WO2007148625A1 - カップリングレンズ、光学ヘッドおよび光ディスク装置 - Google Patents

カップリングレンズ、光学ヘッドおよび光ディスク装置 Download PDF

Info

Publication number
WO2007148625A1
WO2007148625A1 PCT/JP2007/062124 JP2007062124W WO2007148625A1 WO 2007148625 A1 WO2007148625 A1 WO 2007148625A1 JP 2007062124 W JP2007062124 W JP 2007062124W WO 2007148625 A1 WO2007148625 A1 WO 2007148625A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
wavelength
optical
light
coupling
Prior art date
Application number
PCT/JP2007/062124
Other languages
English (en)
French (fr)
Inventor
Fumitomo Yamasaki
Sadao Mizuno
Katsuhiko Hayashi
Hideki Aikoh
Original Assignee
Panasonic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corporation filed Critical Panasonic Corporation
Priority to US12/305,784 priority Critical patent/US7952979B2/en
Priority to JP2008522430A priority patent/JP4880686B2/ja
Publication of WO2007148625A1 publication Critical patent/WO2007148625A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • G11B7/1376Collimator lenses
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • G11B7/1378Separate aberration correction lenses; Cylindrical lenses to generate astigmatism; Beam expanders
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/139Numerical aperture control means
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1392Means for controlling the beam wavefront, e.g. for correction of aberration
    • G11B7/13922Means for controlling the beam wavefront, e.g. for correction of aberration passive
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1392Means for controlling the beam wavefront, e.g. for correction of aberration
    • G11B7/13925Means for controlling the beam wavefront, e.g. for correction of aberration active, e.g. controlled by electrical or mechanical means
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B2007/0003Recording, reproducing or erasing systems characterised by the structure or type of the carrier
    • G11B2007/0006Recording, reproducing or erasing systems characterised by the structure or type of the carrier adapted for scanning different types of carrier, e.g. CD & DVD
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • G11B2007/13727Compound lenses, i.e. two or more lenses co-operating to perform a function, e.g. compound objective lens including a solid immersion lens, positive and negative lenses either bonded together or with adjustable spacing

