2 and the third lens group G3, and moves together with the third lens group G3 upon zooming from the wide-angle end state to the telephoto end state. .
  • the entire third lens group G3 is shifted in a direction perpendicular to the optical axis to perform image plane correction when image blur occurs.
  • Table 4 lists the values of the specifications of the variable magnification optical system according to the fourth example.
  • variable magnification optical system has a vibration isolation coefficient of 1.3 3 5 and a focal length of 18.5 (mm) in the wide-angle end state.
  • the amount of movement of the third lens group G3 is 0.179 (mm).
  • the anti-vibration coefficient is 2.128 and the focal length is 53.6 (mm), so the third lens group G3 is moved to correct rotational blur of 0.432 °.
  • the amount is 0.1 90 (mm).
  • FIGS. 14A and 14B are graphs showing various aberrations during focusing at infinity in the wide-angle end state of the variable magnification optical system according to Example 4, and blur correction for rotational blurring of 0.734 °. It is a meridional transverse aberration diagram when it is performed.
  • FIG. 15 is a diagram of various aberrations at the time of infinity focusing in the intermediate focal length state of the variable magnification optical system according to the fourth example.
  • FIGS. 16A and 16B are diagrams showing various aberrations at the time of focusing at infinity in the telephoto end state of the variable magnification optical system according to Example 4, and blur correction for rotational blurring of 0.432 °.
  • FIG. 6 is a meridional transverse aberration diagram when performed.
  • variable magnification optical system corrects various aberrations well from the wide-angle end state to the telephoto end state and has excellent imaging performance.
  • variable magnification optical system having an image stabilization function according to the second embodiment of the present application will be described.
  • the variable magnification optical system having the image stabilization function includes, in order from the object side, a first lens unit having a negative refractive power, a second lens unit having a positive refractive power, and a third lens unit having a negative refractive power.
  • the lens group and the fourth lens group having a positive refractive power, and when zooming from the wide-angle end state to the telephoto end state, the distance between the second lens group and the third lens group increases.
  • the distance between the third lens group and the fourth lens group is decreased, and the entire or a part of the third lens group is moved as a vibration-proof lens group in a direction perpendicular to the optical axis, so that the variable magnification optical system vibrates.
  • the image blur is corrected and the following conditional expressions (5) and (6) are satisfied. (5) 0.12 ⁇ (r 2+ rl) / (r 2- r 1) ⁇ 1.30
  • r 1 radius of curvature on the object side of the anti-vibration lens group
  • ⁇ 2 radius of curvature of the image stabilizing lens group on the image plane side
  • Conditional expression (5) defines the shape of the anti-vibration lens group, which effectively secures the predetermined high zoom ratio and ensures good optical performance while maintaining anti-vibration. Sometimes good optical performance is achieved.
  • conditional expression (5) If the lower limit of conditional expression (5) is not reached, the fluctuation of decentration coma aberration will increase, and the anti-vibration effect will be reduced, or the power will be weak, and a high zoom ratio cannot be secured. If the upper limit of conditional expression (5) is exceeded, it will be difficult to correct spherical aberration during zooming.
  • conditional expression (5) In order to secure the effect of the present invention, it is desirable to set the lower limit value of conditional expression (5) to 0.25. In order to ensure the effect of the present invention, it is desirable to set the upper limit value of conditional expression (5) to 1.00. In order to further secure the effect of the present invention, it is desirable to set the lower limit of conditional expression (5) to 0.36.
  • Conditional expression (6) defines the focal length of the anti-vibration lens group with respect to the focal length of the entire variable magnification optical system in the wide-angle end state. Realized.
  • conditional expression (6) If the lower limit of conditional expression (6) is not reached, the variation in field curvature due to decentration becomes too large. On the other hand, if the value exceeds the upper limit, the power of the anti-vibration lens group becomes too weak and the anti-vibration effect is reduced. As a result, the power of the first lens group becomes strong and spherical aberration occurs, which is not preferable.
  • conditional expression (6) In order to secure the effect of the present invention, it is desirable to set the lower limit of conditional expression (6) to 1.60. In order to ensure the effect of the present invention, the conditional expression (6) It is desirable to set the upper upper limit value of to 33 .. 00 00. .
  • variable magnification optical system that has the functions of the present anti-vibration and vibration isolator satisfies the following conditional expression ((77)): This is what you want to add. .
  • conditional condition formula ((77)) expresses the focal point distance of the anti-vibration anti-vibration Renrens group as opposed to the focal point distance of the twenty-second Renrens group. This means that the optical and optical performance performance is good and good at the time of anti-vibration and vibration prevention. I'm going. .
  • the telephoto end end state remains unchanged from the wide-angle end state.
  • the decentration decentration aberration difference ((comacoma aberration difference, image field plane curve curvature aberration difference)) cannot be compensated positively. Naruru. .
  • the power of the anti-vibration anti-vibration Renrenz group will become weak and weak, and the anti-vibration anti-vibration effect will be obtained. I can't get lost. .
  • the eleventh lens of the 11th Renrens group became stronger, and the spherical surface aberration difference was generated and remained unfavorable. No. .
  • the lower and lower limit values of the conditional expression ((77)) must be set. 11 .. 11 00 1155 This is what you want. .
  • the upper and lower limit values of the conditional expression ((77)) must be set. 22 .. This is what I want to do at 00 00. .
  • variable magnification optical system that has the functions of the present anti-vibration and vibration isolator has a negative and negative yield in order from the object side.
  • the 33rd Renrenz group with power and the 44th Renrenz group with positive flexural refracting power When performing 2200 variable magnification with the telephoto end in the end state, the 22nd Renrens group and the 33rd Renrenz group The distance between the 33rd Renrenz group and the 44th Renrenz group decreased and decreased, and the entire 33rd Renrens group The whole body More specifically, a part of the anti-vibration and vibration-proofing Renrenz group group is moved and moved in the direction perpendicular to the optical axis axis. Then, the image blurring at the time when the variable magnification optical system is vibrated is corrected and corrected. This is a composition that satisfies the formulas ((55)), ((77)). .
  • r 1 radius of curvature on the object side of the anti-vibration lens group
  • r 2 radius of curvature of the image stabilizing side of the image stabilizing lens group
  • Conditional expression (5) defines the shape of the anti-vibration lens group, but since it has already been described above, redundant description is omitted.
  • Conditional expression (7) defines the focal length of the anti-vibration lens unit relative to the focal length of the second lens unit, and this achieves good optical performance during anti-vibration. If the lower limit of conditional expression (7) is not reached, decentration aberrations (coma aberration and field curvature aberration) cannot be corrected during zooming from the wide-angle end state to the telephoto end state. If the value exceeds the upper limit, the power of the anti-vibration lens group becomes weak and the anti-vibration effect cannot be obtained. As a result, the power of the first lens group becomes strong, and spherical aberration occurs, which is not preferable.
  • the first lens unit moves along a convex locus toward the image plane when zooming from the wide-angle end state to the telephoto end state.
  • a high zoom ratio can be achieved, and the amount of movement of each lens group can be reduced.
  • variable magnification optical system having the image stabilization function it is desirable that the lens surface closest to the image surface is convex toward the image surface. With this configuration, the curvature of field can be corrected satisfactorily, and ghosts caused by reflected light from the image plane can be reduced.
  • the fourth lens group includes a negative lens, a positive lens, and a positive lens in order from the image side.
  • the third lens group has a cemented lens. It is desirable. By adopting such a configuration, it is possible to maintain good lateral chromatic aberration during image stabilization.
  • variable magnification optical system having the image stabilization function
  • the second lens group, the third lens group, and the fourth lens group each have a cemented lens.
  • variable magnification optical system having the anti-vibration function it is desirable that the second lens unit and the fourth lens unit move as a body during zooming from the wide-angle end state to the telephoto end state. .
  • the aperture stop is arranged in the vicinity of the third lens group and performs zooming from the wide-angle end state to the telephoto end state. It is preferable to move to the body.
  • the vicinity of the third lens group means a range including between the second lens group and the third lens group, within the third lens group, and between the third lens group and the fourth lens group.
  • the aperture stop is disposed in the vicinity of the second lens group, and is integrated with the second lens group when zooming from the wide-angle end state to the telephoto end state. It is preferable to move to.
  • the vicinity of the second lens group means a range including between the first lens group and the second lens group, in the second lens group, and between the second lens group and the third lens group.
  • variable magnification optical system having the anti-vibration function it is desirable to dispose a fixed diaphragm between the third lens group and the fourth lens group. By adopting such a configuration, it is possible to cut the frame and maintain good optical performance.
  • FIG. 17 is a cross-sectional view showing the lens configuration in the wide-angle end state of the variable magnification optical system having the image stabilization function according to the fifth example of the second embodiment.
  • variable magnification optical system having the image stabilization function according to the fifth example includes, in order from the object side, the first lens group G 1 having a negative refractive power, and the first lens group having a positive refractive power. It consists of two lens group G2, aperture stop S, third lens group G3 with negative refractive power, and fourth lens group G4 with positive refractive power.
  • the first lens group G 1 includes, in order from the object side, a negative meniscus lens having a convex surface facing the object side, a biconcave negative lens, and a positive meniscus lens having a convex surface facing the object side.
  • the negative meniscus lens is an aspherical lens in which an aspherical surface is formed by providing a resin layer on the glass lens surface on the image plane I side.
  • the second lens group G 2 includes, in order from the object side, a biconvex positive lens, and a cemented lens of a biconvex positive lens and a plano-concave negative lens with the plane facing the image plane I side.
  • the third lens group G3 is composed of, in order from the object side, a cemented lens of a positive meniscus lens having a concave surface facing the object side and a biconcave negative lens.
  • the fourth lens group G4 includes, in order from the object side, a positive meniscus lens having a concave surface facing the object side, and a cemented lens of a biconvex positive lens and a negative meniscus lens having a convex surface facing the image surface I side. Become.
  • the aperture stop S is located between the second lens group G 2 and the third lens group G 3 and moves together with the third lens group G 3 when zooming from the wide-angle end state to the telephoto end state. To do.
  • the first lens unit G 1 moves along a convex locus toward the image plane I, and the second lens unit G 2 and the fourth lens unit G 4 are integrated.
  • the third lens group G3 moves to the object side.
  • the blur of the photographed image is corrected by shifting the entire third lens group G3 in the direction orthogonal to the optical axis.
  • the image stabilization coefficient ⁇ is 1.02
  • the focal length is Since the distance is 18.5 (mm), the amount of movement of the third lens group G 3 for correcting the rotational blur of 0.734 ° is .232 (mm).
  • the image stabilization coefficient K is 1.71 and the focal length is 53.4 (mm), so the third lens group for correcting rotational blur of 0.432 °.
  • the amount of movement of G 3 is 0.235 ( ⁇ ).
  • Table 5 below shows specifications of the variable magnification optical system having the image stabilization function according to the fifth example.
  • Figures 18A and 18B show the variable magnification optical system having the image stabilization function according to the fifth example.
  • Fig. 4 shows various aberration diagrams at the wide-angle end when focusing on infinity, and a meridional lateral aberration diagram when image blur correction is performed.
  • FIG. 19 shows various aberration diagrams in the intermediate focal length state at the time of focusing on infinity of the variable magnification optical system having the image stabilization function according to the fifth example.
  • FIGS. 20A and 20B are diagrams showing various aberrations in the telephoto end state at the time of focusing at infinity and image blur correction in the variable magnification optical system having the image stabilization function according to the fifth example. The meridional transverse aberration diagram is shown.
  • variable magnification optical system having the anti-vibration function according to Example 5 has excellent imaging performance by correcting various aberrations well from the wide-angle end state to the telephoto end state. Recognize.
  • FIG. 21 is a cross-sectional view showing the lens configuration in the wide-angle end state of the variable magnification optical system having the image stabilization function according to the sixth example of the second embodiment.
  • variable magnification optical system having the image stabilization function includes, in order from the object side, a first lens group G 1 having a negative refractive power, a first lens group having a positive refractive power. It consists of two lens group G2, aperture stop S, third lens group G3 with negative refractive power, and fourth lens group G4 with positive refractive power.
  • the first lens group G 1 includes, in order from the object side, a negative meniscus lens having a convex surface facing the object side, a negative meniscus lens having a convex surface facing the object side, and a positive meniscus lens having a convex surface facing the object side.
  • the most object-side negative meniscus lens is an aspherical lens in which an aspherical surface is formed by providing a resin layer on the image-side glass lens surface.
  • the second lens group G 2 includes, in order from the object side, a cemented lens of a negative meniscus lens having a convex surface facing the object side and a biconvex positive lens, and a biconvex positive lens.
  • the third lens group G3 is composed of a positive meniscus lens having a concave surface facing the object side and a biconcave negative lens in order from the object side, and a negative meniscus lens having a convex surface facing the object side. .
  • the fourth lens group G4 is a positive meniscus lens with a concave surface facing the object side in order from the object side. And a cemented lens of a biconvex positive lens and a negative meniscus lens having a convex surface facing the image plane I.
  • the aperture stop S is located between the second lens group G 2 and the third lens group G 3 and moves together with the third lens group G 3 when zooming from the wide-angle end state to the telephoto end state. To do.
  • the first lens unit G1 moves along a convex locus toward the image plane I, and the second lens unit G2 and the fourth lens unit G4 are integrated.
  • the third lens group G3 moves to the object side.
  • variable magnification optical system having the image stabilization function the blur of the photographed image is corrected by shifting the cemented negative lens on the object side in the third lens group G3 in a direction perpendicular to the optical axis. is doing.
  • the image stabilization coefficient K is 0.807, and the focal length is 18: 5 (mm), so the third lens for correcting rotational blur of 0.736 °
  • the movement of group G 3 is 0.294 (mm).
  • the image stabilization coefficient K is 1.321, and the focal length is 53.4 (mm), so the third lens for correcting the rotational blur of 0.433 °.
  • Group G 3 moves 0.36 (mm).
  • Table 6 below shows values of specifications of the variable magnification optical system having the image stabilization function according to the sixth example.
  • FIGS. 22A and 22B are graphs showing various aberrations in the wide-angle end state of the zoom optical system having the image stabilization function according to the sixth example when focused at infinity, and the meridional transverse aberration when image blur correction is performed.
  • FIG. 23 shows various aberration diagrams in the intermediate focal length state at the time of focusing on infinity of the variable magnification optical system having the image stabilization function according to the sixth example.
  • FIGS. 24A and 24B are diagrams showing various aberrations in the telephoto end state at the time of focusing on infinity of the variable magnification optical system having the image stabilization function according to the sixth example, and the meridional horizontal when the image blur correction is performed. An aberration diagram is shown.
  • variable magnification optical system having the image stabilization function according to the second example has excellent imaging performance by properly correcting various aberrations from the wide-angle end state to the telephoto end state. I understand that.
  • FIG. 25 is a cross-sectional view showing the lens configuration in the wide-angle end state of the variable magnification optical system having the image stabilization function according to Example 7 of Embodiment 2.
  • the variable magnification optical system having the image stabilization function according to the seventh example includes a first lens group G 1 having a negative refractive power and an aperture stop S in order from the object side, as shown in FIG. It consists of a second lens group G 2 having a refractive power, a third lens group G 3 having a negative refractive power, and a fourth lens group G 4 having a positive refractive power.
  • the first lens group G 1 includes, in order from the object side, a negative meniscus lens having a convex surface facing the object side, a biconcave negative lens, and a positive meniscus lens having a convex surface facing the object side.
  • the negative meniscus lens is an aspherical lens in which an aspherical surface is formed by providing a resin layer on the lens surface on the image plane I side.
  • the second lens group G 2 includes, in order from the object side, a cemented lens of a negative meniscus lens having a convex surface facing the object side and a biconvex positive lens, an aperture stop S, and a positive meniscus facing the convex surface toward the object side. It consists of a lens.
  • the third lens group G3 is composed of, in order from the object side, a cemented lens of a positive meniscus lens having a concave surface facing the object side and a biconcave negative lens.
  • the fourth lens group G4 includes, in order from the object side, a positive meniscus lens having a concave surface facing the object side, and a cemented lens of a biconvex positive lens and a negative meniscus lens having a convex surface facing the image surface I side. Become.
  • the aperture stop S is located in the second lens group G2, and moves together with the second lens group G2 when zooming from the wide-angle end state to the telephoto end state.
  • the first lens unit G 1 moves along a convex locus toward the image plane I, and the second lens unit G 2 and the fourth lens unit G 4 are integrated.
  • the third lens group G3 moves to the object side.
  • the blur of the photographed image is corrected by shifting the third third lens group G3 in the direction orthogonal to the optical axis.
  • the anti-vibration coefficient 2 is 1.0 2 4 and the focal length is 18.5 (mm), so the rotational blur of 0.7 3 4 ° is corrected. Therefore, the movement amount of the third lens group G3 is 0.2 3 1 (mm).
  • the anti-vibration coefficient K is 1.674 and the focal length is 53.4 (mm)
  • the amount of movement of the third lens group G3 to correct the rotation blur of 0.432 ° is 0. 24 1 (mm).
  • Table 7 below shows values of specifications of the variable magnification optical system having the image stabilization function according to the seventh example.
  • FIGS. 26A and 26B are diagrams showing various aberrations in the wide-angle end state at the time of focusing on infinity of the variable magnification optical system having the image stabilization function according to Example 7, and the merit when image blur correction is performed.
  • a diagram of the diagonal transverse aberration is shown.
  • FIG. 27 is a diagram of various aberrations in the intermediate focal length state when the variable magnification optical system having the image stabilization function according to the seventh example is focused at infinity.
  • Figures 28A and 28B are diagrams showing various aberrations in the telephoto end state at the time of focusing on infinity of the variable magnification optical system having the image stabilization function according to the seventh example, and when image blur correction is performed.
  • the meridional transverse aberration diagram is shown.
  • variable magnification optical system having the anti-vibration function according to Example 7 has excellent imaging performance by properly correcting various aberrations from the wide-angle end state to the telephoto end state. I understand that.
  • FIG. 29 is a cross-sectional view showing the lens configuration in the wide-angle end state of the variable magnification optical system having the image stabilization function according to Example 8 of Embodiment 2.
  • variable magnification optical system having the image stabilization function according to the eighth example includes, in order from the object side, the first lens group G 1 having negative refractive power, the first lens group having positive refractive power, 2 lens group G2, aperture stop S, third lens group G3 with negative refractive power, fixed aperture FS, and fourth lens group G4 with positive refractive power.
  • the first lens group G 1 includes, in order from the object side, a negative meniscus lens having a convex surface facing the object side, a biconcave negative lens, and a positive meniscus lens having a convex surface facing the object side.
  • the negative meniscus lens is an aspherical lens in which an aspherical surface is formed by providing a resin layer on the glass lens surface on the image plane I side.
  • the second lens group G 2 includes, in order from the object side, a cemented lens of a negative meniscus lens having a convex surface facing the object side and a biconvex positive lens, and a positive meniscus lens having a convex surface facing the object side.
  • the third lens group G3 is composed of, in order from the object side, a cemented lens of a positive meniscus lens having a concave surface facing the object side and a biconcave negative lens.
  • the fourth lens group G 4 is composed of, in order from the object side, a positive meniscus lens having a concave surface facing the object side, a biconvex positive lens, and a negative meniscus lens having a convex surface facing the image surface I side. Consists of a lens.
  • the aperture stop S is located between the second lens group G2 and the third lens group G3, and the fixed diaphragm FS is located between the third lens group G3 and the fourth lens group G4. Both move together with the third lens group during zooming from the zoom position to the telephoto end.
  • the first lens group G 1 moves along a convex locus toward the image plane I, and the second lens group G 2 and the fourth lens group G are integrated.
  • the third lens group G3 moves to the object side.
  • the blur of the photographed image is corrected by shifting the entire third lens group G3 in a direction perpendicular to the optical axis.
  • the third for correcting rotational blur of 0.731 ° The moving amount of the lens group G3 is 0.202 (mm).
  • the image stabilization coefficient K is 1.906, and the focal length is 53.4 (mm), so 0.432.
  • the amount of movement of the third lens group G 3 for correcting the rotational blur is 0.221 1 (mm).
  • Table 8 below shows values of specifications of the variable magnification optical system having the image stabilization function according to the eighth example.
  • Figures 30 and 3OB are graphs showing various aberrations in the wide-angle end state at the time of focusing on infinity of the variable magnification optical system having the image stabilization function according to Example 8, and the merit when image blur correction is performed.
  • a diagram of the diagonal transverse aberration is shown.
  • FIG. 31 shows various aberration diagrams in the intermediate focal length state at the time of focusing on infinity of the variable magnification optical system having the image stabilization function according to the eighth example.
  • Figures 3 2A and 3 2B are graphs showing various aberrations in the telephoto end state at the time of focusing on infinity of the variable magnification optical system having the image stabilization function according to Example 8, and when image blur correction was performed.
  • a meridional transverse aberration diagram is shown.
  • variable magnification optical system having the image stabilization function according to Example 8 has excellent imaging performance by properly correcting various aberrations from the wide-angle end state to the telephoto end state. I understand.
  • FIG. 33 is a cross-sectional view showing the lens configuration in the wide-angle end state of the variable magnification optical system having the image stabilization function according to Example 9 of the second embodiment.
  • variable magnification optical system having the image stabilization function includes, in order from the object side, the first lens group G 1 having negative refractive power, the first lens group having positive refractive power, 2 lenses It consists of group G2, aperture stop S, third lens group G3 with negative refractive power, and fourth lens group G4 with positive refractive power.
  • the first lens group G 1 includes, in order from the object side, a negative meniscus lens having a convex surface facing the object side, a negative meniscus lens having a convex surface facing the object side, and a positive meniscus lens having a convex surface facing the object side.
  • the most negative meniscus lens on the object side is an aspherical lens in which an aspherical surface is formed by providing a resin layer on the glass lens surface on the image side.
  • the second lens group G 2 includes, in order from the object side, a cemented lens of a negative meniscus lens having a convex surface facing the object side and a biconvex positive lens, and a biconvex positive lens.
  • the third lens group G 3 includes, in order from the object side, a cemented negative lens composed of a positive meniscus lens having a concave surface facing the object side and a biconcave negative lens, a positive meniscus lens having a convex surface facing the object side, and an object. And a negative meniscus lens having a convex surface on the side.
  • the fourth lens group G4 includes, in order from the object side, a positive meniscus lens having a concave surface facing the object side, and a cemented lens of a biconvex positive lens and a negative meniscus lens having a convex surface directed to the image surface I. Become.
  • the aperture stop S is located between the second lens group G 2 and the third lens group G 3 and moves together with the third lens group G 3 when zooming from the wide-angle end state to the telephoto end state. To do.
  • the first lens unit G 1 moves along a convex locus toward the image plane I, and the second lens unit G 2 and the fourth lens unit G 4 are integrated.
  • the third lens group G3 moves to the object side.
  • variable magnification optical system having the image stabilization function the cemented negative lens on the object side in the third lens group G 3 and the positive meniscus lens having a convex surface facing the object side are orthogonal to the optical axis.
  • the camera shake is corrected by shifting in the direction.
  • the image stabilization coefficient K is 1.086 and the focal length is 18.7 (mm), so that the rotational blur of 0.73 1 ° is corrected. Therefore, the moving amount of the third lens group G3 is 0.2 18 (mm). In the telephoto end state of the present embodiment, the image stabilization coefficient K is 1.792, and the focal length is 53.4 (mm). The amount of movement of the third lens group G 3 for correcting the rotational blur of 0.43 2 ° is 0.225 (mm).
  • Table 9 below shows values of specifications of the variable magnification optical system having the image stabilization function according to Example 9.
  • Figures 34A and 34B are diagrams showing various aberrations in the wide-angle end state at the time of focusing on infinity of the variable magnification optical system having the image stabilization function according to the ninth example, and the merit when the image blur correction is performed.
  • a diagram of the diagonal transverse aberration is shown.
  • FIG. 35 is a diagram showing various aberrations in the intermediate focal length state at the time of focusing on the infinity of the variable magnification optical system having the image stabilization function according to the ninth example.
  • variable magnification optical system having the anti-vibration function according to the ninth example has excellent imaging performance by properly correcting various aberrations from the wide-angle end state to the telephoto end state. I understand that. '
  • variable magnification optical system having a vibration isolating function according to the third embodiment of the present application. Having a vibration isolating vibration isolator functional function according to the 33rd embodiment.
  • the variable-magnification optical system is composed of, in order from the object body side, the 11th Renrens group having negative and negative bending power, A 22nd Renrenz group with positive and negative bending power, a 33rd Renrens group with negative and negative bending power, and positive and negative It has the 44th Renrenz group having the bending and bending refracting power of the above, and it is zoomed in the telephoto state from the wide and wide angle end state to the telephoto state 3 ⁇ 43 ⁇ 411 state.
  • the interval between the 22nd Renrens group and the 33rd Renrens group is changed to 2200, and No. 33
  • the Renrenz group moves, and the 33rd At least a part of the Renrenz group can be shifted in the direction perpendicular to the optical axis and at the time of occurrence of image blurring.
  • the anti-vibration and anti-vibration Lehrenz group that performs the image surface correction is corrected.
  • the above-mentioned anti-vibration and anti-vibration Lehrenz group is at least 11 and above. This has a non-spherical spherical surface, and satisfies the following conditional expressions ((11)), and ((22)): Is a special feature. .
  • Conditional expression (1) defines the refractive power of the second lens group, but since it has already been described above, a duplicate description is omitted.
  • Conditional expression (2) defines the refractive power of the third lens group, but since it has already been described above, a duplicate description is omitted.
  • a high zoom ratio can be achieved by increasing the distance between the second lens group and the third lens group and decreasing the distance between the third lens group and the fourth lens group. This is preferable because the variation in spherical aberration during zooming can be reduced.
  • at least one aspheric surface in the third lens group has a weak positive refractive power or a negative refractive power from the optical axis toward the periphery compared to a spherical surface having a paraxial radius of curvature. Further, the following conditions (8), (9), and (1 0) are satisfied with the formed shape.
  • H is the effective diameter of the aspheric lens
  • ASPd O. 5 is the deviation between the paraxial radius of curvature and the aspheric shape at 50% of the aspheric effective diameter
  • ASPd l. 0 is the effective diameter of the aspheric surface. The deviation between the paraxial radius of curvature and the aspherical shape at a height of 100% is shown.
  • Conditional expressions (8), (9), and (10) are aspherical shapes that minimize degradation of imaging performance when the third lens group, which is an anti-vibration lens group, is moved in the direction orthogonal to the optical axis. Stipulate. If the lower limit of conditional expression (8) and conditional expression (9) is exceeded, the effect of aspherical correction cannot be achieved, and the number of lenses increases to correct various aberrations. Or, it is not desirable because the coma aberration deteriorates. On the other hand, above conditional expression (8) and conditional expression (9) If the limit value is exceeded, correction of various aberrations such as spherical aberration becomes excessive, and at the same time, the imaging performance deteriorates when the anti-vibration lens is moved.
  • the aspherical surface is formed so that the positive refractive power gradually increases from the optical axis toward the periphery or the negative refractive power becomes weaker than a spherical surface having the same paraxial curvature half.
  • various aberrations of the on-axis light beam and off-axis light beam can be efficiently corrected when the vibration-proof lens moves. If the upper limit value of conditional expression (1 0) is exceeded, spherical aberration and coma aberration will occur in the anti-vibration lens group when moving the anti-vibration lens, and the imaging performance after movement will deteriorate. Will be invited.
  • the variable magnification optical system having the image stabilization function it is desirable to have a cemented lens in the third lens group. By adopting such a configuration, it is possible to maintain good lateral chromatic aberration during image stabilization.
  • the first lens group has at least one aspherical surface and includes three or less lenses. With such a configuration, the total lens length can be shortened, and the curvature of field can be corrected well.
  • the lens closest to the object side in the first lens group is a negative lens having an aspheric surface on the image side surface. With this configuration, it is possible to satisfactorily correct field curvature and wide-angle coma.
  • the fourth lens group is composed of three or less lenses and has at least one aspherical surface. With this configuration, the overall lens length can be shortened and coma can be corrected well.
  • it is desirable that at least one cemented lens is provided in each of the second lens group to the fourth lens group. With such a configuration, it is possible to maintain good chromatic aberration, particularly lateral chromatic aberration, that occurs during zooming.
  • it is desirable that the lens surface closest to the image surface is convex toward the image surface.
  • the curvature of field is satisfactorily corrected, and ghost caused by reflected light from the image plane can be reduced.
  • various aberrations such as spherical aberration can be obtained. The difference can be corrected well.
  • the aperture stop moves together with the third lens group when zooming from the wide-angle end state to the telephoto end state, thereby reducing variations in various aberrations such as spherical aberration during zooming. can do.
  • variable magnification optical system having an image stabilization function according to each numerical example of the third embodiment will be described with reference to the accompanying drawings.
  • FIG. 37 is a cross-sectional view showing the lens configuration in the wide-angle end state of the variable magnification optical system having the image stabilization function according to Example 10 of the third embodiment.
  • the zoom optical system having the image stabilization function according to Example 10 has, in order from the object side, the first lens group G 1 having a negative refractive power, and a positive refractive power. It consists of the second lens group G2, the aperture stop S, the third lens group G'3 with negative refractive power, and the fourth lens group G4 with positive refractive power.
  • the first lens group G 1 includes, in order from the object side, a negative meniscus lens having a convex surface facing the object side, a biconcave negative lens, and a positive meniscus lens having a convex surface facing the object side.
  • the negative meniscus lens is an aspherical lens in which an aspherical surface is formed by providing a resin layer on the glass lens surface on the image plane I side.
  • the second lens group G 2 is composed of, in order from the object side, a cemented lens of a negative meniscus lens having a convex surface facing the object side and a biconvex positive lens, and a positive meniscus lens having a convex surface facing the object side.
  • the third lens group G3 is composed of a cemented lens composed of a positive meniscus lens having a concave surface directed toward the object side and a biconcave negative lens in order from the object side.
  • the fourth lens group G4 is composed of, in order from the object side, a biconvex positive lens, and a cemented lens of a biconvex positive lens and a negative meniscus lens having a convex surface facing the image plane I side.
  • the aperture stop S is disposed between the second lens group G 2 and the third lens group G 3 and has a wide angle.
  • zooming from the end state to the telephoto end state it moves with the third lens group G3.
  • the first lens unit G 1 moves along a convex locus toward the image plane I, and the second lens unit G2, the third lens unit G3, the fourth lens unit
  • the lens group G 4 moves to the object side.
  • the blur of the photographed image is corrected by shifting the third lens group G3 in the direction orthogonal to the optical axis.
  • the image stabilization coefficient K is 1.155, and the focal length is 18.7 (mm). Therefore, the third lens for correcting rotational blur of 0.731 ° The amount of movement of the group is 0.207 (mm).
  • the image stabilization coefficient K is 1.845, and the focal length is 53.3 (mm), so the third lens group for correcting rotational blur of ⁇ -433 ° The amount of movement is 0.218 (mm).
  • Table 10 below shows specification values of the variable magnification optical system having the image stabilization function according to Example 10.
  • Figures 3 8 A and 3 8 B show aberration diagrams of the variable magnification optical system having the image stabilization function according to Example 10 in the wide-angle end state when focused at infinity
  • Figure 3 8 A shows image blur correction
  • Fig. 38B shows the meridional lateral aberration when image blur correction is performed.
  • FIG. 39 is a diagram of various aberrations in the intermediate focal length state at the time of focusing on infinity of the variable magnification optical system having the image stabilization function according to Example 10.
  • FIGS. 40A and 4OB show aberration diagrams in the telephoto end state at the time of focusing on infinity of the variable magnification optical system having the image stabilization function according to Example 10.
  • FIG. 4OA shows image blur correction.
  • ⁇ 40 B shows meridional lateral aberration when image blur correction is performed. From the various aberration diagrams, the variable magnification optical system having the anti-vibration function according to Example 10 has excellent imaging performance by properly correcting various aberrations from the wide-angle end state to the telephoto end state. I understand that.
  • FIG. 41 is a cross-sectional view showing the lens configuration in the wide-angle end state of the variable magnification optical system having the image stabilization function according to the first example of the third embodiment.
  • the variable magnification optical system having the image stabilization function according to the first example has, in order from the object side, the first lens group G 1 having a negative refractive power and a positive refractive power. It consists of a second lens group G2, an aperture stop S, a third lens group G3 having a negative refractive power, and a fourth lens group G4 having a positive refractive power.
  • the first lens group G 1 includes, in order from the object side, a negative meniscus lens having a convex surface facing the object side, a biconcave negative lens, and a positive meniscus lens having a convex surface facing the object side.
  • the negative meniscus lens is an aspherical lens in which an aspherical surface is formed by providing a resin layer on the glass lens surface on the image plane I side.
  • the second lens group G2 includes, in order from the object side, a biconvex positive lens, and a cemented lens of a biconvex positive lens and a biconcave negative lens.
  • the third lens group G3 is composed of a cemented lens composed of a positive meniscus lens having a concave surface directed toward the object side and a biconcave negative lens in order from the object side.
  • the fourth lens group G4 is composed of a cemented lens composed of a biconvex positive lens and a negative meniscus lens having a convex surface facing the image plane I.
  • the cemented lens has a resin layer on the glass lens surface on the object side. It is an aspherical lens in which an aspherical surface is formed.
  • the aperture stop S is located between the second lens group G 2 and the third lens group G 3 and moves together with the third lens group G 3 when zooming from the wide-angle end state W to the telephoto end state T. To do.
  • the first lens group G1 moves along a convex locus toward the image plane I, and the second lens group G2, the third lens group G3, and the fourth lens
  • the lens group G 4 moves to the object side.
  • the image stabilization coefficient K is 1.024, and the focal length is 19.0 (mm), so that the third for correcting rotational blur of 0.725 ° is used.
  • the amount of movement of the lens group is 0.234 (mm).
  • the image stabilization coefficient K is 1.785, and the focal length is 54.0 (mm). Therefore, the third lens for correcting rotational blur of 0.430 ° is used.
  • the movement of the group is 0.227 (mm).
  • Table 11 shows the values of the variable magnification optical system having the image stabilization function according to the first example.
  • Figures 42A and 42B show the infinite range of the variable magnification optical system with the image stabilization function according to the first example.
  • Fig. 4 2 ⁇ shows various aberrations when no image blur correction is performed
  • Fig. 4 2 B shows the meridional horizontal when image blur correction is performed.
  • Aberrations are shown.
  • FIG. 43 is a diagram of various aberrations in the intermediate focal length state at the time of focusing on infinity of the variable magnification optical system having the image stabilization function according to the first example.
  • 4A and 4B show aberration diagrams in the telephoto end state at the time of focusing on infinity of the variable magnification optical system having the image stabilization function according to the first example 1
  • FIG. 4 4A shows image blur correction.
  • variable magnification optical system having the anti-vibration function according to the first example corrects various aberrations well from the wide-angle end state to the telephoto end state, and has excellent imaging performance. I understand that power s.
  • FIG. 45 is a cross-sectional view showing the lens configuration in the wide-angle end state of the variable magnification optical system having the image stabilization function according to the first to second examples of the third embodiment.
  • the variable magnification optical system having the image stabilization function according to the first and second examples has, in order from the object side, the first lens group G 1 having a negative refractive power and a positive refractive power. It consists of a second lens group G2, an aperture stop S, a third lens group G3 having a negative refractive power, and a fourth lens group G4 having a positive refractive power.
  • the first lens group G 1 includes, in order from the object side, a negative meniscus lens having a convex surface facing the object side, a biconcave negative lens, and a positive meniscus lens having a convex surface facing the object side.
  • the negative meniscus lens is an aspherical lens in which an aspherical surface is formed by providing a resin layer on the glass lens surface on the image plane I side.
  • the second lens group G 2 is composed of, in order from the object side, a cemented lens of a negative meniscus lens having a convex surface facing the object side and a biconvex positive lens, and a positive meniscus lens having a convex surface facing the object side.
  • the third lens group G3 is composed of a cemented lens composed of a positive meniscus lens having a concave surface directed toward the object side and a biconcave negative lens in order from the object side.
  • the fourth lens group G4 is composed of, in order from the object, a biconvex positive lens, and a cemented lens of a biconvex positive lens and a negative meniscus lens having a convex surface directed toward the image plane I side.
  • the aperture stop S is disposed between the second lens group G2 and the third lens group G3, and moves together with the third lens group G3 when zooming from the wide-angle end state to the telephoto end state.
  • the first lens unit G 1 moves along a convex locus toward the image plane I, and the second lens unit G2, the third lens unit G3, the fourth lens unit
  • the lens group G 4 moves to the object side.
  • the blur of the photographed image is corrected by shifting the third lens group G3 in the direction orthogonal to the optical axis.
  • the image stabilization coefficient K is 1.162, and the focal length is 18.5 (mm). Therefore, the third lens for correcting the rotation blur of 0.734 °
  • the movement of the group is 0.204 (mm).
  • the image stabilization coefficient K is 2.037, and the focal length is 53.5 (mm), so the third lens group for correcting rotational blur of 0.432 °.
  • the amount of movement is 0.1 98 (mm).
  • Table 12 below shows the specifications of the variable magnification optical system having the image stabilization function according to the twelfth example.
  • Figures 4 6 A and 4 6 B show aberration diagrams of the variable magnification optical system having the image stabilization function according to Example 1 in the wide-angle end state when focused at infinity
  • Figure 4 6 A shows image blur correction
  • Fig. 46B shows the meridional lateral aberration when image blur correction is performed.
  • FIG. 47 is a diagram of various aberrations in the intermediate focal length state at the time of focusing on infinity of the variable magnification optical system having the image stabilization function according to the first and second examples.
  • FIGS. 48A and 48B show aberration diagrams in the telephoto end state at the time of focusing on infinity of the variable magnification optical system having the image stabilization function according to the first and second examples.
  • FIG. 48A shows image blur correction.
  • variable magnification optical system having the anti-vibration function according to the first and second examples corrects various aberrations well from the wide-angle end state to the telephoto end state, and has excellent imaging performance. I understand that.
  • variable magnification optical system having the image stabilization function
  • group configuration of the variable magnification optical system is not limited to this, and other group configurations such as the five groups are shown. Is also applicable.
  • a part of the lens group, one lens group, or a plurality of lens groups is used as a focusing lens. It is good also as a structure which moves to an optical axis direction as a group.
  • This focusing lens group can also be applied to autofocus, and is also suitable for driving by a motor for autofocus, such as an ultrasonic motor.
  • the entire first lens group G1 or a part thereof is the focusing lens group. .
  • variable power optical system that shifts the whole or a part of the third lens group G3 as a vibration-proof lens group in a direction perpendicular to the optical axis is exemplified.
  • the whole group or a part thereof, in particular, the second lens group G2 and the fourth lens group G4 can be used as the anti-vibration lens group.
  • the lens surface of the lens constituting the variable magnification optical system having the image stabilization function may be an aspherical surface.
  • This aspherical surface may be any one of an aspherical surface by grinding, a glass mold aspherical surface obtained by molding glass into an aspherical shape, or a composite aspherical surface in which a resin provided on the glass surface is formed into an aspherical shape.
  • an antireflection film having a high transmittance in a wide wavelength range may be applied to the lens surface of the lens constituting the variable magnification optical system having the anti-vibration function.
  • flare is reduced and high optical performance can be achieved with high contrast.
  • an image pickup apparatus single-lens reflex camera equipped with a zoom lens having an image stabilization function according to the present application will be described.
  • FIG. 49 is a schematic configuration diagram of an image pickup apparatus (single-lens reflex camera) equipped with a zoom lens having an image stabilization function according to the first example of the first embodiment.
  • FIG. 49 light from a subject (not shown) is collected by the zoom lens 11 having the above-described anti-vibration function, reflected by the quick return mirror 12 and imaged on the focusing screen 1 3.
  • the subject image formed on the focusing screen 13 is reflected by the pen prism 14 a plurality of times, and can be observed as an erect image by the photographer via the eyepiece lens 15.
  • the release button When the release button is fully pressed, the quick return mirror 1 2 jumps upward, the light from the subject is received by the image sensor 16 and a captured image is acquired and recorded in a memory (not shown).
  • the tilt of the camera 10 is detected by the sensor 1 7 (for example, an angle sensor) built in the imaging device (single-lens reflex camera) 10 and transmitted to the CPU 18. 1
  • the amount of rotational blur is detected in 8 and the lens drive means to drive the lens group for camera shake correction in the direction orthogonal to the optical axis is driven, Image blur on the image sensor 16 is corrected.
  • the image pickup apparatus 10 including the zoom lens 11 having the above-described image stabilization function is configured.
  • the present invention is not limited to the above, and it is the same as the camera 10 even if a camera equipped with the zoom lens according to any one of the second to first embodiments as the photographing lens 11 is configured. Of course, the effect can be achieved.

Description

変倍光学系、 撮像装置、 変倍光学系の変倍方法
技術分野
本発明は、 変倍光学系、 撮像装置、 変倍光学系の変倍方法に関する。 明
背景技術
従来、 写真用カメラ、 電子スチルカメラ、 ビデオカメラ等に適した変倍光学系 が提案されている (例えば、 特開 2004-61910号公報, 特開平 11- 174329号公報を 参照) 。
しかしながら、 従来の変倍光学系は、 変倍比が 2倍程度であるため、 高変倍化 の要求を十分に満足できるものではないという問題があった。 また、 開口絞りの 配置が最適でないため、 良好な光学性能が達成されていないという問題があった。
発明の開示
そこで本発明は、 上記問題点に鑑みてなされたものであり、 高変倍比を有し、 良好な光学性能を有する変倍光学系、 撮像装置、 及び変倍光学系の変倍方法を提 供することを目的とする。
また、 本発明は、 高変倍比と良好な光学性能を持ちながら、 振動や手ブレ等に よる撮影画像のブレを補正する防振機能を有する変倍光学系の提供を目的とす る。
本発明の第 1の態様は、物体側から順に、負の屈折力を有する第 1レンズ群と、 正の屈折力を有する第 2レンズ群と、 負の屈折力を有する第 3レンズ群と、 正の 屈折力を有する第 4レンズ群とを有し、 前記第 2レンズ群と前記第 4レンズ群と の間に開口絞りを有し、 広角端状態から望遠端状態への変倍に際して、 前記第 2 レンズ群と前記第 3レンズ群との間隔が変化し、 前記第 3レンズ群と前記第 4レ ンズ群との間隔が変化するように、 前記各レンズ群が移動し、 また前記開口絞り は前記第 3レンズ群とともに移動し、 さらに以下の条件式 (1) 、 (2) を満足 することを特徴とする変倍光学系を提供する。
(1) 1. 20< f 2 / f w<2. 50
(2) -2. 10<f 3/f w<-0. 80
但し、
f 2 :前記第 2レンズ群の焦点距離
f 3 :前記第 3レンズ群の焦点距離
f w:広角端状態における前記変倍光学系の焦点距離
また、 本発明の第 2の態様は、 本発明の第 1の態様に係る変倍光学系を備えて いることを特徴とする撮像装置を提供する。
また、 本発明の第 3の態様は、 物体側から順に、 負の屈折力を有する第 1レン ズ群と、 正の屈折力を有する第 2レンズ群と、 負の屈折力を有する第 3レンズ群 と、 正の屈折力を有する第 4レンズ群とを有し、 前記第 2レンズ群と前記第 4レ ンズ群との間に開口絞りを有し、 広角端状態から望遠端状態への変倍に際して、 前記第 2レンズ群と前記第 3レンズ群との間隔が変化し、 前記第 3レンズ群と前 記第 4レンズ群との間隔が変化するように、 前記各レンズ群が移動し、 また前記 開口絞りは前記第 3レンズ群とともに移動し、 前記第 2レンズ群、 前記第 3レン ズ群、 及び前記第 4レンズ群はそれぞれ、 少なくとも 1つの接合レンズを有し、 前記第 4レンズ群中の前記接合レンズは、 物体側から順に、 正レンズと負レンズ とからなり、 前記変倍光学系中の最も像面側のレンズ面が、 像面側に向かって凸 形状であり、 さらに以下の条件式を満足することを特徴とする変倍光学系を提供 する。
(3) —0. 3< (d lw-d l t) /Ymax<0. 17
但し、 cl 1 w:広角端状態における前記変倍光学系中の最も物体側のレンズ面から像面 までの光軸上の距離
cl 1 t :望遠端状態における前記変倍光学系中の最も物体側のレンズ面から像面 までの光軸上の距離
Yin ax :最大像高
また、 本発明の第 4の態様は、 物体側から順に、 負の屈折力を持つ第 1レンズ 群と、 正の屈折力を持つ第 2レンズ群と、 負の屈折力を持つ第 3レンズ群と、 正 の屈折力を持つ第 4レンズ群を有し、 広角端状態から望遠端状態まで変倍を行う 際に、 前記第 2レンズ群と前記第 3レンズ群との間隔が変化し、 前記第 3レンズ 群と前記第 4レンズ群との間隔が変化し、 前記第 3レンズ群全体もしくは一部を 防振レンズ群として光軸と直交する方向にシフトさせ、 さらに下記条件式 (5 ) を満足することを特徴とした変倍光学系。
( 5 ) 0 . 1 2 < ( r 2 + r 1 ) / ( r 2 - r 1 ) < 1 . 3 0
ただし、
, r 1 :前記防振レンズ群の物体側の曲率半径
r 2 :前記防振レンズ群の像面側の曲率半径
また、 本発明の第 5の態様は、 本発明の第 4の態様に係る変倍光学系を備えて いることを特徴とする撮像装置を提供する
また、 本発明の第 6の態様は、 物体側から順に、 負の屈折力を有する第 1レン ズ群と、 正の屈折力を有する第 2レンズ群と、 負の屈折力を有する第 3レンズ群 と、 正の屈折力を有する第 4レンズ群とを有する変倍光学系の変倍方法において、 前記第 2レンズ群と前記第 4レンズ群との間に開口絞りを有し、 広角端状態から 望遠端状態への変倍 際して、 前記第 2レンズ群と前記第 3レンズ群との間隔が 変化し、 前記第 3レンズ群と前記第 4レンズ群との間隔が変化するように、 前記 各レンズ群が移動し、 また前記開口絞りは前記第 3レンズ群とともに移動し、 さらに以下の条件式 (1 ) 、 (2 ) を満足することを特徴とする変倍光学系の変 倍方法を提供する。
(1) 1. 20< f 2 / f w<2. 50
(2) -2. 10< f 3/ f w<- 0. 80
但し、
f 2 :前記第 2レンズ群の焦点距離
f 3 :前記第 3レンズ群の焦点距離
f w:広角端状態における前記変倍光学系の焦点距離
また、 本発明の第 7の態様は、 物体側から順に、 負の屈折力を有する第 1レン ズ群と、 正の屈折力を有する第 2レンズ群と、 負の屈折力を有する第 3レンズ群 と、 正の屈折力を有する第 4レンズ群とを有する変倍光学系の変倍方法において、 前記第 2レンズ群と前記第 4レンズ群との間に開口絞りを有し、 広角端状態から 望遠端状態への変倍に際して、 前記第 2レンズ群と前記第 3レンズ群との間隔が 変化し、 前記第 3レンズ群と前記第 4レンズ群との間隔が変化するように、 前記 各レンズ群が移動し、 また前記開口絞りは前記第 3レンズ群とともに移動し、 前記第 2レンズ群、 前記第 3レンズ群、 及び前記第 4レンズ群はそれぞれ、 少な くとも 1つの接合レンズを有し、 前記第 4レンズ群中の前記接合レンズは、 物体 側から順に、 正レンズと負レンズとからなり、 前記変倍光学系中の最も像面側の レンズ面が、 像面側に向かって凸形状であり、 さらに以下の条件式 (3) を満足 することを特徴とする変倍光学系の変倍方法を提供する。
(3) 一 0. 3 < (cl lw-cl 1 t) / /Ymax<0. 17
但し、
cl 1 w:広角端状態における前記変倍光学系中の最も物体側のレンズ面から像面 までの光軸上の距離
cl 1 t :望遠端状態における前記変倍光学系中の最も物体側のレンズ面から像面 までの光軸上の距離
Yin ax :最大像高 また、 本発明の第 8の態様は、 物体側から順に、 負の屈折力を持つ第 1レンズ 群と、 正の屈折力を持つ第 2レンズ群と、 負の屈折力を持つ第 3レンズ群と、 正 の屈折力を持つ第 4レンズ群を有する変倍光学系の変倍方法において、 広角端状 態から望遠端状態まで変倍を行う際に、 前記第 2レンズ群と前記第 3レンズ群と の間隔が変化し、 前記第 3レンズ群と前記第 4レンズ群との間隔が変化し、 前記 第 3レンズ群全体もしくは一部を防振レンズ群として光軸と直交する方向にシ フトさせ、 さらに下記条件式 (5) を満足することを特徴とした変倍光学系の変 倍方法を提供する。
(5) 0. 12< (r 2 + r 1) / (r 2-r 1) <1. 30
ただし、 '
r 1 :前記防振レンズ群の物体側の曲率半径
r 2 :前記防振レンズ群の像面側の曲率半径
本発明によれば、 高変倍比を有し、 良好な光学性能を持ちながら、 振動ゃ手ブ レ等による撮影画像のブレを補正する防振機能を有する変倍光学系、 撮像装置、 及び変倍光学系の変倍方法を提供することができる。 図面の簡単な説明
図 1は、 第 1実施形態の第 1実施例に係る変倍光学系の構成を示す広角端状態 でのレンズ断面図である。
図 2A、 2Bは、 それぞれ、 第 1実施例に係る変倍光学系の広角端状態におけ る無限遠合焦時の諸収差図、 及び 0. 734° の回転ブレに対してブレ補正を行 つた際のメリディォナル横収差図である。
図 3は、 第 1実施例に係る変倍光学系の中間焦点距離状態における無限遠合焦 時の諸収差図である。
図 4A、 4Bは、 それぞれ、 第 1実施例に係る変倍光学系の望遠端状態におけ る無限遠合焦時の諸収差図、 及び 0. 432° の回転ブレに対してブレ補正を行 つた際のメリディォナル横収差図である。
図 5は、 第 1実施形態の第 2実施例に係る変倍光学系の構成を示す広角端状態 でのレンズ断面図である。
図 6Α、 6Βは、 それぞれ、 第 2実施例に係る変倍光学系の広角端状態におけ る無限遠合焦時の諸収差図、 及び 0. 734° の回転ブレに対してブレ補正を行 つた際のメリディォナル横収差図である。
図 7は、 第 2実施例に係る変倍光学系の中間焦点距離状態における無限遠合焦 時の諸収差図である。
図 ·8Α、 8Βは、 それぞれ、 第 2実施例に係る変倍光学系の望遠端状態におけ る無限遠合焦時の諸収差図、 及び 0. 432° の回転ブレに対してブレ補正を行 つた際のメリディォナル横収差図である。
図 9は、 第 1実施形態の第 3実施例に係る変倍光学系の構成を示す広角端状態 でのレンズ断面図である。
図 10A、 10Bは、 それぞれ、 第 3実施例に係る変倍光学系の広角端状態に おける無限遠合焦時の諸収差図、 及び 0. 734° の回転ブレに対してブレ補正 を行った際のメリディォナル横収差図である。
図.1 1は、 第 3実施例に係る変倍光学系の中間焦点距離状態における無限遠合 焦時の諸収差図である。
図 12A、 12Bは、 それぞれ、 第 3実施例に係る変倍光学系の望遠端状態に おける無限遠合焦時の諸収差図、 及び 0. 432° の回転ブレに対してブレ補正 を行った際のメリディォナル横収差図である。
図 13は、 第 1実施形態の第 4実施例に係る変倍光学系の構成を示す広角端状 態でのレンズ断面図である。
図 14A、 14Bは、 それぞれ、 第 4実施例に係る変倍光学系の広角端状態に おける無限遠合焦時の諸収差図、 及び 0. 734° の回転ブレに対してブレ補正 を行った際のメリディォナル横収差図である。 図 1 5は、 第 4実施例に係る変倍光学系の中間焦点距離状態における無限遠合 焦時の諸収差図である。
図 1 6 A、 1 6 Bは、 それぞれ、 第 4実施例に係る変倍光学系の望遠端状態に おける無限遠合焦時の諸収差図、 及び 0 . 4 3 2 ° の回転ブレに対してブレ補正 を行った際のメリディォナル横収差図である。
図 1 7は、 第 2実施形態の第 5実施例に係る防振機能を有する変倍光学系の広 角端状態におけるレンズ構成を示す断面図である。
図 1 8 A、 1 8 Bは、 それぞれ第 5実施例に係る防振機能を有する変倍光学系 の無限遠合焦時の広角端状態における諸収差図、 および像ブレ補正をおこなった 時のメリディォナル横収差図を示す。
図 1 9は、 第 5実施例に係る防振機能を有する変倍光学系の無限遠合焦時の中 間焦点距離状態での諸収差図を示す。
図 2 0 A、 2 0 Bは、 それぞれ第 5実施例に係る防振機能を有する変倍光学系 の無限遠合焦時の望遠端状態での諸収差図、 および像ブレ補正をおこなった時の リディォナル横収差図を示す。
図 2 1は、 第 2実施形態の第 6実施例に係る防振機能を有する変倍光学系の広 角端状態におけるレンズ構成を示す断面図である。
図 2 2 Α、 2 2 Βは、 それぞれ第 6実施例に係る防振機能を有する変倍光学系 の無限遠合焦時の広角端状態における諸収差図、 および像ブレ補正をおこなった 時のメリディォナル横収差図を示す。
図 2 3は、 第 6実施例に係る防振機能を有する変倍光学系の無限遠合焦時の中 間焦点距離状態での諸収差図を示す。
図 2 4 Α、 2 4 Βは、 それぞれ第 6実施例に係る防振機能を有する変倍光学系 の無限遠合焦時の望遠端状態での諸収差図、 および像ブレ補正をおこなった時の メリディォナル横収差図を示す。
図 2 5は、 第 2実施形態の第 7実施例に係る防振機能を有する変倍光学系の広 角端状態におけるレンズ構成を示す断面図である。
図 2 6 Α、 2 6 Βは、 それぞれ第 7実施例に係る防振機能を有する変倍光学系 の無限遠合焦時の広角端状態における諸収差図、 および像ブレ補正をおこなった 時のメリディォナル横収差図を示す。
図 2 7は、 第 7実施例に係る防振機能を有する変倍光学系の無限遠合焦時の中 間焦点距離状態での諸収差図を示す。
図 2 8 Α、 2 8 Βは、 それぞれ第 7実施例に係る防振機能を有する変倍光学系 の無限遠合焦時の望遠端状態での諸収差図、 および像ブレ補正をおこなった時の メリディォナル横収差図を示す。
図 2 9は、 第 2実施形態の第 8実施例に係る防振機能を有する変倍光学系の広 角端状態におけるレンズ構成を示す断面図である。
図' 3 0 Α、 3 0 Βは、 それぞれ第 8実施例に係る防振機能を有する変倍光学系 の無限遠合焦時の広角端状態における諸収差図、 および像ブレ補正をおこなった 時のメリディォナル横収差図を示す。
図 3 1は、 第 8実施例に係る防振機能を有する変倍光学系の無限遠合焦時の中 間焦点距離状態での諸収差図を示す。
図 3 2 Α、 3 2 Βは、 それぞれ第 8実施例に係る防振機能を有する変倍光学系 の無限遠合焦時の望遠端状態での諸収差図、 および像ブレ補正をおこなった時の メリディォナル横収差図を示す。
図.3 3は、 第 2実施形態の第 9実施例に係る防振機能を有する変倍光学系の広 角端状態におけるレンズ構成を示す断面図 ϋある。
図 3 4 Α、 3 4 Βは、 それぞれ第 9実施例に係る防振機能を有する変倍光学系 の無限遠合焦時の広角端状態における諸収差図、 および像ブレ補正をおこなった 時のメリディォナル横収差図を示す。
図 3 5は、 第 9実施例に係る防振機能を有する変倍光学系の無限遠合焦時の中 間焦点距離状態での諸収差図を示す。 ' 図 3 6 A、 3 6 Bは、 それぞれ第 9実施例に係る防振機能を有する変倍光学系 の無限遠合焦時の望遠端状態での諸収差図、 および像ブレ補正をおこなった時の メリディォナル横収差図を示す。'
図 3 7は、 第 3実施形態の第 1 0実施例に係る防振機能を有する変倍光学系の 広角端状態におけるレンズ構成を示す断面図である。
図 3 8 A、 3 8 Bは、 第 1 0実施例に係る防振機能を有する変倍光学系の無限 遠合焦時の広角端状態における収差図を示し、 図 3 8 Aは画像ブレ補正をおこな わない状態での諸収差を、 図 3 8 Bは画像ブレ補正をおこなった時のメリディォ ナル横収差を示す。
図 3 9は、 第 1 0実施例に係る防振機能を有する変倍光学系の無限遠合焦時の 中間焦点距離状態での諸収差図である。
図 4 0 A、 4 0 Bば、 第 1 0実施例に係る防振機能を有する変倍光学系の無限 遠合 ' 時の望遠端状態における収差図を示し、 図 4 O Aは画像ブレ補正をおこな わない状態での諸収差を、 図 4 0 Bは画像ブレ補正をおこなった時のメリディォ ナル横収差を示す。
図 4 1は、 第 3実施形態の第 1 1実施例に係る防振機能を有する変倍光学系の 広角端状態におけるレンズ構成を示す断面図である。
図 4 2 A、 4 2 Bは、 第 1 1実施例に係る防振機能を有する変倍光学系の無限 遠合焦時の広角端状態における収差図を示し、 図 4 2 Aは画像ブレ補正をおこな わない状態での諸収差を、 図 4 2 Bは画像ブレ補正をおこなつた時のメリディォ ナル横収差を示す。
図 4 3は、 第 1 1実施例に係る防振機能を有する変倍光学系の無限遠合焦時の 中間焦点距離状態での諸収差図である。
図 4 4 A、 4 4 Bは、 第 1 1実施例に係る防振機能を有する変倍光学系の無限 遠合焦時の望遠端状態における収差図を示し、 図 4 4 Aは画像ブレ補正をおこな わない状態での諸収差を、 図 4 4 Bは画像ブレ補正をおこなった時のメリディォ ナル橫収差を示す。
図 4 5は、 第 3実施形態の第 1 2実施例に係る防振機能を有する変倍光学系の 広角端状態におけるレンズ構成を示す断面図である。
図 4 6 Α、 4 6 Βは、 第 1 2実施例に係る防振機能を有する変倍光学系の無限 遠合焦時の広角端状態における収差図を示し、 図 4 6 Αは画像ブレ補正をおこな わない状態での諸収差を、 図 4 6 Bは画像ブレ補正をおこなった時のメリディォ ナル横収差を示す。
図 4 7は、 第 1 2実施例に係る防捩機能を有する変倍光学系の無限遠合焦時の 中間焦点距離状態での諸収差図である。
図 4 8 A、 4 8 Bは、 第 1 2実施例に係る防振機能を有する変倍光学系の無限 遠合焦時の望遠端状態における収差図を示し、 図 4 8 Aは画像ブレ補正をおこな わない状態での諸収差を、 図 4 8 Bは画像ブレ補正をおこなった時のメリディォ ナル横収差を示す。
図 4 9は、 第 1実施形態の第 1実施例に係る防振機能を有する変倍光学系を備 えた撮像装置 (カメラ) の概略構成図である。 発明の実施の形態
<第 1実施形態 >
以下、 本願の第 1実施形態に係る変倍光学系、 撮像装置、 及び変倍光学系の変 倍方法について説明する。
本変倍光学系は、 物体側から順に、 負の屈折力を有する第 1レンズ群と、 正の 屈折力を有する第 2レンズ群と、 負の屈折力を有する第 3レンズ群と、 正の屈折 力を有する第 4レンズ群とを有し、 前記第 2レンズ群と前記第 4レンズ群との間 に開口絞りを有し、 広角端状態から望遠端状態への変倍に際して、 前記第 2レン ズ群と前記第 3レンズ群との間隔が増大し、 前記第 3レンズ群と前記第 4レンズ 群との間隔が減少するように、 前記各レンズ群が移動し、 また前記開口絞りは前 記第 3レンズ群とともに移動し、 さらに以下の条件式 (1) , (2) を満足する ことを特徴とする。
( 1 ) 1. 20く ί 2ノ f w< 2. 50
(2) 一 2. 10< f 3/ f w<- 0. 80
但し、
f 2 前記第 2レンズ群の焦点距離
f 3 :前記第 3レンズ群の焦点距離
f w:広角端状態における前記変倍光学系の焦点距離
また、 本変倍光学系は、 前記第 3レンズ群全体を光軸と直交する方向へシフト させることで像ブレ発生時の像面補正を行う。
条件式 (1) は、 第 2レンズ群の屈折力の適正な範囲を規定したものである。 本変倍光学系は、 この条件式 (1) を満足することで、 所定の変倍比を効果的に 確保しつつ、 良好な光学性能、 特に防振時においても良好な光学性能を実現する ことができる。
条件式( 1 )の下限値を下回ると、第 2レンズ群の屈折力が大きくなり過ぎて、 コマ収差が悪化する。 また、 防振時の偏心収差、 即ちコマ収差又は非点収差が悪 化する。
なお、 本発明の効果をより確実にするためには、 条件式 (1) の下限値を 1. 30に設定することが望ましい。
一方、 条件式 (1) の上限値を上回ると、 第 2レンズ群の屈折力が小さくなり 過ぎて、 変倍時の各レンズ群の移動量が増加する。 このため、 広角端状態から望 遠端状態への変倍時に像面湾曲収差や色収差を補正することが困難になる。
なお、 本発明の効果をより確実にするためには、 条件式 (1) の上限値を 1. 80に設定することが望ましい。
条件式 (2) は、 第 3レンズ群の屈折力を規定したものである。 本変倍光学系 は、 この条件式 (2) を満足することで、 所定の変倍比を効果的に確保しつつ、 良好な光学性能、 特に防振時においても良好な光学性能を実現することができる。 条件式( 2 )の下限値を下回ると、第 3レンズ群の屈折力が小さくなり過ぎて、 変倍時の第 3レンズ群の移動量が増加する。 このため、 変倍時の像面湾曲収差の 変動が大きくなり、 これを補正することが困難になる。
条件式( 2 )の上限値を上回ると、第 3レンズ群の屈折力が大きくなり過ぎて、 球面収差が悪化する。 また、 防振時の偏心収差、 即ちコマ収差又は非点収差が悪 化する。
なお、本発明の効果をより確実にするためには、条件式(2 )の上限値を— 1 . 5 0に設定することが望ましい。また、本発明の効果をより確実にするためには、 条件式 (2 ) の下限値を一 2 . 0 0に設定することが望ましい。
また、 上述のように本変倍光学系は、 開口絞りが、 第 2レンズ群と第 4レンズ 群との間に配置され広角端状態から望遠端状態への変倍に際して、 .第 3レンズ群 とともに移動する。
この構成により、 変倍時において光軸外でのコマ収差をバランス良く補正し、 良好な光学性能を実現することができる。
また、 本変倍光学系は、 前記第 3レンズ群が、 接合レンズを有していることが 望ましい。
この構成により、 変倍時において倍率色収差の変動を良好に補正することがで さる。
また、 本変倍光学系は、 前記第 4レンズ群が、 最も像面側から順に、 負レンズ と正レンズとからなる接合レンズと、 正の屈折力を有する単レンズとから構成さ れていることが望ましい。
この構成により、 第 3レンズ群と第 4レンズ群との間隔を確保しつつ、 倍率色 収差や球面収差やコマ収差を良好に補正することができる。 また、 第 3レンズ群 を防振レンズ群とすることにより、 防振時のコマ収差又は非点収差を良好に補正 することができる。 また、 本変倍光学系は、 前記第 2レンズ群、 前記第 3レンズ群、 及び前記第 4 レンズ群がそれぞれ、 少なくとも 1つの接合レンズを有していることが望ましい。 この構成により、 変倍時において倍率色収差の変動を良好に補正することがで きる。
また、 本変倍光学系は、 広角端状態から望遠端状態への変倍に際して、 前記第 丄 レンズ群は、 一旦像面側へ移動した後に物体側へ移動することが望ましい。 この構成により、 本変倍光学系の小型化と高変倍比化を実現することができる。 また、 本変倍光学系は、 以下の条件式 (3) を満足することが望ましい。
(3) — 0. 3< (d lw-cl l t) /Ymax< 0. 17
但し、
cl 1 w:広角端状態における前記変倍光学系中の最も物体側のレンズ面から像面 までの光軸上の距離
cl 1 't :望遠端状態における前記変倍光学系中の最も物体側のレンズ面から像面 までの光軸上の距離
Yinax :最大像高
条件式 (3) は、 広角端状態から望遠端状態への変倍に際する第 1レンズ群の 移動条件を規定したものである。 本変倍光学系は、 この条件式 (3) を満足する ことで、 所定の変倍比を効果的に確保しつつ、 良好な光学性能を実現することが でき、 小型化を実現することもできる。
条件式 (3) の下限値を下回ると、 屈折力の大きな第 1レンズ群の変倍時の移 動量が大きくなり過ぎるため、 広角端状態から望遠端状態にわたって球面収差を 良好に補正することができなくなる。
なお、本発明の効果をより確実にするためには、条件式(3)の下限値を— 0. 1 5に設定することが望ましい。