Definitions

  • the present invention includes an optical head that includes a plurality of light sources having different wavelengths and optically records or reproduces information on and from an information recording medium such as a plurality of types of optical disks, and an optical disk including the optical head. Relates to the device.
  • CD Compact Disc
  • BD Blu-ray Discs
  • BD is a blue-violet laser light source with a wavelength of about 400 nm and an objective lens whose numerical aperture (NA) is increased to 0.85. Information is recorded or reproduced. It is a 1mm optical disc.
  • Protective substrate thickness means the thickness of the transparent layer (protective substrate) existing between the surface of the optical disk on the laser beam incident side and the information recording layer.
  • an HD DVD with a protective substrate thickness of 0.6 mm using a blue-violet laser light source having a wavelength of about 400 nm and an objective lens with a numerical aperture of 0.65 has been put into practical use.
  • Optical discs that record or play back using these blue-violet laser light sources are collectively referred to as high-density optical discs.
  • Patent Document 1 discloses an optical head that emits laser light having three wavelengths of about 405 nm, about 655 nm, and about 785 nm.
  • the objective lens mounted on this optical head has high optical performance. Specifically, this objective lens has diffraction-limited performance in optical disks with different protective substrate thicknesses.
  • FIG. 25 shows a configuration of the objective lens 101 described in Patent Document 1.
  • the objective lens 101 includes a reference lens 101a made of a glass material and a contact lens 101b made of a resin material.
  • the contact lens 101b is formed of a material different from that of the reference lens 101a, and is bonded or adhered to the surface of the reference lens 101a on the optical disc side in close contact or almost in close contact. According to Patent Document 1, such an objective lens 101 can record or reproduce a high-density optical disc, DVD, or CD using blue-violet laser light.
  • This objective lens uses the difference between the refractive index and dispersion of the reference lens and the contact lens, and compensates for aberrations for two or three different wavelengths only by the refractive power of the lens. Therefore, compared to an objective lens using diffraction, it has a feature that it can obtain high light use efficiency for all wavelengths with almost no loss of light quantity.
  • an optical head having an objective lens without using a reference lens and a contact lens is also known. Specifically, it is an optical head in which a diffraction grating is provided on the lens surface of one objective lens. This optical head uses light diffraction to focus laser light of three wavelengths onto the information recording surface of an optical disc having a different protective substrate thickness.
  • an optical head having a coupling lens having a diffraction function between a light source and an objective lens has been developed.
  • Patent Document 1 International Publication No. 2004Z053557 Pamphlet
  • Examples 6 and 7 of Patent Document 1 an example of a design of an objective lens with good chromatic dispersion compensation performance is shown.
  • This objective lens has both a reference lens and a contact lens made of glass. It is a material, and there is no mention of its specific method of making. In reality, it is difficult to form an objective lens by bonding two glass lenses with high precision and then bonding the bonded glass.
  • Example 7 of Patent Document 1 shows that laser light is incident on an objective lens as divergent light when recording or reproducing a CD and a DVD.
  • the object distance of a CD is 19.5 mm, which is very small and it is very difficult to construct a realistic optical head. Actually, there is no mention of the specific configuration of the optical head.
  • the object point distance of each of the three wavelengths is different, so that the configuration of the arrangement of the light emitting points and the light receiving points of each wavelength on the optical head is complicated. Is assumed. However, there is no mention of such issues.
  • the object distances of CD and DVD are 20 mm and 38 mm, respectively, which are very small. The configuration of such an optical head is not disclosed, and its realization is unknown.
  • the working distance (WD) of the objective lens with respect to the CD has a larger viewpoint power for avoiding a collision between the objective lens and the optical disc.
  • the working distance of the objective lens is only about 0.38 mm at most.
  • An object of the present invention is to focus three different wavelengths of laser light on an information recording surface of an optical disk having a different protective substrate thickness by using one objective lens, and to obtain a high-density optical disk, DVD, It is to realize an optical head and an optical disk apparatus that can compensate for various aberrations including the time of wavelength fluctuation and obtain good recording or reproducing performance with respect to a CD with a feasible optical system.
  • the coupling lens according to the present invention is incorporated in an optical head for condensing laser beams of different wavelengths emitted from a plurality of light sources on information recording surfaces of different types of optical information recording media.
  • the coupling lens includes a first lens and a second lens that are designed so that the optical axes of the coupling lenses are substantially in contact with each other and the laser beams having different wavelengths are refracted on the contact surface.
  • the laser beam having a different wavelength is afocal for the shortest wavelength.
  • the coupling lens includes three lens surfaces that intersect the optical axis, and a first lens surface that is a lens surface of the first lens on the side not facing the second lens, substantially A second lens surface that forms a contact surface between the first lens and the second lens that are closely contacted, and a third lens that is the lens surface of the second lens on the side facing the first lens. And at least one lens surface of the first lens surface, the second lens surface, and the third lens surface is formed in an aspherical shape. [0024] Of the effective regions of at least one lens surface of the first lens surface, the second lens surface, and the third lens surface, a first effective region including an optical axis and around the first region It may be formed in an aspherical shape different from the second effective area located.
  • an aspheric coefficient used to define the shape of the first effective area may be different.
  • the first effective area and the second effective area may be formed in different aspheric shapes. ,.
  • the first lens may function as a concave lens
  • the second lens may function as a convex lens
  • the first lens and the second lens may be bonded or bonded.
  • a holder for holding the first lens and the second lens substantially in close contact with each other may be further provided.
  • the first lens and the second lens may be formed of different resin materials.
  • An optical step may be provided on the first lens surface.
  • One of the first lens and the second lens may be formed of a glass material and the other may be formed of a resin material.
  • One of the first lens and the second lens may be formed of an ultraviolet curable resin.
  • the glass transition temperature of the resin material may be 300 degrees or less.
  • the first lens and the second lens may be formed of different glass materials.
  • the difference between the glass transition temperature of the glass material of the first lens and the glass transition temperature of the glass material of the second lens may be 200 degrees or more.
  • An optical head includes a plurality of light sources that emit laser beams of different wavelengths, an objective lens, and an optical path disposed between the plurality of light sources and the objective lens.
  • a coupling lens, and the objective lens and the coupling lens condense laser beams having different wavelengths onto information recording surfaces of different types of optical information recording media.
  • the plurality of light sources include a first light source that emits laser light having a wavelength ⁇ 1, a second light source that emits laser light having a wavelength ⁇ 2, and a third light source that emits laser light having a wavelength of 3
  • the wavelength ⁇ 1, the wavelength ⁇ 2, and the wavelength ⁇ 3 may satisfy 350 nm ⁇ 1 ⁇ 450 nm, 60 Onm ⁇ 2, 700 nm, and 750 nm ⁇ 3 850 nm.
  • the coupling lens may correct chromatic aberration of the objective lens that occurs with a wavelength variation of the wavelength ⁇ 1.
  • the Abbe number expressed using the refractive index of (wavelength 656.27 nm) is v dl
  • the Abbe number expressed using the refractive index of the d-line, F-line, and C-line of the second lens is V d2
  • the Abbe number V dl and the Abbe number V d2 may satisfy V dl ⁇ V d2.
  • the optical head may further include a conversion unit that converts the laser light into substantially parallel light, divergent light, or convergent light according to the wavelength of the laser light and enters the objective lens. Yes.
  • the conversion unit is based on a collimator lens that causes at least the laser light having the wavelength ⁇ 1 to enter the objective lens as substantially parallel light, and a drive signal corresponding to the wavelength of the emitted laser light. And a drive unit that moves the collimating lens in the optical axis direction.
  • the conversion unit corrects the spherical aberration by moving the collimating lens along the optical axis direction.
  • the optical head further includes an actuator having a movable part that is physically coupled to the objective lens and changes a position of the objective lens, and the coupling lens includes It may be fixed to the movable part of the actuator and move integrally with the objective lens.
  • the optical drive of the present invention includes any one of the optical heads described above, a motor for rotationally driving the optical recording medium, and a control unit that controls the optical head and the motor.
  • an optical head having diffraction-limited performance and excellent chromatic dispersion compensation performance for high-density optical discs such as BD, DVD, and CD. Obtainable.
  • an optical disc apparatus equipped with such an optical head has excellent recording / reproducing performance due to the above-described performance.
  • the coupling lens according to the present invention When the coupling lens according to the present invention is employed, the configuration of the optical head is simplified, and the optical head can be downsized. As a result, an optical disk device equipped with such an optical head can also be reduced in size and thickness.
  • the coupling lens according to the present invention can be formed of a resin material, it is easy to mold and can be manufactured at low cost.
  • FIG. 1 is a schematic configuration diagram of an optical head 20 according to Embodiment 1.
  • FIG. 2 is a diagram showing a state of an optical path in the optical head 20 when the optical disc is a DVD 70.
  • FIG. 3 is a diagram showing a state of an optical path in the optical head 20 when the optical disc is CD80.
  • FIG. 4 is a schematic configuration diagram of a coupling lens 8. [FIG. 5] (a) to (c) focus the laser beams on the information recording layers of BD60, DVD70, and CD80, respectively, using the coupling lens 8 and the objective lens 1 of the present embodiment. It is a figure which shows the state of the light beam of time.
  • FIG. 6 is a wavefront aberration diagram when a laser beam having a wavelength of 405 nm is focused on BD60.
  • FIG. 7 is a wavefront aberration diagram when a laser beam having a wavelength of 655 nm is focused on a DVD 70.
  • FIG. 8 is a wavefront aberration diagram when a laser beam having a wavelength of 785 nm is focused on CD80.
  • FIG. 9 is an RMS wavefront aberration diagram with the incident light angle on the horizontal axis.
  • FIG. 10 (a) and (b) are diagrams showing a schematic configuration of the collimating lens 6 and a driving mechanism for driving the collimating lens 6 in the optical axis direction.
  • FIG. 11 is a diagram showing the state of light rays when the collimating lens 6 is driven in the optical axis direction.
  • FIG. 12 is a schematic configuration diagram of an optical head 30 according to Embodiment 2.
  • FIG. 13 is a diagram showing a state of an optical path in the optical head 30 when the optical disc is a DVD 70.
  • FIG. 14 is a diagram showing the state of the optical path in the optical head 30 when the optical disc is CD80.
  • FIG. 15 is a schematic configuration diagram of a coupling lens 18 according to Embodiment 2.
  • FIG. 16 (a) to (c) focus the laser beams on the information recording layers of BD60, DVD70, and CD80, respectively, using the coupling lens 8 and the objective lens 1 of Embodiment 2. It is a figure which shows the state of the light beam of time.
  • FIG. 17 is a wavefront aberration diagram when a laser beam having a wavelength of 405 nm is focused on BD60.
  • FIG. 18 is a wavefront aberration diagram when a laser beam having a wavelength of 655 nm is focused on a DVD 70.
  • FIG. 19 is a wavefront aberration diagram when a laser beam having a wavelength of 785 nm is focused on CD80.
  • FIG. 20 RMS wavefront aberration diagram with the incident light angle on the horizontal axis.
  • FIG. 21 (a) to (d) are wavefront aberration diagrams when the blue-violet laser beam is focused on BD60.
  • FIG. 22 is a view showing a coupling lens 18 having a phase step.
  • FIG. 23 is a diagram showing a cross-sectional shape of a phase step surface by a plane perpendicular to the optical axis.
  • FIG. 24 is a schematic configuration diagram of an optical disc device 50 according to Embodiment 3.
  • FIG. 25 is a diagram showing a configuration of a conventional objective lens 101. Explanation of symbols
  • the optical head is mounted on an optical disc device (optical disc drive), and records information on the optical disc by irradiating the optical disc with one of three wavelengths of laser light according to the type of the optical disc, or reads out the optical disc force information.
  • optical disc device optical disc drive
  • optical disks are BD, DVD, and CD. For simplicity of explanation, it is assumed below that there is only one information recording layer.
  • the protective substrate thickness of the BD is about 0.1 mm.
  • the wavelength of laser light used for recording information on BD and reproducing information from Z or BD is about 405 nm.
  • the numerical aperture NA of the objective lens 1 corresponding to BD is 0.85.
  • the protective substrate thickness of the DVD is about 0.6 mm.
  • the wavelength of the laser beam corresponding to DVD is about 655 nm.
  • the protective substrate thickness of CD is about 1.2 mm.
  • the wavelength of the laser beam corresponding to CD is about 785 nm.
  • the wavelength of the laser beam corresponding to BD, DVD, and CD is specified by the respective reference wavelengths (405 nm, 655 nm, and 785 nm).
  • all of the three-wavelength laser beams are irradiated onto the optical disk from the common objective lens.
  • the optical head according to the present invention is provided with a coupling lens.
  • the blue-violet laser light is focused on the BD information recording layer only by the refractive effect of the coupling lens and the objective lens. Since no diffraction grating is provided, the transmission efficiency of laser light is maintained near 100%. As a result, the laser power required for recording or reproducing information can be suppressed. In particular, when recording information, higher power is required than during playback, which is effective in reducing power consumption.
  • the objective lens provided with a diffraction grating cannot improve the transmission efficiency in a balanced manner for all wavelengths. This is because when a laser beam of each wavelength is bundled on each information recording layer of CD, DVD and BD, a diffraction efficiency of nearly 100% cannot be obtained for all wavelengths. It is possible to set the diffraction efficiency of BD close to 100%. As a result, for example, the diffraction efficiency of DVD may be 50% or less.
  • the amount of light not only decreases when irradiated with laser light, but also decreases when receiving laser light reflected by an optical disk, so that the necessary amount of reflected light is secured. Therefore, the laser power must be set high. Therefore, an objective lens is preferable without using a diffraction grating.
  • the coupling lens of the present invention when used, it is possible to reduce the variation of chromatic aberration generated in the objective lens with respect to the variation of the wavelength of the laser beam, particularly for the blue-violet laser beam. Highly effective. Therefore, for example, even if the wavelength of the blue-violet laser beam fluctuates when the reproducing operation is switched to the recording operation, the objective lens according to the present invention is not easily affected by this. Therefore, it is possible to always realize an accurate recording / playback operation. In particular, failure to record is likely to cause fatal data loss, so it is extremely important to be able to achieve accurate recording operations. Therefore, the combination of the coupling lens and the objective lens of the present invention is preferable.
  • FIG. 1 is a schematic configuration diagram of an optical head 20 according to the present embodiment.
  • the optical head 20 includes an objective lens 1, a light source 2, a beam splitter 3, a relay lens 4, It has a dichroic prism 5, a collimating lens 6, an aperture limiting element 7, a coupling lens 8, a light receiving element 9, and a light receiving / emitting integrated element 10.
  • the light source 2 emits blue-violet laser light
  • the light receiving and emitting integrated element 10 includes a light source that emits red laser light and a light source that emits infrared laser light.
  • the light receiving / emitting integrated element 10 is also integrated with an element that receives each light reflected by the CD and DVD.
  • the “light source” means an independent light source that emits each of blue-violet laser light, red laser light, and infrared laser light. Force capable of grasping the light receiving / emitting integrated element 10 as a single light source as a whole In the present embodiment, it is assumed that two light sources are provided.
  • the dichroic prism 5 reflects light of a predetermined wavelength or less.
  • the light receiving element 9 receives blue-violet laser light.
  • the coupling lens 8 is held by a movable part (not shown) of a two-axis actuator that drives the objective lens 1 and is driven integrally with the objective lens 1 in the focus direction and the tracking direction.
  • BD60 is shown for reference.
  • the blue-violet laser beam having a wavelength of 405 nm emitted from the light source 2 passes through the beam splitter 3 and the relay lens 4. Further, after being reflected by the dichroic prism 5, it is converted into substantially parallel light by the collimating lens 6, and the aperture is limited by the aperture limiting element 7 so that NA becomes 0.85, and then transmitted through the coupling lens 8. Then, it is condensed as a light spot by the objective lens 1 on the information recording surface of the BD60 through the protective substrate.
  • the laser light reflected on the information recording surface of the BD60 is transmitted again through the objective lens 1, the coupling lens 8, the aperture limiting element 7, and the collimating lens 6, reflected by the dichroic prism 5, and transmitted through the relay lens 4. After that, it is reflected by the beam splitter 3 and guided to the light receiving element 9.
  • the operation of the optical head 20 for recording or reproducing information with respect to the DVD 70 will be described with reference to FIG. 2, and then the information recording with respect to the CD 80 will be described with reference to FIG. Alternatively, the operation of the optical head 20 that performs reproduction will be described.
  • FIG. 2 shows the state of the optical path in the optical head 20 when the optical disc is a DVD 70.
  • the red laser light having a wavelength of 655 nm emitted from the light receiving / emitting integrated element 10 is converted into divergent light by the collimating lens 6 that has passed through the dichroic prism 5 and moved to the objective lens 1 side.
  • the aperture is limited by the aperture limiting element 7 so that NA is 0.60
  • the light passes through the coupling lens 8 and passes through the protective substrate by the objective lens 1 as an optical spot on the information recording surface of the DVD 70. Focused.
  • the laser light reflected from the information recording surface of the DVD 70 is transmitted again through the objective lens 1, the coupling lens 8, the aperture limiting element 7, the collimating lens 6, and the dichroic prism 5, and returns to the light receiving / emitting integrated element 10 to be received.
  • FIG. 3 shows the state of the optical path in the optical head 20 when the optical disc is CD80.
  • Infrared laser light having a wavelength of 785 nm emitted from the light receiving / emitting integrated element 10 passes through the dichroic prism 5 and is converted into divergent light by the collimating lens 6 moved to the light receiving / emitting integrated element 10 side, and the aperture After the aperture is limited by the limiting element 7 so that NA becomes 0.47, the light passes through the coupling lens 8 and is focused as a light spot on the information recording surface of the CD80 by the objective lens 1 through the protective substrate.
  • the laser light reflected from the information recording surface of the CD80 is transmitted again through the objective lens 1, the coupling lens 8, the aperture limiting element 7, the collimating lens 6, and the dichroic prism 5, and returns to the light receiving / emitting integrated element 10 to be received. .
  • FIG. 4 is a schematic configuration diagram of the coupling lens 8.
  • the coupling lens 8 has a first lens 8a and a second lens 8b. When mounted on the optical head 20, the first lens 8a is directed to the collimating lens 6 side, and the second lens 8b is directed to the objective lens 1 side.
  • three lens surfaces that intersect the optical axis are defined for the coupling lens 8. That is, the first surface 81 that is the lens surface of the first lens 8a on the side not facing the second lens 8b, the second surface that forms the contact surfaces of the first lens 8a and the second lens 8b that are substantially in close contact with each other 82 and a third surface 83 which is the lens surface of the second lens 8b on the side not facing the first lens 8a.
  • One of the features of the coupling lens 8 according to the present embodiment is that the first lens 8a and the second lens 8b are substantially in close contact with each other so that their optical axes coincide with each other, and at the close contact surface 82.
  • the blue-violet laser beam, the red laser beam, and the infrared laser beam are refracted, and the coupling lens 8 is designed to be focal with respect to the blue-violet laser beam having the shortest wavelength.
  • “afocal” means that the focal length is infinite.
  • Coupling lens 8 is afocal for blue-violet laser light, which means that for blue-violet laser light, the power of the convex lens and the power of concave lens of coupling lens 8 are approximately equal.
  • the blue-violet laser light is also refracted. Due to the refractive action of the lens, the beam diameter of the incident laser light can be enlarged or reduced and output from the coupling lens 8.
  • the first lens 8a and the second lens 8b are bonded or bonded in close contact or substantially in close contact with each other on the second surface 82.
  • the surface of the first lens 8a bonded or bonded to the second lens 8b and the surface of the second lens 8b bonded or bonded to the first lens 8a have the same or substantially the same aspherical shape. .
  • the first lens 8a and the second lens 8b which are separately molded, can be inserted into a predetermined holder so that both can be held in close contact with each other.
  • the refractive index nd represents the refractive index at the d-line (wavelength 587.56 nm)
  • the Abbe number vd represents the refractive index of the d-line
  • the aspherical shape of the first surface 81, the aspherical shape of the second surface 82, and the aspherical shape of the third surface 83 are determined by the aspherical shape represented by the following equation (1).
  • h is the distance from the vertex on the optical axis in the direction perpendicular to the optical axis
  • R is the radius of curvature
  • k is the conic constant
  • Z is the distance (sag) in the optical axis direction from the tangent plane of the apex determined by h, R, k, and Ai, and the curve determined by the value of Z gives the aspheric cross-sectional shape of each surface.
  • the objective lens 1 used in combination with the coupling lens 8 has a spherical aberration of substantially zero when collimated light with a wavelength of 405 nm is incident on BD60 with a protective layer thickness of 0.0875 mm.
  • Focal length of 2.3mm is an objective lens.
  • the protective layer thickness is 0.1 lm m, slightly divergent light is incident, and when the protective layer thickness is 0.075 mm, slightly convergent light is incident to correct spherical aberration due to the difference in protective layer thickness. can do.
  • the object point distance in (Table 3) is infinity when recording or reproducing BD60, that is, when incident or collimated light is incident and DVD70 is recorded or reproduced.
  • the divergent light of m is incident and the CD80 is recorded or reproduced, it indicates that the divergent light of the object distance + 30 mm is incident.
  • FIGS. 5 (a) to 5 (c) focus the laser beams on the information recording layers of BD60, DVD70, and CD80, respectively, using the coupling lens 8 and the objective lens 1 of the present embodiment. Shows the state of the light beam. When recording or reproducing information, the light beam takes the state shown in each figure.
  • FIG. 5 (a) shows the state of the light beam when a laser beam having a wavelength of 405 nm is condensed by NAO. 85 and focused on BD60 having a protective layer thickness of 0.0875 mm.
  • Fig. 5 (b) shows the state of the light beam when a laser beam with a wavelength of 655 nm is focused by NAO.60 and focused on a DVD 70 having a protective layer thickness of 0.6 mm.
  • Figure 5 (c) shows the state of the light beam when a laser beam with a wavelength of 785 nm is focused by NAO. 47 and focused to a protective layer thickness of 1.2 mm CD80. In either case, the status of when information is recorded or reproduced is shown.
  • FIG. 6 is a wavefront aberration diagram when a laser beam having a wavelength of 405 nm is focused on BD60. Illumination angles 0. Odeg (a) and 0.5 deg (b) are shown.