一方、 条件式 (3) の上限値を上回ると、 変倍時の第 2レンズ群と第 3レンズ 群の移動量が小さくなるため、 第 2レンズ群と第 3レンズ群の屈折力がそれぞれ 大きくなり過ぎて、 球面収差が悪化する。 また、 防振時の偏心収差、 即ちコマ収 差又は非点収差が悪化する。
なお、 本発明の効果をより確実にするためには、 条件式 (3 ) の上限値を 0 . 0 5に設定することが望ましい。
また、 本変倍光学系は、 該変倍光学系中の最も像面側のレンズ面が、 像面側に 向かって凸形状であることが望ましい。
この構成により、 像面からの反射光によるゴーストを軽減することができる。 また、本変倍光学系は、物体側から順に、負の屈折力を有する第 1レンズ群と、 正の屈折力を有する第 2レンズ群と、 負の屈折力を有する第 3レンズ群と、 正の 屈折力を有する第 4レンズ群とを有し、 前記第 2レンズ群と前記第 4レンズ群と の間に開口絞りを有し、 広角端状態から望遠端状態への変倍に際して、 前記第 1 レンズ群は、 一旦像面側へ移動した後に物体側へ移動し、 前記第 2レンズ群と前 記第 3レンズ群との間隔が増大し、 前記第 3レンズ群と前記第 4レンズ群との間 隔が減少するように、 前記各レンズ群が移動し、 また前記開口絞りは前記第 3レ ンズ群とともに移動し、 前記第 2レンズ群、 前記第 3レンズ群、 及び前記第 4レ ンズ群はそれぞれ、 少なくとも 1つの接合レンズを有し、 前記第 4レンズ群中の 前記接合レンズは、 物体側から順に、 正レンズと負レンズとからなり、 前記変倍 光学系中の最も像面側のレンズ面が、 像面側に向かって凸形状であり、 さらに以 下の条件式 (3 ) を満足する。
( 3 ) 一 0 . 3 < ( d l w - cl 1 t ) /Ymax< 0 . 1 7
但し、
cl 1 w:広角端状態における前記変倍光学系中の最も物体側のレンズ面から像面 までの光軸上の距離
cM t :望遠端状態における前記変倍光学系中の最も物体側のレンズ面から像面 までの光軸上の距離
Ymax :最大像;¾ 上述のように本変倍光学系は、 広角端状態から望遠端状態への変倍に際して、 前記第 1 レンズ群が、 一旦像面側へ移動した後に物体側へ移動する。 この構成に より、 本変倍光学系の小型化と高変倍比化を実現することができる。
また、 上述のように本変倍光学系は、 広角端状態から望遠端状態への変倍に際 5 して、 開口絞りが第 3レンズ群とともに移動する。 この構成により、 変倍時にお レ、て光軸外でのコマ収差をバランス良く補正し、 良好な光学性能を実現すること ができる。
また、 上述のように本変倍光学系は、 前記第 2レンズ群、 前記第 3レンズ群、 及び前記第 4レンズ群がそれぞれ、 少なくとも 1つの接合レンズを有している。 10 この構成により、 変倍時において倍率色収差の変動を良好に補正することができ る。
また、 上述のように本変倍光学系は、 前記第 4レンズ群が、 最も像面側から順 に、 負レンズと正レンズとからなる接合レンズと、 正の屈折力を有する単レンズ とから構成されている。 この構成により、 第 3レンズ群と第 4レンズ群との間隔 if, , を確保しつつ、 倍率色収差や球面収差やコマ収差を良好に補正することができる。
また、 第 3レンズ群を防振レンズ群とすることにより、 防振時のコマ収差又は非 点収差を良好に補正することができる。
また、 上述のように本変倍光学系は、 該変倍光学系中の最も像面側のレンズ面 力 像面側に向かって凸形状である。 この構成により、 像面からの反射光による 0 ゴース卜を軽減することができる。
なお、 条件式 (3 ) については、 上述の説明と同様であるためその説明を省略 する。
また、 本変倍光学系は、 以下の条件式 (4 ) を満足することが望ましい。
( 4 ) 0 . 7 2 < f 2 ,Z ( - f 3 ) く 1 . 5
5 但し、
f 2 :前記第 2レンズ群の焦点距離 f 3 :前記第 3レンズ群の焦点距離
条件式 (4 ) は、 第 2レンズ群の屈折力と第 3レンズ群の屈折力とを適切に規 定したものである。 本変倍光学系は、 この条件式 (4 ) を満足することで、 良好 な光学性能を実現することができる。
条件式 (4 ) の下限値を下回ると、 第 2レンズ群の屈折力が大きくなり過ぎる ため、 変倍時のコマ収差を良好に補正することができなくなる。
なお、 本発明の効果をより確実にするためには、 条件式 (4 ) の下限値を 0 . 7 5に設定することが望ましい。
一方、 条件式 (4 ) の上限値を上回ると、 第 3レンズ群の屈折力の絶対値が大 きくなり過ぎるため、 高変倍比化を実現しつつ、 球面収差を良好に補正すること が困難になる。
なお、 本発明の効果をより確実にするためには、 条件式 (4 ) の上限値を 1 . 1に設定することが望ましい。
本攛像装置は、 上述した構成の変倍光学系を備えている。
これにより、 高変倍比を有し、 良好な光学性能を有する撮像装置を実現するこ とができる。
本変倍光学系の変倍方法は、 物体側から順に、 負の屈折力を有する第 1レンズ 群と、正の屈折力を有する第 2レンズ群と、負の屈折力を有する第 3レンズ群と、 正の屈折力を有する第 4レンズ群とを有する変倍光学系の変倍方法において、 前 記第 2レンズ群と前記第 4レンズ群との間に開口絞りを有し、 広角端状態から望 遠端状態への変倍に際して、 前記第 2レンズ群と前記第 3レンズ群との間隔が増 大し、 前記第 3レンズ群と前記第 4レンズ群との間隔が減少するように、 前記各 レンズ群が移動し、 また前記開口絞りは前記第 3レンズ群とともに移動し、 さら に以下の条件式 (1 ) 、 (2 ) を満足する。
( 1 ) 1 . 2 0く f 2 / f wく 2 · 5 0
( 2 ) 一 2 . 1 0 < f 3 / f w<- 0 . 8 0 但し、
f 2 :前記第 2レンズ群の焦点距離
f 3 :前記第 3レンズ群の焦点距離
f w:広角端状態における前記変倍光学系の焦点距離
これにより、 変倍光学系において高変倍比化と良好な光学性能を実現すること ができる。
本変倍光学系の変倍方法は、 物体側から順に、 負の屈折力を有する第 1レンズ 群と;正の屈折力を有する第 2レンズ群と、負の屈折力を有する第 3レンズ群と、 正の屈折力を有する第 4レンズ群とを有する変倍光学系の変倍方法において、 前 記第 2レンズ群と前記第 4レンズ群との間に開口絞りを有し、 広角端状態から望 違端状態への変倍に際して、 前記第 1レンズ群は、 一旦像面側へ移動した後に物 体側へ移動し、 前記第 2レンズ群と前記第 3レンズ群との間隔が増大し、 前記第 3 レンズ群と前記第 4レンズ群との間隔が減少するように、 前記各レンズ群が移 動し、 また前記開口絞りは前記第 3レンズ群とともに移動し、前記第 2レンズ群、 前記第 3レンズ群、 及び前記第 4レンズ群はそれぞれ、 少なくとも 1つの接合レ ンズを有し、 前記第 4レンズ群中の前記接合レンズは、 物体側から順に、 正レン ズと負レンズとからなり、 前記変倍光学系中の最も像面側のレンズ面が、 像面側 に向かって凸形状であり、 さらに以下の条件式 (3 ) を満足する。
( 3 ) - 0 . 3 < ( cl l w- d l t ) / Yraax< 0 . 1 7
但し、 '
(1 1 w:広角端状態における前記変倍光学系中の最も物体側のレンズ面から像面 までの光軸上の距離
cl 1 t :望遠端状態における前記変倍光学系中の最も物体側のレンズ面から像面 までの光軸上の距離
Ymax :最大像高
これにより、 変倍光学系において高変倍比化と良好な光学性能を実現すること ができる。
以下、 第 1実施形態の各数値実施例に係る変倍光学系を添付図面に基づいて説 明する。
(第 1実施例)
図 1は、 第 1実施形態の第 1実施例に係る変倍光学系の構成を示す広角端状態 でのレンズ断面図である。
本実施例に係る変倍光学系は、 物体側から順に、 負の屈折力を有する第 1レン ズ群 G 1と、 正の屈折力を有する第 2レンズ群 G 2と、 負の屈折力を有する第 3 レンズ群 G 3と、 正の屈折力を有する第 4レンズ群 G 4とからなる。
第 1レンズ群 G 1は、 物体側から順に、 物体側に凸面を向けた負メニスカスレ ンズ L 1 1と、 物体側に凸面を向けた負メニスカスレンズ L 1 2と物体側に凸面 を向けた正メニスカスレンズ L 1 3との接合レンズとからなる。 そして、 負メニ フ、カスレンズ 1 1は、 像側のガラスレンズ面に樹脂層を設けて非球面が形成さ れた非球面レンズである。
第 2レンズ群 G 2は、 物体側から順に、 両凸形状の正レンズ L 2 1と、 両凸形 状の正レンズ L 2 2と両凹形状の負レンズ L 2 3との接合レンズとからなる。 第 3レンズ群 G 3は、 物体側から順に、 物体側に凹面を向けた正メニスカスレ ンズ L 3 1と両凹形状の負レンズ L 3 2との接合レンズからなる。
第 4レンズ群 G 4は、 物体側から順に、 物体側に凹面を向けた正メニスカスレ ンズ L 4 1と、 両凸形状の正レンズ L 4 2と像側に凸面を向けた負メニスカスレ ンズ L 4 3との接合レンズとからなる。
斯かる構成の本実施例に係る変倍光学系では、 広角端状態から望遠端状態への 変倍に際して、 第 2レンズ群 G 2と第 3レンズ群 G 3との間隔が増大し、 第 3レ ンズ群 G 3と第 4レンズ群 G 4との間隔が減少するように、 第 1レンズ群 G 1は —旦像面側へ移動した後に物体側へ移動し、 第 2レンズ群 G 2、 第 3レンズ群 G 3、 及び第 4レンズ群 G 4は物体側へ移動する。 また、 開口絞り Sは、 第 2レンズ群 G 2と第 3レンズ群 G 3との間に配置され ており、 広角端状態から望遠端状態への変倍に際して第 3レンズ群 G 3とともに 移動する。
また、 本実施例に係る変倍光学系では、 第 3レンズ群 G3全体を光軸と直交す る方向へシフトさせることで像ブレ発生時の像面補正が行われる。
以下の表 1に、 第 1実施例に係る変倍光学系の諸元の値を掲げる。
[全体諸元] において、 f は焦点距離、 FNOは Fナンバー、 Wは広角端状態 を、 Mは中間焦点距離状態を、 Tは望遠端状態をそれぞれ示す。
[レンズデ一夕]において、第 1カラム Nは物体側から数えたレンズ面の順番、 第 2カラム rはレンズ面の曲率半径、 第 3カラム dはレンズ面の間隔、 第 4カラ ムレ dは cl線 (波長 λ = 587. 6 nm) に対するアッベ数、 第 5カラム ndは cl線(波長 λ = 587. 6 nm)に対する屈折率をそれぞれ示す。また、 r =0.000 は平面を表し、 Bfはバックフォーカスを示し、 空気の屈折率 n cl = 1.0000はその 記載を省略して.いる。
[非球面データ]には、非球面の形状を次式で表した場合の非球面係数を示す。 x= (h2/r) / [1 + { 1 -κ (h/r) 2} 1/2]
+ C4h + C6h6 + C8h8+C10h10
ここで、 xを非球面の頂点を基準としたときの光軸からの高さ hの位置での光軸 方向の変位 (サグ量) 、 κを円錐定数、 C4, C6, C8, C10を非球面係数、 rを基 準球面の曲率半径 (近軸曲率半径) とする。
なお、 ΓΕ-nj は 「X I 0— π」 を示し、 例えば Γ1.234E-05J は 「1.234X 10一5」 ,ど す。
[可変間隔デ一夕]には、焦点距離 f と、各レンズ群どうしの可変間隔を示す。 なお、 以下の各実施例の全ての諸元値において掲載されている焦点距離 f 、 曲 率半径 r、 その他長さの単位は一般に 「mm」 が使われる。 しかし光学系は、 比 例拡大又は比例縮小しても同等の光学性能が得られるため、 単位は 「mm」 に限 られるものではない。 なお、 以下の各実施例の諸元値においても、 本実施例と同 様の符号を用いる。
ここで、 レンズ全系の焦点距離が f、 ブレ補正時の防振レンズ群の移動量に対 する像面 Iにおける像の移動量の比、 即ち防振係数が Kであるレンズにおいて、 角度 ( の回転ブレを補正するためには、 防振レンズ群を (f · tan^) ZKだけ 光軸と直交する方向へ移動させればよい。 したがって、 本実施例に係る変倍光学 系は、 広角端状態において防振係数が 1. 321、 焦点距離が 18. 5 (mm) であるため、 0. 734° の回転ブレを補正するための第 3レンズ群 G 3の移動 量は◦. 1 79 (mm) となる。 また、望遠端状態においては防振係数が 2. 2、 焦点距離が 53. 4 (mm) であるため、 0. 432° の回転ブレを補正するた めの第 3レンズ群 G 3の移動量は 0. 183 (mm) となる。
(表 1) ' ' ·
[全体諸元]
W M T
18.5 35.1 53 .4
FX0= 3.5 4.5 5 .8
[レンズデ'一夕]
r d v cl n cl
1) 173. , 629 1.5 64.12 1 .5168
2) 19. .129 0.3 38.09 1, .5539
3) . 16. 519 18.0
:1.) 376. 908 1.3 64.12 1. 5168
\ 26. 093 3.3 27.51 1. 7552
6) 47. 125 D6
7) 40. 729 2.2 64.12 1. 5168
8) -50. 200 0.3 i fiooz/vD oz-osfcId。οε
Figure imgf000023_0001
[条件式対応値]
(1) : f 2/ f w= 1.49
(2) : f 3 / f w= -1.60
(3) : (cl 1 w- d 1 t ) /Ymax= 0.01
(4) : f 2/ (- f 3) = 0.936
図 2A、 2Bは、 それぞれ第 1実施例に係る変倍光学系の広角端状態における 無限遠合焦時の諸収差図、 及び 0. 734° の回転ブレに対してブレ補正を行つ た際のメリディォナル横収差図である。
図 3は、 第 1実施例に係る変倍光学系の中間焦点距離状態における無限遠合焦 時の諸収差図である。
図 4 A、 4 Bは、 それぞれ第 1実施例に係る変倍光学系の望遠端状態における 無限遠合焦時の諸収差図、 及び 0. 432° の回転ブレに対してブレ補正を行つ た際のメリディォナル横収差図である。
&収差図において、 F NOは Fナンパ一、 Yは像高をそれぞれ示す。 なお、 球 面収差図では最大口径に対応する Fナンバーの値を示し、 非点収差図及び歪曲収 差図では画角の最大値をそれぞれ示し、コマ収差図では各画角の値を示す。また、 dは d線 (λ = 587. 6 nm) 、 gは g線 (λ = 435. 8 nm) をそれぞれ 示す。 そして、 非点収差図において、 実線はサジタル像面、 破線はメリディォナ ル像面をそれぞれ示す。
なお、 以下に示す各実施例の諸収差図において、 本実施例と同様の符号を用い る。
&諸収差図より本実施例に係る変倍光学系は、 広角端状態から望遠端状態にわ たつて諸収差を良好に補正し、 優れた結像性能を有していることがわかる。
(第 2実施例)
図 5は、 第 1実施形態の第 2実施例に係る変倍光学系の構成を示す広角端状態 でのレンズ断面図である。 本実施例に係る変倍光学系は、 物体側から順に、 負の屈折力を有する第 1レン ズ群 G 1と、 正の屈折力を有する第 2レンズ群 G 2と、 負の屈折力を有する第 3 レンズ群 G 3と、 正の屈折力を有する第 4レンズ群 G 4とからなる。
第 1レンズ群 G 1は、 物体側から順に、 物体側に凸面を向けた負メニスカスレ ンズ L 1 1と、 両凹形状の負レンズ L 1 2と、 物体側に凸面を向けた正メニスカ スレンズ L 1 3とからなる。 そして、 負メニスカスレンズ L I 1は、 像側のガラ スレンズ面に樹脂層を設けて非球面が形成された非球面レンズである。
第 2レンズ群 G 2は、 物体側から順に、 物体側に凸面を向けた負メニスカスレ ンズ L 2 1と両凸形状の正レンズ L 2 2との接合レンズと、 両凸形状の正レンズ L 2 3とからなる。
第 3レンズ群 G 3は、 物体側から順に、 物体側に凹面を向けた正メニスカスレ ンズ L 3 1と両凹形状の負レンズ L 3 2との接合レンズからなる。
第 4レンズ群 G 4は、 物体側から順に、 物体側に凹面を向けた疋メニスカスレ ンズ L 4 1と、 両凸形状の正レンズ L 4 2と像側に凸面を向けた負メニスカスレ ンズ L 4 3との接合レンズとからなる。
斯かる構成の本実施例に係る変倍光学系では、 広角端状態から望遠端状態への 変倍に際して、 .第 2レンズ群 G 2と第 3レンズ群 G 3との間隔が増大し、 第 3レ ンズ群 G 3と第 4レンズ群 G 4との間隔が減少するように、 第 1レンズ群 G 1は 一旦像面側へ移動した後に物体側へ移動し、 第 2レンズ群 G 2、 第 3レンズ群 G 3、 及び第 4レンズ群 G 4は物体側へ移動する。
また、 開口絞り Sは、 第 2レンズ群 G 2と第 3レンズ群 G 3との間に配置され ており、 広角端状態から望遠端状態への変倍に際して第 3レンズ群 G 3とともに 移動する。
また、 本実施例に係る変倍光学系では、 第 3レンズ群 G 3全体を光軸と直交す る方向へシフトさせることで像ブレ発生時の像面補正が行われる。
以下の表 2に、 第 2実施例に係る変倍光学系の諸元の値を掲げる。 ここで、 本実施例に係る変倍光学系は、 広角端状態において防振係数が 1. 1 62、 焦点距離が 18. 5 (mm) であるため、 0. 734° の回転ブレを補正 するための第 3レンズ群 G3の移動量は 0. 204 (mm) となる。 また、 望遠 端状態においては防振係数が 1. 914、 焦点距離が 53. 6 (mm) であるた め、 0. 432 ° の回転ブレを補正するための第 3レンズ群 G3の移動量は 0. 21 1 (mm) となる。
(表 2)
[全体諸元]
W M T
[= 18.5 35.0 53.6
Ι τ0- 3.6 4.4 5.8
[レニ ズテ一夕]
r d v cl n d
1) 116. 595 1.90 64.12 1.5168
2) 16. 600 0.15 38.09
3) 13. 845 10.70
4) -87. 169 1.40 64.12 1.5168
5) 65. 000 0.10
ί;) 3^1. 878 2.80 23.78 i.8467
7) 60. 763 D7
8) 48. 800 1.00 31.06 1.6889
9) 16. 779 4.00 64.12 1.5168
JO) -69. 242 0.10
11) 21. 789 2.50 70.45 1.4875
1 ) -183. 971 D12
13) 0. 000 3.80 14) -46.101 2.10 25.43 1.8052
ΙΓ)) -13. 882 1.00 49. 61 1. 7725
16) 58. 127 D16
17) -113. 509 2.20 49. 61 1. 7725
18) -25. 375 0.10
19) 62. 209 4.30 58. 89 1. 5182
2Q) -17. 500 1.00 25. 43 1. 8052
-80. 164 Bf
[非球面データ]
= 3
= 1
C4= 2.24200Ε-05
C 6= 1.02000E-08
C8= 1.07640E-10
C 10= 6.23540E-14
[可変間隔データ]
W M T
f = 18.5 35.0 53.6
D7= 29.39 8.52 1.70
1)1 =' 1.59 7.60 12.18
DIG- 14.78 8.77 4.19
Bf= 38.85 52.64 68.70
[条件式対応値]
(1) : ί 2/ f w = 1.52
(2) : ΐ 3/fw = -1.88
(3) : (d lw— cl 1 t) Ymax = ( 4 ) : f 2 / (- f 3 ) = 0. 806
図 6 A、 6 Bは、 それぞれ第 2実施例に係る変倍光学系の広角端状態における 無限遠合焦時の諸収差図、 及び 0 . 7 3 4 ° の回転ブレに対してブレ補正を行つ た際のメリディォナル横収差図である。
図 7は、 第 2実施例に係る変倍光学系の中間焦点距離状態における無限遠合焦 時の諸収差図である。
図 8 A、 8 Bは、 それぞれ第 2実施例に係る変倍光学系の望遠端状態における 無限遠合焦時の諸収差図、 及び 0 . 4 3 2 ° の回転ブレに対してブレ補正を行つ た際のメリディォナル横収差図である。
各諸収差図より本実施例に係る変倍光学系は、 広角端状態から望遠端状態にわ たって諸収差を良好に補正し、 優れた結像性能を有していることがわかる。 (第 3実施例)
図' 9は、 第 1実施形態の第 3実施例に係る変倍光学系の構成を示す広角端状態 でのレンズ断面図である。
本実施例に係る変倍光学系は、 物体側から順に、 負の屈折力を有する第 1レン ズ群 G 1と、 正の屈折力を有する第 2レンズ群 G 2と、 負の屈折力を有する第 3 レンズ群 G 3と、 正の屈折力を有する第 4レンズ群 G 4とからなる。
第 1レンズ群 G 1は、 物体側から順に、 物体側に凸面を向けた負メニスカスレ ンズ L 1 1と、 両凹形状の負レンズ L 1 2と、 物体側に凸面を向けた正メニスカ スレンズ L 1 3とからなる。 そして、 負メニスカスレンズ L 1 1は、 像側のガラ スレンズ面に樹脂層を設けて非球面が形成された非球面レンズである。
第 2レンズ群 G 2は、 物体側から順に、 物体側に凸面を向けた負メニスカスレ ンズ L 2 1と両凸形状の正レンズ L 2 2との接合レンズと、 両凸形状の正レンズ L 2 3とからなる。
第 3レンズ群 G 3は、 物体側から順に、 両凹形状の負レンズ L 3 1と物体側に 凸面を向けた正メニスカスレンズ L 3 2との接合レンズからなる。 第 4レンズ群 G 4は、 物体側から順に、 物体側に凹面を向けた正メニスカスレ ンズ L 4 1と、 両凸形状の正レンズ L 4 2と像側に凸面を向けた負メニスカスレ ンズ L 4 3との接合レンズとからなる。
斯かる構成の本実施例に係る変倍光学系では、 広角端状態から望遠端状態への 変倍に際して、 第 2レンズ群 G 2と第 3レンズ群 G 3との間隔が増大し、 第 3レ ンズ群 G 3と第 4レンズ群 G 4との間隔が減少するように、 第 1レンズ群 G 1は 一旦像面側へ移動した後に物体側へ移動し、 第 2レンズ群 G 2、 第 3レンズ群 G 3、 及び第 4レンズ群 G 4は物体側へ移動する。
また、 開口絞り Sは、 第 2レンズ群 G 2と第 3レンズ群 G 3との間に配置され ており、 広角端状態から望遠端状態への変倍に際して第 3レンズ群 G 3とともに 移動する。
また、 本実施例に係る変倍光学系では、 第 3レンズ群 G 3全体を光軸と直交す る方向へシフ卜させることで像ブレ発生時の像面補正が行われる。
以下の表 3に、 第 3実施例に係る変倍光学系の諸元の値を掲げる。
ここで、 本実施例に係る変倍光学系は、 広角端状態において防振係数が 1 . 1 6 2、 焦点距離が 1 8 . 5 (mm) であるため、 0 . 7 3 4 ° の回転ブレを補正 するための第 3レンズ群 G 3の移動量は 0 . 2 0 4 (mm) となる。 また、 望遠 端状態においては防振係数が 2 . 0 3 7、 焦点距離が 5 3 . 6 (mm) であるた め、 0 . 4 3 2 ° の回転ブレを補正するための第 3レンズ群 G 3の移動量は 0 .
1 9 8 (mm) となる。
(表 3 )
[全体諸元]
W M T
ί= 18. 5 35. 0 53. 6
3. 6 4. 5 5. 8
[レンズデータ] OV/00A9sos8 £ovd /ofcl090卜 o。
Figure imgf000030_0001
5-
C6= 1.0画- 08
C <S= 1.0764E-10
C 10= 6.2354E-14
[可変間隔データ]
W M T
f = 18.5 35.0 53.6
D7= 29.15 8.27 1.45
DI = 1.64 7.65 12.22
DI6=' 14.15 8.14 3.56
ΒΙ'- 39.65 53.43 69.49
[条件式対応値]
( 1) : f 2 / f w = 1.52
(2) : f 3 / f w = -1.88
( 3) : (cl 1 w- d 1 t ) ZYmax =
(4) : f 2Z (— f 3) = 0.806
図 1 0 A、 1 0 Bは、 それぞれ第 3実施例に係る変倍光学系の広角端状態にお ける無限遠合焦時の諸収差図、 及び 0. 7 34° の回転ブレに対してブレ補正を 行った際のメリディォナル横収差図である。
図 1 1は、 第 3実施例に係る変倍光学系の中間焦点距離状態における無限遠合 焦時の諸収差図である。
図 1 2A、 1 2 Bは、 それぞれ第 3実施例に係る変倍光学系の望遠端状態にお ける無限遠合焦時の諸収差図、 及び 0. 43 2° の回転ブレに対してブレ補正を 行った際のメリディォナル横収差図である。
&諸収差図より本実施例に係る変倍光学系は、 広角端状態から望遠端状態にわ たつて諸収差を良好に補正し、 優れた結像性能を有していることがわかる。 ' (第 4実施例) 図 1 3は、 第 1実施形態の第 4実施例に係る変倍光学系の構成を示す広角端状 態でのレンズ断面図である。
本実施例に係る変倍光学系は、 物体側から順に、 負の屈折力を有する第 1レン ズ群 G 1と、 正の屈折力を有する第 2レンズ群 G 2と、 負の屈折力を有する第 3 レンズ群 G 3と、 正の屈折力を有する第 4レンズ群 G 4とからなる。
第 1レンズ群 G 1は、 物体側から順に、 物体側に凸面を向けた負メニスカスレ ンズ L 1 1と、 両凹形状の負レンズ L 1 2と、 物体側に凸面を向けた正メニスカ スレンズ L 1 3とからなる。 そして、 負メニスカスレンズ L 1 1は、 像側のガラ スレンズ面に榭脂層を設けて非球面が形成された非球面レンズである。
第.2レンズ群 G 2は、 物体側から順に、 物体側に凸面を向けた負メニスカスレ ンズ L 2 1と両凸形状の正レンズ L 2 2との接合レンズと、 両凸形状の正レンズ L 2 3とからなる。
第 3レンズ群 G 3は、 物体側から順に、 物体側に凹面を向けた正メニスカスレ ンズ L 3 1と両凹形状の負レンズ L 3 2との接合レンズと、 像側に凹面を向けた 正メニスカスレンズ L 3 3とからなる。
第 4レンズ群 G 4は、 物体側から順に、 物体側に凹面を向けた正メニスカスレ ンズ L 4 1と、 両凸形状の正レンズ L 4 2と像側に ΰ面を向けた負メニスカスレ ンズ L 4 3との接合レンズとからなる。
斯かる構成の本実施例に係る変倍光学系では、 広角端状態から望遠端状態への 変倍に際して、 第 2レンズ群 G 2と第 3レンズ群 G 3との間隔が増大し、 第 3レ ンズ群 G 3と第 4レンズ群 G 4との間隔が減少するように、 第 1レンズ群 G 1は 一旦像面側へ移動した後に物体側へ移動し、 第 2レンズ群 G 2、 第 3レンズ群 G 3、 及び第 4レンズ群 G 4は物体側へ移動する。
また、 開口絞り Sは、 第 2レンズ群 G 2と第 3レンズ群 G 3との間に配置され ており、 広角端状態から望遠端状態への変倍に際して第 3レンズ群 G 3とともに 移動する。 また、 本実施例に係る変倍光学系では、 第 3レンズ群 G 3全体を光軸と直交す る方向へシフ卜させることで像ブレ発生時の像面補正が行われる。
以卞の表 4に、 第 4実施例に係る変倍光学系の諸元の値を掲げる。
ここで、 本実施例に係る変倍光学系は、 広角端状態において防振係数が 1. 3 2 5、 焦点距離が 18. 5 (mm) であるため、 0. 734° の回転ブレを補正 するための第 3レンズ群 G3の移動量は 0. 1 79 (mm) となる。 また、 望遠 端状態においては防振係数が 2. 1 28、 焦点距離が 53. 6 (mm) であるた め、 0. 432° の回転ブレを補正するための第 3レンズ群 G 3の移動量は 0. 1 90 (mm) となる。
(表 4 )
[全体諸元]
W M T
1'= 18.5 35.7 53. 6
FX0= 3.7 4.7 6. 0
[レニ zズデ-一夕]
r d レ d n d
1) 90. 250 1.90 64. .12 1 .5168
2) 16. 600 0.15 38. .09 1 .5539
3) 13. 845 10.70
4) -170. 312 1.40 64. 12 1 .5168
5) 55. 920 0.10
6) 33. 079 2.80 23. 78 1 • 8467
7) 56. 888 D7
8) 42. 316 1.00 31. 06 1 .6889
9) 17. 208 4.00 64. 12 1 .5168
10) -119. 089 0.10 11) 50 70.45 1.4875
1 )
13) 0.000 1. 50 開口絞り s
14) -37.195 2. 10 25. 43 1.8052
ΙΓ,) -14, 987 1. 00 49. 61 1.7725
16) 51.526 2. 00
17) 59.269 1. 50 64. 12 1.5168
18)
19) -82.278 2. 20 49. 61 1.7725
20) 10
21) 55.755 4, 30 58. 89 1.5182
22) ' -19. 19· 1. 00 25. 43 1.8052
23) - 68.528 Bf
[非球面デ一夕〕
Ν= 3
κ= 1
C4= 2.2420E-05
C6= 1.0200E-08
C8= 1.0764E-10
C 10= 6.235 E-14
[可変間隔データ]
W M T
Γ = 18.5 35. 7 53.6
D7= 29.72 8. 84 2.02
Dl 1.00 9. 30 13.87
DI8= 11.32 5. 31 1.50 7064300
33
Bf- 39.47 53.26 43.33
[条件式対応値]
(1) : f 2 / f w= 1.64
(2) : f 3 / f w= -1.68
(3) : (d 1 w-cl 1 t)
Figure imgf000035_0001
-0.11
(4) f 2/ (- f 3) = 0.98
図 14 A、 14 Bは、 それぞれ第 4実施例に係る変倍光学系の広角端状態にお ける無限遠合焦時の諸収差図、 及び 0. 734° の回転ブレに対してブレ補正を 行つた際のメリディォナル横収差図である。
図 1 5は、 第 4実施例に係る変倍光学系の中間焦点距離状態における無限遠合 焦時の諸収差図である。
図 1 6A、 1 6Bは、 それぞれ第 4実施例に係る変倍光学系の望遠端状態にお ける無限遠合焦時の諸収差図、 及び 0. 432 ° の回転ブレに対してブレ補正を 行った際のメリディォナル横収差図である。
諸収差図より本実施例に係る変倍光学系は、 広角端状態から望遠端状態にわ たって諸収差を良好に補正し、 優れた結像性能を有していることがわかる。 <第 2実施形態 >
以下、 本願の第 2実施形態に係る防振機能を有する変倍光学系について説明す る。
本防振機能を有する変倍光学系は、 物体側から順に、 負の屈折力を持つ第 1レ ンズ群と、正の屈折力を持つ第 2レンズ群と、負の屈折力を持つ第 3レンズ群と、 正の屈折力を持つ第 4レンズ群を有し、 広角端状態から望遠端状態まで変倍を行 う際に、 第 2レンズ群と第 3レンズ群との間隔が増大し、 第 3レンズ群と第 4レ ンズ群との間隔が減少し、 第 3レンズ群全体もしくは一部を防振レンズ群として 光軸と直交する方向に移動させることで、 該変倍光学系が振動した際の像ブレを 補正し、 さらに以下の条件式 (5) 、 および (6) を満足する構成である。 (5) 0. 12<(r 2+ r l)/(r 2- r 1)<1. 30
(6) 1. 20< l f v r/fw | <3. 30
ただし、
r 1 :前記防振レンズ群の物体側の曲率半径
Γ 2 :前記防振レンズ群の像面側の曲率半径
f V r :前記防振レンズ群の焦点距離
f w:広角端状態での全系の焦点距離
条件式 (5) は、 防振レンズ群の形状を規定したものであり、 これによつて所 定の高変倍比を効果的に確保しつつ、 良好な光学性能を確保しながら、 防振時に も良好な光学性能を実現している。
条件式 (5) の下限値を下回ると、 偏心コマ収差変動が大きくなり、 防振効果 が小さくなるか、 パワーが弱くなり、 高変倍比を確保できなくなる。 また、 条件 式 (5) の上限値を超えると、 変倍時の球面収差補正が困難になる。
なお、 本発明の効果を確実にするためには、 条件式 (5) の下限値を 0. 25 にすることが望ましい。 また、 本発明の効果を確実にするためには、 条件式 (5) の上限値を 1. 00にすることが望ましい。 本発明の効果を更に確実にするため には、 条件式 (5) の下限値を 0. 36にすることが望ましい。
条件式 (6) は、 広角端状態での変倍光学系全系の焦点距離に対する防振レン ズ群の焦点距離を規定したものであり、 これによつて防振時の良好な光学性能を 実現している。
条件式 (6) の下限値を下回ると、 偏心による像面湾曲収差の変動が大きくな りすぎる。また、上限値を上回ると防振レンズ群のパワーが弱くなりすぎるため、 防振効果が小さくなる。 その結果、 第 1レンズ群のパワーが強くなり、 球面収差 が発生するため好ましくない。
なお、 本発明の効果を確実にするためには、 条件式 (6) の下限値を 1. 60 にすることが望ましい。 また、 本発明の効果を確実にするためには、 条件式 (6) のの上上限限値値をを 33 .. 00 00ににすするるここととがが望望ままししいい。。
ままたた、、 本本防防振振機機能能をを有有すするる変変倍倍光光学学系系はは、、 下下記記条条件件式式 ((77 )) をを満満足足すするるここととがが ''望望ままししいい。。
(( 77 )) 00 .. 55 00 << II ff VV rr // ff 22 IIくく 22 .. 33 00 ,,
55 たただだしし、、
ff VV rr ::前前記記防防振振レレンンズズ群群のの焦焦点点距距離離
ff 22 ::前前記記第第 22レレンンズズ群群のの焦焦点点距距離離
条条件件式式 ((77 )) はは、、 第第 22レレンンズズ群群のの焦焦点点距距離離にに対対すするる防防振振レレンンズズ群群のの焦焦点点距距離離をを 規規定定ししたたももののでであありり、、 ここれれにによよつつてて防防振振時時のの良良好好なな光光学学性性能能をを実実現現ししてていいるる。。 1100 条条件件式式 ((77 )) のの下下限限値値をを下下回回るるとと、、 広広角角端端状状態態かからら望望遠遠端端状状態態ままででのの変変倍倍のの際際 にに、、 偏偏心心収収差差((ココママ収収差差、、 像像面面湾湾曲曲収収差差))をを補補正正ででききななくくななるる。。 一一方方、、 上上限限値値をを上上 回回るるとと防防振振レレンンズズ群群ののパパワワーーがが弱弱くくななりり、、防防振振効効果果がが得得らられれななくくななるる。。そそのの結結果果、、 第第 11レレンンズズ群群ののパパヮヮ一一がが強強くくななりり、、 球球面面収収差差がが発発生生すするるたためめ好好ままししくくなないい。。
ななおお、、 本本発発明明のの効効果果をを確確実実ににすするるたためめににはは、、 条条件件式式 ((77 )) のの下下限限値値をを 11 .. 11 00 1155 ににすするるここととがが望望ままししいい。。 ままたた、、 本本発発明明のの効効果果をを確確実実ににすするるたためめににはは、、 条条件件式式 ((77 )) のの上上限限値値をを 22 .. 00 00ににすするるここととがが望望ままししいい。。
ままたた、、 本本防防振振機機能能をを有有すするる変変倍倍光光学学系系はは、、 物物体体側側かからら順順にに、、 負負のの屈屈折折力力をを持持つつ 第第 11 レレンンズズ群群とと、、 正正のの屈屈折折力力をを持持つつ第第 22レレンンズズ群群とと、、 負負のの屈屈折折力力をを持持つつ第第 33レレンン ズズ群群とと、、 正正のの屈屈折折力力をを持持つつ第第 44レレンンズズ群群をを有有しし、、 広広角角端端状状態態かからら望望遠遠端端状状態態ままでで 2200 変変倍倍をを行行うう際際にに、、 第第 22レレンンズズ群群とと第第 33レレンンズズ群群ととのの間間隔隔がが増増大大しし、、 第第 33レレンンズズ群群 とと第第 44レレンンズズ群群ととのの間間隔隔がが減減少少しし、、 第第 33レレンンズズ群群全全体体ももししくくはは一一部部をを防防振振レレンンズズ 群群ととししてて光光軸軸とと直直交交すするる方方向向にに移移動動ささせせるるここととでで、、 該該変変倍倍光光学学系系がが振振動動ししたた際際のの 像像ブブレレをを補補正正しし、、 ささららにに以以下下のの条条件件式式 ((55 )) 、、 (( 77 )) をを満満足足すするる構構成成ででああるる。。
(( 55 )) 00 .. 11 22 << (( rr 22 ++ rr ll )) // (( rr 22 -- rr 11 )) << 11 .. 33 00
Figure imgf000037_0001
ただし、 r 1 :前記防振レンズ群の物体側の曲率半径
r 2 :前記防振レンズ群の像面側の曲率半径
f V r :防振レンズ群の焦点距離
f 2 :第 2レンズ群の焦点距離
条件式 (5 ) は、 防振レンズ群の形状を規定したものであるが、 既に上述した ので重複する記載を省略する。
条件式 (7 ) は、 第 2レンズ群の焦点距離に対する防振レンズ群の焦点距離を 規定したものであり、 これによつて防振時の良好な光学性能を実現している。 条件式 (7 ) の下限値を下回ると、 広角端状態から望遠端状態までの変倍の際 に、 偏心収差(コマ収差、 像面湾曲収差)を補正できなくなる。 また、 上限値を上 回ると防振レンズ群のパワーが弱くなり、防振効果が得られなくなる。その結果、 第 1レンズ群のパワーが強くなり、 球面収差が発生するため好ましくない。
なお、本発明の効果を確実にするためには、 条件式( 7 ) の下限値を 1 . 1 0、 上限値を 2 . 0 0にすることが望ましい。
また、 本防振機能を有する変倍光学系では、 広角端状態から望遠端状態までの 変倍の際、 第 1 レンズ群が像面に向かって凸の軌跡で移動することが望ましい。 このような移動を行うことで高い変倍比を達成でき、 各レンズ群の移動量を小さ くすることができる。
また、 本防振機能を有する変倍光学系では、 最も像面側のレンズ面が像面に向 かって凸面となることが望ましい。 このように構成することで、 像面湾曲が良好 に補正でき、 像面からの反射光によるゴ一ストを軽減することが可能となる。 また、 本防振機能を有する変倍光学系では、 第 4レンズ群は、 像面側より順に 負レンズ、 正レンズ、 および正レンズを有することが望ましい。 この構成にする ことで、 防振レンズ群である第 3レンズ群と、 第 4レンズ群との間隔を確保しつ つ、 倍率色収差、 コマ収差を良好に補正できる。
また、 本防振機能を有する変倍光学系では、 第 3レンズ群に接合レンズを有す ることが望ましい。 このような構成にすることで、 防振時の倍率色収差を良好に 保つことができる。
また、 本防振機能を有する変倍光学系では、 第 2レンズ群、 第 3レンズ群、 第 4レンズ群に各々接合レンズを有することが望ましい。 このような構成にするこ とで、 変倍時の色収差、 特に倍率色収差を良好に保つことができる。
また、 本防振機能を有する変倍光学系では、 広角端状態から望遠端状態までの 変倍時に、 第 2レンズ群と第 4レンズ群とがー体となって移動することが望まし い。 このような構成にすることで、 高変倍比を達成しつつ、 防振レンズ群で発生 するコマ収差、 像面湾曲収差等の偏心収差を良好に補正することができる。 また、 本防振機能を有する変倍光学系では/開口絞りは、 第 3レンズ群の近傍 に配置され、 広角端状態から望遠端状態まで変倍を行う.際に、 第 3レンズ群と一 体に移動することが好ましい。 ここで、 第 3レンズ群の近傍とは、 第 2レンズ群 と第 3レンズ群との間、 第 3レンズ群内、 および第 3レンズ群と第 4レンズ群と の間を含む範囲を意味する。 このような構成にすることで、 コマ収差を良好に補 正でき、 周辺光量の低下を少なくすることができる。
また、 本防振機能を有する変倍光学系では、 開口絞りは、 第 2レンズ群の近傍 に配置され、 広角端状態から望遠端状態まで変倍を行う際に、 第 2レンズ群と一 体に移動することが好ましい。 ここで、 第 2レンズ群の近傍とは第 1レンズ群と 第 2レンズ群の間、 第 2レンズ群内、 および第 2レンズ群と第 3レンズ群との間 を含む範囲を意味する。 このような構成にすることで、 コマ収差を良好に補正で き、 周辺光量の低下を少なくすることができる。
また、 本防振機能を有する変倍光学系では、 第 3レンズ群と第 4レンズ群との 間に固定絞りを配置することが望ましい。 このような構成にすることで、 コマフ レアをカツ卜し、 良好な光学性能を保つことができる。
以下、 第 2実施形態の各数値実施例に係る防振機能を有する変倍光学系を添付 図面に基づいて説明する。 (第 5実施例)
図 1 7は、 第 2実施形態の第 5実施例に係る防振機能を有する変倍光学系の広 角端状態におけるレンズ構成を示す断面図である。
第 5実施例に係る防振機能を有する変倍光学系は、 図 1 7に示すように、 物体 側から順に、 負の屈折力を持つ第 1レンズ群 G l、 正の屈折力を持つ第 2レンズ 群 G 2、 開口絞り S、 負の屈折力を持つ第 3レンズ群 G 3、 および正の屈折力を 持つ第 4レンズ群 G 4で構成されている。
第 1レンズ群 G 1は、 物体側から順に、 物体側に凸面を向けた負メニスカスレ ンズと、 両凹形状の負レンズと、 物体側に凸面を向けた正メニスカスレンズとか らなり、 最も物体側の負メニスカスレンズは像面 I側のガラスレンズ面に樹脂層 を設けて非球面を形成した非球面レンズである。
第 ·2レンズ群 G 2は、 物体側から順に、 両凸形状の正レンズと、 両凸形状の正 レンズと像面 I側に平面を向けた平凹形状の負レンズとの接合レンズとからなる。 第 3レンズ群 G 3は、 物体側から順に、 物体側に凹面を向けた正メニスカスレ ンズと両凹形状の負レンズとの接合レンズとからなる。
第 4レンズ群 G 4は、 物体側から順に、 物体側に凹面を向けた正メニスカスレ ンズと、 両凸形状の正レンズと像面 I側に凸面を向けた負メニスカスレンズとの 接合レンズとからなる。
開口絞り Sは、 第 2レンズ群 G 2と第 3レンズ群 G 3との間に位置し、 広角端 状態から望遠端状態への変倍の際に、 第 3レンズ群 G 3と伴に移動する。
広角端状態から望遠端状態への変倍の際、 第 1レンズ群 G 1は像面 Iに向かつ て凸の軌跡で移動し、 第 2レンズ群 G 2、 第 4レンズ群 G 4は一体に物体側へ移 動し、 第 3レンズ群 G 3は物体側に移動する。
また、 本実施例に係る防振機能を有する変倍光学系では、 第 3レンズ群 G 3全 体を光軸と直交する方向にシフトさせることで撮影画像のブレを補正している。 また、 本実施例の広角端状態において、 防振係数 Κは 1 . 0 2であり、 焦点距 離は 18. 5 (mm)であるので、 0. 734 ° の回転ブレを補正するための第 3 レンズ群 G 3の移動量は◦ . 232 (mm)である。 本実施例の望遠端状態におい て、 防振係数 Kは 1. 71であり、 焦点距離は 53. 4(mm)であるので、 0. 432 ° の回転ブレを補正するための第 3レンズ群 G 3の移動量は 0. 235 (ηιι である。
以下の表 5に、 第 5実施例に係る防振機能を有する変倍光学系の諸元値を示す。
(表 5)
[全体諸元]
W M T
f= 18.5 35.0 53.4
F 0= 3.6 4.5 5.9
[レンズデータ]
Ν r d ソ cl n cl
1) 60. 622 1.9 64. .10
2) 17. 000 0. 38, .09 1.5539
3) 13. 553 9.5
4) -58. 369 1.3 60. .68 1.5638
5) 31. 778 1.2
6) 30. 611 2.9 25. .43 1.8052
7) 124. 231 D7
8) 61. 265 2.2 64. 10 1.5168
9)' -38. 686 0.1
Figure imgf000041_0001
11) - 30. 802 1.0 28. 46 1.7283
\2) 0. 000 D12
13) 0. 000 1.8 14) -38.161 2.1 32.35 1.8503
15) -13. 420 1.0 49. 61 1. 7725
16) 88. 250 D16
17) - 142. 040 2.5 70. 41 1. 4875
18) -24. 777 0.1
19) 105. 560 5.4 70. 41 1. 4875
20) -15. 502 1.0 32. 35 1. 8503
21) -29. 334 Bf
[非球面テー -夕]
= 3
κ= 1
C4= 2.72910E-05
C6= 4.86920E-08
C8= -5.03710E-11
C10= 9.29550E-13
[可変間隔デ一夕]
W M T
D7= 29.69 8.81 2.00
D1 = 3.39 9.41 13.97
Di6= 12. U 6.81 2.25
Bf = 40.10 55.68 3.76
[条件式対応値] '
(5) : ( r 2 + r 1 ) / ( r 2 - r 1 ) = 0.543
(6) : I f v r / f w I = 2.028
(7) : I f v r / f 2 I = 1.275
図 1 8A、 1 8 Bは、 それぞれ第 5実施例に係る防振機能を有する変倍光学系 の無限遠合焦時の広角端状態における諸収差図、 および像ブレ補正をおこなった 時のメリディォナル横収差図を示す。 図 1 9は、 第 5実施例に係る防振機能を有 する変倍光学系の無限遠合焦時の中間焦点距離状態での諸収差図を示す。 図 2 0 A、 2 0 Bは、 それぞれ第 5実施例に係る防振機能を有する変倍光学系の無限遠 合焦時の望遠端状態での諸収差図、 および像ブレ補正をおこなった時のメリディ ォナル横収差図を示す。