  • FIG. 7 is a wavefront aberration diagram when a laser beam having a wavelength of 655 nm is focused on the DVD 70
  • FIG. 8 is a wavefront aberration diagram when a laser beam having a wavelength of 785 nm is focused on the CD80.
  • the PX and PY axes shown in Figs. 6 to 8 are axes perpendicular to the optical axis, and the PX axis is perpendicular to the PY axis.
  • the vertical axis shows the wavefront aberration, the minimum of the scale is -1 ⁇ , and the maximum is +1 ⁇ ( ⁇ : wavelength).
  • wavelength
  • FIG. 9 is an RMS (Root Mean Square) wavefront aberration diagram with the incident light angle on the horizontal axis.
  • RMS wavefront aberration refers to the standard deviation (variation) between the ideal wavefront and the actual wavefront.
  • FIG. 9 shows the RMS wavefront convergence when light of wavelength 405 nm is focused on BD60, light of wavelength 655 nm is focused on DVD 70, and light of wavelength 785 nm is focused on CD80.
  • the values of the RMS wavefront aberration are all from 0. Odeg to 0
  • FIGS. 10 (a) and 10 (b) show a schematic configuration of the collimating lens 6 and a driving mechanism that drives the collimating lens 6 in the optical axis direction. In either case, the spread of light differs depending on the position of the different collimating lens 6!
  • the drive mechanism includes a stepping motor 31, a screw shaft 32, a lens holder 33, and a guide 34.
  • the relationship between the number of times of giving a Norse signal and the moving distance The collimating lens 6 can be accurately controlled to an arbitrary position in the optical axis direction.
  • the stepping motor 31 is used, there is an advantage that the configuration for monitoring is unnecessary and the system can be simplified.
  • the collimator lens 6 may be moved in the optical axis direction by another configuration such as an actuator that drives a magnetic circuit or a piezoelectric element, for example.
  • an actuator based on driving of a magnetic circuit or piezoelectric element has a small driving portion, and therefore has an advantage that it is suitable for downsizing of an optical head.
  • FIG. 11 shows the state of light rays when the collimating lens 6 is driven in the optical axis direction.
  • the spherical aberration caused by the difference in the thickness of the protective substrate of BD60 is different from the spherical aberration caused by the difference in the thickness of the protective substrate. It can be corrected by generating a spherical aberration of opposite polarity.
  • the collimating lens 6 is moved to the light source side as shown in FIG. 11 (b) with reference to FIG. 11 (a) in which the light emitted from the collimating lens 6 becomes substantially parallel light.
  • the emitted light from lens 6 becomes divergent light. This makes it possible to correct spherical aberration that occurs when the transparent substrate of BD60 becomes thick.
  • the BD60 is recorded or reproduced by disposing the relay lens 4 on the opposite side of the collimating lens 6, that is, on the light source 2 side, with the dichroic prism 5 interposed therebetween.
  • the optical magnification at the time of recording and the optical magnification at the time of recording or reproducing the DVD 70 and CD 80 can be set to predetermined values, respectively.
  • the optical magnification is set to about 15 times so as to increase the light utilization efficiency while ensuring the necessary rim strength.
  • DVD70 and CD80 it is about 7 times according to the specifications of light receiving and emitting integrated elements widely used for DVD optical head applications.
  • the collimating lens 6 that can be moved in the optical axis direction used for correcting the spherical aberration of the BD60 is made common with the optical system of the DVD70 and the CD80, so that it enters the coupling lens 8.
  • the incident angle (divergence convergence) of the light beam can be switched.
  • the red laser beam for recording or reproducing the DVD70 and the infrared laser beam for recording or reproducing the CD80 are emitted. It is possible to use a light source that can match the points and emit two-wavelength laser light.
  • the light receiving elements that receive the respective laser beams can also be integrated. That is, as in this embodiment, the optical configuration can be simplified by using the two-wavelength light receiving and emitting integrated element 10. Since the above-described integrated light receiving and emitting element is widely used as an optical head application and is available at a low cost, the optical head can be configured at a low cost by adopting the configuration of this embodiment.
  • a force coupling lens is used that can provide good aberration performance when red laser light is incident on the coupling lens 8 as substantially parallel light and infrared laser light is incident on the coupling lens 8 as divergent light. It is also possible.
  • the coupling lens for example, a design capable of obtaining good aberration performance when infrared laser light is incident on the coupling lens with substantially parallel light or convergent light is possible.
  • the position where the output light of the objective lens converges is closer to the objective lens, compared with the case where the light is incident on the coupling lens with divergent light.
  • the working distance (WD) when recording or reproducing information on the CD80 is reduced.
  • it is preferable that the infrared laser light is incident on the coupling lens by diverging light.
  • the NA of the objective lens used in the DVD70 is smaller than the NA of the objective lens used in the BD60, so that the aberration performance is ensured even when incident with convergent or divergent light. Even when it is incident on the coupling lens, it is easy to secure the working distance.
  • blue-violet laser light for recording or reproducing BD60 is incident on the objective lens as substantially parallel light
  • infrared laser light for recording or reproducing CD80 is incident on the objective lens as divergent light. It is preferable to optically configure such that the red laser light that is incident and records or reproduces the DVD 70 is incident on the objective lens as substantially parallel light, divergent light, or convergent light.
  • the collimating lens 6 is moved in the optical axis direction in order to adjust the laser light incident on the objective lens to a divergent state or a convergent state (that is, to convert it into a preferable state).
  • a divergent state or a convergent state that is, to convert it into a preferable state.
  • other means may be adopted.
  • the lens is formed of at least one refractive index distribution variable material, and the refractive index distribution of the refractive index distribution variable material is changed by applying an electric field, a magnetic field, or heat, and the focal length of the lens is changed.
  • the lens may be composed of a plurality of types of incompatible liquids having different refractive indexes.
  • the curvature of the interface of this immiscible liquid can be changed, and thereby the degree of divergence and convergence of the laser beam (in other words, the lens Change the focal length of [0122]
  • the driving part is V, compared to the method of moving the collimating lens in the optical axis direction. Therefore, there is an advantage that the whole can be reduced in size.
  • the wavelength of the laser light source varies depending on the change from the reproducing operation to the recording operation (when the emission power is changed) or the ambient temperature is changed. fluctuate.
  • the shorter the wavelength of the laser beam the greater the influence of fluctuations in the best image point position due to fluctuations in the refractive index of the material of the object lens due to fluctuations in wavelength.
  • Wavefront aberration fluctuation is suppressed to about ⁇ 0.19 ⁇ m.
  • the coupling lens 8 of the present embodiment is composed of a first lens 8a that is a concave lens and a second lens 8b that is a convex lens having a smaller dispersion (that is, a larger Abbe number) than the first lens 8a.
  • the coupling lens 8 corrects the fluctuation of the best image point position generated in the objective lens 1 which is a convex lens in accordance with the wavelength fluctuation in the reverse direction.
  • the coupling lens 8 has a so-called achromatic lens effect.
  • the aperture limiting element 7 is used to reduce the diameter of the light beam incident on the coupling lens 8 (objective lens 1). It is changing.
  • a mechanical aperture or an optical aperture can be used.
  • a mechanical stop there is a configuration in which a plurality of plate-like bodies having a hole with a diameter corresponding to the numerical aperture are prepared and exchanged.
  • an optical stop a wavelength-selective dichroic filter or dichroic prism is used.
  • the present invention is not limited to these.
  • the optical head 20 of the present embodiment is a good optical system for recording / reproducing optical signals corresponding to the three-wavelength light sources of blue-violet laser light, red laser light, and infrared laser light.
  • the optical head using this objective lens can perform good recording or reproduction on, for example, three types of optical disks of BD, DV D, and CD.
  • FIG. 12 is a schematic configuration diagram of the optical head 30 according to the present embodiment.
  • the optical head 30 shown in FIG. 12 is different from the optical head 20 according to Embodiment 1 in the structure of the coupling lens. Since the other components are the same between the optical head 20 and the optical head 30, the same reference numerals are given and the description thereof is omitted below.
  • FIG. 12 shows the state of the optical path in the optical head 30 when the optical disc is BD60.
  • FIG. 13 shows the state of the optical path in the optical head 30 when the optical disc is DVD70.
  • FIG. 14 shows the state of the optical path in the optical head 30 when the optical disc is CD80.
  • the diameters of the laser beams passing through the coupling lens 18 are different from each other.
  • the blue-violet laser beam, the red laser beam, and the infrared laser beam are subjected to different optical actions when passing through the coupling lens 18.
  • FIG. 15 is a schematic configuration diagram of the coupling lens 18 according to the present embodiment.
  • the coupling lens 18 includes a first lens 18a and a second lens 18b. When mounted on the optical head 30, the first lens 18a is directed to the collimating lens 6 side, and the second lens 18b is directed to the objective lens 1 side.
  • Each of the first lens 18a and the second lens 18b has a common region of three wavelengths including the optical axis and a dedicated region of blue-violet wavelength outside the common region.
  • the first surface, the second surface, and the third surface that intersect the optical axis with respect to the coupling lens 18 are defined.
  • the first surface that is the surface of the first lens 18a on the collimating lens 6 side is divided into a common area 181i and a dedicated area 181 ⁇ .
  • the second surface or contact surface that is the surface of the first lens 18a on the objective lens 1 side is divided into a common region 182i and a dedicated region 182 ⁇ .
  • the third surface of the second lens 18b on the objective lens 1 side is divided into a common area 183i and a dedicated area 183 ⁇ .
  • the first lens 18a and the second lens 18b are bonded or bonded in close contact or substantially in close contact with the second surfaces 182i and 182 ⁇ , and bonded or bonded to the second lens 18b of the first lens 18a.
  • the surface that is joined or bonded to the first lens 18a of the second lens 18b has the same or substantially the same aspherical shape. Note that the first lens 8a and the second lens 8b, which are separately molded, can be inserted into a predetermined holder so that both can be held in close contact with each other.
  • the first lens 18a is molded from a resin material (for example, polycarbonate), and the second lens 18b is molded from a glass material (for example, PBK40).
  • a resin material for example, polycarbonate
  • the second lens 18b is molded from a glass material (for example, PBK40).
  • the glass transition temperature of the resin material of the first lens 18a must be lower than the glass transition temperature of the glass material used for the second lens 18b.
  • the glass transition temperature of the resin material of the first lens 18a is preferably 300 degrees or less.
  • the second lens 18b is formed of a glass material PBK40 having excellent optical performance.
  • Glass material PBK40 can be molded at low cost using a mold.
  • the first lens 18a is polycarbonate, which is a resin material, and can be molded at low cost. Furthermore, since the glass transition temperature of the polycarbonate of the first lens 18a is 138 degrees and the glass transition temperature of PBK40 of the second lens 18b is 501 degrees, the first lens 18a is closely molded to the molded second lens 18b. Is possible.
  • the resin material of the first lens 18a has excellent adhesion to the second lens 18b, and has high transmittance, light resistance, and moisture resistance.
  • the first lens 18a and the second lens 18b are made of different glass materials, they have more excellent light resistance and moisture resistance. If there is some difference between the glass transition temperature of the first lens 18a and the glass transition temperature of the second lens 18b, the first lens 18a should be molded from a glass material different from the glass material of the second lens 18b. Is possible. The difference in glass transition temperature is preferably 200 degrees or more, for example. When the first lens 18a and the second lens 18b made of different glass materials are used, it is preferable that the first lens 18a and the second lens 18b are bonded with an adhesive.
  • a so-called photopolymer is applied to the second lens 18b using an ultraviolet curable resin. It is also possible to mold the first lens 18a by the method (2P method). By molding by the photopolymer method, it is not necessary to align the first lens 18a and the second lens 18b.
  • the first lens 18a is closely molded to the molded second lens 18b. Even if the first lens 18a and the second lens 18b are interchanged with each other, the same effect can be obtained.
  • the first lens 18a may be molded from a glass material and the second lens 18b may be molded from a resin material.
  • the aspherical shape of the first surface 181i, 181 ⁇ , the aspherical shape of the second surface 182i, 182 ⁇ , and the aspherical shape of the third surface 1831, 183 ⁇ are the aspherical shapes represented by the above-mentioned equation (1) Determined by.
  • h is the distance from the vertex on the optical axis in the direction perpendicular to the optical axis
  • R is the radius of curvature
  • k is the conic constant
  • Z is the distance (sag) in the optical axis direction of the tangential plane force of the apex determined by h, R, k, and Ai, and the curve determined by this Z value gives the aspheric cross-sectional shape of each surface.
  • equation (1) that gives the aspherical shape, it is not common to use the 0th-order term, but it is treated as one of the aspherical coefficients like the aspherical coefficients of the other terms.
  • Tables 4 to 6 show the specifications of the coupling lens 18.
  • the surface numbers in (Table 4) are surface number 1 for the first surfaces 181i and 181o, surface number 2 for the second surfaces 182i and 182 ⁇ (contact surface), and surface number 3 for the third surfaces 183i and 183 ⁇ . ing. In addition, regarding the surface spacing and material name, the surface spacing and material name between the corresponding surface number and the next surface number are shown.
  • the objective lens 1 used in combination with the coupling lens 18 has substantially the same spherical aberration when collimated light having a wavelength of 405 nm is incident on a BD60 having a protective layer thickness of 0.0875 mm, as in the first embodiment. This is the objective lens with a focal length of 2.3mm, which is zero, exclusive to BD60.
  • the object point distance in (Table 6) is as follows.
  • the object point distance is infinite, that is, when incident parallel light is incident and DVD70 is recorded or reproduced. 1 Indicates that when 20mm convergent light is incident and CD80 is recorded or reproduced, divergent light of object distance + 60mm must be incident.
  • FIGS. 16 (a) to 16 (c) focus the laser beams on the information recording layers of BD60, DVD70, and CD80, respectively, using the coupling lens 18 and the objective lens 1 of the present embodiment. Shows the state of the light beam. When recording or reproducing information, the light beam takes the state shown in each figure.
  • FIG. 16 (a) shows the state of the light beam when a laser beam having a wavelength of 405 nm is collected by NAO.85 and focused on a BD60 having a protective layer thickness of 0.0875 mm.
  • Fig. 16 (b) shows the state of the light beam when a laser beam with a wavelength of 655 nm is focused on NAO.60 and focused on DVD70 with a protective layer thickness of 0.6 mm.
  • Figure 16 (c) shows the state of the light beam when a laser beam with a wavelength of 785 nm is focused at NA 0.47 and focused to a protective layer thickness of 1.2 mm CD80. In either case, it shows the state when information is recorded or reproduced.
  • FIG. 17 is a wavefront aberration diagram when a laser beam having a wavelength of 405 nm is focused on BD60, and shows incident light angles of 0. Odeg (a) and 0.5 deg (b).
  • FIG. 18 is a wavefront aberration diagram when a laser beam having a wavelength of 655 nm is focused on the DVD 70
  • FIG. 19 is a wavefront aberration diagram when a laser beam having a wavelength of 785 nm is focused on the CD80.
  • the PX and PY axes shown in Figs. 17 to 19 are axes perpendicular to the optical axis, and the PX axis is perpendicular to the PY axis.
  • the vertical axis shows the wavefront aberration, the minimum of the scale is 1 ⁇ , and the maximum is +1 ⁇ ( ⁇ : wavelength). As shown in Figs. 17-19, it is certain that the wavefront aberration will be within ⁇ 1 ⁇ even if the incident light angle of the laser beam is changed from 0. Od eg to 0.5 deg. Recognized,
  • FIG. 20 is an RMS wavefront aberration diagram with the incident light angle on the horizontal axis.
  • Figure 20 shows the RMS wavefront aberrations when focusing light of wavelength 405 nm on BD60, focusing light of wavelength 655 nm on DVD70, and focusing light of wavelength 785 nm on CD80. .
  • the variation of the best (minimum) wavefront aberration of the RMS wavefront aberration for the wavelength of 406 m 404 nm is suppressed to about ⁇ 0.
  • the coupling lens 18 of the present embodiment is composed of a first lens 18a that is a concave lens and a second lens 18b that is a convex lens having a smaller dispersion than that of the first lens 18a, that is, a large Abbe number. This is because the fluctuation of the best image point position generated by the objective lens 1 which is a convex lens due to the wavelength fluctuation is corrected in the reverse direction by the coupling lens 18.
  • the chromatic aberration correction element may be a diffractive element inserted in the optical path, or a collimating lens may be used as an achromatic lens.
  • FIGS. 21 (a) to 21 (d) show wavefront aberration diagrams when the blue-violet laser beam is focused on BD60.
  • the PX axis represents an axis perpendicular to the optical axis.
  • the vertical axis shows the wavefront aberration, the minimum of the scale is -1 ⁇ , and the maximum is +1 ⁇ .
  • FIG. 21 (a) shows a wavefront convergence diagram when a laser beam having a design wavelength of 405 nm is focused on the BD60. Wavefront aberration shows good characteristics.
  • Fig. 21 (b) shows a wavefront aberration diagram when a laser beam having a wavelength of 410 nm with a shifted design wavelength force is focused on the BD60.
  • a higher-order spherical aberration occurs.
  • the third-order spherical aberration can be corrected by moving the collimating lens 6 to the light source side and causing divergent light to enter the coupling lens 18.
  • FIG. 21 (c) shows a wavefront aberration diagram corrected by the movement of the collimating lens 6.
  • phase step is formed so as to overlap the aspherical shape of the first surface of the coupling lens 18 (the surface on the collimating lens side).
  • FIG. 23 shows a cross-sectional shape of the phase step surface by a plane perpendicular to the optical axis.
  • the horizontal axis represents the radius of the coupling lens 18.
  • the vertical axis shows the amount of phase shift due to the phase step at the radius as an integer multiple of the wavelength ⁇ when the design wavelength 405 nm is 1 ⁇ .
  • a phase step that is an integer multiple of 10 to the wavelength of the blue-violet laser without affecting the wavefronts of the red laser (wavelength 655 nm) and infrared laser (wavelength 785 nm).
  • a corresponding higher order spherical aberration can be generated.
  • the wavefront corrected by this phase step has the shape shown in Fig. 21 (d).
  • the spherical aberration caused by the wavelength variation can be corrected with the third-order spherical aberration by the movement of the collimating lens 6 and the higher-order spherical aberration by using the phase step. Is possible.
  • the phase step may be arranged in the optical path as an independent optical element. However, as shown in this embodiment, by forming it on the lens surface of the coupling lens 18, the number of components can be reduced. It is preferable in terms of downsizing and cost reduction. The same effect can be obtained even if the phase step is formed on the third surface of the coupling lens 18 (surface on the objective lens side). Therefore, it is more preferable to form a phase step on the resin lens side (the first lens side using polycarbonate in this embodiment). [0175] When the coupling lens 8 shown in Embodiment 1 is used, most of the spherical aberration that occurs due to wavelength fluctuation is third-order spherical aberration. Accordingly, it is possible to correct the spherical aberration caused by the wavelength variation only by moving the collimating lens 6, and a phase step is substantially unnecessary.
  • the optical head 30 of the present embodiment is a good optical system for recording / reproducing optical signals corresponding to the three-wavelength light sources of blue-violet laser light, red laser light, and infrared laser light.
  • the optical head using this objective lens can perform good recording or reproduction on, for example, three types of optical disks of BD, DV D, and CD.
  • the light source In the optical head 20 of the first embodiment and the optical head 30 of the second embodiment, the light source
  • a blue-violet laser beam having a wavelength of 405 nm is emitted from 2
  • a red laser beam having a wavelength of 655 nm and an infrared laser beam having a wavelength of 785 nm are emitted from another light receiving / emitting integrated element 10.
  • the present invention is not limited to this.
  • blue-violet laser light, red laser light, and infrared laser light may be emitted from the light source power arranged at different positions. Also
  • the light receiving element 9 is disposed at a position different from the light source 2, a configuration in which the light source 2 and the light receiving element 9 are disposed at the same position to form a light receiving / emitting integrated element may be employed. Further, both the red laser light and the infrared laser light are received by the light receiving / emitting integrated element 10, but the red laser light and the infrared laser light may be received by separate light receiving elements.
  • a blue-violet laser beam, a red laser beam, and an infrared laser beam can be integrated as a configuration using a three-wavelength light source in which a blue-violet laser beam, a red laser beam, and an infrared laser beam source are integrated. Light may be received by the element.
  • a laser beam having a wavelength of 405 nm is used when recording or reproducing BD60, and a wavelength of 655 nm is used when recording or reproducing DVD70.
  • the case where laser light is used and laser light having a wavelength of 785 nm is used when recording or reproducing the CD80 has been described.
  • recording or reproduction is performed on each of the three types of optical discs using three wavelengths of laser light: laser light with a wavelength of 350 to 450 nm, laser light with a wavelength of 600 to 700 nm, and laser light with a wavelength of 750 to 850 nm. Widely applicable to optical heads.
  • the coupling lens 8 according to the first embodiment and the coupling lens 18 according to the second embodiment are used for recording or recording information on three types of optical disks: BD, DVD, and CD. Is used in an optical system that performs reproduction. However, these can also be applied to optical systems that record or reproduce information on, for example, other high-density optical disks (protective substrate thickness 0.6 mm, NAO. 65), DVD, and CD. Needless to say,
  • FIG. 24 is a schematic configuration diagram of the optical disc device 50 according to the present embodiment.
  • the optical disk device 50 includes an optical disk drive unit 51, a control unit 52, and an optical head 53.
  • FIG. 24 shows the BD 60 loaded in the optical disc apparatus 50 for convenience of explanation. Needless to say, it is possible to replace BD60 with DVD70 or CD80. However, the BD60, DVD70, and CD80 can also remove the power of the optical disk device 50, and are not components of the optical disk device 30. In the following description, the optical disk is assumed to be BD60 unless otherwise specified.
  • the optical disc drive unit 51 is a motor that drives the BD 60 to rotate.
  • the optical head 53 is an optical head according to Embodiment 1 or Embodiment 2.
  • the control unit 52 is a so-called optical disk controller, and drives and controls the optical disk driving unit 51 and the optical head 53.
  • the control unit 52 performs signal processing of control signals and information signals received by the optical head 53, and interfaces the information signals between the components of the optical disc device 50 and external devices (for example, host computers).
  • the optical disk device 50 Since the optical disk device 50 is equipped with any one of the optical heads described in the first embodiment or the second embodiment, the optical disk device 50 according to the present embodiment records a plurality of light sources and optical disks corresponding to them. Each playback can be recorded or played back satisfactorily.
  • the optical head of the present invention is capable of recording or reproducing high-density optical discs, DVDs, and CDs, so that the configuration of the optical head is simplified, productivity is improved, and the optical disc apparatus itself Can be reduced in size, weight and accuracy, and an optical disc device can be provided at a low cost.