各諸収差図より第 5実施例に係る防振機能を有する変倍光学系は、 広角端状態 から望遠端状態にわたって諸収差を良好に補正し、 優れた結像性能を有している ことがわかる。
(第 6実施例)
図 2 1は、 第 2実施形態の第 6実施例に係る防振機能を有する変倍光学系の広 角端状態におけるレンズ構成を示す断面図である。
第 6実施例に係る防振機能を有する変倍光学系は、 図 2 1に示すように、 物体 側から順に、 負の屈折力を持つ第 1レンズ群 G 1、 正の屈折力を持つ第 2レンズ 群 G 2、 開口絞り S、 負の屈折力を持つ第 3レンズ群 G 3、 および正の屈折力を 持つ第 4レンズ群 G 4で構成されている。
第 1 レンズ群 G 1は、 物体側から順に、 物体側に凸面を向けた負メニスカスレ ンズと、 物体側に凸面を向けた負メニスカスレンズと、 物体側に凸面を向けた正 メニスカスレンズとからなり、 最も物体側の負メニスカスレンズは像面側のガラ スレンズ面に樹脂層を設けて非球面を形成した非球面レンズである。
第 2レンズ群 G 2は、 物体側から順に、 物体側に凸面を向けた負メニスカスレ ンズと両凸形状の正レンズとの接合レンズと、 両凸形状の正レンズとからなる。 第 3レンズ群 G 3は、 物体側から順に、 物体側に凹面を向けた正メニスカスレ ンズと両凹形状の負レンズとの接合負レンズと、 物体側に凸面を向けた負メニス カスレンズとからなる。
第 4レンズ群 G 4は、 物体側から順に、 物体側に凹面を向けた正メニスカスレ ンズと、 両凸形状の正レンズと像面 Iに凸面を向けた負メニスカスレンズとの接 合レンズとからなる。
開口絞り Sは、 第 2レンズ群 G 2と第 3レンズ群 G 3との間に位置し、 広角端 状態から望遠端状態への変倍の際に、 第 3レンズ群 G 3と伴に移動する。
広角端状態から望遠端状態への変倍の際、 第 1レンズ群 G 1は像面 Iに向かつ て凸の軌跡で移動し、 第 2レンズ群 G2、 第 4レンズ群 G 4は一体に物体側へ移 動し、 第 3レンズ群 G 3は物体側に移動する。
また、 本実施例に係る防振機能を有する変倍光学系では、 第 3レンズ群 G3内 の物体側の接合負レンズを光軸と直交する方向にシフ卜させることで撮影画像 のブレを補正している。
また、 本実施例の広角端状態において、 防振係数 Kは 0. 807であり、 焦点 距離は 18: 5 (mm)であるので、 0. 736 ° の回転ブレを補正するための第 3レンズ群 G 3の移動量は 0. 294 (mm)である。 本実施例の望遠端状態にお いて、 防振係数 Kは 1. 321であり、 焦点距離は 53. 4 (mm)であるので、 0. 433° の回転ブレを補正するための第 3レンズ群 G 3の移動量は 0. 30 6 (mmノである。
以下の表 6に、 第 6実施例に係る防振機能を有する変倍光学系の諸元の値を示 す。
(表 6 )
[全体諸元]
W M T
1'= 18.5 35.0 53.4
FN"0= 3.6 4.5 5.9
7、"データ]
X r cl v cl n d
0. 131. 712 1.9 59.45 1.5400
Figure imgf000045_0001
Figure imgf000045_0002
— ^ ο ο ι ~ σ^ ^
Figure imgf000045_0003
一 C6- 4.26210E-08
C8= -6.23900E-11
ClO= 3.77100E-13
[可変間隔データ]
W M T
D7= 33.24 9.81 1.35
D12= 0.90 5.63 9.06
Di8= 11.53 6.80 3.37
Bf= 39.71 53.79 71.87
[条件式対応値]
(5) ·· (r 2 + r l)Z(r 2 - r 1)= 0.838
(6) : I f v r / f w I = 2.754
(7) : I f v r / f 2 I = 1.738
図 22A、 22Bは、 第 6実施例に係る防振機能を有する変倍光学系の無限遠 合焦時の広角端状態における諸収差図、 および像ブレ補正をおこなった時のメリ ディォナル横収差図を示す。 図 23は、 第 6実施例に係る防振機能を有する変倍 光学系の無限遠合焦時の中間焦点距離状態での諸収差図を示す。 図 24A、 24 Bは、 第 6実施例に係る防振機能を有する変倍光学系の無限遠合焦時の望遠端状 態での諸収差図、 および像ブレ補正をおこなった時のメリディォナル横収差図を 示す。
&諸収差図より第 2実施例に係る防振機能を有する変倍光学系は、 広角端状態 から望遠端状態にわたつて諸収差を良好に補正し、 優れた結像性能を有している ことがわかる。
(第 7実施例)
図 25は、 第 2実施形態の第 7実施例に係る防振機能を有する変倍光学系の広 角端状態におけるレンズ構成を示す断面図である。 第 7実施例に係る防振機能を有する変倍光学系は、 図 2 5に示すように、 物体 側から順に、 負の屈折力を持つ第 1レンズ群 G 1、 開口絞り Sを含み正の屈折力 を持つ第 2レンズ群 G 2、 負の屈折力を持つ第 3レンズ群 G 3、 および正の屈折 力を持つ第 4レンズ群 G 4で構成されている。
第 1レンズ群 G 1は、 物体側から順に、 物体側に凸面を向けた負メニスカスレ ンズと、 両凹形状の負レンズと、 物体側に凸面を向けた正メニスカスレンズとか らなり、 最も物体側の負メニスカスレンズは像面 I側のレンズ面に樹脂層を設け て非球面を形成した非球面レンズである。
第 2レンズ群 G 2は、 物体側から順に、 物体側に凸面を向けた負メニスカスレ ンズと両凸形状の正レンズとの接合レンズと、 開口絞り Sと、 物体側に凸面を向 けた正メニスカスレンズとからなる。
第 3レンズ群 G 3は、 物体側から順に、 物体側に凹面を向けた正メニスカスレ ンズと両凹形状の負レンズとの接合レンズとからなる。
第 4レンズ群 G 4は、 物体側から順に、 物体側に凹面を向けた正メニスカスレ ンズと、 両凸形状の正レンズと像面 I側に凸面を向けた負メニスカスレンズとの 接合レンズとからなる。
開口絞り Sは、 第 2レンズ群 G 2内に位置し、 広角端状態から望遠端状態への 変倍の際に、 第 2レンズ群 G 2と伴に移動する。
広角端状態から望遠端状態への変倍の際、 第 1レンズ群 G 1は像面 Iに向かつ て凸の軌跡で移動し、 第 2レンズ群 G 2、 第 4レンズ群 G 4は一体に物体側へ移 動し; 第 3レンズ群 G 3は物体側に移動する。
また、 本実施例に係る防振機能を有する変倍光学系では、 第 3レシズ群 G 3全 体を光軸と直交する方向にシフトさせることで撮影画像のブレを補正している。 また、 本実施例の広角端状態において、 防振係数 Κは 1 . 0 2 4であり、 焦点 距離は 1 8 . 5 (mm)であるので、 0 . 7 3 4 ° の回転ブレを補正するための第 3レンズ群 G 3の移動量は 0 . 2 3 1 (mm)である。 本実施例の望遠端状態にお いて、 防振係数 Kは 1. 674であり、 焦点距離は 53. 4 (mm)であるので、 0. 432° の回転ブレを補正するための第 3レンズ群 G 3の移動量は 0. 24 1 (mm)である。
以下の表 7に、 第 7実施例に係る防振機能を有する変倍光学系の諸元の値を示 す。
(表 7)
[全体諸元]
W M T
18.5 35. 0 53.4
F 0= 3.6 4. 6 5.9
レ ズ-データ]
Γ cl ソ d n d
1) 90, .000 1.9 64.10 1 .5168
2)' 15. .600 0.2 38.09 1 .5539
3) 13. , 500 9.0
4) -139. 488 1.5 64.10 1 .5168
5) 29. 888 0.5
6) Z5. 526 2.9 27.51 1, .7552
7) 58. 853 D7
8) 31. 996 1.0 25.68 1. 7847
9) 16. 606 4.1 58.94 1. 5182
10) 34-. 936 1.9 - - --
11) 0. 000 0.6
12) 17. 948 2.0 64.10 1. 5168
13) 30. 374 D13
14) -41. 530 2.4 32.35 1. 8503 15) -11.135 1.0 46.62 1.8160
16) 116. 283 D16
17) -123. 488 2.5 64. 10 1. 5168
18) -23. 517 0.1
19) . 69. 120 5.7 52. 31 1. 5174
20) -15. 976 1.0 28. 69 1. 7950
21) 一 49. 976 Bf
[非球面データ]
N;= 3
κ = 1
C4= 2.88580E 05
C6= 4.53990E-08
C8= -7.01060E - 12
C10= 8.75300E-13
[可変間隔データ]
W M T
31.69 9.47 12.19
D13= 2.60 7.96 12.19
D16= 15.19 9.83 5.60
Bf= 38.30 54. iO 72.22
[条件式対応値]
(5) : (r 2 + r l)/(r 2 - r l)= 0.474
(6) : I f v r / f w I - 2.194
(7) : I f v rX f 2 I = 1.413
図 2 6 A、 2 6 Bは、 第 7実施例に係る防振機能を有する変倍光学系の無限遠 合焦時の広角端状態における諸収差図、 および像ブレ補正をおこなった時のメリ ディォナル横収差図を示す。 図 2 7は、 第 7実施例に係る防振機能を有する変倍 光学系の無限遠合焦時の中間焦点距離状態での諸収差図を示す。 図 2 8 A、 2 8 Bは、 第 7実施例に係る防振機能を有する変倍光学系の無限遠合焦時の望遠端状 態での諸収差図、 および像ブレ補正をおこなった時のメリディォナル横収差図を 示す。
各諸収差図より第 7実施例に係る防振機能を有する変倍光学系は、 広角端状態 から望遠端状態にわたつて諸収差を良好に補正し、 優れた結像性能を有している ことがわかる。
(第 8実施例)
図 2 9は、 第 2実施形態の第 8実施例に係る防振機能を有する変倍光学系の広 角端状態におけるレンズ構成を示す断面図である。
第 8実施例に係る防振機能を有する変倍光学系は、 図 2 9に示すように、 物体 側から順に、 負の屈折力を持つ第 1レンズ群 G 1、 正の屈折力を持つ第 2レンズ 群 G 2、 開口絞り S、 負の屈折力を持つ第 3レンズ群 G 3、 固定絞り F S、 およ び正の屈折力を持つ第 4レンズ群 G 4で構成されている。
第 1 レンズ群 G 1は、 物体側から順に、 物体側に凸面を向けた負メニスカスレ ンズと、 両凹形状の負レンズと、 物体側に凸面を向けた正メニスカスレンズとか らなり、 最も物体側の負メニスカスレンズは像面 I側のガラスレンズ面に樹脂層 を設けて非球面を形成した非球面レンズである。
第 2レンズ群 G 2は、 物体側から順に、 物体側に凸面を向けた負メニスカスレ ンズと両凸形状の正レンズとの接合レンズと、 物体側に凸面を向けた正メニスカ スレンズとからなる。
第 3レンズ群 G 3は、 物体側から順に、 物体側に凹面を向けた正メニスカスレ ンズと両凹形状の負レンズとの接合レンズとからなる。
第' 4レンズ群 G 4は、 物体側から順に、 物体側に凹面を向けた正メニスカスレ ンズと、 両凸形状の正レンズと像面 I側に凸面を向けた負メニスカスレンズとの 接合.レンズとからなる。
開口絞り Sは第 2レンズ群 G 2と第 3レンズ群 G 3との間に位置し、 固定絞り F Sは第 3レンズ群 G 3と第 4レンズ群 G 4との間に位置し, 広角端状態から望 遠端状態への変倍の際に、 共に第 3レンズ群と一体に移動する。
広角端状態から望遠端状態への変倍の際、 第 1レンズ群 G 1は像面 Iに向かつ て凸の軌跡で移動し、 第 2レンズ群 G 2、 第 4レンズ群 G は一体に物体側へ移 動し、 第 3レンズ群 G 3は物体側に移動する。
また、 本実施例に係る防振機能を有する変倍光学系では、 第 3レンズ群 G 3全 体を光軸と直交する方向にシフ卜させることで撮影画像のブレを補正している。 また、'本実施例の広角端状態において、 防振係数 Κは 1. 186であり、 焦点 距離は 18. 7 (mm)であるので、 0. 731 ° の回転ブレを補正するための第 3レンズ群 G 3の移動量は 0. 202 (mm)である。 本実施例の望遠端状態にお いて、 防振係数 Kは 1. 906であり、 焦点距離は 53. 4(mm)であるので、 0. 432。 の回転ブレを補正するための第 3レンズ群 G 3の移動量は 0. 21 1 (mm)である。
以下の表 8に、 第 8実施例に係る防振機能を有する変倍光学系の諸元の値を示 す。
(表.8)
[全体諸元] ·
W M T
f= 18.7 35.1 53.4
FX0= 3.6 4.8 5.8
[レンズデータ]
r cl V d n d
1) 119. .035 1.9 64. 10 1.5168
2) ' 15. .000 0.2 38. 09 1.5539 11-30181^9 'I- =83
80-30I6Z0 =93 9Z so-蘭 srs =10
I =
[^一^厘翁非]
Figure imgf000052_0001
•I ε- LU •86
I ·0 m -n- (61
Ί IfOL O'C 000 OOC- (81
Figure imgf000052_0002
9 · 688 •001 (91
0918 "l Z9 ·9 6"0 009 •01 - (91
8098 Ί Ί, 006 •9C- CM
6"Z 000 •0 (SI
961 •29 I 01
■\ IS'Z9 0Z6 ΊΖ (11
Γ0 88S •8S - (01
00 9' Ί 9 LLf 'SI (6
I 2Ί 006 (8
i,a I8 a
I 19 ' -n (9
III 'Z£ (S
I68S' ΐ 91 Ί9 v\ 661 ' (
008' Λ (2
OS
QQg^9 C9S0T0/800Z ΟΛ\
,00 90謹 Zdf/I d C10= 1.22730E-12
[可変間隔デ一夕]
W M T
D7= 31.87 9.65 2.18
DI2= 2.6 7.96 12.19
1)17= 15.69 10.33 6.1
Bf= 38.36 54.08 72.07
[条件式対応値]
(5) : (r 2 + r l)/(r 2一 r 1) 0.475
(6) : 1 f v r / ' f w 1 - 1.855
(7) ; 1 f v r / ' f 2 1 = 1.276
図 ·3 0 Α、 3 O Bは、 第 8実施例に係る防振機能を有する変倍光学系の無限遠 合焦時の広角端状態における諸収差図、 および像ブレ補正をおこなった時のメリ ディォナル横収差図を示す。 図 3 1は、 第 8実施例に係る防振機能を有する変倍 光学系の無限遠合焦時の中間焦点距離状態での諸収差図を示す。 図 3 2A、 3 2 Bは、 第 8実施例に係る防振機能を有する変倍光学系の無限遠合焦時の望遠端状 態での諸収差図、 および像ブレ補正をおこなった時のメリディォナル横収差図を 示す。
諸収差図より第 8実施例に係る防振機能を有する変倍光学系は、 広角端状態 から望遠端状態にわたつて諸収差を良好に補正し、 優れた結像性能を有している ことがわかる。
(第 9実施例)
図 3 3は、 第 2実施形態の第 9実施例に係る防振機能を有する変倍光学系の広 角端状態におけるレンズ構成を示す断面図である。
第 9実施例に係る防振機能を有する変倍光学系は、 図 3 3に示すように、 物体 側から順に、 負の屈折力を持つ第 1レンズ群 G 1、 正の屈折力を持つ第 2レンズ 群 G 2、 開口絞り S、 負の屈折力を持つ第 3レンズ群 G 3、 および正の屈折力を 持つ第 4レンズ群 G 4で構成されている。
第 1 レンズ群 G 1は、 物体側から順に、 物体側に凸面を向けた負メニスカスレ ンズと、 物体側に凸面を向けた負メニスカスレンズと、 物体側に凸面を向けた正 メニズカスレンズとからなり、 最も物体側の負メニスカスレンズは像面側のガラ スレンズ面に樹脂層を設けて非球面を形成した非球面レンズである。
第 2レンズ群 G 2は、 物体側から順に、 物体側に凸面を向けた負メニスカスレ ンズと両凸形状の正レンズとの接合レンズと、 両凸形状の正レンズとからなる。 第 3レンズ群 G 3は、 物体側から順に、 物体側に凹面を向けた正メニスカスレ ンズと両凹形状の負レンズとの接合負レンズと、 物体側に凸面を向けた正メニス カスレンズと、 物体側に凸面を向けた負メニスカスレンズとからなる。
第 4レンズ群 G 4は、 物体側から順に、 物体側に凹面を向けた正メニスカスレ ンズと、 両凸形状の正レンズと像面 Iに凸面を向けた負メニスカスレンズとの接 合レンズとからなる。
開口絞り Sは、 第 2レンズ群 G 2と第 3レンズ群 G 3との間に位置し、 広角端 状態から望遠端状態への変倍の際に、 第 3レンズ群 G 3と伴に移動する。
広角端状態から望遠端状態への変倍の際、 第 1レンズ群 G 1は像面 Iに向かつ て凸の軌跡で移動し、 第 2レンズ群 G 2、 第 4レンズ群 G 4は一体に物体側へ移 動し、 第 3レンズ群 G 3は物体側に移動する。
また、 本実施例に係る防振機能を有する変倍光学系では、 第 3レンズ群 G 3内 の物体側の接合負レンズと物体側に凸面を向けた正メニスカスレンズとを光軸 と直交する方向にシフトさせることで撮影画像のブレを補正している。
また、 本実施例の広角端状態において、 防振係数 Kは 1 . 0 8 6であり、 焦点 距離は 1 8 . 7 (mm)であるので、 0 . 7 3 1 ° の回転ブレを補正するための第 3レンズ群 G 3の移動量は 0 . 2 1 8 (mm)である。 本実施例の望遠端状態にお いて、 防振係数 Kは 1 . 7 9 2であり、 焦点距離は 5 3 . 4 (mm)であるので、 0. 43 2° の回転ブレを補正するための第 3レンズ群 G 3の移動量は 0. 2 2 5 (mmリである。
以下の表 9に、 第 9実施例に係る防振機能を有する変倍光学系の諸元の値を示 す。
(表 9)
[全体諸元]
W Μ Τ
['= 18.7 35. 1 53.4
F 0= 3.6 4.8 5.8
[レンズデータ]
r d V cl n d
0 131 .711 1.9 59.40 1.5400
2) 15, .971 - 0.2 38.09 1.5539
3) 13. .618 9.7
4) ' 134. , 981 1.3 58.89 1.5182
5) 26. 404 1.
6) . 23. 690 3.2 27.51 - 1.7552
7) 46. 383 D7
8) VI. 804 1.0 27.51 1.7552
9) 13. 402 4.1 64.12 1.5168
10) -128. 299 0.1
11) 33. 277 2. 58.89 1.5182
1 ) -2813. 664 D12
13) 0. 000 4.2
1 ) -29. 652 2.4 28.69 1.7950
15) -11. 583 1.3 50.70 1.6779 16) 31.636 1.0
17) 43. 452 1.5 58. 89 1. .5182
18) 500 0.5
19) 150 1.5 54. 66 1. , 7292
20) 84. 620 D20
21) -365. 935 3.2 64. 12 1. 5168
22) -26. 352 0.2
23) 61. 629 4.8 64. 12 1. 5168
24) -17. 815 1.0 27. 51 1. 7552
Z5) -50. 125 Bf
[非球面デ一夕]
N= 3
κ = 1
C4= 1.91160E-05
C6= 4. 6210E-08
C8= -5.83820E-11
CI0= 2.93910E-13
[可変間隔データ]
W M T
33.11 9.69 1 .23
D12= 1.33 6.07 9 .50
1)20= 8.90 4.17 0 .73
Bf= 39.31 53.38 71 .46
[条件式対応値]
(5) : (r 2 + r 1)ノ(r 2— r 1)= 0.888
(6) : I f v r / f w I = 1.942 ( 7 ) : I f v r / f 2 I = 1. 226
図 3 4 A、 3 4 Bは、 第 9実施例に係る防振機能を有する変倍光学系の無限遠 合焦時の広角端状態における諸収差図、 および像ブレ補正をおこなった時のメリ ディォナル横収差図を示す。 図 3 5は、 第 9実施例に係る防振機能を有する変倍 光学系の無限遠合焦時の中間焦点距離状態での諸収差図を示す。 図 3 6 A、 3 6
Bは、 第 9実施例に係る防振機能を有する変倍光学系の無限遠合焦時の望遠端状 態での諸収差図、 および像ブレ補正をおこなった時のメリディォナル横収差図を 示す。 各諸収差図より第 9実施例に係る防振機能を有する変倍光学系は、 広角端状態 から望遠端状態にわたつて諸収差を良好に補正し、 優れた結像性能を有している ことがわかる。 '
<第 3実施形態 >
以下、 本願の第 3実施形態に係る防振機能を有する変倍光学系について説明す 第第 33実実施施形形態態にに係係るる防防振振機機能能をを有有すするる変変倍倍光光学学系系はは、、 物物体体側側かからら順順にに、、 負負のの屈屈 折折力力をを持持つつ第第 11レレンンズズ群群とと、、 正正のの屈屈折折力力をを持持つつ第第 22レレンンズズ群群とと、、 負負のの屈屈折折力力をを持持 つつ第第 33レレンンズズ群群とと、、 正正のの屈屈折折力力をを持持つつ第第 44レレンンズズ群群をを有有しし、、 広広角角端端状状態態かからら望望遠遠 ¾¾11状状態態ままでで変変倍倍をを行行うう際際にに、、 前前記記第第 22レレンンズズ群群とと前前記記第第 33レレンンズズ群群ととのの間間隔隔がが変変 2200 化化しし、、 前前記記第第 33レレンンズズ群群とと前前記記第第 44レレンンズズ群群ととのの間間隔隔がが変変化化すするるよよううににレレンンズズ群群 がが移移動動しし、、 前前記記第第 33レレンンズズ群群のの少少ななくくとともも一一部部をを光光軸軸とと直直交交方方向向ににシシフフトトささせせるる ここととでで像像ブブレレ発発生生時時のの像像面面補補正正をを行行うう防防振振レレンンズズ群群ととしし、、 前前記記防防振振レレンンズズ群群はは少少 ななくくとともも 11つつ以以上上のの非非球球面面をを有有しし、、 下下記記のの条条件件式式 ((11 )) 、、 おおよよびび ((22 )) をを満満足足すす るるここととをを特特徴徴ととすするる。。
Figure imgf000057_0001
(( 22 )) -- 22 .. 11 00 << ff 33 XX ff ww <<-- 00 .. 88 00 ただし、
f 2 :前記第 2レンズ群の焦点距離
f 3 :前記第 3レンズ群の焦点距離
f w:広角端状態における全系の焦点距離
条件式 (1) は、 第 2レンズ群の屈折力を規定したものであるが、 既に上述し たので重複する記載を省略する。
条件式 (2) は第 3レンズ群の屈折力を規定したものであるが、 既に上述した ので重複する記載を省略する。
また、 前記第 2レンズ群と前記第 3レンズ群との間隔が増大し、 前記第 3レン ズ群と前記第 4レンズ群との間隔が減少することにより、 高変倍比を達成するこ とができ、 変倍時の球面収差の変動を少なくすることができるので好ましい。 また、 前記第 3レンズ群中の少なくとも 1つの非球面は、 近軸曲率半径を有す る球面に比べて光軸から周辺に向かつて正の屈折力が強くなる力 あるいは負の 屈折力が弱くなるように形成された形状で、 さらに以下の条件式(8)、 (9)、 (1 0) を満足することを特徴とする。
(8) : 0. 00001く l ASPd O. 5 I / (HZ 2) <0. 01
(9) : 0. 0001く l ASPd l. 0 I / (HZ 2) く 0. 01
(10) : I ASP d 0. 5 I / I AS P d 1. 0 I <1
ただし、 Hは非球面レンズの有効径、 ASPd O. 5は非球面有効径の 5割の 高さにおける近軸曲率半径と非球面形状との偏差量、 ASPd l. 0は非球面有 効径の 10割の高さにおける近軸曲率半径と非球面形状との偏差量を示す。
条件式 (8) 、 (9) 、 (10) は、 防振レンズ群である第 3レンズ群を光 軸と直交方向に移動した際の結像性能の劣化を小さく抑える為の非球面形状を 規定する。 条件式 (8) 及び条件式 (9) の下限値を越えると非球面の補正効果 を発揮出来ず、 諸収差補正の為にレンズ枚数が増加し望ましくない。 または、 コ マ収差が悪化するので望ましくない。 一方、 条件式 (8) 及び条件式 (9) の上 限値を越えると球面収差など諸収差の補正が過剰になりすぎ、 同時に防振レンズ を移動させた際の結像性能の劣化をまねく。 また、 前記非球面は同じ近軸曲率半 怪を有する球面に比べて光軸から周辺に向かって正の屈折力が徐々に強くなる 力、、 あるいは負の屈折力が弱くなるように形成された構成によって、 防振用レン ズが移動の際、軸上光束及び軸外光束の諸収差を効率良く補正できる。条件式( 1 0 ) の上限値を越えると防振レンズを移動させる際に防振レンズ群内で球面収差、 およびコマ収差の高次の収差が発生し、 移動後の結像性能の劣化を招く事となる。 また、 本防振機能を有する変倍光学系では、 第 3レンズ群に接合レンズを有す ることが望ましい。 このような構成にすることで、 防振時の倍率色収差を良好に 保つことができる。
また、 本防振機能を有する変倍光学系では、 前記第 1レンズ群は少なくとも 1 つの非球面を有し、 3枚以下のレンズで構成されていることが望ましい。 このよ うな構成にする事でレンズ全長を短縮させ、 かつ像面湾曲を良好に補正できる。 また、 本防振機能を有する変倍光学系では、 前記第 1レンズ群の最も物体側の レンズは像側面に非球面を配した負レンズで構成されていることが望ましい。 こ のような構成にする事で像面湾曲と広角側のコマ収差を良好に補正できる。
また、 本防振機能を有する変倍光学系では、 前記第 4レンズ群は 3枚以下のレ ンズで構成され、 少なくとも 1つの非球面を有していることが望ましい。 このよ うな構成にする事でレンズ全長を短縮させ、 かつコマ収差を良好に補正できる。 また、 本防振機能を有する変倍光学系では、 前記第 2レンズ群から第 4レンズ 群の各群に少なくとも 1つの接合レンズを有することが望ましい。 このような構 成により変倍時に発生する色収差、 特に倍率色収差を良好に保つことができる。 また、 本防振機能を有する変倍光学系では、 最も像面側のレンズ面が像面に向 かって凸面となることが望ましい。 このような構成にすることで、 像面湾曲が良 好に補正され、 像面からの反射光によるゴ一ストを軽減することが可能となる。 また、 前記第 3レンズ群の近傍に開口絞りを配置することで球面収差等の諸収 差が良好に補正できる。
また、 前記開口絞りは、 広角端状態から望遠端状態への変倍を行う際に、 前記 第 3レンズ群と一体に移動することで、 変倍時に球面収差等の諸収差の変動を少 なくすることができる。
以下、 第 3実施形態の各数値実施例に係る防振機能を有する変倍光学系を添付 図面に基づいて説明する。
(第 1 0実施例)
図 3 7は、 第 3実施形態の第 1 0実施例に係る防振機能を有する変倍光学系の 広角端状態におけるレンズ構成を示す断面図である。
第 1 0実施例に係る防振機能を有する変倍光学系は、 図 3 7に示すように、 物 体側より順に、 負の屈折力を持つ第 1レンズ群 G 1、 正の屈折力を持つ第 2レン ズ群 G 2、 開口絞り S、 負の屈折力を持つ第 3レンズ群 G'3、 正の屈折力を持つ 第 4レンズ群 G 4で構成されている。
第丄レンズ群 G 1は、 物体側より順に、 物体側に凸面を向けた負メニスカスレ ンズと、 両凹形状の負レンズと、 物体側に凸面を向けた正メニスカスレンズとか らなり、 最も物体側の負メニスカスレンズは像面 I側のガラスレンズ面に樹脂層 を設けて非球面を形成した非球面レンズである。
第 2レンズ群 G 2は、 物体側より順に、 物体側に凸面を向けた負メニスカスレ ンズと両凸形状の正レンズとの接合レンズと、 物体側に凸面を向けた正メニスカ スレンズとからなる。
第.3レンズ群 G 3は、 物体側より順に、 物体側に凹面を向けた正メニスカスレ ンズと両凹形状の負レンズとの接合レンズからなる。
第 4レンズ群 G 4は、 物体側より順に、 両凸形状の正レンズと、 両凸形状の正 レンズと像面 I側に凸面を向けた負メニスカスレンズとの接合レンズとからな る。
開口絞り Sは、 第 2レンズ群 G 2と第 3レンズ群 G 3との間に配置され、 広角 端状態から望遠端状態への変倍の際に、 第 3レンズ群 G 3と共に移動する。 広角端状態から望遠端状態への変倍の際に、 第 1レンズ群 G 1は像面 Iに向か つて凸の軌跡で移動し、 第 2レンズ群 G2、 第 3レンズ群 G3、 第 4レンズ群 G 4は物体側に移動する。
また、 本実施例に係る防振機能を有する変倍光学系では、 第 3レンズ群 G 3を 光軸と直交する方向にシフトさせることで撮影画像のブレを補正している。 また、 本実施例の広角端状態において、 防振係数 Kは 1. 155であり、 焦点 距離は 18. 7 (mm)であるので、 0. 731 ° の回転ブレを補正するための第 3レンズ群の移動量は 0. 207 (mm) である。 本実施例の望遠端状態におい て、 防振係数 Kは 1. 845であり、焦点距離は 53. 3 (mm)であるので、 ◦ - 433 ° の回転ブレを補正するための第 3レンズ群の移動量は 0. 218 (mm) である。 '
以下の表 10に、 第 10実施例に係る防振機能を有する変倍光学系の諸元値を 示す。
(表 10)
[全体諸元]
W T
Γ= 18.7 53.3
F 0= 3.70 5.88
[レンズデ一夕]
r d v d ' n d
1) . 109. 000 1 • 90 64.12 1.5168
2)' 15. 000 0. .17 38.09 1.5539
3) 12. 800 10. .40
4) -95. 070 1 .70 61.18 1.5891
5) 36. 608 0, .40 0卜.
Figure imgf000062_0001
Oos t OS..
9i Si OS
O CD
Qの 09. ·
s^ 060-·
Figure imgf000062_0002
i 9d . 89 ί2ー9 ozs...
ΟΓΟ
¾ί 00·
OI
Figure imgf000062_0003
κ= 13.8934
C = -2.9312E-05
C6= 2.4670E-08
C8= 0. OOOOE+00
C10= 0. OOOOE+00
C12= 0. OOOOE+00
= 16面
有効径 H= 6.49
12.5281
C = -6.1腕 - 06
C6= -3.5034E-08
C8= 0. OOOOE+00
C10= 0. OOOOE+00
= o. ooooE+oo
[可変間隔データ]
W M T
D7= 31.87 9.65 2.18
D1 = 2.60 7.96 12.19
D16= 16.54 11.18 6.95
Bf = 37.67 54.02 72.46
[条件式対応値]
(1) : f 2/ f W= 1.49
(2) : f 3 / f W= - 1.60
(8) : I A S P cl 0. 5 I / (H/2) = 0.000307 (14面)
0.000391 ( 16面)
(9) : I A S P cl 1. 0 I / (H/2) = 0.00527. (14面) = 0. 00677 ( 1 6面)
( 1 Ό ) : I A S P d 0 . 5 I / I A S P d 1 . 0 I = 0. 058
図 3 8 A、 3 8 Bは、 第 1 0実施例に係る防振機能を有する変倍光学系の無限 遠合焦時の広角端状態における収差図を示し、 図 3 8 Aは画像ブレ補正をおこな わない状態での諸収差を、 図 3 8 Bは画像ブレ補正をおこなった時のメリディォ ナル横収差を示す。 図 3 9は、 第 1 0実施例に係る防振機能を有する変倍光学系 の無限遠合焦時の中間焦点距離状態での諸収差図である。 図 4 0 A、 4 O Bは、 第 1 0実施例に係る防振機能を有する変倍光学系の無限遠合焦時の望遠端状態 における収差図を示し、 図 4 O Aは画像ブレ補正をおこなわない状態での諸収差 を、 园4 0 Bは画像ブレ補正をおこなった時のメリディォナル横収差を示す。 各諸収差図より第 1 0実施例に係る防振機能を有する変倍光学系は、 広角端状 態から望遠端状態にわたって諸収差を良好に補正し、 優れた結像性能を有してい ることがわかる。
(第 1 1実施例)
図 4 1は、 第 3実施形態の第 1 1実施例に係る防振機能を有する変倍光学系の 広角端状態におけるレンズ構成を示す断面図である。
第 1 1実施例に係る防振機能を有する変倍光学系は、 図 4 1に示すように、 物 体側より順に、 負の屈折力を持つ第 1レンズ群 G l、 正の屈折力を持つ第 2レン ズ群 G 2、 開口絞り S、 負の屈折力を持つ第 3レンズ群 G 3、 正の屈折力を持つ 第 4レンズ群 G 4で構成されている。
第 1レンズ群 G 1は、 物体側より順に、 物体側に凸面を向けた負メニスカスレ ンズと、 両凹形状の負レンズと、 物体側に凸面を向けた正メニスカスレンズとか らなり、 最も物体側の負メニスカスレンズは像面 I側のガラスレンズ面に樹脂層 を設けて非球面を形成した非球面レンズである。
第 2レンズ群 G 2は、 物体側より順に、 両凸形状の正レンズと、 両凸形状の正 レンズと両凹形状の負レンズとの接合レンズとからなる。 第 3レンズ群 G 3は、 物体側より順に、 物体側に凹面を向けた正メニスカスレ ンズと両凹形状の負レンズとの接合レンズからなる。
第 4レンズ群 G 4は、 両凸形状の正レンズと像面 I側に凸面を向けた負メニス カスレンズとの接合レンズからなり、 接合レンズは物体側のガラスレンズ面に樹 脂層を設けて非球面を形成した非球面レンズである。
開口絞り Sは、 第 2レンズ群 G 2と第 3レンズ群 G 3との間に位置し、 広角端 状態 Wから望遠端状態 Tへの変倍の際に、 第 3レンズ群 G 3と共に移動する。 広角端状態 Wから望遠端状態 Tへの変倍の際、 第 1レンズ群 G1は像面 Iに向 かって凸の軌跡で移動し、 第 2レンズ群 G2、 第 3レンズ群 G3、'第 4レンズ群 G 4は物体側に移動する。
また、 本実施例の広角端状態において、 防振係数 Kは 1. 024であり、 焦点 距離は 1 9. 0 (mm)であるので、 0. 725 ° の回転ブレを補正するための第 3レンズ群の移動量は 0. 234 (mm) である。 本実施例の望遠端状態におい て、 防振係数 Kは 1. 785であり、焦点距離は 54. 0 (mm)であるので、 0. 43 0 ° の回転ブレを補正するための第 3レンズ群の移動量は 0. 227 (mm) である。
以下の表 1 1に、 第 1 1実施例に係る防振機能を有する変倍光学系の諸元値を 示す。
(表 1 1)
[全体諸元]
W T
f= 19.0 54.0
FM)= 3.65 5.88
[レンズデータ]
X ' r cl v d n cl
I) 110.000 1.70 64.12 1.5168 OAV/S0S800Z C9://I£0L00009
s 60∞ S . - 謹 ^ οϋのπ-
Figure imgf000066_0001
〔翁〕s,- l
一3 SH =I, X= 16面
有効径11= 5.56
κ= 17.882
C4= -1.1191E-05
C6= 0.0000E+O0
C8= 0.0000E+00
C10= 0. OOOOE+00
N= 17面
κ= 32: 566
C4= -3.2797E-05
C6= -6.0249E-08
C8= 9.8569E-10
C10= -1.0180E-11
[可変間隔データ]
W M T
D7= 28.74 9.04 1.72
d\2= 3.64 9.50 15.34
DI6= 12.59 6.73 0.89
Bf= 39.37 51.65 68.44
[条件式対応値]
(1) : f 2 / f W= 1.52
(2) : f 3/ f W= -1.88
(8) : l AS P d O. 5 I / (H/ 2 ) = 0.0000492
(9) : l AS P d l. O l Z (H/ 2 ) = 0.000604
(10) : l AS Pd O. 5 1 / I AS Pd 1. 0 | = 0.081
図 42 A、 42 Bは、 第 1 1実施例に係る防振機能を有する変倍光学系の無限 遠合焦時の広角端状態における収差図を示し、 図 4 2 Αは画像ブレ補正をおこな わない状態での諸収差を、 図 4 2 Bは画像ブレ補正をおこなった時のメリディォ ナル横収差を示す。 図 4 3は、 第 1 1実施例に係る防振機能を有する変倍光学系 の無限遠合焦時の中間焦点距離状態での諸収差図である。 図 4 4 A、 4 4 Bは、 第 1 1実施例に係る防振機能を有する変倍光学系の無限遠合焦時の望遠端状態 における収差図を示し、 図 4 4 Aは画像ブレ補正をおこなわない状態での諸収差 を、 図 4 4 Bは画像ブレ補正をおこなった時のメリディォナル横収差を示す。 各諸収差図より第 1 1実施例に係る防振機能を有する変倍光学系は、 広角端状 態から望遠端状態にわたって諸収差を良好に補正し、 優れた結像性能を有してい ること力 sわかる。
(第 1 2実施例)
図 4 5は、 第 3実施形態の第 1 2実施例に係る防振機能を有する変倍光学系の 広角端状態におけるレンズ構成を示す断面図である。
第 1 2実施例に係る防振機能を有する変倍光学系は、 図 4 5に示すように、 物 体側より順に、 負の屈折力を持つ第 1レンズ群 G 1、 正の屈折力を持つ第 2レン ズ群 G 2、 開口絞り S、 負の屈折力を持つ第 3レンズ群 G 3、 正の屈折力を持つ 第 4レンズ群 G 4で構成されている。
第 1レンズ群 G 1は、 物体側より順に、 物体側に凸面を向けた負メニスカスレ ンズと、 両凹形状の負レンズと、 物体側に凸面を向けた正メニスカスレンズとか らなり、 最も物体側の負メニスカスレンズは像面 I側のガラスレンズ面に樹脂層 を設けて非球面を形成した非球面レンズである。
第 2レンズ群 G 2は、 物体側より順に、 物体側に凸面を向けた負メニスカスレ ンズと両凸形状の正レンズとの接合レンズと、 物体側に凸面を向けた正メニスカ スレンズとからなる。
第 3レンズ群 G 3は、 物体側より順に、 物体側に凹面を向けた正メニスカスレ ンズと両凹形状の負レンズとの接合レンズからなる。 P T/JP2007/064300
67 第 4レンズ群 G4は、 物体側より順に、 両凸形状の正レンズと、 両凸形状の正 レンズと像面 I側に凸面を向けた負メニスカスレンズとの接合レンズとからな る。
開口絞り Sは、 第 2レンズ群 G2と第 3レンズ群 G3との間に配置され、 広角 端状態から望遠端状態への変倍の際に、 第 3レンズ群 G 3と共に移動する。 広角端状態から望遠端状態への変倍の際に、 第 1レンズ群 G 1は像面 Iに向か つて凸の軌跡で移動し、 第 2レンズ群 G2、 第 3レンズ群 G3、 第 4レンズ群 G 4は物体側に移動する。
また、 本実施例に係る防振機能を有する変倍光学系では、 第 3レンズ群 G 3を 光軸と直交する方向にシフトさせることで撮影画像のブレを補正している。 また、 本実施例の広角端状態において、 防振係数 Kは 1. 162であり、 焦点 距離は 18. 5 (mm)であるので、 0. 734 ° の回転ブレを補正するための第 3レンズ群の移動量は 0. 204 (mm) である。 本実施例の望遠端状態におい て、 防振係数 Kは 2. 037であり、焦点距離は 53. 5 (mm)であるので、 0. 432 ° の回転ブレを補正するための第 3レンズ群の移動量は 0. 1 98 (mm) である。
以卞の表 12に、 第 12実施例に係る防振機能を有する変倍光学系の諸元値を 不す。
(表 12)
[全体諸元]
W T
[= 18.5 53.5
FN0= 3:6 5.8
[レンズデータ]
N . r cl v cl n cl
I) 116.280 1.9 58.9 1.51823 2) 16.299 0.2 38.09 55389
3) 13. 699 10.0
4) -713. 443 1.3 64. 12 51680
5) 32. 842 1.2
6) 26. 928 2.9 27. 51 75520
7) 55. 608 D7
8) 26. 524 1.0 27. 51 75520
9) 15. 327 4.1 64. 12 51680
10) -59. 620 0.1
I I)· 25. 800 2.2 64. 12 51680
1 ) 82. 059 D12
13〉 0. 000 2.6 開口絞り S
14) -38. 072 2.1 28. 69 79504
l ) -13. 274 1.4 50. 24 71999
16) 63. 523 D16
18) 253. 480 3.0 64. 12 51680
19) -22. 683 0.2
20), 135. 687 3.7 64. 12 51680
21) -18. 552 1.0 28. 69 79504
VI) -70. 947 Bf
[非球面デ-一夕]
3面
κ= 0
C4= 2.3519E-05
C6= 4.6561E-08
C8= -i.0850E-10
AVi Oi £9soyuld o-osfc。0£
Figure imgf000071_0001
ト s
〇 さ
図 4 6 A、 4 6 Bは、 第 1 2実施例に係る防振機能を有する変倍光学系の無限 遠合焦時の広角端状態における収差図を示し、 図 4 6 Aは画像ブレ補正をおこな わない状態での諸収差を、 図 4 6 Bは画像ブレ補正をおこなった時のメリディォ ナル横収差を示す。 図 4 7は、 第 1 2実施例に係る防振機能を有する変倍光学系 の無限遠合焦時の中間焦点距離状態での諸収差図である。 図 4 8 A、 4 8 Bは、 第 1 2実施例に係る防振機能を有する変倍光学系の無限遠合焦時の望遠端状態 における収差図を示し、 図 4 8 Aは画像ブレ補正をおこなわない状態での諸収差 を、 図 4 8 Bは画像ブレ補正をおこなった時のメリディォナル横収差を示す。 各諸収差図より第 1 2実施例に係る防振機能を有する変倍光学系は、 広角端状 態から望遠端状態にわたって諸収差を良好に補正し、 優れた結像性能を有してい ることがわかる。
以上の各実施例によれば、 高変倍比を有しながら、 振動や手ブレなどによる撮 影画像のブレを補正することができ、 良好な光学性能を持った防振機能を備えた 変倍光学系を提供することができる。
なお、 本防振機能を有する変倍光学系の数値実施例として 4群構成のものを示 したが、 本変倍光学系の群構成はこれに限られず、 5群等の他の群構成にも適用 可能である。
また、 本防振機能を有する変倍光学系において、 無限遠物体から近距離物体へ の合焦を行うために、 レンズ群の一部、 1つのレンズ群、 又は複数のレンズ群を 合焦レンズ群として光軸方向へ移動させる構成としてもよい。 この合焦レンズ群 は、 オートフォーカスに適用することも可能であり、 ォ一トフォ一カス用のモー タ、 例えば超音波モー夕等による駆動にも適している。 なお、 本変倍光学系にお いては、 特に第 1レンズ群 G 1全体又はその一部を合焦レンズ群とすることが好 ましい。 .
また、 上記各実施例では、 第 3レンズ群 G 3の全体又は一部を防振レンズ群と して光軸に垂直な方向にシフトさせる変倍光学系を例示しているが、 他のレンズ 群全体又はその一部、 特に第 2レンズ群 G 2や第 4レンズ群 G 4を防振レンズ群 とすることもできる。
また、 本防振機能を有する変倍光学系を構成するレンズのレンズ面を非球面と してもよい。 この非球面は、 研削加工による非球面、 ガラスを型で非球面形状に 成型レたガラスモールド非球面、 又はガラス面に設けた樹脂を非球面形状に形成 した複合型非球面のいずれでもよい。
また、 本防振機能を有する変倍光学系を構成するレンズのレンズ面に、 広い波 長域で高い透過率を有する反射防止膜を施してもよい。 これにより、 フレアゃゴ 一ストを軽減し、 高コントラストで高い光学性能を達成することができる。 以下、 本願にかかる防振機能を有するズームレンズを搭載した撮像装置 (一眼 レフカメラ) に関し説明する。
図 4 9は、 第 1実施形態の第 1実施例に係る防振機能を有するズームレンズを 搭載した撮像装置 (一眼レフカメラ) の概略構成図である。
図 4 9において、 不図示の被写体からの光は、 上述した防振機能を有するズー ムレンズ 1 1で集光され、 クイックリターンミラ一 1 2で反射されて焦点板 1 3 に結像される。 焦点板 1 3に結像された被写体像は、 ペン夕プリズム 1 4で複数 回反射されて接眼レンズ 1 5を介して撮影者に正立像として観察可能に構成さ れている。
撮影者は、 不図示のレリーズ釦を半押ししながら接眼レンズ 1 5を介して被写 体像を観察して撮影構図を決めた後、 レリーズ釦を全押しする。 レリーズ釦を全 押しした時、 クイックリターンミラ一 1 2が上方に跳ね上げられ被写体からの光 は撮像素子 1 6で受光され撮影画像が取得され、 不図示のメモリに記録される。 レリーズ釦を全押しした時、 撮像装置 (一眼レフカメラ) 1 0に内蔵されてい るセンサー 1 7 (例えば、 角度センサーなど) でカメラ 1 0の傾きが検出されて C P U 1 8に伝達され、 C P U 1 8で回転ブレ量が検出され手ブレ補正用レンズ 群を光軸に直交方向に駆動するレンズ駆動手段 1 9が駆動され、 手ブレ発生時の 撮像素子 1 6上における像ブレが補正される。 このようにして、 上述した防振機 能を有するズームレンズ 1 1を具備する撮像装置 1 0が構成されている。
なお、 本発明は以上に限られず、 上記第 2から第 1 2実施例のいずれか 1つの 実施例に係るズームレンズを撮影レンズ 1 1として搭載したカメラを構成して も上記カメラ 1 0と同様の効果を勿論奏することができる。
なお、 上記各実施例は本発明の一具体例を示しているものであり、 本発明はこ れらに限定されるものではない。