Abstract

 良好な波長分散補償性能のもとで、高密度光ディスク、DVD、CD等の複数種類の光ディスクに対して、対物レンズと組み合わせて使用されることにより、波長の変動を含めた各種の収差を補償し、良好な記録または再生特性を得ることが可能なカップリングレンズ、光学ヘッド、および、光ディスク装置(ドライブ)を提供する。  カップリングレンズは、複数の光源から放射される異なる波長のレーザ光を、それぞれ異なる種類の光情報記録媒体の情報記録面に集光する光学ヘッドに組み込まれる。カップリングレンズは、互いの光軸が一致するように実質的に密着されるとともに、密着面において前記異なる波長のレーザ光がそれぞれ屈折するように設計された第1レンズおよび第2レンズを備え、前記異なる波長のレーザ光のうち、最も短い波長に対してアフォーカルである。

Description

明 細 書
カップリングレンズ、光学ヘッドおよび光ディスク装置
技術分野
[0001] 本発明は、互いに波長の異なる複数の光源を備え、複数種類の光ディスク等の情 報記録媒体に対して、光学的に情報の記録または再生を行う光学ヘッドおよび光学 ヘッドを具備した光ディスク装置に関する。
背景技術
[0002] 近年、青紫色レーザ光を放射する半導体レーザの実用化に伴!、、 CD (Compact
Disc)や DVD (Digital Versatile Disc)と同じディスク径で、より高密度 *大容量 の光情報記録媒体 (以下、光ディスクとも 、う)である Blu— ray Disc (以下、 BD)が 実用化されている。 BDとは、波長 400nm程度の青紫色レーザ光源と、開口数 (Nu merical Aperture、 N A)を 0. 85まで高めた対物レンズを用いて情報の記録また は再生が行われる、保護基板厚約 0. 1mmの光ディスクである。「保護基板厚」とは、 レーザ光入射側の光ディスクの表面から情報記録層までの間に存在する、透明層( 保護基板)の厚さを意味する。
[0003] また、同じく波長 400nm程度の青紫レーザ光源と、開口数 0. 65の対物レンズを用 いた、保護基板厚 0. 6mmの HD DVDも実用化がなされている。これらの青紫レー ザ光源を用いて記録または再生を行う光ディスクを総称して、高密度光ディスクと呼
[0004] そこで、それぞれ保護基板厚が異なる光ディスクの情報記録面に対して、それぞれ 異なる波長のレーザ光を一つの対物レンズを用いて集光させて情報の記録および再 生を行う、互換性を有する光学ヘッドが提案されている。このような互換性を有する光 学ヘッドを実現するために、種々の構成が考案されて ヽる。
[0005] 例えば、特許文献 1には、波長 405nm程度、波長 655nm程度および波長 785nm 程度の 3つの波長のレーザ光を放射する光学ヘッドが開示されている。この光学へッ ドに実装される対物レンズは高い光学性能を有している。具体的には、この対物レン ズは、それぞれ保護基板厚の異なる光ディスクにおいて回折限界性能を有している [0006] 図 25は、特許文献 1に記載の対物レンズ 101の構成を示す。対物レンズ 101は、 ガラス材料で形成された基準レンズ 101a、および、榭脂材料で形成された密着レン ズ 101bによって構成されている。密着レンズ 101bは、基準レンズ 101aとは異なる材 質で形成されており、基準レンズ 101aの光ディスク側の面に密着またはほぼ密着し て接合または接着されている。特許文献 1では、このような対物レンズ 101によれば、 青紫レーザ光を用いた高密度光ディスク、 DVD、 CDの記録または再生が可能であ るとされている。
[0007] この対物レンズは、基準レンズと密着レンズの屈折率と分散の差を利用し、レンズの 屈折力だけで互いに異なる 2つあるいは 3つの波長に対して収差を補償して 、る。そ のため回折を用いた対物レンズと比較して光量のロスがほとんどなぐ全ての波長に 対して高 、光利用効率が得られると 、う特徴がある。
[0008] 一方、基準レンズおよび密着レンズを用いな 、対物レンズを有する光学ヘッドも知 られている。具体的には、 1つの対物レンズのレンズ面に回折格子を設けた光学へッ ドである。この光学ヘッドは、光の回折を利用することにより、 3つの波長のレーザ光 を、それぞれ保護基板厚が異なる光ディスクの情報記録面に対して集光させて ヽる。
[0009] なお、上記光学ヘッドの変形例として、光源と対物レンズとの間に回折機能を有す るカップリングレンズを設けた光学ヘッドも開発されている。
特許文献 1:国際公開第 2004Z053557号パンフレット
発明の開示
発明が解決しょうとする課題
[0010] 従来の技術では、波長分散補償性能が考慮されておらず、また、光ディスクの保護 基板厚の差異により発生する球面収差の補正効果を十分得ることは困難である。
[0011] 一方、特許文献 1に記載の実施例 1〜5では、上述した対物レンズを共用して、高 密度光ディスク、 DVD、 CDに対して情報の記録または再生を行う性能 (互換性能) に言及している。
[0012] し力しながら、たとえば特許文献 1の実施例 1によれば、青紫色レーザ光の中心波 長 405nmにおける波長 ± lnmの変動に対する RMS波面収差の最良像点位置の 変動は 1 m以上であり、大きい。これでは波長分散補償性能が十分ということはで きない。
[0013] なお、特許文献 1の実施例 6および 7においては、波長分散補償性能の良好な対 物レンズの設計例が示されている力 この対物レンズは、基準レンズおよび密着レン ズが共にガラス材料であり、その具体的な作成方法には言及はない。現実的には 2 つのガラスレンズを精度良く成形した上で、接合ある ヽは接着して対物レンズを作成 することは困難である。
[0014] また、特許文献 1の実施例 7については、 CDおよび DVDの記録または再生時に、 レーザ光を発散光として対物レンズに入射させるよう示されている。しかし、特に CD の物点距離は 19. 5mmであり、非常に小さいため、現実的な光学ヘッドを構成する ことが非常に困難である。実際、光学ヘッドの具体的構成には言及はない。
[0015] さらに、高密度光ディスク用のレーザ光の中心波長のばらつきに伴って発生する球 面収差について、波長が ± 5nmばらついた時に発生する球面収差 (色球面収差)は lOOm を超える。しかし、特許文献 1の実施例 1には、このような重要な問題に対す る見解はなぐ色球面収差の補償の方法にっ 、ての言及はな 、。
[0016] また、特許文献 1に記載の光学ヘッドでは、 3波長それぞれの物点距離が異なって いるため、光学ヘッド上の各波長の発光点および受光点の配置の構成等が複雑に なることが想定される。し力し、このような課題についてはなんら言及されていない。例 えば、特許文献 1の実施例 7によれば、 CDと DVDの物点距離はそれぞれ 20mmと 3 8mmであり、非常に小さい。このような光学ヘッドの構成は開示されておらず、実現 '性が不明である。
[0017] なお、 CDに対する対物レンズの作動距離(Working Distance ; WD)は、対物レ ンズと光ディスクの衝突回避の観点力もより大きいほうが好ましい。しかし、特許文献 1の実施例 4によれば、対物レンズの作動距離は最大でも 0. 38mm程度しかなぐ 記録型 CDの光学ヘッドに用いる対物レンズとしては、十分とは 、えな!/、。
[0018] また、回折作用を利用して互換性能を確保する光学ヘッドにおいては、光を回折さ せた際に光量が低下するという非常に重大な問題が存在する。光は、光源から光デ イスクに到るまでの往路と、光ディスクで反射されて検出されるまでの復路のそれぞれ において回折格子を通過する。通過するたびに光量が低下するため、低下分を考慮 して光源の出力を上げておく必要があり、光源の低電力化の妨げとなる。
[0019] 情報記録面の多層化が進むにつれ、特に記録時に高出力が要求されている。その 上に光量低下を考慮して出力を上げるとすると、大出力に対応するレーザ光源を利 用しなければならないため、高い製造技術が要求される。その結果、光学ヘッドの製 造コストが上昇する。
[0020] なお、特定の波長域のレーザ光に対してであれば、光量の低下を抑えながら所望 の回折作用を与えるよう、回折格子を設計することは可能である。し力しながら、複数 の波長のレーザ光のすべてに対して、光量の低下をなくし、かつ、所望の回折作用 を与えることは、極めて困難である。
[0021] 本発明の目的は、保護基板厚が異なる光ディスクの情報記録面に対して 3つの異 なる波長のレーザ光を、一つの対物レンズを用いて集光させ、高密度光ディスク、 D VD、 CDに対して、波長の変動時を含めた各種の収差を補償し、良好な記録または 再生性能が得られる光学ヘッドおよび光ディスク装置を、実現可能な光学系で実現 することである。
課題を解決するための手段
[0022] 本発明によるカップリングレンズは、複数の光源から放射される異なる波長のレーザ 光を、それぞれ異なる種類の光情報記録媒体の情報記録面に集光する光学ヘッド に組み込まれる。前記カップリングレンズは、互いの光軸が一致するように実質的に 密着されるとともに、密着面において前記異なる波長のレーザ光がそれぞれ屈折す るように設計された第 1レンズおよび第 2レンズを備え、前記異なる波長のレーザ光の うち、最も短い波長に対してァフォーカルである。
[0023] 前記カップリングレンズは、前記光軸と交わる 3つのレンズ面を備え、前記第 2レン ズに面していない側の前記第 1レンズのレンズ面である第 1レンズ面、実質的に密着 された前記第 1レンズおよび前記第 2レンズの密着面をなす第 2レンズ面、および、前 記第 1レンズに面して 、な 、側の前記第 2レンズのレンズ面である第 3レンズ面を有し ており、前記第 1レンズ面、前記第 2レンズ面および前記第 3レンズ面の少なくとも 1つ のレンズ面が非球面形状で形成されて 、てもよ 、。 [0024] 前記第 1レンズ面、前記第 2レンズ面および前記第 3レンズ面の少なくとも 1つのレ ンズ面の有効領域のうち、光軸を含む第 1有効領域と、前記第 1領域の周囲に位置 する第 2有効領域とは異なる非球面形状で形成されて ヽてもよ ヽ。
[0025] 前記第 1レンズ面、前記第 2レンズ面および前記第 3レンズ面の少なくとも 1つのレ ンズ面の有効領域のうち、前記第 1有効領域の形状を規定するために用いられる非 球面係数と、前記第 2有効領域の形状を規定するために用いられる非球面係数とが 異なっていてもよい。
[0026] 前記第 1レンズ面、前記第 2レンズ面および前記第 3レンズ面について、各々の前 記第 1有効領域と前記第 2有効領域とは異なる非球面形状で形成されて 、てもよ 、。
[0027] 前記第 1レンズは凹レンズとして機能し、前記第 2レンズは凸レンズとして機能しても よい。
[0028] 前記第 1レンズと前記第 2レンズとは、接合または接着されていてもよい。
[0029] 前記第 1レンズと前記第 2レンズとを実質的に密着して保持するホルダをさらに備え ていてもよい。
[0030] 前記第 1レンズおよび前記第 2レンズは、材質が異なる榭脂材料で形成されていて ちょい。
[0031] 前記第 1レンズ面には光学的な段差が設けられていてもよい。
[0032] 前記第 1レンズおよび前記第 2レンズは、一方がガラス材料で形成され、他方が榭 脂材料で形成されて 、てもよ 、。
[0033] 前記第 1レンズおよび前記第 2レンズの一方は、紫外線硬化榭脂で形成されていて ちょい。
[0034] 前記榭脂材料のガラス転移温度は 300度以下であってもよ 、。
[0035] 前記第 1レンズおよび前記第 2レンズは、材質が異なるガラス材料で形成されてい てもよい。
[0036] 前記第 1レンズのガラス材料のガラス転移温度と、前記第 2レンズのガラス材料のガ ラス転移温度との差は、 200度以上であってもよい。
[0037] 本発明による光学ヘッドは、異なる波長のレーザ光を放射する複数の光源と、対物 レンズと、前記複数の光源および前記対物レンズの間の光路上に配置された、前記 カップリングレンズとを備え、前記対物レンズと前記カップリングレンズとによって、前 記異なる波長のレーザ光をそれぞれ異なる種類の光情報記録媒体の情報記録面に 集光する。
[0038] 前記複数の光源は、波長 λ 1のレーザ光を放射する第 1光源、波長 λ 2のレーザ光 を放射する第 2光源、および、波長え 3のレーザ光を放射する第 3光源を含んでおり 、前記波長 λ 1、前記波長 λ 2および前記波長 λ 3は、 350nm< λ l <450nm、 60 Onm< λ 2く 700nm、 750nm< λ 3く 850nmを満たしてもよい。
[0039] 前記カップリングレンズは、前記波長 λ 1の波長変動に伴って発生する前記対物レ ンズの色収差を補正してもよ 、。
[0040] 前記第 1レンズの d線(波長 587. 56nm)および F線(波長 486. 13nm)および C線
(波長 656. 27nm)の屈折率を用いて表されるアッベ数を v dl、前記第 2レンズの d 線および F線および C線の屈折率を用いて表されるアッベ数を V d2として、アッベ数 V dlおよびアッベ数 V d2が、 V dl < V d2を満たしてもよい。
[0041] 前記アッベ数 V dlおよび前記アッベ数 V d2力 それぞれ、 v dl < 35および v d2
> 50を満たしてもよい。
[0042] 前記光学ヘッドは、レーザ光の波長に応じて、前記レーザ光を略平行光、発散光ま たは収束光に変換して前記対物レンズに入射させる変換部をさらに備えていてもよ い。
[0043] 前記変換部は、少なくとも前記波長 λ 1のレーザ光を略平行光として前記対物レン ズに入射させるコリメートレンズと、放射されているレーザ光の波長に対応する駆動信 号に基づ 、て前記コリメートレンズを光軸方向に移動させる駆動部とを備えて ヽても よい。
[0044] 前記波長 λ 1のレーザ光を光記録媒体に集光させた時にお!、て、前記レーザ光の 焦点には光記録媒体の光透過層の厚さに起因して球面収差が発生し、前記変換部 は、前記コリメートレンズを光軸方向に沿って移動させて、前記球面収差を補正して ちょい。
[0045] 前記光学ヘッドは、前記対物レンズと物理的に結合されて、前記対物レンズの位置 を変化させる可動部を有するァクチユエータをさらに備え、前記カップリングレンズは 前記ァクチユエータの可動部に固定されて、前記対物レンズと一体的に移動してもよ い。
[0046] 本発明の光学ドライブは、上述のいずれかの光学ヘッドと、光記録媒体を回転駆動 するためのモータと、前記光学ヘッドと前記モータとを制御する制御部とを備えてい る。
発明の効果
[0047] 本発明によるカップリングレンズを光学ヘッドに組み込むことにより、 BDなどの高密 度光ディスク、 DVD、 CDに対して、回折限界性能を有し、かつ、波長分散補償性能 に優れた光学ヘッドを得ることができる。
[0048] さらに、そのような光学ヘッドを搭載した光ディスク装置は、上述の性能に起因する 優れた記録再生性能を有する。
[0049] また、本発明によるカップリングレンズを採用すると光学ヘッドの構成は簡略ィ匕され るため、光学ヘッドを小型化できる。その結果、そのような光学ヘッドを搭載した光デ イスク装置もまた小型化、薄型化を実現できる。
[0050] 本発明によるカップリングレンズは榭脂材料で形成可能であるため、成形が容易で あるとともに、低コストで製造できる。
[0051] また、このカップリングレンズおよび対物レンズを組み合わせると、回折作用ではな く屈折作用によって、光源力もの光を、対応する各光記録媒体に集光する。回折作 用と異なり、屈折作用は光量を低下させることがないため、光源から光を出力する際 に光量の低下を考慮して出力を上げる必要はない。よって、大出力に対応した光源 を光学ヘッドに搭載する必要はなくなり、光学ヘッドを低コストで製造できる。
図面の簡単な説明
[0052] [図 1]実施形態 1による光学ヘッド 20の概略構成図である。
[図 2]光ディスクが DVD70であるときの、光学ヘッド 20内の光路の状態を示す図で ある。
[図 3]光ディスクが CD80であるときの、光学ヘッド 20内の光路の状態を示す図である [図 4]カップリングレンズ 8の概略構成図である。 [図 5] (a)〜(c)は、それぞれ、本実施形態のカップリングレンズ 8および対物レンズ 1 を用いて、 BD60、 DVD70、 CD80のそれぞれの情報記録層にレーザ光を集束さ せたときの光線の状態を示す図である。
[図 6]波長 405nmのレーザ光を BD60に集束させたときの波面収差図である。
[図 7]波長 655nmのレーザ光を DVD70に集束させたときの波面収差図である。
[図 8]波長 785nmのレーザ光を CD80に集束させたときの波面収差図である。
[図 9]入射光角度を横軸に表した RMS波面収差図である。
[図 10] (a)および (b)は、コリメートレンズ 6、および、コリメートレンズ 6を光軸方向に駆 動する駆動機構の概略的な構成を示す図である。
[図 11]コリメートレンズ 6を光軸方向に駆動した時の光線の状態を示す図である。
[図 12]実施形態 2による光学ヘッド 30の概略構成図である。
[図 13]光ディスクが DVD70であるときの、光学ヘッド 30内の光路の状態を示す図で ある。
[図 14]光ディスクが CD80であるときの、光学ヘッド 30内の光路の状態を示す図であ る。
[図 15]実施形態 2によるカップリングレンズ 18の概略構成図である。
[図 16] (a)〜(c)は、それぞれ、実施形態 2のカップリングレンズ 8および対物レンズ 1 を用いて、 BD60、 DVD70、 CD80のそれぞれの情報記録層にレーザ光を集束さ せたときの光線の状態を示す図である。
[図 17]波長 405nmのレーザ光を BD60に集束させたときの波面収差図である。
[図 18]波長 655nmのレーザ光を DVD70に集束させたときの波面収差図である。
[図 19]波長 785nmのレーザ光を CD80に集束させたときの波面収差図である。 圆 20]入射光角度を横軸に表した RMS波面収差図である。
[図 21] (a)から(d)は、青紫レーザ光を BD60に集束させたときの波面収差図である。
[図 22]位相段差を有するカップリングレンズ 18を示す図である。
圆 23]光軸に垂直な面による位相段差面の断面形状を示す図である。
[図 24]実施形態 3による光ディスク装置 50の概略構成図である。
[図 25]従来の対物レンズ 101の構成を示す図である。 符号の説明
1 対物レンズ
2 光源
3 ビームスプリッタ 4 リレーレンズ
5 ダイクロイツクプリズム 6 コリメートレンズ
7 開口制限素子
8, 18 カップリングレンズ
8a, 18a 第 1レンズ
8b, 18b 第 2レンズ
9 受光素子
10 受発光一体素子
20, 30 光学ヘッド
31 ステッピングモータ
32 スクリューシャフト
33 レンズホルダ
34 ガイド
50 光ディスク装置
51 光ディスク駆動部
52 制御部
53 光学ヘッド
60 BD
70 DVD
80 CD
81 第 1面
82 第 2面
83 第 3面 101 対物レンズ
101a 基準レンズ
101b 密着レンズ
181i 第 1面共通領域
181o 第 1面専用領域
182i 第 2面共通領域
182o 第 2面専用領域
183i 第 3面共通領域
183o 第 3面専用領域
発明を実施するための最良の形態
[0054] 以下、添付の図面を参照しながら、本発明によるカップリングレンズ、そのカップリン グレンズを組み込んだ光学ヘッドおよびその光学ヘッドを利用した光ディスク装置の 各実施形態を説明する。
[0055] 以下に説明する実施形態では、いわゆる 3波長に対応した光学ヘッドを説明する。
光学ヘッドは、光ディスク装置 (光ディスクドライブ)に搭載されて、光ディスクの種類 に応じて 3波長のレーザ光の 1つを光ディスクに照射して光ディスクに情報を記録し、 または光ディスク力 情報を読み出す。
[0056] 光ディスクの種類は、 BD, DVDおよび CDであるとする。説明の簡単化のため、以 下では 、ずれも情報記録層は 1つであるとする。
[0057] BDの保護基板厚は約 0. 1mmである。 BDへの情報の記録および Zまたは BDか らの情報の再生に利用されるレーザ光の波長は、約 405nmである。 BDに対応する 対物レンズ 1の開口率 NAは 0. 85である。
[0058] また、 DVDの保護基板厚は約 0. 6mmである。 DVDに対応するレーザ光の波長 は、約 655nmである。
[0059] 一方、 CDの保護基板厚は約 1. 2mmである。 CDに対応するレーザ光の波長は、 約 785nmである。
[0060] 以下では、 BD、 DVDおよび CDに対応するレーザ光の波長を、それぞれの基準 波長(405nm、 655nmおよび 785nm)によって特定することとする。 [0061] 本発明による光学ヘッドでは、 3波長のレーザ光のいずれもが共通の対物レンズか ら光ディスクに照射される。
[0062] 本発明による光学ヘッドには、カップリングレンズが設けられている。
[0063] 青紫色レーザ光はカップリングレンズおよび対物レンズの屈折効果のみによって B Dの情報記録層に集束される。回折格子を設けな 、ためレーザ光の透過効率は 100 %近くに維持される。その結果、情報の記録または再生に必要とされるレーザパワー を抑えることができる。特に情報の記録時には再生時よりも高いパワーが必要とされ るため、消費電力の抑制により効果的である。
[0064] なお、回折格子が設けられた対物レンズでは、すべての波長についてバランスよく 透過効率を高めることができない。 CD、 DVDおよび BDの各情報記録層に各波長 のレーザ光^^束させる際、すべての波長に関して 100%近くの回折効率を得ること はできないためである。 BDの回折効率を 100%近くに設定することは可能である力 その結果、たとえば DVDの回折効率が 50%以下になることもある。また、回折効率 が低い波長に対してはレーザ光の照射時に光量が低下するのみならず、光ディスク で反射されたレーザ光の受光時にもさらに光量が低下するため、必要な反射光量を 確保するためには、レーザのパワーを高く設定せざるを得ない。よって回折格子を利 用しな 、対物レンズが好適である。
[0065] さらに本発明のカップリングレンズを用いると、レーザ光の波長の変動に対して対物 レンズにおいて発生する色収差の変動を低減することが可能であり、特に青紫色レ 一ザ光に対して高い効果を発揮する。したがって、たとえば再生動作を記録動作に 切り替えたときに青紫色レーザ光の波長が変動しても、本発明の対物レンズによれば その影響を受けにくい。よって、常に正確な記録 ·再生動作を実現できる。特に、記 録の失敗は致命的なデータの損失を招く恐れが高いため、正確な記録動作が実現 できることが極めて重要である。よって本発明のカップリングレンズおよび対物レンズ の組み合わせが好適である。
[0066] (実施形態 1)
図 1は、本実施形態による光学ヘッド 20の概略構成図である。
[0067] 光学ヘッド 20は、対物レンズ 1と、光源 2と、ビームスプリッタ 3と、リレーレンズ 4と、 ダイクロイツクプリズム 5と、コリメートレンズ 6と、開口制限素子 7と、カップリングレンズ 8と、受光素子 9と、受発光一体素子 10とを有する。
[0068] 光源 2は青紫レーザ光を出射し、受発光一体素子 10は、赤色レーザ光を出射する 光源と、赤外レーザ光を出射する光源とを備えている。また、受発光一体素子 10は、 CDおよび DVDで反射した各光を受光する素子も一体ィ匕されている。なお、本実施 形態において「光源」とは、青紫レーザ光、赤色レーザ光および赤外レーザ光の各々 を放射する独立した光源を意味する。受発光一体素子 10は全体として 1つの光源と 把握することは可能である力 本実施形態においては 2つの光源が設けられていると して説明する。
[0069] ダイクロイツクプリズム 5は、所定以下の波長の光を反射する。受光素子 9は、青紫 レーザ光を受光する。カップリングレンズ 8は、対物レンズ 1を駆動する 2軸ァクチユエ ータの可動部(図示せず)に保持され、対物レンズ 1と一体でフォーカス方向とトラッ キング方向に駆動される。なお、図 1には参考のため BD60が示されている。
[0070] 以下、 BD60に対して、情報の記録または再生を行う光学ヘッド 20の動作を説明 する。光源 2から出射された波長 405nmの青紫レーザ光は、ビームスプリッタ 3、リレ 一レンズ 4を透過する。さらに、ダイクロイツクプリズム 5で反射された後、コリメートレン ズ 6で略平行光に変換され、開口制限素子 7で NAが 0. 85となるよう開口を制限され た後、カップリングレンズ 8を透過して、対物レンズ 1によって、保護基板越しに BD60 の情報記録面に光スポットとして集光される。
[0071] BD60の情報記録面で反射したレーザ光は、再び対物レンズ 1、カップリングレンズ 8、開口制限素子 7、コリメートレンズ 6を透過し、ダイクロイツクプリズム 5で反射され、 リレーレンズ 4を透過した後、ビームスプリッタ 3で反射され、受光素子 9に導かれる。
[0072] 次に、図 2を参照しながら、 DVD70に対して情報の記録または再生を行う光学へッ ド 20の動作を説明し、その後図 3を参照しながら、 CD80に対して情報の記録または 再生を行う光学ヘッド 20の動作を説明する。
[0073] 図 2は、光ディスクが DVD70であるときの、光学ヘッド 20内の光路の状態を示す。
[0074] 受発光一体素子 10から出射された波長 655nmの赤色レーザ光は、ダイクロイツク プリズム 5を透過し、対物レンズ 1側に移動したコリメートレンズ 6で発散光に変換され 、開口制限素子 7で NAが 0. 60となるように開口を制限された後、カップリングレンズ 8を透過して、対物レンズ 1によって、保護基板越しに DVD70の情報記録面に光ス ポットとして集光される。 DVD70の情報記録面で反射したレーザ光は、再び対物レ ンズ 1、カップリングレンズ 8、開口制限素子 7、コリメートレンズ 6、ダイクロイツクプリズ ム 5を透過し、受発光一体素子 10に戻り受光される。
[0075] 図 3は、光ディスクが CD80であるときの、光学ヘッド 20内の光路の状態を示す。
[0076] 受発光一体素子 10から出射された波長 785nmの赤外レーザ光は、ダイクロイツク プリズム 5を透過し、受発光一体素子 10側に移動したコリメートレンズ 6で発散光に変 換され、開口制限素子 7で NAが 0. 47となるように開口を制限された後、カップリング レンズ 8を透過して、対物レンズ 1によって、保護基板越しに CD80の情報記録面に 光スポットとして集光される。 CD80の情報記録面で反射したレーザ光は、再び対物 レンズ 1、カップリングレンズ 8、開口制限素子 7、コリメートレンズ 6、ダイクロイツクプリ ズム 5を透過し、受発光一体素子 10に戻り受光される。
[0077] 次に、図 4〜9を参照しながら、本実施形態によるカップリングレンズ 8を詳細に説明 する。
[0078] 図 4は、カップリングレンズ 8の概略構成図である。カップリングレンズ 8は、第 1レン ズ 8aおよび第 2レンズ 8bを有している。光学ヘッド 20に実装されたとき、第 1レンズ 8 aはコリメートレンズ 6側に向けられ、第 2レンズ 8bは対物レンズ 1側に向けられる。
[0079] 本実施形態では、カップリングレンズ 8に対して光軸と交わる 3つのレンズ面を定義 する。すなわち、第 2レンズ 8bに面していない側の第 1レンズ 8aのレンズ面である第 1 面 81、実質的に密着された第 1レンズ 8aおよび第 2レンズ 8bの密着面をなす第 2面 82、および、第 1レンズ 8aに面していない側の第 2レンズ 8bのレンズ面である第 3面 8 3である。
[0080] 本実施形態によるカップリングレンズ 8の特徴のひとつは、第 1レンズ 8aと第 2レンズ 8bと力 互いの光軸が一致するように実質的に密着されるとともに、密着面 82におい て、青紫レーザ光、赤色レーザ光および赤外レーザ光がそれぞれ屈折されており、 かつカップリングレンズ 8は、波長が最も短い青紫レーザ光に対してァフォーカルに 設計されていることにある。 [0081] ここで「ァフォーカル」とは、焦点距離が無限大であることを意味する。カップリングレ ンズ 8が青紫レーザ光に対してァフォーカルである、という意味は、青紫レーザ光に 対しては、カップリングレンズ 8の凸レンズのパワーと凹レンズのパワーとが略等しくな つていることを表す。ただし、第 1面 81、第 2面 (密着面) 82、第 3面 83において、青 紫レーザ光もまた、屈折の作用を受けている。レンズの屈折作用によって、入射した レーザ光の光束径は拡大または縮小して、カップリングレンズ 8から出力され得る。
[0082] 第 1レンズ 8aと第 2レンズ 8bとは、第 2面 82にて密着またはほぼ密着して接合また は接着されている。第 1レンズ 8aの第 2レンズ 8bと接合または接着している面と、第 2 レンズ 8bの第 1レンズ 8aと接合または接着している面は、同じまたはほぼ同じ非球面 形状を有している。なお、別々に成形した第 1レンズ 8aと第 2レンズ 8bとを所定のホ ルダに挿入することで、両者をほぼ密着して保持することも可能である。
[0083] 第 1レンズ 8aの材質としてポリカーボネイト(nd= l. 584、 v d= 30. 1)を用い、第 2レンズ 8bの材質として ZEONEX330R(nd= l. 508、 v d= 56. 5)を用!ヽる。ここ で屈折率 ndは、 d線 (波長 587. 56nm)における屈折率を表し、アッベ数 v dは、 d線 および F線(波長 486. 13nm)および C線(波長 656. 27nm)の屈折率を用いて表さ れるものである。
[0084] 第 1面 81の非球面形状、第 2面 82の非球面形状および第 3面 83の非球面形状は 、下記の(1)式で表される非球面形状によって決定される。
Z= (l/R) h2/[l + [l - (l +k) . (1/R)V]1 2] +∑Ah2i
•••(l)
ここで、 hは光軸上の頂点から光軸と垂直方向の距離、 Rは曲率半径、 kは円錐定数 、 Aiは i= l〜8項までの非球面係数である。 Zは h、 R、 k、 Aiによって決まる頂点の接 平面からの光軸方向の距離 (サグ)であり、この Zの値で決まる曲線が各面の非球面 断面形状を与える。
[0085] (表 1〜3)にカップリングレンズ 8の仕様を示す。
[0086] [表 1] 面番号 曲率半径 面間隔 材料名
1 -47.385 0.50 ポリ力一ポネイト
2 7.634 1.70 ZEONEX330R
3 -19.839 ― ―
[0087] [表 2]
Figure imgf000017_0001
[0088] [表 3] 使用波長と材料屈折率、間隔
波長 岡 405 655 785 合成焦点距離 [mm】 2.22 2.30 2.31 第 1レンズ屈折率 1.61736 1.57849 1.57203 第 2レンズ屈折率 1.52331 1.50512 1.50188 開口数 0.85 0.6 0.47 開口絞 y径 (直径) [mm] 3.73 2.79 2.25 物点距離 [mm] 65 30 作動距離 [mm] 0.988 0.785 0.507 保護層厚 [mm] 0.0875 0.6 1.2 [0089] (表 1)における面番号は以下の意味で割り当てられている。すなわち、面番号 1が 第 1面 81、面番号 2が第 2面 (密着面) 82、面番号 3が第 3面 83を表している。また、 面間隔および材料名については、該当する面番号と次の面番号との間の面間隔お び材料名を示す。
[0090] また、(表 2)において、「E + 02」〜「E— 06」はそれぞれ 10の 2乗〜 10の— 6乗を 表す。
[0091] カップリングレンズ 8と組み合わせて用いられる対物レンズ 1は、保護層厚 0. 0875 mmの BD60に対して、波長 405nmの平行光を入射した場合に球面収差が略ゼロと なる、 BD60専用の焦点距離 2. 3mmの対物レンズである。なお、保護層厚が 0. lm mの場合はやや発散光を入射し、保護層厚が 0. 075mmの場合はやや収束光を入 射することで、保護層厚の差による球面収差を補正することができる。
[0092] (表 3)の物点距離は、 BD60を記録または再生する場合は、物点距離が無限遠、 すなわち平行光を入射し、 DVD70を記録または再生する場合は、物点距離 + 65m mの発散光を入射し、 CD80を記録または再生する場合は、物点距離 + 30mmの発 散光を入射することを示して 、る。
[0093] 図 5 (a)〜(c)は、それぞれ、本実施形態のカップリングレンズ 8および対物レンズ 1 を用いて、 BD60、 DVD70、 CD80のそれぞれの情報記録層にレーザ光を集束さ せたときの光線の状態を示す。情報の記録または再生の際に、光線は各図に示され る状態をとる。
[0094] 図 5 (a)は、波長 405nmのレーザ光を NAO. 85で集光させて保護層厚 0. 0875m mの BD60に集束させたときの光線の状態を示す。同様に、図 5 (b)は、波長 655nm のレーザ光を NAO. 60で集光させて保護層厚 0. 6mmの DVD70に集束させたとき の光線の状態を示す。図 5 (c)は、波長 785nmのレーザ光を N AO. 47で集光させて 保護層厚 1. 2mmCD80に集束させたときの光線の状態を示す。いずれも、情報の 記録または再生が行われて 、るときの状態を示して 、る。
[0095] 図 5 (a)〜(c)によれば、レーザ光によって、通過する領域が異なって!/、ることが理 解される。
[0096] 図 6は波長 405nmのレーザ光を BD60に集束させたときの波面収差図であり、入 射光角度 0. Odeg (a)と 0. 5deg (b)を示している。同様に、図 7は波長 655nmのレ 一ザ光を DVD70に集束させたときの波面収差図、図 8は波長 785nmのレーザ光を CD80に集束させたときの波面収差図である。
[0097] 図 6〜8に示す PX軸、 PY軸は光軸に対して垂直な軸であり、 PX軸は PY軸に対し て垂直である。縦軸は波面収差を示し、スケールの最小は— 1 λ、最大は + 1 λを示 している(λ:波長)。図 6〜8に示したとおり、レーザ光の入射光角度を 0. Odegから 0. 5degに変化させても、波面収差はそれぞれ ± 1 λ以内の値をとることが確認され た。
[0098] 図 9は、入射光角度を横軸に表した RMS (Root Mean Square)波面収差図である。
RMS波面収差とは、理想の波面と実際の波面との標準偏差(ばらつき)を示している 。図 9では、波長 405nmの光を BD60に集束させた場合、波長 655nmの光を DVD 70に集束させた場合、波長 785nmの光を CD80に集束させた場合の RMS波面収 差を示している。
[0099] 図 9によれば、いずれの場合においても、 RMS波面収差の値は全て、 0. Odeg〜0
. 5degの入射光角度に対して 0. 071 ( Z14)以下の回折限界以下の値をとり、 良好な性能を実現して 、る。
[0100] 次に、図 10および 11を参照しながら、本実施形態によるコリメートレンズ 6およびそ の周辺の構成を詳細に説明する。
[0101] 図 10 (a)および(b)は、コリメートレンズ 6、および、コリメートレンズ 6を光軸方向に 駆動する駆動機構の概略的な構成を示す。いずれも、異なるコリメートレンズ 6の位 置に応じて、光の広がりが異なって!/、る状態を示して 、る。
[0102] 駆動機構は、ステッピングモータ 31と、スクリューシャフト 32と、レンズホルダ 33と、 ガイド 34とを有する。
[0103] 図 10 (b)に示すように、ステッピングモータ 31を駆動してスクリューシャフト 32を回 転させることにより、コリメートレンズ 6とコリメートレンズ 6を保持するレンズホルダ 33と がガイド 34に沿ってコリメートレンズ 6の光軸方向に移動する。
[0104] なお、ステッピングモータ 31を用いると、コリメートレンズ 6の光軸方向の位置をモ- タする必要がない。その理由は、ステッピングモータ 31は、パルス信号が与えられる と予め定められたステップ単位で回転するため、パルス信号を与える回数で回転角 を正確に制御することが可能だ力もである。したがって、位置センサ等を用いなくても
、 ノ ルス信号を与える回数と移動距離との関係力 コリメートレンズ 6を光軸方向の任 意の位置に正確に制御できる。ステッピングモータ 31を用いると、モニタのための構 成が不要となり、システムを簡素化できるというメリットがある。
[0105] しかし、ステッピングモータ 31に代えて、例えば、磁気回路ゃ圧電素子の駆動によ るァクチユエータ等の他の構成によって、コリメートレンズ 6を光軸方向に移動してもよ い。磁気回路ゃ圧電素子の駆動によるァクチユエータは駆動部分が小さいため、光 学ヘッドの小型化に適して 、ると 、うメリットがある。
[0106] 図 11は、コリメートレンズ 6を光軸方向に駆動した時の光線の状態を示す。 BD60 の保護基板の厚さの違いによって発生する球面収差は、対物レンズ 1に入射するレ 一ザ光の発散'収束の程度を変化させ、保護基板の厚さの違いによって発生する球 面収差と逆の極性の球面収差を発生させることによって補正することが可能である。
[0107] 従って、例えば、コリメートレンズ 6の出射光が略平行光となる図 11 (a)を基準として 、図 11 (b)のように、コリメートレンズ 6を光源側に移動することによって、コリメートレン ズ 6の出射光は発散光となる。これにより、 BD60の透明基板が厚くなつた場合に発 生する球面収差を補正できる。
[0108] 一方、図 11 (c)のように、コリメートレンズ 6を対物レンズ側に移動すると、コリメート レンズ 6の出射光は収束光となる。これにより、 BD60の透明基板が薄くなつた場合に 発生する球面収差を補正できる。
[0109] ここで、本実施形態に示したように、ダイクロイツクプリズム 5を挟んで、コリメートレン ズ 6の反対側、すなわち光源 2側にリレーレンズ 4を配置することにより、 BD60を記録 または再生するときの光学倍率と、 DVD70、 CD80を記録または再生するときの光 学倍率とを、それぞれ所定の値にすることが可能である。
[0110] 例えば本実施形態においては、 BD60については、必要なリム強度を確保しつつ、 光利用効率が大きくなるよう光学倍率を 15倍程度とする。そして DVD70、 CD80に ついては、 DVD用光学ヘッド用途に広く普及している受発光一体素子の仕様に合 わせて 7倍程度としている。 [0111] さらに、本実施形態では、 BD60の球面収差補正に用いる光軸方向に移動可能な コリメートレンズ 6を、 DVD70と CD80の光学系と共通化することで、カップリングレン ズ 8に入射する光線の入射角度 (発散収束度)を切り替えることができる。すなわち、 カップリングレンズ 8に入射させる光線の角度 (物点位置)が異なる場合でも、 DVD7 0を記録または再生するための赤色レーザ光と、 CD80を記録または再生するための 赤外レーザ光の発光点を一致させることができ、 2波長のレーザ光を出射可能な光 源を用いることができる。
[0112] このように赤色レーザ光と赤外レーザ光の発光点を一致させることで、それぞれの レーザ光を受光する受光素子も一体化することができる。すなわち、本実施形態のよ うに、 2波長用の受発光一体素子 10を用いて、光学構成をシンプルにできる。上述 の受発光一体素子は光学ヘッド用途として広く普及しており、安価に入手可能である ので、本実施形態のような構成とすることで、光学ヘッドを安価に構成できる。
[0113] 本実施形態においては、青紫レーザ光をカップリングレンズ 8に略平行光で入射さ せ、赤色レーザ光および赤外レーザ光を、カップリングレンズ 8に発散光で入射させ た場合に、良好な収差性能が得られるカップリングレンズの設計例を用いて説明した 。し力しながら、レーザ光がカップリングレンズ 8に入射する際に、各レーザ光を平行' 収束 '発散のいずれの態様で入射させるかの組み合わせは、カップリングレンズ 8の 設計に依存する。いずれの場合も本発明の適用範囲に含まれることは言うまでもな い。
[0114] 例えば、赤色レーザ光をカップリングレンズ 8に略平行光で入射させ、赤外レーザ 光をカップリングレンズ 8に発散光で入射させた場合に良好な収差性能が得られる力 ップリングレンズを用いることも可能である。
[0115] なおカップリングレンズの設計として、例えば、赤外レーザ光を、カップリングレンズ に略平行光または収束光で入射させた場合に良好な収差性能が得られる設計も可 能である。しかしながら、このように略平行光または収束光でカップリングレンズに入 射した場合は、対物レンズの出射光が収束する位置が対物レンズに近づき、発散光 でカップリングレンズに入射させる場合と比較して、 CD80に対して情報の記録また は再生を行う際の作動距離 (WD、 Working Distance)が小さくなる。特に記録型 の CDに対しては、 0. 40mm以上あることが好ましいため、本実施形態で示したよう に、赤外レーザ光は、カップリングレンズに発散光で入射させることが好ましい。
[0116] また、例えば、青紫レーザ光をカップリングレンズ 8に収束光または発散光で入射さ せた場合に良好な収差性能が得られる設計も可能である。しかし、 BDのように短波 長の光源と光 NAの対物レンズ 1を用いると、対物レンズ 1の移動等に伴う収差および 対物レンズ 1とカップリングレンズ 8との相対的な位置ずれによる収差に対する要求が より厳しくなるため、青紫レーザ光は、カップリングレンズ 8に略平行光で入射させるこ とが好ましい。
[0117] 一方、 DVD70に用いられる対物レンズの NAは、 BD60に用いられる対物レンズ の NAよりも小さ ヽため、収束光または発散光で入射した場合でも収差性能を確保し やすぐまた収束光をカップリングレンズに入射させた場合でも、作動距離を確保し やすい。
[0118] 以上の理由から、 BD60を記録または再生するための青紫色レーザ光を略平行光 で対物レンズに入射し、 CD80を記録または再生するための赤外レーザ光を発散光 で対物レンズに入射し、 DVD70を記録または再生するための赤色レーザ光を略平 行光または発散光または収束光で対物レンズに入射するよう、光学的に構成すること 力 り好ましい。
[0119] 上述の例では、対物レンズに入射するレーザ光を発散状態や収束状態に調整する ため(すなわち好ましい状態に変換するため)、コリメートレンズ 6を光軸方向に移動 するとした。しかし、他の手段を採用してもよい。
[0120] 例えば、レンズを少なくとも一つの屈折率分布可変材料で形成し、電場、磁場また は熱を印加することによって屈折率分布可変材料の屈折率分布を変化させ、レンズ の焦点距離を変化させてもよ!、。
[0121] さらに、屈折率分布可変レンズレンズに代えて、屈折率の異なる複数種類の不混 和性液体でレンズを構成してもよ ヽ。レーザ光の波長に応じた大きさの電圧を印加す ることによって、この不混和性液体の界面の曲率を変化させることができ、それにより 、レーザ光の発散 ·収束の程度 (換言すればレンズの焦点距離)を変化させてもょ 、 [0122] このように、焦点距離可変のコリメートレンズ 6を用いてレーザ光の発散 ·収束を変 換する場合は、コリメートレンズを光軸方向に移動する方法と比較して駆動部分がな V、ため、全体を小型化できると 、うメリットがある。
[0123] これまでの実施形態の説明にお ヽても言及したように、再生動作から記録動作へ の切り替え時 (発光パワーの切り替え時)や周囲温度の変化などによって、レーザ光 源の波長が変動する。ここで、特にレーザ光の波長が短いほど、波長変動に伴う対 物レンズの材料の屈折率変動による、最良像点位置の変動による影響が大きくなる。
[0124] ここで、本実施形態の対物レンズ 1とカップリングレンズ 8の組み合わせにおいては 、 405nmの最良(最小)波面収差の位置に対して、波長 406m、 404nmに対する R MS波面収差の最良(最小)波面収差の変動が、約 ±0. 19 μ mに抑えられている。 これは、本実施形態のカップリングレンズ 8が、凹レンズである第 1レンズ 8aと、第 1レ ンズ 8aよりも分散が小さい(すなわちアッベ数が大きい)凸レンズである第 2レンズ 8b で構成されているため、波長変動に伴って凸レンズである対物レンズ 1で発生する最 良像点位置の変動を、カップリングレンズ 8で逆方向に補正する効果がある。すなわ ち、カップリングレンズ 8がいわゆる色消しレンズの効果を備えていることによる。
[0125] なお BD60、 DVD70、 CD80は、それぞれ記録または再生に必要な開口数が異 なるため、開口制限素子 7を用いて、カップリングレンズ 8 (対物レンズ 1)に入射する 光束の光束径を変化させている。開口制限素子 7としては、機械的絞り、光学的絞り を用いることが可能である。機械的絞りの例として、開口数に対応する直径の孔を有 する板状体を複数枚用意し交換する構成があり、光学的絞りの例として、波長選択 性のダイクロイツクフィルタやダイクロイツクプリズム等を用いる手段がある力 本発明 はこれらに限定されるものではない。
[0126] 以上、本実施形態の光学ヘッド 20は、青紫レーザ光、赤色レーザ光、赤外レーザ 光の 3波長の光源と、それらに対応する光ディスクの記録再生に対して、それぞれ良 好な光学性能を有しており、この対物レンズを用いた光学ヘッドは、例えば BD、 DV D、 CDの 3種類の光ディスクに対して、良好に記録または再生を行うことができる。
[0127] (実施形態 2)
次に、図 12を参照しながら、本実施形態による光学ヘッド 30を説明する。 [0128] 図 12は、本実施形態による光学ヘッド 30の概略構成図である。図 12に示す光学 ヘッド 30が実施形態 1による光学ヘッド 20と相違する点は、カップリングレンズの構 造にある。他の構成要素は光学ヘッド 20および光学ヘッド 30間で同一であるため、 同一の符号を付して、以下その説明を省略する。
[0129] 図 12は、光ディスクが BD60であるときの、光学ヘッド 30内の光路の状態を示して いる。また、図 13は、光ディスクが DVD70であるときの、光学ヘッド 30内の光路の状 態を示す。図 14は、光ディスクが CD80であるときの、光学ヘッド 30内の光路の状態 を示す。
[0130] 図 12〜14によれば、カップリングレンズ 18を通過するレーザ光の径はそれぞれ異 なっていることが理解される。その結果、カップリングレンズ 18を通過する際に、青紫 レーザ光、赤色レーザ光、赤外レーザ光はそれぞれ異なる光学的作用を受ける。
[0131] 次に、図 15〜20を参照しながら、本実施形態によるカップリングレンズ 18を詳細に 説明する。
[0132] 図 15は、本実施形態によるカップリングレンズ 18の概略構成図である。カップリング レンズ 18は、カップリングレンズ 18は、第 1レンズ 18aおよび第 2レンズ 18bを有して いる。光学ヘッド 30に実装されたとき、第 1レンズ 18aはコリメートレンズ 6側に向けら れ、第 2レンズ 18bは対物レンズ 1側に向けられる。
[0133] 第 1レンズ 18aと第 2レンズ 18bはそれぞれ、光軸を含んだ 3波長の共通領域と、共 通領域の外側の青紫波長の専用領域を有して!/、る。
[0134] 本実施形態においても、カップリングレンズ 18に対して光軸と交わる第 1面、第 2面 および第 3面を定義する。
[0135] 第 1レンズ 18aのコリメートレンズ 6側の面である第 1面は、共通領域 181iおよび専 用領域 181οに分けられる。第 1レンズ 18aの対物レンズ 1側の面 (換言すれば第 2レ ンズ 18bのコリメートレンズ 6側の面)である第 2面または密着面は、共通領域 182iお よび専用領域 182οに分けられる。第 2レンズ 18bの対物レンズ 1側の面である第 3面 は共通領域 183iおよび専用領域 183οに分けられる。
[0136] 第 1レンズ 18aと第 2レンズ 18bとは、第 2面 182iと 182οにて密着またはほぼ密着し て接合または接着されており、第 1レンズ 18aの第 2レンズ 18bと接合または接着して いる面と、第 2レンズ 18bの第 1レンズ 18aと接合または接着している面は、同じまた はほぼ同じ非球面形状である。なお、別々に成形した第 1レンズ 8aと第 2レンズ 8bと を所定のホルダに挿入することで、両者をほぼ密着して保持することも可能である。
[0137] 本実施形態にぉ ヽては、第 1レンズ 18aを榭脂材料 (たとえばポリカーボネイト)で 成形し、第 2レンズ 18bをガラス材料 (たとえば PBK40)で成形している。これにより、 榭脂材料の第 1レンズ 18aを、ガラス材料の第 2レンズ 18bに密着成形でき、第 1レン ズ 18aと第 2レンズ 18bとの密着面の位置合わせは実質的に不要となる。
[0138] 密着成形を行うためには、第 1レンズ 18aの榭脂材料のガラス転移温度は、第 2レン ズ 18bに用いられるガラス材料のガラス転移温度よりも低くならなければならな 、。た とえば、一般的な光学用ガラス材料のガラス転移温度は 500度であるため、第 1レン ズ 18aの榭脂材料のガラス転移温度は、 300度以下であることが好まし 、。
[0139] 本実施形態のカップリングレンズ 18において、第 2レンズ 18bは、光学性能に優れ たガラス材料 PBK40で成形されている。ガラス材料 PBK40の成形は、金型を用い て安価に行うことができる。一方、第 1レンズ 18aは榭脂材料であるポリカーボネイトで あり、やはり成形は安価に行うことが可能である。さらに、第 1レンズ 18aのポリカーボ ネイトのガラス転移温度は 138度、第 2レンズ 18bの PBK40のガラス転移温度は 501 度であるため、成形した第 2レンズ 18bに第 1レンズ 18aを密着成形することが可能で ある。
[0140] なお、第 1レンズ 18aの榭脂材料は、第 2レンズ 18bに対して密着性に優れ、高透 過率で耐光性、耐湿性に優れて ヽることが好ま ヽ。
[0141] 一方、第 1レンズ 18aおよび第 2レンズ 18bを材質が異なるガラス材料で作製すると 、非常に優れた耐光性、耐湿性をもっという特徴がある。第 1レンズ 18aのガラス転移 温度と第 2レンズ 18bのガラス転移温度との間にある程度の差があれば、第 2レンズ 1 8bのガラス材料とは異なるガラス材料で第 1レンズ 18aを成形することが可能である。 ガラス転移温度の差は、たとえば 200度以上であることが好ましい。材質が異なるガ ラス材料の第 1レンズ 18aおよび第 2レンズ 18bを利用するときは、第 1レンズ 18aおよ び第 2レンズ 18bは接着剤によって接着されることが好ましい。
[0142] また、紫外線硬化榭脂を利用して、第 2レンズ 18bに対していわゆるフォトポリマー 法(2P法)で第 1レンズ 18aを成形することも可能である。フォトポリマー法で成形する ことにより、第 1レンズ 18aおよび第 2レンズ 18bの位置合わせが不要になる。
[0143] 上述の例、および以下により具体的に説明する例は、成形された第 2レンズ 18bに 対して、第 1レンズ 18aを密着成形する例である。し力しながら、第 1レンズ 18aと第 2 レンズ 18bとを入れ替えても同様の効果が得られる。たとえば第 1レンズ 18aをガラス 材料で成形し、第 2レンズ 18bを榭脂材料で成形してもよ 、。
[0144] 以下、第 1レンズ 18aの材質としてポリカーボネイト(nd= l . 584、 v d= 30. 1)を 用!ヽ、第 2レンズ 18bの材質として PBK40 (nd= l . 518、 v d= 63. 5)を用!ヽる伊 [J を詳細に説明する。
[0145] 第 1面 181i、 181οの非球面形状、第 2面 182i、 182οの非球面形状および第 3面 1831, 183οの非球面形状は、前述の(1)式で表される非球面形状によって決定さ れる。
[0146] (1)式において、 hは光軸上の頂点から光軸と垂直方向の距離、 Rは曲率半径、 k は円錐定数、 Aiは i=0〜10項までの非球面係数である。 0次の項を含むことに留意 されたい。 Zは h、 R、 k、 Aiによって決まる頂点の接平面力もの光軸方向の距離 (サグ )であり、この Zの値で決まる曲線が各面の非球面断面形状を与える。
[0147] なお、 0次の項である A hQ、すなわち Aは、サグの光軸方向のシフト量を示している
0 0
。非球面形状を与える(1)式で、 0次の項を用いることは一般的ではないが、他の項 の非球面係数と同様に、非球面係数の一つとして取り扱うものとする。
[0148] (表 4〜6)にカップリングレンズ 18の仕様を示す。
[0149] [表 4]
Figure imgf000026_0001
[0150] [表 5] カップリングレンズの非球面係数
¾ 1面 第 2面 (境界面) 第 3面
レンス面
共通領域 専用領域 共通領域 専用領垵 共通領域 専用領域 直径 2.86 ― 2.84 2.Θ6 ―
R -1.377848E+02 -7.497090E+01 8.689889E+00 -9.662039E-02 -3.585451 E+01 -7.336921 E+01 k -4.755777E+03 -1.105136E+03 3.103830E+01 -1.927899E+05 -1.236132E+03 4.9 3872E+02
AO 0.0OOO00E+O0 4.000000E-02 0.0OOO0OE+OO 4.900000E-01 0.O0O000E+00 -3-215000E-02
A1 0.0O00OOE+O0 O.O0OOO0E+O0 0.0O000OE+OO 0.0OO000E+O0 O.O000O0E+00 0.000000E+0O
A2 9.779752E-03 -1.330156E-04 4.998982E-02 -7.025707E-03 -5.455447E-04 2.505305E-0
A3 1.359560E-03 -1.544251 E-05 1.947603E-02 -1.109245E-03 -9-351682E-04 8.327718E-05
A4 -2.833996E-04 -3.819420E-05 7.139013E-04 9.977497E-04 -6.119682E-04 5.5β8720Ε-Ο7
A5 -3.452001 E-04 - .380698E-05 -1.478104E-03 -7.893298E-05 -1.009399E-0 -1.106165Ε-05
A6 -1.345624E-04 9.535750E-07 -9.430643E-04 -1.916721 E-05 1.850666E-05 -3.290850Ε-06
A7 9.805895E-06 2.946026E-07 -2.334123E-04 -2.81808 E-06 -5.595202E-06 1.353794E"06
A8 1.279059E-05 9.286240E-09 2.770767E-04 1.286522E-07 -1.723416E-05 6.163810E-07
A9 O.O0O00OE+O0 7.160655E-09 0.0O0O0OE+0O 5.907250E-09 0.00O000E+00 3.751829E-09
A10 O.0OOOO0E+0O 1.284297E-09 O.0O0O0OE+OO 5.465395E-09 0.00O0OOE+00 1.663208E-09
[0151] [表 6] 使用波長と材料屈折率、間隔
Figure imgf000027_0001
[0152] (表 4)における面番号は、面番号 1が第 1面 181iと 181o、面番号 2が第 2面 182iと 182ο (密着面)、面番号 3が第 3面 183iと 183οを表している。また、面間隔および材 料名については、該当する面番号と次の面番号との間の面間隔および材料名を示 す。
[0153] また、(表 5)において、「Ε + 05」〜「Ε— 09」はそれぞれ 10の 5乗〜 10の— 9乗を 表す。 [0154] カップリングレンズ 18と組み合わせて用いる対物レンズ 1は、実施形態 1と同様、保 護層厚 0. 0875mmの BD60に対して、波長 405nmの平行光を入射した場合に球 面収差が略ゼロとなる、 BD60専用の焦点距離 2. 3mmの対物レンズである。
[0155] また (表 6)の物点距離は、 BD60を記録または再生する場合は、物点距離が無限 遠、すなわち平行光を入射し、 DVD70を記録または再生する場合は、物点距離— 1 20mmの収束光を入射し、 CD80を記録または再生する場合は、物点距離 + 60m mの発散光を入射する必要があることを示して 、る。
[0156] 図 16 (a)〜(c)は、それぞれ、本実施形態のカップリングレンズ 18および対物レン ズ 1を用いて、 BD60、 DVD70、 CD80のそれぞれの情報記録層にレーザ光を集束 させたときの光線の状態を示す。情報の記録または再生の際に、光線は各図に示さ れる状態をとる。
[0157] 図 16 (a)は、波長 405nmのレーザ光を NAO. 85で集光させて保護層厚 0. 0875 mmの BD60に集束させたときの光線の状態を示す。同様に、図 16 (b)は、波長 655 nmのレーザ光を NAO. 60で集光させて保護層厚 0. 6mmの DVD70に集束させた ときの光線の状態を示す。図 16 (c)は、波長 785nmのレーザ光を NA0. 47で集光 させて保護層厚 1. 2mmCD80に集束させたときの光線の状態を示す。いずれも、 情報の記録または再生が行われて 、るときの状態を示して 、る。
[0158] 図 16 (a)〜(c)によれば、青紫レーザ光はカップリングレンズ 18の専用領域と共通 領域の両方を透過し、赤色レーザ光および赤外レーザ光は共通領域のみを透過し ている。
[0159] 図 17は波長 405nmのレーザ光を BD60に集束させたときの波面収差図であり、入 射光角度 0. Odeg (a)と 0. 5deg (b)を示している。同様に、図 18は波長 655nmのレ 一ザ光を DVD70に集束させたときの波面収差図、図 19は波長 785nmのレーザ光 を CD80に集束させたときの波面収差図である。
[0160] 図 17〜19に示す PX軸、 PY軸は光軸に対して垂直な軸であり、 PX軸は PY軸に 対して垂直である。縦軸は波面収差を示し、スケールの最小は 1 λ、最大は + 1 λ を示している(λ:波長)。図 17〜 19に示したとおり、レーザ光の入射光角度を 0. Od egから 0. 5degに変化させても、波面収差はそれぞれ ± 1 λ以内の値をとることが確 認 れ,
[0161] 図 20は、入射光角度を横軸に表した RMS波面収差図である。図 20では、波長 40 5nmの光を BD60に集束させた場合、波長 655nmの光を DVD70に集束させた場 合、波長 785nmの光を CD80に集束させた場合の RMS波面収差を示して 、る。
[0162] 図 20によれば、 、ずれの場合にお!、ても、 RMS波面収差の値は全て、 0. Odeg 0. 5degの入射光角度に対して 0. 071 ( Z14)以下の回折限界以下の値をとり、 良好な性能を実現して 、る。
[0163] 本実施形態においては、青紫レーザ光をカップリングレンズ 18に略平行光で入射 させ、赤色レーザ光および赤外レーザ光を、カップリングレンズ 18に発散光で入射さ せた場合に、良好な収差性能が得られるカップリングレンズの設計例を用いて説明し た。し力しながら、レーザ光がカップリングレンズ 18に入射する際に、各レーザ光を平 行-収束 ·発散のいずれの態様で入射させるかの組み合わせは、カップリングレンズ 1 8の設計に依存する。いずれの場合も本発明の適用範囲に含まれることは言うまでも ない。
[0164] なお、本実施形態の対物レンズ 1とカップリングレンズ 18の組み合わせにおいては
405nmの最良(最小)波面収差の位置に対して、波長 406m 404nmに対する R MS波面収差の最良(最小)波面収差の変動が約 ±0. に抑えられている。これ は、本実施形態のカップリングレンズ 18が、凹レンズである第 1レンズ 18aと、第 1レン ズ 18aよりも分散が小さいすなわちアッベ数が大きい凸レンズである第 2レンズ 18bで 構成されているため、波長変動に伴って凸レンズである対物レンズ 1で発生する最良 像点位置の変動を、カップリングレンズ 18で逆方向に補正していることによる。
[0165] ただし、記録型の高密度光ディスクに対する記録再生性能を向上させるために、波 長の変化によって生じる最良像点位置の変動を補正するための色収差補正素子を さらに備えることが好ましい。この場合の色収差補正素子は、回折型の別素子を光路 中に挿入してもよ 、し、コリメートレンズを張り合わせによる色消しレンズとしてもょ 、。
[0166] 図 21 (a)から (d)は、青紫レーザ光を BD60に集束させたときの波面収差図を示し ている。 PX軸は光軸に対して垂直な軸を表している。また、縦軸は波面収差を示し、 スケールの最小は— 1 λ、最大は + 1 λを示している。 [0167] 図 21 (a)は設計波長である 405nmのレーザ光を BD60に集束させたときの波面収 差図を示す。波面収差は良好な特性を示している。
[0168] 図 21 (b)は設計波長力もずれた波長 410nmのレーザ光を BD60に集束させたとき の波面収差図を示す。図 21 (b)によれば、 3次の球面収差に加えて、高次の球面収 差が発生している。 3次の球面収差については、コリメートレンズ 6を光源側に移動さ せて、発散光をカップリングレンズ 18に入射させることにより補正が可能である。図 2 1 (c)は、コリメートレンズ 6の移動により補正された波面収差図を示す。
[0169] し力しながら、図 21 (c)で残存する 5次以上の高次球面収差については、コリメート レンズ 6の移動では補正することができな!/、。
[0170] この波長変動に伴って発生した高次の球面収差は、位相段差を用いて補正するこ とが可能である。本実施形態では、図 22に示すように、位相段差をカップリングレン ズ 18の第 1面(コリメートレンズ側の面)の非球面形状に重畳して形成している。
[0171] 図 23は、光軸に垂直な面による位相段差面の断面形状を示す。
[0172] 図 23において、横軸はカップリングレンズ 18の半径を表す。縦軸はその半径にお いて、位相段差による位相のずらし量を、設計波長 405nmを 1 λとしたときの波長 λ の整数倍で示している。図 23に示すように、 10えの整数倍の位相段差とすることで、 赤色レーザ (波長 655nm)と赤外レーザ (波長 785nm)の波面には影響を与えること なぐ青紫レーザの波長の変動に応じた高次球面収差を発生させることができる。こ の位相段差によって補正された波面は、図 21 (d)に示す形状となる。
[0173] 以上のように、波長変動に伴って発生する球面収差は、コリメートレンズ 6の移動に よる 3次の球面収差補正と併せ、位相段差を用いることで高次球面収差も補正するこ とが可能となる。
[0174] 位相段差は、独立した光学素子として光路中に配置してもよいが、本実施形態で 示したように、カップリングレンズ 18のレンズ面に形成することで、部品点数も削減で き、小型化およびコストダウンの面で好ましい。また、位相段差はカップリングレンズ 1 8の第 3面 (対物レンズ側の面)に形成しても同様の効果が得られるが、非球面形状 に重畳して成形することを鑑みると、金型の作成上、榭脂レンズ側 (本実施形態では ポリカーボネイトを用いた第 1レンズ側)に位相段差を形成することがより好ましい。 [0175] なお、実施形態 1で示したカップリングレンズ 8を用いた場合、波長変動に伴って発 生する球面収差は、そのほとんどが 3次の球面収差である。従って、コリメートレンズ 6 を移動させるだけで波長変動に伴って発生した球面収差を補正可能であり、実質的 に位相段差は不要である。
[0176] 以上、本実施形態の光学ヘッド 30は、青紫レーザ光、赤色レーザ光、赤外レーザ 光の 3波長の光源と、それらに対応する光ディスクの記録再生に対して、それぞれ良 好な光学性能を有しており、この対物レンズを用いた光学ヘッドは、例えば BD、 DV D、 CDの 3種類の光ディスクに対して、良好に記録または再生を行うことができる。
[0177] なお、実施形態 1の光学ヘッド 20、および、実施形態 2の光学ヘッド 30では、光源
2から波長 405nmの青紫レーザ光を出射し、別の受発光一体素子 10から波長 655 nmの赤色レーザ光、波長 785nmの赤外レーザ光を出射する構成としている。し力し ながら、本発明はこれに限定されない。例えば、青紫レーザ光、赤色レーザ光、赤外 レーザ光を、それぞれ別の位置に配置した光源力ゝら出射する構成としてもよい。また
、受光素子 9は、光源 2とは異なる位置に配置されているが、光源 2と受光素子 9を同 じ位置に配置し、受発光一体素子とした構成でも良い。また、受発光一体素子 10で 赤色レーザ光と赤外レーザ光の両方を受光して 、るが、赤色レーザ光と赤外レーザ 光をそれぞれ別の受光素子で受光してもよい。さらに、青紫レーザ光、赤色レーザ光 、赤外レーザ光の光源が一体化された 3波長光源を用いた構成としてもよぐ青紫レ 一ザ光、赤色レーザ光、赤外レーザ光を一体の受光素子で受光してもよい。
[0178] さらに、実施形態 1の光学ヘッド 20、実施形態 2の光学ヘッド 30では、 BD60を記 録または再生する際に波長 405nmのレーザ光を用い、 DVD70を記録または再生 する際に波長 655nmのレーザ光を用い、 CD80を記録または再生する際に波長 78 5nmのレーザ光を用いる場合について説明した。しかしながら、波長 350〜450nm のレーザ光、波長 600〜700nmのレーザ光、波長 750〜850nmのレーザ光の 3つ の波長のレーザ光を用いて、 3種類の光ディスクに対してそれぞれ記録または再生を 行う光学ヘッドにも広く適用可能である。
[0179] また、実施形態 1によるカップリングレンズ 8、および、実施形態 2によるカップリング レンズ 18は、 BD、 DVDおよび CDの 3種類の光ディスクに対して、情報の記録また は再生を行う光学系に用いられるものである。しかし、これらは、例えば他の高密度 光ディスク(保護基板厚 0. 6mm、 NAO. 65)、 DVD、 CDの 3種類の光ディスクに対 して、情報の記録または再生を行う光学系にも適用可能であることは言うまでもな 、。
[0180] (実施形態 3)
図 24は、本実施形態による光ディスク装置 50の概略構成図である。
[0181] 光ディスク装置 50は、光ディスク駆動部 51と、制御部 52と、光学ヘッド 53とを備え ている。なお、図 24には光ディスク装置 50に装填された BD60が示されている力 こ れは説明の便宜のためである。いうまでもなく BD60を DVD70あるいは CD80に交 換することは可能である。ただし、 BD60、 DVD70および CD80は光ディスク装置 50 力も取り外し可能であり、光ディスク装置 30の構成要素ではない。以下では、特に言 及しない限り、光ディスクは BD60であるとして説明する。
[0182] 光ディスク駆動部 51は BD60を回転駆動するモータである。
[0183] 光学ヘッド 53は実施形態 1または実施形態 2による光学ヘッドである。
[0184] 制御部 52は、いわゆる光ディスクコントローラであり、光ディスク駆動部 51と光学へ ッド 53の駆動および制御を行う。また制御部 52は、光学ヘッド 53で受光された制御 信号、情報信号の信号処理を行い、情報信号を光ディスク装置 50の構成要素と外 部機器 (たとえばホストコンピュータ)との間でインタフェースさせる。
[0185] 光ディスク装置 50は、実施形態 1または実施形態 2で述べたいずれかの光学ヘッド を搭載しているので、本実施形態における光ディスク装置 50は、複数の光源とそれら に対応する光ディスクの記録再生に対して、それぞれ良好に記録または再生を行うこ とがでさる。
産業上の利用可能性
[0186] 本発明の光学ヘッドは、高密度光ディスク、 DVDおよび CDの記録または再生が可 能であるので、光学ヘッドの構成が簡単化され、生産性の向上が達成されるとともに 、光ディスク装置自身の小型化、軽量ィ匕および高精度化ができ、また、安価に光ディ スク装置を提供できる。

Claims

請求の範囲
[1] 複数の光源力 放射される異なる波長のレーザ光を、それぞれ異なる種類の光情 報記録媒体の情報記録面に集光する光学ヘッドに組み込まれるカップリングレンズ であって、
互 、の光軸が一致するように実質的に密着されるとともに、密着面にぉ 、て前記異 なる波長のレーザ光がそれぞれ屈折するように設計された第 1レンズおよび第 2レン ズを備え、
前記異なる波長のレーザ光のうち、最も短い波長に対してァフォーカルである、カツ プリングレンズ。
[2] 前記カップリングレンズは、前記光軸と交わる 3つのレンズ面を備え、
前記第 2レンズに面して!/、な!/、側の前記第 1レンズのレンズ面である第 1レンズ面、 実質的に密着された前記第 1レンズおよび前記第 2レンズの密着面をなす第 2レン ズ面、および、
前記第 1レンズに面して 、な 、側の前記第 2レンズのレンズ面である第 3レンズ面 を有しており、前記第 1レンズ面、前記第 2レンズ面および前記第 3レンズ面の少な くとも 1つのレンズ面が非球面形状で形成されて 、る、請求項 1に記載のカップリング レンズ。
[3] 前記第 1レンズ面、前記第 2レンズ面および前記第 3レンズ面の少なくとも 1つのレ ンズ面の有効領域のうち、光軸を含む第 1有効領域と、前記第 1領域の周囲に位置 する第 2有効領域とは異なる非球面形状で形成されている、請求項 2に記載のカップ リングレンズ。
[4] 前記第 1レンズ面、前記第 2レンズ面および前記第 3レンズ面の少なくとも 1つのレ ンズ面の有効領域のうち、前記第 1有効領域の形状を規定するために用いられる非 球面係数と、前記第 2有効領域の形状を規定するために用いられる非球面係数とが 異なる、請求項 3に記載のカップリングレンズ。
[5] 前記第 1レンズ面、前記第 2レンズ面および前記第 3レンズ面について、各々の前 記第 1有効領域と前記第 2有効領域とは異なる非球面形状で形成されて 、る、請求 項 2に記載のカツプリングレンズ。
[6] 前記第 1レンズは凹レンズとして機能し、前記第 2レンズは凸レンズとして機能する、 請求項 1に記載のカップリングレンズ。
[7] 前記第 1レンズと前記第 2レンズとは、接合または接着されて ヽる、請求項 1に記載 のカップリングレンズ。
[8] 前記第 1レンズと前記第 2レンズとを実質的に密着して保持するホルダをさらに備え た、請求項 7に記載のカップリングレンズ。
[9] 前記第 1レンズおよび前記第 2レンズは、材質が異なる榭脂材料で形成されて ヽる
、請求項 1に記載のカップリングレンズ。
[10] 前記第 1レンズ面には光学的な段差が設けられている、請求項 3に記載のカツプリ ングレンズ。
[11] 前記第 1レンズおよび前記第 2レンズは、一方がガラス材料で形成され、他方が榭 脂材料で形成されて ヽる、請求項 1に記載のカップリングレンズ。
[12] 前記第 1レンズおよび前記第 2レンズの一方は、紫外線硬化榭脂で形成されている 、請求項 9または 11に記載のカップリングレンズ。
[13] 前記榭脂材料のガラス転移温度は 300度以下である、請求項 9に記載のカップリン グレンズ。
[14] 前記第 1レンズおよび前記第 2レンズは、材質が異なるガラス材料で形成されてい る、請求項 1記載のカップリングレンズ。
[15] 前記第 1レンズのガラス材料のガラス転移温度と、前記第 2レンズのガラス材料のガ ラス転移温度との差は、 200度以上である、請求項 14に記載のカップリングレンズ。
[16] 異なる波長のレーザ光を放射する複数の光源と、
対物レンズと、
前記複数の光源および前記対物レンズの間の光路上に配置された、請求項 2に記 載のカップリングレンズと
を備え、前記対物レンズと前記カップリングレンズとによって、前記異なる波長のレ 一ザ光をそれぞれ異なる種類の光情報記録媒体の情報記録面に集光する光学へッ ド、。
[17] 前記複数の光源は、波長 λ 1のレーザ光を放射する第 1光源、波長 λ 2のレーザ光 を放射する第 2光源、および、波長え 3のレーザ光を放射する第 3光源を含んでおり 、前記波長 λ 1、前記波長 λ 2および前記波長 λ 3は、
350應く λ K 450nm
600nm< X 2< 700nm
750nm< 3く 850nm
を満たす、請求項 16に記載の光学ヘッド。
[18] 前記カップリングレンズは、前記波長 λ 1の波長変動に伴って発生する前記対物レ ンズの色収差を補正する、請求項 16に記載の光学ヘッド。
[19] 前記第 1レンズの d線(波長 587. 56nm)および F線(波長 486. 13nm)および C線
(波長 656. 27nm)の屈折率を用いて表されるアッベ数を v dl、
前記第 2レンズの d線および F線および C線の屈折率を用いて表されるアッベ数を V d2として、
アッベ数 V dlおよびアッベ数 V d2が、
v dl < d2
を満たす、請求項 18に記載の光学ヘッド。
[20] 前記アッベ数 V dlおよび前記アッベ数 V d2が、それぞれ、
(11 < 35ぉょひ (12 > 50
を満たす、請求項 19に記載の光学ヘッド。
[21] レーザ光の波長に応じて、前記レーザ光を略平行光、発散光または収束光に変換 して前記対物レンズに入射させる変換部をさらに備えた、請求項 16に記載の光学へ ッド、。
[22] 前記変換部は、少なくとも前記波長 λ 1のレーザ光を略平行光として前記対物レン ズに入射させるコリメートレンズと、放射されているレーザ光の波長に対応する駆動信 号に基づ 、て前記コリメートレンズを光軸方向に移動させる駆動部とを備えて 、る、 請求項 21に記載の光学ヘッド。
[23] 前記波長 λ 1のレーザ光を光記録媒体に集光させた時において、前記レーザ光の 焦点には光記録媒体の光透過層の厚さに起因して球面収差が発生し、
前記変換部は、前記コリメートレンズを光軸方向に沿って移動させて、前記球面収 差を補正する、請求項 22に記載の光学ヘッド。
[24] 前記対物レンズと物理的に結合されて、前記対物レンズの位置を変化させる可動 部を有するァクチユエータをさらに備え、
前記カップリングレンズは前記ァクチユエータの可動部に固定されて、前記対物レ ンズと一体的に移動する、請求項 16に記載の光学ヘッド。
[25] 請求項 16に記載の光学ヘッドと、
光記録媒体を回転駆動するためのモータと、
前記光学ヘッドと前記モータとを制御する制御部と
を備えた光学ドライブ。
PCT/JP2007/062124 2006-06-20 2007-06-15 カップリングレンズ、光学ヘッドおよび光ディスク装置 WO2007148625A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/305,784 US7952979B2 (en) 2006-06-20 2007-06-15 Coupling lens, optical head and optical disc device
JP2008522430A JP4880686B2 (ja) 2006-06-20 2007-06-15 カップリングレンズ、光学ヘッドおよび光ディスク装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-170013 2006-06-20
JP2006170013 2006-06-20

Publications (1)

Publication Number Publication Date
WO2007148625A1 true WO2007148625A1 (ja) 2007-12-27

Family

ID=38833367

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/062124 WO2007148625A1 (ja) 2006-06-20 2007-06-15 カップリングレンズ、光学ヘッドおよび光ディスク装置

Country Status (3)

Country Link
US (1) US7952979B2 (ja)
JP (1) JP4880686B2 (ja)
WO (1) WO2007148625A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10317917B2 (en) * 2015-07-06 2019-06-11 Emerson Process Management Regulator Technologies, Inc. Fluid control apparatus having variable area flow restrictor
US10481385B2 (en) * 2017-05-11 2019-11-19 Kaiser Optical Systems Inc. Endoscopic immersion probe end optics for laser spectroscopy

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000019388A (ja) * 1998-06-30 2000-01-21 Sony Corp 色収差補正用光学素子およびこれを具備する光学ピックアップ装置、ならびにこの光学ピックアップ装置を具備する光再生装置および光記録再生装置
JP2001176109A (ja) * 1999-10-30 2001-06-29 Samsung Electronics Co Ltd 光ピックアップ装置
JP2002100065A (ja) * 2000-09-21 2002-04-05 Samsung Electronics Co Ltd 色収差補正レンズを具備した光ピックアップ装置
JP2004079146A (ja) * 2001-10-12 2004-03-11 Konica Minolta Holdings Inc 光ピックアップ装置、対物レンズ、回折光学素子、光学素子及び記録・再生装置
WO2004053557A1 (ja) * 2002-12-10 2004-06-24 Asahi Glass Company, Limited 光情報記録媒体用の対物レンズ
JP2005285249A (ja) * 2004-03-30 2005-10-13 Ricoh Co Ltd 光ピックアップおよび光ディスクドライブ
JP2005322281A (ja) * 2004-05-06 2005-11-17 Matsushita Electric Ind Co Ltd 収差補正素子、光ピックアップ用レンズ装置、光ピックアップ装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0114368D0 (en) * 2001-06-07 2001-08-08 Smiths Industries Plc Face masks
US7206276B2 (en) 2001-10-12 2007-04-17 Konica Corporation Objective lens, optical element, optical pick-up apparatus and optical information recording and/or reproducing apparatus equipped therewith
KR20060037234A (ko) 2003-07-11 2006-05-03 마쯔시다덴기산교 가부시키가이샤 광픽업용 렌즈장치 및 이를 이용한 정보기록 재생장치
JP4254549B2 (ja) * 2004-01-16 2009-04-15 日本ビクター株式会社 光ピックアップ装置及び回折光学素子
CN100580781C (zh) * 2004-10-08 2010-01-13 先锋株式会社 衍射光学元件、物镜模块、光拾取器及光信息记录再现装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000019388A (ja) * 1998-06-30 2000-01-21 Sony Corp 色収差補正用光学素子およびこれを具備する光学ピックアップ装置、ならびにこの光学ピックアップ装置を具備する光再生装置および光記録再生装置
JP2001176109A (ja) * 1999-10-30 2001-06-29 Samsung Electronics Co Ltd 光ピックアップ装置
JP2002100065A (ja) * 2000-09-21 2002-04-05 Samsung Electronics Co Ltd 色収差補正レンズを具備した光ピックアップ装置
JP2004079146A (ja) * 2001-10-12 2004-03-11 Konica Minolta Holdings Inc 光ピックアップ装置、対物レンズ、回折光学素子、光学素子及び記録・再生装置
WO2004053557A1 (ja) * 2002-12-10 2004-06-24 Asahi Glass Company, Limited 光情報記録媒体用の対物レンズ
JP2005285249A (ja) * 2004-03-30 2005-10-13 Ricoh Co Ltd 光ピックアップおよび光ディスクドライブ
JP2005322281A (ja) * 2004-05-06 2005-11-17 Matsushita Electric Ind Co Ltd 収差補正素子、光ピックアップ用レンズ装置、光ピックアップ装置

Also Published As

Publication number Publication date
JP4880686B2 (ja) 2012-02-22
JPWO2007148625A1 (ja) 2009-11-19
US7952979B2 (en) 2011-05-31
US20100002560A1 (en) 2010-01-07

Similar Documents

Publication Publication Date Title
JP4577664B2 (ja) 光ピックアップ装置、対物レンズ、回折光学素子、光学素子及び記録・再生装置
JP4120788B2 (ja) 光ピックアップ装置、対物レンズ、回折光学素子、光学素子及び記録・再生装置
US6927923B2 (en) Objective lens, converging optical system, optical pickup apparatus and recording and/or reproducing apparatus
JPWO2005101393A1 (ja) 光ピックアップ装置用の対物光学系、光ピックアップ装置、光情報記録媒体のドライブ装置、集光レンズ、及び光路合成素子
JPWO2007074870A1 (ja) 対物レンズ、光学ヘッドおよび光ディスク装置
JPWO2005083694A1 (ja) 対物光学系、光ピックアップ装置及び光情報記録再生装置
WO2007010770A1 (ja) 光ピックアップ装置及び光情報記録媒体の記録・再生装置
WO2005117002A1 (ja) 対物光学系、光ピックアップ装置、及び光ディスクドライブ装置
JP3826819B2 (ja) 光ピックアップ装置
JP4880686B2 (ja) カップリングレンズ、光学ヘッドおよび光ディスク装置
KR20060053935A (ko) 집광 광학계, 이것을 이용한 광학 픽업 장치 및 광 기록 및재생 장치, 및 집광 방법
JP2002236252A (ja) 対物レンズ、カップリングレンズ、集光光学系、光ピックアップ装置及び記録・再生装置
WO2011033786A1 (ja) 光ピックアップ光学系
KR101120026B1 (ko) 능동형 보정소자 및 이를 채용한 호환형 광픽업 및 광 기록및/또는 재생기기
JP2010238277A (ja) 光ピックアップ装置及び対物レンズユニット
JP2006244656A (ja) 対物レンズ、光ピックアップ装置、及び光ディスク装置
JP2003015032A (ja) 対物レンズ、集光光学系、光ピックアップ装置、及び記録・再生装置
JP4482830B2 (ja) 光ピックアップ装置、対物レンズ、回折光学素子、光学素子及び記録・再生装置
JP2004164825A (ja) 光ピックアップ装置
JP4437829B2 (ja) 対物レンズ、光ピックアップ装置、及び記録・再生装置
JP4062742B2 (ja) 対物レンズ、光ピックアップ装置、及び記録・再生装置
JP4062742B6 (ja) 対物レンズ、光ピックアップ装置、及び記録・再生装置
JP2006338840A (ja) 光ピックアップ装置及び光ディスクドライブ装置
JP2002251766A (ja) 対物レンズ、集光光学系、光ピックアップ装置及び記録・再生装置
JP2008077693A (ja) 対物レンズ及び光ピックアップ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07745379

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2008522430

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12305784

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07745379

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)