Claims

73
1 . 物体側から順に、 負の屈折力を有する第 1レンズ群と、 正の屈折力を有す る第 2レンズ群と、 負の屈折力を有する第 3レンズ群と、 正の屈折力を有する第 4レンズ群とを有し、
前記第 2レンズ群と前記第 4レンズ群との間に開口絞りを有し、
広角端状態から望遠端状態への変倍に際して、 前記第 2レンズ群と前記第 3レ 求
ンズ群との間隔が変化し、 前記第 3レンズ群と前記第 4レンズ群との間隔が変化 するように、 前記各レンズ群が移動し、 また前記開口絞りは前記第 3レンズ群と ί車
ともに移動し、
さらに以下の条件式を満足することを特徴とする変倍光学系。
1: 2 0 < f 2 / f wく 2 . 5 0
- 2 . 1 0 < f 3 Z f wく一 0 . 8 0
但し、 . f 2 :前記第 2レンズ群の焦点距離
f 3 :前記第 3レンズ群の焦点距離
f w:広角端状態における前記変倍光学系の焦点距離
2 . 広角端状態から望遠端状態への変倍に際して、 前記第 2レンズ群と前記第 3レンズ群との間隔が増大し、 前記第 3レンズ群と前記第 4レンズ群との間隔が 減少することを特徴とする請求項 1記載の変倍光学系。
3 . 前記第 3レンズ群は、 接合レンズを有していることを特徴とする請求項 1 記載の変倍光学系。
4 . 前記第 4レンズ群は、 最も像面側から順に、 負レンズと正レンズとからな 74 る接合レンズと、 正の屈折力を有する単レンズとから構成されていることを特徴 とする請求項 1に記載の変倍光学系。
5 . 前記第 2レンズ群、前記第 3レンズ群、及び前記第 4レンズ群はそれぞれ、 少なくとも 1つの接合レンズを有していることを特徴とする請求項 1に記載の 変倍光学系。
6 . 広角端状態から望遠端状態への変倍に際して、 前記第 1レンズ群は、 一旦 像面側へ移動した後に物体側へ移動することを特徴とする請求項 1に記載の変 倍光学系。
7 . 以下の条件式を満足することを特徴とする請求項 1に記載の変倍光学系。
— .0 . 3 < ( cl 1 w- cl 1 t ) / Ymax< 0 . 1 7
但し、
Cl 1 w:広角端状態における前記変倍光学系中の最も物体側のレンズ面から像面 までの光軸上の距離
cl 1 t :望遠端状態における前記変倍光学系中の最も物体側のレンズ面から像面 までの光軸上の距離
Ymax :最大像高
8 . 前記変倍光学系中の最も像面側のレンズ面が、 像面側に向かって凸形状で あることを特徴とする請求項 1に記載の変倍光学系。
9 . 以下の条件式を満足することを特徴とする請求項 1に記載の変倍光学系。
0 . 7 2 < f 2 / ( - f 3 ) < 1 . 5
但し、 75 f 2 :前記第 2レンズ群の焦点距離
f 3 前記第 3レンズ群の焦点距離
10. 前記第 1レンズ群中に非球面レンズを有していることを特徴とする請求 項 1に記載の変倍光学系。
1 1. 前記第 3レンズ群の少なくとも一部を光軸と直交方向にシフトさせる防 振レンズ群とすることを特徴とする請求項 1に記載の変倍光学系。
12. 前記防振レンズ群は少なくとも 1つ以上の非球面を有することを特徴と する請求項 1 1に記載の変倍光学系。
13. 前記第 3レンズ群中の少なくとも 1つの非球面は近軸曲率半径を有する 球面に比べて光軸から周辺に向かって正の屈折率が強くなるか、 あるいは負の屈 折力が弱くなるように形成された形状をもち、 以下の条件式を満足することを特 徴とする請求項 12記載の変倍光学系。
0. O O O O K l ASPd O. 5 | / (HZ2) <0. 01
0. O O O K l ASPd l. 0 l Z (H 2) <0. 01
I AS P d 0. 5 I / I A S P d 1. 0 I <1
ただし、 Hは非球面レンズの有効径、 ASPd O. 5は非球面有効径の 5割の 高さにおける近軸曲率半径と非球面形状との偏差量、 AS P d 1. 0は非球面有 効径の 10割の高さにおける近軸曲率半径と非球面形状との偏差量を示す。
14. 前記第 3レンズ群は、 接合レンズを有することを特徴とした請求項 1 1 記載の変倍光学系。 76
1 5 . 前記第 1レンズ群は、 3枚以下のレンズで構成され、 少なくとも 1っ以 上の非球面を有することを特徴とする請求項 1 1記載の変倍光学系。
1 6 . 前記第 1レンズ群の最も物体側のレンズは、 像側面に非球面を配した負 レンズで構成されていることを特徴とする請求項 1 1記載の防振機能を有する 変倍光学系。
1 7 . 前記第 4レンズ群は、 3枚以下のレンズで構成され、 少なぐとも 1つの 非球面を有することを特徴とする請求項 1 1記載の変倍光学系。
.
1 8 . 前記第 2レンズ群から前記第 4レンズ群の各群は、 少なくとも 1つの接 合レンズを有することを特徴とする請求項 1 1記載の変倍光学系。
1 9 . 最も像面側のレンズ面は、 像面に向かって凸面であることを特徴とする 請求項 1 1記載の変倍光学系。
2 0 . 請求項 1から請求項 1 9のいずれか 1項に記載の変倍光学系を備えてい ることを特徴とする撮像装置。
2 1 . 物体側から順に、 負の屈折力を有する第 1レンズ群と、 正の屈折力を有 する第 2レンズ群と、 負の屈折力を有する第 3レンズ群と、 正の屈折力を有する 第 4レンズ群とを有し、
前記第 2レンズ群と前記第 4レンズ群との間に開口絞りを有し、
広角端状態から望遠端状態への変倍に際して、 前記第 2レンズ群と前記第 3レ ンズ群との間隔が変化し、 前記第 3レンズ群と前記第 4レンズ群との間隔が変化 するように、 前記各レンズ群が移動し、 また前記開口絞りは前記第 3レンズ群と 77 ともに移動し、
前記第 2レンズ群、 前記第 3レンズ群、 及び前記第 4レンズ群はそれぞれ、 少 なくとも 1つの接合レンズを有し、
前記第 4レンズ群中の前記接合レンズは、 物体側から順に、 正レンズと負レン ズとからなり、
前記変倍光学系中の最も像面側のレンズ面が、 像面側に向かって凸形状であり、 さらに以下の条件式を満足することを特徴とする変倍光学系。
—0 . 3 < ( d 1 w- d 1 t ) /Ymax< 0 . 1 7
但し、
cl l w:広角端状態における前記変倍光学系中の最も物体側のレンズ面から像面 までの光軸上の距離
cl 1 t :望遠端状態における前記変倍光学系中の最も物体側のレンズ面から像面 までの光軸上の距離
Yinax :最大像高
2 2 . 広角端状態から望遠端状態への変倍に際して、 前記第 1レンズ群は、 一 旦像面側へ移動した後に物体側へ移動し、 前記第 2レンズ群と前記第 3レンズ群 の間隔が増大し、 前記第 3レンズ群と前記第 4レンズ群との間隔が減少し、 前記 開口絞りは前記第 3レンズ群とともに移動することを特徴とする請求項 2 1記 載の変倍光学系。
2 3 . 前記第 2レンズ群、 前記第 3レンズ群、 及び前記第 4レンズ群はそれぞ れ、 少なくとも 1つの接合レンズを有し、
前記第 4レンズ群中の前記接合レンズは、 物体側から順に、 正レンズと負レン ズとからなり、
前記変倍光学系中の最も像面側のレンズ面が、 像面側に向かって凸形状である 78 ことを特徴とする請求項 2 1記載の変倍光学系。
24. 物体側から順に、 負の屈折力を持つ第 1レンズ群と、 正の屈折力を持つ 第 2レンズ群と、 負の屈折力を持つ第 3レンズ群と、 正の屈折力を持つ第 4レン ズ群を有し、 広角端状態から望遠端状態まで変倍を行う際に、 前記第 2レンズ群 と前記第 3レンズ群との間隔が変化し、 前記第 3レンズ群と前記第 4レンズ群と の間隔が変化し、 前記第 3レンズ群全体もしくは一部を防振レンズ群として光軸 と直交する方向にシフトさせ、 さらに下記条件式を満足することを特徴とした変 倍光学系。
0. 1 2< (r 2 + r l) / (r 2-r l) < 1. 3 0
ただし、
r 1 :前記防振レンズ群の物体側の曲率半径
r 2 :前記防振レンズ群の像面側の曲率半径
2 5. 広角端状態から望遠端状態まで変倍を行う際に、 前記第 2レンズ群と前 記第 3レンズ群との間隔が増大し、 前記第 3レンズ群と前記第 4レンズ群との間 隔が減少することを特徴とする請求項 24記載の変倍光学系。
2 6. 下記の条件式を満足することを特徴とする請求項 24記載の変倍光学系。
1. 2 0 < I f V r f w I < 3. 3 0
ただし、
f v r :前記防振レンズ群の焦点距離
f w:広角端状態での全系の焦点距離 .
2 7. 下記条件式を満足することを特徴とした請求項 24記載の変倍光学系。
0. 5 0< | ί V Ϊ / ϊ 2 | <2. 3 0 79 ただし、
f r :前記防振レンズ群の焦点距離
f 2 :前記第 2レンズ群の焦点距離
2 8 . 広角端状態から望遠端状態まで変倍を行う際に、 前記第 1レンズ群が像 面に向かって凸の軌跡で移動することを特徴とした請求項 2 4記載の変倍光学 系。
2 9 . 最も像面側のレンズ面が像面に向かって凸面であることを特徴とした請 求項 2 4記載の変倍光学系。
3 0 . 前記第 4レンズ群は、 最も像面側から順に、 負レンズ、 正レンズ、 正レ ンズを有することを特徴とした請求項 2 4記載の変倍光学系。
3 1 . 前記第 3レンズ群は接合レンズを有することを特徴とした請求項 2 4記 載の変倍光学系。
3 2 . 前記第 2レンズ群から前記第 4レンズ群の各群に少なくとも 1つの接合 レンズを有することを特徴とした請求項 2 4記載の変倍光学系。
3 3 . 広角端状態から望遠端状態まで変倍を行う際に、 前記第 2レンズ群と前 記第 4レンズ群が一体になつて動くことを特徴とする請求項 2 4記載の変倍光 学系。
3 4 . 開口絞りは、 前記第 3レンズ群の近傍に配置され、 広角端状態から望遠 端状態まで変倍を行う際に、 前記第 3レンズ群と一体に移動することを特徴とす 80 る請求項 2 4記載の変倍光学系。
3 5 , 開口絞りは、 前記第 2レンズ群の近傍に配置され、 広角端状態から望遠 端状態まで変倍を行う際に、 前記第 2レンズ群と一体に移動することを特徴とす る請求項 2 4記載の変倍光学系。
3 6 . 前記第 3レンズ群と前記第 4レンズ群との間に固定絞りを有することを 特徴とする請求項 2 4記載の変倍光学系。
3 7 . 請求項 2 4から 3 6のいずれか一項に記載の変倍光学系を備えているこ とを特徴とする撮像装置。
3 8 . 物体側から順に、 負の屈折力を有する第 1レンズ群と、 正の屈折力を有 する第 2レンズ群と、 負の屈折力を有する第 3レンズ群と、 正の屈折力を有する 第 4レンズ群とを有する変倍光学系の変倍方法において、
前記第 2レンズ群と前記第 4レンズ群との間に開口絞りを有し、
広角端状態から望遠端状態への変倍に際して、 前記第 2レンズ群と前記第 3レ ンズ群との間隔が変化し、 前記第 3レンズ群と前記第 4レンズ群との間隔が変化 するように、 前記各レンズ群が移動し、 また前記開口絞りは前記第 3レンズ群と ともに移動し、
さらに以下の条件式を満足することを特徴とする変倍光学系の変倍方法。 1 . 2 0 < f 2 / f w< 2 . 5 0
一 2 . 1 0 < f 3 / f w<- 0 . 8 0
但し、
f 2 :前記第 2レンズ群の焦点距離
f 3 :前記第 3レンズ群の焦点距離 0 O 2008/010563 PCT/JP2007/064300
81 f w:広角端状態における前記変倍光学系の焦点距離
3 9 . 前記第 3レンズ群の少なくとも一部を光軸と直交方向にシフトさせる防 振レンズ群とすることを特徴とする請求項 3 8に記載の変倍光学系。
4 0 . 物体側から順に、 負の屈折力を有する第 1レンズ群と、 正の屈折力を有 する第 2レンズ群と、 負の屈折力を有する第 3レンズ群と、 正の屈折力を有する 第 4レンズ群とを有する変倍光学系の変倍方法において、
前記第 2レンズ群と前記第 4レンズ群との間に開口絞りを有し、
広角端状態から望遠端状態への変倍に際して、 前記第 2レンズ群と前記第 3レ ンズ群との間隔が変化し、 前記第 3レンズ群と前記第 4レンズ群との間隔が変化 するように、 前記各レンズ群が移動し、 また前記開口絞りは前記第 3レンズ群と ともに移動し、
前記第 2レンズ群、 前記第 3レンズ群、 及び前記第 4レンズ群はそれぞれ、 少 なくとも 1つの接合レンズを有し、
前記第 4レンズ群中の前記接合レンズは、 物体側から順に、 正レンズと負レン ズとからなり、
前記変倍光学系中の最も像面側のレンズ面が、 像面側に向かって凸形状であり、 さらに以下の条件式を満足することを特徴とする変倍光学系の変倍方法。
一 0 . 3 < ( cl l w- d l t ) /Ymax< 0 . 1 7
但し、
cl 1 w:広角端状態における前記変倍光学系中の最も物体側のレンズ面から像面 までの光軸上の距離
cl 1 t :望遠端状態における前記変倍光学系中の最も物体側のレンズ面から像面 までの光軸上の距離
Ymax :最大像高 PGT/J'P^§0 /0& 3010 O 2008/010563 PCT/JP2007/064300
82
41. 物体側から順に、 負の屈折力を持つ第 1レンズ群と、 正の屈折力を持つ 第 2レンズ群と、 負の屈折力を持つ第 3レンズ群と、 正の屈折力を持つ第 4レン ズ群を有する変倍光学系の変倍方法において、
広角端状態から望遠端状態まで変倍を行う際に、 前記第 2レンズ群と前記第 3 レンズ群との間隔が変化し、 前記第 3レンズ群と前記第 4レンズ群との間隔が変 化し、 前記第 3レンズ群全体もしくは一部を防振レンズ群として光軸と直交する 方向にシフトさせ、 さらに下記条件式を満足することを特徴とした変倍光学系の 変倍方法。
0. 12く (r 2+r 1) / (r 2-r 1) く 1. 30
ただし、
r 1 :前記防振レンズ群の物体側の曲率半径
r 2 : 前記防振レンズ群の像面側の曲率半径
PCT/JP2007/064300 2006-07-21 2007-07-12 Système optique à puissance variable, dispositif d'imagerie, procédé d'agrandissement variable d'un système optique à puissance variable WO2008010563A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN200780027520XA CN101490594B (zh) 2006-07-21 2007-07-12 变焦透镜系统、成像设备和变焦透镜系统的变焦方法
EP07791042A EP2045639A4 (en) 2006-07-21 2007-07-12 VARIABLE POWER OPTICAL SYSTEM, IMAGING DEVICE, VARIABLE ENLARGEMENT METHOD OF OPTICAL SYSTEM WITH VARIABLE POWER
US12/303,305 US20090231708A1 (en) 2006-07-21 2007-07-12 Zoom lens system, imaging apparatus, and method for zooming the zoom lens system
US13/090,936 US20110194191A1 (en) 2006-07-21 2011-04-20 Zoom lens system, imaging apparatus, and method for zooming the zoom lens system
US13/545,651 US20120275032A1 (en) 2006-07-21 2012-07-10 Zoom lens system, imaging apparatus, and method for zooming the zoom lens system
US14/092,748 US10437026B2 (en) 2006-07-21 2013-11-27 Zoom lens system, imaging apparatus, and method for zooming the zoom lens system

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2006-199860 2006-07-21
JP2006199860 2006-07-21
JP2006341590 2006-12-19
JP2006-341590 2006-12-19
JP2006-347841 2006-12-25
JP2006347841A JP5082431B2 (ja) 2006-12-25 2006-12-25 防振機能を有する変倍光学系、撮像装置、変倍光学系の変倍方法
JP2007177530A JP5130806B2 (ja) 2006-07-21 2007-07-05 変倍光学系、撮像装置、変倍光学系の変倍方法
JP2007177540A JP5358902B2 (ja) 2006-12-19 2007-07-05 防振機能を有する変倍光学系、撮像装置
JP2007-177540 2007-07-05
JP2007-177530 2007-07-05

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/303,305 A-371-Of-International US20090231708A1 (en) 2006-07-21 2007-07-12 Zoom lens system, imaging apparatus, and method for zooming the zoom lens system
US13/090,936 Continuation US20110194191A1 (en) 2006-07-21 2011-04-20 Zoom lens system, imaging apparatus, and method for zooming the zoom lens system

Publications (1)

Publication Number Publication Date
WO2008010563A1 true WO2008010563A1 (fr) 2008-01-24

Family

ID=40404371

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/064300 WO2008010563A1 (fr) 2006-07-21 2007-07-12 Système optique à puissance variable, dispositif d'imagerie, procédé d'agrandissement variable d'un système optique à puissance variable

Country Status (4)

Country Link
US (4) US20090231708A1 (ja)
EP (1) EP2045639A4 (ja)
CN (2) CN102608736A (ja)
WO (1) WO2008010563A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010141441A (ja) * 2008-12-09 2010-06-24 Fujitsu Ltd パラレル−シリアル変換器及びデータ受信システム
US7961409B2 (en) 2007-06-29 2011-06-14 Nikon Corporation Zoom lens system, optical apparatus, and method for zooming
US8144403B2 (en) 2007-06-29 2012-03-27 Nikon Corporation Zoom lens system, optical apparatus, and method for zooming
US10437026B2 (en) 2006-07-21 2019-10-08 Nikon Corporation Zoom lens system, imaging apparatus, and method for zooming the zoom lens system

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008075539A1 (ja) * 2006-12-20 2008-06-26 Konica Minolta Opto, Inc. 変倍光学系、撮像装置及びデジタル機器
JP5544731B2 (ja) * 2009-03-17 2014-07-09 株式会社ニコン 撮影レンズ、及び、この撮影レンズを備えた光学機器
JP5493942B2 (ja) 2009-12-15 2014-05-14 ソニー株式会社 撮像装置と撮像方法
CN108037631A (zh) * 2010-12-17 2018-05-15 株式会社尼康 光学系统
WO2012086154A1 (ja) * 2010-12-22 2012-06-28 パナソニック株式会社 ズームレンズ系、交換レンズ装置及びカメラシステム
JP5676505B2 (ja) * 2011-04-07 2015-02-25 パナソニックIpマネジメント株式会社 ズームレンズ系、撮像装置及びカメラ
JP2013015778A (ja) * 2011-07-06 2013-01-24 Konica Minolta Advanced Layers Inc ズームレンズ,撮像光学装置及びデジタル機器
CN102880867B (zh) * 2011-09-06 2015-10-28 友尼嗯可缪尼体有限公司 光学指纹采集装置
CN103176263B (zh) * 2013-02-20 2015-10-28 福建福光股份有限公司 三百万像素日夜两用P-iris镜头
JP2015004880A (ja) * 2013-06-21 2015-01-08 オリンパスイメージング株式会社 ズームレンズ及びそれを有する撮像装置
JP5781244B2 (ja) 2013-06-21 2015-09-16 オリンパス株式会社 ズームレンズ及びそれを有する撮像装置
CN103389563B (zh) * 2013-08-15 2015-06-17 福建福光数码科技有限公司 Cs接口塑料结构超清摄像镜头
JP2015121768A (ja) 2013-11-21 2015-07-02 株式会社ニコン ズームレンズ、光学機器及びズームレンズの製造方法
WO2016069418A1 (en) * 2014-10-27 2016-05-06 Alex Ning Wide - angle lenses with low distortion
JP2016126282A (ja) * 2015-01-08 2016-07-11 株式会社タムロン 広角ズームレンズ及び撮像装置
WO2016121939A1 (ja) 2015-01-30 2016-08-04 株式会社ニコン 変倍光学系、光学機器及び変倍光学系の製造方法
JP2018010219A (ja) 2016-07-15 2018-01-18 株式会社ニコン 変倍光学系、光学機器及び変倍光学系の製造方法
JP6798296B2 (ja) * 2016-12-09 2020-12-09 株式会社リコー 変倍光学系
CN109975949B (zh) * 2017-12-27 2021-02-19 青岛海信激光显示股份有限公司 一种投影镜头及投影系统
JP6820878B2 (ja) * 2018-03-29 2021-01-27 富士フイルム株式会社 ズームレンズ及び撮像装置
CN109194877B (zh) * 2018-10-31 2021-03-02 Oppo广东移动通信有限公司 图像补偿方法和装置、计算机可读存储介质和电子设备
CN109298584B (zh) * 2018-12-04 2021-04-02 深圳小象光显有限公司 投影镜头及投影机
CN113348397B (zh) * 2019-01-28 2022-09-20 株式会社尼康 变倍光学系统以及光学设备
CN114467047B (zh) * 2019-10-08 2023-04-28 华为技术有限公司 光学装置、成像装置及移动设备
TWI768422B (zh) * 2020-07-31 2022-06-21 大立光電股份有限公司 影像鏡片組、變焦取像裝置及電子裝置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09113808A (ja) * 1995-10-20 1997-05-02 Nikon Corp ズームレンズ
JPH11174329A (ja) 1997-12-15 1999-07-02 Canon Inc 防振機能を有した変倍光学系
JP2001183585A (ja) * 1999-12-22 2001-07-06 Canon Inc 防振ズームレンズ
JP2004061910A (ja) 2002-07-30 2004-02-26 Canon Inc 防振機能を備えたズームレンズ
US20050013015A1 (en) 2003-07-17 2005-01-20 Nikon Corporation Zoom lens system
JP2006113573A (ja) * 2004-09-17 2006-04-27 Pentax Corp ズームレンズ系

Family Cites Families (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5895315A (ja) * 1981-11-30 1983-06-06 Minolta Camera Co Ltd 広角域を含む高変倍率ズ−ムレンズ系
JPS63281113A (ja) 1987-05-13 1988-11-17 Matsushita Electric Ind Co Ltd ズ−ムレンズ
JP2629904B2 (ja) 1988-11-18 1997-07-16 キヤノン株式会社 リヤーフォーカス式のズームレンズ
US5000550A (en) * 1989-01-30 1991-03-19 Canon Kabushiki Kaisha Wide-angle type zoom lens having inner-focus lens
JPH04235514A (ja) 1991-01-11 1992-08-24 Nikon Corp 超広角ズームレンズ
JPH04235515A (ja) 1991-01-11 1992-08-24 Nikon Corp 超広角ズームレンズ
US5329401A (en) 1991-01-11 1994-07-12 Nikon Corporation Super wide angle zoom lens
JP3042107B2 (ja) 1991-11-13 2000-05-15 ミノルタ株式会社 ズームレンズ
JP3018742B2 (ja) 1992-05-11 2000-03-13 キヤノン株式会社 ズームレンズ
JPH06180423A (ja) 1992-12-15 1994-06-28 Nikon Corp ズームレンズ系
US5517361A (en) 1992-12-11 1996-05-14 Nikon Corporation Zoom lens system
JPH07152002A (ja) 1993-11-29 1995-06-16 Nikon Corp 防振機能を備えたズームレンズ
JPH07287168A (ja) 1994-04-19 1995-10-31 Nikon Corp 高変倍率ズームレンズ
US5585970A (en) 1994-04-19 1996-12-17 Nikon Corporation Zoom lens with high zoom ratio
JPH08106048A (ja) 1994-10-06 1996-04-23 Canon Inc ズームレンズ
US5774267A (en) * 1995-10-20 1998-06-30 Nikon Corporation Zoom lens
US5999329A (en) * 1995-12-26 1999-12-07 Nikon Corporation Variable focal length optical system
JPH09211323A (ja) 1996-02-07 1997-08-15 Konica Corp 有限距離用ズームレンズ
JP3926411B2 (ja) 1996-07-09 2007-06-06 リコー光学株式会社 カラープロジェクタ用ズームレンズ
JPH1039210A (ja) * 1996-07-24 1998-02-13 Nikon Corp ズームレンズ
JP3362613B2 (ja) 1996-10-30 2003-01-07 ミノルタ株式会社 ズームレンズ
US5914820A (en) 1996-10-30 1999-06-22 Minolta Co., Ltd. Zoom lens system
US5805351A (en) 1997-03-13 1998-09-08 Nikon Corporation High speed wide angle zoom lens system
US5963377A (en) * 1997-10-02 1999-10-05 Minolta Co., Ltd. Taking optical system for video shooting
JP2000241704A (ja) * 1999-02-18 2000-09-08 Asahi Optical Co Ltd ズームレンズ系
JP4392901B2 (ja) * 1999-05-26 2010-01-06 キヤノン株式会社 ズームレンズ
JP2001116992A (ja) 1999-10-18 2001-04-27 Canon Inc ズームレンズ
JP4672827B2 (ja) 2000-01-28 2011-04-20 株式会社栃木ニコン ズームレンズ及び該ズームレンズを備える投射型表示装置
JP2002244044A (ja) * 2001-02-19 2002-08-28 Canon Inc ズームレンズ及びそれを用いた光学機器
JP3503631B2 (ja) * 2001-04-27 2004-03-08 セイコーエプソン株式会社 投映用ズームレンズ及びこれを備えたプロジェクター
US6721105B2 (en) * 2001-12-12 2004-04-13 Nikon Corporation Zoom lens system
JP2003215455A (ja) 2002-01-25 2003-07-30 Canon Inc ズームレンズ及びそれを有する投影装置
JP4360086B2 (ja) 2002-12-27 2009-11-11 株式会社ニコン ズームレンズ
JP4366091B2 (ja) 2003-02-04 2009-11-18 キヤノン株式会社 ズームレンズ
JP4206769B2 (ja) * 2003-02-10 2009-01-14 セイコーエプソン株式会社 投映用ズームレンズ及びこれを備えたプロジェクター
JP4325209B2 (ja) 2003-02-13 2009-09-02 株式会社ニコン 可変焦点距離レンズ系
JP3786103B2 (ja) * 2003-05-02 2006-06-14 セイコーエプソン株式会社 半導体装置、電子デバイス、電子機器および半導体装置の製造方法
JP4324508B2 (ja) 2003-05-06 2009-09-02 Hoya株式会社 広角ズームレンズ系
US7106520B2 (en) 2003-05-06 2006-09-12 Pentax Corporation Wide-angle zoom lens system
JP2005106948A (ja) 2003-09-29 2005-04-21 Canon Inc 投射光学系及び画像投射装置
CN1297835C (zh) 2003-08-11 2007-01-31 佳能株式会社 变焦光学系统、投影光学系统及使用该系统的图像投影装置
JP4289958B2 (ja) * 2003-09-19 2009-07-01 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP4507543B2 (ja) 2003-09-29 2010-07-21 株式会社ニコン ズームレンズ
JP4642386B2 (ja) 2004-06-09 2011-03-02 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
US7075730B2 (en) 2004-06-25 2006-07-11 Canon Kabushiki Kaisha Zoom lens system and image pickup apparatus including the same
JP4819414B2 (ja) 2004-06-25 2011-11-24 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
US7307794B2 (en) * 2004-09-17 2007-12-11 Pentax Corporation Zoom lens system
JP4681842B2 (ja) 2004-09-30 2011-05-11 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP4738823B2 (ja) 2005-01-31 2011-08-03 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP4820587B2 (ja) * 2005-06-29 2011-11-24 Hoya株式会社 広角ズームレンズ系
JP4834360B2 (ja) 2005-09-12 2011-12-14 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP4876510B2 (ja) 2005-09-28 2012-02-15 株式会社ニコン ズームレンズ
US7333273B2 (en) * 2006-03-24 2008-02-19 Nikon Corporation Zoom lens system, imaging apparatus and method for varying focal length
US20090231708A1 (en) 2006-07-21 2009-09-17 Satoru Shibata Zoom lens system, imaging apparatus, and method for zooming the zoom lens system
JP5407119B2 (ja) * 2007-06-29 2014-02-05 株式会社ニコン 変倍光学系、光学装置、変倍光学系の変倍方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09113808A (ja) * 1995-10-20 1997-05-02 Nikon Corp ズームレンズ
JPH11174329A (ja) 1997-12-15 1999-07-02 Canon Inc 防振機能を有した変倍光学系
JP2001183585A (ja) * 1999-12-22 2001-07-06 Canon Inc 防振ズームレンズ
JP2004061910A (ja) 2002-07-30 2004-02-26 Canon Inc 防振機能を備えたズームレンズ
US20050013015A1 (en) 2003-07-17 2005-01-20 Nikon Corporation Zoom lens system
JP2006113573A (ja) * 2004-09-17 2006-04-27 Pentax Corp ズームレンズ系

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2045639A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10437026B2 (en) 2006-07-21 2019-10-08 Nikon Corporation Zoom lens system, imaging apparatus, and method for zooming the zoom lens system
US7961409B2 (en) 2007-06-29 2011-06-14 Nikon Corporation Zoom lens system, optical apparatus, and method for zooming
US8144403B2 (en) 2007-06-29 2012-03-27 Nikon Corporation Zoom lens system, optical apparatus, and method for zooming
JP2010141441A (ja) * 2008-12-09 2010-06-24 Fujitsu Ltd パラレル−シリアル変換器及びデータ受信システム

Also Published As

Publication number Publication date
EP2045639A1 (en) 2009-04-08
US20110194191A1 (en) 2011-08-11
US10437026B2 (en) 2019-10-08
CN102608736A (zh) 2012-07-25
US20140085732A1 (en) 2014-03-27
CN101490594B (zh) 2012-05-16
CN101490594A (zh) 2009-07-22
EP2045639A4 (en) 2012-06-13
US20090231708A1 (en) 2009-09-17
US20120275032A1 (en) 2012-11-01

Similar Documents

Publication Publication Date Title
WO2008010563A1 (fr) Système optique à puissance variable, dispositif d&#39;imagerie, procédé d&#39;agrandissement variable d&#39;un système optique à puissance variable
JP5130806B2 (ja) 変倍光学系、撮像装置、変倍光学系の変倍方法
JP5358902B2 (ja) 防振機能を有する変倍光学系、撮像装置
JP5263589B2 (ja) ズームレンズ系、このズームレンズ系を備えた光学機器、及び、ズームレンズ系を用いた変倍方法
JP5458477B2 (ja) 変倍光学系、光学装置、変倍光学系の変倍方法
CN107850763B (zh) 变倍光学系统以及光学装置
JP5176410B2 (ja) 変倍光学系、光学装置、変倍光学系の変倍方法
JP5257734B2 (ja) ズームレンズ、これを搭載する光学機器および結像方法
JP5510876B2 (ja) ズームレンズ、及び、このズームレンズを備えた光学機器
JP5212898B2 (ja) ズームレンズ、このズームレンズを備えた光学機器、及び、ズームレンズの製造方法
JP5115834B2 (ja) ズームレンズ、光学機器、および結像方法
JP2019148827A (ja) ズームレンズ、および光学機器
JP5344291B2 (ja) ズームレンズ、光学機器及びズームレンズの製造方法
JP5403315B2 (ja) ズームレンズ系、及び、このズームレンズ系を備えた光学機器
JP5115065B2 (ja) ズームレンズ、光学機器、ズームレンズの変倍方法
JP5428775B2 (ja) 広角レンズ、撮像装置、広角レンズの製造方法
JP5510784B2 (ja) ズームレンズ、光学機器
JP5403316B2 (ja) ズームレンズ系、及び、このズームレンズ系を備えた光学機器
JP2007219318A (ja) ズームレンズとこれを具備する光学装置
JP5082431B2 (ja) 防振機能を有する変倍光学系、撮像装置、変倍光学系の変倍方法
JP5277625B2 (ja) マクロレンズ、光学装置、マクロレンズのフォーカシング方法、マクロレンズの防振方法
JP2015031951A (ja) ズームレンズ、光学装置、ズームレンズの製造方法
CN113366362B (zh) 变倍光学系统以及光学设备
JP5386868B2 (ja) ズームレンズ、光学機器
JP5445040B2 (ja) 広角レンズ、撮像装置、広角レンズの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780027520.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07791042

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007791042

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12303305

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU